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ABSTRACT 
The heat transfer performance of the conventional fluids 

used in heat exchange processes improves by dispersing 
nanoparticles with high thermal conductivity, as many 
researches have shown in the last decades. The heat transfer 
capability of a fluid depends on several physical properties 
among which the rheological behavior is very relevant, as we 
have previously pointed out.  

In this study, different samples of nanofluids have been 
analyzed by using a DHR-2 rotational rheometer of TA 
Instruments with concentric cylinder geometry in the 
temperature range from (278.15 to 323.15) K. The used base 
fluids were two different binary mixtures of propylene glycol 
and water at (10:90)% and (30:70)% mass ratios. Two different 
mass concentrations (viz. 0.25 and 0.5 wt.%) of graphene 
nanoplatelets functionalized with sulfonic acid (graphenit-
HW6) were dispersed in these two base fluids. 

Firstly, with the goal of checking and calibrating the 
operation of the rheometer, the viscosity-shear stress curves for 
pure propylene glycol, Krytox GPL102 oil, and the two base 
fluids were experimentally determined. A detailed comparative 
study with those well-known data over the entire range of 
temperature was stabilized obtaining deviations in viscosity less 
than 3.5%. Then, the flow curves of the different nanofluid 
samples were studied at different temperatures to characterize 
their flow behavior. 

INTRODUCTION 
The enhancement of the heat transfer performance has 

raised great interest during the last century since an increment 
in the efficiency of thermal facilities could lead to huge savings 
in their initial and operational costs [1]. Once different 
approaches such as the use of extended surfaces or the 
optimization of flow conditions have been extensively 
investigated, many researchers focus on improving the weak 
thermal capabilities of most conventional working fluids. A 
promising way to achieve this aim is by dispersing nano-sized 
particles with high thermal conductivity in these conventional 
heat transfer fluids (HTFs). These new nanostructured materials 

are known as nanofluids and exhibit clear advantages regarding 
the dispersions of millimeter or micrometer particles such as 
lower pressure drops or clogging issues [2-3].  

Among the different nanoadditives used to design new 
nanofluids in the past decade, carbon allotropes seem to be 
those with the most remarkable potential [4]. Within the 
graphite family, the exceptional mechanical, thermal and 
electrical properties of graphene (ideally envisaged as a single-
atom-thick sheet of hexagonally arranged, sp2-bonded carbon 
atoms tightly packed into a honeycomb lattice) has attracted 
great attention since this structure was experimentally isolated 
by Novoselov et al. [5]. Graphene is commercially available in 
the form of some-layer stacks (normally between 10-100 
layers) known as graphene nanoplatelets which combine the 
properties of single-layer graphene as well as the possibility of 
being easily and cost-effectively synthesized. Nevertheless, 
graphene is hydrophobic and it is not possible to obtain 
dispersions in water for a long time [6-7]. In the case of 
graphene oxides (GOnPs), their basal planes and sheet edges 
contain different functional groups and as a consequence the 
material becomes hydrophilic. The drawback is that the thermal 
conductivity of graphene oxide is considerably lower than that 
of pristine graphene since the oxidation process destroys the 
systematically arranged conjugated structure. Through a 
reduction of exfoliated graphene oxide, it is possible both to 
restore the properties of graphene and maintain dispersibility 
[7]. 

Different works have shown that the dispersion of 
nanoparticles remarkably increases the thermal conductivity of 
conventional HTFs which may lead to improve the heat transfer 
performance. However, it must also be considered that the 
addition of nanomaterials can also alter other thermo-physical 
properties which, in turn, can sometimes offset the thermal 
conductivity enhancements. Thus, the viscosity (a fundamental 
property in the Reynolds number) has a strong influence on the 
flow regime and, consequently, on the heat transfer, for 
instance. Additionally, an increase in this property can lead to 
higher pressure drops and, therefore, higher pumping powers 
[8]. The Newtonian or non-Newtonian nature of the nanofluids 
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is also a key issue to define the flow type. In addition to study 
the flow behavior and assess the penalty in pressure drop, the 
rheological properties of nanofluids are also helpful to analyze 
the nanoparticle structuring within the dispersions [8-10]. 
The rheological properties of graphene nanofluids based on 
water (W) [7, 11-13] or ethylene glycol (EG) [14] have already 
been studied in the literature. However, up to our knowledge, 
no research was developed using binary mixtures of propylene 
glycol and water. In this study, the flow behavior of two 
graphene nanoplatelet nanofluid sets has been analyzed in the 
temperature range from (278.15 to 323.15) K by using a DHR-
2 rotational rheometer (TA instruments; DE, USA) equipped 
with concentric cylinder geometry. The nanofluids were 
designed using two different (propylene glycol + water) 
mixtures at (10:90)% and (30:70)% mass ratios as base fluids 
and two mass fractions (φ= 0.0025 and φ= 0.005) of graphene 
nanoplatelets stabilized with sulfonic acid (graphenit-HW6). 

NOMENCLATURE 
 

AAD  Absolute Average Deviation 
A, B  Adjustable parameters in equation (2) 
GOnP  Graphene oxide nanoplatelet 
PG  Propylene glycol 
T [K] Temperature 
η0, C, T0  Adjustable parameters of Vogel-Fulcher-

Tamman (VFT) model, equation (1) 
W  Water 
 

Special characters 
η [mPa∙s] Dynamic viscosity 
φ [-] Graphene oxide nanoplatelet mass fraction 
 

Subscripts   

bf  Base fluid 
nf  Nanofluid 
np  Nanoparticle 
   

EXPERIMENTAL 
Materials and sample preparation 

Sulfonic acid-functionalized graphene nanoplatelets 
(graphenit-HW6) were provided by NanoInnova Technologies 
S.L. (Madrid, Spain, www.nanoinnova.com). The base fluids 
are two (propylene glycol + water) mixtures at (10:90)% and 
(30:70)% mass ratios. Propylene glycol was purchased from 
Sigma-Aldrich with a mass purity of 99.5%, while Milli-Q 
Grade water was produced with 18.2 MΩ·cm at 298.15 K by 
means of a Milli-Q 185 Plus system (Millipore Ltd, Watford, 
UK). Nanofluids were designed following a two-step method. 
Therefore, the amounts of powder and base fluid necessary to 
obtain the desired nanoparticle mass concentrations (0.25 and 
0.5 wt.%) were first weighted in a Sartorius electronic balance 
model CPA225 (Sartorius AG, Germany) and then stirred at 
1500 rpm for 60 minutes. Afterwards, samples were sonicated 
for 240 minutes by using an ultrasonic bath (Ultrasounds, JP 
Selecta S.A., Spain) working with a maximum sonication 
power of 200 W and a frequency of 20 kHz. 
 
 
 
 
 

Experimental methods 
The shear rate dependence of viscosity, the so-called flow 

curve, was studied at six different temperatures ranging from 
(278.15 to 323.15) K by means of a combined motor-transducer 
Discovery Hybrid Rheometer (DHR-2, TA instruments). This 
instrument was equipped with a coaxial cylinder geometry 
consisting of an external cup (diameter: 30.37 mm) and a 
double gap rotor (bob diameter: 27.98 mm, length: 42.17 mm, 
and operating gap: 5912.87 μm) which is appropriate to prevent 
evaporation of the sample at high temperatures. Sample 
temperature was controlled by using a Peltier jacket and an 
equilibration time of at least 20 minutes was waited before 
experiments in order to ensure a uniform initial temperature. 
Tests were performed in steady-state regime at shear rates 
logarithmically increasing from (0.1 to 100) s-1 with at least 
five points per decade. With the aim of checking and 
calibrating the operation of the rheometer, the viscosity-shear 
stress curves were also determined for Kryptox GPL 102 oil 
and pure propylene glycol over the entire temperature range. A 
detailed comparative between the experimental viscosities here 
obtained and values previously reported in the literature [10, 
15-20] for these materials is presented in Figure 1. 
 

 
Figure 1 Comparison between experimental and literature 

viscosities at different temperatures for: () Kryptox GLP 102 
oil [16, 21], () propylene glycol, PG, [10, 15, 17-18, 20], 

() PG+W mixture at (10:90)% [22] and  
() PG+W at (30:70)% [22]. 

 
The relative deviations and average absolute deviations are 
lower than 3%. 
 

RESULTS AND DISCUSION 
The rheological behavior of the two base fluids and the four 

designed nanofluids was analyzed at temperatures ranging from 
(278.15 to 323.15) K. As an example, Figure 2 shows viscosity 
vs. shear rate for the 0.25 wt.% GOnPs (PG+W at 30:70 wt.%) 
nanofluid at five temperatures whereas Figure 3 shows the 
viscosity vs. shear rate dependences for the different samples at 
293.15 K.  
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Table 1 η0, C, and T0 coefficients as well as AADs% and 
standards deviations from Vogel-Fulcher-Tammann (VFT) 
correlation, equation (1), for the two studied nanofluid sets. 

 

  Base Fluid (0 wt.%) 0.25 wt.% 0.5 wt.% 
GOnPs/(PG+W at 10:90 wt.%) 

η0 [mPa·s] 0.0948 0.0141 0.0134 
C 236.62 777.46 778.19 

T0 [K] 1.145 5.651 5.382 
AADs% 0.74 0.36 1.7 

s [mPa·s] 0.03 0.01 0.07 
 

GOnPs/(PG+W at 30:70 wt.%) 
η0 [mPa·s] 0.0493 0.0618 0.0684 

C 431.78 431.95 461.22 
T0 [K] 2.293 2.269 2.470 

AADs% 0.20 0.43 0.27 
s [mPa·s] 0.008 0.04 0.02 

 
On the other hand, the loading of the graphene oxide 

nanoplatelets increases the friction and flowing resistance of 
fluids leading to a viscosity increment. These increases of the 
dynamic viscosity in relation to base fluids, i.e. (ηnf –ηbf)/ηbf, as 
a function of the temperature are shown for the two 
concentrations of GOnPs in (PG+W) at (10:90)% and (PG+W) 
at (30:70)% mass ratios in Figure 6 and Figure 7, respectively. 
 

 
Figure 6 Dynamic viscosity increases of GOnPs in (PG+W) at 

(10:90)% mass ratio. 
 

Figure 7 Dynamic viscosity increases of GOnPs in (PG+W) at 
(30:70)% mass ratio. 

As it can be observed, maximum viscosity increases reach up to 
44% and 78% at the 0.25% and 0.5% mass concentrations, 
respectively. Furthermore, the rises in viscosity due to the 
loading of GOnPs show a downward trend with the increasing 
temperature. This trend can be due to the fact that the surface 
charge density rises when the temperature increases. In order to 
detail the effect of the loading of GOnPs within the analyzed 
nanoparticle concentration range, in Figure 8 the η(φ) curves 
are shown at the different temperatures for the 10:90 wt.% 
nanofluids, as an example. 
 

 
Figure 8 Concentration dependence of the dynamic viscosity of 

GOnPs/(PG+W at 10:90 wt.%). (—) equation (2). 
 
This concentration dependence is also similar to that exhibited 
by the studied GOnPs/(PG+W 30:70 wt.%) nanofluids. The 
slopes of the linear fits of GOnPs/(PG+W 10:90 wt.%) and 
GOnPs/(PG+W 30:70 wt.%) are gathered in Figure 9. 
 

 
Figure 9 Slope of the linear η(φ) curves against temperature: 
() GOnPs/(PG+W at 10:90 wt.%) and () GOnPs/(PG+W at 

30:70 wt.%). 
 
As shown in Figure 9, both slope values present exponential 
dependences with temperature. The nanofluid set based on 
(PG+W at 30:70%) exhibits slopes twice as high as those of the 
GOnPs/(PG+W at 10:90%) nanofluids within the analyzed 
temperature range. 

The temperature and concentration dependences of the two 
types of studied nanofluids can be described by using the 
following equation, proposed in this work: 
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where φ is the nanoparticle mass fraction, T is the temperature 
in K, and A and B are the fitting parameters. η0, C and T0 
parameters were taken from Table 1. The obtained coefficients 
by using this expression for each nanofluid set together with the 
AADs% and standard deviations are gathered in Table 2. 
 

Table 2 A and B coefficients as well as AADs% from 
equation (2) for the two studied nanofluids sets. 

 

Parameters Nanofluid set 
GOnPs/(PG+W 

10:90 wt.%) 
GOnPs/(PG+W 

30:70 wt.%) 
A [mPa·s] 0.0040 0.0012 

B [K] 3190.83 3764.03 
AADs% 2.0 0.92 

s [mPa·s] 0.05 0.06 
 
Figure 8 shows the goodness of this equation correlating the 
η(φ, T) curves of both nanofluid sets. The new equation allows 
describing the viscosity behavior of the analyzed glycolated 
water suspensions of functionalized graphene nanoplatelets 
with similar deviations to that provided by the well-known 
Vogel-Fulcher-Tamman equation. Moreover, it is noteworthy 
that five fitting parameters are necessary for each nanofluid set 
by the proposed equation while nine are needed when using 
VFT. 

CONCLUSIONS 
A DHR-2 rotational rheometer of TA Instruments with 

concentric cylinder geometry was checked in detail in order to 
determine the flow behavior in a wide temperature and shear 
rate range. Good agreements were found between our 
experimental viscosity values for the Newtonian fluids 
propylene glycol, Kryptox GLP 102 oil, propylene glycol + 
water mixture at (10:90)% and propylene glycol + water at 
(30:70)% in the temperature range from (278.15 to 333.15) K 
and those previously published in the literature. The rheological 
behavior of two types of glycolated water suspensions of 
functionalized graphene nanoplatelets has been explored by 
using the mentioned device at nanoadditive concentrations up 
to ϕ= 0.005 in mass.  

The two sets of nanofluids show a Newtonian behavior 
overall the analyzed concentration and temperature ranges at 
shear rates up to 100 s-1. For all analyzed nanofluids the 
diminutions in dynamic viscosity with increasing temperature 
reach up to 80%. The loading of the graphene oxide 
nanoplatelets linearly increases the viscosity and these 
worsening in relation to the base fluid range from (28 to 44)% 
and from (41 to 78)% for ϕ= 0.0025 and 0.005, respectively. A 
relationship between viscosity, nanoadditive concentration and 
temperature is proposed in this work which allows describing 
the η(φ, T) functions with deviations less than 0.07 mPa·s 
which are similar to those exhibited by η(T) curves employing 
VFT equation. 
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