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Price discovery in the cryptocurrency option 
market: A univariate GARCH approach
Pierre J. Venter1,2*, Eben Mare3 and Edson Pindza3

Abstract:  In this paper, two univariate generalised autoregressive conditional het
eroskedasticity (GARCH) option pricing models are applied to Bitcoin and the 
Cryptocurrency Index (CRIX). The first model is symmetric and the other takes asym
metric effects into account. Furthermore, the accuracy of the GARCH option pricing 
model applied to Bitcoin is tested. Empirical results indicate that asymmetry is not an 
important factor to consider when pricing options on Bitcoin or CRIX, this is consistent 
with findings in the literature. In addition, the GARCH option pricing model provides 
realistic price discovery within the bid-ask spreads suggested by the market.

Subjects: Financial Mathematics; Quantitative Finance; Econometrics  

Keywords: GARCH; option pricing; cryptocurrencies; volatility surface; CRIX

1. Introduction
Cryptocurrencies, and especially Bitcoin, have gained a lot of attention in recent years. A problem 
that the cryptocurrency market is currently facing, is that it does not have a well established 
derivatives market. This implies that there is no consensus regarding the pricing of options and 
other derivatives based on cryptocurrencies. Conventional wisdom among finance researchers is 
that the price of a derivative instrument is dependent on the value of the underlying asset. 
According to Barnes (2018), cryptocurrencies have no intrinsic value. Barnes (2018) further 
explains that cryptocurrencies have prices, which are generally unrelated to economic events 
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and determined by interaction between supply and demand. Therefore, cryptoccurency derivative 
prices are dependent on cryptocurrency prices.

Madan et al. (2019) explain that the cryptocurrency derivatives market is a young market and 
therefore different pricing methodologies are required for price discovery. Madan et al. (2019) 
found that models that incorporate stochastic volatility generally perform well when applied to the 
pricing of cryptocurrency options. A possible solution is to rely on historical data; this was 
considered by Hou et al. (2019) for the pricing of Bitcoin and Cryptocurrency Index (CRIX) options, 
with the focus on a stochastic volatility model with correlated jumps.

In this paper, the generalised autoregressive conditional heteroskedasticity (GARCH) option 
pricing model is applied to Bitcoin and CRIX. We consider symmetric and asymmetric GARCH 
models to assess the impact of asymmetric effects on the implied volatility of cryptocurrencies.

The process works as follows, the univariate GARCH model parameters are calibrated to histor
ical Bitcoin and CRIX returns (under the real world measure). Wilmott (2007) explains that the 
value of an option can be shown to be the expectation of the discounted future payoff under the 
risk-neutral measure. Given the estimated parameters and the risk-neutral GARCH model 
dynamics, option prices are obtained for various strike prices and maturities using Monte Carlo 
simulation. The GARCH model implied volatility is then easily computed given the option prices (by 
inverting the classical Black-Scholes model). The pricing performance of the GARCH option pricing 
model is also tested by comparing the model prices to Bitcoin market option prices, and prices 
obtained using the Heston stochastic volatility model.

In a similar study, Dyhrberg (2016) made use of univariate GARCH models (symmetric and 
asymmetric) to assess the financial asset capabilities of Bitcoin. The empirical results of this 
study indicate that the volatility of Bitcoin reacts similarly to positive and negative news. 
However, the focus of this paper is on symmetric and asymmetric effects of cryptocurrencies in 
an option pricing context, and how option prices can be obtained in the absence of a well- 
established derivatives market (by making use of historical data).

The rest of this paper is structured as follows. In Section 2 the recent and relevant literature is 
considered. Section 3 focuses on the theoretical framework in which the GARCH option pricing frame
work is outlined. In Section 4, the statistical properties of the dataset and estimation method is 
considered. Section 5 focuses on the empirical results, and Section 6 outlines the concluding remarks.

2. Literature review
Research focusing on cryptocurrency volatility is well documented. In a recent study, Kurihara and 
Fukushima (2018) made use of different univariate GARCH models to analyse Bitcoin volatility. 
Both symmetric and asymmetric GARCH models were considered. The overall conclusion is that 
there is not much difference when symmetric and asymmetric GARCH models are compared, and 
that traders should consider both short and long term volatility when examining Bitcoin prices.

In a similar study, Katsiampa (2017) considered a wide range of univariate GARCH models for 
the modelling of Bitcoin volatility. In this study, the best fitting model was determined using the 
Akaike, Bayesian and Hannan-Quinn information criterion. The empirical results indicate that the 
autoregressive component GARCH model is the best performing model. This highlights the impor
tance of both short and long run volatility components of the conditional variance.

According to Chu et al. (2017), with the exception of Bitcoin, there is limited research focused on 
the GARCH modelling of cryptocurrencies. Chu et al. (2017) considered a range of different GARCH 
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models and error distributions applied to seven different cryptocurrencies. Empirical results indi
cate that the normal distribution is the best performing error distribution, and that the symmetric 
integrated GARCH model is the best fitting model in most cases.

Ardia et al. (2019) tested the value-at-risk forecasting ability of the Markov-switching GARCH 
model when applied to Bitcoin. Ardia et al. (2019) argues that the application of other GARCH type 
models in the presence of regime changes lead to poor risk forecasts. The results indicate that the 
two regime Markov-switching GARCH models are the most reliable when forecasting Bitcoin risk.

According to Madan et al. (2019), the Bitcoin derivatives market is a young, but growing market. Shi 
and Shi (2019) explain that BTC futures were introduced in 2012, this was done to provide investors 
with additional trading tools for BTC. In 2014 more BTC derivatives such as BTC swaps and options 
emerged. Karkkainen (2018) analysed BTC futures using vector autoregressive and vector error 
correction models. The author’s empirical results indicate that futures lead price discovery in the 
BTC market. This is consistent with existing literature of futures-spot market price discovery.

To illustrate how cryptocurrency derivatives can be used, Sebastião and Godinho (2019) inves
tigated the hedging properties of BTC futures. The authors considered an equal and opposite 
hedge, as well as optimal hedge ratios estimated using the ordinary least squares, and dynamic 
conditional correlation GARCH approach. The hedge effectiveness was determined by comparing 
the variance, semivariance, and expected shortfall of the hedged portfolio to the unhedged 
position. Their empirical results show that BTC futures are effective hedge instruments for BTC 
and also other cryptocurrencies.

Madan et al. (2019) made use of option price data collected from various unregulated exchanges 
to construct various Bitcoin volatility surfaces. Furthermore, different Markov models were cali
brated to the volatility surfaces to determine the best performing model. The empirical results 
indicate that the classical Black-Scholes model does not capture the volatility surface well and that 
models including some notion of stochastic volatility perform better. However, the GARCH option 
pricing model was not considered.

In a recent study, Pagnottoni (2020) made use of a neural network approach for the pricing of 
Bitcoin options, where the classical models, namely the trinomial tree model, Monte Carlo simula
tion, and finite difference methods were used as input layers. The empirical results show that 
Bitcoin option prices are overpriced when classical methods are considered, and that the use of the 
neural network model significantly improves pricing performance.

Hou et al. (2019) mentioned that research based on cryptocurrency derivatives is limited despite its 
necessity, and that cryptocurrency derivatives trading on unregulated exchanges have recently 
increased significantly. Hou et al. (2019) proposed a stochastic volatility model with correlated jumps. 
The empirical results indicate that the pricing mechanism underscores the importance of jumps in the 
cryptocurrency derivative markets. The theoretical framework is considered in the next section.

3. Theoretical framework
Duan (1995) assumes the following regarding the dynamics of the underlying asset under the real 
world measure P, 

ln
Xt

Xt� 1
¼ r þ λ

ffiffiffiffiffi
ht

p
�

1
2

ht þ �t;

where Xt is the value of the underlying asset (Bitcoin or CRIX) at time t; r is the continuously 
compounded risk-free rate (because BTC and CRIX are expressed in USD, the United States three- 
month treasury bill rate is used as a proxy for the risk-free rate, consistent with Hao & Zhang, 
2013), λ is the unit risk premium, the conditional variance ht is driven by some GARCH process and 
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the error term �tjΩt,Nð0;htÞ; and Ωt is the information set available at time t. The assumption of 
a normal distribution is appropriate based on the findings by Chu et al. (2017).

In this paper, two driving GARCH processes are considered, the GARCH(1,1) and the Glosten, 
Jagannathan, and Runkle (GJR) GARCH(1,1). The former is a symmetric model, which implies that 
positive and negative shocks have the same effect on volatility, the latter takes asymmetry into 
account. According to Hansen and Lunde (2005), the GARCH(1,1) is highly robust and it is challen
ging to find a different GARCH model that produces consistent outperformance. Therefore, the 
GARCH(1,1) model is used as a benchmark in this study. Furthermore, Peng et al. (2018) compared 
different univariate GARCH models when applied to exchange rate and cryptocurrency volatility 
forecasting. Their results indicate that the GJR-GARCH(1,1) is the best performing model. Therefore, 
the asymmetric GJR-GARCH(1,1) model is included in this study.

According to Alexander (2008), the symmetric GARCH(1,1) model takes the following form under 
the real world measure P: 

ht ¼ α1 þ α2�
2
t� 1 þ β1ht� 1: (1) 

Furthermore, the real world GJR-GARCH dynamics are given by: 

ht ¼ α1 þ α2�
2
t� 1 þ β1ht� 1 þ θI �t� 1<0f g�

2
t� 1; (2) 

where the indicator function I �t� 1<0f g takes a value of one when shocks are negative, and zero 
otherwise. Under the risk-neutral measure Q ; Hao and Zhang (2013) show that the log-return 
dynamics are as follows: 

ln
Xt

Xt� 1
¼ r �

1
2

ht þ εt; (3) 

where εtjΩt,Nð0;htÞ. Under the measure Q ; the GARCH dynamics in Equations (1) and (2) take the 
following form, respectively: 

ht ¼ α1 þ α2ðεt� 1 � λ
ffiffiffiffiffi
ht

p
Þ

2
þ β1ht� 1; (4) 

and 

ht ¼ α1 þ α2ðεt� 1 � λ
ffiffiffiffiffi
ht

p
Þ

2 α2 þ θI
εt� 1 � λ

ffiffiffiffiffiffiffi
ht� 1
p

<0
� �

� �

þ β1ht� 1: (5) 

Conventional wisdom amongst quantitative finance researchers is that the price of an option is 
equal to the expectation of the discounted payoff under the risk neutral measure (Wilmott, 2007). 
In this paper, Monte Carlo simulation (given estimated parameters, and by making use of 
Equations (3)–(5)) is used to approximate the discounted payoff of vanilla options with various 
different strike prices and maturities. Given the price of an option (obtained using the relevant 
GARCH option pricing model), the implied volatility is easily obtained by inverting the Black-Scholes 
formula.

The pricing performance of the GARCH option pricing model is tested by comparing prices 
obtained using the GARCH option pricing model to BTC market option prices and the Heston 
stochastic volatility model (based on the work by Madan et al., 2019). The application of the 
Heston stochastic volatility mode is an existing method for pricing BTC derivatives. According to 
Glasserman (2013), the risk-neutral asset price and volatility dynamics in the Heston framework 
are given by, 

dXt ¼ rXtdtþ
ffiffiffiffiffi
Vt

p
XtdWð1Þt ;
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where κ is the variance mean reversion speed, γ is the long-run mean of the variance, σ is the 
volatility of the variance, and ρ is the correlation between the variance and the asset price. 
A closed form solution does exist for European put and call options, therefore the model is 
generally calibrated to market option prices (or implied volatility). The data and estimation of 
GARCH model parameters are discussed in the next section.

4. Data and estimation
In this paper, the GARCH option pricing model is applied to Bitcoin and CRIX. The GARCH models are 
calibrated to historical data. The Bitcoin and US treasury bill historical data were obtained from the 
Thomson Reuters Datastream databank. The CRIX historical dataset was obtained from thecrix.de. 
The weighting scheme of the CRIX is outlined in Trimborn and Härdle (2018). Daily data from the 1st of 
January 2016 to the 3rd of January 2020 for all variables were used for the estimation of parameters.

The descriptive statistics of Bitcoin (BTC) and CRIX log-returns are reported in Table 1 below:

The results indicate that the means of the log-returns for both BTC and CRIX are close to zero. 
Moreover, both series indicate evidence of fat tails, this is consistent with the stylised facts of 
financial returns (Cont, 2001). The Jarque-Bera test statistics indicate that both series are not 
normally distributed. Finally, when the two series are compared, the means and standard devia
tions are similar, this is in line with expectations because the weighting of BTC is high when 
calculating CRIX (Trimborn & Härdle, 2018).

The GARCH model parameters (α1, α2; β1 and θ) are estimated using the P dynamics and the 
maximum likelihood method. The log-likelihood function for both models is given by: 

ln LL ¼ �
N
2

lnð2πÞ �
1
2

∑
N

t¼1
ln ht þ ln

Xt

Xt� 1
� r � λ

ffiffiffiffiffi
ht

p
þ

1
2

ht

� �2

=ht

 !

;

where N is the number of data points included in the estimation sample. The stationarity and non- 
negativity constraints of the GARCH(1,1) and GJR-GARCH(1,1) models are well documented in the 
literature. The results are considered in the next section.

5. Empirical results
In this section, the implied volatility surfaces of Bitcoin (BTC) and CRIX are considered. The 
importance of asymmetry is illustrated by comparing the implied volatility obtained from the 
symmetric model to the asymmetric model. Furthermore, the pricing performance of the GARCH 

Table 1. Descriptive statistics: Log-returns
BTC CRIX

Mean 0.0027 0.0029

Median 0.0026 0.0032

Maximum 0.2384 0.2203

Minimum −0.2514 −0.2533

Standard Deviation 0.046 0.0461

Skewness 0.0046 −0.3903

Kurtosis 7.1336 7.3798

Jarque-Bera 743.2889 860.9537

Observations 1044 1044
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option pricing is tested by comparing BTC option prices obtained from the GARCH option pricing 
model to market option prices, and prices obtained using the Heston stochastic volatility model.

The GARCH(1,1) and GJR-GARCH(1,1) implied volatility of BTC are plotted below:

It is clear from Figure 1 above that the GARCH(1,1) and GJR-GARCH(1,1) option pricing models 
produce a volatility surface that is consistent with what is generally observed in the market. The 
difference between the two volatility surfaces (GJR-GARCH(1,1) volatility � GARCH(1,1) volatility) 
remains small across different levels of moneyness and maturity. This suggests that asymmetric 
effects are not important when modelling BTC volatility. This is in line with findings by Dyhrberg 
(2016) and Conrad et al. (2018).

Figure 2 illustrates the GARCH(1,1) and GJR-GARCH(1,1) implied volatility surfaces, and the differ
ence between the two surfaces. Very small differences are observed when the two surfaces are 
compared. This implies that CRIX volatility reacts similarly to positive and negative shocks. This is in 
line with the BTC volatility surface; as mentioned previously, this is consistent with expectations.

Figure 1. BTC volatility 
surfaces.

Figure 2. BTC volatility 
surfaces.
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The pricing performance of the GARCH option pricing model applied to cryptocurrencies is 
tested by comparing the model prices to market prices of three-month BTC vanilla call options. 
The market option prices (value date 29 June 2018) were obtained from Madan et al. (2019). As 
shown above, asymmetry is not significant when pricing cryptocurrency options, therefore the 
pricing performance of the GARCH(1,1) model is considered. For this analysis, the GARCH(1,1) 
model is calibrated to log returns from the 1st of January 2016 to the 27 June 2018. The 
market and model prices are plotted below:

As shown in Figure 3 above, the GARCH(1,1) option pricing model provides realistic price 
discovery within the bid-ask prices suggested by the market, and when compared with the 
prices obtained from the Heston model. It is also important to note that the Heston model is 
calibrated to market option prices, while the GARCH model parameters are calibrated to 
historical returns data.

6. Conclusion
In this paper, two different GARCH processes were applied to Bitcoin and CRIX. The first model 
is symmetric and assumes that positive and negative shocks lead to the same effect on 
volatility. The second model takes asymmetric effects into account. By comparing the volatility 
surfaces implied by the two models, it gives an indication of the importance of asymmetric 
effects when pricing options on Bitcoin or CRIX. Furthermore, the pricing performance of the 
GARCH option pricing model applied to Bitcoin was also considered.

The results indicate that asymmetric effects are not significant when pricing options on 
Bitcoin and CRIX, the differences obtained from the two surfaces are insignificant in each 
case. In addition, the prices obtained from the GARCH option pricing model are consistent 
with market Bitcoin option prices (within the bid-ask spread). Hence, the models can also be 
used to inform trading decisions, to determine whether option prices are consistent with what 
is implied by the historical data. Areas for future research include the use of different error 
distributions (which incorporate skewness and kurtosis) and different GARCH processes when 
applied to cryptocurrency option pricing.
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