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Abstract

If P is a given graph property, we say that a graph G is locally P if 〈N(v)〉 has property P for every
v ∈ V (G) where 〈N(v)〉 is the induced graph on the open neighbourhood of the vertex v. We consider the
complexity of the Hamilton Cycle Problem for locally traceable and locally hamiltonian graphs with small
maximum degree. The problem is fully solved for locally traceable graphs with maximum degree 5 and also
for locally hamiltonian graphs with maximum degree 6 [S. A. van Aardt, M. Frick, O. Oellermann and J.
P. de Wet, Global cycle properties in locally connected, locally traceable and locally hamiltonian graphs,
Discrete Applied Mathematics, 2016]. We show that the Hamilton Cycle Problem is NP-complete for locally
traceable graphs with maximum degree 6 and for locally hamiltonian graphs with maximum degree 10. We
also show that there exist regular connected nonhamiltonian locally hamiltonian graphs with connectivity 3,
thus answering two questions posed by Pareek and Skupien [C. M. Pareek and Z. Skupień, On the smallest
non-Hamiltonian locally Hamiltonian graph, J. Univ. Kuwait (Sci.), 10:9 - 17, 1983].
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1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). The order n(G) and size e(G) of G are the
cardinalities of V (G) and E(G), respectively. If X ⊆ V (G) then 〈X〉 denotes the subgraph of G induced by
X. If v ∈ V (G) then N(v) denotes the open neighbourhood of v in G. A Hamilton path in a graph G is a is
a path that contains all the vertices in V (G), and a graph that contains a Hamilton path is called traceable.
A Hamilton cycle is a cycle that contains all the vertices in V (G) and a graph that contains a Hamilton
cycle is called a hamiltonian graph. For undefined concepts we refer the reader to [7].

In 1965, Skupień [23] defined a graph to be locally hamiltonian if 〈N(v)〉 is hamiltonian for every vertex v
in G. In general, if P is a given graph property, we say that G is locally P if 〈N(v)〉 has property P for
every v ∈ V (G). Locally connected, locally traceable and locally hamiltonian graphs have been intensively
studied - see for example [1, 2, 5, 6, 8, 9, 11, 12, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26]. We abbreviate locally
connected, locally traceable and locally hamiltonian to LC, LT and LH, respectively.

The Hamilton Cycle Problem (abbreviated HCP) is the problem of deciding whether a given graph is
hamiltonian. Akiyama, Nishizeki and Saito [3] proved the following.
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Theorem 1.1. [3] The HCP is NP-complete for 2-connected cubic planar bipartite graphs.

The HCP for LC graphs with maximum degree at most 4 was fully solved by Chartrand and Pippert [9].
They proved that K1,1,3 is the only nonhamiltonian connected LC graph with maximum degree at most
4. Gordon, Orlovich, Potts and Strusevich [15] showed that the HCP is NP-complete for LC graphs with
maximum degree 7 and they conjectured that it is polynomially solvable for LC graphs with maximum
degree 6 or less. However, van Aardt, Burger, Frick, Thomassen and de Wet [1] showed that the HCP is
NP-complete for LC graphs with maximum degree 5 or greater.

Van Aardt, Frick, Oellerman and de Wet [2] showed that the HCP for LT graphs with maximum degree at
most 5 is fully solved. In Section 3 we show that there exist connected nonhamiltonian LT graphs of order
n with maximum degree 6 for every n ≥ 7 and we prove that the HCP for LT graphs with maximum degree
at least 6 is NP-complete.

In Section 4 we investigate the hamiltonicity of LH graphs. Pareek and Skupień [21] showed that the
smallest connected nonhamiltonian LH graph has order 11. This graph has maximum degree 8, and this led
Pareek to speculate that every connected LH graph with maximum degree at most 7 is hamiltonian, and
he published a proof for this [20]. However, we claim that his proof is not valid, and we explain the reasons
for our claim. Nevertheless, it follows from Pareek’s work that every connected LH graph with maximum
degree 6 is hamiltonian. We show that for every n ≥ 11 there exist connected nonhamiltonian LH graphs
with maximum degree at most 9, but to date we have found only finitely many with maximum degree 8.
We prove that the HCP for LH graphs with maximum degree 10 is NP-complete.

In Section 5 we respond to two questions concerning nonhamiltonian LH graphs posed by Pareek and
Skupień [21], namely

• Does there exist a nonhamiltonian connected LH graph that is regular?

• Is K4 the only regular LH graph that is not 4-connected?

We show by construction that the answer to the first question is positive. The constructed graphs are
3-connected, so this answers the second question in the negative.

Entringer and MacKendrick [11] established an upper bound for f(n), the largest integer such that every
connected LH graph of order n contains a path of length f(n). Their results imply that limn→∞ f(n)/n = 0.
In Section 6 we show that if p(n,∆) is the largest integer such that every connected planar LH graph of
order n with maximum degree ∆ contains a path of length p(n,∆), then limn→∞ p(n,∆)/n = 0 for ∆ ≥ 11.

In the next section we present techniques that are used in subsequent sections to construct LT graphs and
LH graphs with certain properties.

2. Construction techniques for LT and LH graphs

Van Aardt and de Wet [26] provided the following procedure, called edge identification of two LT graphs,
which will be used in Section 3 to construct LT graphs with certain properties. For edge identification, a
suitable edge in a graph G is defined as an edge uv such that there is a Hamilton path in 〈N(u)〉 that ends
at v and a Hamilton path in 〈N(v)〉 that ends at u.

Construction 2.1. [26] Let G1 and G2 be two LT graphs such that E(Gi) contains a suitble edge uivi,
i = 1, 2. Now create a graph G of order n(G1) + n(G2) − 2 by identifying the vertices u1 and u2 and the
vertices v1 and v2 and call the resulting vertices u and v, while retaining all the edges present in the original
two graphs (see Figure 1). We say that G is obtained from G1 and G2 by identifying suitable edges.

Our next result shows that certain properties are retained when graphs are combined by means of edge
identification. Parts (a) and (b) were proved in [26].
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Figure 1: The edge identification procedure.

Lemma 2.2. Let G1 and G2 be two LT graphs, each with order at least 3, and let G be a graph obtained
from G1 and G2 by identifying suitable edges. Then the following hold.

(a) G is LT .

(b) If G1 and G2 are planar, then G is planar.

(c) If G is hamiltonian, so are both G1 and G2.

Proof. (c) We will use the same notation as in Construction 2.1. Since {v, u} is a cutset in G, it follows
that no Hamilton cycle in G can include the edge vu. This implies that any Hamilton cycle in G has the form
vQ1uQ2v where v1Q1u1 is a Hamilton path in G1 and v2Q2u2 is a Hamilton path in G2. Since viui ∈ E(Gi)
for i = 1, 2 it follows that each of G1 and G2 has a Hamilton cycle.

The following observation from [26] will be useful for selecting suitable edges to use in edge identification.

Observation 2.3. [26] Let v be a vertex of degree two in a LT graph. Then any edge incident with v is
suitable for use in edge identification.

Van Aardt and De Wet also described the following procedure, called triangle identification of two LH
graphs, which will be used in Sections 4, 5 and 6 to construct LH graphs with certain properties. For
triangle identification, a suitable triangle in a graph G is defined as a triangle X such that for each vertex
x ∈ V (X), there is a Hamilton cycle of 〈NG(x)〉 that contains the edge X − x.

Construction 2.4. For i = 1, 2, let Gi be an LH graph that contains a suitable triangle Xi with V (Xi) =
{ui, vi, wi}. Now create a graph G of order n(G1) + n(G2) − 3 by identifying the vertices ui, i = 1, 2 to a
single vertex u, and similarly the vertices vi, i = 1, 2 to v and wi, i = 1, 2 to w, while retaining all the edges
present in the original two graphs (see Figure 2). We say that G is obtained from G1 and G2 by identifying
suitable triangles.

u1 

w1 

v1 

G1 

w2 

v2 

u2 

G2 G 

u 

w 

v 

Figure 2: The triangle identification procedure.

Our next result shows that certain properties are retained when two graphs are combined by means of
triangle identification. Parts (a) and (b) were proved in [26].
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Lemma 2.5. Let G1 and G2 be two LH graphs, each of order at least 4, and let G be a graph obtained from
G1 and G2 by identifying suitable triangles. Then

(a) G is LH.

(b) If G1 and G2 are planar, then so is G.

(c) If G is hamiltonian, so are both G1 and G2.

Proof. (c) We will use the same notation as in Construction 2.4. First note that since {u, v, w} is a cutset,
it follows that no Hamilton cycle in G includes more than one edge between vertices in {u, v, w}. Figure 3
shows the only possible patterns that a Hamilton cycle in G can follow. It follows that if G is hamiltonian,
then so are both G1 and G2.

v 

w 

u 

(a) 

v 

w 

u 

(b) 

Figure 3: The possible Hamilton cycles through G.

We will also need the following procedure, called triangle identification within an LH graph.

Construction 2.6. Let G be an LH graph that contains disjoint triangles X1 and X2 such that N(X1) ∩
N(X2) = ∅ and for each x ∈ N(Xi) there is a Hamilton cycle of 〈N(x)〉 that contains the edge Xi − x,
i = 1, 2. Let V (Xi) = {ui, vi, wi}, i = 1, 2. Now create a graph G′ of order n(G)− 3 from G by identifying
ui, i = 1, 2 to a single vertex u, and similarly the vertices vi, i = 1, 2 to v and wi, i = 1, 2 to w, while
retaining all the edges present in the original graph. We say that G′ is obtained from G by identifying
suitable triangles within G.

Lemma 2.7. If G′ is a graph obtained from an LH graph G by identifying two suitable triangles within G,
then G′ is LH.

Proof. Let X1 and X2 be two suitable triangles in G. We use the same notation as in Construction 2.6.
In G′ only the neighbourhoods of u, v, w need to be considered, as the neighbourhoods of all other vertices
remain unchanged in the triangle identification procedure (except for possible label changes). Let Ci be a
Hamilton cycle of 〈NG(ui)〉 containing the edge viwi, i = 1, 2. Then in G′, the cycles C1 and C2 have only
the edge vw in common, since NG(u1)∩NG(u2) = ∅. Hence C1− vw and C2− vw can be combined to form
a Hamilton cycle of 〈NG′(u)〉. Similarly, we can prove that 〈NG′(v)〉 and 〈NG′(w)〉 are hamiltonian. Hence
G′ is LH.

Our final result in this section will be used in Section 6.

Lemma 2.8. In an LH graph G, any vertex of degree 3 can be used three times in triangle identification,
once in combination with each distinct subset of two of its three neighbours.

Proof. Let v1 ∈ V (G) such that N(v1) = {v2, v3, v4} and note that 〈N [v1]〉 ∼= K4. Since d(v1) = 3, each
triangle 〈N [v1]− vi〉, i = 2, 3, 4, is suitable for triangle identification. There exists paths P2, P3 and P4 such
that the following are Hamilton cycles of 〈NG(vi)〉, i = 1, 2, 3, 4:
In 〈NG(v1)〉: v2v3v4v2
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In 〈NG(v2)〉: v3v1v4P2v3
In 〈NG(v3)〉: v2v1v4P3v2
In 〈NG(v4)〉: v2v1v3P4v2.

Let G1 be an LH graphs with a suitable triangle X = 〈{x1, x2, x3}〉. For each i = 1, 2, 3, let Qi be the
path in the Hamilton cycle of 〈NG1(xi)〉 between the end vertices of the edge X − xi. Now use triangle
identification to combine G with G1 to form the graph H1 by identifying the triangle 〈{v1, v2, v3}〉〉 with the
triangle 〈{x1, x2, x3}〉. Let the identified vertices retain the labels v1, v2, v3. By Lemma 2.5, H1 is LH and
the following are Hamilton cycles of 〈NH1

(vi)〉, i = 1, 2, 3, 4:
In 〈NH1

(v1)〉: CH1,v1 = v2Q1v3v4v2
In 〈NH1(v2)〉: CH1,v2 = v3Q2v1v4P2v3
In 〈NH1(v3)〉: CH1,v3 = v2Q3v1v4P3v2
In 〈NH1

(v4)〉: CH1,v4 = v2v1v3P4v2.

The triangle 〈{v1, v2, v4}〉 in H1 is now suitable for triangle identification, since v2v4, v1v4, v1v2 are edges
in CH1,v1 , CH1,v2 , CH1,v4 respectively.

Next, let G2 be an LH graph with a suitable triangle Y = 〈{y1, y2, y4}〉. For i = 1, 2, 4, let Ri be the path on
the Hamilton cycle of 〈NG2(yi)〉 between the end vertices of the edge Y − yi. Now use triangle identification
to combine H1 with G2 to form the graph H2 by identifying the triangles 〈{v1, v2, v4}〉 and 〈{y1, y2, y4}〉. Let
the identified vertices retain the lables v1, v2, v4. By Lemma 2.5, H2 is LH and the following are Hamilton
cycles of 〈NH2

(vi)〉, i = 1, 2, 3, 4:
In 〈NH2(v1)〉: CH2,v1 = v2Q1v3v4R1v2
In 〈NH2(v2)〉: CH2,v2 = v3Q2v1R2v4P2v3
In 〈NH2

(v3)〉: CH2,v3 = v2Q3v1v4P3v2
In 〈NH2

(v4)〉: CH2,v4 = v2R4v1v3P4v2.

Since v3v4, v1v4 and v1v3 are edges in CH2,v4 , CH2,v3 , CH2,v4 , respectively, the triangle 〈{v1, v3, v4, }〉 in
H2 is now suitable for triangle identification, so a third triangle identification, using this triangle, may be
performed.

3. Hamiltonicity of locally traceable graphs

A graph G is called outerplanar if there is a planar embedding of G such that every vertex of G lies on the
boundary of the external region. Moreover, G is maximally outerplanar if the addition of any edge results
in a non-outerplanar graph. Maximal outerplanar graphs are examples of hamiltonian LT graphs. Results
of Asratian and Oksimets [6] imply the following.

Theorem 3.1. [6] Suppose G is a connected LT graph of order n ≥ 3. Then e(G) ≥ 2n − 3. Moreover,
e(G) = 2n− 3 if and only if G is a maximal outerplanar graph.

In [2] a magwheel Mk is defined as the graph of order 2k+1 obtained from the wheel Wk by adding, for each
edge e on the rim of Wk, a vertex ve and joining it to the two ends of the edge e. Magwheels are examples of
connected nonhamiltonian LT graphs. The three magwheels with maximum degree 5 are shown in Figure
4.

A graph G is fully cycle extendable if every vertex in G lies on a 3-cycle and, for every nonhamiltonian cycle
C of G, there exists a cycle C ′ in G that contains all the vertices of C plus a single new vertex. Van Aardt,
Frick, Oellermann and de Wet [2] proved the following:

Theorem 3.2. [2] Suppose G is a connected LT graph with n(G) ≥ 3 and ∆(G) ≤ 5. Then G is fully cycle
extendable if and only if G /∈ {M3,M4,M5}.
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M3 M4 M5 

Figure 4: The magwheels M3, M4 and M5.

Theorem 3.2 implies that there are only three nonhamiltonian connected LT graphs with maximum degree
5. For LT graphs with maximum degree 6 we now prove the following.

Theorem 3.3. For any n ≥ 8 there exists a nonhamiltonian planar connected LT graph G that has order
n and maximum degree 6.

Proof. Let G7 be the graph M3, depicted in Figure 4. For each n ≥ 8, let Gn be the graph of order n
obtained by combining Gn−1 with a K3 by means of edge identification, starting with the edge v1v2, and
each time using one of the last edges added, choosing the edge such that the same vertex is never used more
than twice, and specifically v1 is only used once, as shown in Figure 5.

It follows from repeated application of Lemma 2.2 that for n ≥ 7, the graph Gn is a connected planar
nonhamiltonian LT graph of order n and it is clear from Figure 5 that it has maximum degree 6 if n ≥ 8.

M3 

v1 

v2 

v1 

v2 

v3 v1 

v2 v4 

v3 

Figure 5: Constructing planar nonhamiltonian LT graphs with ∆(G) = 6.

Theorem 3.1 implies that every nonhamiltonian connected LT graph of order n has at least 2n − 2 edges.
Since the graph Gn defined in the proof of Theorem 3.3 has 2n− 2 edges, we have the following corollary.

Corollary 3.4. For each n ≥ 7, the minimum size of a nonhamiltonian connected LT graph of order n is
2n− 2.

By Theorem 3.2, the HCP for LT graphs with maximum degree 5 is fully solved. However, for maximum
degree 6 we now prove the following.

Theorem 3.5. The Hamilton Cycle Problem for connected planar LT graphs with maximum degree 6 is
NP-complete.

Proof. According to Theorem 1.1 the HCP for cubic (i.e., 3-regular) planar bipartite graphs is NP-
complete. Now consider any 2-connected planar cubic bipartite graph G′. We shall show that G′ can
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be transformed in polynomial time to a planar LT graph G with ∆(G) = 6 such that G is hamiltonian if
and only if G′ is hamiltonian.

Let the partite sets of G′ be A′ and B′. To create G, replace each vertex in A′ with a triangle to create the
set of graphs A, and replace each vertex in B′ with the nontraceable LT graph B (shown in Figure 6) to
create the set of graphs B. For convenience, the graphs in A and B will be referred to as “nodes” of G.

Figure 6: The graph B.

Each edge in G′ is replaced by two “parallel” edges and one “diagonal” edge between them. Figure 8
demonstrates how a node B ∈ B is connected to its three neighbouring nodes in A.

w1 

w2 

x6 

x1 

x2 

x3 

u 

x5 

x4 v 

A1 

A3 

A2 

Figure 7: A node B in B connected to 3 nodes A1, A2, A3 in A.

Since G′ is planar, G is also planar, and it is routine to confirm that G is LT and ∆(G) = 6.

The heavy lines in Figure 8 show how paths on a Hamilton cycle of G′ translate to paths on a Hamilton
cycle of G. It is therefore clear that if G′ is hamiltonian, then so is G.
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Graph G’ 

Graph G 

Vertex in A’ Vertex in B’ 

Node in A Node in B 

Figure 8: Illustrating how a Hamilton cycle in G′ translates to a Hamilton cycle in G.

Now suppose G has a Hamilton cycle C. Then |A| = |B|, so to show that C translates to a Hamilton cycle
of G′, it is sufficient to show the following: for each node B ∈ B, the cycle C contains exactly one path that
enters B from a neighbouring node in A and then exits B to a different neighbouring node in A.

We label the nodes and vertices as shown in Figure 7. We observe that C contains the path x1x2x3, and
hence also the edge x5u. This implies the following.

Claim 1. If C contains exactly two of the three edges that join A1 to B, then C contains either the path
w1x6w2 or the path w1x1x2x3ux5x6w2. Analogous results hold with respect to A2 and A3.

Since v ∈ V (C), Claim 1 implies that for at least one i, the cycle C contains either only one or all three
edges incident with Ai. In either case C contains a path that exits B to a different node in A from which
it entered. It also follows from Claim 1 that C contains at most one such path.

We conclude that G is hamiltonian if and only if G′ is hamiltonian. This completes the proof.

4. Hamiltonicity of locally hamiltonian graphs

Skupień [22] observed that any triangulation of a closed surface is LH. In particular, triangulations of the
plane (maximal planar graphs) are LH. He also proved the following useful result.

Theorem 4.1. [22] Suppose G is a connected LH graph of order n ≥ 3. Then e(G) ≥ 3n − 6. Moreover,
e(G) = 3n− 6 if and only if G is a maximal planar graph.

Goldner and Harary [14] showed that the graph G11A, depicted in Figure 9, is the smallest nonhamiltonian
maximal planar graph. Pareek and Skupień [21] showed that G11A is also the smallest connected non-
hamiltonian LH graph. A computer search showed that the four graphs in Figure 9 are the only connected
nonhamiltonian LH graphs of order 11. Note that G11A is a maximal planar graph and has size 27, while
the other three graphs have size 30 each and are therefore not planar. Also note that all four graphs have
maximum degree 8.
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Figure 9: The nonhamiltonian LH graphs of order 11.

In 1983 Pareek [20] published a paper claiming that every connected LH graph with maximum degree less
than 8 is hamiltonian. However, the proof in his paper omits several special cases, and some of the claims
that he makes on which he bases further results are false.

Pareek’s proof will not be set out in detail. Rather, we will focus on the main reasons why we believe it is
not valid. Pareek considers a longest cycle C = v1v2 . . . vtv1 in an LH graph G with ∆(G) ≤ 7. He shows
that if G is not hamiltonian, then C contains a vertex v1 of degree at least 7 that has six neighbours on
C and one neighbour x in G − V (C). Let {x, v2, vm, vi, vj , vk, vl} ⊆ N(v1). Since 〈N(v1)〉 is hamiltonian,
x has two neighbours in N(v1), say vi and vk. It suffices to consider the following three cases (Figure 10).
The possibility that a graph may belong to both Case 1 and Case 2 is not explicitly considered, but does
not affect the logic of the argument.

Case 1. vk+1 ∈ N(v1).
Case 2. vk−1 ∈ N(v1)
Case 3. N(v1) ∩ {vi−1, vi+1, vk−1, vk+1} = ∅.
Since 〈N(vk)〉 is hamiltonian, vk and x have a common neighbour vp 6= v1 on C.

We agree up to this point. But then Pareek claims that Case 3 converts to either Case 1 or Case 2 and we
do not agree with that. Pareek argues that in Case 3, the fact that the neighbourhoods of v1, vi, vk, vj , vl
and vp induce hamiltonian graphs implies that dC(vp) = 6 and that vp has a neighbour in {vk−1, vk+1}. By
relabelling the vertices so that vp becomes v1, it would then follow that this case converts to either Case
1 or Case 2. However, Figure 11 (a) shows an example of such a situation where the neighbourhoods of
v1, vi, vk, vj , vl and vp induce hamiltonian graphs, but neither vk nor vi has consecutive neighbours on C.
This case does therefore not convert to Case 1 or Case 2. (We have illustrated the case where vp = vi, as
this leads to the simplest example, but even if vp and vi are distinct, the same kind of counterexample is
possible.)

The next step in Pareek’s proof is to show that if Case 1 occurs, then so does Case 2. We do not agree with
this either. The graph in Figure 11 (b) is a counterexample: the neighbourhoods of v1, vi and vk induce
hamiltonian graphs, but Case 2 does not occur (it is also possible to find Hamilton cycles in the graphs
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vt v2 

vi 
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v1 

vk 
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v1 

vk 
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Figure 10: The three cases used in Pareek’s proof.

vi 

x 

v1 

vl 
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vj 

(b) 

vk vi 

x 

v1 

vk 

vt vt v2 v2 

Figure 11: Counterexamples to Pareek’s Claims.

induced by the neighbourhoods of the unlabeled vertices in the figure, but for the sake of clarity these are
not shown).

Pareek’s final step is to show that Case 2 is not possible. However, he omits some of the possible subcases
of Case 2, but more seriously, the proof fails if k < p < t.

We therefore regard the problem as to whether there exists a nonhamiltonian connected LH graph with
maximum degree 7 as unsolved. Nevertheless, it follows from the correct part of Pareek’s proof that every
connected LH graph with maximum degree at most 6 is hamiltonian. Moreover, by adapting the technique
that Pareek had used, van Aardt et al. [2] proved the following.

Theorem 4.2. [2] Let G be a connected LH graph with n(G) ≥ 3 and ∆(G) ≤ 6. Then G is fully cycle
extendable.

Theorem 4.2 extends the result of Altshuler [4] that any 6-regular triangulation of the torus is hamiltonian.

It is easy to construct a planar LH graph of any order k ≥ 4 with maximum degree at most 6 that contains
a triangle with vertices u1, u2 and u3 of degrees at most 3, 4 and 5 respectively (see [26] for an explicit
construction). We are now in a position to prove the following.
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Theorem 4.3. For every n ≥ 11 there exists a connected planar nonhamiltonian LH graph G with ∆(G) ≤
9.

Proof. For any k ≥ 4, let Hk be a planar LH graph of order k with ∆(Hk) ≤ 6 such that Hk contains a
triangle with vertices u1, u2 and u3 of degrees at most 3, 4 and 5 respectively. Now combine Hk with the
graph G11A in Figure 9 using triangle identification by identifying u1 with v1, u2 with v2 and u3 with v3.
Then the resulting graph G is a connected graph with ∆(G) = 9 and n(G) = 11 + k − 3 and, by Lemma
2.5, G is both planar and nonhamiltonian.

We have found nonhamiltonian connected LH graphs with maximum degree 8 and order 11, 13, 14 and
as large as 34, but we do not know whether there are such graphs of infinitely large order. The following
theorem implies that there are none of order 12. The proof is long and uninteresting, and can be found in
[25].

Theorem 4.4. [25] Let G be a connected nonhamiltonian LH graph of order n = 12. Then ∆(G) = 9.

Chvátal [10] and Widgerson [27] independently proved that the Hamilton Cycle Problem for maximal planar
graphs is NP-complete. Although neither author was interested in the minimum value of the maximum
degree for which this is true, it is straightforward to manipulate the construction Chvátal used to show that
the theorem holds for a maximum degree as low as 12. However, we shall make a further improvement for
LH graphs (that is, if we drop the requirement that the graph be planar).

We shall make use of the graph H depicted in Figure 12(a), which is the smallest nontraceable maximal
planar graph, discovered by Goodey [13]. (Figure 12 is a nonplanar depiction of H, designed to emphasize
the symmetry in the graph.)

(a) Graph H 
(b) Graph D 
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z7 
z9 

z10 

z11 

z12 

z13 

z14 

z8 

x1 

x2 

x3 

y1 

y2 

y3 

Figure 12: Graphs used in the proof of Theorem 4.6.

The graph F shown in Figure 13 is obtained by using triangle identification to combine the graph H with
three distinct copies of the graph D, shown in Figure 12(b). Specifically, we identify each of the triangles
〈{z1, z2, z7}〉, 〈{z3, z4, z9}〉 and 〈{z5, z6, z11}〉 in H with the triangle 〈{x1, x2, x3}〉 in each copy of D. In each
step we let the vertices of the identified triangles retain the labels of the vertices that were in H. In the ith

step, the vertices y1, y2, y3 of D are relabelled ui, vi, wi, respectively, i = 1, 2, 3, as shown in Figure 13. Now
let Wi = {ui, vi, wi}, i = 1, 2, 3 and let W = W1 ∪W2 ∪W3.
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Figure 13: The graph F

If P is a set of disjoint paths in a graph G such that
⋃

P∈P V (P ) = V (G), then P is called a path cover of
G. A path cover consisting of k paths is called a k-path cover. The following properties of the graph F play
a crucial role in the proof of the subsequent theorem.

Lemma 4.5.

(a) F is LH.

(b) F has a 2-path cover {P1, P2} such that both end-vertices of Pi are in W for i = 1, 2.

(c) Let P be any path cover of F such that every path in P has both its end vertices in W . Then at most
one of the paths in P has its two end-vertices in different members of the set {W1,W2,W3}.

Proof. (a) Since H is a maximal planar graph, it is LH. It is routine to check that D is LH and that in
each step the triangles used for identification are suitable triangles. Hence, by Lemma 2.5, F is LH.

(b) The heavy lines in Figure 13 show a 2-path cover of F , with the end-vertices of both paths in W .

(c) Let Z1 = {z8, z10, z12, z13, z14} and Z2 = {z1, z2, z3, z4, z5, z6, }. Note that Z1 is an independent set
and N(Z1) = Z2. Since |Z1| = 5 and |Z2| = 6, it therefore follows that all the vertices in Z1 ∪ Z2 lie
on the same path in P. Thus any path that has its end-vertices in different members of {W1,W2,W3}
contains all the vertices in Z1 ∪ Z2. The result follows.

We are now ready to prove the main result of this section.

Theorem 4.6. The Hamilton Cycle Problem for LH graphs with maximum degree 10 is NP-complete.
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Proof. Starting with a cubic bipartite graph G′, we will construct a connected LH graph G with ∆(G) = 10
such that G is hamiltonian if and only if G′ is hamiltonian.

Let the partite sets of G′ be A′ and B′. The vertices in A′ are replaced by copies of K4 to create the set A
of G. The vertices in B′ are replaced by copies of the graph B, shown in Figure 14, to create the set B of
G. The graph B is constructed as follows. Let Ha, Hb and Hc each be a copy of H, with vertices labeled

Ha 

Hc Hb T3 

T2 
T1 

D9 D8 

D7 

D6 

D5 D4 

D3 

D2 D1 

Figure 14: The graph B used in the proof of Theorem 4.6.

in the same way, except with an a,b, or c subscript added to indicate to which graph each vertex belongs
(in Ha, the vertex corresponding to z1 in H is labeled za,1, and so forth). Let Ti, i = 1, 2, 3, be three copies
of K4, with vertices labeled ti,j , j = 1, 2, 3, 4. Let Dm, m = 1, 2, . . . , 9, be nine copies of D, with vertices
labeled as in D, with appropriate subscripts added, as was done for the vertices in Ha, Hb and Hc. We now
use Constructions 2.4 and 2.6 to create the graph B by identifying the following triangles:
{za,1, za,2, za,7} and {x1,1, x1,2, x1,3};
{za,3, za,4, za,9} and {x2,1, x2,2, x2,3};
{t1,1, t1,2, t1,3} and {y1,1, y1,2, y1,3};
{t2,1, t2,2, t2,3} and {y2,1, y2,2, y2,3};
{t1,1, t1,2, t1,4} and {x7,1, x7,2, x7,3};
{t2,1, t2,2, t2,4} and {y7,1, y7,2, y7,3};
{t1,1, t1,3, t1,4} and {y6,1, y6,2, y6,3};
{t1,2, t1,3, t1,4} and {x8,1, x8,2, x8,3};
{t2,2, t2,3, t2,4} and {x9,1, x9,2, x9,3};
{t2,1, t2,3, t2,4} and {y3,1, y3,2, y3,3};
{zb,1, zb,2, zb,7} and {x6,1, x6,2, x6,3};
{zb,3, zb,4, zb,9} and {x5,1, x5,2, x5,3};
{y5,1, y5,2, y5,3} and {t3,1, t3,2, t3,3};
{y4,1, y4,2, y4,3} and {t3,1, t3,2, t3,4};
{x4,1, x4,2, x4,3} and {zc,3, zc,4, zc,9};
{x3,1, x3,2, x3,3} and {zc,1, zc,2, zc,7};
{t3,1, t3,3, t3,4} and {y8,1, y8,2, y8,3};
{t3,2, t3,3, t3,4} and {y9,1, y9,2, y9,3}.

The schematic in Figure 14 shows how the various graphs were combined to create B. It is a simple matter
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to confirm that K4 can be combined four times in succession with four copies of the graph D using triangle
identification (in such a way that each vertex in K4 is used three times). It follows from Lemmas 2.5 and
2.7 that B is LH.

A1 

A3 A2 

Figure 15: A node in B connected to three nodes in A.

The elements of A and B will be called nodes of G. If there is an edge between two vertices in A′ and B′,
then in G the corresponding nodes A ∈ A and B ∈ B are joined via the graph D as follows: First identify one
of the three triangles in A with the triangle 〈{x1, x2, x3}〉 in D and then identify the triangle 〈{y1, y2, y3}〉
in D with a triangle in B as indicated in Figure 15. A different triangle of A is used for connecting it to
each of its neighbouring nodes in B.

By Lemmas 2.5 and 2.7, the graph G is LH. It is routine to check that ∆(G) = 10. A subsection of G′ is
shown in Figure 16 together with the corresponding subsection of G, with the heavy lines showing how a
Hamilton cycle in G′ translates to a Hamilton cycle in G. It follows that if G′ is hamiltonian, then so is G.

Now suppose C is a Hamilton cycle in G. Note that G contains several copies of the graph F presented in
Figure 13. One such copy is encircled by dotted lines in Figure 15. Using the property of F given by Lemma
4.5(c), it is now easy to see that C contains exactly one path that exits the node B to a different node in A
from which it had entered B. Thus C translates to a Hamilton cycle in G′.
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Graph G’ 

Graph G 

Vertex in A’ Vertex in B’ 

Node in A Node in B 

Copy of F 

Figure 16: Illustrating how a Hamilton cycle in G′ translates to a Hamilton cycle in G.

5. Regular connected nonhamiltonian LH graphs

Regular connected LH graphs have not yet received much attention in the literature, except in terms of
6-regular triangulations of the torus [4, 24]. The hamiltonicity of such graphs is readily implied by Theorem
4.2.

The two questions of Pareek and Skupien regarding regular LH graphs mentioned in Section 1 are both
answered by the following theorem.

Theorem 5.1. For every r ≥ 11, there exists a nonhamiltonian connected r-regular graph with connectivity
3.

Proof. To construct an 11-regular connected, nonhamiltonian LH graph R11 we start with the Goldner-
Harary graph G11 shown in Figure 17 with the vertices labeled as shown. We then use triangle identification
to combine G11 with other LH graphs that have the required degree sequences so that the resulting graph
will be 11-regular. These graphs are shown as graphs H11A and H11B in Figure 18 and were constructed
by starting with the triangle 〈{w1, w2, w3}〉 and then adding edges linking it to a K12 or K13 as shown. To
limit the degrees of the vertices making up the K12 or K13 subgraphs to 11, edges were removed between
some of these vertices, as indicated in Figure 18. It is routine to confirm that these graphs are LH and that
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v9 
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v6 

v4 

v3 

v11 

v5 
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v2 v1 

v9 

G12 

v12 

Figure 17: The graphs G11 and G12 used in to construct regular nonhamiltonian LH graphs.

the triangle 〈{w1, w2, w3}〉 in each of these graphs is suitable for use in triangle identification. In particular
we create the graph R11 by combining G11 with five copies of H11A and one copy of H11B, each time
identifying the vertices w1, w2, w3 with appropriate vertices in G11. Note that in each step the degrees of
the vertices in G11 that are identified with w1, w2, w3 of H11A increase by 1, 2, 8, respectively, while the
degrees of those that are identified with w1, w2, w3 of H11B increase by 2, 2, 8, respectively. The table below
provides the details of the construction. The first column indicates the first, second and third vertices of
the triangle in G11 that are identified, respectively, with the vertices w1, w2, w3 of the graph in the second
column.

Vertices in G11 Second graph
v4, v2, v6 H11A
v5, v1, v8 H11A
v3, v4, v9 H11A
v1, v4, v10 H11A
v2, v5, v11 H11A
v5, v3, v7 H11B

The resulting graph is 11-regular and by Lemma 2.5 is connected, nonhamiltonian, and LH. Since it was
obtained by means of triangle identification, it has connectivity 3. This technique can easily be extended to
create r-regular, connected, nonhamiltonian LH graphs for odd values of r greater than 11. Due to problems
with vertex degree parity, the technique does not work for even values of r when starting with graph G11.
For even values of r greater than or equal to 12 we can use graph G12 in Figure 17. To create a 12-regular,
connected, nonhamiltonian LH graph R12 we combine G12 with two copies of H12A, three copies of H12B
and one copy of H12C. The details are given in Figure 18.

Vertices in G12 Name of second graph
v3, v5, v7 H12A
v2, v5, v11 H12A
v5, v3, v8 H12B
v4, v2, v6 H12B
v4, v1, v9 H12B
v4, v10, v12 H12C
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w3 w2 

H11B 

Edges removed:  u1u4  u1u5  u1u6  u2u3  u2u7  u3u8 

K12 
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u1 u2 u3 u4 u8 u7 u6 u5 

u13 u12 u11 u9 
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u2u8  u3u4  u5u6  u7u8  u9u10  u11u12 
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u1 u2 u3 u4 u8 u7 u6 u5 

u13 u12 u11 
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u13 u12 u11 
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u2u8  u3u9 

K13 

Figure 18: The graphs used to construct regular nonhamiltonian LH graphs in combination with G11 and G12.
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6. Longest paths in LH graphs

The title of this section comes from a paper by Entringer and MacKendrick [11]. For n ≥ 4, they define
f(n) to be the largest integer such that every connected LH graph on n vertices contains a path of length
f(n). They established the following upper bound for f(n).

Theorem 6.1. [11] f(n) ≤ 24
√
n/3 + 4 for n ≥ 4.

Although Entringer and MacKendrick did not explicitly state it, the following corollary is an obvious impli-
cation of Theorem 6.1.

Corollary 6.2. limn→∞
f(n)
n = 0

In [26] we proved a theorem similar to Theorem 6.1:

Theorem 6.3. [26] For any natural number k > 0 there exists a planar connected LH graph G with ∆(G) ≤
14 such that the difference between the order n of G and the length of a longest path in G is at least k.

This result holds for planar graphs, gives a smaller upper bound for f(n) for small n than the result by
Entringer and Mackendrick, and limits the maximum vertex degree to 14, but does not imply Corollary
6.2. The LH graphs constructed by Entringer and MacKendrick to provide the bound in Theorem 6.1 are
nonplanar and there is no restriction on their maximum degree. However, it is possible to prove a result
equivalent to Corollary 6.2 for planar graphs with bounded maximum vertex degree. We define p(n,∆) to be
the largest integer such that every connected planar LH graph of order n with maximum degree ∆ contains
a path of length p(n,∆). We now prove the following result, which is stronger than Corollary 6.2.

Theorem 6.4. limn→∞ p(n,∆)/n = 0 for every ∆ ≥ 11.

Proof. Consider the order 23 graph G0 shown in Figure 19. This graph is the Goldner-Harary graph shown
in Figure 9 (a) and the first graph in Figure 20 with 12 vertices added using triangle identification with
multiple copies of K4. We see that ∆(G0) = 11 and by Lemma 2.5 G0 is LH, planar and nonhamiltonian.
Let the K3 subgraphs of G0 that are encircled in Figure 19 be labeled H1, H2, . . . ,H6 as shown. The graph
G0 is traceable, but it should be noted that there is no Hamilton path that starts in Hi and ends in Hi,
i ∈ {1, 2, 3, 4, 5, 6}. Now let the graphs G0,1, G0,2, . . . , G0,6 be six copies of G0, each with the K3 subgraphs
labeled in the same way as in G0. Use triangle identification to combine G0 with G0,i by identifying Hi

in G0 with Hi in G0,i, i = 1, 2, 3, 4, 5, 6, to create the graph G1. We know this is possible, since each
Hi contains a vertex that is of degree 3 in G0 and in G0,i. Also note that ∆(G1) = 11 and that G1 is
planar. Since each G0,i contains a vertex cutset of order 5, it follows that a longest path in G1 omits
one Hj subgraph in four of the subgraphs represented by G0,i so that the longest path in G1 has length
23+2×20+4×17 = 131, while n(G1) = 23+6×20 = 143. One can now repeat the procedure by combining
G1 with 6 × 5 copies of G0 in the same way to create the graph G2. A longest path in G2 will contain
23 + 2 × 20 + 4 × 17 + 2 × 20 + 6 × 4 × 17 = 579 vertices, while n(G2) = 23 + 6 × 20 + 6 × 5 × 20 = 743.
This process can be continued indefinitely. By Lemma 2.5 the graph Gk is planar and ∆(Gk) = 11, while

the longest path in Gk contains pk = 23 + 2 × 20 + 4 × 17 +
∑k

i=2(2 × 20 + 6 × 4i−1 × 17) vertices, while

n(Gk) = 23 +
∑k

i=1 6× 5i−1 × 20. It is then easy to show that limk→∞
pk

n(Gk)
= 0 and the theorem follows.

The result can easily be extended to greater values for the maximum degree by combining the graph Gk with
a planar graph with the required maximum degree by triangle identification with one of the outer triangle
subgraphs.

Note that Entringer and MacKendrick’s limit only implies the existence of connected nontraceable LH
graphs of order greater than or equal to 200. However, it is shown in [26] that the smallest connected
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Figure 19: The graph G0 used in Theorem 6.4

nontraceable LH graph has order 14, so there is much room for improvement for low values of n. Our next
theorem provides an upper limit for f(n) that is smaller than the one given by Entringer and MacKendrick
for n ≤ 427 and implies that f(n) < n for every n ≥ 15.

Theorem 6.5. f(n) ≤ d(2/3)ne+ 4.

Proof. Consider the graph G0 shown in Figure 20. This is the Goldner-Harary graph shown in Figure 9
(a), redrawn to emphasize the fact that the six vertices of degree 3 are connected to each other by a cutset
of 5 vertices. Now choose any vertex of degree 3, call it v1, and using Lemma 2.5 use triangle identification
to combine G0 with three copies of K4, each time using v1 and two of its neighbours, to create the graph
G1. Thus G1 now has a vertex cutset of order six (v1 is now also in the cutset), the removal of which will
result in eight components. In general, the graph Gi−1 can be combined with three copies of K4 using any
vertex of degree 3 in V (Gi−1), call it vi−1, to create the graph Gi. By Lemmas 2.8 and 2.5, Gi is LH and
planar. Also, Gi has a vertex cutset of order 5 + i, the removal of which will result in a graph consisting of
6 + 2i isolated vertices. It follows that a longest path in Gi has no more than 2(5 + i) + 1 vertices, and that
n(Gi) = 11 + 3i. Let q(n) be the number of vertices in a longest path in a graph on n vertices constructed
in this way (where the last vertex vi to be used in triangle identification may have been used once, twice,
or three times). Then q(n) ≤ d(2/3)ne+ 4.

7. Open problems

1. Let ∆H denote the largest integer such that every connected LH graph with maximum degree ∆H is
hamiltonian. We suspect that ∆H = 7, but it has only been proven to be at least 6.

2. Let ∆P denote the largest integer such that the Hamilton Cycle Problem for LH graphs with maximum
degree ∆P is solvable in polynomial time. It follows from Theorems 4.2 and 4.6 that 6 ≤ ∆P ≤ 9. We
conjecture that ∆P = 8.
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[22] Z. Skupień, Locally Hamilonian and planar graphs, Fundamenta Mathematicae 58 (1966) 193-200.
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