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A real-time energy management and speed
controller for an electric vehicle powered by a

hybrid energy storage system
Lijun Zhang, Xianming Ye, Xiaohua Xia, Farshad Barzegar

Abstract—A real-time unified speed control and power flow
management system for an electric vehicle (EV) powered by a
battery-supercapacitor hybrid energy storage system (HESS) is
developed following a nonlinear control system technique. In view
of the coupling between energy management and HESS sizing,
a HESS sizing model is developed to optimally determine the
size of HESS to serve an EV using the controller designed. The
objectives of the controller are to track the set speed of the vehicle
with globally exponential stability and to make use of the HESS
wisely to reduce battery stress. The design provides compound
controller by exploiting the physical origins of the vehicles’ power
demand. The controller and HESS sizing system designed are
simulated on a standard urban dynamometer driving schedule
and a recorded actual city driving cycle for a full-size EV to
demonstrate their effectiveness.

Index Terms—Electric vehicles, controller design, energy man-
agement, speed control, hybrid energy storage system.

I. INTRODUCTION

Hybrid and pure electric vehicles (EVs) are being promoted
globally today [1], [2]. Whereas the benefits of EVs are
obvious, the bottleneck for their development is the energy
storage system, which needs to provide power and energy
throughout an EV’s lifetime. For this purpose, supercapac-
itor and battery hybrid energy storage system (HESS) and
its application in EVs have been brought into the sight of
researchers [3]. This type of HESS combines the benefits of
both battery and supercapacitor by using high energy density
of the battery to provide energy support for the vehicle over a
driving mission and high power density of the supercapacitor
to satisfy peak power demands of the vehicle during transients
and regenerative braking [4]. In such a way, the supercapacitor
can protect the battery from fast charging/discharging and
therefore extend the battery lifetime.

The HESS, however, brings about new challenges in four
aspects, namely, topology design, DC-DC converter design,
energy management, and optimal sizing of components. Three
topologies namely passive, semi-passive, and fully active
topologies were proposed and each with specific advantages
and drawbacks discussed in [5]. Pertaining DC-DC converters,
a tri-state bidirectional buck-boost converter was designed in
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[6], and a nonlinear controller for two converters used in fuel
cell/supercapacitor hybrid EVs was proposed in [7], etc.

Energy management of the HESS for the EV’s vibrant
operating conditions is another challenging task, which aims
to effectively split the vehicle power demand between batteries
and supercapacitors for the purposes of reducing energy losses
in the powertrain and alleviating power stress [8]. Energy
management and control systems are usually required to
fulfill this function. In particular, the aim of the power flow
management for the battery-supercapacitor type HESS is to,
taking advantages of the battery’s high energy density and
the supercapacitor’s high power density characteristics, supply
the slow varying power demand of the vehicle by the battery
and the fast varying power demand by the supercapacitor.
Usually, the batteries are referred to as the primary energy
source because it provides the energy required to cover the
driving range of the EV while supercapacitors support the
battery when the vehicle needs high instant power or when
the vehicle is regenerative braking, and are termed as the
secondary energy source [7].

The energy management strategies reported in the litera-
ture can be broadly classified into three categories from a
methodology perspective, namely, heuristic methods, filtration
based methods, and optimization based methods. Heuristic
methods include deterministic rule-based [9], [10] and fuzzy
logic mechanism based [11], [12] ones. Inspired by frequency
separation of the vehicle power demand, low pass filter (LPF)
based energy management strategies are also investigated with
the idea of assigning the low frequency slow varying power
demand to batteries in battery/supercapacitor powered [13],
[14] and battery/fuel cell powered vehicles [15].

The heuristic- and filtration-based methods are conceptually
simple and easy to implement. However, they do not guarantee
the optimal operation of the HESS. The optimization-based
methods try to find the global optimal solution by means of
solving an optimization problem formulated with one or more
objectives [8]. These optimization problems are usually non-
linear and difficult to solve. Therefore, dynamic programming
(DP) is commonly used [16], [17]. This method, however,
suffers from a heavy requirement on computing resources and
long computational time and only works offline. In terms
of real-time applicability, the heuristic- and filtration-based
methods can be implemented online while the optimization
base methods usually require prior knowledge of the driving
cycle and compute an offline solution. In recent studies, [18]
tried to reduce the computational burden of DP by applying
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Pontryagin’s maximum principle but still concluded that the
results are not applicable in real-time.

Using meta-heuristic algorithms such as genetic algorithm
[19], neural networks [20], particle swarm, and simulated
annealing [21] to find sub-optimal solutions of the power split
problem in real-time have also been reported. In particular,
researchers have also tried to either divide the EV energy
management problem into multilevels that deal with energy
and power requirements at different layers to reduce complex-
ity [22], [21] or formulate a simplified optimization problem
and solve it by the Karush-Kuhn-Tucker (KKT) conditions
method considering only battery power smoothing [20], or,
both battery power smoothing and power loss reduction [8].

These results shown very promising results through simula-
tions and experimental validations. One drawback, however, is
that they all managed the power split according to the vehicle’s
power demand, either through measured motor current [11],
[23] or power [12], [21] at the DC bus of the HESS and used
this power information as an input to determine the best power
split. Although vehicle speed was taken as an input in [20], the
presented neural network energy management system requires
extensive training data for an anticipated driving pattern. In
other words, the energy management strategies developed so
far mostly are using power demand of the vehicle calculated
from a given driving cycle offline, or measured power demand
of the vehicle at the DC bus of the HESS in real-time
operation. The sources of the vehicle power demand, such as
power required to accelerate, to overcome rolling resistance,
gravitational drags, are not considered separately and thus their
characteristics are not fully exploited for the purpose of energy
management systems design.

The objective of this study is to design a real-time power
split strategy taking into account different sources of the
vehicle’s power demand. The strategy is designed in such a
way that it not only determines the power split for the HESS
but also fulfills the speed control of the vehicle, and is referred
to as a compound controller.

The advantages and benefits of the controller proposed
are that it 1) provides a real-time energy management and
speed controller of the vehicle based on Lyapunov’s stability
theory; 2) does not require prior knowledge of the vehicle’s
driving schedule; 3) uses physical insights into the vehicle
power demand to facilitate power split in the HESS; 4) the
designed power split has clear physical meanings and is easy
to implement by field engineers without specialized training.

In particular, the battery is used to supply the power
required by the vehicle to overcome resistances and aero-
dynamic drags, which varies gently, and supercapacitors are
used to satisfy fluctuating power demands because of acceler-
ation/deceleration and gravitational resistance.

This unified approach provides better performance by taking
advantage of the EV’s operating conditions and parameters. It
also facilitates a better understanding of the power manage-
ment requirement in EV applications. Moreover, the unified
approach provides speed tracking ability to a set velocity
profile, a feature that was not explored by the vehicle energy
management studies. This added feature contributes positively
towards the future development of self-driving EVs.

In addition, this study presents a HESS sizing strategy
specifically developed for use together with the controller
proposed taking into consideration of battery degradation,
vehicle power demand, and mass of the HESS. In the liter-
ature, optimal HESS sizing is usually achieved by solving an
optimization problem with the objectives including minimizing
weight, cost, and battery degradation of the HESS depending
on the energy management strategy employed. For instance,
[13] presented a combined sizing and energy management
strategy for HESS based on filter-based frequency separa-
tion of the vehicle’s power demand. [9] reported a sizing
method according to a rule-based power split strategy. A
multi-objective sizing strategy taking into account state-of-
health the battery based on a wavelet-transform-based energy
management strategy was also reported in [24]. The sizing
method developed in this study is largely based on the work
presented in [9].

For the controller design purposes, the motion dynamics
of the vehicle is modeled from first principles. The designed
controller is simulated with a full sized EV, running through
the urban dynamometer driving schedule (UDDS) developed
by the US environmental protection agency, which represents
city driving conditions and is often used for light duty vehicle
testing [25], and a recorded actual city driving cycle. The
results obtained are compared to the state-of-the-art real-time
energy management results published in [9] and [8] to show
its benefits.

The remainder of this paper is organized as follows. Section
II presents the mathematical modeling of the EV. Section
III presents the controller design. Section V gives simulation
results and Section VI concludes this study.

II. EV MODELING

A. Motion dynamics

Motion dynamics of the EV running on a track can be
derived from force analysis of the vehicle. From Newton’s
second law, one gets:

mv̇ = ft − fa − fr, (1)

where v in m/s is the vehicle speed. m is the mass of the
vehicle in kg. ft is the traction force provided by the driving
motor in N, fa is the aerodynamic drag and fr consists of
the rolling resistance and resistance caused by gravitational
acceleration in N given by [26]:

fa =
1

2
ρaCdAfv

2,

fr = mgµ cos(α) +mg sin(α),

where ρa is the air density in kg/m3, Cd is the air drag
coefficient and Af is the frontal cross sectional area of the
vehicle in m2, µ is the rolling resistance coefficient, which
depends on factors including road surface conditions, tire
pressure and size, etc. g is the gravitational acceleration in
m/s2 and α is the slope of the road in rad.
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B. Powertrain characteristics

The power required by a vehicle moving at speed v is

pev = ftv = (fa + fr +mv̇)v. (2)

This pev in W must be supplied by the HESS through the
powertrain. With the focus of this paper being developing
an effective controller, detailed modeling of the powertrain
components is not performed. Instead, it is assumed that the
battery, supercapacitor, and power electronic components can
be simplified to have constant energy transmission/conversion
efficiencies. As a result, (3) must be valid at all times in order
to satisfy the power demand of the EV.

pev = ηd (ηbatpbat + ηscpsc) , (3)

where ηd is the combined mechanical transmission efficiency
and the efficiency of the electric motor represented by its
efficiency map shown in Figure 2 (notice that the ηd will be
greater than 1 when pev < 0). ηsc includes the supercapacitor
discharging and DC-DC converter efficiencies when pec > 0,
while it includes the supercapacitor charging and DC-DC con-
verter efficiences otherwise. ηbat is the discharging efficiency
of the battery. pbat and psc are the discharging/charging powers
of the battery and supercapacitor in W, respectively.

III. CONTROLLER DESIGN

A. Control objectives

The controller aims to regulate the speed of the vehicle
and at the same time optimally manage power flows in the
HESS. Therefore, the controller must be capable of tracking
the desired speed of the vehicle while using the hybrid energy
storage system in a way that reduces battery stress.

Therefore, the main objectives of the real-time compound
controller are twofold: 1) speed control: ensuring good speed
track performance of the EV and guaranteeing the global
asymptotic stability of the speed tracking error; and 2) energy
management: relieving battery stress and prolonging battery
life by protecting the battery from abrupt power flows/currents.

B. Nonlinear controller design

A Lyapunov-based nonlinear controller is designed for the
EV because of the nonlinearities involved in the EV dynamics
(1). To achieve the first control objective, tracking of the set
speed vr, the speed tracking error is defined as e = vr − v.

Achieving tight tracking of the set speed entails the regula-
tion of the error e at zero. To this end, the dynamics of e has
to be defined. Calculating the derivative of e leads to

ė = v̇r −
ft − fa − fr

m
. (4)

Combing (2)–(4), one gets

ė = v̇r−
ηd(ηbatpbat + ηscpsc)

mv
+
ρaCdAfv

2

2m
−gµ cosα−g sinα.

(5)
To make e exponentially vanish amounts to enforce

ė = −ke, (6)

where k is a positive design parameter.

Comparing (5) and (6), this study proposes the following
control law:{

pbat = mv
ηdηbat

(
ρaCdAf

2m v2
r + gµ cosα

)
,

psc = mv
ηdηsc

(g sinα+ v̇r) .
(7)

The control law given in (7) is inspired by the physi-
cal operation of the vehicle and the characteristics of the
HESS. To be specific, the vehicle requires a sharp power
increase/decrease when accelerating/decelerating and moving
up/down hills. Knowing that supercapacitors can be used to
handle the sharp power flows to protect the battery, the control
law allows the battery to supply power required by the vehicle
to overcome the aerodynamic drag and rolling resistance,
which vary smoothly, and the supercapacitor to supply power
required for acceleration/deceleration and the gravitational
resistance, which can change abruptly. In addition, the control
law directs all regenerative braking power to the supercapacitor
due to its fast charging capability [3]. The added benefit is that
a semi-active configuration of the HESS can be used to reduce
weight and costs of power converters.

Remark 1: Firstly, the control law (7) is given in terms
of the power flows. In the practical EV control, this can be
translated into currents from the battery and supercapacitor by
dividing their respective voltages. It then follows that the con-
troller designed generates reference battery and supercapacitor
currents, which should be tracked by a lower level DC-DC
converter controllers associated with the HESS. Secondly, the
control law (7) would fail in case v = 0 and vr > 0. In this
case, however, one could replace v in the control law by vr
and the controller will work because v will become nonzero
after one sampling interval.

C. Stability analysis

Proposition 1: Consider the nonlinear closed-loop error
dynamics of the vehicle (5) and the control law given in (7).
The speed tracking error is globally asymptotically stable.

Proof: The error dynamics of the speed tracking can be
derived by substituting (7) into (5), which yields

ė = −ρaCdAf
2m

(vr + v)e.

Because ρaCdAf

2m (vr+v) is strictly positive everywhere except
vr = v = 0, which corresponds to e = 0. It follows that the
error of the tracking vanishes to zero exponentially. Actually,
one can choose a Lyapunov function

V =
1

2
e2,

which is positive definite and radically unbounded. Then

V̇ = −ρaCdAf
2m

(vr + v)e2

is negative definite. Therefore, the error system is globally
exponentially stable.
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IV. OPTIMAL SIZING OF THE HESS

The HESS sizing and energy management or control strat-
egy development are highly coupled processes for EVs. Once
an energy management system is developed, a HESS sizing
method is indispensable to put the energy management system
in action and vice versa. In the following, sizing of the HESS
to work optimally with the controller designed is presented.

In the sizing process, one important target is to make sure
that the battery used in the vehicle can endure a specified
lifespan. In this regards, it is commonly accepted that the
battery capacity loss must be within 20% after ten years of
operation [9]. To take this into account in the sizing process,
a battery degradation model is essential.

A. Battery degradation model

Several battery degradation models have been presented
in the literature [27], [28]. The one that is most suitable
for evaluating capacity loss of lithium-ion EV batteries was
presented and experimentally validated in [28]. This model
takes an exponential form as shown in (8) and is most
commonly used in the EV community.

Qloss = Be−Ea/RTAρh, (8)

where Qloss is the percentage of battery capacity loss, B is
the pre-exponential factor, Ea is the activation energy from
Arrhenius law in J mol−1, Ah is the Ah-throughput, T is
the absolute temperature in K, and R = 8.314 J mol−1K−1

is the gas constant. ρ = 0.5 is the power law factor. The
rest parameters of the capacity loss model were empirically
obtained from a large set of testing data. The Ea is related to
current and can be calculated by

Ea = 31500− 370.3Crate,

where Crate is the current rate. The charge throughput is
calculated by Ah = N × DoD × C, in which N is the
cycle number, DoD is the depth-of-discharge and C is the
full capacity of the battery in Ah.

This model was initially tested under four current rates,
1/2C, 2C, 6C and 10C, and was extended to general scenarios
for current rates below 10C in [9], which resulted in

lnB = ae−λCrate + d = 1.226e−0.2797Crate + 9.263.

However, this model initially was not tested under nonuni-
form current profiles. Shen et al. [9] then extended this model
for such cases and presented a statistical method to determine
capacity loss under nonuniform current profiles using the
following procedure.

Firstly, a histogram of the battery current rates is obtained.
Then the DoD of the battery at each current rate is calculated
as DoD(k), where k denotes the k-th current rate.

Secondly, the battery capacity loss is determined by

Qloss =
∑
k

Q(k),

where Q(k) is determined according to equation (8) by

Q(k) = B(Crate(k))e
−
(

Ea(Crate(k))
RT

)
Ah(DoD(k))ρ.

DC

DC

Vehicle 
drivetrain

Supercapacitor bank Battery bank

Bi-directional 
DC-DC converter

Fig. 1: Diagram of the HESS for sizing purposes

B. HESS sizing model

An optimal sizing model is given here with the objective to
minimize the weight of the HESS while considering the limit
on 20% battery capacity loss over a ten year period.

The HESS sizing is highly dependent on the topology of
the HESS. The formulation given here is for a semi-active
configuration, which suits the designed energy management
system and speed controller. The HESS diagram for which
the sizing problem is developed is shown in Figure 1.

The sizing problem is then formulated as minimizing the
following objective function

f(nssc, n
p
sc, n

s
bat, n

p
bat) = nsscn

p
scm

cell
sc + nsbatn

p
batm

cell
bat , (9)

subject to constraints defined in equations (10)-(17).

0.3nsscv
cell
sc ≥ Vl,min, (10)

nsscv
cell
sc ≤ Vl,max, (11)

Vh,min ≤ nsbatvcellbat ≤ Vh,max, (12)

nsscn
p
scp

cell
sc ≥ pev,sc, (13)

nsscn
p
scp

cell
sc + nsbatn

p
batp

cell
bat ≥ pev,max, (14)

nsscn
p
sce

cell
sc ≥ eev,sc − ereg, (15)

nsbatn
p
bate

cell
bat ≥ eev,bat, (16)
Qloss,10 ≤ 0.2. (17)

In the above formulation, subscripts bat, sc and ev denote
variables associated with battery, supercapacitor and EV, re-
spectively. The superscript cell denotes variables for a cell of
battery or supercapacitor, n denotes number of cells, and p
and e represent power in W and energy in Wh, respectively.
In addition, superscripts s and p denote numbers of cells
connected in series and parallel, respectively (see Figure 1).
Vl,min and Vl,max are the min and max voltages required by
the DC/DC converter at the low voltage side in V. Vh,min and
Vh,max are the lower and upper limits of the voltage at the
high voltage side in V.

The constraints (10)-(12) ensure the proper working con-
ditions for the DC/DC converter is maintained. (13) states
that the power supply of the supercapacitor bank must meet
the maximum power demand of the vehicle allocated to
supercapacitors. (14) makes sure that the total power supply
of the HESS can meet the maximum power demand of the
EV. (15)-(16) ensure that the energy required by the EV is
satisfied by the HESS, where ereg denotes the regenerative
energy. Lastly, (17) limits the battery capacity loss over ten
years to be less than or equal to 20%.
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Fig. 2: Electric motor efficiency map

TABLE I: parameters of battery and supercapacitor cells
Parameter Battery Supercapacitor
Nominal voltage (V) 3.3 2.7
Nominal capacity (Ah) 44 0.75
Rated capacitance (F) – 2000
Internal resistance (mΩ) 3.6 0.35
Energy storage (Wh) 140 2.03
Weight (kg) 0.9 0.36
Max. continuous discharge current (A) 50 120
Max. pulse discharge current (A) 100 1600
discharging/charging efficiency 0.95 0.99

V. SIMULATIONS

Simulation results are presented to demonstrate the effec-
tiveness of the proposed control strategy and HESS sizing
model. In particular, simulations are done for two scenarios
for a full sized EV. The first one is over the UDDS cycle. The
results of this simulation are firstly compared to a benchmark
study [9], which presented a real-time power split and a HESS
sizing strategy. To further compare the results to the latest
real-time power split strategies, the results are also compared
to those obtained in [8] in order to verify the benefits of
the compound controller with respect to the state-of-the-art
literature. The second case is for the same EV driving through
a recorded city route to investigate the influences of an uneven
road and a more dynamic driving style than the UDDS cycle.
Additionally, a simulated acceleration test was done to reveal
the effects of vehicle acceleration on the power flows.

The parameters of the HESS components are given in
Table I and those of the EV are given in Table II. The
voltage limits at the low voltage and high voltage sides of
the DC-DC converter used are Vl,min = 50 V, Vl,max = 430
V, Vh,min = 150 V and Vh,max = 750 V according the
specifications of a Brusa bidirectional DC-DC converter.

The motor efficiency map that is used to determine ηd is
given in Figure 2, in which the speed and torque of the motor
are normalized with respect to their maximum values.

A. The UDDS test

The effectiveness of the designed controller and HESS
sizing model is firstly tested by means of simulations of a
full-sized EV running through the UDDS [25]. The velocity
tracking performance of the EV, together with the power

TABLE II: EV related parameters
Parameter Full size EV
vehicle mass (kg) 1500
vehicle frontal area (m2) 2.35
transmission efficiency 0.98
gravitational acceleration (m/s2) 9.8
air density (kg/m3) 1.02
air drag coefficient 0.3
rolling resistance coefficient 0.01

Fig. 3: UDDS cycle simulation results

profiles of the battery and supercapacitor over one UDDS cycle
are shown in Figure 3.

Assuming the driver of the vehicle accomplishes six UDDS
cycles per day and the maximum power demand of the EV
is pev,max = 80 kW, the corresponding energy and power
requirements for the battery and supercapacitor, i.e., eev,bat,
eev,sc, ereg and pev,sc, in the HESS are determined. These
values are then used to solve the HESS sizing problem by
a genetic algorithm with a population size of 200, which
results in a HESS comprising one string of 57 battery cells
in series and three strings of 73 supercapacitor cells in series
to optimally serve the vehicle.

Figure 3 shows that, as expected, the high-frequency power
demand of the vehicle is supplied by the supercapacitor and
low-frequency power is provided by the battery in the HESS. It
can also be observed that the supercapacitor power in Figure 3
is used to provide/absorb power requirement/generation of the
vehicle when accelerating/decelerating. For example, between
180 and 260 seconds, the vehicle is accelerating, which
required a sharp increase in power supplied by the super-
capacitor bank. After the daily driving mission, the state-of-
charge of the supercapacitor is 61.9%. The UDDS simulation
results following the compound controller presented in this
study and those reported in [9] are compared in Table III.
This table depicts that the control strategy in this study uses
fewer batteries and more supercapacitors. This is because the
majority of the high-frequency power requirement of the EV
is supplied by the supercapacitor pack in the proposed control
method while the heuristic method adopted in [9] allocates a
relatively small fraction of high-frequency power demand to
the supercapacitor bank.

As a result, the HESS sized in this study decreased the
number of battery cells by 62.5% and increased the number
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of supercapacitor cells by 204.2% in comparison to the sizing
result in [9]. The mass and cost of the HESS also reduced
by 20.0% and 2.7%, respectively. The decrease in the cost
of the HESS is not significant at the current market price.
However, the mass reduction of the HESS is noticeable which
contributes to lowering the energy consumption of the EV.
Regarding battery capacity loss, [9] achieved 15.9% over ten
years for 152 battery cells. In comparison, this study achieved
3.4% (a 78.9% decrease) battery capacity loss over the same
time period with noticeably fewer cells.

Although the parameters of the EV, the battery cells, super-
capacitor cells, and the driving cycle used in the simulation
are all the same, it is noticed that the sizing results of this
study and those of [9] are fundamentally different because of
the power management strategies employed. In this study, a
nonlinear control based approach is presented, which resulted
in a larger supercapacitor bank and a smaller battery bank.

In other words, the difference between the sizing results is
mainly because of the control strategy. The large number of
battery cells in the results reported in [9] is optimal for the
heuristic strategy developed therein, while it is almost three
times oversized for the controller designed in this study. The
contrary is true for the supercapacitor sizing results. Taking
advantage of the controller designed in this study, which
protects the battery from abrupt discharges, fewer battery cells
can be used while still satisfying the capacity loss limit over
the lifespan of the EV. The other benefits of the control strategy
and the corresponding HESS are the reduced cost of the HESS
and even prolonged battery life as shown in Table III. To
demonstrate the effectiveness of the proposed method, we
also compared its results to other two categories of methods
reported in the literature, i.e. the LPF method [13], and the DP
optimization based method [29], which are the most popular
methods used for the sizing and energy management of EVs.
It can be seen that the results of the LPF method depends on
the time constant τ (two sets of results are provided in the
table). Nonetheless, the proposed method is able to provide
favorable results.

The results obtained are also compared with those published
in [8], in which the peak, average and average rate of change
(defined by ARC = 1

N

∑N
n=2 |

ib−ib,pre
∆t |, where ib and Ib,pre

are the current and previous battery current, respectively, and
∆t is the sampling interval) of battery current are used to
evaluate the effectiveness of battery power smoothing. With
the same settings, it was found that the peak battery current
resulted by the controller designed is 224 A, slightly less than
rule-based power split strategy (228.1 A) and is higher than
that obtained by the KKT based method (30.7-30.9 A) reported
in [8]. However, the average current achieved by the designed
controller is 5.3 A, much lower than 24.5 A of the rule-based
method and 24.5-24.6 A obtained in [8]. Moreover, the ARC
of battery current resulted by the designed controller is also
comparable with that reported by [8], both achieving about
0.06 A/s in comparison to 7.16 A/s from a rule-based method.
Therefore, the compound controller designed in this study is
able to reduce battery stress more effectively because of the
low average and ARC battery currents.

B. Actual city road test

The UDDS test is however over a flat route. In order to
demonstrate the effectiveness of the designed controller on an
actual uneven city road, a driving cycle recorded is used to
simulate the performance of the control strategy. The speed of
the vehicle and the elevation of the road are recorded along a
city route shown in Figure 4.

The results of the simulation are shown in Figure 5, in
which the subplots (a), (b), (c) and (e) show the speed tracking
of the EV, the power profiles of battery and supercapacitor
banks, the relative elevation of the route, respectively. From
these subplots, it can be seen that the supercapacitor sup-
plies/absorbs the fast-changing power flows of the vehicle
because of acceleration/deceleration and gravitational acceler-
ation. Additionally, subplot (b) depicts that the battery bank is
continuously discharging and the supercapacitor gets charged
during the vehicle’s braking period, which is influenced by
both the vehicle’s speed profile and the slope of the route.

Unlike the UDDS test, this actual city test is over an
uneven road, of which the slope influences the resulting power
profiles. The recorded speed profile of the vehicle is also
noticeably more dynamic than that of the UDDS cycle. To
better understand what is the main cause of the fluctuations
in the EV’s power demand, pev is decomposed into four
components as follows:

pev = paero + pgrav + proll + pacc,

where pareo = fav and pgrav = mgv sin(α) are the power
demands due to aerodynamic drag and gravitational force,
respectively. proll = mgvµ cos(α) and pacc = mv̇v are
the power demands caused by the rolling resistance and the
vehicle’s acceleration/deceleration, respectively.

Because the controller designed in (7) assigns pacc and
pgrav to the supercapacitor bank and proll and paero to the
battery bank, these powers are plotted in the subplots (d) and
(e) together with pbat and psc, respectively. The subplot (d)
of Figure 5 reveals that at slow speed, rolling resistance is the
main cause of the battery power output while the aerodynamic
drag also becomes significant at high speed. From subplot (e)
of Figure 5, it is also clear that the fast fluctuation in the power
profile of the supercapacitor bank is mainly caused by pacc as
a result of the vehicle’s change in speed whereas the slope
of the road does not have significant impact in this aspect. A
zoom-in plot from 600 s to 650 s is provided for a clearer
view of this fact. In addition, the accelerations also contribute
largely to the peak powers of the supercapacitor bank, for
instance around 200 s. Around 650 s, the vehicle experiences
a sharp acceleration while driving on an inclined road, which
results in the highest supercapacitor power over the route. By

Fig. 4: Map of the recorded route
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TABLE III: Results comparisons with existing literature
Parameters Benchmark [9] This study Comparison LPF τ = 10 [13] LPF τ = 1 [13] DP inspired [29]
no. of battery cells 152 57 ↓ 62.5% 58 61 61
no. of supercapacitor cells 72 219 ↑ 204.2% 219 216 216
HESS weight (kg) 162.7 130.1 ↓ 20.0% 131 132.7 132.7
HESS cost (USD) 14578 14181 ↓ 2.7% 14181 14267 14267
Qloss,10 (%) 15.9 3.4 ↓ 78.9% 1.3 5.2 6.3

Fig. 5: Results of an actual city driving cycle

contrast, the vehicle had another fast acceleration around 850
s when it is driving downhill. In this case, the power demand
from the supercapacitor was not as high as that around 650
s because the gravity aided the vehicle’s acceleration. This
suggests that the supercapacitor power is highly affected by
driver behavior and road conditions, especially the former. An
experienced driver who drives the vehicle smoothly will need
less power from supercapacitor than a driver who drives more
aggressively.

Again assuming the driver repeats the recorded cycle six
times a day, the HESS sizing was done. The resulting HESS
requires 57 battery cells and three strings of 73 supercapacitor
cells each, which is the same as the sizing result for the UDDS.
Since this test is done over a slightly shorter distance (6.3 km
in comparison to 7.5 km of the UDDS), the ten-year battery
capacity loss is decreased slightly from 3.4% of the UDDS test
to 3.3%. In this case, the state-of-charge of supercapacitor at
the end of the day is 30%.

TABLE IV: Power fluctuation indicators
Indicators UDDS City test Acc. test 1 Acc. test 2

std( dpsc
dt

) 1.13 5.59 0.88 0.52
std( dpbat

dt
) 0.07 0.13 0.08 0.06

std(psc) 2.38 6.87 3.54 2.77
std(pbat) 0.87 1.32 1.82 1.58

C. Effectiveness of energy management

Figs. 3 and 5 show that the battery power is smoothened
effectively by the supercapacitor for both the UDDS test and
an actual road test. Besides, the HESS sizing model presented
in Section IV selects optimal components for the HESS.

To quantify the effect of smoothing battery power profile by
the designed strategy, the standard deviation of the battery and
supercapacitor power flows, std(pbat) and std(psc), are used
to describe the magnitude fluctuation in these power flows
and the standard deviation of the rate of changes of these two
powers, std(dpbat

dt ) and std(dpbat

dt ) are used to capture their
variation over time. These indicators are given in Table IV,
which demonstrates that both magnitude change and variation
over time of battery power is significantly slower than those
of the supercapacitor power with the designed controller.

The last two columns in Table IV are provided to demon-
strate the effect of vehicle acceleration on the power flows.
In particular, two simulations (Acc. test 1 and Acc. test 2)
were carried out. In the first one, the vehicle accelerates from
standstill with a = 0.3 m/s2 to 60 km/h, then decelerates at
a = −0.3 m/s2 to standstill. In Acc. test 2, the acceleration
was increased to 0.5/− 0.5 m/s2. When comparing Acc. test
2 to Acc. test 1, the variation of supercapacitor power is
significant while that of the battery is not. Sensitivity of the
defined performance indicators with respect to the acceleration
change, ∆std( dpsc

dt )

∆a = 3.85 and ∆std(psc)
∆a = 1.78 while these

values for battery power are 1.19 and 0.09, respectively.

D. Closed-loop speed tracking performance

To validate the effectiveness of the speed controller to
fulfill the second design objective stated in Section III, it is
tested under measurement noises and modeling uncertainties.
In particular, the controller requires feedback measurement of
the vehicle’s velocity and the slope of the road. Although, the
speed of the vehicle can be measured with high accuracy [30]
and the road slope can also be measured with an error band
of less than 2% in real-time [31], these inevitably bring in
inaccuracies. Additionally, the vehicle model is also limited
by its accuracy due to some unmodeled dynamics, such as
the simplifications of the rolling resistance model because
of neglected time varying road surface and tire conditions.
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Therefore, the robustness of the speed controller designed
against these possible disturbances is investigated.

Considering the worst case with a random 5% measurement
noise in the road slope together with a 5% error in the speed
measurement due to the combined effect of measurement noise
and modeling inaccuracy, simulations are done for the UDDS
cycle and the recorded city road driving cycle. 20 runs are
carried out for each of these cycles and the worst speed
tracking results for each of them are analyzed. It is found
that the maximum average speed tracking error is around
0.03 m/s (0.11 km/h). Thus, the controller is able to track the
set speed of the vehicle with a negligible error in the presence
of measurement noises and modeling uncertainties.

VI. CONCLUSION

A real-time compound controller is designed for the energy
management and speed control of electric vehicles powered
by a battery/supercapacitor hybrid energy storage system.
The controller is able to smooth battery power effectively
to prolong its lifetime for energy management, and is theo-
retically proved to be globally stable for speed control with
feedback measurements on vehicle speed and road slope.
Simulation results obtained from a simulated UDDS cycle
and a recorded city test cycle show that it achieves less
battery power fluctuation when compared to two existing
studies and is able to follow the desired speed profile of
the vehicle with minimum deviation when measurement noise
and modeling uncertainties are taken into account. A sizing
model is also presented to determine the numbers of battery
and supercapacitor cells required to power the vehicle. The
controller designed is for urban driving conditions, in future,
an extension of the results for application in mountainous areas
will be investigated by tackling the difficulties associated with
road slope measurement and supercapacitor over-sizing due to
consecutive up- or down-hills.
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