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Abstract. Malaria infection continues to be a major problem in many parts of the

world including Africa. Environmental variables are known to affect significantly the

population dynamics and abundance of insects, major catalysts of vector-borne diseases,
but the exact extent and consequences of this sensitivity are not yet well-established.

To assess the impact of the variability in temperature and rainfall on the transmission
dynamics of malaria in a population, we propose a model consisting of system of non-

autonomous deterministic equations that incorporate the effect of both temperature

and rainfall to the dispersion and mortality rate of adult mosquitoes. The model has
been validated using epidemiological data collected from western region of Ethiopia,

by considering the trends for cases of malaria and the climate variation in the region.
Further, a mathematical analysis is performed to assess the impact of temperature and
rainfall change on the transmission dynamics of the model. The periodic variation of

seasonal variables as well as the non-periodic variation due to the long term climate

variation have been incorporated and analyzed. In both periodic and non-periodic cases,
it has been shown that the disease-free solution of the model is globally asymptotically

stable when the basic reproduction ratio is less than unity in the periodic system and
when the threshold function is less than unity in the non-periodic system. The disease
is uniformly persistent when the basic reproduction ratio is greater than unity in the

periodic system and when the threshold function is greater than unity in the non-periodic
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system.

Keywords: Climate dependent malaria model; Asymptotic stability; Periodic and non-

periodic climate dependent growth rates; validation using epidemiological data.

1. Introduction

Malaria is caused by a parasite called Plasmodium falciparum and is transmitted

by Anopheles mosquitoes. The vector that spreads malaria is sensitive to climate

variables, especially rainfall and temperature [11,21,32]. Although non-climatic fac-

tors such as epidemiological, environmental, socio-economic and demographic fac-

tors are known to influence the dynamics of malaria and other vector-borne diseases,

changes in temperature and rainfall have their own influences (see [23] and some of

the references therein).

Despite its strong connection with malaria, climate may not be the only cause for

future malaria transmission rates worldwide mainly because there are many other

factors that affect the spread of the disease including socioeconomic development,

drug resistance, and immunity [17].

Climate factors such as temperature, humidity, rainfall and wind significantly affect

the vector’s life-cycle and, consequently, the abundance of mosquitoes in popula-

tions. Malaria-climate connection in the East African highlands was identified in

the 1980s when there was a series of malaria epidemics connected to increases and

anomalies in mean monthly maximum temperatures and increase in rainfall in the

highlands [12,31,27,24]. According to the International Panel on Climate Change

(IPCC) Fourth Assessment Report, climate change has already altered the distribu-

tion of some disease vectors. In East Africa, climate scenarios suggest longer malaria

transmission seasons and geographic expansion of the disease into highland areas.

The frequency and size of epidemics increased with serious outbreaks in 1995, 1998

and 2002, corresponding to climate variations such as a significant increase (≥ 3◦C)

in mean temperatures, high rainfall, drought and El Nino events (see [25], and the

references therein). Some studies have shown that an increase in temperature has

allowed the introduction of malaria into higher altitude areas in Colombia, Ethiopia

and Kenya, where it was previously too cold for the disease to thrive [34]. This has

put millions of people at risk for the disease. While we know that climate can affect

malaria transmission, the impact of climate change on regional and global malaria

cases and deaths is even less understood.

Several mathematical models have been designed to assess the impact of climate

change and seasonality on the transmission dynamics of malaria (see [1] and the

references therein). Parham et al. [29] have developed a mathematical model to in-

vestigate the impact of environmental factors (temperature and rainfall) in the

transmission dynamics by defining the adult mosquito birth rate as a function

of temperature and rainfall while other parameters are dependent only on either

temperature or rainfall alone. They validated also their results by considering the

mosquito population in Tanzania where malaria is highly-endemic, expressing the
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temperature and rainfall by single cosine function which may ignore the actual

variations in the environmental factors and has to be extended and consolidated by

setting up a model that incorporates the effects of both temperature and rainfall in

the birth and death rates of the vector population. Specially a climate driven model

with parameters dependent on both climate variables (temperature and rainfall)

in a non-periodic environment is not yet developed as far as the knowledge of the

authors go and this work gives much emphasis on this issue.

Agusto et al. [2] developed temperature-dependent deterministic model to gain qual-

itative insight into the effects of temperature variability only on malaria transmis-

sion dynamics. The authors incorporated a gradual increase in infection-acquired

immunity via repeated exposure to malaria infection. The focus of their study was

on analyzing the impact of changing temperature and temperature variability on

short-term malaria dynamics (due, for instance, to seasonality), and not on long-

term malaria dynamics (due to climate change).

Motivated by the works of [19],[16],[38], Wang et al. [36] proposed a malaria trans-

mission non-autonomous model with periodic environment without incorporating

the climate factors in their model. Wang et al. computed a basic reproduction num-

ber and have shown that the disease-free periodic solution of their model is globally

asymptotically stable when the basic reproduction number is less than unity, while

the disease is uniformly persistent and there is at least one positive periodic solu-

tion when the basic reproduction number is greater than unity. That is, they have

shown that the basic reproduction number is the threshold value determining the

extinction and the uniform persistence of the disease.

Okuneye and Gumel [23] extended the work in [30] by designing a new temperature

and rainfall-dependent mechanistic malaria model that incorporates some more per-

tinent climatic and non-climatic features and factors not considered in [30] (such as

host age-structure, dynamics of immature mosquitoes, reduced susceptibility due

to prior malaria infection etc.) and analyzed the full non-autonomous model but

periodic and carried out uncertainty and sensitivity analyses on the parameters of

the model with the mortality rate of juvenile and adult mosquitoes dependent only

on temperature.

The purpose of this study is to investigate a climate driven malaria disease trans-

mission model incorporating the effect of temperature in the biting rate and the

effects of both temperature and rainfall in the birth rate and death rate of the vector

population in both periodic and non-periodic environments by using the standard

model considering the dynamics of the adult mosquito population only and referring

the works [29,23]. The study assesses the potential change in malaria risk caused

by seasonal variations in temperature and rainfall which is important to investigate

the dynamics of the disease in a short term basis. Moreover, as climate impact

upon the distribution of the malaria transmission in space and time is not always

periodic, we need to investigate the potential change in malaria risk caused by the

variations in temperature and rainfall in the non-periodic case as well. Exploring
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the dynamics of the disease in a long term basis and the information provided here

might serve as an important contribution for strategic planning of malaria control

in a long period of time in the future.

This paper is organized as follows, in Section 2 we formulated a model consisting

of ordinary differential equations (ODE) that describe the interactions between

humans and mosquitoes populations and the underlying assumptions. In Section 3,

a positively invariant set with respect to the system will be identified and shown to

be a global attractor of all positive solutions of the system to confirm the biological

well posedness of the model system. In Sections 4, the non-autonomous periodic

system is reviewed while the non-autonomous non-periodic system is discussed and

analysed in Section 5 and we show the simulation results to illustrate the population

dynamics in both environments at the end of the latter sections. Our conclusions

are discussed in Section 6.

2. Model Formulation

Following the works in [29,23], where the authors developed a framework for un-

derstanding the impact of climate on malaria dynamics, we use the standard de-

terministic malaria disease transmission model with an SIR structure for humans

and an SI structure for mosquitoes. Climate change is known to affect several pa-

rameters in the epidemiology of malaria and hence predicting climate change effects

on disease transmission requires a framework that specifically incorporates the role

of each climate sensitive parameter. Some models examining the contribution of

climate change have been explored [4,9,13,18,28].

The total human population (Nh) is divided into three classes: susceptible (Sh), in-

fectious (Ih) and recovered (Rh). People enter the susceptible class either through

birth (at a constant per capita rate) or through immigration (at a constant rate) or

after recovering from the disease. When an infectious mosquito bites a susceptible

human, there is some non-zero probability that the parasite (in the form of sporo-

zoites) will be passed on to the human.

The rate of infection of a susceptible individual is dependent on the mosquito bit-

ing rate φ (daily feeding rate of a vector on a host) defined using the exponential

function of the temperature variable, T (Fig. 1) as

φ(T ) =0.48 exp(0.14(T − 23))/(exp(−0.14(T − 23)) + exp(0.14(T − 23)))

+(−0.48 exp(0.32(T − 37))/(exp(−0.32(T − 37)) + exp(0.32(T − 37)))
(2.1)

with standard incidence rate of βvhφIvShNh
, where βvh is the probability that the bites

by an infectious mosquitoes on susceptible humans produce infection.

Infected humans recover at a constant rate rh for some period of time and move to

the recovered class Rh. The recovered humans may develop some immunity to the

disease and do not get clinically ill, but they may still harbor low levels of parasite

in their blood streams. However, since the rate of infections from this group of indi-
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Fig. 1: The mosquito biting rate (daily feeding rate of a vector on a host) φ(T ).

viduals is assumed to be very small, we omitted its impact in our model. After some

period of time, recovered humans loose their immunity and return to the susceptible

class at a constant rate σ. Infected individuals who do not get treatment may die

from infection at a constant rate µd. Humans die naturally at a non-malaria related

per capita natural mortality constant rate µh.

As only female mosquitoes take blood-meals, the model considers only the female

mosquito population. Instead of detailing the dynamics of all aquatic stages, we

rather used an emergence rate Λv(T,R) of adult female anopheles mosquitoes which

is assumed to be a function of rainfall R and temperature T that recasts all the

historical dynamics from egg hatching to emergence.

The functions T = T (t) and R = R(t) denote the temperature and the rainfall

quantity at time t respectively.

It is often difficult to establish significant and stationary relationships between the

amount of precipitation and mosquito abundance or malaria disease transmission

patterns. Rainfall can alter the abundance and type of aquatic habitats available to

the mosquito for the deposition of eggs (oviposition) and the subsequent develop-

ment of the immature stages [33]. We assume that at any time t, the time variation

of the emergence rate of adult female anopheles mosquitoes Λv(T,R) is defined by

Equation (2) in [29],(Fig. 2):

Λv(T,R) =
3.375(4R(50−R))3 exp(−0.00554T + 0.06737)

506(2 + (0.00554T − 0.06737)−1)
(2.2)

The adult female anopheles mosquitoes population is subdivided into two classes:

susceptible (Sv) and infectious (Iv). Susceptible adult mosquitoes are recruited at

a rate Λv(T,R). The rate of infection for a susceptible mosquito depends on the

mosquito’s biting rate in which the transmission rate from infectious host to suscep-

tible vector is given by βhvφIhSv
Nh

where βhv represents the probability that a suscep-

tible mosquito get infected when biting an infected human. Although the rainfall

effect on the survival of adult mosquitoes is not significantly high, its influence

can not be ignored as the increased near-surface humidity associated with rainfall



6

15
20

25
30

35
40

0
10

20
30

40
50

0

0.02

0.04

0.06

0.08

0.1

Daily Temperature(Degree Celsius)Daily Rainfall(mm)

E
m

er
ge

nc
e 

R
at

e 
of

 A
du

lt 
F

em
al

e
 A

no
ph

el
es

 M
os

qu
ito

es

Fig. 2: Emergence rate of adult female

anopheles mosquitoes Λv(T,R).
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Fig. 3: Mortality rate of adult female

anopheles mosquitoes µv(T,R).

enhances mosquito flight activity and host-seeking behavior [33]. Mosquitoes leave

the population through a per capita climate-dependent(temperature and rainfall)

natural death rate given by (Fig.3):

µv(T,R) = 0.0886 exp

((
−0.01R+ 1.01T − 21.211

14.852

)2
)

(2.3)

which is assumed to follow an exponential distribution in temperature and rainfall

[5].

The transmission interactions between hosts and vectors can be described by the

following system of non-autonomous differential equations where some coefficients

or parameters depend on time through time-dependent temperature and/or rainfall:

dSv
dt

= Λv(T,R)− λv(T )Sv − µv(T,R)Sv,

dIv
dt

= λv(T )Sv − µv(T,R)Iv,

dSh
dt

= Λh − λh(T )Sh + σRh − µhSh,

dIh
dt

= λh(T )Sh − (µh + rh + µd)Ih,

dRh
dt

= rhIh − (µh + σ)Rh,

. (2.4)

where λh(T ) = βvhφ(T )Iv
Nh

and λv(T ) = βhvφ(T )Ih
Nh

represent the force of infection of

humans and mosquitoes, respectively.

Nh = Sh + Ih +Rh, (2.5)

Nv = Sv + Iv (2.6)

are the total human and mosquito population, respectively.

To simplify the mathematical analysis of the model in the coming sections, we didn’t

consider the different aquatic stages of the vector population. A similar model for

periodic case with aquatic stages is considered in [23].
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Table 1: Description of variables and parameters of the model.

Symbol Description

φ(T ) The biting rate function of mosquitoes

βvh Probability of human getting infected per enough contact with

infected mosquito

βhv Probability of mosquito getting infected per each enough contact

with infected human

Λh Recruitment rate of susceptible humans

µh Per capita natural death rate for humans

rh human recovery rate

Λv(T,R) Emergence rate function of female mosquitoes

σ Per capita rate of loss of immunity for human

µd Per capita disease induced death rate for human

µv(T,R) Mosquito per capita death rate function

In view of the biological background of system (2.4), in this study we only consider

the solution of system (2.4) starting at t = 0 with initial values:

Sv(0) ≥ 0, Iv(0) ≥ 0, Sh(0) ≥ 0, Ih(0) ≥ 0 and Rh(0) ≥ 0. (2.7)

For the purpose of our mathematical analyses, we note that the climate-dependent

functions satisfy the following assumptions:

(H1) Λv(T,R), µv(T,R), λh(T ) and λv(T ) are continuous functions in T and R.

(H2) Λv(T,R) > 0, µv(T,R) > 0, λh(T ) ≥ 0 and λv(T ) ≥ 0 with λh(T ) � 0 and

λv(T ) � for all T and R.

These assumptions guarantee the existence and continuity of solutions and en-

sures that the force of infection is active, not identically zero.

When Ih(t) ≡ 0, Rh(t) ≡ 0 and Iv(t) ≡ 0, we obtain the following two subsystem of

system (2.4)

Ṡh(t) = Λh − µhSh(t), (2.8)

Ṡv(t) = Λv(T (t), R(t))− µv(T (t), R(t))Sv(t). (2.9)

We see that system (2.4) has a disease-free solution (DFS)

E∗0 (t) = (S∗v (t), 0,
Λh
µh
, 0, 0), (2.10)

where

S∗v (t) = e−
∫ t
0
µv(T (τ),R(τ))dτ

{
Sv(0) +

∫ t

0

Λv(T (s), R(s))e
∫ s
0
µv(T (σ),R(σ))dσds

}
is the solution of (2.9).
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3. Model analysis

Before we proceed with the mathematical analysis, we need to show that the model

is well posed in a biologically feasible domain.

3.1. Model well-posedness

We analyze (2.4) in a biologically-feasible region for both human and mosquito

populations.

Let mv := inf {µv (T (τ) , R (τ)) , τ ≥ 0} and Mv := sup {Λv (T (s) , R (s)) , s ≥ 0},

we have the following result:

Proposition 3.1. If the initial conditions Sv (0) , Iv (0) , Sh (0) , Ih (0) and Rh (0)

are non-negative then the corresponding solution (Sv(t), Iv(t), Sh(t), Ih(t), Rh(t)) of

the malaria model (2.4) is non-negative for all t > 0.

Moreover,

lim sup
t→∞

Nh(t) ≤ Λh
µh

and lim sup
t→∞

Nv(t) ≤
Mv

mv
.

Furthermore, we have the following invariance properties:

i. if Nh(0) ≤ Λh
µh

then Nh(t) ≤ Λh
µh

ii. if Nv(0) ≤ Mv

mv
then Nv(t) ≤ Mv

mv
.

In particular, the regions R2
+ ×Dh and Dv × R3

+ with

Dh =

{
(Sh, Ih, Rh) ∈ R3

+ : Sh + Ih +Rh ≤
Λh
µh

}
and DV =

{
(Sv, Iv) ∈ R2

+ : Sv + Iv ≤
Mv

mv

}
are positively-invariant.

The proof of this proposition can be found in the appendix.

In the view of Proposition 3.1 above, we conclude that system (2.4) is epidemiolog-

ically feasible and mathematically well-posed in D = Dh ×Dv.

3.2. Periodic System

In this section, we assume that variations in temperature and rainfall are seasonal

causing the corresponding temperature and/or rainfall dependent parameters in the

malaria model to vary in seasonal manner. Assessment of the potential change in

malaria risk caused by seasonal variations in temperature and rainfall is important

to investigate the dynamics of the disease in a short term basis. The information

provided here might serve as an important contribution for strategic planning of
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malaria control in a short period of time in the future.

For shorter period of study time the climatic values change seasonally and hence

they are very much periodic in time. By considering periodicity in the climate vari-

ables and the corresponding parameters dependent on the periodic climate variables

(temperature and rainfall), we analyze model (2.4) in the periodic environment.

Thus the system will have time dependent periodic coefficients as climate variables

could be expressed as a function of time.

3.3. Some Results of the Model in the Periodic Environment

Using the initial data (2.7) and restricting the assumptions (H1) and (H2) to the

periodic environment we have the following assumptions:

(H ′1) Λv(T (t), R(t)), µv(T (t), R(t)), λh(T (t)) and λv(T (t)) are continuous and

ω-periodic functions.

(H ′2)
∫ ω

0
Λv(T (t), R(t))dt > 0.

For convenience, we change the notation of Λv (T (t) , R (t)), µv (T (t) , R (t)) and

λv (T (t)), to Λv (t), µv (t) and λv (t) respectively.

Lemma 3.2. If (H ′1) and (H ′2) hold, the function

S∗v (t) = S0
ve
−

∫ t
0
µv(τ)dτ +

∫ t

0

Λv (s) e−
∫ t
s
µv(τ)dτds

where S0
v =

(∫ ω
0

Λv (s) e−
∫ ω
s
µv(τ)dτds

)/(
1− e−

∫ ω
0
µv(τ)dτ

)
is an ω-periodic dis-

ease free solution of equation (2.9).

Proof. Using the variation of constants formula, we show that for any t, τ ≥ 0 the

solution of equation (2.9) satisfies

Sv (t) = Sv (τ) e−
∫ t
τ
µv(τ)dτ +

∫ t

τ

Λv (s) e−
∫ t
s
µv(τ)dτds. (3.1)

In particular, we have

Sv (t+ ω) = Sv (ω) e−
∫ t+ω
ω

µv(τ)dτ +

∫ t+ω

ω

Λv (s) e−
∫ t+ω
s

µv(τ)dτds. (3.2)

Since µv is ω-periodic, then e−
∫ t+ω
ω

µv(τ)dτ = e−
∫ t+ω
ω

µv(τ−ω)dτ , which by using the

change of variable s = τ − ω, leads to

e−
∫ t+ω
ω

µv(τ−ω)dτ = e−
∫ t
0
µv(s)ds. (3.3)

Similarly, since Λv is also assumed to be ω-periodic, we have∫ t+ω
ω

Λv (τ) e−
∫ t+ω
τ

µv(s)dsdτ =
∫ t+ω
ω

Λv (τ − ω) e−
∫ t+ω
τ−ω+ω

µv(s)dsdτ

=
∫ t+ω
ω

Λv (τ − ω) e−
∫ t
τ−ω µv(s)dsdτ (because µv isω-periodic).
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Letting x = τ −ω, gives
∫ t+ω
ω

Λv (τ − ω) e−
∫ t
τ−ω µv(s)dsdτ =

∫ t
0

Λv (x) e−
∫ t
x
µv(s)dsdx

which implies that∫ t+ω

ω

Λv (τ) e−
∫ t+ω
τ

µv(s)dsdτ =

∫ t

0

Λv (x) e−
∫ t
x
µv(s)dsdx. (3.4)

Furthermore, substituting (3.3) and (3.4) in (3.2), we obtain

Sv (t+ ω) = Sv (ω) e−
∫ t
0
µv(s)ds +

∫ t

0

Λv (x) e−
∫ t
x
µv(s)dsdx.

On the other hand, we have from (3.1) that

Sv (ω) = Sv (0) e−
∫ ω
0
µv(τ)dτ +

∫ ω

0

Λv (s) e−
∫ ω
s
µv(τ)dτds.

Since Sv (0) =
(∫ ω

0
Λv (s) e−

∫ ω
s
µv(τ)dτds

)/(
1− e−

∫ ω
0
µv(τ)dτ

)
, then Sv (ω) =

Sv (0) . Thus

Sv (t+ ω) = Sv (0) e−
∫ t
0
µv(s)ds +

∫ t

0

Λv (x) e−
∫ t
x
µv(s)dsdx = Sv (t) .

Now following [36], based on the assumptions H1 and H2, we can compute the basic

reproduction ratio of system (2.4) using the way it is given in ([35],[37]).

Let

F(t , x ) =


λv(t)Sv
λh(t)Sh

0

0

0

 , V−(t , x ) =


µv(T (t), R(t))Iv
(µh + rh + µd)Ih

λv(t)Sv + µv(T (t), R(t))Sv
λh(t)Sh + µhSh
µhRh + σRh



and V+(t , x ) =


0

0

Λv(T (t), R(t))

Λh + σRh
rhIh


where x = (Sv, Iv, Sh, Ih, Rh)T , then system (2.4) equals to the following form

ẋ(t) = F(t, x)− V(t, x) , f(t, x(t)), (3.5)

where V(t, x) = V−(t, x)− V+(t, x).

It can be verified that system (2.4) satisfies assumptions (A1)-(A7) in [37].

Let

F (t) =

(
∂Fi(t, E∗0 (t))

∂xj

)
1≤i,j,≤m

, V (t) =

(
∂Vi(t, E∗0 (t))

∂xj

)
1≤i,j,≤m

, (3.6)
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In view of the periodic environment, we suppose that ϕ(s) is the initial distribution

of infectious individuals, which is assumed to be ω-periodic in s. Then F (s)ϕ(s) is

the total distribution of new infections produced by the infected individuals who

were introduced at time s. Let Y (t, s) denote the matrix solution of the initial

value problem d
dtY (t, s) = −V (t)Y (t, s), Y (s, s) = I where I denotes the identity

matrix. Then, for any t ≥ s, Y (t, s)F (s)φ(s) represents the distribution of those

infected individuals who were newly infected at time s and remain in the infected

compartments at time t. It follows that

ψ(t) :=

∫ 0

−∞
Y (t, s)F (s)ϕ(s)ds =

∫ ∞
0

Y (t, t− a)F (t− a)ϕ(t− a)da

is the distribution of cumulative new infections at time t produced by all those

infected individuals ϕ(s) introduced at previous time to t.

Let Cω be the ordered Banach space of all ω-periodic functions from R → Rm,

which is equipped with the maximum norm ||.|| and the positive cone

C+
ω := {ϕ ∈ Cω : ϕ(t)) ≥ 0 for all t ∈ R}.

Then we can define a linear operator L : Cω → Cω by

(Lϕ)(t) =

∫ ∞
0

Y (t, t− a)F (t− a)ϕ(t− a)da for all t ∈ R, ϕ ∈ Cω. (3.7)

Motivated by the concept of next generation matrices introduced in ([10], [35]), we

call L the next infection operator, and define the spectral radius of L as the basic

reproduction ratio

R0 := ρ(L) (3.8)

for the periodic epidemic model (3.5).

Lemma 3.3. (Lemma 4 in [36]) Assume that (A1)-(A7) in [37] hold. Then the

following statements are valid:

(i) R0 = 1 if and only if ρ(ΦF−V (ω)) = 1;

(ii) R0 > 1 if and only if ρ(ΦF−V (ω)) > 1;

(iii) R0 < 1 if and only if ρ(ΦF−V (ω)) < 1.

where

F (t) =

(
0 βhvφ(T (t))

Nh(t) S∗v (t)
βvhφ(T (t))Λh
Nh(t)µh

0

)
, V (t) =

(
µv(T (t), R(t)) 0

0 µh + rh + µd

)
Thus, the disease-free periodic solution (2.10) is asymptotically stable if R0 < 1,

and unstable if R0 > 1.

Theorem 3.4. If R0 < 1, then the disease-free periodic solution E∗0 (t) of system

(2.4) is globally asymptotically stable.
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Theorem 3.5. If R0 > 1, then system (2.4) is uniformly persistent. That is, there

exists a positive constant ε, such that any solution (Sv(t), Iv(t), Sh(t), Ih(t), Rh(t))

of system (2.4) with initial conditions Sv(0) ≥ 0, Iv(0) ≥ 0, Sh(0) ≥ 0, Ih(0) ≥
0 and Rh(0) ≥ 0 satisfies

lim inf
t→∞

(Sv(t), Iv(t), Sh(t), Ih(t), Rh(t)) ≥ (ε, ε, ε, ε, ε).

For the periodic system (2.4), a stability analysis similar to the works of [36] can

be done using the basic reproduction ratio that satisfies the equivalence mentioned

in Lemma 3.3. It can also be shown that the disease-free periodic solution (3.3) is

globally asymptotically stable if R0 < 1 and the system (2.4) is uniformly persistent

when R0 > 1 in a way exactly similar to the proofs given in [36].

3.4. Autonomous version of the model

In this section, we study the system with constant temperature and rainfall.

3.4.1. The basic reproductive number

To derive the basic reproductive number of the autonomous version of model

(2.4), we use the method of next generation matrix formulated by Diekmann et al.

[10] and van den Driessche and Watmough [35].

The rates of appearance of new infections and those representing the other transfers

of individuals are respectively given by the following vectors:

F(x ) =


λvSv
λhSh

0

0

0

 ,V(x ) =


µvIv

(µh + rh + µd)Ih
−Λv + λvSv + µvSv

−Λh + σRh + λhSh + µhSh
−rhIh + µhRh + σRh

 . (3.9)

The next generation matrix is given by FV −1, where F (resp. V ) is the jacobian

matrix of F (resp. V) at the disease free equilibrium

E∗0 =

(
Λv
µv
, 0,

Λh
µh
, 0, 0

)
.

We obtain

F =

(
0 βhvφΛvµh

Λhµv

βvhφ 0

)
,V =

(
µv 0

0 µh + rh + µd

)
. (3.10)

The basic reproductive number of model (2.4) is given by the spectral radius of the

next generation matrix ρ(FV −1),

R̄0 =

√
βvhβhvφ2Λvµh

µ2
vΛh (µh + rh + µd)

(3.11)
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3.4.2. Sensitivity analysis of the basic reproductive number

We will now analyze the sensitivity index of the basic reproductive number with

respect to temperature and rainfall using the forward sensitivity index.

Definition 3.1. The sensitivity index of a variable Y with respect to a parameter

p is given by

ΓpY =
∂Γ

∂p

p

Y
.

Using the definition above we calculate the sensitivity index of R̄0 with respect to T

and R using the expression of R̄0, expressions (2.1), (2.2) and (2.3) and parameter

values presented in Table (2). The results are plotted in Figures 4 and 5.

Fig. 4: Sensitivity index of R̄0 with re-

spect to temperature.

Fig. 5: Sensitivity index of R̄0 with re-

spect to rainfall.

We observe from these figures that the sensitivity index of R̄0 with respect to rainfall

seems to be independent of temperature and decreases with increase in rainfall.

As to the sensitivity index of R̄0 with respect to temperature, we can see that,

as temperature increases the sensitivity index of R̄0 with respect to temperature

decreases from positive values to become negative beyond 28.8 Co. This confirms

what we already know that increasing temperature from low to mild values is more

favorable for the spread of malaria, while increasing it from higher values would
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reduce the speared of malaria. Lastly, the sensitivity index of R̄0 with respect to

temperature does not significantly change with rainfall.

3.4.3. Existence of backward bifurcation in the autonomous

version of the model

At the steady states of the autonomous version of (2.4) which is calculated by

equating its right side to zero, the zero force of infection corresponds to the disease-

free periodic solution (DFPS) of the autonomous version and the non zero force of

infection λ∗h =
βvhφI

∗
v

N∗h
satisfies the quadratic equation

Aλ∗2h +Bλ∗h + C = 0 (3.12)

where A = (κ+ rh) (µv (κ+ rh) + βhvφκ) Λh,

B =
(µhγ + σ (µh + µd))κγµvΛh

µh
(K − R̄2

0) and C = κ2γ2µvΛh(1− R̄2
0) with

K = µh(βhvφ+2(κ+rh))
(µhγ+σ(µh+µd))µv

, γ = µh + rh + µd and κ = µh + σ.

We have the following results:

Proposition 3.6.

(1) If K ≥ 1, then the autonomous version of (2.4) exhibits transcritical

bifurcation.

(2) If K < 1, then the autonomous version of (2.4) exhibits backward bifurcation.

That is, there exists R̄c in (0,1) such that

i. If 1 ≤ R̄0 then the autonomous version of (2.4) has one endemic

equilibrium point.

ii. If R̄c < R̄0 < 1 then the autonomous version of (2.4) has two endemic

equilibrium points.

iii. If R̄0 = R̄c then the autonomous version of (2.4) has one endemic

equilibrium point.

iv. If R̄0 < R̄c then the autonomous version of (2.4) has no endemic

equilibrium points.

Note that K < 1 if and only if

(2µh − µv (µd + µh))σ < µh (µv (µh + rh + µd)− (2µh + 2rh + φβhv))

That is

σ <
µh (µv (µh + rh + µd)− (2µh + 2rh + φβhv))

(2µh − µv (µd + µh))
if 2µh > µv (µd + µh)

or

σ >
µh (µv (µh + rh + µd)− (2µh + 2rh + φβhv))

(2µh − µv (µd + µh))
if 2µh < µv (µd + µh)
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The fact that the model exhibits a backward bifurcation when the parameters are

constant is well known in many of the literatures (see for example [22], [20], [3]).

However, when some of the parameters themselves are made to be time dependent,

no such phenomenon (like backward bifurcation) is established yet. In the contrary,

as can be mentioned in the next subsection, it has been asserted that the disease

free equilibrium no longer exists and we have instead a disease free solution (DFS)

which is globally asymptotically stable when R̃no(t) is less than unity. This could

be due to the structure of the DFS and the definition of the threshold trajectory

R̃no(t).

The mathematical analyses above are dedicated to the case where the temperature

and rainfall are assumed to be cyclic or constant. However, the actual malaria

confirmed cases in the Asendabo region, a western region of Ethiopia, in the years

2000-2012 and is plotted against time in months (Fig. 4) shows that the incidence

pattern does not follow a periodic flow. So, it is more appealing to formulate and

analyze a non-autonomous model system in the non-periodic environment for the

epidemic.
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Fig. 6: The actual malaria confirmed cases in the Asendabo region, collected in the

years 2000-2012.

3.5. Non-periodic System

The climate impact upon the distribution of the malaria transmission in space and

time is not always periodical and we need to investigate the potential change in

malaria risk caused by the variations in temperature and rainfall in the general

case. That is, when these climate variables are any time dependent functions. This

may help to investigate the dynamics of the disease in a long term basis and the

information provided here might serve as an important contribution for strategic

planning of malaria control in a long period of time in the future. From the ob-

served rainfall data as the variation of rainfall looks too seasonal and hence nearly

periodic, the non-periodic fit does not give a better fit than the periodic fit. For this

reason, the present section is devoted to studying the dynamics of the disease with

parameters dependent on the non-periodic climate variable (temperature) and the

periodic climate variable (rainfall).
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Even though the climate variables (temperature and rainfall) values change sea-

sonally, they are not totally periodic and hence it is very important to investigate

the dynamics in the non-periodic environment too. For the general case, that is, for

the general climate variables values, we analyze model (2.4) by making the model

parameters dependent on the general climate variables. Thus the system will have

time dependent non-periodic coefficients as climate variables could be expressed as

a function of time.

3.6. Stability analysis for the non-periodic non-autonomous

system

Consider the second and the fifth equations of (2.4):

dIh
dt

= βvhφ(T (t))
Sh
Nh

Iv − γIh ≤ βvhφ(T (t))Iv − γIh,

dIv
dt
≤ βhvφ(T (t))

Nv
Nh

Ih − µv(T (t), R(t))Iv

≤ βhvφ(T (t))ΓvIh − µv(T (t), R(t))Iv.

(3.13)

where Γv =
sup
t>0
{Λv(T (t),R(t))}

inf
t>0
{µv(T (t),R(t))} .

We analyze the stability of the disease-free solution Iv = Ih = 0, that is, the solution

representing the absence of the infection.

Linearizing the system (3.13) around a small amount of disease iH and iV as in [8],

we get

diH
dt

= − γiH + βvhφ(T (t))iV ,

diV
dt

= βhvφ(T (t))ΓviH − µv(T (t), R(t))iV ,

(3.14)

We then examine the stability of the disease-free solution of system (3.14), that is,

iH = 0 and iV = 0 as if the system were autonomous [8]. For this we assume the

solutions:

iH =c1exp(λt),

iV =c2exp(λt)
(3.15)

and replace (3.15) into equation (3.14). The characteristic equation associated to

system (3.14) is then obtained to be:∣∣∣∣ −(λ+ γ) βvhφ(T (t))

βhvφ(T (t))Γv −(λ+ µv(T (t), R(t)))

∣∣∣∣ = 0 (3.16)

that is, λ(t) = 1
2

(
−(γ + µv)±

√
(γ + µv)2 − 4(γµv − βhvβvhφ2(T (t))Γv)

)
where

µv = µv(T (t), R(t)).

If all the roots of equation (3.16) have negative real parts, then the solution without
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disease is stable, that is, the origin is an attractor. We see that the first root that

crosses the imaginary axis do so through the real axis and this happens when

γµv(T (t), R(t))− βhvβvhφ2(T (t))Γv < 0 that is when

R̃no(t) :=
βhvβvhφ

2(T (t))Γv
γµv(T (t), R(t))

> 1.

Since µv(T (t), R(t)) is never zero, the definition of R̃no is meaningful.

Therefore, we can find the time t at which the disease-free solution of system (3.14),

that is, iH = 0 and iV = 0 becomes unstable. The time t at which the disease-

free solution (no-disease) of the autonomous system becomes unstable (R̃no > 1)

corresponds approximately to the moment at which the epidemic takes off, that is,

when the epidemic in system (2.4) begins to increase as a result of the introduction

of a small amount of disease at time t = 0.

Theorem 3.7. If R̃no(t) < 1, for all t ≥ t0 then the disease-free solution (2.10),

is globally asymptotically stable.

Proof. From equation (3.13), we have that

dIh/dt ≤ βvhφ(T (t))Iv − γIh
dIv/dt ≤ βhvφ(T (t))ΓvIh − µv(T (t), R(t))Iv.

Let Y=
(
y1
y2

)
be the solution of

Y
′

=

(
−γ + ε βvhφ(T (t))

βhvφ(T (t))Γv −µv(T (t), R(t)) + ε

)
Y (3.17)

with y1(0) = Ih(0) + ε, y2(0) = Iv(0) + ε, ε > 0.

From the argument above this Theorem 3.7, we see that the solutions of (3.17) are

characterized by:

y1(t) −→ 0 and y2(t) −→ 0 as t −→∞. (3.18)

We claim that

Ih(t) < y1(t) and Iv(t) < y2(t) for all t > 0. (3.19)

Indeed, otherwise there exists a first point t = t0 > 0 such that either Ih(t0) = y1(t0)

or Iv(t0) = y2(t0). Suppose that the first case occurs. Then

ẏ1(t0) = βvhφ(t0)y2(t0)− γy1(t0) + εy1(t0) > βvhφ(t0) ShNh Iv(t0)− γIh(t0) = İh(t0).

On the other hand, since y1(t) − Ih(t) > 0 for t < t0 and y1(t0) − Ih(t0) = 0, we

obtain ẏ1(t0) − İh(t0) ≤ 0, which is a contradiction. The case Iv(t0) = y2(t0) can

be handled in the same way.

Letting t → ∞ in equation (3.19) and using equation (3.18), we conclude that

Ih(t)→ 0, Iv(t)→ 0 if t→∞. It remains to show that lim
t→∞

Sh(t) = Nh.
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From the system (2.4),
d(Nh − Sh)

dt
+κ(Nh−Sh) = ρ(t), where ρ(t) = (σ−µd)Ih+

βvhφ(T (t))Sh
Iv
Nh

and κ = µh + σ.

Nh(t)− Sh(t) = exp

(
−
∫ t

0

κdτ

){
(Nh(0)− Sh(0)) +

∫ t

0

ρ(s)exp(

∫ s

0

κdσ)ds

}
= exp (−κt)

{
(Nh(0)− Sh(0)) +

∫ t

0

ρ(s)exp(κs)ds

}
Since ρ(t) → 0 as t → ∞, we can find tM > 0 such that ρ(t) ≤ Me−κt for some

constant M and t > tM . Hence

lim
t→∞

exp(−κt)
∫ t

0

ρ(s)exp(κs)ds ≤ lim
t→∞

exp(−κt)
(∫ tM

0

ρ(s)exp(κs)ds+

∫ t

tM

Mds

)
= lim

t→∞
exp(−κt)

(
[

∫ tM

0

ρ(s)exp(κt)ds−MtM ] +Mt

)
= lim

t→∞
exp(−κt)(M0 +Mt) = 0

letting the constant
∫ tM

0
ρ(s)exp(κs)ds−MtM to be M0 and by L’Hôpital’s rule.

Thus lim
t→∞

(Nh(t)− Sh(t)) = 0. That is Sh(t)→ Nh(t) as t→∞.

Theorem 3.8. If R̃no(t) > 1 for all t ≥ t0 then the nonlinear system (2.4) is

uniformly persistent, that is, there exists c > 0 (independent of initial conditions),

such that lim inft→∞ Ih ≥ c and lim inft→∞ Iv ≥ c.

Proof. Consider the second and the fourth equation of the nonlinear system (2.4)

dIv/dt = − µv(T (t), R(t))Iv +
βhvφ(T (t))Sv

Nh
Ih.

dIh/dt =
βvhφ(T (t))Sh

Nh
Iv − γIh

and written in matrix form as

I
′

=

(
−µv λv
λh −γ

)
I = A(t)I (3.20)

where I=
(
Iv
Ih

)
, µv = µv(T (t), R(t)), λv = βhvφ(T (t))Sv

Nh
and λh = βvhφ(T (t))Sh

Nh
.

The eigenvalues of A are `(t) = 1
2

(
−(γ + µv)±

√
(γ + µv)2 − 4(γµv − λh`v)

)
.

Since all the components of our square-matrix function A(t) are real analytic func-

tions of t, then it is already known that all its eigenvalues and the corresponding

eigenvectors are also real analytic functions of t (see Chapter 9 of [15]).

Now `(t) > 0 for all t > 0 when γµv − λhλv < 0 which implies

1 <
λhλv
γµv

=
βhvφ(T (t))Sv

Nh

βvhφ(T (t))Sh
Nh

1

γµv
≤ βhvβvhφ(T (t))2

γµv
Sv
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≤ βhvβvhφ(T (t))2

γµv
Γv = R̃no(t).

One right-eigenvector function corresponding to `(t) > 0 is v(t) =
( 1
µv+`(t)
λv

)
and

I =

(
Iv
Ih

)
= c

(
1

µv+`(t)
λv

)
e`(t)t is the solution of (3.20).

So Iv(t) = ce`(t)t and

Ih(t) = c

(
µv + `(t)

λv

)
e`(t)t = c

(
(µv + `(t))Nh
βhvφ(T (t))Sv

)
e`(t)t ≥ c

(
(µv + `(t))Nh
βhvφ(T (t))Nv

)
e`(t)t

Now for an eigenvalue function `(t) > 0 for all t > 0, which is a real analytic

function, the corresponding solution function I =
(
Iv
Ih

)
= c

(
1
v(t)

)
e`(t)t is a smooth

function of t and the limit of the exponential function increases indefinitely as t

increases. This completes the proof.

4. Numerical Simulations

The numerical simulation of the non-autonomous model (2.4) is used to illustrate

the impact of the seasonal variables (temperature and rainfall) on the malaria dis-

ease dynamics in a population and to validate the model results in the real situation

on the ground.

In this section, we give numerical simulations to confirm the above theoretical anal-

ysis in the real situation in Ethiopia. For this purpose, the daily temperature and

rainfall data is taken from the National Meteorological Agency of Ethiopia and

the corresponding microscopically confirmed cases of malaria from 1984-2012 for

Asendabo, a western region of Ethiopia, is obtained from Asendabo clinic.

For the simulation, the monthly average maximum temperature and the average

monthly rainfall is used to show their impact on the incidence and prevalence of

the malaria disease in the region. The temperature raw data is fitted by both peri-

odic(Fig. 7) and non-periodic(Fig. 8) functions, respectively, by

T (t) = 19.5932+1.2697 cos(0.5240t+4.3391)−0.6343 cos(2∗0.5240t−0.6963) (4.1)

T (t) = 29.2446+0.0018t+2.5535 cos(0.5237t+5.0431)−0.5624 cos(2∗0.5237t−1.101)

(4.2)

while the rainfall raw data is fitted by a periodic function(Fig. 9) only as the raw

rainfall data seems very much periodic.

R(t) =99.4876 + 89.8581 cos(0.5232t+ 15.4500) + 19.1069 sin(2 ∗ 0.5232t)

−8.5891 cos(3 ∗ 0.5232t+ 3.7723) + 6.4660 sin(5 ∗ 0.5232t).
(4.3)

It is assumed that initially, the susceptible and infected adult mosquitoes are

Sv(0) = 800000, Iv(0) = 8000 and the host population distributions are Sh(0) =
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20000, Ih(0) = 500, Rh(0) = 50, respectively.

Table 2: Parameter values used in all the simulations.

Parameter Estimated value Reference

Λh 0.415244 day−1 [6]

σ 0.00137 day−1 [7]

µh 0.0000388 day−1 [6]

µd 0.00047 day−1 [26]

βvh 0.24 day−1 [23]

βhv 0.022 day−1 [23]

rh 0.0028 day−1 [23]
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Fig. 7: Monthly average maximum tem-

perature raw data periodic fit.
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Fig. 8: Monthly average maximum tem-

perature raw data non-periodic fit.
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Fig. 9: Monthly average rainfall raw

data periodic fit.
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Fig. 10: Infected humans in the periodic

case.
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Fig. 11: Infected mosquitoes in the peri-

odic case.
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Fig. 12: Prevalence in the periodic case.
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Fig. 13: The model disease incidence in

the periodic case.
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Fig. 14: Infected humans in the non-

periodic case.
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Fig. 15: Infected mosquitoes in the non-

periodic case.
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Fig. 16: Prevalence in the non-periodic

case.
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Fig. 17: The model disease incidence in

the non-periodic case.

The need for studying the dynamical system in the non-periodic environment is to

fill the gap ignored by studying the system in the periodic environment only. To

show this a non-periodic fit for the temperature data (Fig.8) only is used while the

rainfall data fit is kept periodic. The time series simulations of infected humans

and infected mosquitoes have shown noticeable variations in the periodic and non-
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periodic environments as shown (Figures 10, 11, 14 and 15). With this non-periodic

temperature data fit obtained by a slight modification of the periodic temperature

data fit only, the disease prevalence and the corresponding model incidence in the

non-periodic case have shown some change in their behavior when compared to the

periodic case. The prevalence rate of increase is 105.1% in the non-periodic environ-

ment while it is 94.2% in the periodic environment and the model incidence in the

non-periodic case ranges from 412 to 432 in the non-periodic case (Fig. 17) while

it ranges from 375 to 400 (Fig. 13) in the periodic case in the time range between

the 200th month and the 340th month. This basic difference is a consequence of

analyzing the model in both environments and it may be a good reason to study

the malaria dynamics in the non-periodic environment besides the periodic one.

Remark 4.1. Note here that there were no control interventions assumed to have

been implemented in both periodic and non-periodic environments in the given

period of time, and the model produces the dynamics of the disease if no intervention

were employed.

It is known that by employing control interventions such as spraying chemicals,

destroying some breading sites and using Insecticide Treated bed-nets (ITBNs) the

mortality rate of the vectors can be increased and using ITBNs at the household

level effectively, the biting rate of mosquitoes can be reduced significantly.

We have investigated and compared numerical results from simulations with three

scenarios under the assumption that appropriate control interventions are employed.

i. If it is possible to reduce the biting rate by 50% and increase the mortality

rate of the vectors by 30%, it is seen that a 20.4% (Fig.38) reduction of the

prevalence in the periodic case and a 21.8% (Fig.24) reduction of the prevalence

in the non-periodic case can be achieved. The corresponding incidence declines

are shown in Fig.39 in the periodic case and in Fig.25 in the non-periodic case.

ii. If the mortality rate of the vectors only is increased by 50%, a 0.64% (Fig.28)

reduction of the prevalence in the periodic case and a 1.4% (Fig.32) reduction

of the prevalence in the non-periodic case can be achieved.

iii. If the biting rate only is reduced by 50%, a 20.1% (Fig.36) reduction of the

prevalence in the periodic case and a 21.4% (Fig.40) reduction of the prevalence

in the non-periodic case can be achieved.

5. Conclusions

We derived and analyzed a deterministic non-autonomous model for the transmis-

sion of malaria disease in a periodic and non-periodic environments. We calculated

the basic reproduction ratios in the periodic environment and the threshold func-

tion in the non-periodic environment and investigated the existence and stability of
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Fig. 18: Infected humans in the periodic

case with control in the first scenario.
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Fig. 19: Infected mosquitoes in the pe-

riodic case with control in the first sce-

nario.
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Fig. 20: Prevalence with control in the

periodic case in the first scenario.
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Fig. 21: The model disease incidence in

the periodic case with control in the first

scenario.
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Fig. 22: Infected humans in the non-

periodic case with control in the first

scenario.
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Fig. 23: Infected mosquitoes in the non-

periodic case with control in the first

scenario.

equilibria in both environments. The dynamics of mosquito populations are driven

by climatic factors, rainfall and temperature.

The impact of these climatic variables, temperature and rainfall, in both environ-

ments is investigated and the corresponding model parameters are shown to be

influenced by these climate variables. The model results have been validated using

epidemiological data obtained from a western region of Ethiopia, by considering

the trends for monthly microscopically confirmed cases of malaria during the years

2000-2012 and the corresponding climate variation in the region. In both environ-

ments, it has been shown that the model incidence result increases slowly until it
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Fig. 24: Prevalence with control in the

non-periodic case in the first scenario.
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Fig. 25: The model disease incidence in

the non-periodic case with control in the

first scenario.
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Fig. 26: Infected humans in the periodic

case with control in the second scenario.
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Fig. 27: Infected mosquitoes in the pe-

riodic case with control in the second

scenario.
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Fig. 28: Prevalence in the periodic case

with control in the second scenario.
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Fig. 29: The model disease incidence in

the periodic case with control in the sec-

ond scenario.

reaches a point where it tends to stop rising in the absence of implementation of

any kind of control measures and the actual incidence is a result of some control in-

terventions implemented in the country in these years. This shows that the climate

variables have significant impact on the disease dynamics and proper implementa-

tion of control measures is required to achieve a significant reduction of the malaria

disease dynamics.

When our model is reduced to its autonomous version, the fact that the model

exhibit a backward bifurcation is well known in many of the literatures and our
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Fig. 30: Infected humans in the non-

periodic case with control in the second

scenario.
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Fig. 31: Infected mosquitoes in the non-

periodic case with control in the second

scenario.
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Fig. 32: Prevalence in the non-periodic

case with control in the second scenario.
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Fig. 33: The model disease incidence in

the non-periodic case with control in the

second scenario.
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Fig. 34: Infected humans in the periodic

case with control in the third scenario.
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Fig. 35: Infected mosquitoes in the pe-

riodic case with control in the third sce-

nario.

model also reduces to the same phenomena. However, when some of the parameters

themselves are made to be time dependent, no such phenomenon (like backward

bifurcation) is established yet. In the contrary it has been asserted that the DFS is

globally asymptotically stable when the basic reproduction number R̄0 is less than

unity. This looks a bit strange and needs to be investigated but the mathematical

argument clearly shows that our model also satisfies this characterization.
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Fig. 36: Prevalence with control in the

periodic case in the third scenario.
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Fig. 37: The model disease incidence in

the periodic case with control in the

third scenario.
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Fig. 38: Infected humans in the non-

periodic case with control in the third

scenario.
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Fig. 39: Infected mosquitoes in the non-

periodic case with control in the third

scenario.
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Fig. 40: Prevalence in the non-periodic

case with control in the third scenario.
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Fig. 41: The model disease incidence in

the non-periodic case with control in the

third scenario.

6. Appendix

6.1. Proof of Proposition 3.1 (the well-posedness property of the

model)

Denote by tmax the upper bound of the maximum interval of existence correspond-

ing to

(Sv(t), Iv(t), Sh(t), Ih(t), Rh(t)). We first note that if we show that the solution is

positive and bounded in [0, tmax), then the solution would be positive and bounded

in [0,+∞). Let

t1 = sup {0 ≤ t < tmax : Sv (τ) , Iv (τ) , Sh (τ) , Ih (τ) and Rh (τ) are positive for all τ ∈ [0, t]} .
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Since Sv (0) , Iv (0) , Sh (0) , Ih (0) and Rh (0) are non-negative then t1 > 0. If t1 <

tmax then, by using the variation of constants formula to the first equation of system

(2.4), we have

Sv(t1) = Sv(0)e−
∫ t1
0 (λv(T (τ))+µv(T (τ),R(τ)))dτ

+
∫ t1

0
e−

∫ t1
s

(λv(T (τ))+µv(T (τ),R(τ)))dτΛv (T (s) , R (s)) ds.

Since Sv(0) ≥ 0 and Λv (T (s) , R (s)) ≥ 0 for all s ∈ [0, t1), then Sv(t1) > 0.

Similarly, we have

Iv(t1) = Iv(0)e−
∫ t1
0 µv(T (τ),R(τ))dτ

+
∫ t1

0
e−

∫ t1
s
µv(T (τ),R(τ))dτλv (T (s))Sv (s) ds.

which by Iv(0) ≥ 0 and λv (T (s))Sv (s) ≥ 0 for all s ∈ [0, t1), imply that Iv(t1) > 0.

It can be shown in the same manner that the other variables are also positive at

t1. This contradicts the topological property of the supremum that states that at

least one of the variables should be equal to zero at t1. Therefore our assumption

t1 < tmax is false and t1 = tmax which implies that the solution is positive on its

maximal interval of existence [0, tmax).

Next, to show that the solution is bounded on [0, tmax), we obtain from the first

two equations of system (2.4)

Ṅv(t) = Λv (T (t) , R (t))− µv (T (t) , R (t))Nv (t) .

By using the standard comparison theorem [14] and by accounting for the positivity

of the solution on [0, tmax), we obtain

Nv(t) = e−
∫ t
0
µv(T (τ),R(τ))dτ

(
Nv(0) +

∫ t

0

Λv (T (s) , R (s)) e
∫ s
0
µv(T (τ),R(τ))dτds

)
for any 0 ≤ t < tmax. Since for all x ≥ 0, we have µv (T (x) , R (x)) ≥ mv and

Λv (T (x) , R (x)) ≤Mv, then

Nv(t) ≤ e−mvt
(
Nv(0) +

Mv

mv

(
emvt − 1

))
. (6.1)

Thus Nv(t) is bounded on [0, tmax).

Similarly, by adding equations four, five and six of system (2.4), we have

Ṅh(t) = Λh − µhNh(t)− µdIh(t)

≤ Λh − µhNh(t)

The standard comparison theorem [14] and the positivity of the solution on [0, tmax)

yield

Nh(t) ≤ e−
∫ t
0
µhdτ

{
Nh(0) +

∫ t
0

Λhe
∫ s
0
µhdτds

}
≤ e−µhtNh(0) + Λhe

−µht
∫ t

0
eµhsds

≤ e−µht
(
Nh(0)− Λh

µh

)
+ Λh

µh
.

(6.2)
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for any 0 ≤ t < tmax. Thus we obtain

Nh(t) ≤ Λh
µh

for all t ∈ [0, tmax) , (6.3)

Thus Nh(t) is also bounded on [0, tmax). Hence tmax =∞ which proves the global

existence, the positivity and the boundedness results.

Concerning the invariance properties, it is easy to obtain from (6.1) that if

Nv(0) ≤ Mv

mv
, then Nv(t) ≤ Mv

mv
for all t ≥ 0. Similarly, from (6.2) we obtain that if

Nh(0) ≤ Λh
µh

then Nh(t) ≤ Λh
µh

. This establishes the invariance property as required.

�

6.2. Proof of Proposition 3.6 (the bifurcation results)

(1) If K ≥ 1, we have the following

i. If R̄0 > 1, then C < 0. In this case the autonomous version of (2.4) has a

unique positive solution.

ii. If R̄0 ≤ 1, then C ≥ 0 and B ≥ 0 (because R̄0 ≤ 1 ≤
√
K). This together

with A > 0 imply that the autonomous version of (2.4) has no positive

solution.

(2) If K < 1, we have

i. If R̄0 ≥ 1, then C ≤ 0 which implies that the autonomous version of (2.4)

has a unique positive solution.

ii. If R̄0 ≤
√
K, then B ≥ 0 and C > 0. This implies that the autonomous

version of (2.4) has no positive solution.

iii. If
√
K < R̄0, we consider the discriminant of (3.12) 4(R̄0) := B2 − 4AC.

We note that 4(
√
K) := −4AC < 0 and 4(1) := B2 > 0. Therefore, there

exists R̄c ∈ (
√
K, 1) such that 4(R̄c) = 0 and 4 < 0 for R̄0 ∈ (

√
K, R̄c)

and 4 > 0 for R̄0 ∈ (R̄c, 1). In this case we have

a. If
√
K < R̄0 < R̄c then (3.12) has no positive solution.

b. If R̄0 = R̄c then 4 = 0 and B < 0. This implies that (3.12) has one

positive solution.

c. If R̄c < R̄0 < 1 then (3.12) has two real solutions which are positive

since C > 0 and B < 0. �
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