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Abstract. The advent of digitalization exposes enterprises to an ongo-ing 
transformation with the challenge to quickly capture relevant aspects of changes. This 
brings the demand to create or adapt domain-specific modeling languages (DSMLs) 
efficiently and in a timely manner, which, on the contrary, is a complex and time-
consuming engineering task. This is not just due to the required high expertise in both 
knowledge engineering and targeted domain. It is also due to the sequential approach 
that still characterizes the accommodation of new requirements in modeling language 
engineering. In this paper we present a DSML adaptation approach where agility is 
fostered by merging engineering phases in a single modeling environment. This is 
supported by ontology concepts, which are tightly coupled with DSML constructs. 
Hence, a modeling environment is being developed that enables a modeling language to 
be adapted on-the-fly. An initial set of operators is presented for the rapid and efficient 
adaptation of both syntax and semantics of modeling languages. The approach allows 
modeling languages to be quickly released for usage.

Keywords: Agile modeling environment 
Domain-specific adaptation
Enterprise modeling language engineering 
Ontology-aided modeling environment Domain-
specific modeling language

1 Introduction

With the advent of digitalization, model-driven approaches are receiving more
attention in Enterprise Modeling [1]. Enterprises are exposed to an ongoing
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transformation with the challenge to quickly and efficiently capture relevant
aspects of changes. Burlton et al. [2], in their Business Agility Manifesto argue
that it is not sufficient to overcome this challenge with a faster software devel-
opment - “once operational, such software is likely to prove difficult to con-
tinuously and rapidly change without unintended consequences”. The current
Knowledge Age has shifted the purpose of modeling from software development
to the creation of knowledge bases through models. Hence, models are becoming
more and more means of representing relevant knowledge about business mod-
els, business processes, organization structure or resources, which can be used
for automation and operations. These models have the ultimate objective to
support decision makers. For instance, Enterprise Architecture models support
decision makers in business transformation [3]. Models are built using modeling
languages, which in turns should enable accommodating evolving requirements,
ideally in a way that can be easily understood by experts and stakeholders within
a targeted domain. However, existing modeling languages might not be expres-
sive and concise enough to address a specific application domain and therefore
may need to be adapted, i.e. extend modeling constructs (i.e. concepts and/or
relations), remove unnecessary ones, integrating constructs from different lan-
guages or assigning predefined value types as well as concrete values. In this
context model-driven domain-specific modeling language adaptation is still a
time consuming and complex engineering effort. Namely, it requires numerous
iterative phases until a modeling language is rolled out. Some (or all) phases
most of the times are still performed sequentially, recalling the rigid waterfall
methodology of software engineering. In particular, a modeling language can
be validated only after it is implemented and, in turn, the latter starts after
the design phase has taken place. That means, some modeling requirements
conceptualized in early phases may become outdated while validating the mod-
eling language in the final phases. Although some agile modeling engineering
approaches were introduced to allow intertwining phases (e.g. in [1]), a modeling
requirement still needs to go through all the engineering phases sequentially in
order to be solidly embedded in the modeling language. Additionally, the com-
plexity of domain-specific adaptation goes at the expenses of the duration of the
engineering phases. This complexity mainly resides on the lack of development
support, i.e. scarce availability of guidelines and best practices [4] as well as
the required domain expertise that the knowledge engineer (i.e. developer of the
modeling language) should have but rarely has [5].

This engineering effort reclaims supportive modeling approaches that fos-
ters agility along the engineering life-cycle. In contribution to that, this work
proposes an agile and ontology-aided modeling environment for domain-specific
modeling language adaptation, which enables knowledge engineers accommodat-
ing new requirements in a timely and efficient manner. The rest of the paper
is structured as follows: Sect. 2 presents the theoretical background supporting
the derivation of requirements for an agile modeling environment allowing for
domain-specific modeling adaptation. Next, Sect. 3 presents the main idea of
the modeling environment and motivates the adoption of ontologies as means to

2



support agility. This section also address the previously derived requirements,
and the first set of operators for the domain-specific adaptation is introduced.
Finally, Sect. 4 presents the validation of our approach (1) by developing a mod-
eling environment that meets the requirements discussed in the previous section
and (2) by implementing the introduced operators on our modeling environment,
which are in turn validated in a research project use case.

2 Background

Domain-Specific Adaptation: With the need to address particular applica-
tion domains, existing modeling languages might not be expressive and concise
enough to be adopted. This can lead to the need of adapting existing mod-
eling languages through a domain-specific conceptualization [6,7]. In result, a
domain-specific modeling language (DSML) [8,9] is created. Conversely to a
general-purpose modeling language (GPML), concepts of a DSML are tailored
to a specific domain and are represented by graphical notations familiar to the
user of the models. Hence, complexity shifts from the model (i.e. level one) to the
meta-model (i.e. level two) to ease the design and understanding of models by
domain experts or modelers. Additionally, DSMLs foster the creation of uniform
models, and thus support producing quality models. Developing a DSML can be
done from scratch or through domain-specific adaptation of existing modeling
languages. The latter approach provides the benefit of considering established
experience and lessons learned from existing modeling languages or notations.
This in turn fosters the reusability (total or partial) of the modeling constructs
within the modeling community or across projects. The domain-specific adap-
tation includes the possibility of (a) introducing new modeling constructs, (b)
removing, modifying, replacing existing ones, or borrowing constructs from other
application domains and provided with a new semantics. (c) integrating model-
ing constructs that belong to different modeling languages. In [1], these actions
are defined as extensibility, adaptability and integrity, respectively.

Benefits of a domain-specific adaptation come, however, at the expenses of a
higher engineering effort for the knowledge engineer, who has to embed domain
aspects in the modeling language. Namely, she/he is demanded to understand
both (1) the semantics of the modeling language(s) to adapt and (2) the domain
knowledge that needs to be covered by the adapted language. This requires a
significant experience in modeling and numerous meetings with domain experts
[10] to gain domain knowledge. A further complexity lies in (3) expressing the
modeling language on right level of abstraction, which leads to complex trade-off
decisions between productivity and re-usability of modeling elements [5].

Providing support to the knowledge engineer to perform a domain-specific
modeling language adaptation is the first requirement of our modeling environ-
ment (Requirement(1)).

Meta-Modeling as Means for Domain-Specific Adaptation: In model-
driven approaches, the way DSMLs are defined is often rooted to the meta-
modeling hierarchy [11]. Meta-modeling is a model-driven technique adopted to

3



ease the development of a modeling language and, thus applicable for DSMLs
too. It is a common practice to specify a modeling language in Level two
(see Fig. 1). For example, standard modeling languages like ArchiMate, BPMN,
CMMN, DMN are typically modeled as UML class diagrams in Level two. Thus,
Level two (L2) contains the meta-model, which defines the modeling language
to create models in Level one (L1) (see the two levels in Fig. 1).

Fig. 1. Meta-model in level two (L2) and Model in level one (L1) [12]

A modeling language comprises abstract syntax, notation and semantics [13].
Abstract syntax corresponds to the class hierarchy of modeling constructs, which
consist of modeling elements and properties (i.e. relations and attributes). Mod-
eling constructs are typically expressed through notations (e.g. graphical or tex-
tual), also known as concrete syntax, which should be cognitively adequate to
ensure user’s understanding of models [12]. The semantics reflects the meaning of
the syntactic elements of a modeling language. It can be divided into structural
and behavioral semantics. While structural semantics reverts to the meaning of
the class-instance representation, the behavioral one relates to model execution.
In this paper we use the term semantics to refer to the structural semantics
only. This can be expressed formally (i.e. through mathematics or ontologies)
or informally (i.e. through natural language). The abstract syntax of a language
is commonly mapped to domain semantics concepts. Constraints (or rules) over
the modeling constructs are needed, for example to specify cardinality restric-
tions or to express that two classes are disjoint. The modeling environment has to
embrace a model-driven approach to perform domain-specific modeling language
adaptation (Requirement(2)).

Agility on the DSML Engineering Process: Developing a modeling lan-
guage is an engineering task (see [14]), so it is the domain-specific modeling
language adaptation. In modeling method engineering (which includes modeling
languages) the OMiLab Lifecycle [15] defines the cycle of five phases: create,
design, formalize, develop and deploy/validate (see Fig. 2). In general terms,
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the engineering process that embraces the meta-modeling technique follows the
iterative phases (a) conceptualizing the meta-model, (b) implementing it in a
meta-modeling tool (e.g. ADOxx1 or MetaEdit+2), and finally (c) validating
the modeling language. The latter generates feedback, and determine language
amendments. Obviously, the modeling language can be evaluated only after its
meta-model is implemented. Hence, abstract syntax, constraints and graphical
notations should be conceptualized, implemented and then used for evaluation
purposes. This engineering process can be characterized by a sequential design
approach, which resembles the waterfall-style approach of software development,
where previous phases have to be accomplished before moving forward. To avoid
this, the AMME framework [1] was introduced as an agile management approach
that follows agile principles to engineer modeling methods. The OMiLab Lifecy-
cle instantiated AMME by introducing feedback channels along the five phases
(see black arrows in Fig. 2) with the objective to support the engineering process
during the propagation and evolution of modeling requirements [16]. In result,
various modeling languages were created following this agile modeling method
engineering, e.g. [7,17].

Fig. 2. The OMiLab lifecycle for modeling method engineering [16]

Although this approach allows intertwining most of the phases (e.g. create-
design, design-formalize and design-develop) from the point of time a new
requirement is accommodated until it is validated it has to go through all or
most of the phases in a subsequent manner. For instance, if a new requirement
arises while validating the modeling language, it needs to be captured and repre-
sented in the form of modeling requirement in the creation phase. Next, the latter
is designed such that it fits other modeling constructs. At some point it might be
formalized, then it is embedded in the prototype during the development phase
and finally the modeling language is ready to be validated again. This sequential
approach become problematic with the long duration of each engineering phase
as the longer it takes the higher the risk to have outdated requirements. This risk
can be avoided by eliminating as much as possible sequential phases in the case
when new requirements arise. Hence, the modeling environment should foster
1 https://www.adoxx.org/live/home.
2 http://www.metacase.com/products.html.
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agility by enabling the knowledge engineer to accommodate new requirements
by avoiding as much as possible sequential phases (Requirement(3)).

Accommodation of Evolving Requirements: A DSML is subject to evolve
over time. This is due to new modeling requirements or result from a better
understanding of the domain [18]. Therefore, the knowledge engineer is con-
tinuously demanded to adapt the meta-model. Moreover, amendments of the
meta-model are continuously required due to pitfalls related to inappropriate
constraints, abstraction issues, or ambiguity of modeling elements. Also, deci-
sions on whether to promote productivity rather than reusability of the modeling
language [19] are subject to continuous changes. The more specific the concepts
are (i.e. higher specificity level of the modeling language and thus higher produc-
tivity), the lower the possibility to reuse the modeling language across domains
or even in different areas, processes or projects of the same domain. Within
this context, it becomes even more relevant to support the knowledge engi-
neer with a modeling environment that quickly allows accommodating modeling
requirements, ideally on-the-fly. Modeling tools like Visual Paradigm3 address
this challenge by implementing the UML mechanisms stereotype and tagged val-
ues. Hence, the user is enabled on-the-fly to customize modeling constructs.
However, adapting a modeling language may lead to a change in the semantics.
For instance, specializing an existing modeling construct requires a new inter-
pretation of the new inserted modeling construct. The same applies when editing
an existing modeling construct or adding a new one. The new interpretation has
to be specified as the semantics of the modeling construct to avoid ambiguous
interpretation and non-sense constructs. It is also important that the adaptation
of the modeling language does not lead to side effects. For example, adding or
removing modeling constructs should not lead to unwanted results or consis-
tency issues. The modeling environment should foster both agility and model
quality by enabling the knowledge engineer to accommodate new requirements
on-the-fly and efficiently (Requirement(4)).

3 The Agile and Ontology-Aided Modeling Environment

Merging Engineering Phases in a Single Integrated Modeling Environ-
ment: Different engineering phases can address different expertise. For instance,
while conceptualization and implementation are tasks of knowledge engineers,
validation often requires the involvement of modelers. This often leads to the
adoption of different tools: one for the development of a DSML (occurring in
Level 2) and one for using and validating the language and thus creating models
(occurring in Level 1). The adoption of two separate tools reflects per se an imple-
mentation of the sequential engineering process introduced in Sect. 2. In order to
foster agility by avoiding sequential phases (see Requirement(3)), we propose a
single environment which integrates Level one with Level two. This implies that

3 https://www.visual-paradigm.com/.
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the different engineering phases are being merged in the same environment and
performed in parallel. The integrated environment places knowledge engineers
and modelers in the center of our approach (Fig. 3) by creating conditions for the
two roles to provide feedback to each other in a timely manner. Requirement(1)
and Requirement(2) are full-filled as domain-specific modeling language adapta-
tion is allowed within model-driven context. Section 4 shows how the domain-
specific adaptation takes place in the modeling environment. Performing the
engineering phases in parallel means that while the knowledge engineer adapts
modeling languages, the implementation and validation can occur at the same
time. For this, a formalization of the knowledge that results from all changes
that occur in the modeling language is required. Hence, the formalization has
the purpose to automate the execution of engineering phases in parallel. For
instance, assuming a new modeling element is inserted (see “Acute Hospital”
concept in Fig. 3), its formalization and validation should occur automatically.
According to Bork and Fill in [4] a formal specification is necessary to pro-
vide unambiguous understanding of models and to foster the interoperability
between different computer systems. The same can be applied to modeling lan-
guages with the advantage that a formal specification of a modeling language
can be automatically propagated on models. A well-known approach to formally
define semantics of modeling languages and models is by means of the semantic
lifting [20]. Modeling elements and their instances are associated with ontology
concepts, which are represented in logic-based languages [17,21]. The problem of
this approach, however, is to ensure consistency between the modeling language
and related ontology concepts. If a change occurs in the language or any of the
models, the ontology should be adapted accordingly. To avoid this problem the
modeling environment is fully ontology-based. Namely, modeling constructs are
formally defined through ontology concepts and tightly coupled with the respec-
tive graphical notations, which avoids the consistency problems caused by the
semantic lifting. Knowledge engineers and modelers can rely on customizable
graphical notations for increasing clarity of models. Having a modeling language
that is ontology-based allows to build ontology-based models. Hence, both mod-
eling languages and models can then be used for reasoning services (like in [22]).
This fulfills Requirement(4) as new requirements can be accommodated on-the-
fly and efficiently.

This approach builds on the semantic meta-model idea introduced in [12].
We take a step forward by distinguishing between the Domain Ontology and the
Language Ontology.

Domain Ontology: The Domain Ontology refers to what Atkinson [23] calls
the Ontological meta-modeling View. The Domain Ontology contains classes,
properties and instances that describe a domain of discourse. For example, in
the health domain there are concepts like patient, disease, physician or hos-
pital, which are structured in a class hierarchy (see right-hand side of Fig. 3).
The domain ontology can be contain standards to represent domain knowledge
like the International Classification of Functioning, Disability and Health (ICF)
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Fig. 3. Conceptualization of the Agile and Ontology-aided Modeling Environment

ontology4. Concepts in the Domain Ontology represent the semantics of lan-
guage constructs, which intends to be independent from a particular modeling
language. For instance, the semantics of a modeling construct like “Gateway”
from BPMN can be the same as the “Sentry” from CMMN, i.e. both can express
the same condition. For this, concepts of the Domain Ontology are mapped to
modeling constructs that reside in the Language Ontology.

Language Ontology: The Language Ontology refers to what Atkinson
[23] calls the Linguistic meta-modeling View. The Language Ontology contains
classes, properties and instances that describe the syntax elements of a modeling
language, i.e. modeling elements and modeling relations with respective taxon-
omy, object properties can occur between the modeling elements and modeling
relations (e.g. for the specification of source and target from a modeling rela-
tion to a modeling element). Each modeling element and relation is linked to a
graphical notation through a data type property (i.e. attribute). Instances can
represent types of modeling constructs, e.g. see task types like user task, service
task etc. in [24]. The Language Ontology can contain one or more modeling
languages, which are separate from each other or integrated [25]. The Language
Ontology supports the adaptation of the modeling language (see vertical arrow
of Fig. 3). In the modeling environment, new modeling elements can be added for

4 https://bioportal.bioontology.org/ontologies/ICF.
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existing domain concepts. As an example, we assume that the palette contains
already the modeling elements of the Organizational Model. From the palette
(see step (a) in Fig. 3), the knowledge engineer can specialize the concept organi-
zational unit to an acute hospital concept (see step (b) in Fig. 3). If this concept
is not yet defined in the Domain Ontology, it is added there as a specialization
of the concept hospital (see step (c) in Fig. 3).

Operators for Adapting a Modeling Language: The adaptation of a
modeling language can be done by applying a set of operators on the Lan-
guage Ontology. In order to determine an initial set of operators, we build on
lessons learned from the work of recent research projects, Patient-Radar [6,26]
and CloudSocket5 [27,28]. Thus, the following set of operators were derived to
be performed on the Language Ontology, which implies a theoretical founda-
tion based on ontology formalism. Operator 1. Create sub-class: It is applied
on modeling elements and modeling relations to create new modeling elements
and new modeling relations. This operator is also applied to integrate model-
ing elements (classes) from different modeling languages. Operator 2. Delete
sub-class: It is applied on modeling elements and modeling relations to remove
unneeded modeling elements and modeling relations from the modeling language.
Operator 3. Create relation: It connects modeling elements and modeling
relations to the related Domain Ontology concept. Operator 4. Update rela-
tion: It is applied on modeling relations as it allows updating existing connec-
tions between modeling elements/relations and the related Domain Ontology
concepts. Operator 5. Delete relation: It allows deleting existing connections
between modeling elements/relations and the related Domain Ontology concepts.
Operator 6. Create attribute: It allows adding new attributes to modeling ele-
ments and modeling relations. Operator 7. Update attribute: It allows updat-
ing existing attributes. Operator 8. Delete attribute: It allows deleting exist-
ing attributes. Operator 9. Assign attribute type: It allows assigning value
types String, Integer, Boolean to attributes of modeling elements. Operator 10.
Update attribute types: It allows updating types that are assigned to attributes
of modeling elements.

4 Validation

The validation took place (a) by developing the modeling environment such that
the four requirements introduced in Sect. 2 were met as discussed in Sect. 3 and
(b) by implementing the derived list of operators on the modeling environment.
The operators were also validated by applying them on a use case of the Patient-
Radar research project. The BPMN modeling language was adapted on-the-fly
with modeling elements from the patient transferal domain [6]. Figure 4 shows
the screen-shot of Operators 1 and 2 as illustration. Namely, a subclass of the
User Task is created by right-clicking on the User Tasks element in the palette.

5 https://site.cloudsocket.eu/.
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The pop-up window in screen-shot number 2 allows the user to (a) assign a
name to the new element, (b) specify whether the graphical notation element
must be shown in the palette, (c) assign the image for the graphical appearance
and (d) map the element to its semantics in the Domain Ontology. The new
element is then stored in the Language Ontology as a new class. The screen-
shot number 3 of Fig. 4 shows the hierarchy of the modeling elements. The new
added element “Prepare KoGu” is shown in the last tier as a sub-concept of
“User Task”. Operators from 3 to 8: By right-clicking on an element in the
palette, a context menu is shown, which enables the user to edit the element. A
pop-up window provides the possibility to add, modify or delete a relation or an
attribute. Operators 9 and 10: By right-clicking on an element in the palette,
the user can select “create new property”. For a new data type property the user
is able to assign attribute types as well as assigning predefined values.

Fig. 4. Operators 1 and 2

5 Conclusion

In this paper the first set of requirements for an agile modeling environment
was derived. This emerged from the need to rapidly and efficiently create and
adapt domain-specific modeling languages in the context of Enterprise Model-
ing. Hence, we addressed the main hinder: the subsequent modeling language
engineering phases, which prevents a domain-specific modeling language to be
quickly rolled out. The new approach allows to perform engineering phases such
as conceptualization, implementation and validation all at once in a single mod-
eling environment. The latter integrates Level two and Level one, where the
meta-model and model are created, respectively. Thus, the knowledge engineer
is enabled to adapt the meta-model and create models from the same modeling
environment. The grounding of modeling contructs with ontology concepts sup-
ports the agile approach (i.e. on-the-fly accommodation of new requirements)
by ensuring that operations on the modeling language are reflected in the Lan-
guage Ontology. A first set of operators to apply on the Language Ontology
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was derived. This allowed the quick propagation of a modeling requirements:
from its implementation, to its formal representation, which makes it ready to
be validated by applying reasoning services on the Language Ontology. The
formalism of the ontology also removes ambiguity on the meaning of language
constructs. These benefits are propagated to the models which are built with the
formally grounded modeling language. A distinction between Language Ontol-
ogy and Domain Ontology was also introduced. While the Language Ontology
is strictly related to the structure of modeling languages, the Domain Ontology
contains the (language-independent) semantics of language constructs. Hence,
the Domain Ontology is highly portable as it can be mapped to various modeling
languages. The approach was validated by developing the modeling environment
with respect to the discussed requirements. Additionally, the set of operators was
implemented on the modeling environment and validated in a project’s use case.
Future work goes towards the improvement of our prototype, which comprises
an extension of set of operators as well as applying reasoning services such as
consistency checking on both Language and Domain Ontology.
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