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Abstract

Semiclassical orthogonal polynomials are polynomials orthogonal with respect to semi-

classical weights. The fascinating link between semiclassical orthogonal polynomials

and discrete integrable equations can be traced back to the work of Shohat and Freud

and later by Bonan and Nevai; orthogonal polynomials with Freud-type exponential

weights have three-term recurrence coefficients that satisfy nonlinear second order dif-

ference equations. Fokas, Its and Kitaev identified these equations as discrete Painlevé

equations.

Magnus related the recurrence coefficients of orthogonal polynomials with respect to

the Freud weight and classical solutions of the fourth Painlevé equation. We extend

Magnus’s results for Freud weight, by considering polynomials orthogonal with respect

to a generalized Freud weight, by studying the theory of Painlevé equations. These

generalized Freud polynomials arise from a symmetrization of semiclassical Laguerre

polynomials.

We prove that the coefficients in the three-term recurrence relation associated with a

generalized Freud weight can be expressed in terms of Wronskians of parabolic cylinder

functions that appear in the description of special function solutions of the fourth
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Painlevé equation. This closed form expression for the recurrence coefficients allows

the investigation of certain properties of the generalized Freud polynomials.

We obtain an explicit formulation for the generalized Freud polynomials in terms of the

recurrence coefficients, investigate the higher order moments, as well as the Pearson

equation satisfied by the generalized Freud weight. We also derive a second-order

linear ordinary differential equation and a differential-difference equation satisfied by

the generalized Freud polynomials and we use the differential equation to study some

properties of the zeros of generalized Freud polynomials.

Furthermore, we obtain limit relations for the recurrence coefficients of the generalized

Freud polynomials using Freud’s Kunstgriff method. We verify the existence of an

asymptotic series for the recurrence coefficient using an extension of the result by Bleher

and Its [17] and we provide an asymptotic expansion for the recurrence coefficients of

the three-term recurrence relation satisfied by monic generalized Freud polynomials.

Key words: Orthogonal polynomials on the real line, classical, semiclassical, three-

term recurrence relation, moments, recurrence coefficients, symmetric, symmetriza-

tion, quadratic transformation, semiclassical, Painlevé equations, semiclassical La-

guerre polynomials, generalized Freud polynomials, nonlinear difference, asymptotic

series, differential-difference, differential equations, zeros
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Nomenclature

L2(dα;R) The linear space of square integrable functions with respect to dα

Pn The vector space of polynomials in one variable of degree at most n

Pn Monic orthogonal polynomials in one variable

pn Orthonormal polynomials in one variable

α The Borel measure

µj(α) The jth- moment associated with the measure α

∆n The Hankel determinant

δmn The Kronecker delta

αn, βn The recurrence coefficients for monic orthogonal polynomials

an, bn The recurrence coefficients for orthonormal polynomials

f
′
(x) The derivative for f with respect to the independent variable x

∂f(x; t)

∂t
= ft The partial derivative of f with respect to t.

D The differential operator

f (k)(x) The kth-derivative of f

Γ (x) The Gamma function

B (x, y) The Euler Beta function

Hn(x) The Hermite polynomials in one variable
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H
(λ)
n (x) The Sonin-Markov (Generalized Hermite) polynomials

Sm(x) A symmetric real polynomial of degree m in variable x

Dν(z) The parabolic cylinder function

µ0(t;λ) The first moment associated with a semiclassical weight

µn(t;λ) The nth moment associated with a semiclassical weight

W The Wronskian

τn The tau function

L
(λ)
n (x; t) Semiclassical Laguerre polynomials of degree n

Sn(x; t) Semiclassical generalized Freud polynomials of degree n

an The Mhaskar-Rahmanov-Saff number

LHS Left-hand side

RHS Right-hand side
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Chapter 1

Introduction

1.1 Historical background

The theory of orthogonal polynomials plays an important role in different branches

of mathematics, such as approximation theory (best approximation, interpolation,

quadrature), special functions, continued fractions and differential and integral equa-

tions. The notion of orthogonality originated from the theory of continued fractions,

but later became an independent discipline. Contributors to the theory of orthogonal

polynomials include outstanding mathematicians such as Abel, Chebyshev, Fourier,

Hermite, Laguerre, Laplace, Legendre, Markov and Stieltjes. Beginning with Szegö,

Hungarian mathematicians like Erdös, Turán, Freud and Feldheim have made essential

contributions to the flourishing theory of orthogonal polynomials in the last century.

The theory of polynomials orthogonal on infinite intervals is significantly different from

the theory of polynomials orthogonal on finite intervals. While Szegö did pioneering

work in the theory of orthogonality on finite intervals, he didn’t carry over his ideas

to infinite intervals. Freud founded the now flourishing theory of orthogonal polyno-

mials with respect to exponential weights on R and the corresponding representative

polynomials are named after him. Freud’s aim was to extend the theory of best ap-

proximation and Jackson-Bernstein type estimates to the real axis. The natural way to

do this was to explore properties of orthogonal polynomials, since the expectation was

that orthogonal expansions may serve as near-best approximation (cf. [84, 105, 112]).

Jacobi, Laguerre and Hermite polynomials are considered to be classical orthogonal
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1.1 Historical background

polynomials (cf. [35, 132]). These polynomials were discovered in the 19th century as

solutions to interpolation problems and to certain second-order differential equations.

The reader may be familiar with these classical polynomials and with the fact that they

obey three-term recurrence relations as well as second-order differential equations. It

turns out that the second-order linear differential equations are unique to the classical

orthogonal polynomials, by a theorem of Bochner [18] (see also [71, Section 20.1]),

but that a second-order recurrence relation is a universal property for weight functions

supported in R (cf. [35, 120, 132]).

One of the characterizations of these polynomials was proved in 1972 by Al-Salam and

Chihara [4], where the authors showed that the classical orthogonal polynomials are

the only orthogonal polynomials satisfying a first-order structure relation of the form

π(x)P ′n(x) = (αnx+ βn)Pn(x) + γnPn−1(x), (1.1.1)

where π(x) is a polynomial of degree 2 independent of n. Classical orthogonal poly-

nomials also have their weight function w(x) satisfying Pearson’s differential equation

(cf. [35, Equation 2.25])

d

dx
(σ(x)w(x)) = τ(x)w(x), (1.1.2)

where σ(x) is a monic polynomial with deg(σ) ≤ 2 and τ(x) is a polynomial with

deg(τ) = 1. However, when deg(σ) > 2 and/or deg(τ) > 1, the weight function

in (1.1.2) produces a class of semiclassical orthogonal polynomials (cf. [67, 93, 95]).

The theory of semiclassical orthogonal polynomials is not fully-fledged but the deriva-

tion of a differential equation for a general class of orthogonal polynomials by Shohat

[127] provides a cornerstone for forming classes of semiclassical orthogonal polynomials.

These semiclassical polynomials are also the polynomial solutions of a particular case

of second-order linear differential equations known as holonomic equations [93, 94, 96].

Holonomic equations can be obtained from the structural relation that is associated

with the so-called creation and destruction operators [68, 71]. According to Maroni

[94], the monic semiclassical orthogonal polynomials {Pn}∞n=0 can be defined by the

relation

A(x)P
′

n(x) =
r+1∑
j=1

cn,jPn+m−j(x), (1.1.3)

where A(x) is a polynomial of exactly mth degree, r is a fixed nonnegative integer and

cn,j are real coefficients. In a survey of orthogonal polynomials and their applications,

2



1.1 Historical background

Maroni [94] extensively studied semiclassical linear functionals with special emphasis

on their structural properties. Belmehdi [13] and Belmehdi and Ronveaux [14] also

provided descriptions of semiclassical linear functionals. One can observe from (1.1.1)

and (1.1.3) that the classical orthogonal polynomials are a special case of semiclassical

orthogonal polynomials (for m = r = 2).

The study of a class of semiclassical polynomials orthogonal on unbounded intervals

with respect to general exponential weights begun with Géza Freud in the 1970’s (for

details see Freud [55], Nevai [112], as well as recent monographs by Levin and Lubinsky

[84] and Mhaskar [105]).

A function w : R→ R+ of the form

w(x) = exp (−Q(x)) (1.1.4)

is said to be a Freud weight if Q : R → R is an even, non-negative and continuous

function that satisfies certain conditions involving its derivatives of first and second

order (cf. [80, 87]). Specifically, Freud weights are a class of exponential-type weights

wρ(x) = |x|ρ exp(−|x|m), ρ > −1, m = 2k, k ∈ N, (1.1.5)

with an unbounded support on R. Since the Freud weights are even functions, it follows

that one of the recurrence coefficients αn = 0, n ∈ N0 so that polynomials orthogonal

with respect to the weight (1.1.5) satisfy a three-term recurrence relation

Pn+1(x) = xPn(x)− βn(ρ)Pn−1(x), (1.1.6)

with initial conditions P−1 ≡ 0 and P0 ≡ 1, and βn(ρ) obeys certain nonlinear second-

order difference equations (cf. [89, 90, 109, 134]). Since it is not usually possible to

determine an explicit formulation of the βn’s, Freud conjectured that βn n
− 2
m converges

to some constant depending on m.

Freud [55, 56] investigated the asymptotic behavior of the recurrence coefficients for

the weight (1.1.5) , when m = 2, 4, 6, by a technique giving rise to an infinite system of

nonlinear equations called Freud equations (cf. [89, 90]). For example, for the weight

w(x) = |x|ρ exp(−x4) on R, the recurrence coefficients βn(ρ) not only satisfy the three-

term recurrence relation (1.1.6), but also a non-linear recurrence relation (cf. [109, 134]

for the orthonormal case)

4βn (βn−1 + βn + βn+1) = n+ ρ Ωn, (1.1.7)

3



1.1 Historical background

with initial conditions

β0 = 0, β1 =

∫∞
−∞ x

2|x|ρ exp(−x4) dx∫∞
−∞ |x|ρ exp(−x4) dx

=
Γ(3+ρ

4
)

Γ(1+ρ
4

)
. (1.1.8)

We note that, for ρ = 0, (1.1.7) was first derived by Shohat [127, Equation 39] and it

is proved in [109] that there is a unique positive solution to the problem (1.1.7). In

[55], Freud gave the limit relation for the recurrence coefficient βn(ρ) and this could be

described by

lim
n→∞

βn(ρ) n−
2
m =

[
Γ(1

2
m) Γ(1 + 1

2
m)

Γ(m+ 1)

] 2
m

, m = 2k, k ∈ N.

Freud also explored some essential properties, such as the asymptotic behavior for the

greatest zeros [56] and of the polynomials themselves, by relying on the recurrence

coefficients. The seminal work by Freud on exponential weight functions solved special

cases of his conjectures on the asymptotic behavior of the recurrence coefficients for

the orthogonal polynomials associated with the weight functions of the form (1.1.5)

when m = 2, 4, 6 (cf. [5, 55, 84, 90, 91, 110, 112]).

Recent contributions on the asymptotic behavior of the recurrence coefficient associ-

ated with Freud-type exponential weights include those of Magnus [91], Mhaskar [87],

Rakhmanov [119], Lubinsky [84], Nevai [5, 110, 112], and Nevai and Totik [100, 101].

The connection between recurrence coefficients associated with semiclassical orthogonal

polynomials and discrete integrable systems can be traced back to the work of Shohat

and Freud [55, 127], and later by Bonan and Nevai [21, 22]. However, it wasn’t until the

1990’s when the focus within integrable systems shifted from continuous to discrete,

that Fokas, Its and Kitaev [51, 52, 53] gave these equations a name: discrete Painlevé

equations. It is shown in [19, 134] that the recurrence coefficients associated with

the positive weight (1.1.5) satisfy a nonlinear recurrence relation that corresponds to

discrete Painlevé dPI equation and its hierarchy (This fact was not known to Freud

but first pointed out by Magnus [89, 90, 91]) (see also [134]). The dynamics of the

recurrence coefficients associated with the weight (1.1.4) can also be described by the

differential-difference equations of the Toda lattice (cf. [6, 7, 39, 50, 90]).

Several sequences of monic orthogonal polynomials associated with the weight (1.1.4)

and their extensions have been studied in the literature (cf. [88, 89, 109]). For instance,

the link between the nonlinear difference equation satisfied by the recurrence coefficients

4



1.2 Motivation of the study

associated with (1.1.4) and discrete Painlevé equations for potentials such asQ(x) = x4,

Q(x) = x4−tx2 for t ∈ R orQ(x) = x6 is well-established (cf. [89, 90, 123]). Magnus [90]

showed that the recurrence coefficients in the three-term recurrence relation associated

with the Freud weight [55]

exp
(
−x4 + tx2

)
, t, x ∈ R, (1.1.9)

can be expressed in terms of simultaneous solutions of the discrete equation

qn(qn−1 + qn + qn+1) + 2tqn = n, (1.1.10)

which is discrete PI (dPI), as shown by Bonan and Nevai [22], and the differential

equation
d2qn

dz2
=

1

2qn

(
dqn
dz

)2

+
3

2
q3n + 4zq2n + 2(z2 − A)qn +

B

qn
, (1.1.11)

which is a special case of the fourth Painlevé equation where A = −1
2
n and B = −1

2
n2,

with n ∈ Z+. This connection between the recurrence coefficients for the Freud weight

(1.1.9) and simultaneous solutions of (1.1.10) and (1.1.11) has been shown in [51], see

also [53].

With regards to asymptotic expansions for the recurrence coefficients, Shing, Máté and

Nevai [76] constructed asymptotic expansions for solutions to recurrence relations of

the type which occur in the study of orthogonal polynomials with exponential type

weights, in particular the weight |x|ρ exp(−|x|6), ρ > −1, x ∈ R. Bauldry, Máté and

Nevai [11] showed that the convergent solutions of a system of smooth recurrence equa-

tions, whose Jacobian matrix satisfies a certain non-unimodularity condition, can be

approximated by asymptotic expansions and they provide an application to approxi-

mate the recurrence coefficients associated with polynomials orthogonal with respect

to the weight function (1.1.4) where Q(x) is an even degree polynomial with a positive

leading coefficient. Further, Mate, Nevai and Zaslavsky [102] obtained asymptotic ex-

pansions for the recurrence coefficients of a larger class of orthogonal polynomials with

exponential-type weights (cf. [102, Theorem 1] and [11, Theorem 5.1]).

1.2 Motivation of the study

Semiclassical orthogonal polynomials arise in applications, such as random matrices

and integrable systems, in particular, continuous and discrete Painlevé equations. Gen-
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1.2 Motivation of the study

eralized Freud polynomials (cf. [41]) are semiclassical extensions of the Freud polyno-

mials and they are orthogonal with respect to the positive Borel measure dα(x) =

wλ(x; t) dx where the weight function

wλ(x; t) = |x|2λ+1 exp
(
−x4 + tx2

)
, (1.2.1)

with parameter λ > 0 and t ∈ R, is differentiable on the non-compact support R.

Monic orthogonal polynomials with respect to the symmetric weight (1.2.1) satisfy the

three-term recurrence relation

xSn(x; t) = Sn+1(x; t) + βn(t;λ)Sn−1(x; t), (1.2.2)

where S−1 ≡ 0, S0 ≡ 1. From (1.2.2), using orthogonality, we have

βn(t;λ) =
1

hn−1

∫
R
xSn(x; t)Sn−1(x; t)|x|2λ+1 exp

(
−x4 + tx2

)
dx > 0. (1.2.3)

Since the weight (1.2.1) is even, the polynomial Sn(x; t) is even for n even and odd for

n odd (cf. [132, p. 29]).

In view of (1.2.2) and (1.2.3), we see that the sequence of the recurrence coefficients

{βn(t;λ)}∞n=0 completely determines polynomials orthogonal with respect to the weight

(1.2.1). They also have other important features related to the greatest zero of orthog-

onal polynomials (cf. [54, 55, 56]). The motivation for this research lies in studying

recurrence coefficients associated with the generalized Freud polynomials.

It was generally accepted that explicit expressions for the associated coefficients in

the three-term recurrence relation and orthogonal polynomials were nonexistent for

weights such as the Freud weight. To quote from the Digital Library of Mathematical

Functions [117, §18.32]:

“ A Freud weight is a weight function of the form

w(x) = exp(−Q(x)), −∞ < x <∞,

where Q(x) is real, even, nonnegative, and continuously differentiable. Of special inter-

est are the cases Q(x) = x2m, m = 1, 2, . . . . No explicit expressions for the correspond-

ing OP’s are available. However, for asymptotic approximations in terms of elementary

functions for the OP’s, and also for their largest zeros, see Levin and Lubinsky [84]

and Nevai [112]. For a uniform asymptotic expansion in terms of Airy functions for
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1.3 Objective of the study

the OP’s in the case x4 see Bo and Wong [122]. For asymptotic approximations to

OP’s that correspond to Freud weights with more general functions Q(x) see Deift et

al. [47, 48], Bleher and Its [17] and Kriecherbauer and McLaughlin [82].”

In [41] we provide an explicit expression for the recurrence coefficients {βn(t;λ)}∞n=0 as-

sociated with the generalized Freud weight (1.2.1) in terms of Wronskians of parabolic

cylinder functions that appear in the description of special function solutions of the

fourth Painlevé equation. These recurrence coefficients, which can also be viewed as

functions of the parameters, are fundamental to study certain properties of the gen-

eralized Freud polynomials. The moments of the semiclassical weight provide the link

between the weight and the associated Painlevé equation which yields explicit expres-

sions for the recurrence coefficients of the generalized Freud weight (1.2.1) (cf. [41]).

1.3 Objective of the study

The objective of this study is to investigate certain analytic and asymptotic properties

of the semiclassical generalized Freud polynomials, by making use of their connection

to the theory of Painlevé equations, which extend, improve and generalize the known

results in the existing literature.

Properties discussed in this thesis include the higher-order moments and Pearson’s

equation associated with the generalized Freud weight wλ in (1.2.1), an explicit for-

mulation for the recurrence coefficient βn(t;λ), as well as the generalized Freud poly-

nomials themselves and other related properties such as the differential-difference and

differential equations satisfied by the generalized Freud polynomials.

Since recurrence coefficients are fundamental entities in the theory of orthogonal poly-

nomials, we investigate the asymptotic series expansion of the recurrence coefficients

βn(t;λ) as the degree or, alternatively, the parameter tends to ∞. By proving the

existence of an asymptotic expansion by adapting the results of Bleher and Its [17], we

investigate the asymptotic behavior of the recurrence coefficient βn(t;λ) via the the-

ory of Painlevé equations. We also employ an extension of Freud’s conjecture for the

recurrence coefficient βn(t;λ) associated with the generalized Freud weight in (1.2.1).

We further investigate the asymptotics of the normalized differential equation satisfied

by monic generalized Freud polynomials, by using the obtained differential-difference

7



1.4 Summary of the main results

and differential equations.

1.4 Summary of the main results

This section summarizes the main results of this thesis.

(i) An explicit formulation of moments and Pearson’s equation associated with the

generalized Freud weight (1.2.1) are provided (cf. [41]).

(ii) Symmetrization of the semiclassical Laguerre weight gives rise to the generalized

Freud weight (1.2.1) (cf. [41]).

(iii) The relationship between the recurrence coefficients of orthogonal polynomials

with respect to the generalized Freud weight (1.2.1) and classical solutions of the

fourth Painlevé equation is explored (cf. [41]). One of our main results is that the

recurrence coefficient βn(t;λ) in the three-term recurrence relation (1.2.2) can be

expressed in terms of Wronskians of parabolic cylinder functions that arise in the

description of special function solutions of the fourth Painlevé equation.

(iii) A concise formulation of the generalized Freud polynomials in terms of the explic-

itly obtained recurrence coefficient βn(t;λ) is provided (see Theorem 4.4.1 and

Corollary 4.4.1) (cf. [41]).

(iv) The differential-difference equation satisfied by the generalized Freud polynomials

is derived using two different methods; the classical ladder operator approach and

also Shohat’s approach based on quasi-orthogonality (cf. [41]).

(v) A second-order linear differential equation with rational-type coefficients satisfied

by monic generalized Freud polynomials is derived in Theorem 4.6.2 (cf. [41]).

(vi) Certain results on the asymptotic expansion for the recurrence coefficient βn(t;λ)

associated with generalized Freud polynomials as the degree, as well as the pa-

rameter t, tends to infinity, are given in Proposition 5.3.1 and Theorem 5.4.1.
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1.5 Outline of the thesis

The thesis includes five chapters and is focused on generalized Freud semiclassical

orthogonal polynomials. In each chapter we give a reasonable amount of relevant

references regarding the background of the topic. When a proposition, theorem or

lemma is credited to any other author but the proof itself is unreferenced, it means

that the proof was done independently. In some cases, the proof is trivial and is not

provided.

In Chapter 2 we present some preliminary concepts and notations about orthogonal

polynomial sequences. A brief introduction to the connection between semiclassical

orthogonal polynomials and Painlevé equations is also included.

Chapter 3 revisits certain properties of the semiclassical Laguerre polynomials given

in [39]. Properties studied in [39] include the higher order moments, Pearson’s equa-

tion associated with the semiclassical Laguerre weight and explicit formulation for the

recurrence coefficients in terms of special function solutions of the Painlevé equations.

We also provide the differential-difference and differential equations satisfied by the

recurrence coefficients as well as the semiclassical Laguerre polynomials themselves,

by making a connection to integrable systems. A differential-difference equation and

differential equation satisfied by semiclassical Laguerre polynomials, as well as an ex-

plicit representation of a 2 × 2 differential (Lax) system in terms of the recurrence

coefficients, is obtained. Further, the Volterra equation for the semiclassical Laguerre

weight was derived by differentiating the recurrence coefficients with respect to the pa-

rameter t ∈ R introduced in the weight function (3.3.1). We also show that generalized

Freud polynomials arise from a symmetrization of semiclassical Laguerre polynomials

by adapting a symmetrization technique due to Chihara [35].

In Chapter 4 certain analytic properties of monic orthogonal polynomials with respect

to the generalized Freud weight wλ(x; t) in (1.2.1) are studied in detail. Properties of

interest include the higher order moments and Pearson’s equation associated with the

generalized Freud weight, the recurrence coefficients and the differential-difference and

differential equations satisfied by the polynomials, as well as the concise formulation of

the generalized Freud polynomials. As our main result, we show that the coefficients

in the three-term recurrence relation satisfied by the generalized Freud polynomials

9
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can be expressed in terms of Wronskians of parabolic cylinder functions that arise

in the description of special function solutions of the fourth Painlevé equation. We

also obtain an explicit formulation for the generalized Freud polynomials in terms of

the first moments, where the first moments are given explicitly in terms of parabolic

cylinder functions. The results in Chapter 4 have been published in [41].

In Chapter 5 we explore the asymptotic behavior of the generalized Freud polynomials,

which are orthogonal with respect to the generalized Freud weight. We first obtain an

asymptotic series expansion for the recurrence coefficients {βn(t;λ)}∞n=0 as the degree

tends to ∞. We also investigate asymptotic results for the polynomials when the

parameter t involved in the semiclassical perturbation of the weight (1.2.1) tends to

∞. Further we apply the obtained large n-asymptotics of the recurrence coefficient

βn(t;λ) to the differential equation satisfied by the generalized Freud polynomials to

obtain a normalized differential equation in its asymptotic form, which is valid when

x belongs to a fixed, finite interval.

Chapter 6 summarizes the main results obtained in this thesis and provides some

insights into future perspectives by suggesting problems for future consideration.
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Chapter 2

Preliminaries

In this chapter we provide some definitions and discuss basic concepts that will be used

in this thesis.

2.1 A glance at orthogonal polynomials

Denote the linear space of polynomials in one variable with real coefficients of degree

at most n by Pn. Let N0,N,Z,R denote the set of non-negative integers, the set of

natural numbers, the set of integers and the set of real numbers, respectively.

Let α be a positive Borel measure defined on the real line for which the moments

µn =

∫
R
xn dα(x), n ∈ N,

are finite and L2(dα;R) the Hilbert space endowed with the inner product 〈·, ·〉α :

P× P→ R, associated with the measure α, defined by

〈f, g〉α =

∫
supp(α)

f(x)g(x) dα(x). (2.1.1)

By considering a sequence of monomials {1, x, x2, . . .}, which are linearly independent

in L2(dα;R) and applying the Gram-Schmidt orthogonalization process [73, p. 151], we

obtain a sequence of orthogonal polynomials {ϕn}∞n=0 that can be written as a linear

combination of the monomials. Moreover, it holds that

Pn := span{1, x, x2, . . . , xn} = span{ϕ0, ϕ1, . . . , ϕn}.

11



2.1 A glance at orthogonal polynomials

Definition 2.1.1. A sequence of real non-zero polynomials {ϕn}Nn=0, N ∈ N ∪ {∞},
where ϕn is of exact degree n, is orthogonal on the interval [a, b] with respect to α if

〈ϕm, ϕn〉α =

∫
[a,b]

ϕm(x) ϕn(x) dα(x) = hn δmn; m,n = 0, 1, . . . , N, (2.1.2)

where δmn is the Kronecker symbol defined by

δmn =

1 if m = n;

0 if m 6= n,

and

hn := 〈ϕn, ϕn〉α = ‖ϕn‖2α. (2.1.3)

When α(x) is absolutely continuous, we can write dα(x) = w(x) dx with a weight

function w(x) > 0 and (2.1.2) becomes∫
[a,b]

ϕm(x) ϕn(x)w(x) dx = hn δmn, m, n = 0, 1, . . . , N,

or, equivalently, [120, Theorem 54]∫
[a,b]

xk ϕn(x)w(x) dx = 0, for n = 1, 2, . . . ; k < n.

By defining

ϕ̂m(x) =
ϕm(x)√∫

[a,b]

ϕ2
m(x)w(x) dx

,

we have a sequence of orthonormal polynomials with respect to w(x):∫
[a,b]

ϕ̂m(x) ϕ̂n(x) w(x) dx = δmn; m,n = 0, 1, . . . , N.

Throughout this thesis, we will assume that orthogonality refers to orthogonality with

respect to a positive weight function, supported on R, and the polynomials we consider

are monic polynomials, i.e.,

Pn(x) = xn + cn,n−1x
n−1 + . . .+ cn,1x+ cn,0. (2.1.4)
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2.2 Properties of orthogonal polynomials

This section provides some of the basic properties of real orthogonal polynomials in

one variable.

2.2.1 Three-term recurrence relation

Theorem 2.2.1. [63, Theorem 1.27]. Let {Pn}∞n=0 be a sequence of monic orthogonal

polynomials with respect to a positive measure α. Then,

Pn+1(x) = (x− αn)Pn(x)− βn Pn−1(x), n = 0, 1, 2, . . . , (2.2.1)

P−1 ≡ 0, P0 ≡ 1,

and the recurrence coefficients αn and βn are given as:

αn =
〈xPn, Pn〉α
〈Pn, Pn〉α

, n ∈ N0, (2.2.2a)

βn =
〈Pn, Pn〉α
〈Pn−1, Pn−1〉α

, n ∈ N. (2.2.2b)

The converse of Theorem 2.2.1 is known as the spectral theorem for orthogonal poly-

nomials and states that a set of polynomials satisfying the three-term relation (2.2.1)

is orthogonal with respect to a positive measure. This result is often attributed to

Favard [49] but was discovered independently, around the same time, by both Shohat

[125, 127] and Natanson [108]. A modern proof of the result is given by Beardon [12].

For a sequence of monic orthogonal polynomials {Pn}∞n=0, the sequences of recurrence

coefficients {αn}∞n=0 and {βn}∞n=1 in (2.2.2) and the sequence of coefficients {cn,j}nj=0 in

(2.1.4) are related by the following recursive relation (cf. [130, p. 5]):

cn,n−1 = −
n−1∑
j=0

αj, (2.2.3a)

cm,m−t = −
m−1∑
j=t−1

(αjcj,j−t+1 + βj) , t ≥ 2, (2.2.3b)

(2.2.3a) implies that αn = cn,n−1 − cn+1,n and βj is always positive from (2.2.2b).
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2.2 Properties of orthogonal polynomials

2.2.2 Orthogonal polynomials in terms of Hankel determi-

nants

Monic orthogonal polynomials of degree n, n = 1, 2, . . . , can be uniquely expressed in

terms of the moments {µn}n≥0 (cf. [63, Theorem 2.1]):

Pn(x) =
1

∆n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn

µ1 µ2 · · · µn+1

...
...

. . .
...

µn−1 µn · · · µ2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= xn − ∆̃n

∆n

xn−1 +O(xn−2), (2.2.4)

where

∆n =

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn−1

µ1 µ2 · · · µn
...

...
. . .

...

µn−1 µn · · · µ2n−2

∣∣∣∣∣∣∣∣∣∣∣
, ∆0 = 1, (2.2.5)

is the Hankel determinant of moments and the determinant ∆̃n in (2.2.4) is given by

∆̃n =

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn−2 µn

µ1 µ2 · · · µn−1 µn+1

...
...

. . .
...

...

µn−1 µn · · · µ2n−3 µ2n−1

∣∣∣∣∣∣∣∣∣∣∣
, ∆̃0 = 0, ∆̃1 = µ1. (2.2.6)

The recurrence coefficients αn and βn in (2.2.2) can be written (cf. [63]) as

βn =
hn
hn−1

=
∆n+1 ∆n−1

∆2
n

, n = 1, 2, . . . , (2.2.7a)

αn =
∆̃n+1

∆n+1

− ∆̃n

∆n

, n = 1, 2, . . . . (2.2.7b)

Consequently, the normalization constant hn in (2.1.3) can be given in terms of the

Hankel determinant (2.2.5) by

hn =
n∏
j=1

βj =
∆n+1

∆n

> 0, n ∈ N.
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2.2.3 Zeros of orthogonal polynomials

Theorem 2.2.2. (cf. [120, Theorem 55]). For n ∈ N, all zeros of an orthogonal poly-

nomial sequence {ϕn}∞n=0 are real, simple and located in the interval of orthogonality.

The Christoffel-Darboux identity [132, Theorem 3.2.2]

(x− y)
n∑
k=0

Pk(x)Pk(y)

hk
=
Pn+1(x)Pn(y)− Pn+1(y)Pn(x)

hn
(2.2.8)

is a direct consequence of the three-term recurrence relation (2.2.1) and has numerous

applications in the theory of orthogonal polynomials. The confluent form of (2.2.8) is

given by

n∑
k=0

P 2
k (x)

hk
=
P
′
n+1(x)Pn(x)− Pn+1(x)P

′
n(x)

hn
. (2.2.9)

An important consequence of the Christoffel-Darboux identity is that

P
′

n+1(x)Pn(x)− Pn+1(x)P
′

n(x) > 0, (2.2.10)

which is useful in investigating the zeros of orthogonal polynomials (cf. [132, Theorem

3.2.2]).

As a consequence of (2.2.10), the polynomials Pn and Pn+1 cannot have common zeros.

Furthermore, if xn,1 < xn,k < . . . < xn,n are the zeros of Pn, the following interlacing

property is satisfied.

Theorem 2.2.3. [35, Theorem 5.3]. For the zeros of ϕn and ϕn+1, we have

xn+1,1 < xn,1 < xn+1,2 < . . . < xn+1,n < xn,n < xn+1,n+1.

2.3 Some special functions

The following results on basic special functions will be used in the thesis.

2.3.1 The Gamma function

Definition 2.3.1. [2, Chapter 6]. The Pochhammer symbol (b)n is defined as

(b)0 = 1, (b)n = b(b+ 1) . . . (b+ n− 1) =
Γ(b+ n)

Γ(b)
, (2.3.1)
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for any b ∈ C, where Γ(z) denotes the Gamma function that can be defined as a definite

integral

Γ(z) =

∫ ∞
0

tz−1e−t dt = 2

∫ ∞
−∞

t2z−1e−t
2

dt, (2.3.2)

with Re(z) > 0.

The Gamma function Γ is continuous and differentiable on (0,∞) and satisfies the

recursion formula

Γ(z + 1) = zΓ(z), (2.3.3)

which implies that Γ(n + 1) = n! and we also have that Γ(1) = 1 and Γ(1
2
) =
√
π.

Moreover,

(1 + b)n =
Γ(1 + b+ n)

Γ(1 + b)
.

2.3.2 Parabolic cylinder functions

Whittaker and Watson [136, p. 347] define the parabolic cylinder functions Dν(z) as

solutions to the Weber differential equation

ψ
′′
(z) +

(
c+ bz + az2

)
ψ(z) = 0.

(i) The parabolic cylinder functions ψ have three distinct standard forms (cf. [117,

§12.2 (i)]),

d2U(−a)

dz2
−
(

1

4
z2 + a

)
U(−a) = 0, (2.3.4a)

d2W (−a)

dz2
−
(

1

4
z2 − a

)
W (a) = 0, (2.3.4b)

d2Dν

dz2
−
(

1

4
z2 − ν − 1

2

)
Dν = 0. (2.3.4c)

Equations (2.3.4a)-(2.3.4c) can be transformed into each other and the solutions

of these equations are entire functions of z, a and ν. The form which we will use

in this thesis is Dν given in (2.3.4c), where

U(a, z) = D−a− 1
2
(z).
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(ii) The parabolic cylinder function Dν(ξ), with ν /∈ Z, has an integral representation

(cf. [117, §12.2 (i)]),

Dν(ξ) =
exp(−1

4
ξ2)

Γ(−ν)

∫ ∞
0

s−ν−1 exp
(
−1

2
s2 − ξs

)
ds, Re(ν) < 0. (2.3.5)

(iii) The asymptotic formula for parabolic cylinder function D−a(x) is given by

D−a(x) ∼ x−a exp

(
−x

2

4

)[
1 +O(x−2)

]
,

when x→∞.

Definition 2.3.2. The parabolic cylinder function Dν has the following connections to

Hermite polynomials [117, §12.7(i)]:

U

(
−1

2
, z

)
= D0(z) = exp

(
z2

4

)
,

U

(
n− 1

2
, z

)
= Dn(z) = exp

(
−z

2

4

)
Hen(z) = 2−

n
2 exp

(
−z

2

4

)
Hn

(
z√
2

)
,

U

(
n+

1

2
, z

)
=

√
2

π
(−i)nHen(iz) =

√
2

π
exp

(
z2

4

)
(−i)n2−

n
2Hn

(
iz√

2

)
,

where Hen(z) denotes polynomials orthogonal with respect to the modified Hermite

weight exp
(
−1

2
x2
)

and Hn(z) represents the Hermite polynomials.

2.3.3 The error and complementary error functions

Gauss’ error function can be defined as the integral of the Gauss density function

erf x =
2√
π

∫ x

0

e−t
2

dt

and has properties [117, Chapter 7]

erf(−∞) = −1, erf(+∞) = 1,

erf(−x) = − erf(x), erf(x∗) = [erf(x)]∗,

where the asterisk denotes complex conjugation. The complementary error function is

defined as

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt = 1− erf(x). (2.3.7)

We note also that
2√
π

∫ x

−∞
e−t

2

dt = 1 + erf(x).
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2.4 Classical orthogonal polynomials

Jacobi, Laguerre and Hermite polynomials are considered to be classical orthogonal

polynomials and their weight functions w(x) satisfy Pearson’s differential equation

(1.1.2), where σ(x) is a monic polynomial with deg(σ) ≤ 2 and τ(x) is a polynomial

with deg(τ) = 1 and these functions are given in Table 2.1.

ϕn w(x) σ(x) τ(x) Interval

Hermite exp(−x2) 1 −2x R

Laguerre xα exp(−x), α > −1 x 1 + α− x R+

Jacobi (1− x)α(1 + x)β 1− x2 β − α− (2 + α + β)x [−1, 1]

Table 2.1: Classical orthogonal polynomials

Furthermore, the classical orthogonal polynomials {Pn}∞n=0 also satisfy

(a) a Rodrigues formula

Pn(x) =
1

Kn w(x)
Dn[w(x)σn(x)], n = 0, 1, 2, . . . ,

where w(x) is a function which is non-negative on an interval, σ(x) is a polynomial

in x independent of n and Kn does not depend on x;

(b) a non-linear equation of the form [71, Theorem 20.5.7]

d

dx
[Pn(x)Pn−1(x)] = (anx+ bn) Pn(x) Pn−1(x) + γn P

2
n(x) + δn P

2
n−1(x),

where {an}, {bn}, {γn} and {δn} are sequences of constants;

(c) a second-order linear differential equation

σ(x)P ′′n (x) + τ(x)P ′n(x) + λnPn(x) = 0, (2.4.1)

where λn is independent of x and the polynomials σ(x) and τ(x) are given in

(1.1.2) ;

(d) a differential-difference relation

σ(x)P ′n(x) = (anx+ bn)Pn(x) + cnPn−1(x). (2.4.2)

where σ(x) is given in (1.1.2) and {an}, {bn}, {cn} are sequences of constants.
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Note that derivatives of classical orthogonal polynomials also form an orthogonal poly-

nomial set (see [71, p. 527]). A polynomial set that satisfies any of the above properties

is necessarily a classical orthogonal polynomial set. In particular, Al-Salam and Chi-

hara [4] showed that an orthogonal polynomial set satisfying (2.4.2) is either Hermite,

Laguerre or Jacobi polynomials depending on the degree of σ being 0, 1 or 2 respec-

tively. Since we will refer to the Hermite and Laguerre polynomials later in the thesis,

we discuss some of their properties.

2.4.1 Laguerre polynomials

The Laguerre polynomials appear in quantum mechanics as the radial part of the

solution of the Schrödinger equation for the hydrogen atom [74]. For α > −1, the

classical monic Laguerre polynomials {L̃(α)
n }∞n=0 can be defined (cf. [35, p. 145]) as

L̃(α)
n (x) =

n∑
j=0

(−1)n+jn!

(
n+ α

n− j

)
xj

j!
, n ∈ N0,

and they satisfy the orthogonality relation

〈L̃(α)
m , L̃(α)

n 〉xα exp(−x) =

∫ ∞
0

L̃(α)
m (x)L̃(α)

n (x) xα exp(−x) dx = hnδmn. (2.4.3)

The monic normalization constant hn in (2.4.3) is given by (cf. [35, 132])

hn = 〈L̃(α)
n , L̃(α)

n 〉xα exp(−x) = ‖L̃(α)
n ‖2xα exp(−x) = n! Γ(n+ α + 1), (2.4.4)

where Γ is the Gamma function defined by (2.3.2). The structural properties of La-

guerre polynomials will be used in the sequel (cf. [35, 68, 92]).

Proposition 2.4.1. [132, Section 5.5]. Let {L̃(α)
n }∞n=0, α > −1 be a sequence of monic

Laguerre polynomials. Then the following statements hold for every n ∈ N:

(i)

xL̃(α)
n (x) = L̃

(α)
n+1(x) + (2n+ α + 1)L̃(α)

n (x) + n(n+ α)L̃
(α)
n−1(x),

where L̃
(α)
0 ≡ 1, L̃

(α)
1 (x) = x− (α + 1).

(ii)

L̃(α)
n (x) = L̃(α+1)

n (x) + nL̃
(α+1)
n−1 (x).
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2.4 Classical orthogonal polynomials

(iii)

L̃(α)
n (0) = (−1)n

Γ(n+ α + 1)

Γ(α + 1)
. (2.4.5)

(iv) (
L̃(α)
n

)′
(x) = −L̃(α+1)

n−1 (x).

(v) L̃
(α)
n (x) is the polynomial eigenfunction of the differential operator

xD2 + (α + 1− x)D

with -n as the corresponding eigenvalue.

(vi) we have the lowering and raising operators.

x[L̃(α)
n ]

′
(x)− nL̃(α)

n (x) = n(n+ α)L̃
(α)
n−1(x) (lowering),

x[L̃
(α)
n−1]

′
(x) + (n+ α− x)L̃

(α)
n−1(x) = −L̃(α)

n (x) (raising).

2.4.2 Hermite polynomials

Hermite polynomials arise in probability theory such as the Edgeworth series [81], in

numerical analysis as Gaussian quadrature [63] and in physics, where they give rise

to the eigenstates of the quantum harmonic oscillator (cf. [63, 83]). Monic Hermite

polynomials can be defined (cf. [35, p. 146]) as

H̃n(x) = 2−nn!

bn
2
c∑

j=0

(−1)j

j!(n− 2j)!
(2x)n−2j,

where bxc denotes the greatest integer function and they satisfy the orthogonality

relation

〈H̃m, H̃n〉exp(−x2) =

∫ +∞

−∞
H̃m(x) H̃n(x) exp(−x2) dx = Knδmn,

with its normalization constant Kn given by

Kn = 〈H̃n, H̃n〉exp(−x2) = ‖H̃n‖2exp(−x2) =
n!
√
π

2n
,
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2.4 Classical orthogonal polynomials

and the three-term recurrence relation [81, Equation (1.13.4)] is

H̃n+1(x) = xH̃n(x)− n

2
H̃n−1(x), n ∈ N, (2.4.6)

with initial conditions

H̃0 ≡ 1, H̃1(x) = x.

Hankel determinants (2.2.5) for monic Hermite polynomials take the following explicit

form:

∆n =

(
1

2

)n(n−1)
2

n−1∏
k=1

k!, ∆̃n = 0, n ∈ N,

where the moments are given by

µ2k =

∫
R
x2k exp(−x2) dx =

√
π(2k)!

22kk!

µ2k+1 =

∫
R
x2k+1 exp(−x2) dx = 0

 . (2.4.7)

Hermite polynomials satisfy the symmetry condition H̃n(−x) = (−1)nH̃n(x) and the

recurrence coefficients of monic Hermite polynomials {H̃n}∞n=0 satisfying (2.4.6) are

obtained, using (2.4.7), as αn = 0 and

βn =

[(
1

2

)n(n+1)
2

n∏
k=1

k!

] [(
1

2

) (n−1)(n−2)
2

n−2∏
k=1

k!

]
[(

1

2

)n(n−1)
2

n−1∏
k=1

k!

]2 =
n

2
.

Monic Hermite polynomials {H̃n}∞n=0 are expressed in terms of monic Laguerre poly-

nomials {L̃(α)
n }∞n=0 with parameters α = ±1

2
by means of the formulas [132, p. 106]

H̃2n(x) = L̃
(− 1

2
)

n (x2); H̃2n+1(x) = xL̃
( 1
2
)

n (x2), n ∈ N0.

We also note that Hermite polynomials (and their Freud-weight analogs [117, §18.32])

play an essential role in random matrix theory [60, 117] and also [45, Chapter 5].

Remark 2.4.1. We note that the respective sequence of classical orthogonal (Hermite,

Laguerre or other classical) polynomials, {Pn}∞n=0 represents an orthogonal basis in a

Hilbert space of the type H = L2(I, w(x)dx) where I ⊂ R is an open interval and the

weight w(x) > 0 is a continuous function on the inteval I.
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2.5 Quasi-orthogonality

2.5 Quasi-orthogonality

In this section we give the definition of quasi-orthogonality of orthogonal polynomials

on the real line.

Definition 2.5.1. [23, Definition 1]. Let Rn be a polynomial of exact degree n ≥ r. If

Rn satisfies the conditions∫ b

a

xkRn(x)w(x) dx =

0, for k = 0, 1, . . . , n− r − 1,

6= 0, for k = n− r.
(2.5.1)

where w is a positive weight function on [a, b] ⊆ R, then Rn is quasi-orthogonal of order

r on R with respect to w.

Remark 2.5.1. The quasi-orthogonal polynomials Rn are only defined for n ≥ r. Thus,

equation (2.5.1) is equivalent to∫ b

a

Rk(x) Rn(x) w(x) dx = 0, for k = n− r, . . . , n+ r.

When r = 0, the usual orthogonality conditions which completely determine Rn (up to

a normalization factor) are recovered. If r > 1, the polynomials Rn are not uniquely

determined by (2.5.1).

Theorem 2.5.1. [23, Theorem 1]. Let {Rn}∞n=0 be a sequence of monic orthogonal

polynomials on [a, b] with respect to a positive weight function w. The polynomial

Rn(x) = Pn(x) + c1P1(x) + . . .+ crPn−r(x),

where the cj’s are numbers which depend on n and cr 6= 0, is quasi-orthogonal of order

r on [a, b] with respect to w.

For more information about quasi-orthogonality, consult [23, 34, 77].

2.6 Symmetric orthogonal polynomials

Polynomials orthogonal with respect to an even weight function (i.e, w(−x) = w(x))

on a support interval [−b, b] for any given b ∈ R+ ∪ {∞} are called symmetric.

The following are properties of symmetric orthogonal polynomials {Sn}∞n=0 on the real

line (cf. [35, 63, 97, 113, 132]):

22



2.6 Symmetric orthogonal polynomials

(i) Symmetry

Sn(−x) = (−1)nSn(x), n = 0, 1, 2, . . . , (2.6.1)

(ii) Moments

µ2k+1 = 0, k ∈ N0,

µ2k =

∫ b

−b
x2kw(x)dx = 2

∫ b

0

x2kw(x)dx > 0,

 (2.6.2)

(iii) The substitution x → −x in the recurrence relation (2.2.1) yields that αn = 0

and we have

xSn(x) = Sn+1(x) + βnSn−1(x), n ∈ N0, (2.6.3)

with initial conditions S0 ≡ 1 and S1(x) = x.

The polynomial Sn(x) in (2.6.3) contains even powers of x when n is even and odd

powers of x when n is odd. More precisely, our convention in the case of even weight

functions is to write Sn(x) as

Sn(x) = xn + cn,n−2x
n−2 + cn,n−4x

n−4 + cn,n−6x
n−6 + · · ·+ Sn(0).

2.6.1 Symmetrization and quadratic decomposition

In the sequel, the symmetry property will play a crucial role to construct symmetric

orthogonal polynomial sequences based on quadratic transformations [35]. Numer-

ous researchers have dealt with symmetrization problems of orthogonal polynomial

sequences on the real line, where a symmetric orthogonal polynomial sequence is de-

composed into two nonsymmetric sequences (cf. [32, 35, 94]).

For a symmetric orthogonal sequence {Sn}∞n=0 with weight function ws(x), we have∫ b

−b
Sn(x)Sm(x)ws(x) dx = knδmn, kn > 0. (2.6.4)

Since Sn(−x) = (−1)nSn(x), we may write

S2n(x) = Pn(x2), S2n+1(x) = xQn(x2), (2.6.5)
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2.6 Symmetric orthogonal polynomials

to define the polynomials Pn(x) and Qn(x). Since the integrand is even, (2.6.4) may

be replaced by

2

∫ b

0

Sn(x)Sm(x)ws(x) dx = knδmn, (2.6.6)

and hence, by (2.6.5),

2

∫ b

0

Pn(x2)Pm(x2)ws(x) dx = k2nδmn,

so that ∫ b2

0

Pn(x)Pm(x)x−
1
2ws(x

− 1
2 ) dx = k2nδmn.

Similarly, if we replace m and n in (2.6.6) by 2m+1 and 2n+1, respectively, we obtain∫ b2

0

Qn(x)Qm(x)x
1
2ws(x

1
2 ) dx = k2n+1δmn.

The following theorem shows that a quadratic transformation of the symmetric se-

quence results in two component sequences that are themselves orthogonal polynomial

sequences.

Theorem 2.6.1. [63, Theorem 1.18]. Let {Sn}∞n=0 be a sequence of monic orthog-

onal polynomials over the interval (−b, b), 0 ≤ b ≤ ∞ with weight function ws(x)

such that Sn(−x) = (−1)nSn(x). Then the sequences of polynomials {Pn}∞n=0 and

{Qn}∞n=0, uniquely determined by (2.6.5), are orthogonal on [0, b2] with weight func-

tions x−
1
2 ws(x

1
2 ) and x

1
2 ws(x

1
2 ) respectively.

As an application of Theorem 2.6.1, consider symmetric Legendre polynomials Gn(x)

which are orthogonal on [−1, 1] with weight function ws(x) = 1. We may put

G2n(x) = Pn(x2), G2n+1(x) = xQn(x2).

Then Pn(x) is orthogonal on (0, 1) with weight function x−
1
2 , while Qn(x) is orthogonal

on (0, 1) with weight function x
1
2 .

For more on symmetrization of orthogonal polynomials, we refer the reader to [63, 97,

104].

24



2.6 Symmetric orthogonal polynomials

2.6.2 Construction of a symmetric orthogonal sequence

Given two sequences of orthogonal polynomials {Pn}∞n=0 and {Qn}∞n=0 and let

S2n(x) = Pn(x2), S2n+1(x) = xQn(x2); (2.6.7)

A natural question to ask here is under what conditions the sequence {Sn}∞n=0 will be

orthogonal?

This question coincides with the converse of Theorem 2.6.1 and it is answered as follows:

Assume that ∫ b2

0

Pm(x) Pn(x) w1(x) dx = k̃n δmn, k̃n > 0. (2.6.8)

Then, if there exist sequences of polynomials {Qn}∞n=0 and {Sn}∞n=0 such that (2.6.5)

and (2.6.6) are satisfied and∫ b2

0

Qm(x)Qn(x)w2(x) dx = k̂nδmn, k̂n > 0, (2.6.9)

it follows from Theorem 2.6.1 that

w2(x) = xw1(x), ws(x) = xw1(x
2). (2.6.10)

Theorem 2.6.2. [24, Theorem 3]. Let {Pn}∞n=0, {Qn}∞n=0 and {Sn}∞n=0 be sequences of

polynomials that satisfy (2.6.6), (2.6.8) and (2.6.9), respectively. Then the polynomials

satisfy (2.6.5) if and only if the weight functions satisfy (2.6.10). Besides, if any one

of these sequences is given, the other two sequences are uniquely determined.

Proposition 2.6.1. [35, p. 43]. Let {Pn}∞n=0 be a sequence of monic orthogonal poly-

nomials with respect to a positive weight function w supported on [0, b2], b ∈ R; i.e.,∫ b2

0

Pm(x) Pn(x) w(x) dx = hn δmn.

Then the symmetrized form of {Pn}∞n=0, i.e., {Sn}∞n=0, defined by (2.6.7), satisfies the

orthogonality condition ∫ b

−b
Sm(x) Sn(x) |x| w(x2) dx = hn δmn,

where hn is the normalization constant defined in (2.1.3).
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2.7 Semiclassical orthogonal polynomials

As an example, the symmetrization of Laguerre polynomials gives rise to a class of

generalized Hermite polynomials (cf. [33, 35, 132]). Generalized Hermite polynomials

{H(γ)
n }∞n=0 were introduced by Szegö [132, Problem 23] and they satisfy the differential

equation (cf. [35])

xy
′′
(x) + 2(γ − x)y′ + (2nx− θnx−1)y = 0, y = H(γ)

n (x),

where θ2m = 0, θ2m+1 = 2γ.

Proposition 2.6.2. [35, p. 157]. The generalized Hermite polynomials {H(γ)
n }∞n=0

defined by

H
(γ)
2n (x) = (−1)n 22n n! L

(γ− 1
2
)

n (x2);

H
(γ)
2n+1(x) = (−1)n 22n+1 n! xL

(γ+ 1
2
)

n (x2), n ∈ N0,

 (2.6.11)

are orthogonal polynomials corresponding to the weight w(x) = |x|2γ exp(−x2), with the

parameter γ > −1
2

and x ∈ R.

The orthogonality relation of generalized Hermite polynomials is given by∫ +∞

−∞
H(γ)
m (x)H(γ)

n (x)|x|2γ exp(−x2) dx = 22n
[n

2

]
! Γ

(
bn+ 1

2
c+ γ +

1

2

)
δmn,

where bxc is the floor function.

Remark 2.6.1. The technique of symmetrization and quadratic transformation as dis-

cussed in this section will be applied to semiclassical weights in Chapter 3 where we

use the symmetrization of semiclassical Laguerre polynomials to generate generalized

Freud polynomials.

2.7 Semiclassical orthogonal polynomials

In this section we introduce basic concepts of semiclassical orthogonal polynomials

on the real line. These polynomials are orthogonal with respect to a positive weight

function w such that d
dx

lnw(x) is a rational function.

A weight function w(x) defined over a bounded or unbounded interval (a, b) can be

characterized as semiclassical [67, 94] if and only if it satisfies the Pearson differential

equation (1.1.2) with the boundary conditions

lim
x→a

τ(x) w(x) p(x) = 0 = lim
x→b

τ(x) w(x) p(x)
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2.7 Semiclassical orthogonal polynomials

for every polynomial p(x). The polynomials associated with such a weight w are called

semiclassical orthogonal polynomials.

The theory of semiclassical orthogonal polynomials is not yet fully developed, but

the derivation of a differential relation for a general class of orthogonal polynomials by

Shohat [127] provides bases for forming classes of semiclassical orthogonal polynomials.

Semiclassical orthogonal polynomials have applications in matrix models [52, 128, 133],

soliton theory [7, 128]), random matrices [45] and also in the study of integrable systems

[26, 46, 65].

As early as 1929, Bochner [18] solved the problem of determining all families of scalar-

valued orthogonal polynomials that are eigenfunctions of some fixed second-order linear

differential operator. He identified the fact that classical orthogonal polynomials ϕn

are solutions of

B[y](x) := σ(x)y′′(x)− τ(x)y′(x) = λny(x), n = 0, 1, 2, . . . , (2.7.1)

where σ is a polynomial of degree at most 2, τ a polynomial of degree 1 and {λn}∞n=1

is a sequence of nonzero numbers and λ0 = 0. The differential equation (2.7.1) is com-

monly known as Bochner’s differential equation and the associated differential operator

as Bochner’s operator [71, p. 508]. Equation (2.7.1) is also known as the Sturm-Louiville

differential equation. As a consequence of (2.7.1), the weights of classical orthogonal

polynomials satisfy the Pearson differential equation given in (1.1.2). However when

deg(σ) > 2 or deg(τ) > 1, the weight function produces a class of semiclassical orthog-

onal polynomials.

Table 2.2 presents examples of semiclassical orthogonal polynomials with their respec-

tive weight functions and intervals of orthogonality.

w(x; t) Parameters σ(x) τ(x) Interval

Semiclassical Laguerre xλ exp(−x2 + tx) λ > −1, t ∈ R x 1 + λ+ tx− 2x2 (0,∞)

Semiclassical Freud exp(−1
4
x4 − tx2) t ∈ R 1 −2tx− x3 (−∞,∞)

Generalized Freud |x|2λ+1 exp(−x4 + 2tx2) λ > 0, t ∈ R x 2λ+ 2− 2tx2 − x4 (−∞,∞)

Semiclassical Airy exp(−1
3
x3 + tx) t > 0 1 t− x2 (0,∞)

Table 2.2: Semiclassical orthogonal polynomials

In 1972 Al-Salam and Chihara [4] showed that polynomials satisfying the differential-

difference relation given in (2.4.2) must be either Hermite, Laguerre or Jacobi poly-
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2.8 Painlevé equations

nomials. Askey raised the more general question of which orthogonal polynomial sets

{Pn}∞n=0 have the property that their derivatives satisfy

π(x)P ′n(x) =
n+s∑
k=n−t

αnkPk(x),

where π(x) is a polynomial and s and t are constants. This problem was solved by

Shohat and later independently by Freud [55] and Bonan and Nevai [22].

Maroni [94] stated the problem in a different way, trying to find all orthogonal polyno-

mial sets whose derivatives are quasi-orthogonal and he called these orthogonal poly-

nomial sets semiclassical .

Semiclassical orthogonal polynomials in one variable can be characterized as the only

sequences of orthogonal polynomials satisfying one of the following equivalent proper-

ties: some special differential-difference equation (the so-called structural relation [94]),

the quasi-orthogonality of the derivatives [127] and a second order partial differential-

difference relation [13, 67, 71, 94]. Monic semiclassical polynomials {Pn}∞n=0 of class s

can be characterized by the following structural relation [67, 94, 121]

σ(x)P
′

n+1(x) =
n+r∑
j=n−s

An,jPj(x), n ≥ s+ 1, (2.7.2)

where

s = max{deg(σ)− 2, deg(τ)− 1}, r = deg(σ), (2.7.3)

with the polynomials σ and τ defined by (1.1.2).

There is a strong link between semiclassical orthogonal polynomials and Painlevé equa-

tions.

2.8 Painlevé equations

The Painlevé equations are second-order ordinary differential equations described by

six families PI - PVI. PI consists of the single equation

d2q

dz2
= 6q2 + z (2.8.1)
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2.8 Painlevé equations

while PII - PVI have complex parameters α, β, γ and δ,

PII(α) :
d2q

dz2
= 2q3 + zq + α, (2.8.2)

PIII(α, β, γ, δ) :
d2q

dz2
=

1

q

(
dq

dz

)2

− 1

z

dq

dz
+

1

z
(αq2 + β) + γq3 +

δ

q
,

PIV(α, β) :
d2q

dz2
=

1

2q

(
dq

dz

)2

+
3

2
q3 + 4zq2 + 2(z2 − α)q +

β

q
,

PV(α, β, γ, δ) :
d2q

dz2
=

(
1

2q
+

1

q − 1

)(
dq

dz

)2

− 1

z

dq

dz
+

(q − 1)2

z2

(
αq +

β

q

)
+ γ

q

z
+ δ

q(q + 1)

q − 1
,

PVI(α, β, γ, δ) :
d2q

dz2
=

1

2

(
1

q
+

1

q − 1
+

1

q − z

)(
dq

dz

)2

−
(

1

z
+

1

z − 1
+

1

q − z

)(
dq

dz

)
+
q(q − 1)(q − z)
z2(z − 1)2

[
α− β z

q2
+ γ

z − 1

(q − 1)2
+

(
1

2
− δ
)
z(z − 1)

(q − z)2

]
,

where q and z are complex variables. They were investigated in the early part of the

20th century by Painlevé, with refinements by Gambier and Fuchs [37, 61] as ordinary

differential equations of the form

q′′(z) = F (z, q(z), q′(z)) , (2.8.3)

where F (z, q(z), q′(z)) is a rational function in q and q
′

and analytic in z, having the

property that the solutions have no movable branch points, i.e., the locations of multi-

valued singularities of any of the solutions are independent of the particular solution

chosen and so are dependent only on the equation; this is now known as the Painlevé

property. Painlevé et al. [61] showed that there were 50 canonical ordinary differential

equations satisfying the Painlevé property and these were referred to as equations of

Painlevé type. Out of these fifty equations, forty-four of them are either integrable

in terms of previously known functions (such as elliptic functions or functions that

are equivalent to linear equations) or reducible to one of the six nonlinear ordinary

differential equations, PI - PVI, which define new transcendental functions, see (cf. [69,

136]). The Painlevé equations may be thought of as nonlinear analogs of the classical

special functions (i.e., Airy, Bessel, Whittaker, Kummer, hypergeometric functions),

see [37]. Their general solutions are transcendental, i.e., irreducible in the sense that

they cannot be expressed in terms of previously known functions such as rational

functions, exponential functions or the classical special functions. For more details, we

refer to [64, 66, 69, 75, 136].

The following are some of the properties of Painlevé equations (cf. [37, 42, 66, 115]).
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2.8 Painlevé equations

• Each Painlevé equation can be written as a (non-autonomous) Hamiltonian sys-

tem [115].

• PII - PVI have rational, algebraic and special function solutions expressed in

terms of the classical special functions called classical solutions [37, 66], e.g., for

PII: Airy Ai(z), Bi(z); PIII: Bessel Jν(z), Yν(z); PIV: parabolic cylinder Dν(z)

(see Subsection 2.3.5 for the details of these special functions). These classical

solutions can usually be written as Wronskians and are often given in terms of

Hankel determinants or Toeplitz determinants.

• Each Painlevé equation possesses a Bäcklund transformation [1]. A Bäcklund

transformation is defined as being a system of equations relating one solution

of a given equation (in this case PIII) either to another solution of the same

equation, possibly with different values of the parameters, or to a solution of

another equation.

• Each Painlevé equation can be expressed as the compatibility condition of a linear

system which is known as an isomonodromy problem or Lax pair [37, 75].

The search for discrete analogues of Painlevé transcendents has been an open problem

for many years and only recently has progress was made in this direction. Discretiza-

tions of the Painlevé equations have resulted from a variety of methods including

applications of orthogonal polynomials [51, 90].

2.8.1 Discrete Painlevé equations

Discrete Painlevé equations are the discrete analogs of Painlevé equations. These equa-

tions are not only second-order, nonlinear difference equations which have a continuous

Painlevé equation as a continuous limit but they also are mappings that are integrable

in the same sense as the continuous Painlevé equation. Grammaticos, Ramani and Pa-

pageorgiou [65] suggested the singularity confinement method as an integrability test

for discrete equations. This integrability detector is the discrete analog of the Painlevé

property for differential equations. The discrete Painlevé equations have the form

xn+1 =
gs(xn;n) + xn−1gt(xn;n)

gu(xn;n) + xn−1gv(xn;n)
,
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2.8 Painlevé equations

where gi(xn;n) is a polynomial of degree i in xn where s, t, u, v ∈ {0, 1, 2, 3, 4}. Some

examples of discrete Painlevé equations are

(dPI) xn+1 + xn + xn−1 =
zn + γ(−1)n

xn
+ σ, (2.8.4)

(dPII) xn+1 + xn−1 =
xnzn + γ

1− x2n
,

(dPIV) (xn+1 + xn) (xn + xn−1) =

(
x2n − κ2

) (
x2n − µ2

)
(xn + zn)2 − γ2

,

(dPV)
(xn+1 + xn − zn+1 − zn) (xn + xn−1 − zn − zn−1)

(xn+1 + xn)(xn + xn−1)

=

(
(xn − zn)2 − α2

) (
(xn − zn)2 − β2

)
(xn − γ2) (xn − σ2)

.

where zn = αn+ β and κ, γ, β, α and σ are constants (cf. [53, 66, 69, 134]).

2.8.2 Semiclassical weights and discrete Painlevé equations

We examine the connection between recurrence coefficients of the three-term recurrence

relation satisfied by semiclassical orthogonal polynomials and the Painlevé equations.

Recurrence coefficients associated with semiclassical orthogonal polynomials satisfy

both linear and nonlinear recurrence relations. The relationship between semiclassical

orthogonal polynomials and integrable equations dates back to the work of Shohat

[127], Freud [55] and Bonan and Nevai [22]. However, it was not until the work of

Fokas, Its and Kitaev (cf. [51, 52]) that these equations were identified as discrete

Painlevé equations. The discrete Painlevé equations appear in the form of the nonlinear

difference relations satisfied by the relevant recurrence coefficients.

Magnus [90] applied ladder operators to nonclassical orthogonal polynomials associated

with random matrix theory and the derivation of Painlevé equations, while Tracy

and Widom [133] used the associated compatibility conditions in the study of finite

n matrix models. Magnus [90] discussed the relationship between semiclassical Freud

polynomials

w(x; t) = exp
(
−x4 + tx2

)
, x ∈ R, (2.8.5)

and the Painlevé equations. He showed in [90] that the recurrence coefficients associated

with the weight (2.8.5) can be expressed in terms of simultaneous solutions of
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2.8 Painlevé equations

(i) the discrete equation

qn(qn−1 + qn + qn+1) + 2tqn = n, (2.8.6)

which is discrete Painlevé I (dPI), as shown by Bonan and Nevai [22], and

(ii) the differential equation

d2qn

dz2
=

1

2qn

(
dqn
dz

)2

+
3

2
q3n + 4zq2n + 2(z2 − A)qn +

B

qn
, (2.8.7)

which is a special case of the fourth Painlevé equation, where A = −1
2
n and

B = −1
2
n2, n ∈ Z+. This connection between the recurrence coefficients for the

Freud weight (2.8.5) and simultaneous solutions of (2.8.6) and (2.8.7) is due to

Kitaev (cf. [51, 52, 53]).

Certain semiclassical orthogonal polynomials have well-established connections with

discrete (or Painlevé) integrable systems. Natural questions to ask are

(i) Which semiclassical weights are related to discrete Painlevé equations?

(ii) Which discrete Painlevé equations do we obtain?

We provide some partial answers to the above as follows:

• w(x) = exp(x
3

3
+ tx) on {x : x3 < 0} is related to PII (cf. [90]).

• w(x) = xα exp(−x) exp(− s
x
) (α, s > 0) on R+ is related to PIII (cf. [30]).

• The weight |x− t|ρ exp(−x2) is related to PIV (cf. [27]).

• w(x) = |x|% exp(−x4), % > −1 on R is related to dPI (cf. [88]).

• w(x) = xα exp(−x2), α > −1 (due to Maxwell/Sonin-type) on R+ is related to

dPIV (cf. [124]).

• w(k) =
ak

(k!)2
(due to Charlier) is related to dPII (cf. [38, 135]).

• w(x; t) = xα exp(−x2 + tx), α > −1 on R+ is related to dPIV (cf. [39, 50]).

• w(x; t) = exp(−1
4
x4 + tx2) on x, t ∈ R is related to dPI (cf. [90]).
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2.9 Semiclassical Freud-type polynomials

2.9 Semiclassical Freud-type polynomials

Géza Freud was the pioneer in investigating polynomials orthogonal with respect to

certain general exponential weights on the real line (cf. [8, 55, 84, 90, 105, 112]). Freud

weights are a class of exponential weights w(x) = |x|ρ exp(−|x|m) dx, ρ > −1, x ∈ R.

Freud [55] gave the asymptotic behavior of the recurrence coefficients of the three-term

recurrence relation for the orthogonal polynomials with the weight functions of the form

(1.1.5) for m = 2, 4, 6 and he conjectured that such an asymptotic relation is valid for

every positive integer m. Freud also investigated some essential properties such as

the asymptotics of the largest zeros and the asymptotic behavior of the polynomials

themselves (cf. [8, 84, 90, 91, 105, 112, 134]).

The recurrence coefficients associated with the weight of the form (1.1.5) satisfy a

non-linear recurrence relation which corresponds to the discrete Painlevé dPI equation

and its hierarchy and they also satisfy the differential-difference equations of the Toda

lattice (cf. [6, 7, 39, 50, 90]). In the following, we discuss and review some known facts

about Freud-type weights.

2.9.1 The Freud weight exp
(
−1

4
x4 − tx2

)
, x, t ∈ R

Relevant properties of orthogonal polynomials {Pn(x; t)}∞n=0 with respect to the semi-

classical Freud weight

w(x; t) = exp

(
−1

4
x4 − tx2

)
, x, t ∈ R, (2.9.1)

were studied in [22, 55, 90]. An important reference for numerous properties about

Freud’s weight is the paper by Nevai [112] on Freud’s mathematical legacy. Properties

to be discussed include the higher order moments and Pearson’s equation associated

with Freud’s weight and the recurrence coefficients satisfying the three-term recurrence

relation

xPn(x; t) = Pn+1(x; t) + βn(t)Pn−1(x; t), P0 ≡ 1, P−1 ≡ 0.

Proposition 2.9.1. For polynomials orthogonal with respect to the Freud weight (2.9.1),

the following statements hold:
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2.9 Semiclassical Freud-type polynomials

(i) The first moment is

µ0(t;λ) = 2
1
4
√
π exp

(
1

2
t2
)
D− 1

2

(
−1

2

√
2t

)
,

where Dv(ξ) is the parabolic cylinder function (2.3.5), whilst the moments are

µ2n(t;λ) =

∫
R
x2n exp

(
−1

4
x4 − tx2

)
dx = (−1)n

dn

dtn
µ0(t;λ),

µ2n+1(t;λ) =

∫
R
x2n+1 exp

(
−1

4
x4 − tx2

)
dx = 0, n ∈ N0.

(ii) The weight function w(x; t) satisfies Pearson’s differential equation (1.1.2)

w
′
(x; t) + (4x3 + 2tx)w(x; t) = 0,

with σ(x; t) = 1 and τ(x; t) = −4x3 − 2tx. Since deg(σ) = 0 and deg(τ) = 3, the

corresponding polynomial sequence {Pn(x; t)}∞n=0 constitute a family of semiclas-

sical orthogonal polynomials(cf. [67, 94]).

(iii) The recurrence coefficient βn of the monic polynomials orthogonal with respect to

the weight w in (2.9.1) satisfies the discrete Painlevé dPI equation

βn (βn−1 + βn + βn+1) = n− 2tβn, n ∈ N, (2.9.2)

with initial condition β0 = 0(cf. [55, 71, 91]).

Remark 2.9.1. (i) The recurrence coefficient βn in (2.9.2) can be computed in the

same way as in the Hermite case [127]. For Freud polynomials, by letting qn = βn

in (2.9.2), we obtain (2.8.6) and (2.8.7).

(ii) The link between equations (2.8.6) and (2.8.7) is given by

qn+1 =
1

2qn

(
n− dq

dt
− 2tqn − q2n

)
and qn−1 =

1

2qn

(
n+

dq

dt
− 2tqn − q2n

)
,

which are PIV Bäcklund transformations (cf. [19, 39, 90, 91]).

We note that solutions of PIV (2.8.7) are known as the “half-integer hierarchy”, which

arises in quantum gravity [51, 52] and was studied by Bassom, Clarkson and Hicks

[9, 37]. In this hierarchy the first solution is given in [37]

q

(
t;−1

2
,−1

2

)
= −2t+

√
2
C1D−1/2

(
−
√

2t
)
− C2D−1/2

(
−
√

2t
)

C1D−1/2
(
−
√

2t
)

+ C2D−1/2
(
−
√

2t
) , (2.9.3)
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2.9 Semiclassical Freud-type polynomials

with C1 and C2 arbitrary constants. The first few solutions of the hierarchy

βn(t) = qn(t) = w

(
t;−1

2
n,−1

2
n2

)
where w(z;A,B) satisfies PIV (2.8.7), which are the first few recurrence coefficients

associated with Freud’s weight (2.9.1) are:

q1(t) = Ξ(t)− 2t;

q2(t) =
1

Ξ(t)− 2t
− Ξ(t);

q3(t) =
2(Ξ(t)− 2t)

Ξ2(t)− 2tΞ(t)− 1
− 1

Ξ(t)− 2t
;

q4(t) = −4

3
t+

2(4t2 + 3)Ξ(t)− 16t(t2 + 1)

3[3Ξ2(t)− 10tΞ(t) + 8t2 − 1)]
+

2(Ξ(t)− 2t)

Ξ2(t)− 2tΞ(t)− 1
,

where Ξ(t) =
√

2
D1/2

(√
2t
)

D−1/2
(√

2t
) .

2.9.2 The Shohat-Freud weight |x|ρ exp
(
−x4

)
Polynomials orthogonal with respect to the symmetric semiclassical weight

wρ(x) = |x|ρ exp
(
−x4

)
, x ∈ R, ρ > −1,

were known to satisfy the three-term recurrence relation

xPn(x) = Pn+1(x) + βn Pn−1(x), P−1 ≡ 0, P0 ≡ 1, (2.9.4)

where βn is obtained from the nonlinear difference equation (cf. [55])

4βn (βn−1 + βn + βn+1) = n+ ρΩn, n = 1, 2, . . . , (2.9.5)

with β0 = 0 and

Ωn =
1− (−1)n

2
=

0 if n is even,

1 if n is odd.
(2.9.6)

Equation (2.9.5) is equal to the discrete Painlevé equation dPI (2.8.4) with xn = 2βn;

a = 1, b = ρ
2
, c = −ρ

2
and d = 0. Properties of orthogonal polynomials with respect to

the weight wρ(x) = |x|ρ exp (−x4) were studied in [22, 55, 134]. For more details about

Freud-type weights, one can refer [10, 123].
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2.10 Asymptotics for certain Freud type weights

2.10 Asymptotics for certain Freud type weights

Asymptotic properties of polynomials orthogonal with respect to exponential weight

functions have been investigated by, among others, Lew and Quarles, Magnus, Lubin-

sky, Van Assche, Nevai and his collaborators (cf. [8, 11, 84, 85, 89, 90, 91, 102, 105,

112, 134]).

Geza Freud [55] conjectured the asymptotic behavior of the recurrence coefficient βn

in the three-term recurrence relation (2.9.4) satisfied by the polynomials {Pn}∞n=0 or-

thogonal with respect to the positive weight

w(x) = exp(−x2m), m ∈ N, (2.10.1)

as follows.

Conjecture 2.10.1. [55]. Let w be the weight given in (2.10.1) and let βn be the

corresponding recurrence coefficient. Then

lim
n→∞

βn n
− 2
m =

[
Γ(1

2
m) Γ(1 + 1

2
m)

Γ(m+ 1)

] 2
m

. (2.10.2)

Monic polynomials orthogonal with respect to the simplest Freud weight

w(x) = exp(−x4), −∞ < x <∞, (2.10.3)

satisfy the recurrence relation (2.6.3). The recurrence coefficient βn is determined by

the non-linear difference equation [109, p. 266] (see also [111])

4βn (βn−1 + βn + βn+1) = n, n = 1, 2, . . . , (2.10.4)

where β0 = 0 and β1 =
Γ(3

4
)

Γ(1
4
)
. One can show that (2.10.4) follows from Magnus’s

proof [91] for the case m = 2 in (2.10.1) (see also [134]). In the literature, (2.10.4)

and its generalizations are often referred to as the Freud equation. In the physics

literature, (2.10.4) is known as a discrete string equation, and it was derived and

studied in the papers by Bessis, Itzykson and Zuber [16, 72] discussing the problem

of enumeration of Feynman graphs in string theory. Despite interesting and deep

achievements in the theory of orthogonal polynomials [84, 112], the asymptotics for

general exponential weights remains one of the key unsolved problems in the theory of
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2.10 Asymptotics for certain Freud type weights

semiclassical orthogonal polynomials since the Freud equation does not have a direct

(explicit) solution.

Since βn−1 + βn+1 > 0, we observe from (2.10.4) that

4β2
n ≤ n⇔ 0 < βn ≤

1

2

√
n, (2.10.5)

Thus, applying (2.10.5) again to (2.10.4) gives

n ≤ 4βn

(√
n− 1

2
+

√
n

2
+

√
n+ 1

2

)
≤ 6
√
nβn, n = 1, 2, . . . ,

and hence estimates for the recurrence coefficient bounds gives

n

36
≤ β2

n ≤
n

4
⇔ 1

6
≤ βn n

− 1
2 ≤ 1

2
. (2.10.6)

Note that the bounding values in (2.10.6) assure the validity of Freud’s conjecture

(2.10.2).

The recurrence coefficient βn associated with the weight (2.10.3) has an asymptotic

expansion

βn ∼
( n

12

) 1
2

∞∑
j=0

c2jn
−2j,

with c0 = 1 and c1 = 1
24

(cf. [102, Theorem 1] and [101]). The asymptotic expansion

of βn(t) satisfying (2.10.4) was studied by Lew and Quarles (cf. [85, 109, 114]) and is

βn =

√
n

12

(
1 +

1

24n2
− 7

576n4
+

111

27648n6
+O(n−8)

)
.

An asymptotic expansion for the more general case when t ∈ R and λ = −1
2

in (1.2.1)

was given by Clarke and Shizgal (cf. [36]) in the context of bimode polynomials. Bo

and Wong [122] also gave a uniform asymptotic formula for polynomials orthogonal

with respect to the weight exp(−x4). Further, we point out that many other relevant

properties of orthogonal polynomials {Pn}∞n=0 with respect to the weight exp(−x4) were

studied by Nevai [109, 110] and also in [22, 55, 85, 114].

Asymptotics of more general Freud-type weights are considered in [3, 17, 102, 123].

In Chapter 5, we will discuss asymptotic properties of the recurrence coefficients of

monic polynomials {Sn(x; t)}∞n=0 orthogonal with respect to the generalized Freud

weight (1.2.1).
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Chapter 3

Semiclassical Laguerre polynomials

3.1 Introduction

In this chapter we study properties of the semiclassical Laguerre weight

w(x; t) = w0(x) exp(xt), λ > −1, t ∈ R, (3.1.1)

supported on R where w0(x) = xλ exp(−x2) is a Hermite-type weight. Finding an

explicit expression for the recurrence coefficients associated with the semiclassical La-

guerre weight is not straightforward. However, these coefficients obey certain non-linear

recurrence equations (cf. [19, 50]) that can be identified as discrete Painlevé equations.

In [39] the authors provide an explicit formulation of the recurrence coefficients in the

three-term recurrence relation associated with the semiclassical Laguerre weight and

these coefficients can be expressed in terms of Wronskians of parabolic cylinder func-

tions that arise in the description of special function solutions of the fourth Painlevé

equation.

Following the results on certain properties of semiclassical Laguerre polynomials in

[39], we determine the differential-difference Toda-type evolution equation satisfied by

the recurrence coefficient associated with the semiclassical Laguerre polynomials and

derive a second-order differential equation satisfied by polynomials associated with

the semiclassical Laguerre polynomials. In this chapter we also show that generalized

Freud polynomials arise from semiclassical Laguerre polynomials by the technique of

symmetrization discussed in Chapter 2.
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3.2 The weight w(x; t) = w0(x) exp(xt)

In Section 3.2 we give an overview of a general one-parameter family of semiclassical

weights of the form (3.1.1). The discussion in Section 3.3 on some (analytic and

asymptotic) properties of the semiclassical Laguerre polynomials leads to the later

sections of the chapter, where we determine not only the differential-difference equation

satisfied by semiclassical Laguerre polynomials but also an explicit representation of a

2×2 differential (Lax) system in terms of the recurrence coefficients associated with the

semiclassical Laguerre polynomials. Finally, the chapter ends by providing generalized

Freud polynomials as a symmetric form of the semiclassical Laguerre polynomials using

the technique of symmetrization due to Chihara [35, Section 3.7] discussed in section

2.6.

3.2 The weight w(x; t) = w0(x) exp(xt)

In this section we provide fundamental facts about semiclassical polynomials {Pn}∞n=0

which are orthogonal with respect to the weight w(x; t) in (3.1.1). For the general class

of semiclassical weights of the form

w(x; t) = w0(x) exp(xt),

where w0(x) is a classical weight function with finite moments, i.e.,

∫
R
xkw0(x) exp(xt) dx

exists for all k ∈ N0, we have that

(i) the monic polynomials {Pn}∞n=0, the sequence of recurrence coefficients {αn}∞n=0,

{βn}∞n=0 and the Hankel determinants ∆n and the moments {µk}k∈N are all func-

tions of t.

(ii) the three-term recurrence relation for monic orthogonal polynomials is

xPn(x; t) = Pn+1(x; t) + αn(t) Pn(x; t) + βn(t) Pn−1(x; t), (3.2.1)

P−1 ≡ 0, P0 ≡ 1, n = 1, 2, . . . ,

and the coefficients {αn(t)}∞n=0 and {βn(t)}∞n=0 satisfy the differential (Toda) sys-

tem (cf. [7, 58, 118, 128])

d
dt
αn(t) = βn+1(t)− βn(t),

d
dt
βn(t) = βn(t) [αn(t)− αn−1(t)]

 . (3.2.2)
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3.2 The weight w(x; t) = w0(x) exp(xt)

(iii)

µk(t) = ± d

dt
µk±1, (3.2.3)

as a consequence of (3.1.1) and this is considered as a moment generator for

the Toda lattice in the study of integrable systems. (3.2.3) implies that the kth

moment, µk(t), associated with the weight function in (3.1.1), takes the form

µk(t) =

∫
[a,b]

xk w0(x) exp(tx) dx =
dk

dtk

∫
[a,b]

w0(x) exp(tx) dx =
dkµ0

dtk
.

(3.2.4)

Applying (3.2.3) to the determinants ∆n in (2.2.5) and ∆̃n in (2.2.6), and denoting the

bidirectional Wronskian by τn, we have the following result.

Theorem 3.2.1. Let

τn(f) =W
(
f,
df

dt
, · · · , d

n−2f

dtn−2
,
dn−1f

dtn−1

)
and suppose that the moment µk(t) satisfies (3.2.4). Then the Hankel-Hadamard-type

determinants ∆n and ∆̃n can be written in the form

∆n(t) = τn(µ0), ∆̃n(t) =
dτn(µ0)

dt
.

Proof. See [38].

Corollary 3.2.1. If the weight has the form (3.1.1), then the determinants ∆n(t) and

∆̃n(t) can be expressed as Wronskians

∆n(t) =W
(
µ0,

dµ0

dt
, · · · , d

n−2µ0

dtn−2
,
dn−1µ0

dtn−1

)
;

∆̃n(t) =W
(
µ0,

dµ0

dt
, · · · , d

n−2µ0

dtn−2
,
dnµ0

dtn

)
=

d

dt
∆n(t).

Remark 3.2.1. We note that

∆̃n(t)

∆n(t)
=

d

dt

[
lnW

(
µ0,

dµ0

dt
, · · · , d

n−1µ0

dtn−1

)]
.

The Hankel determinant (2.2.5) also satisfies the Toda equation

d2

dt2
ln ∆n(t) =

∆n+1(t) ∆n−1(t)

∆2
n(t)

,

and this is proved in [107, Proposition 1].
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3.3 The weight xλ exp (−x2 + tx) , λ > −1, t ∈ R

Theorem 3.2.2. [39, Theroem 4.9]. Suppose the condition (3.2.3) holds. Then the

recurrence coefficients in (3.2.1) can be expressed as

αn(t) =
d

dt
ln

(
τn+1(µ0)

τn(µ0)

)
, βn(t) =

d2

dt2
ln (τn(µ0)) , n = 1, 2, . . . . (3.2.5)

3.3 The weight xλ exp
(
−x2 + tx

)
, λ > −1, t ∈ R

Let {L(λ)n }∞n=0 denote a sequence of semiclassical polynomials orthogonal with respect

to the semiclassical Laguerre weight

wλ(x; t) = xλ exp
(
−x2 + tx

)
, λ > −1, t ∈ R, x > 0 (3.3.1)

(cf. [19, 39, 57, 59, 129]). Since the weight function (3.3.1) is positive, continuous

and integrable on R+, it follows from the general theory [35, 132], that the orthogonal

polynomials L
(λ)
n (x; t) exist uniquely for all n ∈ N0, deg(L

(λ)
n ) = n and they are solutions

of the three-term recurrence relation

xL(λ)n (x; t) = L
(λ)
n+1(x; t) + αn(t)L(λ)n (x; t) + βn(t)L

(λ)
n−1(x; t), (3.3.2)

with initial conditions L
(λ)
−1 ≡ 0 and L

(λ)
0 ≡ 1 (cf. [19, 39]).

It is shown (cf. [39, 50]) that moments of a semiclassical weight provide the link between

the positive weight and the associated Painlevé equation. Hence, explicit expressions

for moments of the semiclassical Laguerre weight (3.3.1) were obtained in [39]. The

first moment is [39, Theorem 4.6]

µ0(t;λ) =


2
−λ−1

2 Γ(λ+ 1) exp
(
1
8
t2
)
D−λ−1

(
− t√

2

)
, if λ /∈ N,

1

2

√
π
dn

dtn

(
exp

(
1
4
t2
) [

1 + erf
(
1
2
t
)])

, if λ = n ∈ N,
(3.3.3)

where Dv(ξ) is the parabolic cylinder function (2.3.5). The first moment µ0(t;λ) asso-

ciated with the semiclassical weight (3.3.1) also satisfies the differential equation [39,

Theorem 4.6]

d2µ0

dt2
− t

2

dµ0

dt
− 1

2
(λ+ 1)µ0 = 0.

The following proposition gives certain analytic properties of semiclassical Laguerre

polynomials.
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3.3 The weight xλ exp (−x2 + tx) , λ > −1, t ∈ R

Proposition 3.3.1. [39, Section 5]. Let {L(λ)n }∞n=0 be sequence of semiclassical La-

guerre polynomials. Then

(i) Pearson’s equation associated with the weight wλ(x; t) in (3.3.1) is satisfied, where

σ(x; t) = x and τ(x; t) = −2x2 + tx+ λ+ 1.

(ii) The nth moment µn(t;λ) for the weight wλ(x; t) in (3.3.1) is given by

µn(t;λ) = 2−
(λ+n+1)

2 Γ(λ+ n+ 1) exp

(
1

8
t2
)
D−λ−n−1

(
− t√

2

)
,

where Dν is the parabolic cylinder function given in (2.3.5).

(iii) The recurrence coefficients in (3.3.2) associated with the weight wλ(x; t) in (3.3.1)

satisfy the discrete system (also called ‘String equations’) (cf. [39, Lemma 4.2]

and [19, Theorem 1.1])(
2αn(t)− t

)(
2αn−1(t)− t

)
=

(2βn(t)− n) (2βn(t)− n− λ)

βn(t)
, (3.3.4a)

2βn(t) + 2βn+1(t) + αn(t)
(
2αn(t)− t

)
= 2n+ 1 + λ. (3.3.4b)

(iii) The Hankel determinant ∆n(t) takes the form

∆n(t) =W
(
µ0,

dµ0

dt
, · · · , d

n−2µ0

dtn−2
,
dn−1µ0

dtn−1

)
,

where µ0 is given in (3.3.3).

(iv) The recurrence coefficients αn(t) and βn(t) in (3.3.2) associated with the semi-

classical weight (3.3.1) satisfy the Toda system (see [50] and [71, p. 41])
dαn(t)

dt
= βn+1(t)− βn(t),

dβn(t)

dt
= βn(t) (αn(t)− αn−1(t)) .

Asymptotic results of some properties of the semiclassical Laguerre polynomials as

t→∞ are provided in [39].

Proposition 3.3.2. [39, Section 5]. For the semiclassical Laguerre weight in (3.3.1),

the following statements hold:

(i) As t→∞, the first moment µ0(t;λ) has an asymptotic series [39, Lemma 5.1]

µ0(t;λ) ∼
√
π

(
1

2
t

)λ
exp

(
1

4
t2
) ∞∑

n=0

Γ(λ+ 1)

Γ(λ− n+ 1) n!t2n
.
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3.3 The weight xλ exp (−x2 + tx) , λ > −1, t ∈ R

(ii) The Hankel determinant ∆n(t) has a t-asymptotic expansion [39, Lemma 5.2]

∆n(t) = dnπ
n/2

(
1

2
t

)nλ
exp

(
1

4
nt2
)[

1 +
nλ(λ− n)

t2
+O(t−4)

]
,

with a constant dn and the function Hn(t;λ) defined by

Hn(t;λ) =
d

dt
ln ∆n(t),

has the asymptotic expansion

Hn(t;λ) =
nt

2
+
nλ

t
+

2nλ(n− λ)

t3
+O(t−5).

(iii) As t → ∞, the recurrence coefficients αn(t) and βn(t) associated with the semi-

classical weight (3.3.1) have the asymptotic expansions [39, Lemma 5.3]

αn(t) =
t

2
+
λ

t
+O

(
t−3
)
,

βn(t) =
n

2
− nλ

t2
+O

(
t−4
)
 . (3.3.6)

Remark 3.3.1. As t→∞, it follows from (3.3.6) that

αn(t)→ 1

2
t and βn(t) =

1

2
n.

Remark 3.3.2. The difference between semiclassical orthogonal polynomials, in partic-

ular the semiclassical Laguerre polynomials, and the classical orthogonal polynomials

is that classical orthogonal polynomials give rise to closed form expressions for the

recurrence coefficients but the solutions to the above pair of nonlinear difference equa-

tions in (3.3.4) are highly transcendental and in fact, it was shown by Boelen and Van

Assche [19, 134] that this pair of difference equations (3.3.4) can be obtained from an

asymmetric Painlevé PIV equation by a limiting process. We also point out that the

semiclassical weight in (3.3.1) is not the only weight function leading to the differ-

ence equations (3.3.4). It can be shown, using the same methods as in [134], that the

semiclassical Hermite weight, which is a natural generalization of the Hermite weight,

wλ(x; t) = |x|λ exp(−x2 + tx), t, x ∈ R, λ > 0, (3.3.7)

also, leads to the same difference equations for the recurrence coefficients. However,

the semiclassical Laguerre and Hermite weight functions are well-connected by the more

general weight
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3.3 The weight xλ exp (−x2 + tx) , λ > −1, t ∈ R

w(x; t) =

 K|x|λ exp(−x2 + tx), x < 0,

M |x|λ exp(−x2 + tx), x ≥ 0,
(3.3.8)

which gives rise to the same difference equations (3.3.4). The difference between the

three cases lies in the initial conditions for the difference equation, hence (3.3.8) can

be thought of as a singular deformation of the classical Hermite weight on R.

Remark 3.3.3. Monic generalized Hermite polynomials are a special case of (3.3.8)

for K = M and t = 0. Their recurrence coefficients are given explicitly by (cf. [33])

αn = 0, 2βn = n+ 2λΩn,

where Ωn is given in (2.9.6).

The following result gives expressions for the recurrence coefficients αn(t) and βn(t) in

the recurrence relation (3.3.2) associated with the semiclassical weight (3.3.1) in terms

of solutions of the fourth Painlevé equation PIV.

Theorem 3.3.1. [39, Theorem 4.13]. Suppose Ψn,λ(z) is given by

Ψn,λ(z) =W
(
ψλ,

dψλ
dz

, . . . ,
dn−1ψλ

dzn−1

)
, Ψ0,λ(z) = 1,

where

ψλ(z) =


D−λ−1

(
−
√

2 z
)

exp
(
1
2
z2
)
, if λ 6∈ N,

dm

dzm

([
1 + erf(z)

]
exp(z2)

)
, if λ = m ∈ N,

with Dλ(ζ) is the parabolic cylinder function and erfc(z) denotes the complementary

error function (see (2.3.3)) that is given by

erfc(z) =
2√
π

∫ ∞
z

exp(−t2) dt.

Then, the recurrence coefficients αn(t) and βn(t) in the three-term recurrence relation

(3.3.2) associated with the semiclassical weight (3.3.1) are given by

αn(t) = 1
2
qn(z) + 1

2
t, (3.3.9a)

βn(t) = −1
8

dqn
dz
− 1

8
q2n(z)− 1

4
zqn(z) + 1

4
λ+ 1

2
n, (3.3.9b)
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3.3 The weight xλ exp (−x2 + tx) , λ > −1, t ∈ R

with z =
1

2
t and qn(z) = −2z + d

dz
ln

Ψn+1,λ(z)

Ψn,λ(z)
, which satisfies the fourth Painlevé

equation PIV

d2qn

dz2
=

1

2qn

(
dqn
dz

)2

+
3

2
q3n + 4zq2n + 2(z2 − α)qn +

β

qn
, (3.3.10)

with parameters

α = 2n+ λ+ 1, β = −2λ2. (3.3.11)

Remark 3.3.4. Filipuk, Van Assche and Zhang [50] considered the orthonormal ver-

sion of the semiclassical Laguerre polynomials {pn}∞n=0 and proved that the coefficients

an(t) and bn(t) in the three-term recurrence relation

xpn(x; t) = bn+1(t) pn+1(x; t) + an(t)pn(x; t) + bn(t)pn−1(x; t), n ∈ N0,

satisfy the fourth Painlevé equation (3.3.10) with qn(z) = an(2z) − 2z. They also ap-

plied different approaches such as the ladder operator formalism and the isomonodromy

formation approaches to prove this result. However, they didn’t identify the specific so-

lution of (3.3.10) [50]. Clarkson and Jordaan [39] explicitly expressed the coefficients

in the monic three-term recurrence relation of these polynomials in terms of the Wron-

skians of parabolic cylinder functions which arise in the description of special function

solutions of the fourth Painlevé equation as well as the second degree, second order

equation satisfied by the associated Hamiltonian function. The parameters in (3.3.11)

satisfy the condition of PIV to have solutions expressible in terms of parabolic cylinder

functions (see Section (2.3.2) for an overview of parabolic cylinder functions).

In the sequel, using (3.3.9), the first few recurrence coefficients associated with the

semiclassical weight (3.3.1) are given as

α0(t) =
1

2
t−

D−λ(−1
2

√
2t)

D−λ−1(−1
2

√
2t)
≡ Ψλ(t),

α1(t) =
1

2
t−Ψλ(t)−

Ψλ(t)

2Ψ2
λ(t)− tΨλ(t)− λ− 1

,

α2(t) =
1

2
t+

2λ+ 4

t
+

Ψλ(t)

2Ψ2
λ(t)− tΨλ(t)− λ− 1

− 2 [(λ+ 1)t2 + 4(λ+ 2)(2λ+ 3)] Ψ2
λ(t)

2t [2tΨ3
λ(t)− (t2 − 4λ− 6)Ψ2

λ(t)− 3(λ+ 1)tΨλ(t))− 2(λ+ 1)2]

+
(λ+ 1)t[t2 + 2(4λ+ 9)]Ψλ(t) + (λ+ 1)2[t2 + 8(λ+ 2)]

2t [2tΨ3
λ(t) + (t2 − 4λ− 6)Ψ2

λ(t)− 3(λ+ 1)tΨλ(t))− 2(λ+ 1)2]
,
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3.4 A differential-difference equation satisfied by semiclassical Laguerre
polynomials

β1(t) = −Ψ2
λ(t) +

1

2
tΨλ(t) +

1

2
(λ+ 1),

β2(t) = −2tΨ3
λ(t)− (t2 − 4λ− 6)Ψ2

λ(t)− 3(λ+ 1)tΨλ(t)− 2(λ+ 1)2

2[Ψ2
λ(t)− 1

2
tΨλ(t)− 1

2
(λ+ 1)]2

.

By using the three-term recurrence relation (3.3.2), the first few monic polynomials

orthogonal with respect to (3.3.1) are given by

L
(λ)
1 (x; t) = x−Ψλ,

L
(λ)
2 (x; t) = x2 − 2tΨ2

λ − (t2 + 2)Ψλ − (λ+ 1)t

2[Ψ2
λ − 1

2
tΨλ − 1

2
(λ+ 1)]

x− 2(λ+ 2)Ψ2
λ − (λ+ 1)Ψλ − (λ+ 1)2

2[Ψ2
λ − 1

2
tΨλ − 1

2
(λ+ 1)]

,

L
(λ)
3 (x; t)

= x3−
{

4(t2 + 2λ+ 4)Ψ3
λ − 2t(t2 − λ− 1)Ψ2

λ − (λ+ 1)(5t2 + 4λ+ 6)Ψλ − 3(λ+ 1)2t

2[2tΨ3
λ − (t2 − 4λ− 6)Ψ2

λ − 3(λ+ 1)tΨλ − 2(λ+ 1)2]

}
x2

+

{
2t(t2 + 2λ+ 4)Ψ3

λ − [t4 + 4(2λ+ 5)(λ+ 2)]Ψ2
λ − 2(λ+ 1)t(t2 − λ− 5))Ψλ

4[2tΨ3
λ − (t2 − 4λ− 6)Ψ2

λ − 3(λ+ 1)tΨλ − 2(λ+ 1)2]

}
x

−
{

(λ+ 1)2(t2 − 4λ− 12)

4[2tΨ3
λ − (t2 − 4λ− 6)Ψ2

λ − 3(λ+ 1)tΨλ − 2(λ+ 1)2]

}
x

+

{
2[(λ+ 1)t2 + 4(λ+ 2)2]Ψ3

λ − (λ+ 1)t(t2 + 2λ+ 8)Ψ2
λ

4[2tΨ3
λ − (t2 − 4λ− 6)Ψ2

λ − 3(λ+ 1)tΨλ − 2(λ+ 1)2]

}
+

{
−2(λ+ 1)2(t2 + 2λ+ 5)Ψλ − (λ+ 1)3t

4[2tΨ3
λ − (t2 − 4λ− 6)Ψ2

λ − 3(λ+ 1)tΨλ − 2(λ+ 1)2]

}
.

In the following section we show that semiclassical Laguerre polynomials not only obey

the recurrence relation (3.2.1) but also a differential-difference equation.

3.4 A differential-difference equation satisfied by

semiclassical Laguerre polynomials

In this section we derive a differential-difference equation satisfied by semiclassical

Laguerre polynomials L
(λ)
n (x; t).

Theorem 3.4.1. Let {L(λ)n }∞n=0 be the sequence of semiclassical Laguerre polynomials

orthogonal with respect to (3.3.1). Then the differential-difference equation satisfied by

these polynomials is given by

x
dL

(λ)
n (x; t)

dx
= An(x; t)L(λ)n (x; t) +Bn(x; t)L

(λ)
n−1(x; t), (3.4.1)
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3.4 A differential-difference equation satisfied by semiclassical Laguerre
polynomials

where An(x; t) and Bn(x; t) are given by

An(x; t) = n− 2βn(t),

Bn(x; t) = 2xβn(t) + (2αn(t)− t) βn(t)

 . (3.4.2)

Proof. For the semiclassical Laguerre weight (3.3.1), an important consequence of Pear-

son’s equation gives

x
dL

(λ)
n (x; t)

dx
=

n∑
k=n−2

Dn,k L
(λ)
k (x; t),

where

Dn,k hk =

∫ ∞
0

x
dL

(λ)
n (x; t)

dx
L
(λ)
k (x; t)wλ(x; t) dx. (3.4.3)

By iterating the recurrence relation (3.3.2)

x2L(λ)n (x; t) = L
(λ)
n+2(x; t) + (αn(t) + αn+1(t))L

(λ)
n+1(x; t) +

(
α2
n(t) + βn+1(t) + βn(t)

)
L(λ)n (x; t)

+ (βn(t)αn(t) + βn(t)αn−1(t)) L
(λ)
n−1(x; t) + βn(t)βn−1(t)L

(λ)
n−2(x; t),

(3.4.4)

the coefficient Dn,k, n− 2 ≤ k ≤ n, is computed as follows:

For k = n− 2, we integrate (3.4.3) by parts using (3.4.4) and orthogonality to obtain

Dn,n−2 =
1

hn−2

∫ ∞
0

x
dL

(λ)
n (x; t)

dx
L
(λ)
n−2(x; t)wλ(x; t) dx, hn−2 6= 0

=
1

hn−2

[∫ ∞
0

L(λ)n (x; t)
(
2x2 − tx− λ− 1

)
L
(λ)
n−2(x; t)wλ(x; t) dx

−
∫ ∞
0

x
dL

(λ)
n−2(x; t)

dx
L(λ)n (x; t)wλ(x; t) dx

]
= 2βn(t)βn−1(t). (3.4.5)

For k = n− 1, using (3.4.3) and (3.4.4) together with orthogonality, yields

Dn,n−1 =
1

hn−1

∫ ∞
0

x
dL

(λ)
n (x; t)

dx
L
(λ)
n−1(x; t)wλ(x; t) dx, hn−1 6= 0

=
1

hn−1

[∫ ∞
0

L(λ)n (x; t)
(
2x2 − tx− λ− 1

)
L
(λ)
n−1(x; t)wλ(x; t) dx

−
∫ ∞
0

L(λ)n (x; t)
dL

(λ)
n−1(x; t)

dx
xwλ(x; t) dx

]
= 2
(
βn(t)αn(t) + βn(t)αn−1(t)

)
− tβn(t)

=
[
2αn(t) + 2αn−1(t)− t

]
βn(t). (3.4.6)
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3.4 A differential-difference equation satisfied by semiclassical Laguerre
polynomials

For k = n, we also employ (3.4.3) and (3.4.4) together with orthogonality, to obtain

Dn,n =
1

hn

∫ ∞
0

x
dL

(λ)
n (x; t)

dx
L(λ)n (x; t)wλ(x; t) dx, hn 6= 0

=
1

hn

[∫ ∞
0

L(λ)n (x; t)
(
2x2 − tx− λ− 1

)
L(λ)n (x; t)wλ(x; t) dx

−
∫ ∞
0

L(λ)n (x; t)x
dL

(λ)
n (x; t)

dx
wλ(x; t) dx

]
=
(
2βn(t) + 2βn+1(t) + 2α2

n(t)
)
− tαn(t)− λ− 1− n

= (2βn(t) + 2βn+1(t)) + (2αn(t)− t)αn(t)− λ− 1− n (3.4.7)

and by using orthogonality, (3.4.3) and the recursion relation

x
dL

(λ)
n (x; t)

dx
= nL(λ)n (x; t) + g(x), g ∈ Pn−1,

we obtain Dn,n = n. Note that (3.4.7) proves (3.3.4b). Hence, substituting the coeffi-

cients in (3.4.5), (3.4.6) and (3.4.7) into (3.4.1), together with expressing L
(λ)
n−2 in terms

of L
(λ)
n and L

(λ)
n−1, we obtain the required result.

Remark 3.4.1. The approach we followed to construct the differential-difference equa-

tion (3.4.1) is similar to the method of ladder operators (cf. [71]).

For semiclassical Laguerre polynomials, the following result immediately follows by

differentiating (3.4.1) with respect to x and the recurrence relation (3.3.2).

Theorem 3.4.2. For the semiclassical Laguerre weight (3.3.1), the monic orthogonal

polynomials L
(λ)
n (x; t) satisfy the second-order differential equation

x2βn(t)θn(x; t)
d2L

(λ)
n

dx2
(x; t) + Un(x; t)

dL
(λ)
n

dx
(x; t) + Vn(x; t)L(λ)n (x; t) = 0, (3.4.8)

where the coefficients Un(x; t) and Vn(x; t) are given by

Un(x; t) = βn(t)θn(x; t)

[
(n− 2βn(t))

(
2x

θn(x; t)
+ n− 1− 2βn−1(t) + (x− αn−1(t))θn−1(x; t)

)

+ βn(t)θn(x; t)θn−1(x; t)

]
and

Vn(x; t) = βn(t)(n− 2βn(t))
(

2x+ (n− 1− 2βn−1(t))θn(x; t) + (x− αn−1(t))θn(x; t)θn−1(x; t)
)

+ β2n(t)θ2n(x; t)θn−1(x; t),

with θn(x; t) = 2x+ 2αn(t)− t.
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3.5 The Lax pair of the Toda system

3.5 The Lax pair of the Toda system

Numerous integrable systems have been shown to be related to orthogonal polynomi-

als through spectral transformations (cf. [6, 26]). One of the interesting properties

of the continuous-time Toda lattice, (3.2.2), is that orthogonal polynomials appear as

eigenfunctions of their Lax pairs. Lax pairs can exist for both discrete and contin-

uous systems and involve expressing an equation in terms of matrices that satisfy a

compatibility condition (cf. [7]).

Lax pairs related to the semiclassical weight (3.3.1) help us to investigate the system

of non-linear difference equations satisfied by the recurrence coefficients. It is known

(cf. [7, 19, 39, 50, 118]) that the three-term recurrence relation in (3.2.1) satisfied by

monic polynomials orthogonal with respect to a semiclassical weight (3.3.1) is one of

the Lax pairs, which is also used in scattering problems in discrete soliton theory.

By rewriting the recurrence relation (3.3.2) in matrix form, we have

Ψn+1(x) = Ln(x)Ψn(x), (3.5.1)

where

Ln(x) =

x− αn −βn
1 0

 and Ψn(x) =
(
L(λ)n (x; t) L

(λ)
n−1(x; t)

)T
.

The differential-difference equation obtained in Theorem 3.4.1 can also be represented

in a semi-discrete Lax representation (cf. [129, Subsection 2.2]) as

∂Ψn(x)

∂x
=Mn(x)Ψn(x), (3.5.2)

where

Mn(x) =
1

x

 n− 2βn (2x− t+ 2αn) βn

−(2x− t+ 2αn−1) 2x2 − xt+ 2βn − n− λ

 .

We observe that the differential system (3.5.2) and the recurrence relation (3.5.1) build

the Lax Pairs whose compatibility leads to the semi-discrete Lax equation

∂Ln
∂x

=Mn+1Ln − LnMn. (3.5.3)
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3.6 Deriving the Volterra evolution equation

This yields1 0

0 0

 =
1

x

(n+ 1)x− (n+ 1)αn + (2αn − t+ 2αn+1)βn+1 (2βn+1 − n− 1) βn

αn(2αn − t) + 2βn+1 − n− λ− 1 (2x− t+ 2αn)βn


− 1

x

nx− nαn + (2αn − t+ 2αn−1)βn (tαn − 2α2
n − 2βn + n+ λ) βn

n− 2βn (2x− t+ 2αn)βn

 .

(3.5.4)

(3.5.4) is given equivalently as x 0

0 0

 =

A B

C 0

 , (3.5.5)

where

A := (2αn + 2αn+1 − t)βn+1 − (2αn − t+ 2αn−1)βn − αn + x,

C := (2βn + 2βn+1) + (2αn − t)αn − λ− 1− 2n,

B := βn [(2βn + 2βn+1)− 2n− (λ+ 1) + αn(2αn − t)] ≡ βnC.

Therefore, the entries B and C in (3.5.5) together with A−x = 0 provide an alternative

proof to determine the non-linear difference equations given in (3.3.4) satisfied by the

recurrence coefficients αn and βn associated with the semiclassical Laguerre weight.

Remark 3.5.1. (i) Semiclassical Laguerre polynomials appear as wave functions

of the Lax pair of the Toda lattice due to a one-parameter deformation of the

Hermite-type measure [26].

(ii) For the semiclassical Laguerre weight (3.3.1), we observe from Theorem 3.2.2

that the recurrence coefficients, which can be expressed in terms of Hankel de-

terminants (3.2.5), also satisfy the differential-difference equations of the Toda

lattice (3.3.5). Besides, it is shown in [50] that the discrete system (3.3.4) for

the recurrence coefficients associated with the semiclassical Laguerre weight can

be obtained from a Bäcklund transformation of the fourth Painlevé equation PIV.

3.6 Deriving the Volterra evolution equation

In this section we derive an evolution equation satisfied by the semiclassical Laguerre

polynomials with respect to the weight wλ(x; t) given in (3.3.1) where λ is fixed and the
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3.6 Deriving the Volterra evolution equation

parameter t varies. The three-term recurrence relation (3.2.1) is one of the Lax pairs

and, in order to derive the remaining Lax pair, we consider the derivative
∂L

(λ)
n (x; t)

∂t
,

which is a polynomial of degree n and therefore can be written, using the orthogonal

basis, as

∂L
(λ)
n (x; t)

∂t
=

n∑
k=0

cn,k(t) L
(λ)
k (x; t). (3.6.1)

Differentiating the normalization relation∫ ∞
0

[
L(λ)n (x; t)

]2
wλ(x; t) dx = hn > 0

with respect to t, we have∫ ∞
0

2L(λ)n

∂L
(λ)
n (x; t)

∂t
wλ(x; t) dx+

∫ ∞
0

[
L(λ)n (x; t)

]2 ∂wλ(x; t)

∂t
dx = 0,∫ ∞

0

2L(λ)n (x; t)

[
n∑
k=0

cn,k(t) L
(λ)
k (x; t)

]
wλ(x; t) dx+

∫ ∞
0

[
xL(λ)n (x; t)

]
Lλn(x; t) wλ(x; t) dx = 0,

which, using the three-term recurrence relation (3.3.2), reduces to

2cn,nhn + αn(t)hn = 0⇔ cn,n = −1

2
αn(t).

Similarly, by differentiating the orthogonality relation∫ ∞
0

L(λ)n (x; t) L
(λ)
k (x; t) wλ(x; t) dx = 0, k < n,

with respect to t, we obtain∫ ∞
0

L
(λ)
k (x; t)

∂L
(λ)
n (x; t)

∂t
wλ(x; t) dx+

∫ ∞
0

L(λ)n (x; t)
∂L

(λ)
k (x; t)

∂t
wλ(x; t) dx

+

∫ ∞
0

L(λ)n (x; t)L
(λ)
k (x; t)

∂wλ(x; t)

∂t
dx = 0.

Hence, for k < n,∫ ∞
0

L
(λ)
k (x; t)

∂L
(λ)
n (x; t)

∂t
wλ(x; t) dx+

∫ ∞
0

L(λ)n (x; t)
∂L

(λ)
k (x; t)

∂t
wλ(x; t) dx

+

∫ ∞
0

[xL(λ)n (x; t)]L
(λ)
k (x; t)wλ(x; t) dx = 0. (3.6.2)

By using the expansion (3.6.1) with its Fourier coefficients, orthogonality and the

recurrence relation (3.3.2), (3.6.2) becomes

cn,khk + hnδk,n−1 = 0, (3.6.3)
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3.7 Symmetrizing semiclassical Laguerre polynomials

where δk,n is the Kronecker-delta function. Hence, equation (3.6.3) implies that cn,n−1 =

−βn(t) and cn,k = 0 for k < n − 1. Therefore, the required Lax pair for the Volterra

(Toda) equation is given by

∂L
(λ)
n (x; t)

∂t
= −αn(t)

2
L(λ)n (x; t)− βn(t)L

(λ)
n−1(x; t).

3.7 Symmetrizing semiclassical Laguerre polynomi-

als

In this section we show that symmetrizing the semiclassical Laguerre weight (3.3.1)

gives rise to the generalized Freud weight (1.2.1) (cf. [41]).

Let {L(λ)n (x; t)}∞n=0 denote the monic semiclassical Laguerre polynomials, orthogonal

with respect to the semiclassical weight (3.3.1).

Define

S2n(x; t) = L(λ)n (x2; t); S2n+1(x; t) = xQ(λ)
n (x2; t) (3.7.1)

where

Qλ
n(x; t) =

1

x

[
L
(λ)
n+1(x; t)−

L
(λ)
n+1(0; t)

L
(λ)
n (0; t)

L(λ)n (x; t)

]
(3.7.2)

are also monic and of degree n. Then, since the polynomial xL
(λ+1)
n ∈ Pn+1, we can

write xL
(λ+1)
n in terms of the semiclassical Laguerre basis {L(λ)k }

n+1
k=0 as

xL(λ+1)
n (x; t) =

n+1∑
k=0

an+1,k(t) L
(λ)
k (x; t),

where the coefficients an+1,k(t), with fixed real parameter t, are given by

an+1,k(t) 〈L(λ)k (x; t), L
(λ)
k (x; t)〉 =

∫ ∞
0

xL
(λ)
k (x; t) L(λ+1)

n (x; t) xλ exp(−x2 + tx) dx

=

∫ ∞
0

L
(λ)
k (x; t) L(λ+1)

n (x; t) xλ+1 exp(−x2 + tx) dx

= 0, for k < n. (3.7.3)

By using (3.7.3), the polynomial xL
(λ+1)
n can be written as

xL(λ+1)
n (x; t) = an+1,n+1(t)L

(λ)
n+1(x; t) + an+1,n(t)L(λ)n (x; t). (3.7.4)
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3.7 Symmetrizing semiclassical Laguerre polynomials

Now, since L
(λ+1)
n (x; t) is monic, we have an+1,n+1(t) = 1 and hence (3.7.4) becomes

xL(λ+1)
n (x; t) = L

(λ)
n+1(x; t) + an+1,n(t)L(λ)n (x; t). (3.7.5)

Evaluating (3.7.5) at x = 0 yields an+1,n(t) = −
L
(λ)
n+1(0; t)

L
(λ)
n (0; t)

and hence

xL(λ+1)
n (x; t) = L

(λ)
n+1(x; t)−

L
(λ)
n+1(0; t)

L
(λ)
n (0; t)

L(λ)n (x; t) = xQλ
n(x; t).

Now, ∫ ∞
0

L(λ)m (x; t)L(λ)n (x; t)xλ exp(−x2 + tx) dx

=

∫ ∞
0

L(λ)m (x2; t) L(λ)n (x2; t)x2λ exp(−x4 + tx2) 2x dx

= 2

∫ ∞
0

L(λ)m (x2; t) L(λ)n (x2; t) |x|2λ+1 exp(−x4 + tx2) dx

=

∫ ∞
−∞

L(λ)m (x2; t) L(λ)n (x2; t) |x|2λ+1 exp(−x4 + tx2) dx

=

∫ ∞
−∞

S2m(x; t)S2n(x; t) |x|2λ+1 exp(−x4 + tx2) dx

= Kn(t) δmn,

which implies that {S2m(x; t)}∞m=0 is a symmetric orthogonal sequence with respect to

the even weight w(x; t) = |x|2λ+1 exp(−x4 + tx2) on R. It is proved in [35, Theorem

7.1] that the kernel polynomials Q
(λ)
m (x; t) are orthogonal with respect to xw(x; t) =

xλ+1 exp(−x2 + tx). Hence

Kn(t) δmn =

∫ ∞
0

Q(λ)
m (x; t)Q(λ)

n (x; t)xλ+1 exp(−x2 + tx) dx

= 2

∫ ∞
0

Q(λ)
m (x2; t)Q(λ)

n (x2; t)x2λ+3 exp(−x4 + tx2) dx

=

∫ ∞
−∞

[
xQ(λ)

m (x2; t)
)
]
[
xQ(λ)

n (x2; t)
]
|x|2λ+1 exp(−x4 + tx2) dx

=

∫ ∞
−∞

S2m+1(x; t)S2n+1(x; t) |x|2λ+1 exp(−x4 + tx2) dx.

Lastly, since in each case the integrand is odd, we have that∫ ∞
−∞

S2m(x; t)S2n+1(x; t) |x|2λ+1 exp(−x4 + tx2) dx

=

∫ ∞
−∞

S2m+1(x; t)S2n(x; t) |x|2λ+1 exp(−x4 + tx2) dx = 0,
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3.8 Conclusion

and we conclude that {Sn(x; t)}∞n=0 is a sequence of polynomials orthogonal with respect

to the generalized Freud weight wλ(x; t) = |x|2λ+1 exp (−x4 + tx2) , x ∈ R.

Note that w̃λ(x; t) = |x|−1wλ(x2; t) = |x|2λ−1 exp(−x4 + tx2) is another symmetric dual

weight function for the semiclassical Laguerre weight (cf. [97]).

Remark 3.7.1. Note that, for t = 0, the result of symmetrization of semiclassical La-

guerre polynomials given in (3.7.1) reduces to the case of half-range generalized Hermite

polynomials given in (2.6.11).

3.8 Conclusion

The classical orthogonal polynomials discussed in Chapter 2 correspond to weights

which appear in numerous applications such as mathematical physics, engineering and

probability theory. The recurrence coefficients in the three-term recurrence relation

(2.2.1) satisfied by classical orthogonal polynomials can be found explicitly and are

simple rational expressions in n. Slight modification of classical weights yields semi-

classical weights, for instance, the semiclassical Laguerre weight (3.3.1) considered in

this chapter.

In Chapter 3, we briefly revisited certain properties of the semiclassical Laguerre poly-

nomials such as the higher order moments, Pearson’s equation associated with the

semiclassical Laguerre weight, the recurrence coefficients and the differential-difference

equations satisfied by the recurrence coefficients as well the semiclassical Laguerre poly-

nomials themselves. As our main results, we obtained a differential-difference equation

and differential equation satisfied by semiclassical Laguerre polynomials as well as an

explicit representation of a 2 × 2 differential (Lax) system in terms of the recurrence

coefficients. Further, the Volterra equation for the semiclassical Laguerre weight was

derived by differentiating the recurrence coefficients with respect to the parameter

t ∈ R introduced in the weight function (3.3.1).

We concluded by showing (cf. [41]) that semiclassical Laguerre polynomials can be

used to construct generalized Freud polynomials using a symmetrization and quadratic

transformation described by Chihara in [35]. In the upcoming chapter, we will inves-

tigate properties of generalized Freud polynomials.
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Chapter 4

Generalized Freud polynomials

4.1 Introduction

In the previous chapter it was shown how semiclassical generalized Freud polynomials

arise from semiclassical Laguerre polynomials via a symmetrization of the semiclassical

Laguerre weight function. In this chapter we study properties of the semiclassical

generalized Freud polynomials. Most of the results obtained in this chapter have been

published in [41].

4.2 The generalized Freud weight

Semiclassical generalized Freud polynomials are orthogonal with respect to the semi-

classical weight

wλ(x; t) = |x|2λ+1 exp
(
−x4 + tx2

)
, x ∈ R, (4.2.1)

with parameters λ > 0 and t ∈ R. The orthogonality relation for monic generalized

Freud polynomials, t being a free real parameter, is given by [41]∫
R
Sn(x; t)Sm(x; t)|x|2λ+1 exp

(
−x4 + tx2

)
dx = hnδmn, hn > 0, (4.2.2)

where the normalization constant hn−1 is defined by

hn =

∫
R
xSn(x; t)Sn−1(x; t)|x|2λ+1 exp

(
−x4 + tx2

)
dx. (4.2.3)
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4.2 The generalized Freud weight

Monic orthogonal polynomials with respect to the symmetric weight (4.2.1) satisfy the

three-term recurrence relation

xSn(x; t) = Sn+1(x; t) + βn(t;λ) Sn−1(x; t), (4.2.4)

where S−1 ≡ 0 and S0 ≡ 1.

Since the weight wλ is even, Sn(x; t) is an even polynomial for n even and an odd

polynomial for n odd [132, p.29].

Multiplying both sides of (4.2.4) by Sn−1(x; t)wλ(x; t) and integrating over the support

of the weight, we obtain

βn(t;λ) =
1

hn−1

∫
R
xSn(x; t)Sn−1(x; t)|x|2λ+1 exp

(
−x4 + tx2

)
dx, (4.2.5)

where hn−1 is the normalization constant given in (4.2.3). In view of (4.2.4) and

(4.2.5), we observe that the sequence of recurrence coefficient {βn(t;λ)}∞n=0 completely

determines the orthogonal polynomials associated with the weight function wλ on R.

4.2.1 Pearson’s equation for the generalized Freud weight

The weight function wλ in (4.2.1) is differentiable on the non-compact support R for

λ > 0 and satisfies the Pearson’s differential equation (1.1.2) with σ(x; t) = x and

τ(x; t) = −4x4 + 2tx2 + 2λ + 2. Since deg(σ) = 1 and deg(τ) = 4, the polynomial

sequence {Sn}∞n=0, orthogonal with respect to (4.2.1), is said to constitute a family of

semiclassical orthogonal polynomials (cf. [13, 14, 39, 67, 96]).

4.2.2 The moments for the generalized Freud weight

Moments of certain semiclassical weights provide the link between the weight function

and the associated Painlevé equation (cf. [39, 41]).

The following lemma assures the finiteness of the moments of the semiclassical gener-

alized Freud weight.

Lemma 4.2.1. Let x, t ∈ R and λ > 0. For the generalized Freud weight wλ in (4.2.1),

the first moment µ0(t;λ) is finite.
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4.2 The generalized Freud weight

Proof. The first moment µ0(t;λ) takes the form

µ0(t;λ) =

∫
R
|x|2λ+1 exp(−x4 + tx2) dx = 2

∫ ∞
0

x2λ+1 exp(−x4 + tx2) dx. (4.2.6)

Since the integrand w(x; t) = x2λ+1 exp(−x4 + tx2) on the right hand side of (4.2.6) is

continuous on [0,∞), it is integrable on [0, K] for any K > 0.

In order to prove

∫ ∞
K

w(x; t) dx is finite, note that lim
x→∞

x2w(x; t) = 0. By definition,

there exists an N > 0 such that x2w(x; t) < 1 whenever x > N . Since

∫ ∞
N

dx

x2
< ∞,

we have that

∫ ∞
N

w(x; t) dx < ∞ for N > 0 and, in particular, N = K. Hence,∫ ∞
0

w(x; t) dx <∞.

Our next result proves that the first moment can be explicitly stated in terms of the

parabolic cylinder function.

Proposition 4.2.1. [41, Section 4]. Let x, t ∈ R and λ > 0. For the generalized Freud

weight (4.2.1), the first moment µ0(t;λ) is given by

µ0(t;λ) = 2
−λ−1

2 Γ(λ+ 1) exp
(
1
8
t2
)
D−λ−1

(
−1

2

√
2t
)
,

µ0(t;n) = 1
2

√
π dn

dtn

(
exp

(
1
4
t2
) [

1 + erf
(
1
2
t
)])

, n ∈ N


with Dv(ξ) is the parabolic cylinder function and erf(z) is the error function.

Proof. Let x2 =
s√
2

and ξ = −t√
2

in (4.2.6), to obtain

µ0(t;λ) = 2

∫ ∞
0

(
s√
2

)λ+ 1
2

exp

[
−1

2
s2 − ξs

] (
2−

5
4 s−

1
2 ds

)
= 2

−λ−1
2

∫ ∞
0

sλ exp

[
−1

2
s2 − ξ s

]
ds

= 2
−λ−1

2 Γ(λ+ 1) exp

(
1

4
ξ2
)
D−λ−1(ξ)

using the integral representation in (2.3.5). Also, when λ = n ∈ Z+,

D−n−1
(
ξ
)

=

√
π

2

(−1)n

n!
exp

(
−1

4
ξ2
)

dn

dξn

(
exp

(
1

2
ξ2
)

erfc

(
1

2

√
2ξ

))
,
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4.2 The generalized Freud weight

with erfc(z) the complementary error function (2.3.7). Since erf(−z) = 1 + erf(z), we

have

µ0(t;n) =
1

2

√
π
dn

dtn

(
exp

(
1

4
t2
) [

1 + erf

(
1

2
t

)])
.

In order to obtain an expression for the higher order moments of the generalized Freud

weight, we require the following result which provides conditions under which the order

of integration and differentiation for functions of two variables may be reversed.

Lemma 4.2.2. [79, Theorem 16.11]. Let I ⊂ R be an open interval and f : R×I → R.

Assume that

(i) f is integrable with respect to x for every fixed t ∈ I;

(ii) for almost all x ∈ R, f(x, t) is differentiable on R with respect to t;

(iii) there exists an integrable function g : R → R with the property that for every

t ∈ I, ∣∣∣∣∂f(x, t)

∂t

∣∣∣∣ ≤ g(x)

holds for almost all x ∈ R.

Then

d

dt

∫
R
f(x, t) dx =

∫
R

∂f(x, t)

∂t
dx.

The higher order moments for the generalized Freud weight are:

Theorem 4.2.1. [41, Section 4]. Let t ∈ I ⊂ R and λ > 0. For the generalized Freud

weight (4.2.1), the higher order moments satisfy

µ2n(t;λ) =
dn

dtn

∫ ∞
−∞
|x|2λ+1 exp

(
−x4 + tx2

)
dx =

dn

dtn
µ0(t;λ), (4.2.7)

whilst the odd ones are µ2n+1(t;λ) = 0, n = 1, 2, . . . .

Proof. Since the generalized weight function (4.2.1) is symmetric on the non-compact

support R, we consider the half-range generalized Freud weight function

w(x; t) = x2λ+1 exp
(
−x4 + tx2

)
, x ∈ R+,
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4.2 The generalized Freud weight

with λ > 0 and t ∈ R. Note that the function w is a rapidly decreasing function.

Besides, w(x; t) is differentiable with respect to t and integrable with respect to x for

every real t by Lemma 4.2.1. Furthermore,

∂w(x, t)

∂t
= x2λ+3 exp

(
−x4 + tx2

)
is continuous on R+. For t ≤ 0 and x ∈ R+, we have exp(tx2) ≤ 1, since tx2 ≤ 0.

Thus, ∣∣∣∣∂w(x, t)

∂t

∣∣∣∣ = |x2λ+1 exp
(
−x4 + tx2

)
| ≤ x2λ+3 exp

(
−x4

)
= G(x),

with ∫ ∞
0

G(x) dx =

∫ ∞
0

x2λ+3 exp
(
−x4

)
dx =

1

4
Γ

(
λ+ 2

2

)
<∞, for λ > 0,

where Γ is defined in (2.3.2). For t ∈ [0, A], A ∈ R+, we have∣∣∣∣∂w(x, t)

∂t

∣∣∣∣ = |x2λ+3 exp
(
−x4 + tx2

)
| ≤ x2λ+3 exp

(
−x4 + Ax2

)
= G(x),

with g(x) integrable for x ∈ R+ and λ > 0.

Now, since all the conditions of Lemma 4.2.2 are satisfied, the proof of (4.2.7) follows

by mathematical induction. For n = 1, we have

d

dt
µ0(t, λ) =

d

dt

∫
R
|x|2λ+1 exp(−x4 + tx2) dx

= 2
d

dt

∫ ∞
0

x2λ+1 exp(−x4 + tx2) dx

= 2

∫ ∞
0

x2+(2λ+1) exp(−x4 + tx2) dx

=

∫ ∞
−∞

x2|x|2λ+1 exp(−x4 + tx2) dx

= µ2(t, λ).

Assume, by inductive argument, that

dn

dtn
µ0(t, λ) = µ2n(t, λ).

It is required to prove that

dn+1

dtn+1
µ0(t, λ) = µ2n+2(t, λ).
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4.3 Recurrence coefficients associated with generalized Freud polynomials

We see that x2nx2λ+1 exp(−x4 + tx2), x ∈ R+, t ∈ I, also satisfies the conditions of

Lemma 4.2.2. Then,

dn+1

dtn+1
µ0(t, λ) =

d

dt

(
dn

dtn
µ0(t, λ)

)
=

d

dt
µ2n(t, λ)

=
d

dt

∫
R
x2n|x|2λ+1 exp(−x4 + tx2) dx

= 2

∫ ∞
0

d

dt

(
x2(λ+n)+1 exp(−x4 + tx2)

)
dx

= 2

∫ ∞
0

x2(λ+n)+1x2 exp(−x4 + tx2) dx

=

∫ ∞
−∞

x2n+2|x|2λ+1x2 exp(−x4 + tx2) dx

= µ2n+2(t, λ) ≡ µ0(t;n+ λ+ 1),

and this completes the induction argument.

Finally, for the odd moments µ2n+1, we have

µ2n+1(t;λ) =

∫ ∞
−∞

x2n+1 |x|2λ+1 exp
(
−x4 + tx2

)
dx = 0, n ∈ N,

since the integrand is odd.

4.3 Recurrence coefficients associated with gener-

alized Freud polynomials

Recurrence coefficients of a three-term recurrence relation associated with certain semi-

classical orthogonal polynomials can often be expressed in terms of solutions of the

Painlevé equations and associated discrete Painlevé equations. We determine explicit

expressions for the recurrence coefficient βn(t;λ) in the three-term recurrence rela-

tion (4.2.4) satisfied by monic generalized Freud polynomials by using their connection

with solutions of the fourth Painlevé equation PIV (3.3.10) and the discrete Painlevé

equation dPI.

Lemma 4.3.1. [41, Lemma 4]. The recurrence coefficient βn(t;λ) in (4.2.4) satisfies

(i) the nonlinear difference equation, known as discrete Painlevé PI (dPI)

βn+1 + βn + βn−1 = 1
2
t+

2n+ (2λ+ 1)[1− (−1)n]

8βn
, (4.3.1)
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4.3 Recurrence coefficients associated with generalized Freud polynomials

where β0 = 0 and β1 is given by

β1(t;λ) =

∞∑
n=0

tn

n!
Γ

(
2(λ+ n) + 4

4

)
∞∑
n=0

tn

n!
Γ

(
2(λ+ n) + 2

4

) ;

(ii) the fourth Painlevé equation PIV

d2βn

dt2
=

1

2βn

(
dβn
dt

)2

+ 3
2
β3
n − tβ2

n + (1
8
t2 − 1

2
An)βn +

Bn

16βn
, (4.3.2)

where the parameters An and Bn are given byA2n

B2n

 =

−2λ− n− 1

−2n2

 ;

A2n+1

B2n+1

 =

 λ− n
−2(λ+ n+ 1)2

 .

Proof. (i) We use an approach due to Freud described in [134, Section 2]. Consider,

for fixed t ∈ R,

In =
1

hn

∫ ∞
−∞

(Sn(x; t) Sn−1(x; t))
′
wλ(x; t) dx, (4.3.3)

where Sn(x; t) are the monic polynomials orthogonal with respect to the gen-

eralized Freud weight wλ(x; t) given in (4.2.1) and the constant hn in (2.1.3).

Then

In =
1

hn

∫ ∞
−∞

(
S
′

n(x; t) Sn−1(x; t) + Sn(x; t) S
′

n−1(x; t)
)
wλ(x; t) dx

=
1

hn

∫ ∞
−∞

S
′

n(x; t) Sn−1(x; t) wλ(x; t) dx

=
1

hn

∫ ∞
−∞

(nxn−1 +Rn−2) Sn−1(x; t) wλ(x; t) dx

=
hn−1
hn

n, (4.3.4)

where Rn−2 ∈ Pn−2. Evaluating (4.3.3) using integration by parts, we obtain

Inhn = [Sn(x; t) Sn−1(x; t)wλ(x; t)]∞−∞ −
∫ ∞
−∞

Sn(x; t) Sn−1(x; t) w
′

λ(x; t) dx

= −
∫ ∞
−∞

Sn(x; t) Sn−1(x; t)

(
2λ+ 1

x
− 4x3 + 2tx

)
wλ(x; t) dx, (4.3.5)

in view of [Sn(x; t) Sn−1(x; t)wλ(x; t)]∞−∞ = 0, where the boundary terms vanish

as the expression −x4 + tx2 in the weight wλ(x; t) only consists of even powers of
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4.3 Recurrence coefficients associated with generalized Freud polynomials

x and hence will dominate the limit as x → ±∞. Since wλ is even, the integral

expression ∫ ∞
−∞

Sn(x; t) Sn−1(x; t)
1

x
wλ(x; t) dx = 0, (4.3.6a)

when n is even and, when n is odd, Sn(x;t)
x

is a polynomial of degree n − 1 and

hence ∫ ∞
−∞

Sn(x; t)

x
Sn−1(x; t) wλ(x; t) dx = hn−1. (4.3.6b)

Iterating the recurrence relation (4.2.4), yields

x2Sn(x; t) = Sn+2(x; t) + (βn + βn+1)Sn(x; t) + βnβn−1Sn−2(x; t), (4.3.7a)

x3Sn(x; t) = Sn+3(x; t) + (βn + βn+1 + βn+2)Sn(x; t) + βn (βn−1 + βn + βn+1)Sn−1(x; t)

+ βnβn−1 βn−2Sn−3(x; t). (4.3.7b)

Employing the identities (4.3.7) and Pearson’s equation for the weight (4.2.1)

together with (4.3.6) into (4.3.5), we obtain

Inhn = 4βn hn−1

(
βn−1 + βn + βn+1 −

t

2

)
− (2λ+ 1)Ωnhn−1, (4.3.8)

where Ωn is given in (2.9.6). Note that (4.3.8) and (4.3.4) yield (4.3.1).

Next, using a Taylor expansion, we obtain, for j = 0, 1, 2, . . .,

µj(t, λ) =

∫ ∞
−∞

xj|x|2λ+1 exp(−x4 + tx2) dx

= 2

∫ ∞
0

xj+2λ+1 exp(−x4)

[
∞∑
n=0

(tx2)n

n!

]
dx

= 2
∞∑
n=0

tn

n!

∫ ∞
0

xj+2λ+2n+1 exp(−x4) dx. (4.3.9)

Using the transformation y = x4 in (4.3.9), we obtain

µj(t, λ) = 2
∞∑
n=0

tn

n!

∫ ∞
0

xj+2λ+1+2n exp(−x4) dx,

=
1

2

∞∑
n=0

tn

n!

∫ ∞
0

y
j+2λ+1+2n

4 exp(−y) y−
3
4 dy,

=
1

2

∞∑
n=0

tn

n!
Γ

(
j + 2λ+ 2n+ 2

4

)
.
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4.3 Recurrence coefficients associated with generalized Freud polynomials

Hence, the coefficient β1 can be given as the ratio of integrals

β1(t;λ) =
µ2(t;λ)

µ0(t;λ)
=

∫ ∞
−∞

x2|x|2λ+1 exp
(
−x4 + tx2

)
dx∫ ∞

−∞
|x|2λ+1 exp

(
−x4 + tx2

)
dx

=

∞∑
n=0

tn

n!
Γ

(
2(λ+ n) + 4

4

)
∞∑
n=0

tn

n!
Γ

(
2(λ+ n) + 2

4

) ,
and this completes the proof.

(ii) See [50, Theorem 6.1].

Remark 4.3.1. 1. Equation (4.3.2) is equivalent to PIV (3.3.10) through the trans-

formation βn(t;λ) = 1
2
ν(z), with z = −1

2
t. Hence

β2n(t;λ) = 1
2
ν
(
z;−2λ− n− 1,−2n2

)
, (4.3.10a)

β2n+1(t;λ) = 1
2
ν
(
z;λ− n,−2(λ+ n+ 1)2

)
, (4.3.10b)

with z = −1
2
t, where ν(z;A,B) satisfies PIV (3.3.10). The conditions on the PIV

parameters in (4.3.10) are precisely those for which PIV has solutions expressible

in terms of the parabolic cylinder function [58]

ψ(z) = µ0(−2z;λ) =
Γ(λ+ 1)

2(λ+1)/2
exp

(
1
2
z2
)
D−λ−1

(√
2 z
)
,

See also [39, Theorem 3.5].

2. The link between the differential equation (4.3.2) and the difference equation

(4.3.1) is given by the Bäcklund transformations

βn+1 =
1

2βn

dβn
dt
− 1

2
βn + 1

4
t+

cn
4βn

, (4.3.11a)

βn−1 = − 1

2βn

dβn
dt
− 1

2
βn + 1

4
t+

cn
4βn

, (4.3.11b)

with cn = 1
2
n+ 1

4
(2λ+ 1)[1− (−1)n]. Letting n→ n+ 1 in (4.3.11b) and substi-

tuting into (4.3.11a) gives the differential equation (4.3.2), while eliminating the

derivative yields the difference equation (4.3.1).
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4.3 Recurrence coefficients associated with generalized Freud polynomials

3. The nonlinear discrete equation (4.3.1) appears in the paper by Freud [55, Equa-

tion. 23, p.5]; See [134] and [5, §2] for a historical review of the origin and study

of equation (4.3.1).

Next, we obtain an explicit formulation of the recurrence coefficient βn(t;λ) in (4.2.4).

Lemma 4.3.2. [41, Lemma 5]. Let x, t ∈ R and λ > 0. The sequence of recurrence co-

efficients {βn(t;λ)}n≥0 in the three-term recurrence relation (4.2.4) are explicitly given

by

β2n(t;λ) =
d

dt
ln
τn(t;λ+ 1)

τn(t;λ)
, (4.3.12a)

β2n+1(t;λ) =
d

dt
ln

τn+1(t;λ)

τn(t;λ+ 1)
, (4.3.12b)

where τn(t;λ) is the Wronskian given by

τn(t;λ) =W
(
φλ,

dφλ
dt

, . . . ,
dn−1φλ

dtn−1

)
= det

[
dj+k

dtj+k
µ0(t;λ)

]n−1
j,k=0

, τ0(t;λ) = 1,

(4.3.12c)

with

φλ(t) = µ0(t;λ) =
Γ(λ+ 1)

2(λ+1)/2
exp

(
1
8
t2
)
D−λ−1

(
− 1

2

√
2 t
)
. (4.3.12d)

Proof. From the parabolic cylinder solutions of PIV (3.3.10) given in [39, Theorem 3.5],

it is easily shown that the equation

d2y

dt2
=

1

2y

(
dy

dt

)2

+ 3
2
y3 − ty2 + (1

8
t2 − 1

2
A)y +

B

16y
, (4.3.13)

has the solutions
{
y
[j]
n

(
t;A

[j]
n , B

[j]
n

)}
j=1,2,3

, for n = 1, 2, . . ., and

y[1]n
(
t;λ+ 2n− 1,−2λ2

)
= 1

2
t+

d

dt
ln
τn−1(t;λ)

τn(t;λ)
, (4.3.14a)

y[2]n
(
t;−2λ− n− 1,−2n2

)
=

d

dt
ln
τn(t;λ+ 1)

τn(t;λ)
, (4.3.14b)

y[3]n
(
t;λ− n+ 1,−2(λ+ n)2

)
=

d

dt
ln

τn(t;λ)

τn−1(t;λ+ 1)
, (4.3.14c)

where τn(t;λ) is the Wronskian (4.3.12c). Comparing (4.3.10) and (4.3.14) gives the

desired result.
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4.4 Coefficients of generalized Freud polynomials

The first few recurrence coefficients βn(t;λ) are given by

β1(t;λ) = Φλ,

β2(t;λ) =
t

2
− Φλ +

λ+ 1

2Φλ
,

β3(t;λ) = −λ+ 1

2Φλ
− Φλ

2Φ2
λ − tΦλ − λ− 1

,

β4(t;λ) =
t

2(λ+ 2)
+

Φλ

2Φ2
λ − tΦλ − λ− 1

+
(λ+ 1)

[
(t2 + 2λ+ 4)Φλ + (λ+ 1)t

]
2(λ+ 2)

[
2(λ+ 2)Φ2

λ − (λ+ 1)tΦλ − (λ+ 1)2
] ,


(4.3.15)

where

Φλ(t) =
d

dt
ln

(
D−λ−1

(
− 1

2

√
2 t
)

exp
(
1
8
t2
))

= 1
2
t+ 1

2

√
2
D−λ

(
− 1

2

√
2 t
)

D−λ−1
(
− 1

2

√
2 t
)

and substituting these into the recurrence relation (4.2.4), we obtain the first few

polynomials Sn(x; t):

S1(x; t) = x,

S2(x; t) = x2 − Φλ,

S3(x; t) = x3 − tΦλ + λ+ 1

2Φλ

x,

S4(x; t) = x4 − 2tΦ2
λ − (t2 + 2)Φλ − (λ+ 1)t

2(2Φ2
λ − tΦλ − λ− 1)

x2

− 2(λ+ 2)Φ2
λ − (λ+ 1)tΦλ − (λ+ 1)2

2(2Φ2
λ − tΦλ − λ− 1)

.

4.4 Coefficients of generalized Freud polynomials

Having explicitly determined the recurrence coefficient βn(t;λ) in terms of the first

moment and special functions associated with the first moment given in (4.3.12d),

the aim of this section is to provide an expression for the coefficients of the monic

generalized Freud polynomials following an approach described in [97].

Theorem 4.4.1. For a fixed t ∈ R, the sequence of monic polynomials {Sn(x; t)}∞n=0,

orthogonal with respect to the semiclassical weight wλ(x; t) = |x|2λ+1 exp(−x4+tx2), λ >
0, x ∈ R, is given by

Sn(x; t) =

bn
2
c∑

k=0

Ψk(n) xn−2k, (4.4.1a)
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4.4 Coefficients of generalized Freud polynomials

where Ψ0(n) = 1 and, for k ∈ {1, 2, . . . , bn
2
c},

Ψk(n) = (−1)k
n+1−2k∑
j1=1

βj1(t;λ)
n+3−2k∑
j2=j1+2

βj2(t;λ)
n+5−2k∑
j3=j2+2

βj3(t;λ) · · ·
n−1∑

jk=jk−1+2

βjk(t;λ),

(4.4.1b)

with βj(t;λ) given by (4.3.12).

Proof. Since the polynomials Sn(x; t) are monic and symmetric of degree n, i.e.,

Sn(−x; t) = (−1)nSn(x; t),

we obtain for a fixed t ∈ R

S2n(x; t) =
n∑
`=0

d2n−2`x
2n−2`

S2n+1(x; t) =
n∑
`=0

d2n−2`+1x
2n−2`+1

 (4.4.2)

where dn−2k = Ψk(n) with Ψ0(n) = 1 and Ψk(n) = 0 for k > bn
2
c. Substituting (4.4.1a)

into the three-term recurrence relation (4.2.4) and comparing the coefficients on each

side yields

Ψk(n+ 1)−Ψk(n) = −βn(t;λ)Ψk−1(n− 1). (4.4.3)

To show (4.4.1b), we apply induction on k. We observe from (4.4.3) that for k = 1, we

have

Ψ1(n)−Ψ1(n− 1) = −βn−1,

and taking a telescopic sum then gives

Ψ1(n) = −
n−1∑
j1=0

βj1(t;λ), for every n ≥ 1.

Suppose that (4.4.1b) holds for values up to k − 1 for every n ∈ N, i.e.,

Ψk−1(n) = (−1)k−1
n+3−2k∑
j1=1

βj1(t;λ)
n+5−2k∑
j2=j1+2

βj2(t;λ)
n+7−2k∑
j3=j2+2

βj3(t;λ) · · ·
n−1∑

jk−1=jk−2+2

βjk−1
(t;λ).

(4.4.4)
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4.4 Coefficients of generalized Freud polynomials

Now, iterating (4.4.3), we obtain

Ψk(n) = Ψk(n− 1)− βn−1Ψk−1(n− 2),

= Ψk(n− 2)− βn−2Ψk−1(n− 3)− βn−1Ψk−1(n− 2),

= Ψk(n− 3)− βn−3Ψk−1(n− 4)− βn−2Ψk−1(n− 3)− βn−1Ψk−1(n− 2),

...

= −β2k−1Ψk−1(2k − 2)− β2kΨk−1(2k − 1)− · · · − βn−2Ψk−1(n− 3)− βn−1Ψk−1(n− 2).

(4.4.5)

Substituting (4.4.4) into (4.4.5) yields (4.4.1b) and hence the result holds true for

k ∈ N and this completes the inductive proof.

An alternative expression for (4.4.1) is given in the following corollary.

Corollary 4.4.1. For a fixed t ∈ R, the sequence of monic polynomials {Sn(x; t)}∞n=0

orthogonal with respect to the semiclassical weight wλ(x; t) = |x|2λ+1 exp(−x4+tx2), λ >
0, x ∈ R, is given by

Sn(x; t) = xn +

bn
2
c∑

m=1

(−1)m

 ∑
k∈W (n,m)

βk1βk2 · · · βkm−1βkm

 xn−2m,

where

W (n,m) = {k ∈ Nm | kj+1 ≥ kj + 2 for 1 ≤ j ≤ m− 1, 1 ≤ k1, km < n}

with βj(t;λ) given by (4.3.12).

Proof. The result follows using an analogous argument as in the proof of Theorem

4.4.1.

Proposition 4.4.1. For the monic generalized Freud polynomials, the normalization

constant hn in (4.2.2) is given by

hn = 〈Sn, Sn〉|x|2λ+1 exp(−x4+tx2) = ‖Sn‖2|x|2λ+1 exp(−x4+tx2) =

bn
2
c∑

k=0

Ψk(n) µ2n−2k(t;λ),

where Ψk(n) is given in (4.4.1b).
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4.5 The differential-difference equation satisfied by generalized Freud
polynomials

Proof. By using the definition of hn in (2.1.3) and the fact in (2.6.2), we have

hn = 〈Sn, Sn〉|x|2λ+1 exp(−x4+tx2) = 〈Sn, xn〉|x|2λ+1 exp(−x4+tx2)

=

∫
R
xn

 bn2 c∑
k=0

Ψk(n)xn−2k

 |x|2λ+1 exp
(
−x4 + tx2

)
dx

=

bn
2
c∑

k=0

Ψk(n)

∫
R
x2n−2k|x|2λ+1 exp

(
−x4 + tx2

)
dx

=

bn
2
c∑

k=0

Ψk(n) µ2n−2k(t;λ). (4.4.6)

Remark 4.4.1. The expression for hn in (4.4.6) is positive since Ψk(n) and {µ2j}j∈N0

are generically positive from the symmetry property of the generalized Freud polynomi-

als.

Remark 4.4.2. For λ > −1 and t ∈ R, we see from (4.2.7) that

hn =

bn
2
c∑

k=0

Ψk(n) µ2n−2k(t;λ) =

bn
2
c∑

k=0

Ψk(n)
dn−k

dtn−k
µ0(t;λ).

4.5 The differential-difference equation satisfied by

generalized Freud polynomials

For fixed t ∈ R, the coefficients An(x; t) and Bn(x; t) in the relation

dPn
dx

(x; t) = −Bn(x; t)Pn(x; t) + An(x; t)Pn−1(x; t), (4.5.1)

satisfied by semiclassical orthogonal polynomials are of interest since differentiation of

this differential-difference equation yields the second order differential equation satisfied

by the orthogonal polynomials.

In this section we study the derivation of a differential-difference equation satisfied

by generalized Freud polynomials using two different techniques, one based on ladder

operators and the second using Shohat’s approach of quasi-orthogonality.
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4.5 The differential-difference equation satisfied by generalized Freud
polynomials

4.5.1 The ladder operator approach

The method of ladder operators was introduced by Chen and Ismail in [28] and a good

summary of the technique is provided in [71, Theorem 3.2.1].

In [27], Chen and Feigin adapt the method of ladder operators to the situation where

the weight function vanishes at one point. Our next result generalizes the work in

[27] by giving a more explicit expression for the coefficients in (4.5.1) when the weight

function wγ(x; t) = |x − k|γ exp
(
− v0(x; t)

)
, x, t, k ∈ R, is positive on the real line,

except for one point.

Theorem 4.5.1. [41, Theorem 2]. Consider the weight

wγ(x; t) = |x− k|γ exp
(
− v0(x; t)

)
, x, t, k ∈ R, (4.5.2)

where v0(x, t) is a continuously differentiable function on R. Assume that the sequence

of polynomials {Pn(x; t)}∞n=0 satisfies the orthogonality relation∫ ∞
−∞

Pn(x; t)Pm(x; t)wγ(x; t)dx = hnδnm.

Then, for γ > 1, Pn(x; t) satisfies the differential-difference equation

(x− k)
dPn(x; t)

dx
= −Bn(x; t)Pn(x; t) + An(x; t)Pn−1(x; t), (4.5.3)

where

An(x; t) =
x− k
hn−1

∫ ∞
−∞

P 2
n(y; t)

[
v′0(x; t)− v′0(y; t)

x− y

]
wγ(y; t) dy + an(t),

Bn(x; t) =
x− k
hn−1

∫ ∞
−∞

Pn(y; t)Pn−1(y; t)

[
v′0(x; t)− v′0(y; t)

x− y

]
wγ(y; t) dy +

γ

hn−1
bn(t),

with

an(t) =
γ

hn−1

∫ ∞
−∞

P 2
n(y; t)

y − k
wγ(y; t) dy, (4.5.4)

bn(t) =

∫ ∞
−∞

Pn(y; t)Pn−1(y; t)

y − k
wγ(y; t) dy.

Proof. For a fixed t ∈ R, P ′n(x; t) is a polynomial of degree n− 1 and can be expressed

in terms of the orthogonal basis as

P ′n(x; t) =
n−1∑
j=0

cn,jPj(x; t). (4.5.5)

69



4.5 The differential-difference equation satisfied by generalized Freud
polynomials

Applying the orthogonality relation and integrating by parts, we obtain

cn,j hj =

∫ ∞
−∞

P ′n(y; t)Pj(y; t)wγ(y; t) dy

=
[
Pn(y; t)Pj(y; t)wγ(y; t)

]∞
−∞
−
∫ ∞
−∞

Pn(y; t)

(
P ′j(y; t)wγ(y; t) + Pj(y; t)w

′
γ(y; t)

)
dy

= −
∫ ∞
−∞

Pn(y; t)Pj(y; t)w
′
γ(y; t)dy

=

∫ ∞
−∞

Pn(y; t)Pj(y; t)

[
v′0(y; t)− γ

y − k

]
wγ(y; t) dy,

provided that γ > 1.

Now, from (4.5.5), we can write

P ′n(x; t) =
n−1∑
j=0

1

hj

(∫ ∞
−∞

Pn(y; t)Pj(y; t)

[
v′0(y; t)− γ

y − k

]
wγ(y; t) dy

)
Pj(x; t)

=

∫ ∞
−∞

Pn(y; t)

[
n−1∑
j=0

Pj(y; t)Pj(x; t)

hj

][
v′0(y; t)− γ

y − k

]
wγ(y; t) dy

=

∫ ∞
−∞

Pn(y; t)

[
n−1∑
j=0

Pj(y; t)Pj(x; t)

hj

]
[v′0(y; t)− v′0(x; t)]wγ(y; t) dy

+ v′0(x; t)

∫ ∞
−∞

Pn(y; t)

[
n−1∑
j=0

Pj(y; t)Pj(x; t)

hj

]
wγ(y; t) dy

− γ
∫ ∞
−∞

Pn(y; t)

y − k

[
n−1∑
j=0

Pj(y; t)Pj(x; t)

hj

]
wγ(y; t) dy

=

∫ ∞
−∞

Pn(y; t)

[
n−1∑
j=0

Pj(y; t)Pj(x; t)

hj

]
[v′0(y; t)− v′0(x; t)]wγ(y; t) dy

− γ
∫ ∞
−∞

Pn(y; t)

y − k

[
n−1∑
j=0

Pj(y; t)Pj(x; t)

hj

]
wγ(y; t) dy.

Next, using the orthogonality relation again, we obtain
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4.5 The differential-difference equation satisfied by generalized Freud
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(x− k)P ′n(x; t)

= (x− k)

∫ ∞
−∞

Pn(y; t)

[
n−1∑
j=0

Pj(y; t)Pj(x; t)

hj

]
[v′0(y; t)− v′0(x; t)]wγ(y; t) dy

−γ
∫ ∞
−∞

Pn(y; t)

(
x− y
y − k

+ 1

)[n−1∑
j=0

Pj(y; t)Pj(x; t)

hj

]
wγ(y; t) dy.

= (x− k)

∫ ∞
−∞

Pn(y; t)

[
n−1∑
j=0

Pj(y; t)Pj(x; t)

hj

]
[v′0(y; t)− v′0(x; t)]wγ(y; t) dy

−γ
∫ ∞
−∞

Pn(y; t)

(
x− y
y − k

)[n−1∑
j=0

Pj(y; t)Pj(x; t)

hj

]
wγ(y; t) dy.

Thus, (4.5.3) now follows from the Christoffel-Darboux formula (2.2.8).

In the sequel, we consider the symmetric weight

wγ(x; t) = |x|γ exp
(
− v0(x; t)

)
, x, t ∈ R, (4.5.6)

with v0(x; t) assumed to be an even, continuously differentiable function on R. The

weight (4.5.6) is a symmetric generalization of the semiclassical weight (4.2.1); i.e.,

k = 0 in (4.5.2).

Lemma 4.5.1. [41, Lemma 1]. Consider the weight wγ(x; t) defined by (4.5.6). As-

sume that the polynomials {Pn(x; t)}∞n=0 are orthogonal on R with respect to wγ(x; t)

and that they satisfy the three-term recurrence relation

Pn+1(x; t) = xPn(x; t)− βn(t; γ)Pn−1(x; t), (4.5.7)

with P0 ≡ 1 and P1(x; t) = x. Then the polynomials Pn(x; t) satisfy∫ ∞
−∞

P 2
n(y; t)

y
wγ(y; t) dy = 0, (4.5.8)∫ ∞

−∞

Pn(y; t)Pn−1(y; t)

y
wγ(y; t) dy = 1

2
[1− (−1)n]hn−1,

where n ∈ Z+ and

hn =

∫ ∞
−∞

P 2
n(y; t)wγ(y; t) dy > 0.

Proof. Since the weight wγ(x; t) in (4.5.6) is even, the integrand in (4.5.8) is odd and

hence ∫ ∞
−∞

P 2
n(y; t)

y
wγ(y; t) dy = 0.
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4.5 The differential-difference equation satisfied by generalized Freud
polynomials

Furthermore, the monic orthogonal polynomials Pn(x; t) satisfy the three-term recur-

rence relation (4.5.7), hence∫ ∞
−∞

Pn(y; t)Pn−1(y; t)

y
wγ(y; t) dy

=

∫ ∞
−∞

[
yPn−1(y; t)− βn−1Pn−2(y; t)

]
Pn−1(y; t)

y
wγ(y; t) dy

=

∫ ∞
−∞

P 2
n−1(y; t)wγ(y; t) dy − βn−1

∫ ∞
−∞

Pn−1(y; t)Pn−2(y; t)

y
wγ(y; t) dy

= hn−1 − βn−1
∫ ∞
−∞

Pn−1(y; t)Pn−2(y; t)

y
wγ(y; t) dy

using (4.5.8). Hence, if we define

Jn =

∫ ∞
−∞

Pn(y; t)Pn−1(y; t)

y
wγ(y; t) dy,

then Jn satisfies the recurrence relation

Jn = hn−1 − βn−1Jn−1 = hn−1 −
hn−1
hn−2

Jn−1,

since βn = hn/hn−1. Iterating this gives

Jn =
hn−1
hn−3

Jn−2 = hn−1 −
hn−1
hn−4

Jn−3 =
hn−1
hn−5

Jn−4 = hn−1 −
hn−1
hn−6

Jn−5,

and so on. Hence, by induction,

J2N =
h2N−1
h1

J2, J2N+1 = h2N −
h2N
h1

J2,

and since

J2 =

∫ ∞
−∞

P2(y; t)P1(y; t)

y
wγ(y; t) dy =

∫ ∞
−∞

P2(y; t)wγ(y; t) dy = 0,

we have that J2N = 0 and J2N+1 = h2N , as required.

Corollary 4.5.1. [41, Corollary 1]. Let wγ(x; t) be the weight defined by (4.5.6).

Assume that the sequence of polynomials {Pn(x; t)}∞n=0 are orthogonal on R with respect

to wγ(x; t). Then, for γ > 1, Pn(x; t) satisfies the differential-difference equation

x
dPn(x; t)

dx
= −Bn(x; t)Pn(x; t) + An(x; t)Pn−1(x; t), (4.5.9)

where

An(x; t) =
x

hn−1

∫ ∞
−∞

P 2
n(y; t)

[
v′0(x; t)− v′0(y; t)

x− y

]
wγ(y; t) dy, (4.5.10a)

Bn(x; t) =
x

hn−1

∫ ∞
−∞

Pn(y; t)Pn−1(y; t)

[
v′0(x; t)− v′0(y; t)

x− y

]
wγ(y; t) dy +

γ

2
[1− (−1)n].

(4.5.10b)
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Proof. The result is an immediate consequence of Theorem 4.5.1 and Lemma 4.5.1.

Lemma 4.5.2. [41, Lemma 2]. Let wγ(x; t) be the weight defined by (4.5.6) and the

coefficients An(x; t) and Bn(x; t) are defined in (4.5.10). Then, when γ > 1,

Bn(x; t) +Bn+1(x; t) =
xAn(x; t)

βn
+ γ − xv′0(x; t).

Proof. From (4.5.10), (4.5.7) and the fact that hn = hn−1βn, we have

Bn(x; t) +Bn+1(x; t)

=
x

hn−1

∫ ∞
−∞

Pn(y; t)Pn−1(y; t)

[
v′0(x; t)− v′0(y; t)

x− y

]
wγ(y; t) dy

+
x

hn

∫ ∞
−∞

Pn(y; t)Pn+1(y; t)

[
v′0(x; t)− v′0(y; t)

x− y

]
wγ(y; t) dy +

γ

2
[1− (−1)n] +

γ

2
[1− (−1)n+1]

=
x

hn

(∫ ∞
−∞

Pn(y; t) [βnPn−1(y; t) + Pn+1(y; t)]×
[
v′0(x; t)− v′0(y; t)

x− y

]
wγ(y; t) dy

)
+ γ

=
x

hn

∫ ∞
−∞

yP 2
n(y; t)

[
v′0(x; t)− v′0(y; t)

x− y

]
wγ(y; t) dy + γ

=
x

hn

∫ ∞
−∞

P 2
n(y; t)

[
v′0(y; t)− v′0(x; t)

]
wγ(y; t) dy

+
x2

hn

∫ ∞
−∞

P 2
n(y; t)

[
v′0(x; t)− v′0(y; t)

x− y

]
wγ(y; t) dy + γ

=
x

hn

∫ ∞
−∞

P 2
n(y, t)v′0(y; t)wγ(y; t) dy − xv′0(x; t)

hn

∫ ∞
−∞

P 2
n(y; t)wγ(y; t) dy

+
x

hn
hn−1An(x; t) + γ

=
xγ

hn

∫ ∞
−∞

P 2
n(y; t)

wγ(y; t)

y
dy − x

hn

∫ ∞
−∞

P 2
n(y, t)w

′
γ(y; t) dy (4.5.11)

− xv′0(x; t) +
xAn(x; t)

βn
+ γ,

since w
′

γ(y; t) =

(
−v′0(y; t) +

γ

y

)
wγ(y; t). The first integral in (4.5.11) vanishes since

the integrand is odd, hence it follows, using integration by parts, that

Bn(x; t) +Bn+1(x; t) = − x

hn

([
wγ(y; t)P 2

n(y; t)
]∞
−∞
−
∫ ∞
−∞

2Pn(y; t)P ′n(y; t)wγ(y; t) dy

)

− xv′0(x; t) +
xAn(x; t)

βn
+ γ,

and the result follows from the orthogonality of Pn.
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Theorem 4.5.2. [41, Lemma 3]. Let wγ(x; t) be the weight defined by (4.5.6) and the

coefficients An(x; t) and Bn(x; t) are defined by (4.5.10). Then(
−x d

dx
+Bn(x; t) + xv′0(x; t)− γ

)
Pn−1(x; t) =

An−1(x; t)

βn−1
Pn(x; t). (4.5.12)

Proof. From the differential-difference equation (4.5.9), we have

xP ′n−1(x; t) = −Bn−1(x; t)Pn−1(x; t) + An−1(x; t)Pn−2(x; t)

= −Bn−1(x; t)Pn−1(x; t) +
An−1(x; t)

βn−1
[xPn−1(x; t)− Pn(x; t)] ,

using the recurrence relation (4.5.7). Hence, using Lemma 4.5.2,

An−1(x; t)

βn−1
Pn(x; t) = −xP ′n−1(x; t)−Bn−1(x; t)Pn−1(x; t) +

xAn−1(x; t)

βn−1
Pn−1(x; t)

= −xP ′n−1(x; t)−Bn−1(x; t)Pn−1(x; t)

+

(
Bn(x; t) +Bn−1(x; t)− γ + xv′0(x; t)

)
Pn−1(x; t)

= −xP ′n−1(x; t) +Bn(x; t)Pn−1(x; t) +
[
xv′0(x; t)− γ

]
Pn−1(x; t)

=

(
−x d

dx
+Bn(x; t) + xv′0(x; t)− γ

)
Pn−1(x; t).

Finally, we derive the differential-difference equation satisfied by the generalized Freud

polynomials associated with the weight (4.2.1).

Lemma 4.5.3. [41, Lemma 9]. For the generalized Freud weight (4.2.1), the monic

orthogonal polynomials Sn(x; t) satisfy∫ ∞
−∞

[
v′(x; t)− v′(y; t)

x− y

]
S2
n(y; t)wλ(y; t) dy = 4

[
x2 − 1

2
t+ βn + βn+1

]
hn, (4.5.13)∫ ∞

−∞

[
v′(x; t)− v′(y; t)

x− y

]
Sn(y; t)Sn−1(y; t)wλ(y; t) dy = 4xhn, (4.5.14)

where n ∈ Z, v(x; t) = x4 − tx2 and

hn =

∫ ∞
−∞

S2
n(y; t)wλ(y; t) dy > 0.
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Proof. For the weight (4.2.1), we have wλ(x; t) = |x|2λ+1 exp
(
−v(x; t)

)
, with

v(x; t) = x4 − tx2,

and so
v′(x; t)− v′(y; t)

x− y
= 4x2 + 4xy + 4y2 − 2t.

Hence the left-hand side of (4.5.13) is∫ ∞
−∞

[
v′(x; t)− v′(y; t)

x− y

]
S2
n(y; t)wλ(y; t) dy

= (4x2 − 2t)

∫ ∞
−∞

S2
n(y; t)wλ(y; t) dy

+ 4x

∫ ∞
−∞

yS2
n(y; t)wλ(y; t) dy + 4

∫ ∞
−∞

y2S2
n(y; t)wλ(y; t) dy

= (4x2 − 2t)hn + 4x

∫ ∞
−∞

Sn(y; t)
[
Sn+1(y; t) + βnSn−1(y; t)

]
wλ(y; t) dy

+ 4

∫ ∞
−∞

[
Sn+1(y; t) + βnSn−1(y; t)

]2
wλ(y; t) dy

= (4x2 − 2t)hn + 4hn+1 + 4β2nhn−1

= 4
[
x2 − 1

2 t+ βn + βn+1

]
hn, (4.5.15)

since βn = hn
hn−1

, the monic orthogonal polynomials Sn(x; t) satisfy the three-term

recurrence relation (4.2.4) and are orthogonal, i.e.,∫ ∞
−∞

Sm(y; t)Sn(y; t)wλ(y; t) dy = 0 if m 6= n. (4.5.16)

The left-hand side of (4.5.14) is∫ ∞
−∞

[
v′(x; t)− v′(y; t)

x− y

]
Sn(y; t)Sn−1(y; t)wλ(y; t) dy

= (4x2 − 2t)

∫ ∞
−∞

Sn(y; t)Sn−1(y; t)wλ(y; t) dy + 4x

∫ ∞
−∞

ySn(y; t)Sn−1(y; t)wλ(y; t) dy

+ 4

∫ ∞
−∞

y2Sn(y; t)Sn−1(y; t)wλ(y; t) dy

= 4x

∫ ∞
−∞

Sn(y; t)
[
Sn(y; t) + βn−1Sn−2(y; t)

]
wλ(y; t) dy

+ 4

∫ ∞
−∞

[
Sn+1(y; t) + βnSn−1(y; t)

]
×
[
Sn(y; t) + βn−2Sn−2(y; t)

]
wλ(y; t) dy

= 4xhn,

using the recurrence relation (4.2.4) and orthogonality (4.5.16).
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Theorem 4.5.3. [41, Theorem 5]. For the generalized Freud weight (4.2.1), the monic

orthogonal polynomials Sn(x; t) satisfy the differential-difference equation

x
dSn
dx

(x; t) = −Bn(x; t)Sn(x; t) + An(x; t)Sn−1(x; t), (4.5.17)

where

An(x; t) = 4xβn(x2 − 1
2
t+ βn + βn+1), (4.5.18a)

Bn(x; t) = 4x2βn +
(2λ+ 1)[1− (−1)n]

2
, (4.5.18b)

with βn the recurrence coefficient in the three-term recurrence relation (4.2.4).

Proof. Corollary 4.5.1 shows that monic orthogonal polynomials Sn(x; t) with respect

to the weight w(x; t) = |x|2λ+1 exp
(
−v(x; t)

)
satisfy the differential-difference equation

(4.5.17), where

An(x; t) =
x

hn−1

∫ ∞
−∞

[
v′(x; t)− v′(y; t)

x− y

]
S2
n(y; t)w(y, t) dy,

Bn(x; t) =
x

hn−1

∫ ∞
−∞

[
v′(x; t)− v′(y; t)

x− y

]
Sn(y; t)Sn−1(y; t)w(y, t) dy +

2λ+ 1

2
[1 + (−1)n].

For the generalized Freud weight (4.2.1), using Lemma 4.5.3 yields the result.

4.5.2 An approach using quasi-orthogonality

Shohat [127] gave a procedure using quasi-orthogonality to derive (4.5.1) for weights

w(x; t) such that w′(x; t)/w(x; t) is a rational function, which we apply to the gener-

alized Freud weight in (4.2.1) [41, Section 4.5]. This technique was rediscovered by

several authors including Bonan, Freud, Mhaskar and Nevai approximately 40 years

later, see [112, p. 126 - 132] and the references therein for more detail. The concept of

quasi-orthogonality is discussed in Section 2.5 (see also [127]).

Derivatives of monic polynomials Sn(x; t) that are orthogonal with respect to the gen-

eralized Freud weight (4.2.1), are quasi-orthogonal of order m = 5 [112, Subsection

4.20] and hence we can write

x
dSn
dx

(x; t) =
n∑

k=n−4

cn,kSk(x; t), (4.5.19)
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where the coefficient cn,k is given by

cn,k =
1

hk

∫ ∞
−∞

x
dSn
dx

(x; t) Sk(x; t) wλ(x; t) dx, (4.5.20)

for n− 4 ≤ k ≤ n and hk > 0.

Integrating by parts, we obtain for n− 4 ≤ k ≤ n− 1,

hkcn,k =
[
xSk(x; t)Sn(x; t)wλ(x; t)

]∞
−∞
−
∫ ∞
−∞

d

dx
[xSk(x; t)wλ(x; t)]Sn(x; t) dx

= −
∫ ∞
−∞

[
Sn(x; t)Sk(x; t) + xSn(x; t)

dSk
dx

(x; t)

]
wλ(x; t) dx

−
∫ ∞
−∞

xSn(x; t)Sk(x; t)
dwλ
dx

(x; t) dx

= −
∫ ∞
−∞

xSn(x; t)Sk(x; t)
dwλ
dx

(x; t) dx

= −
∫ ∞
−∞

Sn(x; t)Sk(x; t)
(
−4x4 + 2tx2 + 2λ+ 1

)
wλ(x; t) dx

=

∫ ∞
−∞

(
4x4 − 2tx2

)
Sn(x; t)Sk(x; t)wλ(x; t) dx, (4.5.21)

since

x
dwλ
dx

(x; t) =
(
− 4x4 + 2x2 + 2λ+ 1

)
wλ(x; t).

Iterating the three-term recurrence relation (4.2.4), the following relations are obtained:

x2Sn = Sn+2 + (βn + βn+1)Sn + βnβn−1Sn−2, (4.5.22a)

x4Sn = Sn+4 + (βn + βn+1 + βn+2 + βn+3)Sn+2

+
[
βn(βn−1 + βn + βn+1) + βn+1(βn + βn+1 + βn+2)

]
Sn

+ βnβn−1(βn−2 + βn−1 + βn + βn+1)Sn−2

+ (βnβn−1βn−2βn−3)Sn−4. (4.5.22b)

Substituting (4.5.22a) and (4.5.22b) into (4.5.21), yields the coefficients {cn,k}n−1k=n−4

in (4.5.19) as follows:

cn,n−4 = 4βnβn−1βn−2βn−3, (4.5.23a)

cn,n−3 = 0, (4.5.23b)

cn,n−2 = 4βnβn−1(βn−2 + βn−1 + βn + βn+1 − 1
2
t), (4.5.23c)

cn,n−1 = 0. (4.5.23d)
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Lastly, we consider the case when k = n. Integration by parts in (4.5.20) yields

hncn,n =

∫ ∞
−∞

x
dSn
dx

(x; t)Sn(x; t)wλ(x; t) dx,

= −1
2

∫ ∞
−∞

S2
n(x; t)

[
wλ(x; t) + x

dwλ
dx

(x; t)

]
dx,

= −1
2
hn +

∫ ∞
−∞

S2
n(x; t)

(
2x4 − tx2 − λ− 1

2

)
wλ(x; t) dx,

=

∫ ∞
−∞

(
2x4 − tx2

)
S2
n(x; t)wλ(x; t) dx− (λ+ 1)hn. (4.5.24)

From the three-term recurrence relation (4.2.4), we have

x2S2
n = (Sn+1 + βnSn−1)

2 = S2
n+1 + 2βnSn+1Sn−1 + β2nS

2
n−1,

x4S2
n = x2

(
S2
n+1 + 2βnSn+1Sn−1 + β2nS

2
n−1)

= x2S2
n+1 + 2βn(xSn+1)(xSn−1) + β2nx

2S2
n−1

=
(
Sn+2 + βn+1Sn

)2
+ 2βn

(
Sn+2 + βn+1Sn

)(
Sn + βn−1Sn−2

)
+ β2n

(
Sn + βn−1Sn−2

)2
= S2

n+2 + 2(βn+1 + βn)Sn+2Sn + (βn+1 + βn)2S2
n + 2βnβn−1Sn+2Sn−2

+ 2βnβn−1(βn + βn+1)SnSn−2 + β2nβ
2
n−1S

2
n−2,

and, by orthogonality,∫ ∞
−∞

x2S2
n(x; t)wλ(x; t) dx = hn+1 + β2

nhn−1 = (βn+1 + βn)hn, (4.5.25)∫ ∞
−∞

x4S2
n(x; t)wλ(x; t) dx = hn+2 + (βn+1 + βn)2hn + β2

nβ
2
n−1hn−2

= βn+2βn+1hn + (βn+1 + βn)2hn + βnβn−1hn

=
[
(βn+1 + βn + βn−1)βn + (βn+2 + βn+1 + βn)βn+1

]
hn

= 1
2

[
t(βn+1 + βn) + n+ λ+ 1

]
hn, (4.5.26)

using hn+1 = βn+1hn and dPI (4.3.1). Hence from (4.5.24), (4.5.25) and (4.5.26) we

have

cn,n = t(βn+1 + βn) + n+ λ+ 1− t(βn+1 + βn)− (λ+ 1)

= n. (4.5.27)

Combining (4.5.23) with (4.5.19), we write

x
dSn
dx

(x; t) = cn,n−4Sn−4(x; t) + cn,n−2Sn−2(x; t) + cn,nSn(x; t). (4.5.28)
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In order to express Sn−4 and Sn−2 in (4.5.28) in terms of Sn and Sn−1, we iterate the

recurrence (4.2.4) to obtain

Sn−2 =
xSn−1 − Sn

βn−1
, (4.5.29)

Sn−3 =
xSn−2 − Sn−1

βn−2
=
x2 − βn−1
βn−1βn−2

Sn−1 −
x

βn−1βn−2
Sn,

Sn−4 =
xSn−3 − Sn−2

βn−3

=
x3 − (βn−1 + βn−2)x

βn−1βn−2βn−3
Sn−1 −

x2 − βn−2
βn−1βn−2βn−3

Sn. (4.5.30)

Substituting (4.5.23), (4.5.27), (4.5.29) and (4.5.30) into (4.5.28) yields

x
dSn
dx

(x; t) = −Bn(x; t)Sn(x; t) + An(x; t)Sn−1(x; t),

where An(x; t) and Bn(x; t) are given by (4.5.18).

4.6 The differential equation satisfied by general-

ized Freud polynomials

We first provide a derivation of a differential equation satisfied by orthogonal poly-

nomials associated with the weight wγ(x; t) = |x|γ exp
(
−v0(x; t)

)
as in (4.5.6). The

differential equation satisfied by polynomials associated with the generalized Freud

weight (4.2.1) follows as a special case.

4.6.1 The differential equation related to the weight (4.5.6)

Theorem 4.6.1. [41, Theorem 3]. For the weight defined by (4.5.6), the associated

monic orthogonal polynomials Pn(x; t) satisfy the differential equation

x
d2Pn

dx2
(x; t) +Rn(x; t)

dPn
dx

(x; t) + Tn(x; t)Pn(x; t) = 0, (4.6.1a)
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where

Rn(x; t) = γ − xv′0(x; t)− xA′n(x)

An(x)
+ 1, (4.6.1b)

Tn(x; t) =
AnAn−1
xβn−1

+B′n(x) +
γBn

x

−Bn

(
v′0(x; t) +

Bn

x

)
− A′n(x)Bn(x)

An(x)
, (4.6.1c)

with

An(x; t) =
x

hn−1

∫ ∞
−∞

P 2
n(y; t)

[
v′0(x; t)− v′0(y; t)

x− y

]
wλ(y; t) dy,

Bn(x; t) =
x

hn−1

∫ ∞
−∞

Pn(y; t)Pn−1(y; t)

[
v′0(x; t)− v′0(y; t)

x− y

]
wλ(y; t) dy +

γ

2
[1− (−1)n].

Proof. Differentiating both sides of (4.5.9) with respect to x, we obtain

xP ′′n (x; t) = (−Bn(x)− 1)P ′n(x, t) + A′n(x)Pn−1(x; t)

−B′n(x)Pn(x; t) + An(x)Pn−1(x; t). (4.6.2)

Substituting (4.5.12) into (4.6.2) yields

xP ′′n (x; t) = (−Bn(x)− 1)P ′n(x; t)−
(
B′n(x) +

An(x)An−1(x)

xβn−1

)
Pn(x; t)

+

(
A′n(x) +

An(x)Bn(x)

x
+ An(x)v′0(x; t)− γAn(x)

x

)
Pn−1(x; t) (4.6.3)

and the result follows by substituting Pn−1(x; t) in (4.6.3) using (4.5.9).

4.6.2 The differential equation related to the weight (4.2.1)

A differential equation satisfied by generalized Freud polynomials associated with the

weight (4.2.1) is given in the following theorem.

Theorem 4.6.2. [41, Theorem 6]. For the generalized Freud weight (4.2.1), the monic

orthogonal polynomials Sn(x; t) satisfy the differential equation

x
d2Sn

dx2
(x; t) +Rn(x; t)

dSn
dx

(x; t) + Tn(x; t)Sn(x; t) = 0, (4.6.4)
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where

Rn(x; t) = x

(
−4x3 + 2tx+

2λ+ 1

x
− 2x

x2 − 1
2
t+ βn + βn+1

)
, (4.6.5a)

Tn(x; t) = x
[
4nx2 + 4βn + 16βn(βn + βn+1 − t

2
)(βn + βn−1 − t

2
)

− 8βnx
2 + (2λ+ 1)[1− (−1)n]

x2 − 1
2
t+ βn + βn+1

+ 4(2λ+ 1)(−1)nβn

+(2λ+ 1)[1− (−1)n]

(
t− 1

2x2

)]
. (4.6.5b)

Proof. In Theorem 4.6.1 we proved that the coefficients in the differential equation

(4.6.1a) satisfied by polynomials orthogonal with respect to wγ(x; t) = |x|γ exp (−v0(x; t))

are given by (4.6.1b) and (4.6.1c). For the generalized Freud weight (4.2.1), we use

(4.6.1b) and (4.6.1c) with γ = 2λ + 1, v′0(x; t) = 4x3 − 2tx and An and Bn given by

(4.5.18) to obtain the stated result.

Remark 4.6.1. The differential equation (4.6.4) for the special case where λ = −1
2

and t is replaced by 2t is given in [8, Equation 6] though here the statement on p. 104

needs to be corrected to read

Stn(x) = 4a2n(t)

[
4x2

(
a2n−1(t) + a2n(t) + a2n+1(t)− t−

2

x2 − t+ a2n(t) + a2n+1(t)

)
+4
(
a2n(t) + a2n+1(t)− t

) (
a2n−1(t) + a2n(t)− t

)
+ 1
]
.

4.7 Conclusion

In this chapter we described some analytic properties of the generalized Freud poly-

nomials that were published in [41]. Properties discussed include the higher-order

moments, Pearson’s equation related to the weight wλ in (4.2.1), an explicit formula-

tion for the recurrence coefficient βn(t;λ), as well as the generalized Freud polynomials

themselves and other related properties such as the differential-difference and differen-

tial equations satisfied by the generalized Freud polynomials.

The connection of special function solutions of the fourth Painlevé equation to the

recurrence coefficients associated with generalized Freud polynomials orthogonal with

respect to the weight (4.2.1) played a fundamental role in determining explicit formu-
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lations for the polynomials and recurrence coefficients associated with the generalized

Freud weight.

In the next chapter we explore additional properties of the generalized Freud polynomi-

als and their recurrence coefficients, investigating, in particular, aymptotic properties

of the polynomials and recurrence coefficients as the parameters t and/or the degree n

tend to infinity.
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Chapter 5

Asymptotic properties satisfied by

generalized Freud polynomials

5.1 Introduction

In Chapter 4 we have found an explicit formulation of the recurrence coefficient βn(t;λ)

and the monic polynomials {Sn(x; t)}∞n=0, orthogonal with respect to the generalized

Freud weight (4.2.1), using the connection between the moments and special function

solutions of the fourth Painlevé equation.

In this chapter we study asymptotic properties of the polynomials {Sn(x; t)}∞n=0. The

investigation of estimates and asymptotic expansions of the recurrence coefficients of

the three-term recurrence relation (4.2.4) satisfied by Freud-type polynomials is im-

portant in the context of practical applications (cf. [86, 87, 110, 111, 112, 119]).

We provide an extension of Freud’s conjecture for the recurrence coefficient βn(t;λ)

associated with the generalized Freud weight (4.2.1). In particular, following [55], we

provide the asymptotic behavior of the recurrence coefficient βn(t;λ) as the degree or,

alternatively, the parameter tends to infinity. Using a new approach, we also inves-

tigate the asymptotic behavior of the recurrence coefficient βn(t;λ) via the theory of

Painlevé equations. We further investigate, by using the differential-difference and dif-

ferential equations obtained in Chapter 4, the asymptotics of the normalized differential

equation satisfied by monic generalized Freud polynomials.
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5.2 Limit relations for the coefficient βn(t;λ)

Freud [55], via the Freud equations, proved the conjecture that the asymptotic behav-

ior of the recurrence coefficient βn(t;λ) in the three-term recurrence relation (4.2.4)

satisfied by the polynomials {Pn(x)}∞n=0 orthogonal with respect to the positive weight

w(x) = |x|λ exp(−|x|m), m ∈ N,

with λ > −1, could be described by

lim
n→∞

βn n
− 2
m =

[
Γ(1

2
m) Γ(1 + 1

2
m)

Γ(m+ 1)

] 2
m

. (5.2.1)

An equivalent statement for equation (5.2.1) is (cf. [55, 88])

lim
n→∞

βn n
− 2
m =

1

4

[
Γ(1

2
) Γ(m

2
)

Γ(m+1
2

)

]− 2
m

=

[
2

Γ(m)(
Γ(m

2
)
)2
]− 2

m

, (5.2.2)

that follows from the recursive property of the Gamma function given in (2.3.3). Note

that Freud proved the result for orthonormal polynomials while (5.2.1) is stated for

monic orthogonal polynomials. Freud proved that the existence of the limit for m =

2n, n ∈ N, implied that the limit is given by the expression in (5.2.1) but he only

managed to prove the existence of the limit (5.2.1) for m = 2, 4, 6. Significant progress

was made by Magnus (cf. [88, 89]), when he proved (5.2.1) for m an even positive

integer and also extended Freud’s conjecture to the recurrence coefficients associated

with the weight

w(x) = exp
(
−Q(x)

)
(5.2.3)

where Q(x) is a polynomial of even degree with a positive leading coefficient. A proof

of Freud’s conjecture for recurrence coefficients associated with exponential weights

(5.2.3) where Q(x) is more general, is due to Lubinsky, Mhaskar and Saff [87], see also

[44, 55, 112].

The objective of this section is to adapt existing techniques (cf. [56, 89, 109, 134]) to

extend the Freud conjecture to the recurrence coefficients βn(t;λ) associated with the

generalized Freud weight (4.2.1).

Lemma 5.2.1. For a fixed parameter t ∈ R and λ > 0, let {βn(t;λ)}∞n=0 be a real,

positive sequence satisfying the discrete Painlevé PI equation in (4.3.1). Then, the

sequence {βn(t;λ)√
n
}n∈N is bounded.
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5.2 Limit relations for the coefficient βn(t;λ)

Proof. To prove this lemma we first divide the discrete Painlevé equation (4.3.1) by n

to obtain
1

4
+

(2λ+ 1)Ωn

4n
= (Yn +Xn) +

β2
n(t;λ)

n
− t

2

βn(t;λ)

n
, (5.2.4)

where

Yn =
βn(t;λ)βn+1(t;λ)

n
, Xn =

βn(t;λ)βn−1(t;λ)

n

and Ωn is given in (2.9.6).

Note that both Xn and Yn are positive since βn(t;λ) > 0 for all n ∈ N.

By letting ωn = βn(t;λ)√
n

, (5.2.4) takes the form

1

4
+

(2λ+ 1)Ωn

4n
= (Yn +Xn) + ω2

n −
tωn
2
√
n
,

and we have
1

4
+

(2λ+ 1)Ωn

4n
≤ 1

4
+ 2λ+ 1, ∀n ∈ N. Consequently,

(Yn +Xn) + ω2
n −

tωn
2
√
n
≤ 1

4
+ 2λ+ 1 := M. (5.2.5)

Since Yn +Xn > 0, (5.2.5) implies that

ω2
n −

t

2
√
n
ωn −M ≤ 0,

and hence
t

2
√
n
−
√

t2

4n
+ 4M

2
≤ ωn ≤

t
2
√
n

+
√

t2

4n
+ 4M

2
,

for any fixed t ∈ R. Thus, the sequence {βn(t;λ)√
n
}n∈N is bounded for a fixed t ∈ R and

λ > 0.

Next we give the limit relation satisfied by the recurrence coefficient βn(t;λ) in (4.2.4).

Theorem 5.2.1. Let t ∈ R be fixed, λ > 0 and suppose {βn(t;λ)}∞n=0 is a real, positive

sequence satisfying the discrete Painlevé equation PI (4.3.1). Then

lim
n→∞

βn(t;λ)√
n

=

√
3

6
. (5.2.6)

Proof. In Lemma 5.2.1 we have seen that the sequence {βn(t;λ)√
n
}n∈N is bounded and

positive, that is,

0 <
βn(t;λ)√

n
< R, where R =

t
2
√
n

+
√

t2

4n
+ 4M

2
. (5.2.7)
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Consequently, 0 ≤ | t√
n
βn(t;λ)√

n
| ≤ | t√

n
| R. Hence, t√

n
βn(t;λ)√

n
→ 0 as n→∞. On the other

hand, dividing both sides of (4.3.1) by n yields

1

4
+

(2λ+ 1)Ωn

4n
+

t

2
√
n

βn(t;λ)√
n︸ ︷︷ ︸

g(n)

=
βn(t;λ)√

n

(
βn+1(t;λ)√

n
+
βn(t;λ)√

n
+
βn−1(t;λ)√

n

)
.

(5.2.8)

Note that g(n) → 1

4
as n → ∞ and by setting A = lim inf

n→∞

βn(t;λ)√
n

and B =

lim sup
n→∞

βn(t;λ)√
n

and taking lim inf
n→∞

on both sides of (5.2.8), we obtain

1

4
= A (A+ A+ A) ≤ A (B + A+B) = A2 + 2AB. (5.2.9)

Similarly, by taking lim sup on both sides of (5.2.8), we have

1

4
= B(B +B +B) ≥ B(A+B + A) = B2 + 2AB. (5.2.10)

Combining (5.2.9) and (5.2.10), we obtain

B2 + 2AB ≤ A2 + 2AB =⇒ B2 ≤ A2,

which implies B ≤ A. Hence A = B and 3A2 = 1
4
, which means A = B =

√
3

6
.

Remark 5.2.1. Nevai [109] and later Freud [55] proved that the recurrence coefficient

βn(t;λ) associated with a special case of the symmetric weight (4.2.1) with λ = −1
2

and

t = 0 has the same limit as the one in Theorem 5.2.1 (see also [62, 84, 85, 87, 88,

89, 91, 114] for detailed information). Van Assche [134] obtained the same limit as in

Theorem 5.2.1 for the case where λ > −1 and t = 0.

Theorem 5.2.2. Let {βn(t;λ)}∞n=0 be a real sequence satisfying the recurrence relation

(4.2.4) and the discrete Painlevé equation PI (4.3.1). Then, for t ∈ R, λ > 0,

lim
n→∞

βn(t;λ)√
n+ (2λ+ 1)Ωn

=

√
3

6
.

Proof. The result follows from [5, Theorem 6.5].

The following corollary is an extension of [109, Theorem 2] and is a consequence of the

limit relation (5.2.6) for the recurrence coefficient βn(t;λ).
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Corollary 5.2.1. Let the sequence {βn(t;λ)}∞n=0 be a real solution of the recurrence

(4.2.4) and the discrete Painlevé equation PI (4.3.1). Then, for t ∈ R,

∞∑
n=1

∣∣∣∣2βn(t;λ)√
n

− 1√
3

∣∣∣∣ <∞.
It is of interest to mention the contribution by Damelin in [44] where he considers

asymptotics of recurrence coefficients associated with weights |x|ρ exp (−Q) when Q is

an even polynomial of fixed degree.

Proposition 5.2.1. [44, Theorem 2.1]. For the generalized Freud weight wλ(x; t) in

(4.2.1), with t ∈ R, the recurrence coefficients βn(t;λ) satisfy

βn+1(t;λ)

βn(t;λ)
= 1 +O

(
1

n

)
as n→∞,

βn(t;λ)

a2n(t)
=

1

4

[
1 +O

(
1

n

)]
as n→∞,

where an is the Mhaskar-Rahmanov-Saff number (cf. [84, Equation 1.11]) which is the

unique positive solution of the equation

n =
2

π

∫ 1

0

an t Q
′
(ant)(1− t2)−

1
2 dt,

for Q(x) = x4 − tx2.

5.3 Asymptotics of the recurrence coefficient βn(t;λ)

as t→∞

In this section we provide an asymptotic analysis of the recurrence coefficient βn(t;λ)

associated with polynomials orthogonal with respect to the generalized Freud weight

(4.2.1) using the theory of Painlevé equations.

As shown in Chapter 4, the first few recurrence coefficients βn(t;λ) for the generalized

Freud polynomials are given by (4.3.15) in terms of parabolic cylinder functions

Φλ(t) =
d

dt
ln
(
D−λ−1

(
− 1

2

√
2 t
)

exp
(
1
8
t2
))

= 1
2
t+ 1

2

√
2
D−λ

(
− 1

2

√
2 t
)

D−λ−1
(
− 1

2

√
2 t
) . (5.3.1)
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5.3 Asymptotics of the recurrence coefficient βn(t;λ) as t→∞

We note that

Φλ(t) =
d

dt
lnφλ(t),

where φλ(t) = exp(1
8
t2)D−λ−1

(
−1

2

√
2 t
)

satisfies

d2φλ

dt2
− 1

2
t
dφλ
dt
− 1

2
(λ+ 1)φλ = 0,

and in the next lemma we will prove that Φλ(t) satisfies the Riccati equation

dΦλ

dt
= −Φ2

λ + 1
2
tΦλ + 1

2
(λ+ 1). (5.3.2)

Lemma 5.3.1. [41, Lemma 6]. The function Φλ(t) defined by (5.3.1) satisfies the

Riccati equation (5.3.2) and has the asymptotic expansion

Φλ(t) = 1
2
t+

∞∑
n=1

an
t2n−1

as t→∞, (5.3.3)

where the constants an are given by the nonlinear recurrence relation

an+1 = 2(2n− 1)an − 2
n∑
j=1

ajan+1−j,

with a1 = λ. In particular, as t→∞,

Φλ(t) = 1
2
t+

λ

t
+

2λ(1− λ)

t3
+

4λ(λ− 1)(2λ− 3)

t5
+O

(
t−7
)
. (5.3.4)

Proof. Letting Φλ(t) =
d

dt
lnφλ(t) in (5.3.2) yields

d2φλ

dt2
− 1

2
t
dφλ
dt
− 1

2
(λ+ 1)φλ = 0,

which has solution [117, §32.10(iv)]

φλ(t) =

(
C1D−λ−1

(
− 1

2

√
2 t
)

+ C2D−λ−1
(
1
2

√
2 t
))

exp(1
8
t2),

with C1 and C2 arbitrary constants. Hence setting C1 = 1 and C2 = 0 gives the

solution (5.3.1) and shows that Φλ(t) satisfies (5.3.2).

Substituting (5.3.3) into (5.3.2) gives

∞∑
n=1

(2n− 1)an
t2n

= 1
2
t
∞∑
n=1

an
t2n−1

+

(
∞∑
n=1

an
t2n−1

)2

− 1
2
λ

= a1 − λ+ 1
2

∞∑
n=1

an+1

t2n
+
∞∑
n=1

1

t2n

n∑
j=1

ajan+1−j,
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hence, comparing coefficients of powers of t gives a1 = λ and

an+1 = 2(2n− 1)an − 2
n∑
j=1

ajan+1−j,

as required. Hence

a1 = λ, a2 = −2λ(λ− 1), a3 = 4λ(λ− 1)(2λ− 3),

which gives (5.3.4) as required.

It was shown in (5.3.4) that, as t→∞,

Φλ(t) = 1
2
t+

λ

t
+

2λ(1− λ)

t3
+

4λ(λ− 1)(2λ− 3)

t5
+O

(
t−7
)
.

Hence, as t→∞,
1

Φλ(t)
=

2

t
− 4λ

t3
+

8λ(2λ− 1)

t5
+O

(
t−7
)
.

The following result motivates the strong connection between the recurrence coefficient

βn(t;λ) and the Painlevé σ-equations. An essential ingredient here is the fact that the

recurrence coefficients βn(t;λ) can be expressed as Hankel determinants which arise

in the solution of the Painlevé equations and the Painlevé σ-equations, the second-

order, second-degree equations associated with the Hamiltonian representation of the

Painlevé equations.

Lemma 5.3.2. [41, Lemma 7]. Let Hn(t;λ) be defined by

Hn(t;λ) =
d

dt
ln τn(t;λ), (5.3.5)

where τn(t;λ) is the Wronskian given by

τn(t;λ) =W
(
φλ,

dφλ
dt

, . . . ,
dn−1φλ

dtn−1

)
,

with

φλ(t) =
Γ(λ+ 1)

2(λ+1)/2
exp

(
1
8
t2
)
D−λ−1

(
− 1

2

√
2 t
)
.

Then Hn(t;λ) satisfies the second-order, second-degree equation(
d2Hn

dt2

)2

− 1

4

(
t
dHn

dt
−Hn

)2

+
dHn

dt

(
2
dHn

dt
− n

)(
2
dHn

dt
− n− λ

)
= 0. (5.3.6)
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5.3 Asymptotics of the recurrence coefficient βn(t;λ) as t→∞

Proof. Equation (5.3.6) is equivalent to SIV, the PIV σ-equation(
d2σ

dz2

)2

− 4

(
z
dσ

dz
− σ

)2

+ 4
dσ

dz

(
dσ

dz
+ 2θ0

)(
dσ

dz
+ 2θ∞

)
= 0, (5.3.7)

as shown in [39, Theorem 4.11]. Equation (5.3.6) is the same as [41, Equation 46].

Special function solutions of SIV (5.3.7) in terms of parabolic cylinder functions have

been classified in [58, 116]; see also [39, Theorem 3.5].

We remark that (5.3.7) and hence also (5.3.6), is equivalent to equation SD-I.c in the

classification of second order, second-degree equations with the Painlevé property by

Cosgrove and Scoufis [43], an equation first derived and solved by Chazy [25].

Proposition 5.3.1. [41, Lemma 8] As t → ∞, the recurrence coefficient βn(t;λ) has

the asymptotic expansion

β2n(t;λ) = n
t
− 2n(2λ−n+1)

t3
+O

(
t−5
)
,

β2n+1(t;λ) = t
2

+ λ−n
t
− 2(λ2−4λn+n2−λ−n)

t3
+O

(
t−5
)
,

 (5.3.8)

for n ∈ N. Further, as t→ −∞,

β2n(t;λ) = −n
t

+
2n(2λ+ 3n+ 1)

t3
+O

(
t−5
)
,

β2n+1(t;λ) = −λ+ n+ 1

t
+

2(λ+ n+ 1)(λ+ 3n+ 2)

t3
+O

(
t−5
)
.

Proof. In terms of the function Hn(t;λ), defined by (5.3.5), the recurrence coefficients

are given as

β2n(t;λ) = Hn(t;λ+ 1)−Hn(t;λ), (5.3.10a)

β2n+1(t;λ) = Hn+1(t;λ)−Hn(t;λ+ 1). (5.3.10b)

As t→∞, Hn(t;λ) has the asymptotic expansion

Hn(t;λ) =
nt

2
+
nλ

t
+

2nλ(n− λ)

t3
+O

(
t−5
)
, (5.3.11)

for n = 0, 1, 2, . . ., [39, Lemma 5.2]. Note that the functions Ωn(t) and Sn(t) in [39]

are the same as our functions τn(t;λ) and Hn(t;λ), respectively. Substituting (5.3.11)

in (5.3.10) immediately gives the result.
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In Figures 5.1a and 5.1b we show that there is a completely different behavior for

βn(t;λ) as t → ∞, depending on whether n is even or odd, which is also reflected in

Proposition 5.3.1, i.e., the even recurrence coefficients β2n(t;λ) undergo decaying as

t → ∞ and the odd recurrence coefficients β2n+1(t;λ) exhibit an algebraic growth as

t→∞.

(a) β2n(t; 1
2) (b) β2n−1(t;

1
2)

Figure 5.1: Plots of the recurrence coefficients for n = 1(Black), n = 2(Red), n = 3(Blue),

n = 4(Green), n = 5(Purple).

Based on (5.3.8), it follows that for the generalized Freud weight (4.2.1),

β2n(t;λ)→ 0 and β2n+1(t;λ)→ t

2
as t→∞.

5.4 Large n-asymptotics of the recurrence coeffi-

cient βn(t;λ)

The asymptotic expansion for orthogonal polynomials with Freud weight exp(−|x|α),

for α > 0 on R, has been studied by several authors (cf. [11, 85, 98, 109, 110, 112,

114]). Lew and Quarles [85] provided the asymptotic expansion for the recurrence

coefficient associated with the semiclassical weight |x|ρ exp (−x4) , x ∈ R, ρ > −1

following work by Nevai [5, 109, 110, 111] for the weight exp (−x4) (see also [114] for

the asymptotic series related to the weight exp (−x4)). An asymptotic series expansion

for the recurrence coefficient associated with the semiclassical weight exp(−x4 + tx2)

91



5.4 Large n-asymptotics of the recurrence coefficient βn(t;λ)

was investigated by Clarke and Shizgal [36] in the context of bimode polynomials (see

also the recent work in [40] for more details). In this section we prove the existence of

an asymptotic series expansion and provide this expansion for the recurrence coefficient

βn(t;λ) associated with the generalized Freud weight (4.2.1).

Theorem 5.4.1. The recurrence coefficient βn(t;λ), associated with the generalized

Freud weight (4.2.1), satisfying the nonlinear difference equation

βn(t;λ)
(
βn+1(t;λ) + βn(t;λ) + βn−1(t;λ)− 1

2
t
)

=
1

4
(n+ (2λ+ 1)Ωn), (5.4.1)

where Ωn = 1−(−1)n
2

, has the asymptotic expansion

βn(t;λ) =

√
n

12

(
1 +

t

2
√

3n
+

t2

24n
+

48− t4

1152n2
+

t

48
√

3n5
+O(n−3)

)
when n is even and

βn(t;λ) =

√
n

12

(
1 +

t

2
√

3n
+

24λ+ t2 + 12

24n
+
−t4 − 24t2(1 + 2λ)− 96(1 + 6λ(1 + λ))

1152n2

+
t

48
√

3n5
+O(n−3)

)
,

when n is odd.

Proof. Following the approach in [17], we obtain the existence of an asymptotic ex-

pansion of the coefficient βn(t;λ) associated with the generalized Freud weight (4.2.1).

βn(t;λ) (βn−1(t;λ) + βn+1(t;λ)) > 0 since

βn(t;λ) =
hn
hn−1

=
‖Sn‖2wλ
‖Sn−1‖2wλ

> 0.

Hence, it follows from the discrete equation (5.4.1) that

4β2
n(t;λ) < 2tβn(t;λ) + [n+ (2λ+ 1)Ωn], (5.4.2)

where λ > 0 and Ωn is given in (2.9.6).

(5.4.2) is quadratic in βn(t;λ), hence

0 < βn(t;λ) <
1

4
t+

1

2

√
1

4
t2 + n+ (2λ+ 1)Ωn. (5.4.3)

Furthermore, the binomial expansion of

[
1 +

(
1
4
t2 + (2λ+ 1)Ωn

)
n

] 1
2

yields
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0 < βn(t;λ) <
1

4
t+

1

2

√
1

4
t2 + n+ (2λ+ 1)Ωn

=
1

4
t+

1

2

√
n

(
1 +

1
4 t

2 + (2λ+ 1)Ωn

n

) 1
2

=
1

4
t+

1

2

√
n

[
1 +

1

2

(
1
4 t

2 + (2λ+ 1)Ωn

n

)
+
∞∑
k=2

(−1)k−1(2k − 3)!

22k−2(k!)(k − 2)!

(
1
4 t

2 + (2λ+ 1)Ωn

n

)k ]

=
1

4
t+

1

2

√
n+

1
4 t

2 + (2λ+ 1)Ωn

2
√
n

+
1

2

√
n

[ ∞∑
k=2

ck

(
1
4 t

2 + (2λ+ 1)Ωn

n

)k ]

=
1

4
t+

1

2

√
n+

1
4 t

2 + (2λ+ 1)Ωn

2
√
n

+
1

2

∞∑
k=2

ck
(14 t

2 + (2λ+ 1)Ωn)k

n
2k−1

2

=
1

4
t+

1

2

√
n+

1
4 t

2 + (2λ+ 1)Ωn

2
√
n

+
1

2

∞∑
k=2

ck

(
1

4
t2 + (2λ+ 1)Ωn

)k
n−

2k−1
2 (5.4.4)

where ck =
(−1)k−1(2k − 3)!

22k−2(k!)(k − 2)!
=

(−1)k−1 Γ(2k − 2)

22k−2Γ(k + 1) Γ(k − 1)
.

The recurrence coefficient βn associated with the weight (4.2.1) is positive and diverges

as n→∞, which suggests that we can write

βn = nrβ̂n,

where the quantity β̂n approaches some positive constant, say B, as n→∞. Hence

βn ∼ Bnr (5.4.5)

as n→∞, where r is an unknown positive constant. Substituting the asymptotic form

(5.4.5) into (5.4.1), we obtain

12B2n2r − 2tBnr = n+ 1 + (2λ+ 1)Ωn+1.

Since we require this equation to hold for all n = 1, 2, . . ., it follows that r = 1
2
, B = 1

2
√
3

and the leading behavior is given by βn ∼
√
n

2
√
3
.

Based on (5.4.4), we now consider

βn = n
1
2 β̂n, (5.4.6)

where the asymptotic expansion of (5.4.6) is assumed to be

β̂n =
∞∑
k=0

bkε
k, (5.4.7)
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5.4 Large n-asymptotics of the recurrence coefficient βn(t;λ)

with

ε =
1

nz
, (5.4.8)

z is an unknown positive constant and the first term in the series given by b0 = B = 1
2
√
3
.

Substituting (5.4.6) into (5.4.1), we obtain

n
1
2 β̂n

(
(n+ 1)

1
2 β̂n+1 + n

1
2 β̂n + (n− 1)

1
2 β̂n−1 − t

2

)
=

1

4
(n+ (2λ+ 1)Ωn) . (5.4.9)

Dividing both sides of (5.4.9) by n yields

β̂n

[(
1− 1

n

) 1
2

β̂n−1 +

(
1 +

1

n

) 1
2

β̂n+1 + β̂n −
t

2n
1
2

]
=

1

4

(
1 +

(2λ+ 1)Ωn

n

)
and by letting z = 1

2
in (5.4.8), we can write this as

β̂n

(√
ε2 − 1β̂n−1 +

√
ε2 + 1β̂n+1 + β̂n −

t

2
ε

)
=

1

4

(
1 + ε2(2λ+ 1)Ωn

)
. (5.4.10)

In order to evaluate the coefficients bk, k = 0, 1, 2, . . . , 5, in the asymptotic series for

β̂n given in (5.4.7), we note that

β̂n = A ' b0 + b1ε+ b2ε
2 + b3ε

3 + b4ε
4 + b5ε

5,

β̂n+1 =
∞∑
k=0

bk

(
ε√
ε2 + 1

)k
' B√

ε2 + 1(ε2 + 1)2
,

β̂n−1 =
∞∑
k=0

bk

(
ε√

ε2 − 1

)k
' C√

ε2 − 1(ε2 − 1)2
,

where the approximations

B =(b1 + b3 + b5)ε
5 +

(
15b0

8
+

3b2
2

+ b4

)
ε4 + (2b1 + b3)ε

3 +

(
5b0
2

+ b2

)
ε2 + b1ε+ b0

C = (b1 − b3 + b5) ε
5 +

(
15b0

8
+ b4 −

3b2
2

)
ε4 + (b3 − 2b1) ε

3 +

(
b2 −

5b0
2

)
ε2 + b1ε+ b0

are obtained using the series expansions of β̂n+1, β̂n−1 and the binomial expansions of

(ε2 ± 1)` for ` ∈ {1
2
, 1, 3

2
, 5

2
, 2} in powers of ε, keeping only the terms of order ε5 and

lower.

Substituting the expressions (5.4.11) into (5.4.10), we obtain

A

((
1− ε2

)2 (
ε2 + 1

)2(
A− tε

2

)
+
(
B
(
1− ε2

))2
+
(
C
(
ε2 + 1

))2)
=

1

4

(
ε2 + 1

)2 (
ε2 − 1

)2 (
(2λ+ 1)ε2Ωn+1

)
(5.4.12)

=


1
4

(ε2 + 1)
2

(ε2 − 1)
2

if n is even,

1
4

(ε2 + 1)
2

(ε2 − 1)
2

((2λ+ 1)ε2 + 1) if n is odd,
(5.4.13)
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5.5 n-asymptotics of the differential equation

Expanding all terms in (5.4.12) in powers of ε, retaining only terms of order ε5 and

lower, yields

ε5
(
b0t−

b4t

2
+ 6b5b0 −

49b1b0
4

+ 6b2b3 + 6b1b4

)
+ ε4

(
−b3t

2
− 1

4
25b20 + 6b4b0 + 3b22 + 6b1b3

)
+ε3

(
−b2t

2
+ 6b1b2 + 6b0b3

)
+ ε2

(
−b1t

2
+ 3b21 + 6b0b2

)
+ ε

(
6b0b1 −

b0t

2

)
+ 3b20

=


ε8

4
− ε4

2
+ 1

4
if n is even,

− ε4

2
+
(
λ
2

+ 1
4

)
ε2 + 1

4
if n is odd.

(5.4.14)

Equating the coefficients of ε on both sides of this equation yields the coefficients

bk, k = 1, 2, . . . , 5 in (5.4.7).

Remark 5.4.1. Computational algorithms to determine the coefficients involved in

the asymptotic expansion for the recurrence coefficients of polynomials orthogonal with

respect to exponential-type weights are given in [91, 123] and a Fortran source code can

be found in [91, p. 231].

Remark 5.4.2. The existence of an asymptotic series for the recurrence coefficient

βn(t;λ) associated with the generalized Freud weight (4.2.1) could probably also be ob-

tained via a Riemann-Hilbert approach (cf. [15, 17, 46, 82]) but an investigation of this

is beyond the scope of this thesis.

5.5 n-asymptotics of the differential equation

Linear second-order differential equations, which are at the heart of special function

theory, can be used in various ways to obtain asymptotic approximations and inequal-

ities. This section focuses on exploring asymptotic results for generalized Freud poly-

nomials via the differential equation satisfied by monic generalized Freud polynomials

in chapter 4 (see also [40, 41]).

Monic polynomials Sn(x; t), orthogonal with respect to the generalized Freud weight

(4.2.1), satisfy the differential equation (4.6.4), that can be transformed into normal

form through the change of the dependent variable

Zn(x; t) = Sn(x; t) exp

(
1

2

∫ x

Rn(s; t)ds

)
(5.5.1)
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5.5 n-asymptotics of the differential equation

and the corresponding equation for Zn(x; t) is of the form

d2Zn

dx2
(x; t) +Bn(x; t)Zn(x; t) = 0, (5.5.2)

where

Bn(x; t) = Tn(x; t)− 1

4
(Rn(x; t))2 − 1

2

dRn(x; t)

dx
.

The advantage of this transformation is that it does not change the independent vari-

able and the zeros of Zn(x; t) remain the same as those of Sn(x; t).

Theorem 5.5.1. Suppose {Sn(x; t)}∞n=0 is a sequence of monic polynomials orthogonal

with respect to the semiclassical weight wλ(x; t) in (4.2.1) and let Zn(x; t) be given by

(5.5.1). Then Zn(x; t) satisfies the differential equation (5.5.2) with

Bn(x; t) =4βn[(t− 2βn − 2βn+1)(t− 2βn − 2βn−1) + (2λ+ 1)(−1)n + 1]− t[1 + (2λ+ 1)(−1)n]

+ 4tx4 − 4x6 + x2
(
4λ+ 4n− t2 + 8

)
−

2(λ+ 1)λ− (2λ+ 1)(−1)n + 1
2

2x2

+
1− 2x2(4βn − t+ 2x2) + (2λ+ 1)(−1)n

βn + βn+1 − t
2 + x2

− 3x2

(βn + βn+1 − t
2 + x2)2

. (5.5.3)

Remark 5.5.1. We observe from Theorem 5.4.1 that, as n→∞,

βn(t;λ) =
( n

12

) 1
2

+O(1),

and hence it follows that

Rn(x; t) = −4x3 + 2tx+
2λ+ 1

x
+O(n−

1
2 ),

Tn(x; t) =

(
2

√
n

3

)3

+O(n) =

(
4

3
n

) 3
2

+O(n).

The following corollary gives an asymptotic equivalence for the differential equation

(5.5.2).

Corollary 5.5.1. Fix an interval ∆ ⊂ R. For all x ∈ ∆ and n sufficiently large,

equation (5.5.2) is asymptotically equivalent to

d2Zn

dx2
(x; t) + (4nx2)Zn(x; t) = O(n

3
2 )Zn(x; t). (5.5.4)

Proof. Fix x ∈ ∆. We let ψn(x) = βn + βn+1 − t
2

+ x2. Then, ψ
′
n(x) = 2x is O(1)

because x is bounded. If n is sufficiently large, then
1

ψn(x)
is O(1) since it follows from
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5.6 Conclusion

Theorem 5.4.1 that βn ∼ n
1
2 . Observe inside the brackets of (5.5.3) that there are 4

terms and we will examine their asymptotic behavior individually.

In the first line of equation (5.5.3), we have

4βn[(t− 2βn − 2βn+1)(t− 2βn − 2βn−1) + (2λ+ 1)(−1)n + 1]− t(1 + (2λ+ 1)(−1)n),

which is of O(n
3
2 ) since βn(t;λ) ∼ n

1
2 and x ∈ ∆. The term x4 − 4x6 in the second

line of (5.5.3) is of O(1) when n is sufficiently large since x, t ∈ ∆ and λ is real. We

can also observe that the term x2 (4λ+ 4n− t2 + 8) in the second line of (5.5.3) is

O(1). Besides, the term 1−2x2(4βn−t+2x2)+(2λ+1)(−1)n
βn+βn+1− t2+x2

is o(1) (which is also O(1)), since

βn(t;λ) ∼ n
1
2 and x ∈ ∆. Further, we can see that the term − 3x2

(βn+βn+1− t2+x2)2
is O(n−1)

and hence combining all these facts complete the proof.

Remark 5.5.2. (5.5.4) can be written as

2x2ψ2
n(x)

d2Zn

dx2
(x; t) + C(x)Zn(x; t) = O(n

3
2 )Zn(x; t), (5.5.5)

where C(x) = 2x2ψ2
n(x)Bn(x) and Bn(x) = 2

(n
3

) 3
2

+O(n).

5.6 Conclusion

In Chapter 5 we have obtained asymptotic properties of the generalized Freud polyno-

mials, as well as the recurrence coefficients, as the degree, or alternatively, the param-

eter, tends to infinity. An asymptotic expansion for the recurrence coefficient βn(t;λ)

associated with the generalized Freud weight using the theory of Painlevé equations

was also obtained. By applying the asymptotics of the recurrence coefficient βn(t;λ)

in Theorem 5.4.1 to the differential equation satisfied by the generalized Freud poly-

nomials, we obtained a normalized differential equation in its asymptotic form which

is valid when x belongs to a fixed, finite interval. The results in this chapter, together

with those in [40], provide a framework for possible future investigation of the asymp-

totic behavior of the generalized Freud polynomials Sn(x; t), as will be discussed in the

concluding chapter.
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Chapter 6

Summary and future perspectives

Semiclassical orthogonal polynomials, in particular generalized Freud polynomials,

have been the main focus of this thesis. Generalized Freud polynomials are orthogonal

with respect to the so-called generalized Freud inner product

〈p, q〉wλ =

∫
R
p(x) q(x) |x|2λ+1 exp(−x4 + tx2) dx, λ > 0, t, x ∈ R. (6.0.1)

We employed the theory of Painlevé equations as our main tool to study recurrence co-

efficients of the three-term recurrence relation satisfied by the semiclassical generalized

Freud polynomials.

In Chapter 4 we focused on analytic properties of the generalized Freud polynomi-

als. It had been believed that for Freud-type weight functions, explicit expressions

for the recurrence coefficients in the three-term recurrence relation and the polyno-

mials orthogonal with respect to this weight were non-existent (cf. [117, §18.32]). As

one of our pioneering results, we obtained an explicit formulation for the recurrence

coefficient βn(t;λ) in the three-term recurrence relation (4.2.4) associated with the

semiclassical generalized Freud weight (4.2.1), showing that βn(t;λ) can be expressed

in terms of Wronskians of parabolic cylinder functions that arise in the description

of special function solutions of the fourth Painlevé equation PIV. We also obtain an

explicit formulation for the generalized Freud polynomials in terms of the recurrence

coefficients βn(t;λ).

The higher order moments associated with the generalized Freud weight, which are

expressible in terms of the derivatives of the first moments, where the first moments

are given explicitly in terms of parabolic cylinder functions (cf. Proposition 4.2.1) have
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also been explored. It is given in [41] that these moments of the semiclassical general-

ized Freud weight provide the link between the semiclassical generalized Freud weight

and the associated Painlevé equation. Future work involves extending our research

to establish links between recurrence coefficients associated with a broader class of

Shohat-Freud type exponential weights and the theory of Painlevé-type equations.

Continuing our emphasis on the links between the theory of Painlevé equations and

semiclassical generalized Freud polynomials, we studied certain (analytic and asymp-

totic) properties of polynomials orthogonal with respect to the generalized Freud

weight. Specifically, we found that the recurrence coefficients satisfy a non-linear dif-

ference equation, which is called discrete Painlevé equation dPI and also a non-linear

special function known to be continuous fourth Painlevé equation PIV (cf. Lemma

4.3.1). One of the analytic properties we derived is a differential-difference equation

(cf. Theorem 4.5.3) satisfied by generalized Freud polynomials. We used two different

techniques, one based on the approach of ladder operators and the other using Shohat’s

approach of quasi-orthogonality. We also derived a second-order linear ordinary dif-

ferential equation satisfied by generalized Freud polynomials. The coefficients in this

differential equation are rational functions that depend on the recurrence coefficient

βn(t;λ) associated with the weight (4.2.1) (cf. Theorem 4.6.2). In future work, we

plan to investigate the recurrence coefficients associated with semiclassical orthogonal

polynomials by using alternative methods, such as the method of ladder operators via

the large n -asymptotics of the Hankel determinant.

Since recurrence coefficients are fundamental entities in the theory of orthogonal poly-

nomials with respect to exponential weights (1.1.4), the asymptotic expansion of the

sequence of recurrence coefficients {βn(t;λ)}∞n=0 associated with the generalized Freud

weight is of interest for applications. In Chapter 5 we obtained certain asymptotic

properties of the generalized Freud polynomials, as well as the recurrence coefficients,

as the degree, or alternatively, the parameter tends to infinity. We have employed an

extension of Freud’s conjecture for the recurrence coefficient βn(t;λ) associated with

the generalized Freud weight (cf. Theorem 5.2.2). We proved the existence of an asymp-

totic expansion by adapting results by Bleher and Its [17] (see Theorem 5.4.1) and we

explored the asymptotic behavior of the recurrence coefficient βn(t;λ) via the theory

of Painlevé equations. Further, we applied the large n-asymptotics of the recurrence
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coefficient βn(t;λ) in Theorem 5.4.1 to the differential equation (4.6.4) satisfied by

the generalized Freud polynomials to obtain a normalized differential equation in its

asymptotic form, which is valid when x belongs to a fixed, finite interval (cf. Theorem

5.5.1).

Following the work in [35], we showed in [41] that generalized Freud polynomials arise

from the semiclassical Laguerre polynomials by symmetrization. In Chapter 3 we

discussed the link between semiclassical Laguerre polynomials and Painlevé equations

which involved incorporating orthogonality with certain compatibility relations (3.5.3)

of Laguerre-Freud type weights that are governed by the Pearson equation (1.1.2). For

the semiclassical Laguerre weight (3.3.1), the associated Pearson equation (1.1.2) will

generate a polynomial for σ(x) and τ(x), which in turn controls the outcome of the key

entries in the differential-difference equation (Theorem 3.4.1) and differential structure

(Theorem 3.4.2) governing the semiclassical Laguerre polynomials.

For the semiclassical Laguerre weight (3.3.1), we also derived two coupled non-linear

difference equations (3.3.4) for the recurrence coefficients αn and βn. An alternative

formal way to derive these non-linear difference equations via the Laguerre method is

given in [57, 59, 129]. We also note that not only the semiclassical Laguerre weight

(3.3.1), but also the semiclassical Hermite weight (3.3.7), leads to the same difference

equations (3.3.4) for the recurrence coefficients.

We remark here that analyzing other semiclassical weight functions with the approach

described in Chapter 3, may yield new discrete Painlevé type systems, that might not

have yet appeared in the literature.

The overall theme of this thesis has been the investigation of certain properties of

the generalized Freud polynomials by making use of their connection to the Painlevé

equations. Particularly, Painlevé equations appear when we are studying the recur-

rence coefficient of the semiclassical generalized Freud polynomials. The work in this

thesis illustrates the increasing significance of the Painlevé equations in the field of

semiclassical orthogonal polynomials and special functions.

Many aspects and problems originating from the present work deserve further investi-

gation. Here we mention several possible lines of investigation:

(i) Analyzing the existence of an asymptotic expansion for the recurrence coeffi-
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cient βn(t;λ) associated with the generalized Freud polynomials using Riemann-

Hilbert’s technique.

(ii) Investigating properties of the zeros of generalized Freud polynomials by using

the second-order differential equation we have obtained in Theorem 4.6.2.

(iii) Exploring Plancherel-Rotach type asymptotics for polynomials orthogonal with

respect to the generalized Freud weight (4.2.1). Alternatively, determine whether

a generating function for the generalized Freud polynomials provide us with

asymptotic results by using a Darboux-type method.

(iv) Determining a Lax formulation for the generalized Freud polynomials, by adapt-

ing the approach used for semiclassical Laguerre polynomials. This may perhaps

shed some light on the close relation between the non-linearizability of the cor-

responding difference equation satisfied by recurrence coefficients and the notion

of integrability of the associated discrete integrable system.

(v) Investigating a class of polynomials orthogonal with respect to a more general

Shohat-Freud type weight using the techniques described in this thesis.
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Painlevé equation, Constr. Approx, 41:529–587 (2015).

[16] D. Bessis, C. Itzykson and J.B. Zuber, Quantum field theory techniques in

graphical enumeration, Adv. in Appl. Math., 1:109-157. (1980).

[17] P. Bleher and A. Its, Semiclassical asymptotics of orthogonal polynomials,

Riemann-Hilbert problem, and universality in the matrix model, Ann. Math.,

150:185–266 (1999).
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dont l’intégrale générale a ses points critiques fixes, Acta Math., 34:317–385 (1911).

[26] X.M. Chen, X.K. Chang, J.Q. Sun, X.B Hu and Y.N. Yeh, Three semi-

discrete integrable systems related to orthogonal polynomials and their generalized

determinant solutions, Nonlinearity, 28:1–31 (2015).

[27] Y. Chen and M.V. Feigin, Painlevé PIV and degenerate Gaussian Unitary
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cellàn and W. van Assche (Editors), Lect. Notes Math., Vol. 1883, Springer-Verlag,

Berlin, 331–411, 2006.

[38] P.A. Clarkson, Recurrence coefficients for discrete orthonormal polynomials
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the Complex Plane, Studies in Math., 28, Walter de Gruyter, 2002.

[67] E. Hendriksen and H. van Rossum, Semi-classical orthogonal polynomials,

in Orthogonal Polynomials and Applications, Polynômes Orthogonaux et Applica-
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[101] A. Máté, P. Nevai and V. Totik, Asymptotics for the greatest zeros of

orthogonal polynomials, SIAM J. Math. Anal, 17:745–751 (1986).
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