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Abstract

A deterministic model for the transmission dynamics of Zika is designed and rigorously anal-

ysed. A model consisting of mutually exclusive compartments representing the human and

mosquito dynamics takes into account both direct (human-human) and indirect modes of trans-

missions. The basic offspring number of the mosquito population is computed, and condition

for existence and stability of equilibria is investigated. Using the centre manifold theory, the

model (with and without direct transmission) is shown to exhibit the phenomenon of backward

bifurcation (where a locally-asymptotically stable disease free equilibrium co-exists with a locally-

asymptotically stable endemic equilibrium) whenever the associated reproduction number is less

than unity. The study shows that the models with and without direct transmission exhibit the

same qualitative dynamics with respect to the local stability of their associated disease-free equi-

librium and backward bifurcation phenomenon. The main cause of the backward bifurcation is

identified as Zika induced mortality in humans. Sensitivity (local and global) analysis of the

model parameters are conducted to identify crucial parameters that influence the dynamics of the

disease. Analysis of the model shows that an increase in the mating rate with sterile mosquito

decreases the mosquito population. Numerical simulations, using parameter values relevant to the

transmission dynamics of Zika are carried out to support some of the main theoretical findings.

Keywords: Zika virus, Sterile insect technique, Reproduction number, Stability, Equilibrium, Bifur-

cation.

1 Introduction

Zika is a mosquito borne disease caused by Zika virus (Zv) of genus Flavivirus. The virus was first

identified in Uganda in 1947, through a monitoring network of sylvatic yellow fever in rhesus monkeys.

Five years later, human infection was identified in Uganda and Tanzania. Since then, Zika outbreaks

have been recorded in Africa, Americas, Asia and the Pacific [47]. The disease is primarily transmitted

by a bite of an infected mosquito, mainly Aedes aegypti (a mosquito species that transmits yellow

fever, dengue, West Nile virus, Chikungunya and Japanese encephalitis virus) [29, 47]. The virus

is also transmitted through sexual contact between humans [23, 24, 38, 47], blood transfusion and

parental transmission [47]. Recently, incidences of congenital neurological disorder (microcephaly)

and auto-immune (Guillain-Barr syndrome) complications have been attributed to growing number

of Zika incidences especially in the Americas [41, 47].
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Unfortunately there is no specific treatment for Zika infection available. Fluid replacement therapy

is used for individuals with symptoms such as fever, rash or arthralgia [47]. Although there is no

effective vaccine for Zika at the moment, a number of candidate vaccines are undergoing various

phases of clinical trials. One of the recent is the experimental vaccine known as rZIKV/D4∆30-713

developed by scientist at the National Institute of Allergy and Infectious Diseases (NIAID), which is

being evaluated in a phase 1 clinical trial (initiated in August 2018) [48]. It is acknowledged that

mosquito control is one of the most important tools in the control and/or prevention of mosquito

borne diseases (such as dengue and Zika). One of the most promising methods to control Zika is the

Sterile Insect Technology (SIT), which is non-polluting method of insect control that relies on the

release of sterile male mosquitoes. Mating of released sterile males with wild female mosquitoes leads

to non-hatching of eggs and this results in the decline of the wild mosquitoes population [3, 19, 32, 42].

Since the introduction of SIT, numerous mathematical models have been developed and used to

quantify the impact of SIT on the transmission dynamics of vector borne diseases (VBDs). These

models fall into two main categories, namely, the deterministic or process-based models (which repre-

sent the dynamics of the disease using differential equations) some of which include [3, 5, 19, 21, 22]

(and some of the references therein), and the statistical models (mainly stochastic processes which

are typically based on the use of time-series data to describe the correlation or relationship, between

VBDs and the vector population). In this study, we extend the model designed in [3] by incorpo-

rating additional compartments for infectious mosquitoes (sterilized and non-sterilized) and human

population. This allows us to assess the potential impact of sterilization on both mosquito and dis-

ease control. Furthermore, the model assumes that disease transmission between humans is possible,

the recent findings which confirm the Zika transmission via sexual contact between humans include

[23, 24, 37, 38, 47]. The purpose of incorporating sexual transmission is to investigate the potential

impact of combined direct (human-to-human) and indirect (human-vector-human) Zika transmission.

The paper is organized as follows. A Zika model, which incorporates the dynamics of mosquitoes

(sterilized and non-sterilized) and humans is formulated and analysed in Section 2. Mosquito-only

model is analysed in Section 3. Analysis of the model in the absence of direct (human-to-human)

transmission is presented in Section 4. The model with direct transmission is analysed in Section 5.

Sensitivity analysis and numerical simulations are reported in Sections 6 and 7, respectively.

2 Model formulation

The model assumes a homogeneous mixing of human and vector (mosquito) populations, so that

each mosquito bite has equal chance of transmitting the virus to a susceptible human (or acquiring

infection from infectious human) in the population. The total human population at time t, denoted

by NH(t) is split into three mutually exclusive compartments of susceptible (SH(t)), infected (IH(t))

and recovered (RH(t)), so that

NH(t) = SH(t) + IH(t) +RH(t).

Similarly, the total mosquito population is split into aquatic (immature) and non-aquatic (adult)

stages. For mathematical tractability, the aquatic stages (eggs, larvae and pupae) are lumped into

one compartment denoted by A(t). The adult mosquito population (non-aquatic stage) at time t

is sub-divided into seven mutually exclusive compartments consisting of non-fertilized adult female

mosquitoes (Y (t)), fertilized non-sterile susceptible females (FN (t)), fertilized sterile susceptible fe-

males (those that could lay eggs but do not hatch due to mating with sterile male mosquitoes) (FS(t)),

fertilized non-sterile infected females (FNI(t)), fertilized sterile infected females (FSI(t)), sterile male

(MS(t)) and non-sterile male (MN (t)) mosquitoes. Sterile male mosquitoes are injected into the
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population at a constant rate. Thus, the total mosquito population at time t is given by

NV (t) = A(t) + Y (t) + FN (t) + FS(t) + FNI(t) + FSI(t) +MN (t) +MS(t).

It is assumed that humans can acquire infection following effective contact with infectious mosquitoes

in the FNI or FSI classes at a rate λH1 given by

λH1 = βV H
(FNI + η1FSI)

NV
, (1)

where βV H = ρV Hξ1 is the effective contact rate between infectious mosquitoes and susceptible hu-

mans, it is defined as the product of the transmission probability from an infectious mosquito to

susceptible human (ρV H) and the biting rate of infectious mosquitoes (ξ1). The modification param-

eter 0 < η1 < 1 accounts for the assumed reduction in transmissibility of mosquitoes in FSI class in

comparison to those in FNI class. Furthermore, it is assumed that humans can acquire Zika infection

from infectious humans (in IH or RH class) via sexual contact at a rate λH2 (this is in line with

some recent clinical studies which suggest that, high viral load was found in the semen and saliva

of recovered patients weeks after recovery, hence, there is high chance of direct vaginal or oral sex

transmission by recovered humans [20, 23, 24, 38, 47, 48]). It is worth mentioning that Zika is the

first Flavivirus known to be transmitted sexually by infectious humans [24]. Thus

λH2 = βHH
(IH + η2RH)

NH
,

where βHH = ρHHξ2 is the effective contact rate between infectious and susceptible humans, which

is the product of the transmission probability from infectious humans to susceptible humans (ρHH)

and contact rate (usually sexual) between infectious and susceptible humans (ξ2). The modification

parameter 0 < η2 < 1 accounts for the assumed reduction in transmissibility of recovered humans in

comparison to infectious humans, so that the force of infection of humans is given by

λH = λH1 + λH2 = βV H
(FNI + η1FSI)

NV
+ βHH

(IH + η2RH)

NH
. (2)

Similarly, a susceptible mosquito can acquire Zika infection from an infectious human at a rate λV
(the force of infection of mosquitoes), given by

λV = βHV
IH
NH

,

where βHV = ρHV ξ3 is the effective contact rate between infectious humans and susceptible mosquitoes;

it is defined as the product of the transmission probability from an infectious human to a susceptible

mosquito (ρHV ) and the biting rate of susceptible mosquitoes (ξ3).

2.1 Incidence functions

In this section, the functional form of the incidence functions for the transmission dynamics of Zika will

be derived. Using the well known fact that for mosquito borne diseases, the total number of bites made

by mosquitoes must be equal to the total number of bites received by humans (see [6, 7, 14, 26, 40]

for detailed justification), for the number of bites to be conserved, the following equation must hold

βV H(NH , NV )NH = βHVNV ,

hence

NV =
βV H(NH , NV )

βHV
NH . (3)
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Substituting (3) in (1) gives

λH1 =
βHV
NH

(FNI + η1FSI),

so that

λH = λH1 + λH2 =
βHV (FNI + η1FSI) + βHH(IH + η2RH)

NH
. (4)

2.2 Dynamics of human population

The population of susceptible humans is generated by birth or immigration at a constant rate bH .

This population is decreased by acquiring infection after receiving adequate number of bites capable

of disease transmission from an infectious mosquito (at the rate λH1) or via sexual transmission by

an infectious human (at the rate λH2) and by natural death at a rate µH . This gives

dSH
dt

= bH − λHSH − µHSH .

The population of infectious humans is generated by infection of susceptible humans at the rate λH ,

and decreases due to recovery (at a rate γH), natural death (at the rate µH) and disease induced

death (at a rate δH), so that

dIH
dt

= λHSH − δHIH − γHIH − µHIH .

The population of recovered humans is generated by the recovery of infectious humans (at the rate

γH) and reduces due to natural death (at the rate µH). Thus

dRH
dt

= γHIH − µHRH .

2.3 Dynamics of mosquito population

The population of mosquitoes in the aquatic stage (eggs, larvae and pupae) is increased through

oviposition by reproductive mosquitoes at a rate φV . This population decreases due to natural death

at a rate µV (it is assumed that natural death occurs in all mosquito compartments at the rate µV ),

by density dependent death at a rate µ, maturate and move out of aquatic stage at a rate bV . Thus

dA

dt
= φV FNI + φV FN − µA2 − µVA− bVA.

The population of non-sterile male mosquitoes evolves directly from the aquatic stage at a rate (1−
r)bV , and decreases due to natural death. Thus

dMN

dt
= (1− r)bVA− µVMN .

Sterile male mosquitoes (MS) are released into the population at a rate ω(t) at time t. However,

due to some environmental and geographical factors that may affect the mixing of sterile and wild

mosquitoes, such as location of mosquito breeding site, it is convenient to assume that, only a fraction

p of the released mosquitoes will join the wild mosquito population. It is further believed that the

sterile mosquitoes are in several ways the same as wild mosquitoes. In particular, they are able to

mate with wild female mosquitoes. However, there are some differences, which include a change in

mating competitiveness due to irradiation and population distributions (which depend on the released

formula that could depends on the breeding site and feeding ground). The differences in mating
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competitiveness can be captured by a modification parameter g which represents the mean mating

competitiveness of the sterile male mosquitoes [3, 14, 30], so that, if the number of wild mosquitoes

equivalent of sterile mosquitoes is given by MS , then the actual number of released sterile male

mosquitoes is 1
pgMS . Therefore, the population of sterile male mosquitoes increases at a rate pgω(t)

at time t (see for instance [3]). This population decreases due to natural death at a rate µS , so that

dMS

dt
= pgω − µSMS .

It is assumed that mating of female mosquitoes with sterile male mosquitoes results to non-hatching

of their eggs (that is, they lay infertile eggs). Thus, under the previously stated assumptions and

adjustments to MS , it is convenient to assume that the mosquitoes in the MS and MN classes have

equal chances of mating. Thus, a female mosquito has probability MS

MS+MN
of mating with sterile male

mosquito and probability MN

MS+MN
of mating with non-sterile male mosquito. Adult female mosquitoes

evolve from the aquatic stage at a rate rbVA, they mate with non-sterile male mosquito and progress

to FN compartment at a rate αMN

MS+MN
, or with a sterile male mosquito and move to FS compartment at

a rate αMS

MS+MN
(where α is total mating rate). Note that the total mating rate αMS

MS+MN
+ αMN

MS+MN
= α

remain the same. Thus we have

dY

dt
= rbVA−

αMS

MN +MS
Y − αMN

MN +MS
Y − µV Y.

The population of mosquitoes in the FN class is generated from compartment Y through mating of

female mosquitoes with a non-sterile male mosquitoes (MN ). In order to nourish their eggs before

oviposition, they need blood, and hence they will probably bite an infectious human and if acquired

infection move to the FNI compartment at the rate λV . This population is reduced due to natural

death, so that

dFN
dt

=
αMN

MN +MS
Y − λV FN − µV FN .

Similarly, the population of mosquitoes in the FS class is generated through mating of adult female

mosquitoes with sterile male mosquitoes. This population is decreased by infections following contact

with infectious humans and progress to the FSI compartment at a rate λV . This gives

dFS
dt

=
αMS

MN +MS
Y − λV FS − µV FS .

The population of mosquitoes in the FNI class is generated by the infection of mosquitoes in FN class,

and are decreased by natural death. Hence

dFNI
dt

= λV FN − µV FNI .

Finally, the population of mosquitoes in the FSI class is generated from FS after biting an infectious

human. Thus

dFSI
dt

= λV FSI − µV FSI .

2.4 Model equations

Since there are only two mating possibilities, either with sterilized or with non-sterilized male mosquitoes,

we let MS

MN+MS
= θ, so that MN

MN+MS
= 1− θ. Thus, the Zika transmission model is given by the fol-

lowing system of non-linear differential equations (a flow diagram of the model is given in Figure 1
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and the associated variables and parameters are described in Table 1)

H
u

m
an

s

dSH
dt

= bH − λHSH − µHSH ,

dIH
dt

= λHSH − δHIH − γHIH − µHIH ,

dRH
dt

= γHIH − µHRH ,

M
o
sq

u
it

o
es



dA

dt
= φV FNI + φV FN − µA2 − µVA− bVA,

dY

dt
= rbVA− αY − µV Y,

dFN
dt

= α(1− θ)Y − λV FN − µV FN ,

dFS
dt

= αθY − λV FS − µV FS ,

dFNI
dt

= λV FN − µV FNI ,

dFSI
dt

= λV FS − µV FSI ,

dMN

dt
= (1− r)bVA− µVMN ,

dMS

dt
= pgω(t)− µVMS .

(5)

Notice that, the last equation of (5) is controlled externally and it is independent of the other com-

partments. Therefore, given ω(t) continuous, as a linear equation it has the solution

MS(t) = e−µSt
(
MS(0) +

∫ t

0

eµSjpgω(j)dj
)
. (6)

It is worth mentioning that model (5) was also considered in a conference proceeding (reference [14] by

the same authors). The focus and approach of the two papers are however different. This study gives

a thorough rigorous theoretical and constructive analysis of the model, such as the global stability

and backward bifurcation property, global sensitivity analysis, we also consider the model with and

without human-human Zika transmission. The Zika model (5), to the author’s knowledge is the first

to incorporate sterile insect technique with both direct and indirect transmission modes. The model

extends some Zika transmissions models and sterile insect technique (SIT) models in the literature,

such as those in [1, 3, 5, 7, 19, 21, 22, 25, 31], by for instance:

• Incorporating mosquito sterilization in the model for the transmission of Zika, which is not

considered in [1, 7, 25, 31].

• Incorporating the aquatic and non-aquatic stages of mosquitoes which allows us to evaluate

the effects of the mosquito reproduction and sterilization on disease transmission, which is not

considered in [3, 5, 7, 21, 22, 25].

• Allowing for the transmissions of Zika by both infectious and recovered humans, whereas only

transmission by infectious human is assumed in [7, 25].

To understand the impact of controlling mosquito population, it is imperative to consider the mosquito-

only population in the presence of sterilization. Thus, the following section.
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3 Theoretical analysis of the mosquito-only model

Here, we carry out analysis of mosquito population in the absence of interaction with infectious

humans, by considering the compartment for the non infectious mosquito population only, given by

dA

dt
= φV FN − µA2 − µVA− bVA,

dY

dt
= rbVA− αY − µV Y,

dFN
dt

= α(1− θ)Y − µV FN ,

dFS
dt

= αθY − µV FS ,

dMN

dt
= (1− r)bVA− µVMN .

(7)

3.1 Basic offspring number of the mosquito population

The basic offspring number of the mosquito population is given by

N0 =
φV rbV α(1− θ)

(bV + µV )(α+ µV )µV
. (8)

It can be interpreted as follows. A successful oviposition occurs after a female mosquito mates with a

non-sterile (wild) male mosquito, which fertilizes and lays eggs. The average duration spent in aquatic

stage by mosquito is 1
bV +µV

(where bV is the rate at which mosquitoes transform from aquatic to non-

aquatic stage). Let r be the fraction of aquatic mosquitoes that become females, the probability that

an egg survives the aquatic stage and becomes an adult female mosquito is

rbV
bV + µV

. (9)

Similarly, 1
(α+µV ) is the average duration spent by a female mosquito in Y compartment. The rate at

which a mosquito in compartment Y move to compartment FN (through mating with male mosquitoes

in MN compartment) is α(1 − θ). Thus, the probability that a female mosquito successfully moves

from class Y to class FN is given by

α(1− θ)
(α+ µV )

. (10)

Furthermore, let the average lifespan of a mosquito in FN class be 1
µV

, and φV be its oviposition rate,

then the average number of eggs oviposited by each mosquito in FN compartment during its lifetime

is given by

φV
µV

. (11)

The product of the quantities in equations (9), (10) and (11) gives the number of offspring produced

by a single female mosquito that mates with a non-sterile male mosquito in its entire lifespan.

Thus, If N0 > 1, then the mosquito population persist, otherwise, if N0 ≤ 1 then, the mosquito pop-

ulation goes to extinction and the indirect (human-mosquito-human) transmission can be eliminated.
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3.2 Existence and stability of equilibria in mosquito population

Setting the right hand side of the equations of system (7) to zero gives the following equilibria

E0 = (A∗, Y ∗, F ∗N , F
∗
S ,M

∗
N ) =

(
A∗,

rbVA
∗

K3
,

(1− θ)αrbVA∗

K3µV
,
θαrbVA

∗

K3µV
,

(1− r)bVA∗

K3µV

)
, (12)

where

K1 = δH + γH + µH , K2 = bV + µV , and K3 = α+ µV ,

and A∗ satisfies

(A∗)2 +
K2

µ

[
1− φV rbV α(1− θ)

K2K3µV

]
A∗ = 0,

or equivalently

A∗
[
A∗ +

K2

µ
(1−N0)

]
= 0. (13)

The roots of A∗ are controlled by the magnitude of N0.

If N0 ≤ 1, then, the only biologically meaningful root of equation (13) is A∗ = 0, which corresponds

to the trivial (or mosquito extinction) equilibrium, E1, given by

E1 = (A∗, Y ∗, F ∗N , F
∗
S ,M

∗
N ) = (0, 0, 0, 0, 0). (14)

It is worth mentioning that the equilibrium, E1, is biologically less attractive due to the absence of

mosquitoes in the population. However if N0 > 1, then, the system (7), has a non-zero positive

equilibrium, E2, given by

E2 =
(
A∗, Y ∗, F ∗N , F

∗
S ,M

∗
N

)
=
(
A∗,

bV rA
∗

K3
,
bV rα(1− θ)A∗

K3µV
,
bV θαrA

∗

K3µV
,
bV (1− r)A∗

K3µV

)
, (15)

where A∗ = K2

µ (N0 − 1) > 0.

Theorem 1 For the mosquito-only model (7), the extinction equilibrium, E1, is globally asymptotically

stable (GAS) if N0 ≤ 1 and unstable otherwise. In addition, the positive equilibrium, E2, is locally

asymptotically stable if N0 > 1.

The proof is given in Appendix A �

The epidemiological implication of Theorem 1 is that the model (7) does not undergo backward bifur-

cation when N0 ≤ 1 (since E1 is GAS when N0 ≤ 1). Thus bringing the value of N0 to below unity is

a sufficient condition for the control of a mosquito population, which could be achieved by increasing

the mating rate of sterile mosquitoes (θ).

The full model is now analysed for its dynamical features, by first of all considering the model in the

absence of direct (human-human) transmission.

4 Analysis of the model (in the absence of direct transmission)

Here, we analyse the model (5) in the absence of human-human transmission (obtained by setting

βHH = 0), so that, the forces of infections are now given by

λH =
βHV (FNI + η1FSI)

NH
and λV = βHV

IH
NH

. (16)
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4.1 Disease-free equilibrium (DFE)

The model (5) with (16) has the following disease-free equilibrium

E3 =
(
S∗H , I

∗
H , R

∗
H , A

∗, Y ∗, F ∗N , F
∗
S , F

∗
NI , F

∗
SI ,M

∗
N

)
=
( bH
µH

, 0, 0,
K2

µ
[N0 − 1],

bVK2r[N0 − 1]

K3µ
,
bVK2αr(1− θ)[N0 − 1]

K3µV µ
,
bVK2θαr[N0 − 1]

K3µV µ
, 0, 0,

bVK2(1− r)[N0 − 1]

K3µV µ

)
.

(17)

Notice that:

If N0 ≤ 1, then, the only DFE of the model (5) is the trivial equilibrium (corresponding to human

population free of mosquitoes), denoted by E31, given by

E31 = (S∗H , I
∗
H , R

∗
H , A

∗, Y ∗, F ∗N , F
∗
S , F

∗
NI , F

∗
SI ,M

∗
N ) =

(
bH
µH

, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
. (18)

This coincides with the mosquito extinction equilibrium, E1, which is shown to be GAS in Theorem

1.

IfN0 > 1, then, the system (5), has a non-zero positive disease-free equilibrium, E32 (which corresponds

to human population in the presence of mosquitoes), given by

E32 =
(
S∗H , I

∗
H , R

∗
H , A

∗, Y ∗, F ∗N , F
∗
S , F

∗
NI , F

∗
SI ,M

∗
N

)
=
( bH
µH

, 0, 0,
K2

µ
[N0 − 1],

bVK2r[N0 − 1]

K3µ
,
bVK2αr(1− θ)[N0 − 1]

K3µV µ
,
bVK2θαr[N0 − 1]

K3µV µ
, 0, 0,

bVK2(1− r)[N0 − 1]

K3µV µ

)
.

(19)

As stated in Section 3.2, the equilibrium E31 is less attractive. Thus, the stability of E32 is now

explored.

4.1.1 Local stability of the DFE (E32)

The local stability of the DFE, E32 (for the case when N0 > 1) can be established using the next

generation operator method on the system given by model (5). The matrices F (for the new infection

terms) and V (of the transition terms) are respectively, given by

F =


0 0 βHV η1βHV
0 0 0 0

βHV
F∗

N

N∗
H

0 0 0

βHV
F∗

S

N∗
H

0 0 0

, V =


K1 0 0 0

−γH µH 0 0

0 0 µV 0

0 0 0 µV

.

Following [45], the basic reproduction number of the Zika model (5) about E32, with the forces of

infection given by (16) (and N0 > 1) is

R1 = ρ(FV −1) =

√
β2
HV bV αrK2(N0 − 1)

[
θη1 + (1− θ)

]
N∗HK1K3µ2

V µ
. (20)

Lemma 1 The DFE (E32), of the model (5) with (16) (and N0 > 1) is locally-asymptotically stable

(LAS) if R1 < 1, and unstable if R1 > 1 [45].

The epidemiological implication of Lemma 2 is that, there will not be a disease outbreak for a small

influx of infectious individuals in the community if R1 < 1, and therefore the disease eventually dies

out.
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4.2 Interpretation of R1

In the absence of direct transmission (when βHH = 0), the threshold quantity (R1) is defined as

the expected number of secondary cases generated by an infected case introduced into a completely

susceptible population. It can be interpreted as follows. Susceptible humans can acquire infection

following effective contact with infectious mosquitoes (in FNI or FSI classes). The number of human

infections generated by mosquitoes in the FNI class (near the DFE) is given by the product of the

infection rate of infectious mosquitoes in the FNI class (βHV

N∗
H

= βHV µH

bH
), the average duration in the

FNI class ( 1
µV

), and the probability that a female mosquito survives the fertilized non-sterilized class

(FN ) and move to the FNI compartment (α(1−θ)µV
). This gives (noting that S∗H = bH

µH
)

βHV µHα(1− θ)
bHµ2

V

S∗H =
βHV α(1− θ)

µ2
V

. (21)

Similarly, the number of human infections generated by infectious mosquitoes in the FSI class (near the

DFE) is given by the product of the infection rate of mosquitoes in the FSI class (βHV η1
N∗

H
= βHV η1µH

bH
),

the average duration in the FSI class ( 1
µV

), and the probability that a female mosquito survives the

fertilized sterilized class (FS) and move to FSI compartment ( αθµV
), so that

βHV µHαθη1
bHµ2

V

S∗H =
βHV αθη1

µ2
V

. (22)

Therefore, the sum of (21) and (22) gives the average number of new human infections generated by

infectious mosquito (sterilized or non-sterilized). This gives

RV H =
βHV α(1− θ)

µ2
V

+
βHV αθη1

µ2
V

=
βHV α

[
θη1 + (1− θ)

]
µ2
V

. (23)

The number of mosquitoes infection generated by infectious human (near the DFE), is given by the

product of infection rate of infectious humans (βHV

N∗
H

= βHV µH

bH
), and the average duration of humans

in the infectious class 1
K1

, so that (with Y ∗ = A∗bV r
K3

)

RHV =
βHV
N∗HK1

Y ∗ =
βHV bV µHr

K1K3bH
A∗. (24)

The geometric mean of (23) and (24) gives the associated reproduction number (noting that A∗ =
K2(N0−1)

µ > 0)

R1 =

√
β2
HV bV µHαrK2(N0 − 1)

[
θη1 + (1− θ)

]
bHK1K3µ2

V µ
=
√
RHVRV H ,

where the quantitiesRHV andRV H are the reproduction thresholds associated with Zika transmission

from human to mosquitoes and from mosquito to humans, respectively.

4.3 Endemic equilibrium and backward bifurcation

Let,

E4 =
(
S∗∗H , I

∗∗
H , R∗∗H , A

∗∗, Y ∗∗, F ∗∗N , F ∗∗S , F ∗∗NI , F
∗∗
SI ,M

∗∗
N

)
(25)

represents an arbitrary positive endemic equilibrium point of the model (5) in the absence of human-

human transmission. Furthermore, let

λ∗∗H =
βHV F

∗∗
NI + βHV η1F

∗∗
SI

S∗∗H + I∗∗H +R∗∗H
and λ∗∗V = βHV

I∗∗H
S∗∗H + I∗∗H +R∗∗H

. (26)
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be the associated forces of infections at steady-state. Solving the equations of model (5) at steady

state gives

S∗∗H =
bH

λ∗∗H + µH
, I∗∗H =

λ∗∗H bH
K1(λ∗∗H + µH)

, R∗∗H =
λ∗∗H bHγH

K1µH(λ∗∗H + µH)
,

A∗∗ =
K2

µ

(
N0 − 1

)
, Y ∗∗ =

rbVK2

K3µ

(
N0 − 1

)
, F ∗∗N =

bV rα(1− θ)K2

K3µ(λ∗∗V + µV )

(
N0 − 1

)
,

F ∗∗S =
bV rαθK2

K3µ(λ∗∗V + µV )

(
N0 − 1

)
, F ∗∗NI =

bV λV rα(1− θ)K2

K3µV µ(λ∗∗V + µV )

(
N0 − 1

)
,

F ∗∗SI =
bV λV rαθK2

K3µV µ(λ∗∗V + µV )

(
N0 − 1

)
, M∗∗N =

(1− r)bVK2

µV µ

(
N0 − 1

)
.

(27)

Since the endemic equilibrium is dependent on λ∗∗V and λ∗∗H , it is imperative to find the possible roots

of λ∗∗H , which can be used to evaluate λ∗∗V . This can be achieved by substituting S∗∗H , I
∗∗
H , R∗∗H , F

∗∗
NI

and F ∗∗SI from (27) in (26). After some algebraic simplification, it can be shown that, λ∗∗H satisfies

a0(λ∗∗H )5 + a1(λ∗∗H )4 + a2(λ∗∗H )3 + a3(λ∗∗H )2 + a4λ
∗∗
H = 0, (28)

where

a0 =βHV b
2
Hµ

2
HK1(µH + γH) + b2HK1µHµV (µH + γH)2,

a1 =2βHV b
2
Hµ

3
HK1(µH + γH) + βHV b

2
Hµ

3
HK

2
1+

2b2HK
2
1µ

2
HµV (µH + γH) + 2b2Hµ

2
HK1µV (µH + γH)2 −R2

1K
3
1b

2
Hµ

2
HµV ,

a2 =2βHV b
2
HK

2
1µ

4
H + βHV b

2
Hµ

4
HK1(µH + γH)+

4b2HK
2
1µ

3
HµV (µH + γH) + b2HK

3
1µ

3
HµV + b2Hµ

3
HK1µV (µH + γH)2 − 3R2

1K
3
1b

2
Hµ

3
HµV ,

a3 =2K3
1µ

4
Hb

2
HµV +K2

1b
2
Hµ

5
HβHV + 2K2

1b
2
Hµ

4
HµV (µH + γH)− 3R2

1K
3
1b

2
Hµ

4
HµV ,

a4 =b2HK
3
1µ

5
HµV (1−R2

1).

(29)

Clearly, λ∗∗H = 0 is a root of (28), which corresponds to the DFE. Notice from (29) that a0 > 0 and

a4 > 0 (a4 < 0) whenever R1 < 1 (R1 > 1). Further, the signs of the remaining coefficients (a1, a2
and a3) depend on the magnitude of the associated parameters, different possibilities can be obtained

by permuting their signs as presented in Table 4.

Theorem 2 The model (5) in the absence of human-human transmission has

i) Unique endemic equilibrium if R1 > 1 as in Cases 2, 4, 8 and 10 in Table 4.

ii) Two or more endemic equilibrium if R1 < 1 as in Cases 3, 5, 7, 9, 11, 13, and 15 in Table 4.

iii) No endemic equilibrium if R1 < 1, as in Case 1 in Table 4.

Theorem 2 (Case (ii)) indicates the possibility of backward bifurcation (where the locally-asymptotically

stable DFE co-exists with a locally-asymptotically stable endemic equilibrium when R1 < 1) in the

model (5) (see, for instance, [26, 27, 28]). Furthermore, this is investigated using the center manifold

theory below. We claim the following result.

Theorem 3 The Zika model (5) in the absence of direct transmission undergoes backward bifurcation

at R1 = 1, whenever the bifurcation coefficient denoted by ã given by (B.3) in Appendix B is positive.

The proof is given in Appendix B. �

The public health implication of backward bifurcation phenomenon of the model (5) is that the

classical epidemiological requirement of having the reproduction number (R1) to be less than unity,

while necessary is no longer sufficient for the effective control of the disease. In other words, the

backward bifurcation property of the model (5) makes effective Zika control difficult. Further, as a

consequence, it is instructive to try to determine the cause of the backward bifurcation phenomenon

in the model (5). This is explored below.
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4.4 Non-existence of Backward bifurcation

Consider the model (5) with Zika induced death assumed to be negligible (obtained by setting δH = 0)

so that, K1 reduces to µH + γH , thus we have the coefficients in (29) reduces to

a0 =βHV b
2
Hµ

2
HK

2
1 + b2HK

3
1µHµV ,

a1 =3βHV b
2
Hµ

3
HK

2
1 +K3

1b
2
Hµ

2
HµV (4−R2

1), a2 = 3βHV b
2
HK

2
1µ

4
H + 3K3

1b
2
Hµ

3
HµV (2−R2

1)

a3 =βHVK
2
1b

2
Hµ

5
H +K3

1b
2
Hµ

4
HµV (4− 3R2

1), a4 = b2HK
3
1µ

5
HµV (1−R2

1).

(30)

Clearly a0 > 0, the signs of a1, a2, a3, and a4 depend on the magnitude of R1. Noticed that, if R1 ≤ 1,

there is no sign change, hence, by Routh-Hurwitz criterion, there is no endemic equilibrium whenever

R1 ≤ 1.

Lemma 2 The Zika model in the absence of direct transmission given by (5), with δH = 0 has no

endemic equilibrium whenever R1 ≤ 1.

The epidemiological implication of Lemma 2 is that the Zika model without direct transmission given

by (5), with δH = 0 does not undergo backward bifurcation (since the occurrence of backward bifur-

cation requires the existence of at least two equilibria when R1 < 1).

Furthermore, it is worth noticing that, substituting δH = 0 in the expression for the bifurcation

coefficient ã, given by equation (B.3) in Appendix B reduces ã reduces to

ã =
−2w2

2v2
N∗H

[RHVRV HK2
1

µH

(
2−RHVRV H

)
+
RHVRV HK1βHV

µV

]
< 0, (31)

provided R1 ≤ 1. Thus, it follows from Theorem 4.1 of [8] that, the model (5) does not undergoes

backward bifurcation if the disease induced death rate is negligible. This result is similar to that

obtained numerically by Chitnis et al [9] in their malaria model.

The Zika model with both direct (human-human) and indirect (human-mosquito-human) transmission

is now analysed for its dynamical features. The aim is to find out if incorporating direct transmission

will change the dynamics of the disease.

5 Analysis of the model with direct transmission

In this section, we consider the full Zika model in the presence of human-human transmission (i.e with

the forces of infection given by (1) and (4)).

5.1 Disease-free equilibrium

The model (5) (with direct transmission) has two disease-free equilibria given by:

E5 =
(
S∗H , I

∗
H , R

∗
H , A

∗, Y ∗, F ∗N , F
∗
S , F

∗
NI , F

∗
SI ,M

∗
N

)
=

(
bH
µH

, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
, (32)

which occurs when N0 ≤ 1, and

E6 =
(
S∗H , I

∗
H , R

∗
H , A

∗, Y ∗, F ∗N , F
∗
S , F

∗
NI , F

∗
SI ,M

∗
N

)
=
( bH
µH

, 0, 0,
K2

µ
(N0 − 1),

rbVK2(N0 − 1)

K3µ
,

(1− θ)αrbVK2(N0 − 1)

K3µV µ
,
θαrbVK2(N0 − 1)

K3µV µ
, 0, 0,

(1− r)bVK2(N0 − 1)

K3µV µ

)
,

(33)

which is obtained when N0 > 1.
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5.2 Local stability of E6
The local stability of the DFE, E6, is established using the next generation method on model (5). The

F and V matrices about E5 are respectively given by

F =


βHH η2βHH βHV η1βHV

0 0 0 0

βHV
F∗

N

N∗
H

0 0 0

βHV
F∗

S

N∗
H

0 0 0

, V =


K1 0 0 0

−γH µH 0 0

0 0 µV 0

0 0 0 µV

.

Following [45], the associated reproduction number of the system model (5) (with N0 > 1) denoted

by R0 is given by

R0 =
βHH

(
η2γH + µH

)
2K1µH

+

√[βHH(η2γH + µH
)

2K1µH

]2
+
β2
HV bV rαµHK2(N0 − 1)

[
θη1 + (1− θ)

]
K1K3bHµ2

V µ
.

=
1

2

(
RHH +

√
R2
HH + 4RV HRHV

)
.

where, RHH is the threshold quantity associated with the direct (human-to-human) transmissions.

Lemma 3 The disease-free equilibrium (E6), of model (5) with (1), (4) and N0 > 1 is locally asymp-

totically stable if R0 < 1, and unstable if R0 > 1 [45].

The threshold quantity RHH can be interpreted as follows. The number of new human-human infec-

tions (via sexual transmission), generated by an infectious human (IH) (near the DFE) is given by the

product of the infection rate of infectious human (
βHHS

∗
H

N∗
H

), and the average duration in the infectious

class ( 1
K1

), this gives

βHH
K1

. (34)

Similarly, the number of new human infections generated by humans in the RH class (near the DFE),

is given by the product of the infection rate of infectious human (
βHHη2S

∗
H

N∗
H

), the probability that

human survives the infectious class IH and move to recovered class (γHK1
), and the average duration in

the recovered class ( 1
µH

), this gives

βHHη2γH
K1µH

. (35)

Hence, the sum of (34) and (35) gives the threshold quantity associated with the human-human Zika

transmissions

RHH =
βHH
K1

+
βHHη2γH
K1µH

=
βHH

(
µH + η2γH

)
K1µH

. (36)

Notice that in the absence of direct Zika transmission, R0 = R1. This result is consistent with those

obtained in Brauer et al [6] and Chitnis et al [11] for epidemic model of vector borne diseases with

both direct and indirect transmissions.

5.3 Endemic equilibrium and backward bifurcation

Let

E7 =
(
S∗∗∗H , I∗∗∗H , R∗∗∗H , A∗∗∗, Y ∗∗∗, F ∗∗∗N , F ∗∗∗S , F ∗∗∗NI , F

∗∗∗
SI ,M

∗∗∗
N

)
, (37)
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represents an arbitrary positive endemic equilibrium point (EE) of the model (5). Furthermore, let

λ∗∗∗H =
βHV (F ∗∗∗NI + η1F

∗∗∗
SI ) + βHH(I∗∗∗H + η2R

∗∗∗
H )

S∗∗∗H + I∗∗∗H +R∗∗∗H
, λ∗∗∗V = βHV

I∗∗∗H

S∗∗∗H + I∗∗∗H +R∗∗∗H

be the associated forces of infections at the steady-state. Solving equations of model (5) at the

steady-state (with N0 > 1) gives

S∗∗∗H =
bH

λ∗∗∗H + µH
, I∗∗∗H =

λ∗∗∗H bH
K1(λ∗∗∗H + µH)

, R∗∗∗H =
λ∗∗∗H bHγH

K1µH(λ∗∗∗H + µH)
,

A∗∗∗ =
K2

µ

(
N0 − 1

)
, Y ∗∗∗ =

rbVK2

K3µ

(
N0 − 1

)
, F ∗∗∗N =

bV rα(1− θ)K2

K3µ(λ∗∗∗V + µV )

(
N0 − 1

)
,

F ∗∗∗S =
bV rαθK2

K3µ(λ∗∗∗V + µV )

(
N0 − 1

)
, F ∗∗∗NI =

bV λ
∗∗∗
V rα(1− θ)K2

K3µV µ(λ∗∗∗V + µV )

(
N0 − 1

)
F ∗∗∗SI =

bV λ
∗∗∗
V rαθK2

K3µV µ(λ∗∗∗V + µV )

(
N0 − 1

)
, M∗∗∗N =

(1− r)bVK2

µV µ

(
N0 − 1

)
.

(38)

we claim the following result.

Theorem 4 The Zika model (5) with direct transmission undergoes backward bifurcation at R0 = 1,

whenever the bifurcation coefficient denoted by ã2 given by equation (39) is positive.

Proof. Using similar approach as in the proof of Theorem 3. It can be shown that the associated

bifurcation coefficient ã, is now given by

ã2 =

n∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0) =
−2K1w

2
2v2

N∗H

[RHH(γH + µH
)

µH
+

2RHVRV H
(
γH + µH

)
µH

+
RHVRV HβHV

µV
−K1

(RHHRV HRHV
µH

+
R2
HVR2

V H

µH

)] (39)

and

b̃2 =

n∑
k,i=1

vkwi
∂2fk

∂xi∂φV
(0, 0) =

2βHV v2w2K2bV (N0 − 1)rα
(

[1− θ] + η1θ
)

N∗HK3µ3
V µ

> 0. (40)

�

Notice that if δH = 0, then K1 reduces to γH + µH and ã2 reduces to

ã2 =
−2w2

2v2
N∗H

[RHHK2
1

µH

(
1−RHVRV H

)
+
RHVRV HK2

1

µH

(
2−RHVRV H

)
+
RHVRV HK1βHV

µV

]
< 0,

(41)

provided R0 ≤ 1.

Lemma 4 The Zika model (5) does not undergoes backward bifurcation at R0 = 1 if δH = 0.

Thus, as in Section 4, this result completely rules out the existence of backward bifurcation when

δH = 0.

6 Sensitivity analysis

Sensitivity analysis is a tool used in studying the variation of an output of a model due to change in

the input parameters. We perform both local sensitivity analysis (where all other parameters are held

at a certain baseline) for the basic reproduction number (R0), and global sensitivity analysis, where

a multidimensional parameter space is studied globally [36].
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6.1 Local sensitivity analysis of R0 with respect to model parameters

The basic reproduction number (R0) is used to measure the potential impact of a disease. Using

elasticity index, we perform local sensitivity analysis of the parameters of R0. The method is used

to measure the percentage change of a parameter say α, with respect to a percentage change of a

quantity say R(α). The normalized sensitivity index (elasticity indices) of R(α) with respect to α is

[10],

ΥR
α =

∂R

∂α
× α

R
.

Using the parameter values in Table 2, we give the sensitivity index of the parameters for low and

high baseline values in Table 3. For both low and high transmission regions, R0 is most negatively

correlated to µV , where ΥR0
µV

= −0.71355 in low region and ΥR0
µV

= −0.66732 in high region, both are

followed by bH and µ (note that ΥR0

bH
= ΥR0

µ ). Similarly, R0 is most positively correlated to r then

bV and βHH in both regions. Given that

R0 =
RHH

2
+

√(
RHH

2

)2

+RHVRV H (42)

where RHH , RV H and RHV are as defined in (36), (23) and (24) respectively. The computation of

sensitivity index is presented in Appendix C.

6.2 Global sensitivity analysis

Unlike local sensitivity analysis, global sensitivity analysis allows other parameters to vary as the

effect of a certain parameter is estimated. Using ranges and baseline values in Table 2 (high baseline),

the partial rank correlation coefficient (PRCC) of the model parameters were computed and presented

in Figure 8. Total infectious humans (IH + RH) is taken as the output function. Other parameters

considered are defined as k2 = bV + µV and k3 = α + µV . Also k4 = αθ and k8 = α(1 − θ) are

the rates of fertilization of FN and FS compartments, respectively, k5 = (1 − r)bv and k9 = rbV are

respectively the rates of maturation to MN and Y compartments. Input parameters were sampled

using Latin Hypercube Sampling (LHS) method (a statistical method for generating a sample of

plausible collections of parameter values from a multidimensional distribution), and a total of 1000

simulations were ran. The value of the PRCC in Figure 8 gives the correlation between the parameters

and the chosen output (IH +RH). The parameters with large PRCC values are considered to be the

most important (in determining the value/size of the chosen response function). The figures shows

that the total infectious humans is most positively correlated to bH and negatively correlated with

φV , γH and k5 thus they can be targeted in reducing the number of infectious humans.

The Scatter plots of the most sensitive parameters (that is bH , φV , γH and k5) are presented in Figure

9. The vertical axis represent the residual of the linear regression between the rank transformed values

of the parameters bH , φV , γH and k5 and the transformed values of other parameters. The ordinate

gives the residual of the linear regression between the rank-transformed values of the output function

(IH +RH) and the transformed values of all other parameters.

The value of the PRCC of the threshold parameters R1 and R0 are given in Figures 10 and 11,

respectively. In either case, µV is the most negatively correlated parameter to the threshold quantities,

followed by θ, µ and bH . Thus, this sensitivity study shows the significance of θ in controlling both

R1 and R0.
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7 Numerical simulations

In this section, the Zika model (5) is simulated using parameter values in Table 2, this is aimed at

illustrating some of the established analytical results in the previous sections. Two different set of

parameter values are used, the low baseline values give R0 = 0.2461 < 1, while the high baseline

values give R0 = 4.3250 > 1. Different simulations were obtained using both low and high baseline

parameter values for comparison purposes. Initial conditions used through out our simulations are

SH(0) = 600, IH(0) = 20, RH(0) = 0, A(0) = 2400, Y (0) = 500, FN (0) = 300, FS(0) = 100,

FNI(0) = 100, FSI(0) = 50, and MN (0) = 150.

Figures 2 and 3 depict population of infected humans with different initial conditions. Figure 2

shows the convergence of solution profile to the disease-free equilibrium when R0 = 0.2461 < 1 and

Figure 3 shows the convergence of solutions to a non zero equilibrium (endemic equilibrium) when

R0 = 4.3250 > 1. The solution profile of the model (5) showing cumulative number of new Zika cases

in humans, with different values of θ (the probability of a female mosquito mating with a sterile male

mosquito) is illustrated in Figure 4. The figure shows how increase in the value of θ can drastically

reduce the cumulative new human cases. As such, introduction and successful mating of female

mosquitoes with sterile male mosquitoes is negatively correlated to new human cases. In Figure 5, the

effect of θ on the population of reproductive mosquitoes is shown, as the value of θ increases, total

reproductive mosquitoes is reduced.

Figures 6 and 7 give a comparison between solution profile of the model showing total number of adult

mosquitoes with varying values of φV and θ respectively, both have positive effect in reducing the size

of adult mosquito population, although θ can be controlled (through increase in the release of sterile

male mosquitoes at the right location), φV is not easily controlled.

Conclusion

In this paper, we design a new deterministic model for the transmission dynamics of Zika in a popula-

tion consisting of humans and mosquitoes. The model which adopts a standard incidence formulation

incorporates the aquatic stage of mosquito development and mosquito sterilization. Some of the key

findings of the study are as follows.

1. The mosquito extinction equilibrium, E0, is shown to be globally-asymptotically stable when the

associated threshold quantity (N0) called the basic offspring number is less than unity.

2. An increase in the mating rate of sterilized mosquitoes, could be sufficient to bring the value of

N0 to value less than unity, there by decreases the mosquito population.

3. The model (with N0 > 1) in the absence of direct transmission undergoes backward bifurcation,

where the stable DFE co-exist with a stable endemic equilibrium when the associated reproduc-

tion number is less than unity. This study identifies a sufficient condition for the emergence of

backward bifurcation in the model, namely disease induced death in humans (δH = 0).

4. Similarly, the model with direct transmission also undergoes backward bifurcation at R0 = 1.

The backward bifurcation property can be removed when the Zika-induced mortality in humans

is negligible (δH = 0). Thus, the major parameter responsible for backward bifurcation in both

models (with and without direct transmission) is the disease-induced mortality in humans. This

result is similarly shown by Garba et al [26] for dengue model and numerically for a Malaria

model by Chitnis et al [9].
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5. The DFE of both models (with and without direct transmissions) in the presence of mosquito

population (when N0 > 1) are shown to be locally-asymptotically stable when the associated

reproduction numbers are less than unity.

6. The two models exhibit the same qualitative dynamics with respect to the local stability of the

associated disease-free equilibrium and backward bifurcation phenomenon.

7. Using elasticity index (local sensitivity analysis), it is shown that, the most effective parameter

for the control of the basic reproduction number in both areas of high and low transmission is

mosquito death rate.
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Appendix A: Proof of Theorem 1

Proof. In this appendix, we shall give the proof of the first part of Theorem 1 (GAS of E1) using

similar approach to that in [3]. In particular Theorem 6 of [3], reproduced below for convenience will

be used.

Consider ẋ = f(x), where D ⊆ Rn and f : D −→ Rn is continuous. Then we have the following result.

Theorem 5 [3] Let a, b ∈ D be such that a < b, [a, b] ⊆ D and f(b) ≤ 0 ≤ f(a). Then ẋ = f(x)

defines a (positive) dynamical system on [a, b]. Moreover, if [a, b] contains a unique equilibrium q then

q is globally asymptotically stable on [a, b].

To apply Theorem (5) to system (7), let p ∈ R+ > 3(µV +bV )
µ and Ap be chosen so large such that

Ap ≥ p,

FNp
=
µV + bV + µAp

2φV
Ap ≥ p,

Yp =
µV FNp

2α(1− θ)
=
µV (µV + bV + µAp)

4φV α(1− θ)
Ap ≥ p,

FSp =
θFNp

(1− θ)
=
θ(µV + bV + µAp)

2φV (1− θ)
Ap ≥ p,

Mp =
2bv(1− r)Ap

µV
≥ p.

(A.1)

Further, let bp = (Ap, Yp, FNp
, FSp

,Mp)
T , and consider the interval [0, bp] ∈ R5

+. Then

f(bp) =


− (µV +bV +µAp)

2 Ap

rbVAp

(
1− µV +bV +µAp

4N0(µV +bV )

)
−µV Fp
−µV φV FNp

2(1−θ)
−(1− r)bvAp

 ≤

− (µV +bV +µAp)

2 Ap

rbVAp

(
1− 1

N0

)
−µV Fp
−µV φV FNp

2(1−θ)
−(1− r)bvAp

 < 0, provided N0 ≤ 1.

Therefore in the interval [a, b] = [0, bp] ∈ R5
+, the condition f(b) ≤ 0 ≤ f(a) = f(bp) ≤ 0 ≤ f(0) is
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satisfied. However since p is arbitrary, then bp can be selected larger than any x ∈ R5
+. Thus the

system defines a positive dynamical system on R5
+. Moreover if N0 ≤ 1, E1 is unique in [0, bp] and

thus, E1 is globally asymptotically stable.

For local stability of the non-zero equilibrium E2, we use the property of eigenvalues of the Jacobian

matrix J1 below.

J1 =


−P1 0 φV 0 0

rbV −K3 0 0 0

0 P2 −µV 0 0

0 θα 0 −µV 0

(1− r)bV 0 0 0 −µV

 ,

where P1 = 2µA∗ + µV + bV = 2K2(N0 − 1) + µV + bV , and P2 = (1 − θ)α. Notice that the

system given by (7) is cooperative on R5
+, that is, growth in any compartment has positive effect on

the growth of other compartments. Equivalently, a system is cooperative if the non-diagonal elements

of its Jacobian matrix are non-negative.

Clearly, −µV is an eigenvalue of J1. The remaining eigenvalues satisfy

λ3 +λ2(P1 +K3 +µV ) +λ(K3µV +P1K3 +P1µV ) +P1K3µV
(
1− bV φV αr(1− θ)

K3µV (K2 + 2µA∗)

)
= 0 (A.2)

Applying Routh-Hurwitz criterion and Lienard-Chipart test [33], the roots of a polynomial of degree

three are negative if and only if ai > 0 with i = 0, 1, 2, 3 and a1a2 − a3 > 0.

Its clear from (A.2) that a0, a1 and a2 are positive, while the sign of a3 = P1K3µV
(
1− N0

2N0−1
)

depends

on N0. Also,

a1a2 − a3 = (K3 + P1 + µV )(K3µV + P1K3 + P1µV ) + P2bV φV r − P1K3µV > 0.

If N0 > 1, then a3 > 0. On the other hand 1 − N0

2N0−1 < 0 if and only if N0 < 1, hence, E2 is locally

asymptotically stable. �

Appendix B: Proof of Theorem 4

Backward bifurcation analysis

Proof. To prove the existence of backward bifurcation for the model given by (5), a method, which is

based on the Centre Manifold Theory [8, 45], is used. The following change of variables are made on

the model given by (5). Let,(
SH , IH , RH , A, Y, FN , FS , FNI , FSI ,MN

)
=
(
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10

)
,

and hence, the total human and mosquito populations are:

NH = x1 + x2 + x3 and NV = x4 + x5 + x6 + x7 + x8 + x9 + x10.

Using vector notation, we have,

X =
(
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10

)T
and

dX

dt
=
(
f1, f2, f3, f4, f5, f6, f7, f8, f9, f10

)T
,
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and therefore the transformed model (5) is represented by

dx1
dt

= f1 = bH −
(βHV x8 + βHV η1x9 + βHHx2 + βHHη2x3

x1 + x2 + x3

)
x1 − µHx1,

dx2
dt

= f2 =
(βHV x8 + βHV η1x9 + βHHx2 + βHHη2x3

x1 + x2 + x3

)
x1 − x2K1,

dx3
dt

= f3 = γHx2 − µHx3,

dx4
dt

= f4 = φV x6 + φV x8 − µx24 −K2x4,

dx5
dt

= f5 = rbV x4 −K3x5,

dx6
dt

= f6 = α(1− θ)x5 −
βHV x2x6

x1 + x2 + x3
− µV x6,

dx7
dt

= f7 = αθx5 −
βHV x2x7

x1 + x2 + x3
− µV x7,

dx8
dt

= f8 =
βHV x2x6

x1 + x2 + x3
− µV x8,

dx9
dt

= f9 =
βHV x2x7

x1 + x2 + x3
− µV x9,

dx10
dt

= f10 = (1− r)bV x4 − µV x10,

(B.1)

so that the forces of infection are given by

λH =
βHV x8 + βHV η1x9

x1 + x2 + x3
x1 and λV =

βHV x2
x1 + x2 + x3

.

Let β∗HV be chosen as a bifurcation parameter obtained by solving for βHV = β∗HV , when R0 = 1,

given by

β∗HV =

√
K1N∗H

F ∗N + η1F ∗S
. (B.2)

The Jacobian of the system (B.1), evaluated at the DFE, E32, is given by

J∗ =



−µH 0 0 0 0 0 0 −β∗HV −β∗HV η1 0

0 −K1 0 0 0 0 0 β∗HV β∗HV η1 0

0 γH −µH 0 0 0 0 0 0 0

0 0 0 −2µA∗ −K1 0 φV 0 φV 0 0

0 0 0 rbV −K3 0 0 0 0 0

0 −βHV F
∗
N

N∗
H

0 0 α(1− θ) −µV 0 0 0 0

0 −βHV F
∗
S

N∗
H

0 0 αθ 0 −µV 0 0 0

0
βHV F

∗
N

N∗
H

0 0 0 0 0 −µV 0 0

0
βHV F

∗
S

N∗
H

0 0 0 0 0 0 −µV 0

0 0 0 (1− r)bV 0 0 0 0 0 −µV



,

The Jacobian (J∗) of the linearised system has a simple zero eigenvalue (with all other eigenval-

ues having negative real part). Thus, the centre manifold theory can be used to analyse the dynamics

of the system (B.1) around βHV = β∗HV .
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For the case were equation (B.2) holds, the matrix J∗ has left eigenvectors associated with zero

eigenvalue given by v = [v1, v2, v3, v4, v5, v6, v7, v8, v9, v10]T

v1 = 0, v2 =
1

µ2
HN

∗
Hµ

2
V + β2

HV µ
2
H

(
F ∗N + η1F ∗S

) , v3 = 0, v4 = 0,

v5 = 0, v6 = 0, v7 = 0, v8 =
βHV v2
µV

, v9 =
βHV η1v2
µV

, v10 = 0,

and the right eigenvector (of the zero eigenvalue) denoted by w = [w1, w2, w3, w4, w5, w6, w7, w8, w9, w10]T

has elements given by:

w1 = −K1w2

µH
RHVRV H w2 = N∗Hµ

2
Hµ

2
V , w3 =

γHw2

µH
, w4 = 0, w5 = 0,

w6 = −βHV F
∗
Nw2

N∗HµV
, w7 = −βHV F

∗
Sw2

N∗HµV
, w8 =

βHV F
∗
Nw2

N∗HµV
, w9 =

βHV F
∗
Sw2

N∗HµV
, w10 = 0.

It can be shown, by computing the non-zero partial derivatives of the right-hand functions, that the

associated backward bifurcation coefficients, ã and b̃, are respectively, given by (see Theorem 4.1 in

[8])

ã =

n∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0) =

−2K1w
2
2v2

N∗H

[
RHVRV H

(2
(
γH + µH

)
µH

+
βHV
µV

)
− K1R2

HVR2
V H

µH

] (B.3)

and

b̃ =

n∑
k,i=1

vkwi
∂2fk

∂xi∂φV
(0, 0) =

βHV v2w2K2bV (N0 − 1)rα
(

[1− θ] + η1θ
)

N∗HK3µ2
V µ

> 0 (B.4)

Since the bifurcation coefficient, b is positive, it follows from Theorem 4.1 in [8] that the Zika model

(or its transform equivalent (29)) will undergo backward bifurcation if the bifurcation coefficient, ã,

given by (B.3), is positive. �
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Appendix C: Computing local sensitivity index

The sensitivity index of the parameters are given as follows:

ΥR0

βHV
=

RHVRV H
R0

√
(RHH

2 )2 +RHVRV H
,

ΥR0

bH
= − RHVRV H

2R0

√
(RHH

2 )2 +RHVRV H
,

ΥR0
r =

RHVRV H(2N0 − 1)

2R0(N0 − 1)
√

(RHH

2 )2 +RHVRV H
,

ΥR0
µ = − RHVRV H

2R0

√
(RHH

2 )2 +RHVRV H
,

ΥR0

βHH
=
RHH
2R0

(
1 +

RHH
2
√

(RHH

2 )2 +RHVRV H

)
,

ΥR0

φV
=

RHVRV HN0

2R0(N0 − 1)
√

(RHH

2 )2 +RHVRV H
,

ΥR0
α =

RHVRV HN0(K3 − 1)2

2R0K2
3α(N0 − 1)

√
(RHH

2 )2 +RHVRV H
,

ΥR0
η2 =

βHHη2γH
2R0K1µH

(
1 +

RHH
2
√

(RHH

2 )2 +RHVRV H

)
,

ΥR0
η1 =

RHVRV Hθη1
2R0

[
θη1 + (1− θ)

]√
(RHH

2 )2 +RHVRV H
,

ΥR0
µV

= −
RHVRV HµV

[
K3 +K2(N0 − 1)

]
2K2K3R0(N0 − 1)

√
(RHH

2 )2 +RHVRV H
,

ΥR0

bV
=

RHVRV H
2K2(N0 − 1)R0

√
(RHH

2 )2 +RHVRV H

(
2N0K2 − 2bV − µV

)
,

ΥR0

δH
= −RHHδH

2R0K1

(
1 +

RHH
2
√

(RHH

2 )2 +RHVRV H

)
− RHVRV HδH

2R0K1

√
(RHH

2 )2 +RHVRV H
,

ΥR0
γH =

βHHη2γH
2R0K1µH

(
1 +

1

2
√

(RHH

2 )2 +RHVRV H

)
−

(
RHH + 2RHVRV H

)
4K1

√
(RHH

2 )2 +RHVRV H
− RHHγH

2R0K1
,

ΥR0

θ =
RHVRV Hθη1

2R0[θη1 + (1− θ)]
√

(RHH

2 )2 +RHVRV H
− RHVRV HN0θ

2R0(N0 − 1)(1− θ)
√

(RHH

2 )2 +RHVRV H
,

ΥR0
µH

=
βHH

2K1R0
− RHH(K1 + µH)

2K1R0
− (RHHµH +RHHK1 − βHH)

4R0K1

√
(RHH

2 )2 +RHVRV H
− RHVRV H(K1 − µH)

2R0K2
1

√
(RHH

2 )2 +RHVRV H
.

(C.1)
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Table 1: Description of variables and parameters for the model (5).

Variable Interpretation

SH Population of susceptible humans

IH Population of infected humans

RH Population of recovered humans

A Population of aquatic mosquitoes

MS Population of sterile male mosquitoes

MN Population of non-sterile male mosquitoes

M Total male mosquito population

Y Population of non-fertilized female mosquitoes

FS Population of fertilized sterile susceptible female mosquitoes

FN Population of fertilized non-sterile susceptible female mosquitoes

FSI Population of fertilized sterile infected female mosquitoes

FNI Population of fertilized non-sterile infected female mosquitoes

Parameter Interpretation

bH Recruitment rate of humans

γH Recovery rate of humans

µH Natural death rate of humans

δH Disease induced death rate of humans

α Mating rate of mosquitoes

bV Maturation rate of mosquitoes

φV Oviposition rate of fertilized female mosquitoes

θ Mating probability of a sterilized male mosquito

µV Natural death rate of non-sterilized mosquitoes

µS Natural death rate of sterilized male mosquitoes

µ Density dependent death rate of aquatic mosquitoes

r Proportion of matured mosquitoes that are female

η1 Modification parameter for reduced infectiousness of

sterilized mosquitoes in comparison to non-sterilized mosquitoes

η2 Modification parameter for reduction in infectiousness

of recovered humans in comparison to infected humans

ρHH Transmission probability from infectious to susceptible humans

ρV H Transmission probability from infectious mosquitoes to susceptible humans

ρHV Transmission probability from infectious humans to susceptible mosquitoes

βHH Rate of infection from infectious to susceptible humans

βV H Rate of infection from infectious mosquitoes to susceptible humans

βHV Rate of infection from infectious humans to susceptible mosquitoes
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Table 2: Two sets of parameter values used in numerical simulations, with low baseline values that

gives R0 = 0.2461 < 1, while R0 = 4.3250 > 1 for the high baseline values

Parameters Range (day−1) Low baseline High baseline References

r (0, 1) 0.5 0.5 [19, 21]

δH 0.001 0.001 0.001 [13, 26]

θ (0, 1) 0.2 0.4 assumed

α (0, 1) 0.7 0.7 [19]

µ 0.00001 0.00001 0.00001 [3]

φV 100− 200 100 120 [12]

bH 30 30 30 [6]

bV 0.05− 0.1 0.05 0.08 [17, 18, 19]

η1 (0, 1) 0.5 0.5 assumed

η2 (0, 1) 0.04 0.2 assumed

γH 0.059− 0.167 0.14 0.08 [39]

ξ1 0.3− 1 0.3 0.5 [25, 37, 2]

ξ2 0.01− 0.20 0.001 0.01 [37]

ξ3 0.3− 1 0.3 0.5 [37, 2]

µV 0.029− 0.25 0.25 0.09 [25, 2]

µH 0.00004 0.00004 0.00004 [17, 18, 19]

ρHH 0− 1 0.02 0.04 [25, 37]

ρV H 0.1− 0.75 0.2 0.7 [25, 2]

ρHV 0.3− 0.75 0.3 0.5 [25, 2]

Table 3: Sensitivity index of R0 with respect to parameters of the model (5) for R0 = 0.2461 < 1 and

R0 = 4.3250 > 1 using the values of Table 2

Parameter Low baseline Sensitivity index High baseline Sensitivity index

r 0.5 +0.40271 0.5 +0.41333

δH 0.001 −0.00344 0.001 −0.00662

θ 0.2 −0.07344 0.4 −0.18978

γH 0.14 −0.19457 0.08 −0.19978

α 0.7 +0.10598 0.7 +0.04709

µ 0.00001 −0.19610 0.00001 −0.20585

φV 100 +0.20661 120 +0.20749

η1 0.5 +0.02179 0.5 +0.05146

η2 0.04 +0.28729 0.2 +0.32992

µV 0.2 −0.71355 0.09 −0.66732

µH 0.00004 −0.09133 0.00004 −0.12435

bH 30 −0.19610 30 −0.20585

bV 0.05 +0.40096 0.08 +0.41274

βHV 0.09 +0.39219 0.25 +0.41169

βHH 0.0001 +0.28934 0.0004 +0.33075
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Table 4: Number of possible roots for (28) for R1 < 1 and R1 > 1.

Case a0 a1 a2 a3 a4 Value of R1 Sign change Real roots

1 + + + + + R1 < 1 0 0

2 + + + + - R1 > 1 1 1

3 + + + - + R1 < 1 2 0, 2

4 + + + - - R1 > 1 1 1

5 + + - + + R1 < 1 2 0, 2

6 + + - + - R1 > 1 3 1, 3

7 + + - - + R1 < 1 2 0, 2

8 + + - - - R1 > 1 1 1

9 + - - - + R1 < 1 2 0, 2

10 + - - - - R1 > 1 1 1

11 + - + - + R1 < 1 4 0, 2, 4

12 + - + - - R1 > 1 3 1, 3

13 + - + + + R1 < 1 2 0, 2

14 + - + + - R1 > 1 3 1, 3

15 + - - + + R1 < 1 2 0, 2

16 + - - + - R1 > 1 3 1, 3

µH

µH

µV

µV

rbv
(1 – r)bV

µV

µS
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µVµV

H

H
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H
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Figure 1: Schematic diagram of the model (5).

27



0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

Time (days)

In
fe

c
te

d
 h

u
m

a
n

s

Figure 2: Simulation of the model (5) showing solution profile of infected humans. Parameter values

used are as given in Table 2, with different initial conditions so that R0 = 0.2461 < 1.
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Figure 3: Simulation of the model (5) showing solution profile of infected humans. Parameter values

used are as given in Table 2, with different initial conditions so that R0 = 4.3250 > 1.
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Figure 4: Simulation of the model (5) showing the cumulative number of new cases in human popula-

tion. Parameter values used are as given in Table 2, with various values of θ (chances of mating with

sterilized male mosquitoes).
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Figure 5: Simulation of the model (5) showing solution profile of reproductive mosquitoes. Parameter

values used are as given in Table 2, with θ = 0.2, θ = 0.4, θ = 0.6 and θ = 0.8.
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Figure 6: Simulation of the model (5) showing the total number of adult mosquitoes. Parameter

values used are as given in Table 2, with φV = 100, φV = 80, φV = 60 and φV = 40 which respectively

give N0 = 19.6491, N0 = 15.7193, N0 = 11.7895 and N0 = 7.8596.
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Figure 7: Simulation of the model (5) showing the number of reproductive mosquitoes. Parameter

values used are as given in Table 2, with θ = 0.2, θ = 0.4, θ = 0.6 and θ = 0.8 which respectively give

N0 = 19.6491, N0 = 14.7368, N0 = 9.8246 and N0 = 4.9123.
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Figure 8: PRCC plots of the various parameters of the model (5), using total infectious humans

(IH +RH) as the output function.
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Figure 9: Scatter plots of the most sensitive parameters bH , γH , φV and k5.
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Figure 10: PRCC plots of the various parameters of the Zika model (5), using R1 as the output

function. Parameter ranges used are in Table 2.
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Figure 11: PRCC plots of the various parameters of the Zika model (5), using R0 as the output

function. Parameter ranges used are in Table 2.
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