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Abstract

Neural network training is a highly non-convex optimisation problem with poorly under-

stood properties. Due to the inherent high dimensionality, neural network search spaces

cannot be intuitively visualised, thus other means to establish search space properties

have to be employed. Fitness landscape analysis encompasses a selection of techniques

designed to estimate the properties of a search landscape associated with an optimisation

problem. Applied to neural network training, fitness landscape analysis can be used to

establish a link between the properties of the error landscape and various neural network

hyperparameters. This study applies fitness landscape analysis to investigate the influ-

ence of the search space boundaries, regularisation parameters, loss functions, activation

functions, and feed-forward neural network architectures on the properties of the result-

ing error landscape. A novel gradient-based sampling technique is proposed, together

with a novel method to quantify and visualise stationary points and the associated basins

of attraction in neural network error landscapes.
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“Begin at the beginning,” the King said, very gravely, “and go on till you

come to the end: then stop.”

Lewis Carroll, Alice in Wonderland

“Not all those who wander are lost.”

J.R.R. Tolkien, The Fellowship of the Ring

“Would you tell me, please, which way I ought to go from here?”

“That depends a good deal on where you want to get to,” said the Cat.

“I don’t much care where –” said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

“– so long as I get SOMEWHERE,” Alice added as an explanation.

“Oh, you’re sure to do that,” said the Cat, “if you only walk long enough.”

Lewis Carroll, Alice in Wonderland
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Chapter 1

Introduction

Artificial neural networks (NNs) are mathematical models capable of representing an

arbitrary non-linear mapping from inputs to outputs [10, 35]. Due to their non-linear

information capacity, NNs have enjoyed unprecedented success in application areas such

as image and speech recognition [30, 69], sequence modelling [129], and function approx-

imation [55], amongst others. However, despite the practical success of NNs, certain

theoretical properties of these models remain poorly understood. Specifically, the topo-

logical properties of the loss function surfaces associated with supervised NN training

are hard to quantify and visualise due to the inherent high dimensionality of the search

space [24, 68, 118]. Certain loss surface properties of the NN loss functions, such as

the presence of saddle points [28, 48], plateaus, and narrow ridges [39, 57], have already

been established. However, the relationship between these landscape features and the

corresponding NN hyperparameters such as the number of neurons and hidden layers,

or the activation functions employed, remains unclear [68]. There are on-going debates

and theories regarding the presence or absence of local minima in NN error landscapes,

as well as the properties of stationary points and the associated basins of attraction in

the search space [28, 63, 114].

The poor understanding of the link between the NN hyperparameters and the re-

sulting loss surface characteristics causes practitioners to make arbitrary choices for

the hyperparameter values, potentially yielding sub-par performance of the final model.

Failure or success of a particular combination of NN architecture and training algorithm

1
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parameters is hard to predict. Poor understanding of the NN loss surfaces also hinders

the development of new training algorithms that would take the discovered properties of

the search space into consideration.

One of the main reasons for this lack of insight is the inherent high dimensionality

of NN problems. High-dimensional spaces are not intuitively visualisable, thus other

means of analysis have to be employed. Empirical studies of the link between the loss

surface characteristics and various NN hyperparameters can be performed using fitness

landscape analysis (FLA). FLA comprises of a large set of techniques designed to capture

and quantify significant topological features of fitness landscapes such as ruggedness,

neutrality, modality, dispersion, and searchability [81, 105]. The FLA techniques can

be used to better understand the problem at hand, and to aid the process of algorithm

selection and dynamic hyperparameter adaptation [56, 81]. The concept of FLA comes

from the evolutionary context, and most metrics were originally defined for discrete

search spaces [59, 88]. Fitness landscape properties are estimated by taking multiple

samples of the search space, calculating the objective function value for every point

in each sample, and analysing the relationship between the spatial and the qualitative

characteristics of the sampled points. This concept can easily be translated to continuous

search spaces, provided that an adequate sampling method is defined [79]. FLA of

continuous fitness landscapes has recently attracted a significant amount of research [75,

81, 97, 127].

Sample analysis makes no assumptions regarding the problem at hand, and can easily

be applied to black box optimisation problems such as NNs. The search space of a NN is

made up of all possible real-valued weight combinations, where each weight combination

corresponds to a certain measure of error. Training algorithms seek to minimise the error

by searching for an optimal weight combination. Thus, the surface of a NN loss function

defined in terms of the weights constitutes the NN fitness landscape, also referred to as

the error landscape.

The main purpose of this study is to apply FLA to NN surfaces, and to develop

a better understanding of the relationship between various NN hyperparameters and

the corresponding error landscape properties. The rest of this chapter is structured as

follows: Section 1.1 lists the primary objectives of this thesis. Original contributions are
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summarised in Section 1.2. The structure of the thesis is outlined in Section 1.3.

1.1 Objectives

The primary objectives and sub-objectives of this thesis are summarised as follows:

1. To perform FLA of NN error landscapes.

(a) To provide an overview of the computational intelligence techniques used in

this study, namely NNs and FLA.

(b) To investigate the sensitivity of the FLA metrics to the chosen search space

boundaries.

(c) To establish FLA as a viable method for NN error landscape analysis by

performing a case study. The effect of the regularisation term on the error

landscape was chosen for the case study.

(d) To identify weaknesses in the existing FLA techniques, and to propose new

FLA metrics and algorithms accordingly.

2. To establish a link between various NN hyperparameters and the corresponding

error landscape properties. The following hyperparameters were considered:

(a) Loss functions.

(b) Activation functions.

(c) The number and size of the hidden layers in a feed-forward NN architecture.

1.2 Contributions

The novel contributions of this work are summarised as follows:

1. A review of the existing continuous FLA metrics is performed. It is determined

that no reliable modality metric for continuous high-dimensional spaces exists to

date.
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2. The behaviour of various existing FLA metrics on NN search spaces under different

search space boundaries is investigated. All FLA metrics are shown to exhibit a

sensitivity to the boundaries chosen. The weights with absolute values within the

[0.1, 1] interval are shown to capture information potentially useful to an optimi-

sation algorithm. Asymmetric regions of the search space are shown to be less

searchable than the symmetric regions.

3. The influence of the weight elimination term on the NN error landscape charac-

teristics is studied using the existing FLA techniques. The weight elimination

term is shown to smooth the error landscape while introducing additional min-

ima. The backpropagation algorithm is demonstrated to efficiently search very

rugged landscapes, and to struggle on step-like landscapes with rare and sudden

fitness changes. Optimisation ranges for the w0 and λ regularisation parameters

are proposed.

4. The progressive gradient walk is proposed as a new adaptive sampling algorithm

for the analysis of NN fitness landscapes. The proposed walk is more computation-

ally efficient than a population-based adaptive walk, and has better guarantees of

finding areas of high fitness. It is shown that, even though random walks provide

wider search space coverage than the gradient walk, they fail to capture areas of

high fitness. The gradient walk, on the other hand, is strongly biased towards the

areas of high fitness, while also covering some of the poor fitness areas. Thus, the

gradient walk is more representative of the search space in the context of applica-

bility to function optimisation. In addition, the unbounded progressive gradient

walk is shown to provide a truer picture of the error landscape than the bounded

gradient walk.

5. A novel intuitive visualisation technique for the local minima and the associated

basins of attraction is proposed, namely loss-gradient clouds. Loss-gradient clouds

visualise the stationary points by plotting the loss values against the corresponding

gradient vector magnitudes as sampled by the progressive gradient walk. Hessian

matrix information is then used to identify the curvature of each sampled point to

identify local minima and saddle points.
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6. Two new metrics to quantify the number and extent of unique attraction basins as

sampled by the gradient walks are proposed. Calculation of the statistical metrics

over a number of samples provides an idea of the connectedness of the various

attraction basins, as well as the likelihood of escape from the basins.

7. A visual and numerical analysis of local minima and the associated basins of attrac-

tion for two common NN loss functions, namely quadratic loss and entropic loss, is

performed. Both loss functions are shown to exhibit convex local minima for the

XOR problem. The majority of the classification problems considered exhibit a

single main attractor around the global optimum, indicating that no local minima

could be detected. The quadratic error is shown to consistently exhibit more local

stationary points and associated attractors than the entropic error. The quadratic

error is shown to yield superior generalisation performance in some cases.

8. The effect of five different activation functions on the resulting NN error landscapes

is analysed. Rectified linear unit (ReLU) is shown to exhibit the most convexity

out of all the activation functions considered, and exponential linear unit (ELU)

is shown to exhibit the least flatness. The stationary points exhibited by ReLU

and ELU are generally more connected than the ones exhibited by the hyperbolic

tangent (TanH), indicating that ReLU and ELU yield more searchable landscapes.

However, ReLU and ELU are shown to exhibit stronger sensitivity to the step

size and the initialisation range than TanH. All activation functions exhibit a split

into two clusters of steep and shallow gradients, associated with narrow and wide

valleys. Narrow valleys are shown to be associated with saturated neurons and

embedded regularised minima. The ELU activation function is shown to have

superior generalisation properties compared to the other activation functions.

9. FLA of the NN loss surfaces yielded by feed-forward NN architectures with a varied

number and size of the hidden layers is performed. An increase in the number of

hidden layers is shown to yield a more rapid increase in flat curvature than an

increase in the hidden layer size. Despite the observed flatness, an increase in the

problem dimensionality is shown to yield a more searchable and more exploitable

error landscape. An increase in the hidden layer size is shown to effectively reduce
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the number of local minima, and to simplify the shape of the global attractor by

widening the attraction basin. An increase in the number of hidden layers is shown

to sharpen the global attractor, thus making it more exploitable. An increase

in the number of hidden layers had no effect on the total number of stationary

attractors, indicating that depth without width does not guarantee a good final

solution. An increase in the number of hidden layers is shown to exaggerate the

steep gradient cluster, associated with inferior generalisation performance for most

problems considered. Thus, deeper architectures are shown to promote narrow

valley structures.

1.3 Thesis Outline

The remainder of the thesis is organised as follows:

• Chapter 2 provides the necessary background on NNs, and discusses the loss

functions and the activation functions used in this study.

• Chapter 3 reviews the FLA field, covers the existing continuous FLA metrics used

in this study, and discusses NNs in the context of FLA. Previous studies of NN

loss surfaces are reviewed in this chapter.

• Chapter 4 investigates the sensitivity of the FLA metrics to the chosen search

space boundaries.

• Chapter 5 presents a case study that uses FLA metrics to analyse the landscape

changes induced by the addition of a regularisation term to the NN loss function.

• Chapter 6 discusses the problem of quantifying local minima and basins of at-

traction for NN error landscapes. A new sampling technique, as well as a novel

visualisation method for the analysis of stationary points and the associated at-

traction basins, is proposed.

• Chapter 7 evaluates the techniques proposed in Chapter 6 by performing a modal-

ity study of two common NN loss functions, namely quadratic loss and entropic
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loss. The existing FLA techniques discussed in Chapter 3 are used to complete the

FLA study of the loss functions.

• Chapter 8 performs FLA of NN error landscapes associated with the various

activation functions, namely sigmoid, TanH, ReLU, ELU, and softmax.

• Chapter 9 analyses the effect of the NN feed-forward architecture parameters,

namely the number and size of the hidden layers, on the resulting NN loss surfaces.

• Chapter 10 summarises the findings of this thesis, and proposes some topics for

future research.

The following appendices are included:

• Appendix A lists the benchmark problems used throughout this thesis. Each

problems is briefly discussed, and the default NN architecture parameters used for

each problem are provided.

• Appendix B presents the final classification accuracies obtained for the various

benchmark problems under the various NN hyperparameter settings.

• Appendix C discusses the hardware and software used in the experiments con-

ducted for this thesis, and provides a reference to the original code developed for

the study.

• Appendix D provides a list of the acronyms used or newly defined in this thesis,

as well as their associated definitions.

• Appendix E lists and defines the mathematical symbols used in this thesis, cat-

egorised according to the relevant chapter in which they appear.

• Appendix F lists the publications derived from this thesis.



Chapter 2

Artificial Neural Networks

The most advanced biological structure known to man is undoubtedly the human brain.

No computer can compete with the brain’s ability to learn through experience, execute

complex behaviours, think, and create. Understanding the human brain is one of the

most important and challenging tasks of modern cognitive science [7], as understanding

the human brain can ultimately lead to understanding – and modelling – the physical

nature of intelligence and consciousness itself.

The mammalian brain is a complex system of interconnected nerve cells, or neurons.

Neurons communicate by sending and receiving electrochemical signals, or impulses. If

the strength of the incoming impulses exceeds a certain biological threshold, a neuron will

fire, i.e. send the signal further. Connections between neurons are called synapses. The

synapses between actively communicating neurons strengthen over time, while unused

synapses weaken. The learning process consists of strengthening and weakening the

synapses such that specific incoming signal combinations trigger the desired outputs, i.e

behaviours and reactions.

NNs are mathematical models inspired by the working of the mammalian brain de-

scribed above, capable of representing an arbitrary non-linear mapping from inputs to

outputs [10, 35]. Due to their non-linear information capacity, NNs have enjoyed un-

precedented success in application areas such as image and speech recognition [30, 69],

sequence modelling [129], and function approximation [55], amongst others. This chapter

discusses the aspects of NNs relevant to this study. The rest of the chapter is structured

8
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as follows: Section 2.1 describes the artificial neuron. Section 2.2 discusses the structure

of feed forward NNs. Section 2.3 describes the NN training process. Section 2.4 discusses

the NN loss functions used in this study. Section 2.5 discusses the relevant NN activation

functions. Section 2.6 discusses regularisation of NNs. Section 2.7 describes the data

preparation necessary for NN training. Finally, Section 2.8 provides a summary of the

chapter.

2.1 Artificial Neuron

The history of NNs began with the invention of the artificial neuron by McCulloch and

Pitts in 1943 [83], where the functionality of a biological neuron was described math-

ematically for the first time. Similarly to a biological neuron, an artificial neuron [49]

receives a set of inputs, and produces an output based on the total strength of the in-

coming signal. The output is modulated using an activation function, which determines

whether the neuron should fire or not. Synaptic connections are modelled as real-valued

weight parameters associated with each input. Figure 2.1 illustrates the structure of a

single artificial neuron.

x2 w2 Σ f

Activation

function

y

Output

x1 w1

xn wn

Weights

Bias

θ

Inputs xi, i ∈ {1, 2, . . . , n}

Figure 2.1: Artificial neuron

As shown in Figure 2.1, a neuron receives n inputs, where every input xi, i ∈
{1, 2, . . . , n}, is multiplied by the corresponding weight wi. The net input signal, corre-
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sponding to the linear combination of inputs, is offset by the bias, θ:

net =
n∑
i=1

xiwi − θ (2.1)

Equation (2.1) describes an n-dimensional hyperplane. Therefore, each unique set of

weights w and a bias θ corresponds to a unique hyperplane that a single neuron can

model. To determine the output signal, y, the activation function f is applied to the net

input signal:

y = f(net) (2.2)

One of the first applications of artificial neurons was to model a binary classifier, called

a perceptron [112]. For this purpose, the output of a neuron had to be converted to

a binary signal, i.e. {0, 1}. Such conversion can be easily obtained by comparing the

weighted input signal to the threshold θ, and outputting a zero if the total signal is below

the threshold, and one otherwise. This function is known as the step function, and is

defined as follows:

f(net) =

1, if net > θ

0, otherwise
(2.3)

Combined with the step activation function, the hyperplane modelled by the neuron can

be interpreted as a boundary between two mutually exclusive classes. The step function

can be replaced by other non-linear activation functions, discussed in Section 2.5. Since a

single neuron models a hyperplane, only linearly separable classes can be separated using

a perceptron. This limitation was discovered in 1969 by Minsky and Papert [90], who

have shown that a perceptron cannot model the exclusive-OR logical gate. However, if

multiple perceptrons are combined together in layers to form a multi-layer perceptron, i.e.

a NN, then the non-linear modelling capabilities can be established mathematically [53].

2.2 Feed Forward Neural Networks

Feed forward NNs, also referred to as multi-layer perceptrons, are acyclic collections

of interconnected neurons aligned in layers. The network structure is inspired by the

human brain. While each individual neuron is limited by the ability to only model
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Figure 2.2: A feed forward NN with a single hidden layer.

linearly separable functions, combining multiple neurons with non-linear activations in

successive layers increases the information capacity of the NN, and enables modelling

non-linear functions of arbitrary complexity. An example of a feed forward NN is shown

in Figure 2.2. Three layer types are shown in Figure 2.2: input, hidden, and output

layers. The functionality of each layer is discussed below.

Input Layer

The input layer simulates the input stimulus that the NN receives from the environment.

The purpose of this layer is to receive the inputs, and transmit them to the next layer.

Thus, identity activation is used in the inputs, and the number of inputs is equal to the

input dimensionality of the problem. In a fully connected NN, each input is subsequently

sent to each neuron in the following layer, and each connection between the input layer

and the following layer bears a weight.

Hidden Layer

The purpose of the hidden layer is to learn a non-linear transformation of the inputs that

will enable the output layer to perform the desired classification or regression task. Hid-

den layer neurons typically employ a non-linear activation function. It has been shown

that a NN with enough neurons in the hidden layer is capable of modelling any non-linear

function of arbitrary complexity, thus making NNs universal approximators [53]. It was
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later discovered that NNs with multiple hidden layers are capable of modelling hierar-

chical representations of the inputs. Thus, many-layer, or deep NNs, were shown to be

more successful in real-life applications than shallow, i.e. one hidden layer NNs [71, 117].

Deep NNs, however, are largely based on the same principles as shallow NNs.

Figure 2.2 shows that all hidden units receive a signal of negative one in addition

to the input signals. This signal enables each neuron in the hidden layer to learn the

appropriate bias weight.

Output Layer

The number of dependent variables determines the number of neurons in the output layer.

A single output is typically used for regression and binary classification problems. For

multinomial classification problems, the number of outputs is usually equal to the number

of classes. The activation function is chosen such that the output can be interpreted

as a class distribution. For regression problems, the output units typically use linear

activation, to avoid signal distortion. Bias weights are learned for each output neuron

in the same way as for the hidden neurons.

NN output is calculated by a forward pass of a pattern p through the network:

ok,p = fok

(
J+1∑
j=1

wkjuj

)
= fok

(
J+1∑
j=1

wkjfuj

(
I+1∑
i=1

vjizi

))
(2.4)

where ok is the output of the k’th neuron in the output layer of size K; uj is the output

of the j’th neuron in the hidden layer of size J ; zi is the output of the i’th neurons of the

input layer of size I; fok and fuj are the activation functions of the output and hidden

neurons, respectively; wkj is a weight connecting the k’th output neuron and the j’th

hidden neuron, and vji is a weight connecting the j’th hidden neuron and the i’th input

neuron; and wk,J+1, vj,I+1 account for the bias weights in the output and hidden layers,

respectively.

2.3 Neural Network Training

NN training mimics the learning process in the human brain, where active synapses are

reinforced, and inactive ones are weakened. This study deals with supervised training
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only. In the supervised training paradigm, a dataset D is available that maps inputs

to the desired outputs. The dataset is divided into two mutually exclusive subsets, the

training set DT , and the generalisation set DG. Given DT inputs, the NN tries to predict

the outputs. The NN prediction is compared to the target outputs, an error metric E is

calculated, and the weights are adjusted to minimise E. Common error metrics, referred

to as loss functions, are discussed in Section 2.4.

The training process is repeated until some stopping criteria is met. Once the NN

has been trained, DG is used to evaluate the ability of the trained model to correctly

predict the outputs for the patterns not seen during training.

NN weights can be updated for every pattern via sequential pattern presentation.

This approach is referred to as stochastic training. Alternatively, every pattern in the

dataset can be evaluated first, then the cumulative error is used to perform the weight

updates. This approach is referred to as batch training. Batch training typically exhibits

robust performance, as minimising the cumulative error should theoretically benefit every

pattern in the dataset. However, calculating the cumulative error for very large datasets

may become prohibitively expensive. Stochastic training is more cost-efficient, but is

prone to oscillatory behaviour, because weight updates for individual patterns are likely

to contradict each other, causing the NN to repetitively learn and un-learn. A middle-

ground solution called mini-batch training [131] has been proposed that combines the

benefits of both stochastic and batch learning. For mini-batch training, small subsets,

or mini-batches are used to calculate the error. Optimisation of the mini-batch size per

problem can provide a cost-efficient, yet reliable error estimate.

Gradient-based training

One of the most prominent approaches to NN training is a gradient-based algorithm,

known as the backpropagation of error, formulated for the first time by Werbos in

1974 [143]. The backpropagation algorithm adjusts the weights by calculating the gra-

dient of E with respect to each weight in the network. Backpropagation is defined

recursively, thus the gradients are calculated for the outer layers first, and then back-

propagated to the earlier layers. Each weight wab between neurons a and b is adjusted
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by adding a negative gradient scaled by the learning rate parameter η:

∆wab ← η

(
− ∂E

∂wab

)
wab ← wab + ∆wab

(2.5)

For the output layer weights, the gradient is calculated, using the chain rule, as:

∂E

∂wab
=
∂E

∂ob

∂ob
∂netb

∂netb
∂wab

=
∂E

∂ob

∂ob
∂netb

ya (2.6)

where ya is the output of the a’th hidden neuron.

For the non-output layer weights, the gradient is recursively calculated, using the

chain rule, as:

∂E

∂wab
=
∂E

∂yb

∂yb
∂netb

∂netb
∂wab

=
∑
m∈M

(
∂E

∂ym

∂ym
∂netm

wbm

)
∂yb
∂netb

ya (2.7)

where ya and yb are the outputs of the a’th and b’th neuron, respectively, and M is the

number of neurons in the successive layer that receives an input from neuron b.

To smooth out potential oscillations caused by stochastic and mini-batch training, a

momentum term is often added to the weight update:

wab ← wab + ∆wab(t) + α∆wab(t− 1) (2.8)

where t is the iteration count, and α is the momentum coefficient that controls the

influence of the past weight updates on the current weight update.

Thus, backpropagation relies heavily on the derivatives of the error function, as well

as the derivatives of the activation functions employed in the hidden and output layers.

2.4 Loss Functions

The two most widely used NN error metrics are the quadratic loss function and the

entropic loss function, discussed in this section.

Quadratic loss, also referred to as the sum squared error (SSE), simply calculates the

sum of squared errors produced by the NN:

Esse =
P∑
p=1

K∑
k=1

(tk,p − ok,p)2 (2.9)
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where P is the number of data points, K is the number of outputs, tk,p is the k’th target

value for data point p, and ok,p is the k’th output obtained for data point p. Minimisation

of the SSE minimises the overall error produced by the NN.

If the outputs of the NN can be interpreted as probabilities, then the cross-entropy

between two distributions can be calculated, i.e. the distribution of the desired outputs

(targets), and the distribution of the actual outputs. The entropic loss, also referred to

as the cross-entropy (CE) error, is formulated as follows:

Ece =
P∑
p=1

K∑
k=1

(
tk,p log ok,p + (tk,p − 1) log (ok,p − 1)

)
(2.10)

Minimisation of the cross-entropy leads to convergence of the two distributions, i.e.

the actual output distribution resembles the target distribution more and more, thus

minimising the NN error.

2.5 Activation Functions

The step function defined in Equation (2.1) is non-differentiable, which proves to be an

important disadvantage, since gradient-based training algorithms such as backpropaga-

tion make use of the activation function derivatives. For this reason, a smooth approxi-

mation of the step function, known as the sigmoid function [113], was proposed:

f(net) =
1

1 + e−net
(2.11)

The output of the sigmoid function is in the (0, 1) continuous range, which corresponds

to the binary range of the step function. Figure 2.3 shows the graph of the sigmoid

function, and illustrates that the sigmoid exhibits linear behaviour around the origin,

and saturates (approaches asymptotes) for large positive and negative input values.

The sigmoid was designed to mimic the step function, and is thus constrained to

the positive range of (0, 1). As the signal is propagated from one layer to the next,

consistently positive signals are likely to cause hidden neuron saturation, i.e. cause some

neurons to output values close to the asymptotic ends. Neuron saturation is generally

undesirable [73], since the gradient is very weak near the asymptotes, and may cause

stagnation in the training algorithms [109].
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Figure 2.3: Activation functions

To alleviate saturation, the hyperbolic tangent function, further referred to as TanH,

can be used in place of the sigmoid. TanH is defined as:

f(net) =
enet − e−net

enet + e−net
(2.12)

The output of TanH is in the range (−1, 1), and is therefore zero-centered. Figure 2.3

illustrates that TanH has a sigmoidal s-like shape, and approaches asymptotes at −1

and 1. Since the function is bounded, the neurons can still saturate, but the zero-

centered range makes saturation less likely.

As discussed in Section 2.3, the backpropagation algorithm is defined recursively,

and the activation function derivatives of the later layers affect the weight updates of

the earlier layers. This recursive definition gives rise to the so-called vanishing gradient

problem [51, 52]. If the activation function derivative values are generally smaller than

one, then the error signal will become weaker and weaker during the course of backprop-

agation from the output layer to the input layer, due to being recursively multiplied by a

small value. Figure 2.4 illustrates that both the sigmoid and the TanH activations exhi-

bit small derivatives due to their asymptotic behaviour. The vanishing gradient problem
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Figure 2.4: Derivatives of the activation functions

makes training deep NNs hard and largely ineffective.

To combat the vanishing gradients, the rectified linear activation function, further

referred to as ReLU, was proposed as an alternative to the sigmoidal activations [45, 98].

The ReLU activation is defined as follows:

f(net) =

net, if net > 0

0, otherwise
(2.13)

Figure 2.3 illustrates that the ReLU activation is simply the identity function for all

positive input signal values. As a result, the derivative of ReLU is identical to the step

function, illustrated in Figure 2.4. The function is not differentiable at zero, but the

derivative can be simply set to zero at the origin. Thus, the ReLU activation saturates

only for negative input signals. A constant derivative of one for all positive inputs ensures

that positive signals can be effectively adjusted by backpropagation. To date, ReLU is

one of the most popular activation functions in deep NN learning [4, 117, 152].

ReLU has been criticised for the hard saturation (derivative of zero) imposed on

all negative inputs. While hard saturation is argued to be biologically plausible [45],
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the derivative of zero indicates that negative inputs will not yield any weight updates.

Thus, if a particular neuron results in a saturated configuration (outputting zero for all

inputs) during the course of training, the neuron will not be able to recover, and will not

contribute anything to the final model.

Numerous adaptations of the ReLU activation have been proposed, most of them

adding a slope with non-zero gradient for the negative inputs [98, 150]. One of the more

recent successful modifications of the ReLU is the exponential linear activation [26],

further referred to as ELU. The ELU activation is defined as:

f(net) =

net, if net > 0

enet − 1, otherwise
(2.14)

The ELU activation is illustarted in Figure 2.3, and ELU’s derivative is illustrated

in Figure 2.4. For the negative inputs, ELU uses an exponentially decaying curve.

As a result, negative inputs have a non-zero derivative that gradually approaches the

asymptote. Thus, negative inputs contribute to the final model, making the NN easier

to train.

Output neuron activations should be considered as a special case. For regression

problems, linear activation is often used to avoid signal distortion. For classification

problems, however, one-hot binary encoding, discussed in Section 2.7, is typically used

for the target variables, thus the output signals should be in the same range as the

binary codes. The sigmoid activation can be used for this purpose, due to the convenient

output range of (0, 1). A probabilistic interpretation can also be applied to the sigmoid

activations, where each output represents the probability of a pattern p belonging to a

particular class. If sigmoid activations are used in the output layer, then each output

neuron models the probability distribution of a class.

For multinomial classification problems, sigmoid outputs have an important disad-

vantage: since each neuron models a probability distribution, the NN may predict two

or more mutually exclusive classes with a high probability, making the output less inter-

pretable. As an example, for three classes, the NN may output {0.9, 0.9, 0.9}, predicting

every class with 90% probability. If the classes are mutually exclusive, such behaviour

is undesirable. An alternative to the sigmoid is the softmax function [17], which ties all
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output neurons into a single joint probability distribution:

f(net) =
enet∑K
k=1 e

netk
(2.15)

where K is the total number of output neurons. The softmax function ensures that the

total activation of the output layer is equal to one.

2.6 Regularisation

The ability of a NN to correctly predict the outputs of input patterns not seen during

training is known as the generalisation ability. A model that cannot generalise has no

practical use, therefore maximising the generalisation potential of a NN is a major goal

of NN training. A simple, yet effective way to improve the generalisation ability of a

NN is to add a weight regularisation term to the loss function [92, 91, 125]. Weight

regularisation is applied to minimise both NN error and NN complexity. If Ep is a

penalty function that quantifies the complexity of a NN, the objective function can be

modified as follows:

Enn = E + λEp (2.16)

where λ is a hyperparameter controlling the “strength” of regularisation. If λ is too small,

the value of the penalty function will be much smaller than the error value, and the error

is likely to “overshadow” the penalty, thus causing the penalty to be disregarded. On the

other hand, if λ is too big, the penalty contribution to the objective function will become

larger than the error term contribution, and the algorithm will focus on minimising the

NN complexity instead of minimising the error. In practice, λ is chosen empirically per

problem and per penalty function Ep.

The complexity of a NN can be expressed by the overall number of NN weights.

Simplistic architectures with too few weights may be incapable of learning a complex

problem representation. Excessive architectures with too many weights, on the other

hand, may promote overfitting, i.e. poor generalisation. Thus, penalty functions are

usually designed to optimise the total number of NN weights.

A well-known L2 (i.e. quadratic) penalty function proposed in the literature is weight
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decay [50], given by

Ep =
1

2

W∑
l=1

w2
l (2.17)

where W is the total number of weights in the NN, and wl is the l-th weight. The weight

decay penalty essentially calculates the magnitude of the weight vector. The larger the

magnitude, the more the NN will be penalised. Limiting the weight growth tends to

improve NN generalisation [92], since the relevant weights are reinforced by the training

algorithm at every iteration, while the irrelevant ones decay towards zero over time.

A disadvantage of weight decay is that no differentiation between relevant and irrele-

vant weights is explicitly made, thus both large and small weights are penalised with the

same rigour. Weigend et al. [140] introduced an alternative L2 penalty function, which

uses an extra parameter w0 to specify the threshold that separates relevant weights from

irrelevant weights:

Ep =
W∑
l=1

w2
l /w

2
0

1 + w2
l /w

2
0

(2.18)

This penalty function is known as weight elimination. Parameter w0 defines a threshold

that distinguishes between significantly and insignificantly large weights. Weights with

|w| >> w0 yield a complexity cost close to 1, and contribute towards the penalty term

in Equation (2.18). Thus, weights with |w| >> w0 are seen as “too large” and in need

of regularisation. Weights with |w| << w0 yield a complexity cost close to zero, and

contribute very little to the weight elimination term. Thus, weights with |w| << w0 are

not penalised. A small w0 value will result in more weights being penalised, thus only

the most persistent weights will survive, yielding an architecture comprised of few larger

weights. On the other hand, for a large w0 value, small weights will not be subject to

the penalty, resulting in an architecture made up of many small weights.

The preference of a few large weights or many small weights is problem-dependent,

although it should be noted that large weights may cause the NN to saturate. Very large

weights increase the signal strength, causing the bounded activation functions to output

near-asymptotic values.
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2.7 Data Preparation

For the purpose of supervised training, data has to be converted to a format usable by

the NN. Inputs and outputs must be numeric, therefore nominal attributes have to be

either binary coded, or binned into real-valued intervals. For multinomial classification,

the outputs are typically one-hot encoded. One-hot encoding uses a bit vector of the

same length as the total number of classes. For each pattern p, only one bit in the vector

is set to ‘1’, while the rest of the bits are set to ‘0’. The position of the ‘1’ bit indicates

the nominal value of p.

The inputs are typically scaled to a small range around zero to avoid saturation. A

study by LeCun [73] indicated that the scaling of each input attribute to have a mean

of zero and a variance of one benefits the gradient-based training process.

For classification problems, and for sigmoidal activation functions with range (0, 1),

the binary outputs are often scaled to lie in the [0.1, 0.9] interval, as opposed to [0, 1].

Such scaling enables the sigmoid output layer to achieve an error of zero, as [0.1, 0.9] lies

within the asymptotic range.

2.8 Summary

This chapter discussed the structure and the training process of NNs. Loss functions,

activation functions, regularisation, and data preparation relevant to this study were

also described. The next chapter provides an overview of fitness landscape analysis, and

discusses the existing insights into the nature of NN error landscapes.



Chapter 3

Fitness Landscape Analysis

A fitness landscape refers to the hypersurface formed by the objective function values

of an optimisation problem calculated across the search space. The goal of FLA is to

estimate and quantify various features of the objective function hypersurface, such as

ruggedness, neutrality, and searchability, and to discover correlations between landscape

features and algorithm performance [81, 105]. Through quantifying landscape features,

FLA can be used to gain a better understanding of the problem nature, and thus aid

the development of new algorithms. The term “fitness landscape” was coined in the

evolutionary optimisation community [59, 88]. FLA techniques were inspired by genetics

research [148], and therefore were originally developed for discrete binary search spaces.

However, the notion of fitness landscapes was recently extended to continuous spaces

[77, 97, 105]. Any optimisation problem with a well-defined objective function can be

studied from the FLA perspective.

The purpose of this chapter is to review the existing FLA approaches for continuous

problems, and to discuss the applicability of FLA for NN analysis. The rest of the chap-

ter is structured as follows: Section 3.1 formally defines fitness landscapes. Section 3.2

discusses the characteristics of fitness landscapes that can have an effect on the perfor-

mance of an optimisation algorithm. Section 3.3 describes sampling techniques used for

FLA. Section 3.4 discusses FLA techniques developed for continuous search spaces. Sec-

tion 3.5 discusses NN training in the context of FLA, and reviews the existing research

on NN fitness landscapes. Finally, Section 3.6 provides a summary of the chapter.

22
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3.1 Fitness Landscapes

A formal definition of a fitness landscape was proposed by Stadler [126], where the fitness

landscape of an optimisation problem was described by three components:

1. A set of X configurations, i.e. a set of solutions.

2. A notion d of distance, neighbourhood, or accessibility on X.

3. A fitness function g : X → R.

X defines the solution space, i.e. the domain of g, and d defines the structure of X,

i.e. the nature of transition between distinct solutions. Thus, a fitness landscape F

is determined by two functions, g and d, which define the fitness, i.e. the quality of

solutions, and the distances, or transitions between solutions [105]:

F = (X, g, d) (3.1)

In the context of continuous optimisation, X represents a continuous range, containing

all valid solutions. For constrained problems, X may be limited to a certain interval.

For unconstrained problems, X is defined as all points in R.

The neighbourhood Nε of a solution x ∈ X is defined as all points x′ for which

d(x,x′) ≤ ε, where ε defines the neighbourhood radius. In a binary space, d can refer to

the Hamming distance, i.e. the number of different bits between two bit strings. Thus,

in binary space and other discrete spaces, every point x will have a finite number of

neighbours. In continuous spaces, the Euclidean distance is typically used as d; thus x

will have an infinite number of neighbours, using the same definition of Nε.
If X is all points in R, and d is the Euclidean distance, then the fitness function g

defines F for continuous optimisation problems. Without loss of generality, minimisation

problems will be considered. The goal of a continuous minimisation problem is to discover

a global minimum x∗ given g(x):

x∗ = arg min
X

g(x) (3.2)

Studying the fitness landscapes of continuous problems is difficult, because X is an

infinite set, and cannot be exhaustively enumerated. Given that continuous problems
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are typically simulated using computer architectures with limited precision, the repre-

sentation of the continuous space used in practice can be considered finite. However,

exhaustively enumerating this finite space remains practically infeasible. Thus, sam-

pling has to be employed to obtain X ′, an approximation of X. Sampling techniques for

continuous problems are discussed in Section 3.3.

3.2 Characteristics of Fitness Landscapes

A number of surveys are available [77, 87, 97, 105] that list and discuss various quantifi-

able properties of fitness landscapes that may have an influence on the performance of an

optimisation algorithm. All of these properties fall into four broad categories: modality,

structure, separability, and searchability. Each category is discussed below.

3.2.1 Modality

Modality refers to the number and structure of optima in a fitness landscape. Maximi-

sation problems are concerned with locating maxima, and minimisation problems are

concerned with locating minima. The rest of this chapter assumes minimisation. The

definition of a global minimum x∗ is given in Equation (3.2). A local minimum x̃ can be

defined as a point in X that has the smallest fitness value in its neighbourhood:

x̃ ∈ X ⇐⇒ g(x̃) < g(x) ∀ x ∈ Nε(x̃) (3.3)

Optimisation problems can be unimodal, i.e. contain a single optimum in the land-

scape, or multimodal, i.e. contain multiple optima in the landscape. An important

property of a multimodal fitness landscape is the number of local optima, since local

optima have the potential to trap an optimisation algorithm. In addition to the number

of local optima, it is important to understand the structure of the optima, i.e. the prop-

erties of the basins of attraction. Basins of attraction are defined as the regions around

optima that would lead a local search to the optima. Optima with large basins of attrac-

tion are easier to find, while small and narrow basins make local search harder [61, 127].

Thus, the size and shape of attraction basins are important fitness landscape properties.
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Closely related to the local optima is the concept of stationary regions in the land-

scape. If the inequality in Equation (3.3) is relaxed to g(x̃) ≤ g(x), then a local minimum

can be extended to a local plateau, i.e. a flat region where an optimisation algorithm

may also stagnate.

Distribution, frequency, and distance between local minima and other stationary

regions are likely to have an effect on the performance of an optimisation algorithm.

Another important property is the difficulty of transition from one optimum to another

optimum, i.e. the maximum fitness value on the minimal path between two optima. This

value is often referred to as a fitness barrier [105].

Finally, saddle points, i.e. stationary points in the landscape with opposite curvatures

at perpendicular planes, also form a notable landscape feature. The stationary part of a

saddle region, especially extended to a plateau, may attract an optimisation algorithm,

and slow down the search. However, the presence of downward curvature makes saddles

significantly easier to escape than the local optima.

3.2.2 Structure

The structure of a fitness landscape is described by the amount of variability in the

fitness values, and is closely related to the number of local optima. A rugged landscape

is a landscape that yields a lot of variation in the fitness values when traversed, i.e.

decreasing as well as increasing fitness. A smooth landscape is a landscape that yields a

consistent trend when traversed, i.e. either consistently decreasing or increasing fitness,

but not both. Finally, a neutral landscape is a landscape that yields very little to no

variation in the fitness values when traversed, i.e. a flat landscape. A rugged landscape

is more likely to have multiple local minima than a smooth landscape, and is typically

harder to search [127]. A neutral landscape may also be non-trivial to optimise, because

the lack of fitness variability implies the lack of information to guide the search.

An important structural property of a fitness landscape is the magnitude of fitness

changes, i.e. the gradient information available to an optimisation algorithm [81]. The

gradient information is particularly important to gradient-based search algorithms which

use the analytical gradient directly. Gradient magnitude is also related to fitness barriers,

and may indicate how difficult it will be for an optimisation algorithm to escape a local
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optimum.

The presence or absence of symmetry in the landscape may also contribute to problem

difficulty. A fitness landscape may be symmetric with respect to one of the axis, or a

single point, eg. the origin. Symmetry implies that mutually exclusive subsets of the

fitness landscape will have identical sets of fitness values arranged in the same topological

structure. Figure 3.1 illustrates two types of function symmetry: even and odd. Both

functions are symmetric about the origin. In the even case, two identical global minima

can be found on either side of zero. In general, if a global or local minimum is found in

a landscape subset with an even symmetric counterpart, another minimum of the same

quality will exist in the symmetric subset. Thus, symmetry may yield a redundancy

in local and global minima. The effect of symmetry on algorithm performance was

studied in the context of genetic algorithms [27, 99, 144], showing that different types of

symmetry can be either detrimental or conducive to algorithm performance.

Figure 3.1: Examples of symmetric functions
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3.2.3 Separability

Separability is closely related to the concept of epistasis, borrowed from the field of genet-

ics [29]. A chromosome is said to have low epistasis if the genes contribute independently

to the fitness of the chromosome. High epistasis, on the other hand, means that the con-

tribution of each gene is dependant on the values of the other genes in the chromosome.
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This concept directly maps to variable inter-dependency in an optimisation problem: if

each variable contributes independently to the fitness function, then each variable can

be optimised separately, making the problem separable. If the contribution of a variable

to the final fitness depends on other variable contributions, then per-variable optimisa-

tion becomes problematic. Problems with inter-dependent variables are referred to as

non-separable. Separability is an important problem characteristic, since the degree of

separability exhibited by the problem determines whether the problem can be broken

down into simpler sub-problems. Studies have shown that genetic algorithms perform

better on separable problems [27].

3.2.4 Searchability

Searchability [78], also referred to as evolvability in the genetic algorithm context [2, 133],

refers to the ability of a search algorithm to find a better solution given the current

solution, or a pool of solutions. In the genetic algorithm context, evolvability is defined

as the ability of a population to produce fitter offspring [2, 133]. In the continuous

optimisation problem context, searchability refers to the probability of success of a local

search, and is typically quantified in terms of the presence or absence of the information

that can guide the search, as well as the presence or absence of the information that

can “deceive” the search. Thus, searchability is a metric of problem hardness. Whether

algorithm-independent problem hardness can be estimated is not clear [96], because a

problem that is difficult for a population-based algorithm may be easy for a gradient-

based algorithm. Potential problem hardness predictors are the global problem structure,

and the general deceptiveness of the landscape [78]. A deceptive landscape is a landscape

where increasingly worse fitness is observed on a path leading to an optimum.

Searchability, or problem hardness, is a collective problem characteristic that corre-

lates with modality, structure, and separability of the problem.

3.3 Sampling Techniques

The goal of FLA is to estimate various fitness landscape properties as discussed in Sec-

tion 3.2. In continuous spaces, it is important to be able to provide adequate estimates
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without a complete enumeration of every point in the search space, since complete enu-

meration is not available. Thus, fitness landscape properties have to be estimated by

taking random or biased samples of the search space, calculating the objective function

value for every point in each sample, and analysing the relationship between the spa-

tial and the qualitative characteristics of the sampled points. Two types of sampling

are used: random sampling, discussed in Section 3.3.1, and random walks, discussed in

Section 3.3.2.

3.3.1 Random sampling

Random sampling entails sampling points from the search space using a probability dis-

tribution. Uniform random sampling is commonly used, although uniform samples are

known to cluster around the origin as the dimensionality of the problem increases. To

improve search space coverage, the Latin hypercube was suggested as a sampling tech-

nique by Mersmann et al. [87]. Regardless of the probability distribution and the chosen

sampling technique, an important property of random samples is spatial independence of

the sampled points, i.e. a random sample does not reflect the distance between individual

sampled points.

3.3.2 Random walks

Random walks are used in multiple scientific fields, such as physics, biology, and eco-

nomics [104, 122]. In the context of FLA, random walks provide an alternative to random

sampling from a given probability distribution [142, 79]. As opposed to a random sample,

where individual points in the sample are spatially uncorrelated, random walks generate

spatially correlated samples. It is precisely the spatial correlation between the individual

steps of the sample that can be exploited to obtain descriptive information such as the

degree of ruggedness, neutrality, or gradients present in the search space [81].

Definition of a random walk

A random walk of length L is a sequence of points in an m-dimensional search space,

obtained by starting at a certain point in the search space, x0, and generating the next
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point, x1, by randomly selecting a neighbour of x0. In general, every xl+1 is obtained by

randomly selecting a neighbour of xl. Thus, a random walk, XL, is a sequence of points

(x0,x1, . . . ,xL), where every xl+1 is derived from xl using a neighbourhood function,

xl+1 ← Nε(xl).

Adaptive walks

The unbiased nature of random walks ensures that each point in the search space has an

approximately equal probability of being selected. However, if the purpose of the analysis

is to quantify the presence and extent of local minima, such a randomised approach may

not prove very useful. Indeed, if a random sample does not contain any points associated

with good fitness, no conclusions about the landscape features of the areas associated

with good fitness can be made. Thus, fitness landscape characteristics are often derived

from an adaptive rather than a random walk [62, 105]. Adaptive walks were originally

defined for binary problems. To perform an adaptive walk, a neighbour xo of xl is

randomly chosen. The neighbour xo is accepted as the next step of the walk, xl+1, if

and only if the fitness of xo is better than the fitness of xl [62]. In the context of genetic

algorithms, a neighbour of xl can be generated by applying a random mutation to xl, i.e.

randomly flipping one or more bits of xl. This approach is equivalent to stochastic hill

climbing in a binary space. Kauffman and Levin [62] estimated the ruggedness of the

landscapes based on the average length of the adaptive walk. A shorter average length

would indicate a rugged landscape, whereas a longer average length would be indicative

of larger areas of consistently decreasing fitness.

Random walks in continuous search spaces

Discrete space sampling can be performed exhaustively, because each point xl will at all

times have a finite number of neighbours. This is not the case in continuous spaces, where

every point xl has an infinite number of neighbours in every dimension. Therefore, both

random walks and adaptive walks can only be used in continuous spaces if neighbour

selection is defined as a finite process.

The neighbourhood of a point xl in a continuous m-dimensional space can be defined

as all points within a certain distance from xl. Malan and Engelbrecht [79] proposed the
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following hypercube definition of the continuous neighbourhood of xl:

xo ∈ Nε(xl) ⇐⇒ |xoj − xlj| ≤ ε,∀j ∈ {1, . . . ,m} (3.4)

where xo is a neighbour of xl if and only if for every dimension j the absolute difference

between xoj and xlj does not exceed some ε.

Using Equation (3.4), a single step of a simple random walk can be defined as ran-

domly generating an m-dimensional step vector ∆xl, such that ∆xlj ∈ [−ε, ε] ∀j ∈
{1, . . . ,m}, and adding ∆xl to xl to generate xl+1:

xl+1 = xl + ∆xl (3.5)

A simple random walk is isotropic, i.e. not biased towards a particular direction, since

the direction of each step is randomised. An anisotropic, or directionally biased variant of

a random walk was proposed by Malan and Engelbrecht [79], called a progressive random

walk. The progressive random walk assigns a randomly chosen direction bias to each

walk in order to improve overall search space coverage. Direction bias is represented

by an m-dimensional randomly generated bit mask b. A single step of a progressive

random walk can be defined as randomly generating an m-dimensional step vector ∆xl,

such that ∆xlj ∈ [0, ε] ∀j ∈ {1, . . . ,m}, and setting the sign of each ∆xlj according to

the corresponding bj:

∆xlj =

−∆xlj, if bj = 0.

∆xlj, otherwise.

Equation (3.5) is then used to generate xl+1. Thus, the magnitude of the step is ran-

domised per dimension, but the overall direction of movement remains persistent. For a

more detailed discussion of the algorithm, refer to [79].

The Manhattan progressive random walk is a variation of the progressive random

walk, proposed in [76]. For the Manhattan walk, the step size is set to ε, and each step

modifies only one randomly chosen dimension of xl. Manhattan progressive random

walks were used in [76, 80] to provide an efficient estimate of the fitness landscape

gradients.

Both the simple random walk and the progressive random walk do not take the

fitness of the neighbours into account when generating the next step, xl+1. To perform
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an adaptive walk in a continuous search space, an optimisation algorithm can be used

to calculate ∆xl. For example, particle swarm optimisation (PSO) has been proposed in

the past as a sampling method [81]. Each particle in the swarm represents a candidate

solution, and the next step of the walk can be defined in terms of the next step of the

global best particle in the swarm. The drawback of optimisation algorithm sampling

is that the success of the sampling is tightly coupled with the success of the chosen

algorithm.

3.4 Fitness Landscape Analysis for Continuous Land-

scapes

The purpose of this section is to provide an overview of existing FLA metrics developed

for continuous optimisation problems. The list is not exhaustive, and aims to outline

the existing research directions, as well as to discuss the FLA metrics used in this study.

The techniques are grouped into four broad categories identified in Section 3.2: modality,

structure, separability, and searchability.

3.4.1 Modality

For combinatorial landscapes, application of local search to a selection of random start-

ing points, and analysis of the best fitness solutions as discovered by the local search

from different starting points, was proposed as a method to estimate the total number

of optima and the size of the corresponding basins of attraction [41, 42]. The method

was adapted to continuous spaces [18, 19], and involves performing local searches with

gradient-based updates, and then calculating the Euclidean distance between discov-

ered minima to determine whether the minima belong to the same basin of attraction.

However, it was demonstrated by Morgan and Gallagher [95] that using the Euclidean

distance in high-dimensional spaces can be very misleading, since all distances begin to

look the same when the dimensionality of the problem is high enough. Thus, the appli-

cability of the modality metrics proposed in [18, 19] to high-dimensional problems has

not been established yet.
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3.4.2 Structure

Structural properties estimated by FLA metrics include ruggedness, smoothness, neu-

trality, and gradients.

Ruggedness

In continuous spaces, ruggedness is often measured in terms of the information entropy

present in a random walk sample. Existing ruggedness metrics are based on the informa-

tion characteristics’ analysis first introduced by Vassilev et al. [137] for discrete problem

spaces. One of the successful continuous adaptations of Vassilev’s approach is the first

entropic measure of ruggedness (FEM), proposed by Malan and Engelbrecht [75]. To

calculate FEM, a progressive random walk through the search space is taken, generating

a time series of fitness values {gl}Ll=0. A symbol sequence, S(ε) = s1s2...sL, is generated

from {gl}Ll=0, where sl ∈ {1̄, 0, 1} is given by

sl = Ψgl(l, ε) =


1̄, if gl − gl−1 < −ε

0, if |gl − gl−1| ≤ ε

1, if gl − gl−1 > ε

where ε is the chosen sensitivity threshold. An entropic measure H(ε) is now defined as

H(ε) = −
∑
p6=q

P[pq] log6 P[pq]

where p, q ∈ {1̄, 0, 1}, and P[pq] is given by

P[pq] =
n[pq]

n

where n[pq] is the number of sub-blocks pq in S(ε). Note that p 6= q, thus the total

number of unique pq value combinations is 6. The value of H(ε) depends on the chosen

value for ε. It was shown in [75, 81] that for a certain ε∗, H(ε∗) converges on the value

of 0 for any {gl}Ll=0. The value of ε∗ is defined as the smallest value of ε for which the

landscape becomes flat. The value of FEM is calculated as follows:

FEM = max
∀ε∈[0,ε∗]

{H(ε)}
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Two FEM measures are usually used to describe a fitness landscape: micro-ruggedness,

FEM0.01, where the maximum size of the random walk step is equal to 1% of the objec-

tive function domain, and macro-ruggedness, FEM0.1, where the maximum size of the

random walk step is equal to 10% of the objective function domain. Pseudocode for the

progressive random walk, as well as the FEM calculations, can be found in [81].

The value of FEM is continuous and falls in the [0, 1] range, where 0 indicates a

smooth landscape (no entropy), and 1 indicates maximal ruggedness (highest entropy).

Thus, FEM can be used to quantify ruggedness/smoothness of a fitness landscape.

FEM was shown to be a good predictor of PSO performance in the continuous do-

main [80, 81].

Neutrality

Two neutrality metrics1 for continuous spaces were proposed in [134]. The metrics

are based on progressive random walks, and operate on overlapping three-point struc-

tures that make up the walks. A three-point structure is a set of three steps, S =

{xl−1,xl,xl+1}, with corresponding fitness values {gl−1, gl, gl+1}. S is regarded as neu-

tral when the following condition holds:

grmax − grmin ≤ ξ (3.6)

where rmax = arg maxr{gr}, rmin = arg minr{gr}, r ∈ {l−1, l, l+1}, and ξ is a threshold

value. Setting ξ to zero yields strict neutrality, and using a small positive value allows

for small variation to also be quantified as neutral. In [134], ξ was set to 1× 10−8.

Two neutrality metrics can be extracted from the neighbourhood information pro-

vided by a progressive random walk, W = {gl}Ll=0:

• M1: The proportion of neutral structures inW . This measure estimates the degree

of neutrality present in the landscape. M1 is defined as

M1 =
sneutral
|W|

(3.7)

1Aspects of this section were published as a paper in the proceedings of the IEEE Congress on

Evolutionary Computation [134].
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where sneutral is the number of neutral 3-point structures inW (see Equation (3.6)),

and |W| is the total number of 3-point structures in W .

• M2: The length of the largest neutral subset of W , proportionate to |W|. M2

estimates the relative size of the largest neutral region, and is defined as

M2 =
|ωmax|
|W|

(3.8)

where ωmax is the longest sub-walk ofW consisting of neutral 3-point objects only.

Both measures produce an output in the range [0, 1], where 0 indicates that the landscape

contains no neutral regions (as per the granularity of the algorithm parameters), and

1 indicates a completely flat landscape where all solutions lie on a single fitness level.

The fitness values in W are normalised to the [0, 1] interval prior to the M1 and M2

calculation to ensure that the same ξ value used in Equation (3.6) can be used across

problems of varied fitness scale. Pseudocode for the generation of M1 and M2 can be

found in [134].

Gradients

To quantify the fitness change magnitudes, i.e. gradients, Malan and Engelbrecht [80]

proposed two gradient measures:

• The average estimated gradient, Gavg, and

• the standard deviation of the gradient, Gdev.

Gavg and Gdev are calculated based on Manhattan progressive random walk [76] samples

of the search space. Gavg is defined as

Gavg =

∑L−1
l=0 |grad(l)|

L

where L is the number of steps in the Manhattan progressive random walk, and grad(l)

is defined as:

grad(l) =
∆el

d(xl,xl+1)
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where ∆el is the difference between the fitness values of two points xl and xl+1, which

define step l of the random walk, and d(xl,xl+1) is the Euclidean distance between xl

and xl+1. Since the Manhattan progressive random walk is suggested as the sampling

strategy of choice, the Euclidean distance d(xl,xl+1) can be replaced by the fixed step size

used for sampling. This simplification makes the calculation of grad(l) computationally

inexpensive. The absolute value of grad(l) is used in the Gavg calculation, since ∆el can

be either positive or negative (the error can increase or decrease). The aim of Gavg is to

quantify the magnitude of changes rather than their direction, thus the sign of grad(l)

is of no consequence. Positive values of grad(l) are also required to ensure that the

negative fitness slopes do not cancel out the positive fitness slopes.

The standard deviation of the gradient Gdev is defined as:

Gdev =

√∑L−1
l=0 (Gavg − |g(l)|)2

L− 1

The Gavg metric quantifies the mean magnitude of change in fitness values, while

Gdev represents the corresponding standard deviation. Pseudocode for the Manhattan

progressive random walk, as well as Gavg and Gdev calculations, can be found in [81].

Both the Gavg and the Gdev metrics produce a single output value based on multiple

walks. Morgan and Gallagher [94] proposed analysis of the length scale distribution,

where the definition of length scale corresponds to the definition of grad(l). The entropy

of the length scale distribution was suggested as a potentially useful metric to categorise

continuous and combinatorial problems [94].

3.4.3 Separability

An FLA metric to quantify variable interactions in continuous spaces, i.e. separability,

was proposed by Sun et al. [128]. The metric is called maximum entropic epistasis (MEE),

and is closely related to the maximal information coefficient (MIC), a statistical measure

of interaction between two variables, proposed in [110]. MEE constructs a matrix that

captures the relationship between every two distinct variables in a problem. For every

two decision variables v and u, MIC is calculated between v and the partial derivative

of the fitness function with respect to u. The matrix of MIC values is then used to
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derive three measures: the degree of direct variable interaction (DDVI), the degree of

indirect variable interaction (DIVI), and the degree of variable interaction (DVI) [128].

The MEE metric was shown to give robust and accurate results on a wide selection of

continuous problems.

3.4.4 Searchability

Searchability is arguably the hardest metric to estimate accurately [96], since searcha-

bility, i.e. hardness of a problem depends on the optimisation algorithm to a very large

extent. However, common landscape characteristics such as the presence of the global

structure have been identified as generic hardness predictors. The FLA metrics discussed

in this section attempt to capture such generic landscape properties.

Fitness distance correlation

The fitness distance correlation (FDC) metric, proposed by Jones and Forrest [60], is

designed to quantify global problem hardness. FDC estimates the global shape of the

fitness landscape by calculating the covariance between the fitness of a solution and its

distance to the nearest optimum. FDC requires knowledge of the global optima locations.

FDCs, proposed in [78], is an adaptation of FDC for continuous landscapes with

unknown optima. FDCs is defined as:

FDCs =

∑L
l=1(gl − g)(dl − d)√∑L

l=1(gl − g)2
√∑L

l=1(dl − d)2

where L is the size of a uniform search space sample with associated fitness values

G = {g1, ..., gn}; g is the mean of G, dl is the Euclidean distance from xl to the point in

the sample with the highest fitness value, and d is the mean of all dl.

FDCs generates values in the range [−1, 1]. For minimisation problems, a value close

to 1 indicates a highly searchable landscape, i.e. the closer the sample points are to

the fittest point, the higher their fitness values are. A value close to 0 indicates a lack

of information in the landscape, i.e. points both far from the fittest point and close

to the fittest point may have similar fitness values. A negative FDCs value indicates
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a “deceptive” search landscape, i.e. approaching the fittest point in the sample may

produce points of increasingly worse fitness.

Note that FDCs uses random uniform samples of the search space rather than sam-

ples gathered by an optimisation algorithm or a random walk. The main advantage of

random samples over samples gathered along a trajectory is that the random samples

are independent of the optimisation algorithm. Thus, the information gathered from

the randomised samples is less biased, and provides a more general view of the fitness

landscape characteristics.

Information landscape negative searchability measure

Another measure of problem hardness was proposed by Borenstein and Poli [11]. In [11],

an “information landscape” of a problem is generated by taking a random sample of the

search space and performing pairwise fitness comparisons between the sampled points.

To evaluate the amount and quality of information in the given landscape, the difference

between the information landscape of the problem and the information landscape of an

“optimal” landscape is calculated.

Malan and Engelbrecht [78] proposed an information landscape negative searchability

(ILns) measure based on the Borenstein and Poli [11] approach. In [78], a random sample

R is generated, and its information landscape is calculated. The spherical function is

chosen as the “optimal” landscape, as it remains robustly searchable when scaled to

higher dimensions. The spherical function is shifted such that its minimum coincides

with the best solution found in R. The difference between the information landscape

of the problem on sample R and the information landscape of the spherical function on

sample R is reported as the ILns value.

ILns essentially measures the distance of the given fitness landscape from the spherical

function fitness landscape of the same dimensionality. ILns is bounded to [0, 1], where

a value of 0 indicates maximum search information (no difference between the optimal

landscape and the actual landscape), and a value of 1 indicates poor quality and quantity

of information.
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3.5 Loss Surfaces of Neural Networks

NN training is the process of finding the best possible combination of weights that

connect the neurons between layers. Each unique combination of weights can be treated

as a candidate solution that represents the mapping between the inputs and the outputs.

Thus, given m weights and biases, the search space is a continuous m-dimensional space

of all possible weight combinations. The complete search space of all possible NN weight

vectors with corresponding error values constitutes the error landscape, or loss surface

of a NN.

NNs have been studied and successfully used in numerous practical applications for

decades [10, 35], yet the landscape properties of the loss functions associated with su-

pervised NN training are still poorly understood [24]. The inherent high dimensionality

of NNs prevents intuitive visualisation, making NNs a classic example of “black box”

optimisation.

NN error landscapes have been studied before in an attempt to better understand

the inner workings of a NN. This section summarises the main existing insights into

the nature of NN error landscapes. Known NN error landscape properties are grouped

into the four broad categories identified in Section 3.2: modality, structure, separability,

and searchability. The provided list is not exhaustive, and is meant to outline the main

directions of the existing research.

3.5.1 Modality

Many studies of local minima in NNs were carried out on the XOR (exclusive-or) problem.

XOR is a simple, but a linearly non-separable problem that can be solved by a feed

forward NN with at least two hidden neurons. As such, XOR is often used to analyse the

basic properties of NNs. Studies of the XOR error landscape are especially interesting,

because researchers have arrived at somewhat contradictory conclusions. Hamey [48]

has claimed that the NN error surface associated with XOR has no local minima. A

year later, Sprinkhuizen-Kuyper et al. [123, 124] have shown that stationary points are

present in the XOR NN search space, but that the stationary points are in fact saddle

points. A more recent study of the XOR error surface was published by Mehta et al. [86],
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where techniques developed for potential energy landscapes were used to quantify local

minima of the XOR problem under a varied number of hidden neurons and regularisation

coefficient values. Mehta et al. [86] have shown that the XOR problem exhibits local

minima, and that the number of local minima grows with the increase in the size of the

hidden layer.

Further theoretical analysis performed for more complex problems than XOR has

highlighted the fact that saddle points are more prevalent in high-dimensional spaces

than local minima, and that the number of local minima decreases with an increase

in the problem dimensionality [23, 28]. Counter examples have also been published,

artificially constructing problems with difficult local minima that can potentially trap

the training algorithm [130]. Current understanding of the stationary points in NN error

surfaces remains incomplete, partially due to the lack of empirical evidence and intuitive

visualisations.

The discovery of the prevalence of saddle points in NN error landscapes has led re-

searchers to question the nature of the basins of attraction associated with the stationary

points [114]. It has been observed that NN error landscapes are comprised of wide and

narrow valleys, and that the solutions discovered at the bottom of such valleys may have

different generalisation behaviour [21, 39, 65]. It has also been observed that it may be

possible to find a path of non-increasing error value that connects any two valleys, thus

indicating that the valleys may all be part of a single manifold, or attraction basin, with

no fitness barriers between them [34].

3.5.2 Structure

Gallagher [39] used techniques such as principal component analysis to simplify error

landscape representation in order to visualise NN error landscapes. It was determined

that error landscapes have many flat areas with sudden cliffs or ravines. The presence

of valleys that stretch into infinity is widely accepted as the most prominent structural

feature of NN error landscapes [21, 39, 40, 68, 65]. Denker et al. [31] have described

NN error landscapes as having a “sombrero” shape, symmetrically warped about the

origin, with solutions of poor quality at zero, and multiple valleys and ridges radiating

in various direction. Kordos and Duch [68] referred to similar properties as the “starfish”
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structure.

An important characteristic to note here is the symmetry about the origin, stud-

ied by Chen et al. [22]. Error landscape symmetry results from two decision variable

transformations that have no effect on the fitness of a NN:

1. Hidden neuron permutation: If the incoming and outgoing weights of two

hidden neurons located in the same layer are swapped, the output of the NN

will not be affected. Similarly, any permutation of the hidden neurons, without

changing the order of the associated weights, will yield identical fitness values.

Thus, larger hidden layers will yield increased redundancy in the error landscape

due to a larger number of available permutations.

2. Sign flip transformation: If the signs of all the incoming weights of a single

hidden neuron are flipped, and the signs of the output weights of this neuron

are also flipped, the NN output will remain unchanged. The redundancy in the

landscape will increase linearly with an increase in the hidden layer size.

Thus, the NN structure is known to contain ravines and valleys radiating from the ori-

gin, and is also known to be highly redundant (symmetric). Studies have been published

claiming that the solutions found at the bottom of wider valleys generalise better than

the solutions found at the bottom of narrow valleys [21, 65]. Other studies have provided

counter examples, artificially constructing sharp minima with good generalisation prop-

erties [32, 64]. Therefore, the relationship between the NN error landscape structure and

NN generalisation performance is not yet fully understood.

3.5.3 Separabilty

NNs are known to be highly non-separable due to their interconnected structure. While

the neurons within a particular layer typically do not communicate, the successive layers

are often fully-connected, meaning that each neuron in the preceding layer contributes to

each neuron in the successive layer. Despite the obvious non-separability, techniques that

rely on subdividing the NN into smaller sub-problems have achieved moderate success

in the past [135]. Separability of NNs falls outside the scope of this work.
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3.5.4 Searchability

NNs were shown to be highly non-convex [28], yet highly searchable. The apparent

lack of high error local minima [121] in deep networks was argued to be the reason for

the success of gradient-based algorithms on very high-dimensional NN problems. Chen

et al. [22] provided theoretical evidence that the error landscapes contain a spherical

throng of optima of similar quality, which makes NN optimisation possible even in very

high-dimensional spaces. The increase in problem dimensionality makes the throng more

dense [22], which increases the probability of locating a good solution. However, the gen-

eralisation performance of the available minima has not been systematically evaluated.

3.5.5 Hyperparameters that influence the neural network error

landscapes

Even though some properties of the NN error landscapes have been identified, the rela-

tionship between various NN hyperparameters and the resulting error surface remains an

open problem [24]. Kordos and Duch [68] provided an overview of the hyperparameters

that influence the NN error landscapes, and used PCA projections to study the effect

of changing the hyperparameter values on the resulting error landscapes. Observations

made in [68] can be summarised as follows:

1. NN architecture: The complexity of the error landscape was reported to increase

as more hidden layers were added to the architecture. NNs with more than one

hidden layer were reported to contain multiple high-laying plateaus that could trap

an optimisation algorithm more easily. Overparametrisation, i.e. excessive weights,

were shown to induce flatness.

2. Training dataset: More complex and less separable datasets yielded more com-

plex and “crinkled” error landscapes, with a larger number of ravines. Balanced

class representation was associated with more symmetric error landscapes.

3. Activation functions: Only sigmoidal and non-monotone functions such as sine

were considered in [68]. Activation functions were reported to have a strong in-

fluence on the error landscapes. Non-monotone functions yielded numerous local
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minima, and monotone sigmoidal functions yielded step-like geometry with sudden

transitions between levels.

4. Loss functions: SSE was compared to CE, and CE was observed to yield a

more complex error surface. Weight decay regularisation was shown to impose a

parabolic shape on the error landscape. Different exponents of SSE were tested,

with the conclusion that higher exponents reduced weight growth and thus per-

formed implicit regularisation.

Though the observations made in [68] are highly valuable, they are mostly based on

visualisations, and thus do not provide a numerical comparison between the various hy-

perparameter settings. Terms used to describe error landscapes, such as “more complex”

or “less complex”, are somewhat vague, and do not provide a hands-on guide for algo-

rithm design or hyperparameter tuning. Additionally, certain important aspects, such

as the generalisation properties of the error landscapes, are not covered.

3.6 Summary

This chapter provided an overview of the FLA field. In general, the properties of fitness

landscapes can be grouped into four main categories: modality, structure, separability,

and searchability. These four categories were discussed in the FLA and the NN contexts.

Although general properties of NN error landscapes have been described in the literature,

the link between NN hyperparameters and the corresponding error landscape features

has not been systematically investigated.

The next chapter presents a sensitivity study of the FLA metrics in relation to the

chosen search space boundaries.
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Search Space Boundaries

An important difference between NN training and many other real-world continuous

optimisation problems is that the NN search space is unbounded. Even though the

weights are usually initialised in a small region around the origin [73], the weights may

take on any values during the course of training. How can such a search space be sampled

in a representative way? If random sampling techniques are used to estimate the FLA

error landscape properties, what part of the infinite search space should be considered?

This chapter attempts to answer the above questions by studying the FLA properties of

a selection of NN error surfaces under different search space boundaries1.

The rest of the chapter is structured as follows: Section 4.1 discusses the problem

of choosing the search space boundaries for the purpose of applying FLA to NNs. Sec-

tion 4.2 describes the experiment conducted to study the sensitivity of FLA metrics

to search space boundaries. Section 4.3 presents the results of the experiment, and

Section 4.4 concludes the chapter.

4.1 Unbounded Landscapes of Neural Networks

Error landscapes of NNs are in many ways similar to fitness landscapes of continuous

optimisation problems, but there is an important difference: NN error landscapes are

1Aspects of this chapter were published as a paper in the Proceedings of the IEEE Symposium

Series on Computational Intelligence [12].

43
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unbounded, whereas optimisation problems usually have bounded decision variables. NN

weights do not have any meaning by themselves, and can have any value in R, as opposed

to decision variables in optimisation problems that relate to some limited resource in the

real world.

The unbounded search spaces of NNs pose a problem to FLA, since the sampling

algorithms used by FLA metrics, such as the progressive random walk [79] and the

Manhattan random walk [80], require knowledge of the minimum and maximum values

per dimension. A range also needs to be specified to generate a random sample for the

FDCs and the ILns metrics discussed in Section 3.4.

No such range is defined for NNs. It is known, however, that NN weights are usu-

ally initialised in a small range around zero [73]. One reason behind choosing a small

range is the avoidance of preliminary saturation. Indeed, if very large weights are used,

the weighted sum of inputs is likely to have a large magnitude, causing the bounded

activation functions to output near-asymptotic values. Saturated units make gradient

descent learning slow and inefficient due to small derivative values near the asymptotes

[44]. It was also shown that non-gradient descent learning can be hindered by NN satu-

ration [109].

Therefore, it is not unreasonable to study the NN error landscapes on a small area

around the origin, since that is exactly where the search for a solution begins. The search

space, however, is unbounded. Thus, the properties of the error landscape on a larger

scale may provide insight into the dynamics of a training algorithm and the complexity

of the problem. FLA on large and small subsets of the search space will also demonstrate

how FLA metrics scale, and whether the metrics converge to a similar value for different

problems when the scale is increased. The purpose of this study was to perform FLA

on a selection of NN problems, under various search space boundaries, and to determine

the relationship between the FLA metrics and the search space boundaries imposed.

4.2 Experimentation

This section details the experiment conducted to study the sensitivity of FLA metrics to

the chosen search space boundaries. Section 4.2.1 outlines the benchmark problems and
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the corresponding NN architectures used. Section 4.2.2 lists the FLA metrics considered

in this experiment. Section 4.2.3 describes the selection of search space boundaries

tested.

4.2.1 Benchmark problems

For the purpose of this thesis, only classification problems were considered. The bench-

mark problems used throughout this thesis, together with the corresponding NN archi-

tectures and sources, are summarised in Appendix A. In this chapter, results obtained

for the following four benchmark problems are reported:

1. Iris (4 inputs, 4 hidden neurons, 3 outputs)

2. Diabetes (8 inputs, 8 hidden neurons, 1 output)

3. Glass (9 inputs, 9 hidden neurons, 6 outputs)

4. Heart (32 inputs, 10 hidden neurons, 1 output)

The above four problems were selected for brevity, as a representative subset.

All NNs employed the identity activation function in the input layer, and the sigmoid

activation function in the hidden and output layers.

For the purpose of this study, SSE, defined in Equation (2.9) in Section 2.4, was

used as the NN error metric. Kordos and Duch [68] have studied the fitness landscapes

associated with the SSE and CE loss functions, and concluded that the choice of the

loss function does not alter the general “starfish” structure of the NN error landscapes.

Therefore, the observations made in this chapter are expected to hold for the CE loss

function. The fitness landscape generated by SSE was analysed under a selection of

boundaries discussed in the next section.

4.2.2 Fitness landscape analysis metrics

The purpose of this study was to determine the influence of the search space bound-

aries on the FLA metrics. The following metrics which rely on bounded sampling were

considered:
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1. Estimated gradients, Gavg and Gdev. Manhattan progressive random walks of 1000

steps were used to obtain the measures, where the size of each step was equal to

1% of the search space.

2. Ruggedness on micro and macro scale, FEM0.01 and FEM0.1. Progressive random

walks were used to obtain the measures, where the maximum size of the random

walk step was equal to 1% of the search space for FEM0.01, and 10% for FEM0.1.

Each random walk consisted of 1000 steps.

3. Fitness distance correlation, FDCs. Uniform random samples of the search space

were used to obtain the FDCs measure, and each sample contained 1000 points.

4. Information landscape negative searchability measure, ILns. Uniform random sam-

ples of the search space were used to obtain the ILns measure, each sample con-

tained 1000 points.

A detailed description of each metric was provided in Section 3.4. Malan and Engel-

brecht [79] suggested that the ideal number of walks to perform is equal to 2m, where m

is the dimensionality of the problem. However, Malan and Engelbrecht [79] argued that

obtaining 2m samples can become infeasible for high-dimensional problems, and is unnec-

essary to obtain robust estimates. Therefore, this study set the number of walks/samples

to be one order of magnitude greater than the dimension of the problem, 10×m.

Note that this study is not the first to apply FDC in the NN context. Gallagher [38]

used FDC to estimate the searchability of NN error landscapes. In [38], a “teacher”

NN was randomly generated, and a “student” NN was subsequently trained to replicate

the teacher. Thus, the weight configuration of the “teacher” represented the true global

minimum of the search space. This study applies FDCs to a selection of real-world

datasets instead, without the explicit knowledge of the global minimum.

4.2.3 Search space boundaries

From the SSE perspective, the search space is infinite. However, from the perspective

of a training algorithm, only a subspace of the infinite search space is ever traversed.

Therefore, the part of the search space actually visited by a training algorithm has the
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most practical significance. The question is, what part of the search space does a training

algorithm typically visit, and how much does the visited sub-space vary per problem and

per algorithm?

According to [73], the interval defined by [−fanin−1/2, fanin−1/2], where fanin is the

number of connections leading into a neuron, is a good interval for weight initialisation,

since the net input signal is dampened proportionally to the total number of inputs.

For the architectures listed in Table A.1, fanin−1/2 varies from 0.036 (MNIST) to 0.58

(XOR). The larger the architecture, the smaller the weight initialisation range will be,

and vice versa, but in all cases, fanin−1/2 ≤ 1.

The weights are thus typically initialised within the [−1, 1] interval. Do the training

algorithms ever leave this interval? The easiest way to determine this is to train a

NN and observe the resulting distribution of the weights. Figure 4.1 illustrates the

weight distributions after 1000 iterations of 30 runs of the stochastic backpropagation

algorithm with a learning rate of 0.1 and a momentum of 0.9 on the four problems listed in

Section 4.2.1. All weights were initialised in the corresponding [−fanin−1/2, fanin−1/2]
intervals, but, as Figure 4.1 shows, the final weights lay within the [−15, 15] interval, a

significantly wider interval than the initial interval. Thus, the initial [−1, 1] interval is

not representative enough for the purposes of FLA.

Backpropagation is indeed not the only training algorithm used in practice. In [107],

a selection of PSO algorithms were used to train NNs, and it was shown that a non-

regularised PSO produces weights in the [−200, 200] interval for the Iris problem. It was

also shown in [136] that PSO tends to diverge on NN training problems, producing very

large weights. Perhaps the shape of the error landscape is one of the reasons behind such

divergent behaviour.

Another important property of NN error landscapes is their inherent symmetry, dis-

cussed in Section 3.5.2. Various permutations of hidden neurons in a layer yield identical

NN models [22]. Flipping the signs of all the incoming and outgoing weights of a single

neuron will also leave the neuron’s output unchanged [22]. Reduction of the search space

to an asymmetric subspace can thus yield a less redundant search subspace, potentially

easier to search.

Based on the insights above, a selection of intervals for random sampling for the
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Figure 4.1: Frequency diagrams of the weight values obtained during NN training

FLA metrics, both symmetric and asymmetric about the origin, was chosen for this

experiment. The intervals used were [−N,N ], N ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000},
and [0, N ], N ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}.

4.3 Experimental Results

Experimental results obtained under various search space boundaries for the four prob-

lems considered are presented in this section. The six FLA metrics listed in Section 4.2.2

were used to analyse the NN error landscapes with respect to SSE. Section 4.3.1 discusses

the gradient measures. Section 4.3.2 discusses the ruggedness measures. Section 4.3.3

discusses the searchability measures. All reported results are averages over 30 indepen-

dent runs.
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Figure 4.2: Gradient measures obtained under various search space boundaries.

4.3.1 Gradients

Figure 4.2 shows the Gavg and Gdev values obtained under different search space bound-

aries. The first notable feature of the gradient metrics is that even inside the smallest

bounds ([−0.001, 0.001], [0, 0.001]), reasonably large Gavg and Gdev were obtained for all

problems. This result can be explained by the presence of a staircase-like, or “layered”

structure of the error landscape, with sudden jumps from one layer to the next, as pre-

viously described in the literature [23, 39, 57]. The fact that very small intervals yielded

high gradients implies that the “layered” structure was not a result of neuron saturation,

since saturation could not occur for such small weights.

The magnitude of gradients increased with an increase in problem dimensionality.
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Thus, the jumps between layers became more and more drastic as the dimensionality

grew. This observation corresponds to the previously made observations that increasing

dimensionality in NNs increases the number of saddle points surrounded by high error

plateaus in the error landscapes [28]. This observation is also confirmed by the growing

gap between Gavg and Gdev, where Gdev > Gavg, associated with the dimensionality

increase, as shown in Figure 4.2. Malan [81] theorised that Gdev >> Gavg is indicative

of landscapes with step-like, sudden fitness changes.

The gradient measures remained mostly consistent for symmetric and asymmetric

bounds alike for all N ≤ 1. This is in fact the recommended weight initialisation range.

Gradient behaviour changed as the boundaries widened: Gdev went steadily upwards for

all problems considered. The corresponding Gavg remained stable (Iris, Glass) or also

increased (Diabetes, Heart). Wider boundaries used for the gradient metrics caused the

step size of the random walks to become larger, too. For the estimation of gradients,

Manhattan random walks were used: the maximum step size was fixed to 1% of the

search space, and at every step, only one randomly chosen dimension was incremented

or decremented by the given step. Thus, Gavg and Gdev measures provided an estimate of

how rapidly the gradients changed in reaction to a change in a single random dimension.

As the boundaries increased, Gdev increased faster than Gavg, indicating high variance in

Gavg. Thus, bigger steps through the search space, even if made in only one dimension

(i.e. weight), were likely to change the fitness of a solution drastically. This effect is

further enhanced in higher-dimensional NNs, due to stronger gradients exhibited, as

shown in Figure 4.2.

Asymmetric bounds yielded similar or lower gradients than the symmetric bounds on

all problems for N ≤ 10, which is attributed to the fact that a smaller subspace of the

search space was considered. However, the results were not consistent on problems of

higher dimensionality. For the Glass problem (150 weights), Gavg evidently decreased on

large asymmetric regions. This behaviour is attributed to a higher degree of neutrality,

or plateaus, due to saturation. Van Aardt et al. [134] showed that neutrality does indeed

increase when the NN error landscapes are sampled using search space boundaries with

N ≥ 10. Indeed, if all weights are positive and potentially large (∀w ∈ [0, 1000]), the

likelihood of a large net input signal is higher, resulting in a higher degree of saturation.
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For the Heart problem (341 weights), both Gavg and Gdev yielded much higher values

on large asymmetric regions than on the corresponding symmetric regions, indicating

that stronger and less consistent gradients were observed for positive-only weights. Thus,

asymmetric regions yielded inconsistent results across problems, and were more data-

sensitive than the symmetric regions.

4.3.2 Ruggedness

Figure 4.3 shows the FEM values obtained under different search space boundaries. For

all problems considered, FEM0.01 and FEM0.1 were within the range [0.2, 0.3] for all

N ≤ 0.1, indicating mostly non-rugged, consistent landscapes. Van Aardt et al. [134]

confirmed that for N ≤ 0.1, a high degree of neutrality was detected for NN error

landscapes. However, Figure 4.3 shows that there was a sharp transition from low

to high macro-ruggedness as N increased from 0.1 to 1. For all problems considered,

macro-ruggedness on the symmetric [−1, 1] region exceeded 0.5, indicating a change from

mostly uniform to mostly rugged. Corresponding asymmetric regions did not exhibit an

increase in FEM0.1, or exhibited a less drastic increase. Thus, weights with absolute

values between [0.1, 1] constituted a search landscape with high variability of fitness

values. However, if the search space consisted of positive weights only, the variability

was greatly decreased. Therefore, asymmetric regions likely contained less information

for NN training.

For all problems considered, both FEM0.01 and FEM0.1 increased as the symmetric

search space widened, and FEM0.1 produced larger values than FEM0.01 at all times.

Thus, the error landscapes were relatively smooth and consistent on the micro scale

(FEM0.01), but rather rugged on the macro scale (FEM0.1). This observation is at-

tributed to the aforementioned layered structure of the NN error landscapes: little change

is observed on a given “level”, but a transition from one level to the next represents a

significant change in fitness.

FEM characteristics of the symmetric regions were more consistent than that of

the asymmetric regions. The instability of FEM observed on the asymmetric regions

indicates that the asymmetric regions did not provide a good representation of the error

landscapes, and often contained little information to guide an optimisation algorithm.
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Figure 4.3: FEM measures obtained under various search space boundaries.

Shifting the search space region to the positive weights implied that some of the ran-

dom walks started from the origin, while symmetric regions guaranteed that the random

walks started on the outer boundaries of the selected regions. Inconsistencies in the

asymmetric FEM values indicate that the view of the search space as seen from the

origin is quite different from the view as seen from the boundaries of the search space. It

would be interesting to design a training algorithm that starts the search at the bound-

aries, and gravitates towards the origin, somewhat similar to NN weight regularisation.

Implementation of such a learning strategy is left for future research.
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4.3.3 Searchability

Figure 4.4 shows the FDCs and ILns measures obtained under different search space

boundaries. ILns consistently increased as the boundaries increased, indicating that

wider search spaces contained less and/or poorer information to guide the search. This

applied to both symmetric and asymmetric bounds. Indeed, a wider search space implies

larger weights, and larger weights imply a higher degree of saturation, while saturated

regions of the search space are known to be hard to search. The amount of informa-

tion quantified by ILns also decreased as the dimensionality of the problem increased,

rightfully indicating that higher-dimensional problems were harder to search.

FDCs, similar to ILns, identified higher-dimensional problems as less searchable,

which is to be expected. FDCs decreased as the boundaries increased, and on most

problems the transition from N = 0.1 to N = 1 yielded a drastic drop in searchability.

It was previously observed that the same transition yielded a drastic increase in FEM0.1

values. Thus, higher fitness variability corresponded to poorer searchability, and the

regions identified as “more searchable” by the FDCs were simply more flat. The FDC

analysis performed in [38] with the teacher-student approach also indicated that flat

plateaus form an integral part of NN error landscapes.

Symmetric regions were quantified as less searchable than the asymmetric regions

by FDCs. Indeed, the asymmetric regions were less redundant, and thus contained less

variability. For higher-dimensional problems (Glass, Diabetes), the FDCs measurements

of the asymmetric regions strongly correlated with the corresponding gradient measures

shown in Figure 4.2. Lower gradients resulted in lower searchability, while steep gradients

were associated with high searchability. Indeed, an absence of gradients would leave a

training algorithm without the information necessary to guide the search.

4.4 Conclusion

This study investigated the behaviour of various FLA metrics on NN search spaces

under different boundaries. All FLA metrics used in this study exhibited a sensitivity

to the boundaries chosen. NNs generate complex error landscapes, and the properties

of landscapes observed on a small area around the origin do not apply to the entire
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Figure 4.4: FDCs and ILns measures obtained under various search space boundaries.

unbounded search space.

High gradient values were obtained on both small and large search subspaces, indicat-

ing that steep gradients constitute an inherent NN error landscape property. Gradient

magnitudes increased with an increase in problem dimensionality. An increase in search

space boundaries increased the variance of gradients, indicating that away from the

origin, the step-like jumps between plateaus become more and more drastic.

According to the ruggedness metric, the NN error landscapes exhibited very little

variation in the [−0.1, 0.1] region, but the entropy increased drastically for weights with

absolute values within [0.1, 1]. Thus, the [0.1, 1] range contained information poten-

tially useful to an optimisation algorithm, and can be employed for weight initialisation.



Chapter 4. Search Space Boundaries 55

For increased search space boundaries, the micro-ruggedness increased slower than the

macro-ruggedness, indicating the relevant consistency for small steps through the search

space, and more drastic changes for larger steps.

Searchability metrics indicated a decrease in searchability associated with the in-

crease of search space boundaries and dimensionality. Asymmetric regions appeared less

steep, less rugged, and more searchable than the symmetric regions. This behaviour is

attributed to a higher saturation degree exhibited by positive weights, as well as a lower

level of optima redundancy due to symmetry about the origin [22].

The FLA measures for NN error landscapes clearly depend on the search space bound-

aries chosen. Based on the observations made in this study, a range of regions rather

than a single region should be used to perform FLA of NNs. The two suggested regions

are the region in which weights are initialised, as well as the region explored by the

training algorithm of choice. More regions can be added to gain more insight into the

problem.

Larger regions of the search space were classified as highly rugged, with extremely

steep gradients and little information to guide a training algorithm. This explains why

weight-dampening techniques such as regularisation are so effective. In general, making

training algorithms gravitate towards the origin while allowing exploration may prove to

be a viable search strategy.

The next chapter presents a case study that uses FLA metrics to analyse the land-

scape changes induced by the addition of a regularisation term to the NN loss function.



Chapter 5

Case Study: Regularisation

The ability to correctly predict the outputs of input patterns not seen during training

is known as the generalisation ability of a NN. A model that cannot generalise has

no practical use, therefore maximising the generalisation potential of a NN is a major

goal of NN training. A simple, yet effective way to improve the generalisation ability

of a NN is to add a weight regularisation term to the objective function [92, 91, 125].

Weight regularisation aims to penalise network complexity by decreasing the rate of

weight growth, as well as by driving irrelevant weights to zero. Regularisation was

shown to be beneficial in practical NN applications [85, 125]. Therefore, investigating

the effect of regularisation on the NN training problem and the associated error landscape

is important.

It is easy to understand the regularisation process intuitively: if large and irrelevant

weights are penalised, the final model will be more compact. It is, however, harder to

imagine the surface of the loss function after a penalty term has been added to it – will

the penalty term introduce new optima, or make the function smoother? Will the chosen

training algorithm find the problem easier or harder to optimise?

The relationship between the regularisation term and the resulting error landscape is

far from trivial [43], especially given the fact that regularisation parameters typically have

to be empirically tuned before an improvement in generalisation performance is observed.

One way to investigate the relationship between the regularisation parameters and the

resulting error surface is to use FLA techniques. FLA provides an easy and convenient

56
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method to quantify and visualise the correlation between the error landscape changes

and the chosen regularisation scheme. This chapter1 applies selected FLA metrics to

study the NN error landscapes under the weight elimination regularisation scheme. The

obtained results provide interesting insights into the nature of regularised NN error

landscapes, give some guidance for the corresponding parameter tuning, and establish

the usability of FLA in the NN context.

The rest of the chapter is structured as follows: Section 5.1 discusses weight elimi-

nation in NNs. Section 5.2 describes the experimental procedure. Section 5.3 presents

the empirical study of NN error landscaps under various weight elimination settings.

Section 5.4 summarises the findings and concludes the chapter.

5.1 Neural Network Weight Elimination

Weight elimination, previously discussed in Section 2.6, offers a refined approach to NN

regularisation that allows problem-specific parameter tuning. A recent study by Wang

et al. [138] provided a theoretical analysis of boundedness and convergence of weight-

elimination NNs, and confirmed good generalisation and pruning capabilities of weight

elimination. However, there are two parameters that need to be tuned: the regularisa-

tion factor, λ, and the weight elimination threshold, w0, as defined in Equations (2.16)

and (2.18) in Section 2.6. This study analyses the relationship between different set-

tings of these two parameters and the corresponding NN error landscapes. A sensible

parameter optimisation range for λ and w0 is proposed. It should be noted that weight

elimination was chosen based on its relative simplicity. Even though other more complex

regularisation schemes have also been proposed in the literature, an investigation of the

relationship between the penalty function and the error function must begin at the most

interpretable point. While weight decay, discussed in Section 2.6, is perhaps too trivial

to provide interesting insights, and simply imposes a quadratic convex shape on the er-

ror function, weight elimination, with its two tunable parameters, is harder to visualise

intuitively [138]. It was also shown that modern regularisation techniques benefit when

1The contents of this chapter have been published as an article in the Neural Processing Letters

journal [13].
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combined with simpler quadratic penalty functions [125]. Thus, the results of this study

can be extended and applied to numerous recently proposed regularisation schemes.

5.2 Experimental Procedure

The aim of the experiments was to apply FLA metrics to regularised NN error landscapes,

and to observe the influence of regularisation parameters on both error landscape char-

acteristics and training algorithm performance. Thus, insight into the regularised NN

error landscapes can be gained, and the expressiveness of FLA metrics in the NN context

can be evaluated.

The rest of the section is structured as follows: Section 5.2.1 outlines the bench-

mark problems used in this study, Section 5.2.2 lists the FLA metrics used, Section

5.2.3 describes the chosen search space boundaries, Section 5.2.4 lists the regularisation

parameter settings investigated in this study, Section 5.2.5 describes the NN training

algorithm used, and Section 5.2.6 lists the NN training algorithm parameters.

5.2.1 Benchmark problems

For the purpose of this study, the following three classification benchmark problems were

considered:

1. Iris (4 inputs, 4 hidden neurons, 3 outputs)

2. Diabetes (8 inputs, 6 hidden neurons, 1 output)

3. Glass (9 inputs, 9 hidden neurons, 6 outputs)

The characteristics of the problems are discussed in Appendix A. The three problems

exhibited consistent FLA trends, and therefore were deemed sufficient for the experiment.

All NNs employed the identity activation function in the input layer, and the sigmoid

activation function in the hidden and output layers. For the purpose of this study, SSE,

defined in Equation (2.9) in Section 2.4, was used as the NN error metric.
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5.2.2 Fitness landscape analysis metrics

The purpose of this study was to determine the effectiveness of FLA to characterise NN

error landscapes under various regularisation parameter settings. The following metrics,

discussed in Section 3.4, were considered:

1. Estimated gradients, Gavg and Gdev. Manhattan progressive random walks of 1000

steps were used to obtain the measures, where the size of each step was equal to

1% of the search space.

2. Ruggedness on the micro and macro scale, FEM0.01 and FEM0.1. Progressive

random walks were used to obtain the measures, where the maximum size of the

random walk step was equal to 1% of the sampling range for FEM0.01, and 10%

for FEM0.1. Each random walk consisted of 1000 steps.

3. Fitness distance correlation, FDCs. The information landscape negative searcha-

bility measure, ILns, was not considered, since the results in Chapter 4 indicated

that ILns and FDCs provide similar searchability estimates. Uniform random sam-

ples of the search space were used to obtain the FDCs measure, where each sample

contained 1000 points.

The number of walks/samples per experiment was set to 10×m, where m is the dimen-

sionality of the problem. Averages of 30 independent experiments are reported.

5.2.3 Search space boundaries

NN weights are defined to be any numbers in R, thus sensible boundaries had to be

chosen for the sampling to take place, as discussed in Chapter 4. For this study, three

search space boundary settings were considered: [−0.5, 0.5], [−1, 1], and [−5, 5]. These

regions correspond to the typical weight initialisation area [73], as well as the areas where

a search algorithm may find an acceptable solution [12]. The three different boundary

settings yielded similar FLA results, therefore only [−1, 1] results are reported in this

chapter.
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5.2.4 Regularisation parameters

The success of weight elimination is heavily dependent on the regularisation parameters

λ and w0 (see Equations (2.16) and (2.18)), which are usually chosen empirically [140].

FLA offers an intuitive way to visualise the effects that the regularisation parameters

have on the resulting error landscape. To study these effects, different combinations of

λ and w0 had to be considered. Previous studies have shown that w0 of order unity is

usually a good choice [141], and that small values of λ tend to give better results [107],

because λ significantly larger than 1 causes the error to be dominated by the penalty

function. This study considered all combinations of λ and w0 values listed in Table 5.1

for each problem.

Table 5.1: Values of λ and w0 considered in this study.

Discrete value range

λ {1× 10−6, 5× 10−6, 1× 10−5, 5× 10−5, 1× 10−4, 5× 10−4,

1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2, 0.1, 0.5, 1}
w0 {1× 10−6, 5× 10−6, 1× 10−5, 5× 10−5, 1× 10−4, 5× 10−4,

1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2, 0.1, 0.5, 1, 2, 5}

5.2.5 Neural network training

Characterisation of error landscapes is not very useful unless insight into the nature of

the problem is provided that can aid the training process. In addition to studying the

error landscapes of regularised NNs, this study investigates the relationship between NN

training algorithm performance and the FLA characteristics of the problem.

Backpropagation (BP), discussed in Section 2.3, was used in this study. BP uses

gradient descent to iteratively adjust NN weights and biases in the direction of the

negative gradient of the objective function. Weight regularisation is applied to a NN by

incorporating the desired penalty term in the gradient calculations.
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5.2.6 Training algorithm parameters

To investigate the relationship between NN training algorithm performance and the FLA

characteristics of the problem, the corresponding training algorithm parameters had to

be optimised to ensure that the algorithm performed adequately. An iterative approach

to algorithm parameter optimisation was used. Algorithm parameters were optimised

one at a time. For each parameter, the algorithm was tested under a selected range of

possible values for this parameter, while the other parameters remained fixed. In order

to keep the optimisation process statistically sound, 30 independent runs were conducted

for every value in the chosen discrete range. The parameter value yielding the lowest

average generalisation error for the current parameter being optimised was subsequently

chosen, and optimisation proceeded to the next parameter. For optimisation of the re-

maining parameters, all the parameters already optimised were fixed to their best values.

This approach to parameter optimisation is sensitive to the order in which the parame-

ters are tuned, and varying the order of parameter tuning is likely to have an effect on

the resulting algorithm performance. It should be noted that the focus of the study is

on investigating the relationship between the error landscape characteristics and regu-

larisation parameters, rather than algorithm performance. Thus, adequate performance

rather than optimal performance is sufficient for the purpose of this study.

For stochastic BP, the learning rate, η, and momentum, α (discussed in Section 2.3)

had to be optimised. Values considered during the optimisation process are listed in

Table 5.2. Final parameter values used in the experiments are listed in Table 5.3. Ta-

ble 5.3 indicates that the problems of higher dimensionality required a larger learning

rate (Glass, Diabetes), and sometimes a smaller momentum (Diabetes) than the problem

of lower dimensionality (Iris). This observation implies that higher dimensional problems

exhibited better overall searchability, allowing for larger step sizes (learning rate), and

requiring less gradient fluctuation smoothing (momentum).

Each reported result is an average over 30 independent simulations that ran for 1000

iterations. Datasets were divided into a training set and a generalisation set; 80% of the

patterns were randomly chosen to form the training set, and the remaining 20% were

used for testing. Test data used to calculate the generalisation errors was not used for

parameter optimisation.
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Table 5.2: BP parameter values considered in the optimisation process.

Discrete value range

Learning rate η {0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}
Momentum α {0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}

Table 5.3: Optimised BP parameter values.

Iris Glass Diabetes

Learning rate η 0.1 0.4 0.3

Momentum α 0.9 0.9 0.8

5.3 Experimental Results

The purpose of the experiments is twofold: first, to investigate the influence of the

regularisation term on the NN error landscapes under different regularisation parameter

settings (in Section 5.3.1); secondly, to observe the training algorithm’s response to the

error landscape changes induced by weight elimination (in Section 5.3.2).

5.3.1 Characterising regularised neural network error landscapes

This section presents an analysis of the relationship between the regularisation term and

the NN error landscapes. The effect of λ and w0 on the average gradients observed in the

landscapes is investigated first, followed by a study of ruggedness and the searchability

of NN error landscapes under various λ and w0 values.

Gradients

To understand the impact of the penalty term, consider the weight elimination penalty

for a single weight over various values of w0, illustrated in Figure 5.1. As can be seen from

Figure 5.1, the weight elimination term has a clear minimum in one dimension: a weight

of zero yields no penalty. The value of w0 controls the “sharpness” of the minimum.

It can be hypothesised that an increase in the value of λ increases the contribution of

the penalty term to the objective function, thus “simplifying” the objective function by
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adding a global attractor in the form of a global minimum imposed by the penalty term.
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Figure 5.1: Weight elimination function for a single weight, w, and weight elimination thresh-

old, w0

Figure 5.2 shows the average values of Gavg and Gdev associated with different com-

binations of λ and w0. For interpretability, every scatter plot in Figure 5.2 includes a

locally estimated scatterplot smoothing (LOESS) curve [25], representing local polyno-

mial regression.

Across all problems considered, an overall downward trend in Gavg was associated

with an increase in λ. Indeed, the surface of the penalty function only has one minimum

and is otherwise smooth. Therefore, increasing the contribution of the penalty term

to the loss function is expected to smooth the error landscape. However, the effect of

the penalty strongly depended on the chosen value of w0: as shown in Figure 5.2, larger

values of w0 indeed yielded smaller Gavg gradients for all problems considered. According

to Figure 5.1, larger w0 implies that the imposed minimum is less sharp, thus smaller

gradients are to be expected.

In Figure 5.2, the problems are presented in ascending order of dimensionality. Fig-

ure 5.2 shows that the average magnitudes of the gradients increased with an increase

in problem dimensionality. The same phenomenon was observed in Chapter 4, con-

firming that higher gradients associated with a higher dimensionality form an inherent

property of NN error landscapes. The downward trend in Gavg associated with the
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Figure 5.2: Gavg and Gdev results obtained for different combinations of λ and w0 on the

[−1, 1] interval
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penalty term contribution became more definite with an increase in dimensionality. A

high-dimensional fully-connected NN architecture is more likely to have redundant free

parameters than a low-dimensional architecture, thus the effect of the penalty term be-

comes more pronounced in high dimensions.

Figure 5.2 also shows that an increase in λ was associated with an overall upward

trend in Gdev. In other words, a stronger contribution of the penalty term to the loss

function yielded smaller gradients of higher variability. As Figure 5.1 illustrates, weight

elimination introduced sharp minima, surrounded by a plateau-like surface. On the

plateau, the gradients will be small. Around the minima, however, the fitness value will

change rapidly. Thus, a high Gdev resulted due to the contrast between the plateaus and

the sudden minima. Indeed, a large difference between Gavg and Gdev is indicative of

a step-like landscape with sudden jumps, according to [81]. The hypothesis is further

confirmed by observing that the larger values of w0, as illustrated in Figure 5.2, were

not associated with an increase in Gdev: higher values of w0 decreased the sharpness of

the introduced minima.

Thus, the introduction of the weight elimination term decreased the overall gradients

of the error surface, but added sharp, narrow optima that may not be very easy to find.

First Entropic Measure of Ruggedness

The first entropic measure of ruggedness, FEM , quantifies the change in fitness values

based on entropy. Figure 5.3 illustrates how the micro- and macro-ruggedness of the

regularised error landscape changed in relation to different values of λ and w0. Variation

in ruggedness for different values of w0 was only observed for larger values of λ. If

λ is too small, the contribution of the penalty term may become negligible. As the

value of w0 increased, so did the ruggedness: small w0 yielded sharp narrow optima

that altered a small part of the search space; increasing w0 widened the “diameter” of

the penalty-induced optima, thus influencing a larger part of the error landscape. The

ruggedness began to drop again as w0 became larger than 0.01: the induced optima

gradually “flattened” and became lost among other error landscape fluctuations. When

w0 became larger than the chosen error landscape boundaries, no sampled weights were

deemed large enough to be penalised, thus the contribution of the penalty term vanished
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Figure 5.3: FEM0.01 and FEM0.1 results obtained for different combinations of λ and w0 on

the [−1, 1] interval
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altogether.

Macro-ruggedness results, also shown in Figure 5.3, illustrate the same trends as

micro-ruggedness, but in a more pronounced manner. Average values of FEM0.1 ex-

ceeded the corresponding FEM0.01 values, indicating that larger step sizes experienced

more variation in the landscape. Once again, values of w0 close to 0.01 induced the most

ruggedness across all problems considered.

Entropy is used to estimate the level of ruggedness in fitness landscapes. From the

information theory perspective, the amount of entropy can be interpreted as the amount

of “information”, or variability. Clearly, specific values of w0 and λ maximised the

amount of variability present in the error landscape. The question that remains to be

answered is whether this “information” was indeed useful to the training algorithms, and

whether the penalty term made the error landscape easier to search.

Fitness Distance Correlation

FDCs results for different values of λ and w0 are shown in Figure 5.4. Once again,

the effect of the penalty term on the error landscape only became noticeable for larger

values of λ. It is evident from Figure 5.4 that FDCs decreased at first as the value of

w0 increased from 1× 10−5 to 1× 10−2. It was shown in Figure 5.3 that increasing the

value of w0 resulted in increased ruggedness. Ruggedness implies that the fitness value

fluctuates instead of persistently going up or down as the landscape is traversed by an

algorithm. Increased fluctuations were thus labelled as “less searchable”.

After the highest peak of ruggedness was reached at w0 ≈ 0.01, and the ruggedness

began to decline with an increase in w0, the landscape was progressively perceived as

more and more searchable (FDCs increased). Highest values of w0, combined with the

highest values of λ, yielded the higest searchability on all problems considered. Thus,

only large weights were penalised, and the applied penalty was strong. Therefore, the

FDCs results support the hypothesis that the application of a penalty simplifies the

landscape. High values of w0 combined with high values of λ have also been shown to

yield error landscapes with low and consistent gradients, shown in Figure 5.2, which once

again confirms the landscape simplification via regularisation.
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Figure 5.4: FDCS results obtained for different combinations of λ and w0 on the [−1, 1]

interval

Summary

Regularised NN error landscapes were considered in terms of approximate gradients,

ruggedness, and searchability. It was observed that the addition of a penalty term

had a visible impact on the resulting error landscape, and that properties of the error

surface such as gradients and ruggedness can be controlled by tuning the regularisation

parameters. The next section puts these observations in the context of NN training.
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5.3.2 Fitness landscape analysis and neural network training

Now that it has been established how the penalty term changes NN error landscapes,

it is important to understand whether the induced changes make the landscape easier

or harder to search for the NN training algorithms. This study considered the classical

BP algorithm for NN training, as outlined in Section 5.2.5. No search space boundaries

were enforced during training, since NN weights are defined to be any real numbers in

R. The goal of the study was to execute an instance of an algorithm on a problem, and

to observe any difference in algorithm performance induced by the various combinations

of λ and w0 values. All NN weights were randomly initialised in the [−0.5, 0.5] interval.

Algorithm performance was evaluated in terms of the mean squared training error, ET ,

the mean squared generalisation error, EG, and the mean classification error, EC . Both

EG and EC were calculated on the test set, which constituted a randomly selected 20%

of the data set not used during training or parameter optimisation. If at least one value

in the output vector differed from the corresponding target value by more than 0.5, the

pattern was labelled as incorrectly classified.

Figure 5.5 summarises the average EG and EC values obtained for different values of

λ and w0. Across all problems and both error metrics, high values of λ were associated

with inferior performance. An increase in λ implies that the contribution of the penalty

term to the objective function becomes stronger. Indeed, if the training algorithm focuses

on eliminating the weights rather than minimising the error, the training will produce a

minimal architecture that is utterly useless.

The situation looked quite different when observed from the perspective of w0. On

all problems, the smallest values of w0 yielded poor training and generalisation perfor-

mance. It has been observed in Section 5.3.1 that low values of w0 corresponded to

error landscapes of low ruggedness and drastic gradient changes due to the nature of the

penalty term. BP, being a gradient-descent method, struggled to find a way through

the plateaus of the resulting staircase-like error surface. An increase in w0, that cor-

responded to an increase in ruggedness, and a decrease in gradient variation, yielded a

predictable improvement in BP performance. As w0 increased further, penalising fewer

and fewer weights, the error began to grow again, which is especially evident from the

EC values.
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Figure 5.5: Backpropagation results obtained for different combinations of λ and w0

What parameter selection guidance can be induced from the above observations?

First of all, w0 in the range [0.001, 0.01] generated the landscapes with most variability,
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i.e. information, which resulted in the lowest average ET , EG, and EC values. The

authors suggest that values less than or equal to 0.01 are considered for w0 for low-

dimensional problems, and values greater or equal to 0.01 are considered for higher-

dimensional problems. Values around 0.01 are likely to produce a sensible result, thus

0.01 can be used as a starting point in the optimisation process.

Even though excessively large λ may hinder training by overshadowing the error by

the penalty, a value of λ < 0.001 is not likely to influence the error landscape significantly.

Therefore, λ in the range [0.001, 0.1] is suggested to be considered in the parameter

optimisation process.

It should also be noted that very low values of λ yielded low error values in some

scenarios, especially on lower-dimensional problems. Thus, regularised models should be

compared to non-regularised models as a part of the optimisation process, to ensure that

regularisation does indeed improve the generalisation performance.

To further visualise the relationship between the obtained FLA measures and the cor-

responding algorithm performance, parallel coordinate plots are presented in Figure 5.6.

Parallel coordinate plots were first proposed by Wegman [139] as a technique to visualise

the relationships between various dimensions in high-dimensional spaces. In Figure 5.6,

each FLA metric is represented as a parallel coordinate axis, and EC is used as a metric

representing BP performance. Each line represents a combination of averages over 30

simulations of each metric, for a given combination of λ and w0 values.

Even though BP’s performance differed per problem (Figures 5.6a, 5.6b, and 5.6c),

some general trends can be observed. For all problems considered, Gavg higher than

Gdev was associated with lower EC . Consistent but prominent gradients imply a more

searchable and cohesive landscape, with enough gradient information to guide BP. Small

Gavg and Gdev, indicative of a fairly flat landscape, yielded poor BP performance, which

is to be expected. Mid-range Gavg with Gdev >> Gavg also yielded poor performance,

indicating that BP does not perform well on step-like error landscapes with abrupt fitness

changes.

Figure 5.6 shows that high ruggedness did not hinder BP. Good BP performance on

highly rugged surfaces indicates that BP may be much more resilient to local minima

than previously suspected. These results correlate well with recent theoretical findings
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Figure 5.6: Parallel coordinate plots for various FLA metrics obtained on the [−1, 1] interval.
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showing that the NN error landscapes contain more saddle points than local minima [28],

and that the number of local minima reduces exponentially as the dimensionality of the

problem increases [23, 28]. The problems considered in this study were not very high-

dimensional, yet resilience to potential local minima has already been observed. The

modality of NNs is investigated further in Chapters 7, 8, and 9.

Low micro-ruggedness, FEM0.01, combined with higher macro-ruggedness, FEM0.1,

resulted in poor BP performance. Low FEM0.01 and high FEM0.1 also corresponded

to low Gavg. All of these properties combined describe landscapes with wide plateaus,

with sudden changes observable only on the macro-level. Such landscapes are not very

searchable from the gradient descent perspective.

Interestingly, the searchability measure FDCs provided the least useful and the most

misleading information: the highest FDCs values corresponded to the flattest landscapes

with low Gavg and Gdev. BP struggled to perform well on such landscapes for the lack of

gradient information. Low values of FDCs, on the other hand, corresponded to better

BP performance. Perhaps NN error surfaces are too non-trivial to be considered from

the “global shape” perspective that FDCs offers.

5.4 Conclusion

This chapter investigated the applicability of FLA metrics to regularised NN error land-

scapes. The influence of the weight elimination term on the NN error landscape char-

acteristics was studied. It was observed that the addition of a weight elimination term

to the loss function alters the error landscape, and does not necessarily make the error

landscape easier to search. Five continuous FLA metrics were used to study the prop-

erties of the regularised error surfaces: gradient measures Gavg and Gdev, ruggedness

measures FEM0.01 and FEM0.1, and the searchability measure FDCs. Different combi-

nations of regularisation parameters λ and w0 were used, and the BP training algorithm

was considered in the FLA context. FLA was shown to be a useful tool for visualising

the properties of NN error landscapes.

The weight elimination term was shown to smooth the error landscape while intro-

ducing additional minima. Tuning of the w0 parameter allows to tune the sharpness of
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the introduced minima. Sharper minima result in more drastic, highly varied gradients.

Values chosen from the [0.001, 0.1] range for the w0 parameter maximised the variability,

or ruggedness of the landscapes, and yielded the lowest average NN errors. It was shown

that the BP algorithm is capable of efficiently searching very rugged landscapes. On

the other hand, step-like landscapes with rare and sudden fitness changes rendered BP

inefficient.

Very small λ values render regularisation insignificant, while excessively large values

of λ overshadow the error by the penalty. Values chosen from the [0.001, 0.1] range re-

sulted in visible error landscape transformations and did not hinder training, provided

that the w0 value was sensible. The necessity to optimise λ can be eliminated by em-

ploying a multi-objective algorithm to optimise both the loss function and the weight

elimination term separately, and to find a suitable trade-off solution thereof. This is a

topic of future research.

The searchability metric, FDCs, evaluated rugged landscapes as less searchable, even

though BP actually benefited from the variability in the landscape. Perhaps NN error

surfaces are too complex for the crude “global shape” estimation that FDCs provides.

Out of the five metrics considered, FDCs produced the least valuable results.

This study only considered weight elimination. It will be interesting to compare

weight elimination error landscapes to other regularised error landscapes. FLA can

potentially be used to optimise the penalty parameters involved, because FLA metrics

provide a handy visualisation tool for the corresponding error landscapes.

Thus, existing FLA metrics were shown to be a usable visualisation tool in the NN

context. The next chapter discusses the problem of quantifying local minima and basins

of attraction on NN error landscapes. A new sampling technique, as well as a novel

visualisation method for the analysis of stationary points and the associated attraction

basins, are proposed.



Chapter 6

Modality Quantification

A selection of existing FLA metrics were successfully used in Chapters 4 and 5 to esti-

mate the structural attributes of NN error landscapes such as ruggedness and gradients

under various boundary and regularisation settings. However, these techniques do not

provide a means to quantify the modality of the NN error landscapes. As previously

discussed in Section 3.5.1, the modality of NN error landscapes is poorly understood.

Recent studies [21, 39, 65] suggest that NN error landscapes are comprised of wide and

narrow valleys, and that the solutions discovered at the bottom of such valleys may

have different generalisation behaviour. Studies have also been published stating that

there is no bad local minima in high-dimensional NNs, largely due to the nature of

high-dimensional spaces [28, 63, 115, 121]. However, counter examples have also been

presented, where local minima on NN error landscapes were either constructed artifi-

cially [130], or discovered empirically [86]. Thus, a better understanding of local minima

and the associated basins of attraction has to be developed.

Existing FLA modality metrics for continuous spaces, previously discussed in Sec-

tion 3.4.1, rely on iteratively performing multiple instances of a local search, and com-

paring the Euclidean distances between the best fitness points discovered by the local

search instances. An analysis of the distance between the discovered points is then used

to estimate the number of local minima. The lengths of the local search trajectories are

proposed as a measure to quantify the width of the attraction basins. There are two

problems with this approach: Firstly, using the Euclidean distance in high-dimensional

75
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spaces was shown to be misleading [95]. Secondly, using a local search to find minima

is limited by the ability of the local search to locate the minima. Stagnation of a local

search is not a definite indication that a local minimum has been discovered.

This chapter proposes a new sampling algorithm biased towards the discovery of

high fitness points. Based on this sampling algorithm, a new technique to visualise and

quantify local minima and other stationary points, together with the associated basins

of attraction, is proposed. Section 6.1 discusses the shortfalls of the existing sampling

algorithms, and proposes a new adaptive sampling algorithm for NN error landscapes.

Section 6.2 proposes loss-gradient clouds, a new visualisation technique for stationary

points, and two statistical metrics to quantify the number and width of attraction basins.

Section 6.3 concludes the chapter.

6.1 Adaptive Sampling for Neural Network Fitness

Landscape Analysis1

To quantify the properties of local minima and attraction basins, spatially connected

samples of the search space are required that would capture the spatial relationships

between individual points in the sample. As discussed in Section 3.3.2, random and

progressive random walks can provide such spatially-correlated samples. However, both

the simple random walk and the progressive random walk do not take the fitness of the

neighbours into account when generating the l + 1 step of the walk, xl+1 ∈ {xl}Ll=1.

Smith et al. [119] have shown that when the distribution of fitness values across the

search space is highly skewed towards poor fitness, random sampling may produce an

inadequate sample that does not capture enough points of high fitness. Indeed, if the

random sample fails to capture any points of good fitness, it will not be possible for the

FLA metrics to correctly quantify certain landscape properties such as modality. Thus,

an adaptive walk for continuous search spaces is necessary.

Adaptive walks in discrete spaces, discussed in Section 3.3.2, rely on random muta-

1Aspects of this section were published as a paper in the Proceedings of the Genetic and Evolutionary

Computation Conference Companion [14].
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tions of a candidate solution. The same approach can be employed in continuous spaces,

thus emulating stochastic hill climbing. Mutations can be performed by adding random

noise in one or more dimensions. If the mutated position has a higher fitness than the

current position, the mutated position will be added to the walk. However, if the search

space is high-dimensional and skewed towards poor fitness areas, such random mutations

are likely to not produce neighbours of higher fitness. Thus, stochastic hill climbing in

continuous search spaces will be computationally expensive, and may produce very short

walks that neither adequately cover the search space, nor find areas of high fitness.

Particle swarm optimisation (PSO) has also been proposed in the past as a sampling

method. Each particle in the swarm represents a candidate solution, and the next step

of the walk can be defined in terms of the next step of the global best particle in the

swarm [81]. There are two problems with this approach: Firstly, PSO sampling is

algorithm-specific, and the trajectory will be highly sensitive to algorithm parameters.

Secondly, PSO has been shown to exhibit divergent behaviour on NN training [136],

which yields this algorithm a suboptimal choice for NN error landscape sampling.

A number of attempts have been made to study the NN error landscapes from the

perspective of the gradient descent trajectory [39, 40, 68]. Gradient descent uses the

numerical gradient of the error function, thus the fitness is likely to increase per step,

provided there is an incline. However, analysis of the gradient descent trajectory is

algorithm-specific. Steep gradients combined with the learning rate parameter may

induce large steps through the search space, while weak gradients may produce small

steps. Thus, the step sizes are bound to be inconsistent, providing an unrealistic view of

the search space. Additionally, the lack of stochasticity makes gradient descent unlikely

to investigate the areas of poor and average fitness.

This study proposes a randomised gradient sampling technique based on the pro-

gressive random walk [79]. The proposed algorithm uses the error function gradient to

choose the general direction for each step. The magnitude of the step is randomised

within a closed interval per dimension, thus introducing stochasticity. Therefore, the

proposed sampling algorithm is biased towards the search space areas that contain high

fitness solutions. The added stochasticity makes the sampling general enough to not

be algorithm-specific, and allows for the coverage of poor fitness as well as good fitness
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areas.

The rest of this section is structured as follows: Section 6.1.1 formally defines the

progressive gradient walk for NN error landscapes. Section 6.1.2 presents the empirical

study of the proposed gradient walk compared to two random walks commonly used in

the FLA literature.

6.1.1 Progressive gradient walk

Gradient information, when available, is clearly the most direct way of performing hill-

climbing in a continuous search space. In addition to being a reliable source of direction,

the gradient is also more efficient to compute than choosing the best individual in a

population. Population-based approaches such as PSO require each individual to be

evaluated separately, whereas the gradient is computed once per step. Computational

efficiency is an important concern for NNs, since NN search spaces are inherently high-

dimensional.

To alleviate gradient descent specificity of the proposed adaptive walk, and to study

the error landscape as a whole rather than as an algorithm trajectory, the following

approach is proposed:

1. Gradient vector gl is calculated for a point xl.

2. A binary direction mask bl is extracted from gl as follows:

blj =

0, if glj < 0

1, otherwise

where j ∈ {1, . . . ,m} for the m-dimensional vector gl.

3. The progressive random walk algorithm, previously discussed in Section 3.3.2, is

used to generate the next step xl+1.

The progressive random walk algorithm requires two parameters to be set: the maximum

dimension-wise step size, s, and the boundaries of the search space. The progressive gra-

dient walk requires the same two parameters. The behaviour of the progressive gradient

walk with no search space boundaries is also investigated in this study.
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6.1.2 Empirical analysis of the gradient walk

The aim of this study is to illustrate that random sampling fails to capture high fitness

solutions, and that the proposed progressive gradient walk generates more representa-

tive samples than the random walks. The rest of this section details the experiments

conducted to illustrate these points.

Dataset

The XOR problem was chosen for the purpose of this study as the simplest classification

problem requiring a non-linear solution. The entire dataset is provided in Table 6.1. De-

spite being a seemingly trivial problem, the XOR is not linearly separable, and generates

a complex error landscape that is still not fully understood [48, 86, 123].

Table 6.1: The XOR problem dataset

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 0

Neural network architecture

Given the classic XOR problem, a corresponding fully-connected feed-forward NN ar-

chitecture was chosen. The NN comprised of two input neurons, two hidden neurons,

and one output neuron [123]. Bias weights were associated with the hidden and the

output neurons. The total number of weights was equal to 9. The sigmoid activation

function was employed in the hidden and the output units. The SSE loss, defined in

Equation (2.9) in Section 2.4, was used as an error metric to calculate the gradients and

the fitness of any given point in the search space.
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Experiments

Random sampling is typically performed within some predefined bounds. For the purpose

of this study, search space bounds were set to [−10, 10]. This range was chosen as the

range likely to contain high fitness solutions [12]. Since the granularity of the walk, i.e.

the average step size, has a bearing on the resulting FLA metrics [75], two granularity

settings were used throughout the experiments: micro, where the maximum step size

was set to 1% of the search space, and macro, where the maximum step size was set to

10% of the search space.

To illustrate the basic movement dynamics of the various walks, a sample of points

obtained by a random walk, a progressive random walk, and a progressive gradient walk

under micro and macro settings are shown in Figure 6.1. Each walk was performed in

nine dimensions corresponding to the NN weights. The 2D projections of the first six

dimensions of two independent walks are plotted in pairs along the axes, resulting in

a total of 6 projections, 3 projections per walk. Each axis corresponds to a weight of

the NN, and each 2D projection illustrates the movement dynamics of the walk in a

2-dimensional subset. Micro walks performed 500 steps, and macro walks performed 50

steps. It is evident from Figure 6.1 that the progressive gradient walk was biased com-

pared to the random walks, but did perform a reasonable amount of exploration. Smaller

step sizes led to more consistent trajectories (see Figure 6.1c), indicating that the surface

was locally smooth. Previous theoretical studies indicated that NN error landscapes are

comprised of plateaus and narrow ravines [39, 68]. The consistent direction of movement

observed for the progressive gradient walk is attributed to these consistent structures.

To estimate the search space coverage of the three walks, 10 000 points were gen-

erated per macro walk, and 100 000 points were generated per micro walk. A total of

100 walks were performed under both micro and macro settings. Micro walks performed

1000 steps each, and macro walks performed 100 steps each. Values across all dimen-

sions were plotted in histograms of 100 equally sized bins each. The resulting histograms

are shown in Figure 6.2. Mean and standard deviation values of the samples are also

displayed above each histogram. While the random and the progressive random walks

covered the search space near-uniformly (mean close to zero), the gradient walk leaned

strongly towards the borders of the search space, especially in the micro case. Even
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(a) Random walk, micro (b) Progressive random walk, micro (c) Progressive gradient walk, micro

(d) Random walk, macro (e) Progressive random walk, macro (f) Progressive gradient walk, macro

Figure 6.1: Plots of the positions of paired dimensions of sample walks. Micro walks were

performed over 500 steps. Macro walks were performed over 50 steps.

though the walks were not allowed to leave the search space, the gradient direction often

pointed outwards, thus causing gradient walks to cluster around the boundaries. This

observation is in line with previous studies, proposing that NN error landscapes have a

“starfish” or “sombrero” structure, with ravines of lower error leading outwards [31, 68].

A question thus needs to be answered: should NN error landscapes be studied within

predefined boundaries? Previous studies have argued that the boundaries are necessary,

since random sampling can not be performed in unbounded space [12, 79]. However, if

progressive gradient sampling is used instead of random sampling, the gradient informa-

tion should lead the walks to “interesting” areas of the landscape, rather than causing

meaningless wandering. Unbounded progressive gradient sampling was performed for the

purpose of this study, and the resulting walk samples are given in Figures 6.3a and 6.3d.

In both micro and macro settings, gradient walks tended to move away from the origin,

once again aligning with the “starfish” structure. Search space coverage histograms for

the unbounded gradient walks are shown in Figures 6.3b and 6.3e. Unbounded walks ex-
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(a) Random walk, micro (b) Progressive random walk, micro (c) Progressive gradient walk, micro

(d) Random walk, macro (e) Progressive random walk, macro (f) Progressive gradient walk, macro

Figure 6.2: Frequency diagrams illustrating search space coverage by the various walks.

hibited less clustering than bounded walks, and covered the search space better. Spikes

associated with particular ranges are attributed to the presence of local minima or saddle

points that could have trapped the gradient walk.

Progressive gradient walks are suggested as a method of search space sampling that

is more likely to find areas of good fitness than the random walks. To estimate the

fitness coverage, the fitness frequency distribution of the sample points obtained by each

of the walks under both the micro and macro settings were plotted in histograms of

100 equally-sized bins. The resulting histograms are shown in Figure 6.4. The means

and standard deviations of each distribution are shown above the histograms. It is

evident from Figure 6.4 that both the random and the progressive random walk failed

to discover areas of good fitness. For both random sampling techniques, the average

SSE was around 0.45, with a very sharp peak on the average value, and a heavy tail on

the left, corresponding to areas of above average fitness. The lowest error sampled by

the random walks hovered around 0.2. Thus, the random walks sampled mostly average

(random guess) fitness areas, and the areas of optimal fitness (near zero) were almost



Chapter 6. Modality Quantification 83

(a) Sample walks, micro (b) Search space coverage, micro (c) Fitness coverage, micro

(d) Sample walks, macro (e) Search space coverage, macro (f) Fitness coverage, macro

Figure 6.3: Unbounded progressive gradient walk.

not sampled at all. Low fitness areas are the least interesting areas from an optimisation

algorithm perspective, and an optimisation algorithm is expected to spend the least

amount of time in these areas. Thus, more emphasis should be placed on studying the

areas of high fitness.

The progressive gradient walk, on the other hand, has successfully captured error

values around zero (optimal fitness). Figures 6.4c and 6.4f indicate that the mean error

of the gradient walks was below the lowest error of the random walks. Interestingly, both

micro and macro gradient walks exhibited peaks around specific error values. This can be

an indication of the presence of local minima or saddle points at those fitness values. The

macro progressive gradient walk exhibited a good spread of fitness values between 0.0

and 0.5, indicating that macro samples captured information relevant to a potential

training algorithm. Fitness frequency histograms were also plotted for the unbounded

gradient walks, in Figures 6.3c and 6.3f. Unbounded gradient walks captured a similar

distribution of fitness values as bounded gradient walks, exhibiting similar peaks. The

peaks can be indicative of the modality of the error landscape.



Chapter 6. Modality Quantification 84

(a) Random walk, micro (b) Progressive random walk, micro (c) Progressive gradient walk, micro

(d) Random walk, macro (e) Progressive random walk, macro (f) Progressive gradient walk, macro

Figure 6.4: Frequency diagrams of the fitness (SSE) associated with the samples obtained by

the various walks.

The spread of fitness values was also calculated in terms of classification accuracy.

Since the XOR problem has only four data points, the set of possible classification accu-

racy values is discrete, and is comprised of the following values: {0.0, 0.25, 0.5, 0.75, 1},
where 0.0 indicates incorrect output for all patterns, and 1.0 indicates correct output for

all patterns. A frequency histogram for the various walks under micro and macro setting

is shown in Figure 6.5. It is evident from Figure 6.5 that the random walks failed to

capture areas of 100% accuracy, and sampled mostly average, or random guess accuracy

points instead. The gradient walks, on the other hand, sampled mostly above average

accuracy and 100% accuracy. The macro setting yielded a better coverage of average

accuracy by the gradient walks. Once again, the gradient walks captured areas of the

landscape that are of more interest to a potential optimisation algorithm.
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Figure 6.5: Frequency diagrams of the classification accuracy associated with the samples

obtained by the various walks.

Fitness landscape metrics

Since the progressive gradient walk captures a different distribution of fitness values

compared to the random walks, the FLA metrics are expected to yield different results

when calculated over the gradient walks. To test this hypothesis, three FLA metrics

were used, originally proposed as metrics calculated over the random walks. The metrics

are:

1. The first entropic measure of ruggedness, FEM , discussed in Section 3.4.2. FEM

quantifies the change in fitness values based on the entropy of a random walk.

The value of FEM ranges between 0 and 1, where 0 indicates a perfectly smooth

landscape, and 1 indicates maximal ruggedness.

2. The neutrality measures, M1 and M2, discussed in Section 3.4.2. M1 measures the

proportion of neutral 3-point structures in a walk, and M2 measures the relative

length of the largest sequence of neutral steps in the walk. Both M1 and M2 range

between 0 and 1, where 0 indicates a landscape with no neutral regions, and 1

indicates a completely flat landscape.

The resulting FEM , M1, andM2 values calculated over the various walks are summarised

in Table 6.2. Table 6.2 shows average values obtained over 30 independent runs, together
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Table 6.2: Some FLA metrics obtained over various walks

Random Progressive Gradient Unbounded

FEM 0.41178 0.30623 0.20239 0.20234

(micro) (0.02238) (0.00989) (0.00263) 0.00263

FEM 0.47964 0.46006 0.65177 0.56348

(macro) (0.01450) (0.00611) (0.00707) (0.01880)

M1 0.01897 0.02956 0.01003 0.36281

(micro) (0.01192) (0.00502) (0.01287) (0.03622)

M1 0.00310 0.00238 0.00967 0.12001

(macro) (0.00194) (0.00084) (0.00964) (0.02479)

M2 0.00635 0.01095 0.00003 0.00142

(micro) (0.00398) (0.00162) (0.00003) (0.00026)

M2 0.00252 0.00188 0.00000 0.01999

(macro) (0.00149) (0.00064) (0.00002) (0.01042)

with the corresponding standard deviations shown in parenthesis. Each run comprised

of 100 walks. Each micro walk performed 1000 steps, and each macro walk performed

100 steps.

Table 6.2 shows that both bounded and unbounded progressive gradient walks ex-

hibited a higher disparity between the micro and macro FEM values than the random

walks. Indeed, the random sampling algorithms covered more or less the same areas of

average fitness, while the gradient walks focused on areas of higher fitness. The maxi-

mal size of the step had an influence on the resulting FEM , indicating that the error

landscape was smooth when observed locally, and exhibited ruggedness when observed

at a larger scale. Perhaps FEM values can be used to suggest an appropriate step size

scaling for NN optimisation algorithms.

Table 6.2 shows that the values of M1 were more or less the same for all the bounded

walks, and only the unbounded gradient walk captured areas of increased neutrality.

Indeed, if the gradient walk is allowed to leave the bounded search space, it is likely to

fall into one of the “ravines” that the NN landscapes are known to exhibit. Thus, the
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unbounded gradient walk captured a property of NN landscapes that the other walks

did not.

The values of M2 in Table 6.2 indicate that none of the walks have experienced a

long stretch of unchanging fitness values. Thus, the progressive gradient walk did not

simply converge on a single point in the search space and sample it indefinitely.

Thus, the different walks do indeed capture different properties of NN error land-

scapes, and analysis of the gradient walks rather than the random walks may highlight

more interesting and important features of the landscapes than that captured by the

unbiased random walks.

6.2 Visualisation and Quantification of Neural Net-

work Attraction Basins

One of the simplest FLA approaches to estimate the presence of local minima is to take a

uniform random sample of the search space, and then to calculate the proportion of local

minima within the sample [3]. To identify minima, stationary points need to be identified

first. Since the loss functions are differentiable, the gradient can be calculated for each

point in the sample. Points with a gradient of zero are stationary points. Stationary

points can be further categorised into local minima, local maxima, and saddle points

by calculating the eigenvalues of the corresponding Hessian matrix. A positive-definite

Hessian is indicative of a local minimum [36].

However, as demonstrated in Section 6.1, random samples capture very few points

of high fitness even for such a simple problem as XOR, and thus are unlikely to discover

local or global minima. Additionally, random samples do not capture the neighbourhood

relationship between individual sample points, which is crucial to the analysis of the

basins of attraction. Besides simply identifying the presence or absence of local minima,

the possibility of escaping the minima, as well as the structure of the minima, should

also be quantified.

Progressive gradient walks, proposed in Section 6.1, constitute an algorithm-agnostic

and spatially correlated sampling method biased towards areas of good fitness. Progres-

sive gradient walks can therefore be used to identify local minima, and to analyse the
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associated basins of attraction.

This section describes two novel FLA techniques proposed in this study for the pur-

pose of visualisation and quantification of the stationary points and the associated basins

of attraction exhibited by NN loss surfaces. Section 6.2.1 introduces loss-gradient clouds,

which offer a 2-dimensional visualisation of the stationary points discovered by the gra-

dient walks. Section 6.2.2 proposes two metrics to quantify the properties of the basins

of attraction encountered by the gradient walks.

6.2.1 Loss-gradient clouds

A simple way to visualise stationary points discovered by a search space sample is to

plot the error, or loss values, against the corresponding gradient in a 2-dimensional

scatterplot, referred to as the loss-gradient cloud, or l-g cloud. All points of zero gradient

are stationary points. Stationary points of non-zero loss can be either local minima,

local maxima, or saddle points. To determine if a particular stationary point is a local

minimum, local maximum, or a saddle point, local curvature information can be derived

from the eigenvalues of the corresponding Hessian matrix. If the eigenvalues of the

Hessian are positive, the point is a maximum. If the eigenvalues are negative, the point

is a minimum. If the eigenvalues are positive as well as negative, the point is a saddle.

If any of the eigenvalues are zero, i.e. if the Hessian is indefinite, the test is considered

inconclusive.

The main benefit of l-g clouds is the 2-dimensional representation of the high-dimen-

sional search space. Studying the discovered stationary points in 2-dimensional space

allows the identification of the total number of attractors corresponding to different loss

values. The gradient behaviour of the attractors is also visualised by the l-g clouds, and

can provide useful insights. Since the distance between sampled points is not represented

in the l-g clouds, the actual number of distinct local minima and other attractors cannot

be estimated using this technique.
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6.2.2 Quantifying basins of attraction

The progressive gradient walk samples the search space by taking randomised steps in

the general direction of the steepest gradient descent. If a step taken in the direction of

the negative gradient is too large, the step may miss the area of low error, and result in

an area of higher error. Thus, the progressive gradient walk will not necessarily produce

a sequence of points with strictly non-increasing error values. In fact, any gradient-based

sample or algorithm trajectory is likely to exhibit oscillatory behaviour if the gradient

in some dimensions is significantly steeper than in others [113].

Even though the gradient step sequence will not necessarily be strictly decreasing in

error, the sample is nonetheless expected to travel in the general direction of a global

minimum. The areas of the landscape where a gradient-based walk oscillates or otherwise

fails to reduce the error for a number of steps are the stationary areas of the search space

that may hinder the optimisation process. Quantification of the number and extent of

such areas will provide an indication of the “difficulty” of the search space, as well as

an empirical estimate of the landscape modality. Thus, an important error landscape

property to estimate is the number of times that the sampling algorithm will become

“stuck” along the way.

To smooth out potential oscillations of a sample, an exponential moving average of

the sample can be calculated. An exponentially weighted moving average (EWMA) [147]

is a smoothing filter commonly used for time series prediction. EWMA calculates the

moving average for each step in the time series by taking all previous steps into account,

and assigning exponentially decaying weights to the previous steps, such that the weight

for each older step in the series decreases exponentially, never reaching zero. Given a

sequence T = {Tl}Ll=1 of length L, the EWMA-smoothed sequence T ′ is given by:

T ′l =

Tl if l = 1

β · Tl + (1− β) · T ′l−1 if l > 1
(6.1)

The decay coefficient, β ∈ [0, 1], determines the degree of smoothing, where larger values

of β facilitate faster decay and weaker smoothing, and smaller values of β facilitate slower

decay and thus stronger smoothing.

To identify the sections of the sample where the behaviour is stagnant, the standard



Chapter 6. Modality Quantification 90

deviation of the smoothed sample is calculated first. Then, a sliding window approach

is used to generate a sequence of the moving standard deviations of the sample. If

the standard deviation of the values in the current window is less than the standard

deviation of the entire sample for a number of steps, then these steps can be said to form

a stagnant sequence. The average number of stagnant regions encountered per sample,

nstag, and the average length of the stagnant regions, lstag, can be used to quantify the

number and size of the basins of attraction present in the search space.

The proposed approach is illustrated in Figure 6.6. The simulated walk oscillates

around three different error values. The moving standard deviation line dips below

the all-sample standard deviation threshold three times, which corresponds to the three

simulated stagnant areas.

Figure 6.6 illustrates that the window size has a significant effect on the attraction

basin estimates: too little smoothing (Figure 6.6a) may cause fluctuations to be perceived

as stationary regions. Excessive smoothing, on the other hand (Figure 6.6d), may fail to

detect all stationary regions. Therefore, the window size has to be optimised per sample.

If the sequence contains oscillations, then too little smoothing will cause multiple “spikes”

in the walk to be regarded as areas of stagnation. These short bursts of “stagnation”

will yield a small average basin length, lstag. If the sequence is smoothed excessively,

the sample will start to resemble a wave more and more, perceiving flat areas as areas

with an incline, which will once again cause the lstag to decrease. Thus, too little as well

as too much smoothing will shrink the value of lstag. Therefore, the window size w can

be optimised by maximising lstag. Table 6.3 lists lstag values obtained on the simulated

walk shown in Figure 6.6 under various values of w. Table 6.3 shows that lstag reaches

its maximum for w = 8, and decreases for smaller, as well as larger, values of w.

Table 6.3: Effect of window size w on lstag

w 6 8 10 12 14 16 18 20

lstag 18.75 22.0 20.67 18.0 16.33 14.33 14.0 12.0

The window size w can therefore be automatically optimised by calculating lstag over

a range of w values, and picking the value of w that yields the highest lstag value. In this

study, w is optimised by successively applying w ∈ {6, 8, . . . , 18, 20}. Given a window of



Chapter 6. Modality Quantification 91

0 20 40 60 80 100
Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Er
ro
r

The walk
Std dev
Exp moving avg
Moving std dev

(a) Window of 6

0 20 40 60 80 100
Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Er
ro
r

The walk
Std dev
Exp moving avg
Moving std dev

(b) Window of 8
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Figure 6.6: Illustration of the proposed technique to estimate the number and extent of

the basins of attraction. Figures 6.6a to 6.6d show the effect of window size on the sample

smoothing.

size w, the EWMA value of β is calculated as β = 2/(w + 1). The w value yielding the

largest lstag is subsequently used for the final lstag and nstag estimates.

Thus, two estimates to quantify the basins of attraction are proposed:

1. The average number of times that stagnation was observed, nstag.

2. The average length of the stagnant sequence, lstag.

Pseudocode given in Algorithms 1 and 2 summarises the proposed method to obtain

both metrics.
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Algorithm 1 Basins of attraction estimates

Initialise nstag, average number of basins, to 0;

Initialise lstag, average basin size, to 0;

Initialise nw to the number of walks to perform;

Initialise walk, the sample, to ∅;
for ∀i ∈ {1, ..., nw} do

walk ← sample the input problem using a progressive gradient walk [14];

Normalise the sample fitness range in walk to [0, 1];

Initialise nstag,i and lstag,i to 0 for walk i;

for ∀j ∈ {6, 8, ..., 18, 20} do

walk ← calculate the EWMA of walk using Equantion (6.1), β = 2/(j + 1)

ς ← calculate the standard deviation of walk

σ ← calculate the sequence of moving standard deviations of walk, w = j

Obtain a list of stagnant regions, list, using Algorithm 2 with inputs σ, ς.

if average length of regions in list > lstag,i then

lstag,i ← average(list)

nstag,i ← number of regions in l

end if

end for

nstag ← nstag + nstag,i

lstag ← lstag + lstag,i

end for

return nstag/nw, lstag/nw

It is important to note that nstag and lstag are approximations, and may produce

misleading results in some scenarios. Specifically, if the observed sequence is chaotic, i.e.

does not exhibit convergence or stagnant areas, the estimates provided by nstag and lstag

are likely to be overly optimistic. In order to maximise lstag, the algorithm will apply

excessive smoothing to the chaotic sequence, potentially interpreting chaotic fluctuations

as multiple stagnation regions. In general, because the algorithm is designed to maximise

the stagnation length of the estimate, erroneous results are expected for sequences that
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Algorithm 2 Basins of attraction identification
Inputs: σ, ς;

Initialise lstag, average basin size, to 0;

Initialise stuck to false

Initialise len, length of a stagnant region, to 0;

Initialise list, the list of stagnant regions, to ∅;
for each step si in σ do

if stuck then

if si < ς then

len← len+ 1

else

stuck ←false

list← add len to list

len← 0

end if

else

if si < ς then

len← len+ 1

stuck ←true

end if

end if

end for

if len > 0 then

list← add len to list

end if

return list

do not exhibit any form of stagnation.
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6.3 Conclusions

This chapter proposed a progressive gradient walk as an adaptive sampling mechanism

for the analysis of NN fitness landscapes. The gradient walk is more computationally

efficient than a population-based adaptive walk, and has better guarantees of finding

areas of high fitness. The gradient information is used to calculate the direction of the

next step, but the magnitude of the step is randomised per dimension within the given

bounds, thus adding stochasticity and preventing convergence.

Both bounded and unbounded progressive gradient walks were compared to the ran-

dom and progressive random walks in terms of search space coverage and fitness coverage.

It was shown that, even though random walks provide wider search space coverage, they

fail to capture areas of high fitness. The gradient walk, on the other hand, is strongly

biased towards the areas of high fitness, while also covering some of the poor fitness

areas. Thus, the gradient walk is more representative of the search space in the context

of applicability to function optimisation. In addition, the unbounded progressive gradi-

ent walk was shown to provide a truer picture of the error landscape than the bounded

gradient walk.

A selection of FLA metrics were calculated over the random and the gradient walks.

While the obtained FLA metrics did not disagree with one another, the FLA metrics

obtained from the gradient walks captured the specific known characteristics of NN error

landscapes with better precision.

This chapter also proposed an intuitive visualisation of the local minima and the

associated basins of attraction, namely the loss-gradient clouds. By plotting the loss val-

ues against the corresponding gradient vector magnitudes as sampled by the progressive

gradient walk, stationary points could be easily identified. To classify the identified sta-

tionary points as minima, maxima, or saddles, Hessian matrix information can be used

to identify the curvature of each sampled point. Additionally, this chapter proposed two

simple metrics to quantify the number and extent of attraction basins as sampled by

the gradient walks. Calculation of statistical metrics over a number of walks provides

an idea of the connectedness of the various basins, as well as the likelihood of escaping

from the basins.

The proposed modality quantification approaches are evaluated in the next chapter
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by performing a visual and numerical analysis of local minima and the associated basins

of attraction for two common NN loss functions, namely quadratic loss and entropic loss.



Chapter 7

Loss Functions

Quantification of the stationary points and the associated basins of attraction of NN loss

surfaces is an important step towards a better understanding of NN loss surfaces at large.

Loss-gradient clouds were proposed in Chapter 6 for the purpose of visual analysis of

stationary points discovered by progressive gradient walks, together with two additional

metrics for numeric quantification of the attraction basins. This chapter1 evaluates the

proposed metrics by performing FLA of two common NN error functions: quadratic loss

and entropic loss.

The rest of the chapter is structured as follows: Section 7.1 briefly reviews the pre-

viously published literature on local minima, stationary points, and attraction basins

associated with the two loss functions. Section 7.2 details the experimental procedure.

Section 7.3 presents a visual and numerical analysis of stationary points and basins

of attraction of the quadratic and the entropic error landscapes. Section 7.4 presents

FLA measures of gradients, ruggedness, and neutrality associated with the two losses.

Section 7.5 concludes the chapter.

1Research presented in this chapter has been submitted for publication as an article to the Neural

Networks journal [15].
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7.1 Quadratic and Entropic Loss Surfaces

The number of local minima, as well as the properties of local minima, were theoretically

shown to depend on the chosen error metric [120], among other parameters. The two

most widely used error metrics are the quadratic loss function (SSE) and the entropic loss

function (CE), discussed earlier in Section 2.4. Solla et al. [120] analysed quadratic loss

and entropic loss theoretically, and came to the conclusion that quadratic loss exhibits a

higher density of local minima. Solla et al. [120] further showed that entropic loss must

generate a “steeper” landscape with stronger gradients, which may be the reason for the

observed faster convergence of gradient descent on CE compared to SSE. In addition to

faster convergence, entropic loss was shown to exhibit better statistical properties, such

as more precise estimation of the true posterior probability on average [67]. Superior

probabilistic properties of entropic loss has lead to entropic loss becoming more popular

than quadratic loss in the deep learning community [44, 46].

From a theoretical standpoint, however, the global minima of both SSE and CE will

correspond to the true posterior probability derived from the given dataset [16]. Thus, if a

global minimum is found on either of the error landscapes, the quality of either minimum

will be equally good. A study by Golik et al. [46] has shown that, although squared loss

may cause the training algorithm to converge to a poor minimum, this behaviour is

only exhibited if the algorithm was initialised poorly. Golik et al. [46] demonstrated the

benefit of applying gradient descent to the error landscape generated by entropic loss at

first, and then “switching” to quadratic loss to further refine the solution discovered on

the entropic loss surface. Such a training scheme may be successful due to the fact that

entropic loss is known to turn flat around the global minima [5].

As previously discussed in Section 3.5.5, Kordos and Duch [68] compared the loss

surfaces of SSE and CE using PCA visualisations, and observed that CE yielded a more

complex error surface. The same study indicated that NN loss surfaces exhibited the

“starfish” structure regardless of the error metric chosen.

To better understand the landscape properties of the two loss functions, and to

evaluate the expressiveness of the techniques proposed in Chapter 6, the proposed FLA

techniques were applied to investigate the quadratic and entropic loss surfaces for a

selection of benchmark problems of varied dimensionality.
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7.2 Experimental Procedure

The aim of the study was to visually and numerically investigate the local minima and

basins of attraction exhibited by the quadratic and entropic loss functions. This section

discusses the experimental set-up of the study, and is structured as follows: Section 7.2.1

describes the NN hyperparameters employed in the experiments, Section 7.2.2 lists the

benchmark problems used, and Section 7.2.3 outlines the sampling algorithm parameters,

and the data recorded for each sampled point.

7.2.1 Neural network hyperparameters

All experiments employed feed-forward NNs with a single hidden layer. The sigmoid

activation function, given by Equation (2.11) in Section 2.5, was used in the experiments.

While the choice of activation function has an effect on the resulting error landscape,

the aim of this study was to investigate the difference between quadratic and entropic

loss.

7.2.2 Benchmark problems

For the purpose of this study, seven classification problems described in Appendix A

were used, namely XOR, Iris, Diabetes, Glass, Cancer, Heart, and MNIST.

7.2.3 Sampling parameters

For the purpose of sampling the areas of low error, the progressive gradient walk, dis-

cussed in Section 6.1.1, was used as the sampling mechanism. To allow for adequate

coverage of the search space, the number of independent walks was set to be one order

of magnitude higher than the dimensionality of the problem, i.e. for a problem of m

dimensions, 10×m independent progressive gradient walks were performed. The walks

were not restricted by search space bounds, however, two different initialisation ranges

were considered, namely [−1, 1] and [−10, 10]. The smaller range is typically used for

NN weight initialisation. The larger range is likely to contain high fitness solutions [12].

Since the granularity of the walk, i.e. the average step size, has a bearing on the resulting
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FLA metrics [75], two granularity settings were used throughout the experiments: micro,

where the maximum step size was set to 1% of the initialisation range, and macro, where

the maximum step size was set to 10% of the initialisation range. Micro walks performed

1000 steps each, and macro walks performed 100 steps each.

For all problems except the XOR problem, the dataset was split into 80% training

and 20% test subsets. The training set was used to calculate the direction of the gradient,

as well as the error of the current point on the walk. The test set was used to evaluate

the generalisation ability of each point in the walk. To calculate the training and the

generalisation errors, the entire train/test subsets were used for all problems except

MNIST. For MNIST, random batches of 100 patterns were sampled from the respective

training and test sets.

In order to identify stationary points discovered by the gradient walks, the magnitude

of the gradient vector was recorded for each step together with the loss value. Addition-

ally, the eigenvalues of the Hessian matrix were calculated for each step, and used to

classify each step as convex, concave, saddle, or singular.

7.3 Empirical Study of Modality

This section presents the analysis of apparent local minima and the corresponding basins

of attraction as captured by the progressive gradient walks. The results obtained for each

problem are discussed separately.

7.3.1 XOR

Figures 7.1 and 7.2 show the l-g clouds (proposed in Section 6.2.1), obtained for the

XOR problem, separated into panes according to the curvature.

The first observation that can immediately be made from Figure 7.1 is that both

SSE and CE yielded exactly four stationary points on the walks initialised in the [−1, 1]

range. Furthermore, these four points were classified as convex according to the Hessian

eigenvalues, indicating that the points can be classified as local minima rather than saddle

points. A transition from saddle curvature to convex curvature was observed for both

SSE and CE. Points further away from the global minimum attractor were classified
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(a) SSE, micro, [−1, 1]

(b) CE, micro, [−1, 1]

(c) SSE, macro, [−1, 1]

(d) CE, macro, [−1, 1]

Figure 7.1: L-g clouds for the gradient walks initialised in the [−1, 1] range for the XOR

problem.



Chapter 7. Loss Functions 101

as exhibiting saddle curvature. Two stationary points furthest away from the global

minimum attractor were sometimes classified as saddles, indicating that both saddles

and local minima of equal loss value were discovered. Under the macro setting (larger

steps), a few singular points have been sampled in the same apparent basin, indicating

that the area was flat (no curvature) in some dimensions.

However, the global minimum points discovered by the gradient walks initialised in

the [−1, 1] range appeared perfectly convex. The area surrounding the global attractor,

as well as the two adjacent local minima, also exhibited convexity. Thus, the XOR

problem definitely exhibits convex local minima.

Another interesting observation can be made by observing the trajectories connecting

the apparent local minima: It is evident from Figure 7.1 that most high loss, high gradient

points first descended to the local minimum furthest away from the global minimum, and

from thereon proceeded to one of the three better minima. The three convex minima,

however, were not connected by trajectories. In other words, once the gradient walk

descended into one of the basins, escape from the basin became unlikely, given the

limited step size. To further support this claim, the nstag and lstag measures (discussed

in Section 6.2.2) were calculated for the various XOR gradient walks, and are reported

in Table 7.1. According to Table 7.1, the average number of basins visited by the [−1, 1]

micro-step walks was 1.88889 for SSE, and 2.04444 for CE. Thus, the walks visited two

or fewer basins. The nstag values are even smaller for macro-step walks initialised in the

same range, i.e. 1.33333 for SSE, and 1.35556 for CE. Figures 7.1c and 7.1d illustrate

that larger step sizes allowed some of the walk trajectories to skip the poor loss area,

while the smaller steps consistently became stuck, and proceeded directly to one of the

better minima. Small nstag values indicate that transition between adjacent minima was

still unlikely for the given step size.

CE and SSE thus exhibited very similar properties when sampled with [−1, 1] gradi-

ent walks. The same number of local minima was observed, and the basins of attraction

exhibited similar behaviour in terms of basin-to-basin transitions. According to Fig-

ure 7.1, CE exhibited stronger gradients. This corresponds to the theoretical predictions

made in [120]. A comparison of Figures 7.1c and 7.1d shows that SSE exhibited more

non-convex behaviour around the apparent local minima, which indicates that SSE would
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Table 7.1: Basin of attraction estimates calculated for the XOR problem. Standard deviation

shown in parenthesis.

SSE CE

nstag lstag nstag lstag

[−1, 1], micro 1.88889 367.04444 2.04444 313.32130

(0.31427) (134.84453) (0.44500) (148.75671)

[−1, 1], macro 1.33333 37.14815 1.35556 30.35000

(0.49441) (16.68220) (0.50136) (13.32863)

[−10, 10], micro 1.63333 684.77778 1.16667 870.87222

(0.72188) (263.72374) (0.37268) (180.17149)

[−10, 10], macro 1.10000 57.98889 1.03333 74.79444

(0.39581) (24.91864) (0.23333) (20.49253)

be harder to search for an optimisation algorithm than CE.

Figure 7.2 shows the l-g clouds obtained for gradient walks initialised in the [−10, 10]

range. Figures 7.2a and 7.2c indicate that initialisation in a wider range caused the

gradient walks to discover more stationary points on the SSE loss surface: Instead of

four points of zero gradient, six can be seen in the figures. Out of these six, only

four exhibited convexity. Even the points that exhibited convexity were surrounded by

points with saddle curvature or no curvature. Such overlap between convex and non-

convex structure indicates that the surface around the minima was not smooth. Overlap

of convexity and non-convexity can also indicate that multiple minima of the same loss

value exist that exhibit different landscape curvature properties.

Figures 7.2b and 7.2d show that the loss surface of CE exhibited noticeably different

properties when probed in a larger range. While non-convex curvature remained preva-

lent, CE, as opposed to SSE, did not exhibit additional stationary points. Instead, points

of high loss exhibited high fitness, leading the gradient walks towards the same basins as

discovered with the [−1, 1] walks. Figure 7.3 displays only those points of the gradient

walks that yielded a CE loss value less than 1. Four stationary points can be observed,

only three of which exhibited convexity. Thus, CE exhibited fewer local minima than
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(a) SSE, micro, [−10, 10]

(b) CE, micro, [−10, 10]

(c) SSE, macro, [−10, 10]

(d) CE, macro, [−10, 10]

Figure 7.2: L-g clouds for the gradient walks initialised in the [−10, 10] range for the XOR

problem.
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(a) CE, micro, [−10, 10], error < 1

(b) CE, macro, [−10, 10], error < 1

Figure 7.3: L-g clouds for the CE values less than 1, sampled by the gradient walks initialised

in the [−10, 10] range for the XOR problem.

SSE. This observation corresponds with the theoretical predictions made in [120].

Once again, the convex minima observed in Figures 7.2 and 7.3 were disconnected

from one another. No convex trajectory has been captured that visited all the stationary

points present. In fact, according to Figure 7.3a, the only transition between the global

optimum and the adjacent local optima corresponded to the indefinite Hessians. Thus,

to make a transition from one convex minimum to another one, the algorithm had to

traverse a flat area with little to no convexity. With reference to Table 7.1, the nstag

values were smaller for the [−10, 10] initialisation range, and the lstag values were larger

than those yielded by the [−1, 1] walks. Thus, the walks were more likely to stagnate

once, and to remain in the stagnated state for the entire walk.

A comparison of Figures 7.2a and 7.2b shows that CE demonstrated a smoother, more

consistent relationship between the gradient and the loss values than SSE. Together with
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evidently fewer stationary points, this property makes CE an easier loss surface to search.

Figures 7.2c and 7.2d indicate that gradient walks with a macro step size, initialised

in a larger area, still managed to find the global optima for both SSE and CE, but on

fewer occasions than the micro walks. A large portion of the points yielded indefinite

Hessians, indicating flatness. This is to be expected, as the loss surfaces of NNs with

sigmoidal activation functions are known to exhibit increasing hidden neuron saturation

with an increased distance from the origin [134].

7.3.2 Iris

The Iris dataset, despite being rather compact and trivial, is large enough to be split

into the training and testing subsets. The training subset can then be used to sample

the loss surface, and the testing set can be used to evaluate the discovered minima and

stationary points for their ability to generalise. For the rest of the chapter, the training

set loss values are referred to as Et, and the test set loss values are referred to as Eg.

Figures 7.4 and 7.5 show the l-g clouds obtained for the Iris problem. According to

Figure 7.4, only one attractor with zero gradient has been discovered on both the SSE and

CE loss surfaces by gradient walks initialised in the [−1, 1] range. Two more attractors

of non-zero gradient can also be observed, however, these attractors do not constitute

local minima. Transition from non-convex space to convex space was still present, but

was less distinct than for XOR. Points around the global minimum attractor exhibited

convex as well as saddle behaviour, and saddle behaviour was prevalent. Both the SSE

and CE surfaces exhibited flatness (indicated by the singular Hessians) around the global

optima. This corresponds to theoretical claims that the loss surface around the global

minima is flat [5]. However, the flatness was not prevalent.

A comparison of the micro and macro steps in Figure 7.4 indicates that the macro

steps discovered the same landscape characteristics as the micro steps. In the macro

setting, a wider range of gradient values around the global minimum was discovered.

This can be explained by the fact that NN loss surfaces are known to contain ravines

and valleys [39], and optima is typically found at the bottom of such structures. The

macro step size may have caused the gradient walks to oscillate and to sample points on

the sides of the valley where the global minima was discovered.
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(a) SSE, micro, [−1, 1]

(b) CE, micro, [−1, 1]

(c) SSE, macro, [−1, 1]

(d) CE, macro, [−1, 1]

Figure 7.4: L-g clouds for the gradient walks initialised in the [−1, 1] range for the Iris

problem.
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(a) SSE, micro, [−10, 10]

(b) CE, micro, [−10, 10]

(c) SSE, macro, [−10, 10]

(d) CE, macro, [−10, 10]

Figure 7.5: L-g clouds for the gradient walks initialised in the [−10, 10] range for the Iris

problem.
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To further analyse the landscape properties sampled by the gradient walks, the nstag

and lstag values were calculated for the Et values sampled by the gradient walks, as

well as for the corresponding Eg values. Table 7.2 lists the Et and Eg values obtained.

According to Table 7.2, both SSE and CE yielded an average nstag very close or equal to 1

for all gradient walks initialised in the [−1, 1] range. Thus, a single basin of attraction

was discovered by each individual walk. This correlates well with the results shown in

Figure 7.4. For the macro setting in the [−1, 1] range, both SSE and CE produced an

nstag average of 1, with a standard deviation of zero. This observation indicates that the

macro steps in the [−1, 1] range were sufficient to prevent stagnation in suboptimal areas,

yet convergence in an attraction basin still took place. The generalisation error exhibited

similar behaviour, as shown in Table 7.2. The presence of a single global attractor makes

the loss surface associated with the Iris problem trivial to search using a gradient-based

method.

Figure 7.5 shows the l-g clouds obtained for the gradient walks initialised in the

[−10, 10] interval. According to Figures 7.5a and 7.5c, multiple stationary points were

discovered on the SSE loss surface. Two of the discovered stationary points, including

the global minimum, have exhibited convexity. Thus, there is at least one local minimum

on the SSE loss surface associated with the Iris problem. Additionally, the discovered

stationary points were disjoint in the convex and singular (flat) space. The saddle

space was more connected; however, the nstag values presented in Table 7.2 indicate

that the gradient walks did not generally become stuck more than twice. Thus, multiple

stationary points discovered were not trivial to escape from.

CE, on the other hand, exhibited only one attractor at the global minimum, as

illustrated in Figure 7.5. Figure 7.6 shows only those points of the gradient walks that

yielded a CE loss value less than 1. Even though all points belong to the same global

attraction basin, two distinct clusters can be observed in Figure 7.6a: points that lie in

the low error region, and exhibit higher gradients, and points that lie in the higher error

region, and exhibit lower gradients. The same tendency can be observed in Figure 7.5d.

These observations indicate that the gradient walks have explored wide (higher error,

lower gradient) as well as narrow (higher gradient, lower error) valleys, which the NN

error landscapes are known to exhibit [21].
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Table 7.2: Basin of attraction estimates calculated for the Iris problem on the Et and Eg

walks. Standard deviation shown in parenthesis.

SSE CE

Et nstag lstag nstag lstag

[−1, 1], 1.00857 848.82048 1.00571 820.20429

micro (0.11922) (52.82897) (0.07538) (54.28522)

[−1, 1], 1.00000 76.46571 1.00000 73.40857

macro (0.00000) (4.03382) (0.00000) (4.72216)

[−10, 10], 1.28571 796.07000 1.00000 953.26286

micro (0.48234) (212.33922) (0.00000) (10.64382)

[−10, 10], 1.02571 73.77000 1.00571 84.55857

macro (0.15828) (13.50309) (0.07538) (6.27217)

Eg nstag lstag nstag lstag

[−1, 1], 1.10571 820.07167 1.02286 818.33905

micro (0.38206) (143.30209) (0.18375) (77.64190)

[−1, 1], 1.00000 74.69429 1.00286 67.71143

macro (0.00000) (4.52494) (0.05338) (7.26987)

[−10, 10], 1.36000 770.39048 1.12286 917.17541

micro (0.57231) (229.39260) (0.75160) (138.19499)

[−10, 10], 1.03143 75.41714 1.01429 83.85857

macro (0.17447) (13.86152) (0.11867) (8.78615)

The CE loss surface once again exhibited fewer local minima than SSE. However,

the quality of the minima should also be evaluated in terms of the generalisation ca-

pabilities, before any final conclusions can be drawn. Figure 7.7 shows the l-g clouds

colourised according to the corresponding Eg values. It is evident from Figure 7.7 that

CE yielded poor generalisation performance in the area of the global minimum: All Eg

values reported were an order of magnitude larger than the corresponding Et values.

This observation is to be expected: Achieving 100% accuracy on the training set can
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(a) CE, micro, [−10, 10], Et < 1

(b) CE, macro, [−10, 10], Et < 1

Figure 7.6: L-g clouds for the CE loss values less than 1 sampled by the gradient walks

initialised in the [−10, 10] range for the Iris problem.

easily lead to overfitting. SSE also exhibited overfitting at the global minimum, but not

as strongly as CE. CE exhibited stronger gradients around the global optimum, which

can cause gradient-based methods to overfit more easily on CE than on SSE.

Appendix B lists all classification errors obtained by the gradient walks on the various

problems. Table B.1 indicates that, for the Iris problem, SSE has indeed yielded better

generalisation in most scenarios.

Thus, CE exhibited better global structure than SSE on the Iris problem, and was

more searchable from the gradient descent perspective. However, stronger gradients

around the global optimum indicate that CE exhibited sharper minima, causing stronger

overfitting on the CE loss surface.
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(a) SSE, micro, [−1, 1], Et < 0.05 (b) CE, micro, [−1, 1], Et < 0.05

(c) SSE, micro, [−10, 10], Et < 0.05 (d) CE, micro, [−10, 10], Et < 0.05

Figure 7.7: L-g clouds colourised according to the corresponding Eg values for the Iris prob-

lem.

7.3.3 Diabetes

Figures 7.8 and 7.9 show the l-g clouds obtained for the Diabetes problem. According

to Figure 7.8, both SSE and CE exhibited a single attractor of near-zero gradient, and

that attractor constituted a wide area of low gradients around the loss of zero. Both

SSE and CE exhibited convexity around zero loss, especially when sampled with micro

steps. The majority of the sampled points, however, were once again classified as a

saddle according to their Hessians. This corresponds well with the observations made

by Dauphin et al. [28], where the prevalence of saddle points in non-convex optimisation

was studied.

An arch-like curve can be observed in Figures 7.8a and 7.8c, indicating that higher

errors were associated with weaker gradients on the SSE loss surface. A transition to

the area of higher fitness was associated with a gradient signal that became stronger for
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(a) SSE, micro, [−1, 1]

(b) CE, micro, [−1, 1]

(c) SSE, macro, [−1, 1]

(d) CE, macro, [−1, 1]

Figure 7.8: L-g clouds for the gradient walks initialised in the [−1, 1] range for the Diabetes

problem.



Chapter 7. Loss Functions 113

(a) SSE, micro, [−10, 10]

(b) CE, micro, [−10, 10]

(c) SSE, macro, [−10, 10]

(d) CE, macro, [−10, 10]

Figure 7.9: L-g clouds for the gradient walks initialised in the [−10, 10] range for the Diabetes

problem.
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some time, and then began to weaken again as a global optimum was approached. The

CE l-g clouds in Figure 7.8 indicate that the CE loss surface did not have the tendency to

exhibit weaker gradients for higher errors, which makes CE favourable from the gradient

descent perspective. This corresponds well with the theoretical properties of both loss

functions, which indicate that SSE is expected to exhibit weaker gradients for higher

errors, as opposed to CE [46].

Figure 7.9 shows the l-g clouds obtained for the points sampled by the gradient

walks initialised in the [−10, 10] interval. SSE loss once again exhibited multiple near-

zero gradient attractors (three), and CE loss exhibited only one attractor. The majority

of the points sampled by larger steps in a larger area had a saddle curvature. The

convex attractors sampled by the [−10, 10] walks exhibited more variation in gradient

than the corresponding attractors discovered by the [−1, 1] walks. This observation can

be attributed to the valley structure of the optima: Larger steps induced oscillations

around the walls of the valley. Macro [−10, 10] walks did not discover any convexity,

and yielded a few points of singular (flat) curvature. This behaviour is likely due to the

hidden neuron saturation: Unconstrained macro gradient walks initialised in a larger

range are more likely to explore search space areas that are further away from the origin.

Larger weights increase the magnitude of net input signals that the hidden neurons

receive, and exceedingly large net input signals cause hidden neuron saturation.

The nstag and lstag values reported in Table 7.3 indicate that most walks discovered

a single attractor only, which correlates well with Figures 7.8 and 7.9, and also indicates

that the two suboptimal attractors discovered on the SSE loss surface were not easy

to escape from. Table 7.3 also shows that the generalisation performance of the points

discovered on the SSE loss surface was somewhat volatile when sampled using micro

walks. Micro walks took smaller steps, and thus were more likely to exploit a particular

attractor, causing overfitting.

Figure 7.10 shows a close-up depiction of the convex attractors, colourised according

to their generalisation performance. Both SSE and CE exhibited deteriorating gener-

alisation performance as the walks sampled points closer to the zero loss, which is to

be expected. For micro [−1, 1] walks, both SSE and CE exhibited a sudden drop in

gradient magnitudes, and the points of low gradient with the highest error exhibited the
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Table 7.3: Basin of attraction estimates calculated for the Diabetes problem on the Et and

Eg walks. Standard deviation shown in parenthesis.

SSE CE

Et nstag lstag nstag lstag

[−1, 1], 1.00123 938.66728 1.00000 935.27160

micro (0.03511) (22.51936) (0.00000) (12.49791)

[−1, 1], 1.00000 85.19012 1.00000 84.84691

macro (0.00000) (1.54389) (0.00000) (1.97922)

[−10, 10], 1.09259 905.05504 1.00000 962.31235

micro (0.37525) (138.96827) (0.00000) (5.28613)

[−10, 10], 1.03580 77.06975 1.02716 78.23086

macro (0.18580) (13.75685) (0.18393) (16.45928)

Eg nstag lstag nstag lstag

[−1, 1], 1.51852 794.78363 1.04938 925.83735

micro (1.21727) (270.89365) (0.31822) (100.01013)

[−1, 1], 1.00494 85.80988 1.00123 85.16543

macro (0.07010) (4.91134) (0.03511) (2.61851)

[−10, 10], 2.76420 703.52152 1.00617 958.96852

micro (3.96060) (343.41982) (0.07832) (39.60395)

[−10, 10], 1.08148 53.88477 1.08272 70.88848

macro (0.52189) (33.59152) (0.35041) (24.84558)

best generalisation performance. As previously noted by Choromanska et al. [23], finding

the global minimum may be unnecessary, as the global minimum is likely to overfit the

problem. Figures 7.10c and 7.10d indicate for the [−10, 10] walks that points around

the global minimum have exhibited various degrees of generalisation performance, with

a significant overlap between good and poor generalisation. This indicates that the dis-

covered minima had the same training error values, but different test error values. The

Diabetes problem is known to contain noisy data, and noise is a common cause of over-
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(a) SSE, micro, [−1, 1], Et < 0.2 (b) CE, micro, [−1, 1], Et < 0.5

(c) SSE, micro, [−10, 10], Et < 0.2 (d) CE, micro, [−10, 10], Et < 1

Figure 7.10: L-g clouds colourised according to the corresponding Eg values for the Diabetes

problem.

fitting. Table B.2 lists the classification errors obtained for the Diabetes problem, and

shows that CE loss yielded better generalisation when sampled with the [−1, 1] walks,

and SSE generalised better when larger step sizes were used.

7.3.4 Glass

Figures 7.11 and 7.12 show the l-g clouds obtained for the Glass problem. According

to Figure 7.11, convexity was found around the global minimum only, and only by the

micro walks initialised in the [−1, 1] range. Macro walks in the same range discovered

exclusively saddle curvature points. This observation once again confirms that the search

space for both SSE and CE is dominated by saddle curvature points. Convexity could

only be discovered by the smallest steps tested, indicating that the convex area was

sharp, and could easily be “overstepped” by a larger step size.
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(a) SSE, micro, [−1, 1]

(b) CE, micro, [−1, 1]

(c) SSE, macro, [−1, 1] (d) CE, macro, [−1, 1]

Figure 7.11: L-g clouds for the gradient walks initialised in the [−1, 1] range for the Glass

problem.

From Figure 7.11, the attractor dynamics exhibited by CE and SSE were quite similar:

both losses yielded a general near-linear decline in gradient associated with a decline

in error. Once the error became low enough, the gradients flattened, and a further

decrease in error towards zero was performed with near-zero gradients. Both CE and

SSE exhibited a single major attractor around the global minimum, indicating that all
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(a) SSE, micro, [−10, 10]

(b) CE, micro, [−10, 10]

(c) SSE, macro, [−10, 10]

(d) CE, macro, [−10, 10]

Figure 7.12: L-g clouds for the gradient walks initialised in the [−10, 10] range for the Glass

problem.
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near-stationary points discovered by the walks had a similar error value. The macro steps

discovered higher gradients around zero error than the micro steps, but the separation

into flat and non-flat areas was still evident. This behaviour is likely to be caused by

the gradient walks descending to the bottom of a valley first, and then travelling down

the bottom of the valley towards a global minimum.

Table 7.4 reports the nstag and lstag values obtained by the various walks on the

Glass problem. All walks consistently discovered only one attractor. The lstag values

indicate that the attractor was found within the first 10% to 20% of the steps, and from

thereon the walks proceeded to explore the discovered attractor. Thus, all walks quickly

descended into a valley, and then travelled at the bottom of the valley for the majority

of the steps. It was clearly quite easy to find a valley, and the error values at the bottom

of all discovered valleys were rather similar. No inter-valley transition was observed.

The corresponding nstag and lstag values obtained for Eg indicate that Eg also yielded

a single attractor per walk. Standard deviations of nstag and lstag are higher for Eg than

for Et, indicating that a steady decrease in Et was not always associated with a steady

decrease in Eg.

To further study the generalisation behaviour of the two loss functions, Figure 7.13

shows the l-g clouds of the attractors discovered for CE and SSE, colourised according

to the corresponding Eg values. According to Figures 7.13a and 7.13b, both SSE and

CE exhibited a decrease in Eg associated with an initial decrease in Et, but for both

loss functions Eg increased as Et approached zero. Thus, once an algorithm has de-

scended into a valley, further exploitation of the valley becomes unnecessary, as far as

the generalisation performance is concerned.

Figure 7.12 shows the l-g clouds obtained by the micro and macro walks initialised

in the [−10, 10] range. According to Figure 7.12, a larger initialisation range yielded

indefinite Hessians, indicating that points of little to no curvature were discovered. A

larger initialisation range is more likely to yield exploration of areas further away from

the origin. Since the NNs in this study employed the sigmoid activation, the observed

flatness is attributed to the saturation of the activation signals. Multiple flat attractors

were observed for SSE, while CE exhibited a single major attractor. While this single

attractor was at the global minimum, the sampled points clustered around two “paths”:
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Table 7.4: Basin of attraction estimates calculated for the Glass problem. Standard deviation

shown in parenthesis.

SSE CE

Et nstag lstag nstag lstag

[−1, 1], 1.00000 947.12067 1.00000 939.70667

micro (0.00000) (7.81525) (0.00000) (7.50773)

[−1, 1], 1.00000 86.13867 1.00000 85.04333

macro (0.00000) (0.77595) (0.00000) (1.03672)

[−10, 10], 1.04133 927.42956 1.00000 961.23867

micro (0.20238) (96.74308) (0.00000) (5.18617)

[−10, 10], 1.00400 85.29156 1.00133 87.17956

macro (0.08155) (4.99437) (0.05162) (2.28182)

Eg nstag lstag nstag lstag

[−1, 1], 1.00000 951.66867 1.00800 941.96300

micro (0.00000) (8.18235) (0.10925) (42.59343)

[−1, 1], 1.00000 86.67000 1.00000 86.01267

macro (0.00000) (0.57715) (0.00000) (0.71683)

[−10, 10], 1.11400 902.05250 1.02733 950.75153

micro (0.44084) (148.80139) (0.26568) (73.87091)

[−10, 10], 1.00533 85.01433 1.00400 86.62400

macro (0.07283) (6.10341) (0.06312) (4.83090)

lower errors associated with higher gradients, and higher errors associated with lower

gradients. This indicates the presence of two structures: narrow as well as wide valleys.

It has been previously observed that wide valleys are likely to yield better gener-

alisation performance [149, 21]. There was also a counter-argument presented, where

a sharp minimum with good generalisation properties was artificially created [32]. To

study the generalisation performance of the sampled points, the l-g clouds obtained for

the [−10, 10] micro walks, colourised according to the Eg values, are presented in Fig-

ures 7.13c and 7.13d. Figure 7.13d confirms that points of large gradient and low error
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generalised poorly for CE, while points of higher error and lower gradient generalised

better. Thus, points of low error exhibited overfitting for CE loss on the Glass problem,

and the wide valleys have exhibited better generalisation properties. Interestingly, the

same did not hold for SSE loss: according to Figure 7.13c, the smallest Eg was observed

for the points of the lowest Et. Thus, SSE loss was less prone to overfitting when sam-

pled at the given resolution. Therefore, despite exhibiting more low gradient attractors,

SSE exhibits better generalisation properties in some scenarios. The classification error

values reported in Table B.3 indicate that SSE and CE have in fact performed very

similarly, and have both generalised poorly. The Glass dataset is rather small, and small

datasets lead to overfitting.

(a) SSE, micro, [−1, 1], Et < 0.15 (b) CE, micro, [−1, 1], Et < 0.5

(c) SSE, micro, [−10, 10], Et < 0.2 (d) CE, micro, [−10, 10], Et < 1

Figure 7.13: L-g clouds colourised according to the corresponding Eg values for the Glass

problem.
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7.3.5 Cancer

Figures 7.14 and 7.15 show the l-g clouds obtained for the Cancer problem. According to

Figure 7.14, all points sampled by micro and macro walks initialised in the [−1, 1] range

exhibited saddle curvature. Total dimensionality of the cancer problem is 321, which

is noticeably higher than that of the previous problems considered. Saddle curvature is

expected to become more and more prevalent as the dimensionality increases [28].

According to Figure 7.14, both SSE and CE had one major attractor at the global

minimum. In addition to the global minimum, SSE exhibited two more attractors of low,

but non-zero gradient. Trajectories can be observed leading to the global minimum from

either of the two high error attractors. However, there is no trajectory connecting the

attractors to one another. The nstag and lstag values reported in Table 7.5 confirm that

all walks discovered a single attractor only, thus no transition between the attractors

took place.

CE, as shown in Figure 7.14, exhibited almost linear correlation between the gradient

and the error. Such simple correlation implies that the CE loss surface is likely to be

more searchable than the SSE loss surface from the perspective of a gradient-based opti-

misation algorithm. The Cancer problem is known to be an easy classification problem,

which must have contributed to the simplicity of the observed attractor.

Figure 7.15 shows the l-g clouds for the micro and macro walks initialised in the

[−10, 10] range. The larger initialisation range once again exposed points with indefinite

Hessians for both SSE and CE, i.e. points with little to no curvature. For CE, the points

of no curvature aligned with the global minimum. For SSE, the global minimum, as well

as the other two attractors, exhibited flatness. The majority of the points exhibited

saddle curvature. The two zero-gradient attractors, away from the global minimum,

were observed for the SSE loss surface. The CE loss surface did not exhibit multiple

attractors. However, multiple points of high gradient close to the global minimum were

sampled. This once again indicates that CE is more prone to sharp minima (narrow

valleys) than SSE.

The nstag and lstag values yielded by Eg of the sampled points (Table 7.5) are incon-

sistent with the corresponding nstag and lstag values obtained for Et. To further study

this inconsistency, Figure 7.16 presents the l-g clouds colourised according to the Eg
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(a) SSE, micro, [−1, 1] (b) CE, micro, [−1, 1]

(c) SSE, macro, [−1, 1] (d) CE, macro, [−1, 1]

Figure 7.14: L-g clouds for the gradient walks initialised in the [−1, 1] range on the Cancer

problem.

values for the points around the global minimum. Due to high disparity in the Eg values

obtained for CE, the CE l-g clouds were colourised on logarithmic scale. Similar to the

previous problems considered, the generalisation performance at the global optimum was

poor for both SSE and CE. However, it is evident from Figures 7.16c and 7.16d that

low error, high gradient points around the global minimum generalised well for SSE, and

poorly for CE. SSE in general produced weaker gradients than CE, indicating that SSE

was less prone to sharp minima. Figure 7.16 also shows that SSE exhibited points of

zero gradient for non-zero error, while CE did not. However, the observed local minima,

as well as the global minima of SSE, can yield better generalisation performance than

the global minima exhibited by CE.
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(a) SSE, micro, [−10, 10]

(b) CE, micro, [−10, 10]

(c) SSE, macro, [−10, 10]

(d) CE, macro, [−10, 10]

Figure 7.15: L-g clouds for the gradient walks initialised in the [−10, 10] range on the Cancer

problem.
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Table 7.5: Basin of attraction estimates calculated for the Cancer problem. Standard devia-

tion shown in parenthesis.

SSE CE

Et nstag lstag nstag lstag

[−1, 1], 1.00000 962.09844 1.00000 953.89307

micro (0.00000) (5.39294) (0.00000) (5.37201)

[−1, 1], 1.00000 87.77788 1.00000 87.18816

macro (0.00000) (0.44464) (0.00000) (0.51044)

[−10, 10], 1.00000 972.77778 1.00000 975.43836

micro (0.00000) (7.45025) (0.00000) (3.01133)

[−10, 10], 1.00000 87.44517 1.00000 87.80498

macro (0.00000) (0.89423) (0.00000) (1.12240)

Eg nstag lstag nstag lstag

[−1, 1], 1.00000 959.38629 1.00725 953.80766

micro (0.00000) (5.62718) (0.09002) (41.40420)

[−1, 1], 1.00000 87.81838 1.00000 87.25514

macro (0.00000) (0.41360) (0.00000) (0.54000)

[−10, 10], 1.11111 932.44444 4.13699 541.93665

micro (0.45812) (154.23691) (4.50666) (384.89318)

[−10, 10], 1.00125 87.16246 1.00903 86.55711

macro (0.03528) (2.95538) (0.09786) (7.86466)

7.3.6 Heart

Figures 7.17 and 7.18 show the l-g clouds obtained for the Heart problem. Similar to

the Cancer problem, all points sampled by the [−1, 1] walks were classified as saddle

points. The total dimensionality of the heart problem is 341, which is similar to the

dimensionality of the Cancer problem. Figure 7.17 illustrates that both SSE and CE

had a single flat attractor in the general area of the global minimum. In addition to

this attractor, SSE exhibited two more attractors of much higher error. However, the
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(a) SSE, micro, [−1, 1], Et < 0.05 (b) CE, micro, [−1, 1], Et < 0.05

(c) SSE, micro, [−10, 10], Et < 0.05 (d) CE, micro, [−10, 10], Et < 0.1

Figure 7.16: L-g clouds colourised according to the corresponding Eg values for the Cancer

problem.

[−1, 1] walks did not sample any zero-gradient (stationary) points around the high error

attractors.

Larger steps and a larger initialisation range, however, allowed gradient walks to

discover the stationary points of high error on the SSE loss surface, as illustrated in

Figure 7.18. The CE loss surface sampled by the same walks did not reveal any addi-

tional attractors, but was again visibly split into two clusters leading towards the global

minimum attractor: points of high gradient and low error, and points of lower gradient

and higher error. This is once again indicative of narrow and wide valleys, which appears

to be a common characteristic of the CE loss surface.

The nstag and lstag values reported in Table 7.6 confirm that the walks generally

did not make transitions between the discovered attractors. The nstag and lstag values

calculated over the Eg values were again less stable than the corresponding Et values,

indicating that exploiting an Et attractor does not necessarily coincide with exploiting
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(a) SSE, micro, [−1, 1] (b) CE, micro, [−1, 1]

(c) SSE, macro, [−1, 1] (d) CE, macro, [−1, 1]

Figure 7.17: L-g clouds for the gradient walks initialised in the [−1, 1] range on the Heart

problem.

a corresponding Eg attractor. Figure 7.19 illustrates the generalisation behaviour of

the flat attractor discovered on both the SSE and CE loss surfaces by the micro [−1, 1]

walks: the smallest Eg values were observed on the rightmost side of the attractor,

closest to the points of higher error and higher gradient. Exploitation around the global

minimum yielded superior Et values, but inferior Eg values. This once again illustrates

that discovering the global optimum may be unnecessary. The success of techniques such

as early stopping [93] comes precisely from preventing the algorithm from exploiting a

global minimum unnecessarily.

7.3.7 MNIST

Figures 7.20 and 7.21 show the l-g clouds for the MNIST problem. Due to the pro-

hibitively expensive memory requirements, the Hessian matrices were not computed for
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(a) SSE, micro, [−10, 10] (b) CE, micro, [−10, 10]

(c) SSE, macro, [−10, 10]

(d) CE, macro, [−10, 10]

Figure 7.18: L-g clouds for the gradient walks initialised in the [−10, 10] range on the Heart

problem.

the MNIST dataset. Thus, the curvature of the loss functions for the MNIST dataset is

not reported in this study. The reader is referred to the previous studies of the MNIST

Hessians [114] for a discussion of curvature characteristics, where it was shown that the

gradient descent algorithm discovered points of saddle and singular curvature only.
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Table 7.6: Basin of attraction estimates calculated for the Heart problem. Standard deviation

shown in parenthesis.

SSE CE

Et nstag lstag nstag lstag

[−1, 1], 1.00000 952.36276 1.00000 947.81432

micro (0.00000) (6.49124) (0.00000) (7.04222)

[−1, 1], 1.00000 86.70645 1.00000 86.40587

macro (0.00000) (0.66921) (0.00000) (0.97088)

[−10, 10], 1.02493 937.01486 1.00000 966.72036

micro (0.15962) (76.63092) (0.00000) (3.70200)

[−10, 10], 1.00176 84.85293 1.00411 84.43886

macro (0.04191) (3.68841) (0.06394) (7.00978)

Eg nstag lstag nstag lstag

[−1, 1], 1.00733 957.87269 2.14920 710.77930

micro (0.10669) (40.88520) (2.07157) (342.24282)

[−1, 1], 1.00000 87.70880 1.00088 87.54971

macro (0.00000) (0.60395) (0.02965) (1.97717)

[−10, 10], 1.54927 821.66135 1.00298 965.68084

micro (1.78543) (251.33524) (0.05453) (27.96970)

[−10, 10], 1.00440 84.55381 1.04956 79.23624

macro (0.06618) (5.61240) (0.24735) (17.04847)

Figure 7.20 shows that both SSE and CE exhibited one major attractor around the

global minimum. Additionally, SSE exhibited two more attractors of non-zero gradient.

Thus, the error landscape of CE was more searchable than the error landscape of SSE.

The nstag and lstag results reported in Table 7.7 indicate that most walks have discovered

a single attractor only, which corresponds to the results in Figures 7.20 and 7.21.

A cluster of values of high gradient and low error can be observed for both SSE

and CE, indicating that both exhibited sharp minima. SSE, however, exhibited lower

gradients overall. Figure 7.20 illustrates that the generalisation performance improved
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(a) SSE, micro, [−1, 1], Et < 0.2 (b) CE, micro, [−1, 1], Et < 0.5

Figure 7.19: L-g clouds colourised according to the corresponding Eg values for the Heart

problem.

as the error approached the global minimum. Figure 7.22 shows the generalisation

performance of the points sampled around the global minimum. SSE once again exhibited

better generalisation performance around the global minimum than CE, confirming the

earlier made hypothesis that SSE is less prone to overfitting due to weaker gradients. The

classification error results reported in Table B.6, however, indicate that, although SSE

yielded a smaller disparity between the Et and Eg values, both loss functions performed

similarly in terms of final classification.

Figure 7.21 indicates that SSE exhibited a much weaker correlation between the

gradient and the error when sampled by gradient walks initialised in the [−10, 10] interval.

For CE, the positive correlation was still clearly manifested. Thus, CE exhibited a more

searchable landscape when sampled by the [−10, 10] walks. Both loss functions clustered

along the error and the gradient axis.

The landscape properties exhibited by the MNIST problem were thus very similar to

the landscape properties exhibited by the problems of lower dimensionality. The CE loss

surface was more searchable for all problems considered, and exhibited fewer non-global

attractors. SSE, however, exhibited somewhat better generalisation capabilities under

some of the considered scenarios. Perhaps the two loss functions should be combined to

construct an error landscape that is both searchable and robust to overfitting.
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Table 7.7: Basin of attraction estimates calculated for the MNIST problem. Standard devia-

tion shown in parenthesis.

SSE CE

Et nstag lstag nstag lstag

[−1, 1], 1.00003 948.96269 1.00020 943.65445

micro (0.00557) (7.73257) (0.01418) (10.31210)

[−1, 1], 1.00000 89.59761 1.00000 88.94583

macro (0.00000) (0.62686) (0.00000) (0.79698)

[−10, 10], 1.00338 944.23606 1.00020 955.48716

micro (0.06420) (29.25325) (0.01418) (9.14026)

[−10, 10], 1.00004 90.19884 1.00001 90.24536

macro (0.00614) (1.02171) (0.00354) (1.09101)

Eg nstag lstag nstag lstag

[−1, 1], 1.00028 944.25561 2.84430 570.85913

micro (0.01762) (10.01749) (2.71734) (334.02547)

[−1, 1], 1.00000 90.04197 1.01201 85.19988

macro (0.00000) (0.63536) (0.11234) (7.54223)

[−10, 10], 1.00408 943.53542 1.26670 878.55561

micro (0.11775) (29.40333) (1.10976) (191.85100)

[−10, 10], 1.00005 90.31260 1.00881 88.80587

macro (0.00709) (1.00828) (0.10216) (6.14361)

7.4 Ruggedness, Gradients, Neutrality

The ruggedness, gradient, and neutrality metrics, as described in Section 3.4, were cal-

culated for the benchmarks considered to gain more insight into the fitness landscape

properties of the two loss functions. Magnitudes of the numerical gradients were used

instead of gradient estimates. Figures 7.23 and 7.24 show the FEM and gradient metrics

obtained.

It is evident from Figures 7.23 and 7.24 that ruggedness increased with an increase
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(a) SSE, micro, [−1, 1] (b) CE, micro, [−1, 1]

(c) SSE, macro, [−1, 1] (d) CE, macro, [−1, 1]

Figure 7.20: L-g clouds for the gradient walks initialised in the [−1, 1] range on the MNIST

problem.

in step size and initialization boundaries for all problems considered. This result is in-

teresting, because the loss surfaces are expected to become more and more flat as the

search moves further away from the origin, due to hidden unit saturation. However,

the reported metrics were calculated over gradient-guided walks, thus the ruggedness

observed corresponded to the gradient-based trajectories. Therefore, increased rugged-

ness can be explained by the gradient trajectory bouncing off the walls of a ravine, with

local/global minima at the bottom. Larger step sizes were more likely to overstep the

width of a ravine, and thus caused stronger oscillations.

A decrease in FEM associated with the transition from the [−1, 1] macro setting

to the [−10, 10] micro setting can be observed for multiple problems in Figures 7.23

and 7.24. Both settings used the same maximum step size, since 10% of the [−1, 1]

range is equal to the 1% of the [−10, 10] range. Therefore, the difference in FEM values

resulted from the different initialisation intervals. It has been observed in the past
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(a) SSE, micro, [−10, 10] (b) CE, micro, [−10, 10]

(c) SSE, macro, [−10, 10] (d) CE, macro, [−10, 10]

Figure 7.21: L-g clouds for the gradient walks initialised in the [−10, 10] range on the MNIST

problem.

that SSE is likely to not find a good solution if initialised poorly [46]. Smaller FEM

values indicate that a larger initialisation range caused the gradient walks to exploit

different structures when initialised in the [−10, 10] range. Fewer oscillations for the

same step size indicate that shallower and wider valleys were discovered for the [−10, 10]

micro setting. The classification values reported in Appendix B indicate that [−10, 10]

micro walks sometimes discovered solutions with better generalisation properties than

the ones discovered by the [−1, 1] macro walks. This corresponds with the previously

made hypothesis that wide valleys generalise better than narrow valleys [21].

While the two loss functions exhibited similar behaviour in terms of FEM , the same

can not be said about the gradients. Figures 7.23 and 7.24 indicate that CE yielded

higher Gavg and Gdev values for all problems considered. This observation is in line

with the theoretical predictions made in [120]. Stronger gradients are responsible for

faster convergence of gradient-based methods on CE compared to SSE. Figures 7.23
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(a) SSE, macro, [−10, 10], Et < 0.2 (b) CE, macro, [−10, 10], Et < 0.25

Figure 7.22: L-g clouds colourised according to the corresponding Eg values for the MNIST

problem.

and 7.24 also show that the Gavg and Gdev values increased for CE with an increase in

the initialisation boundaries, which was not the case for SSE. Thus, from the gradient

perspective, the CE loss surface exhibited a stronger global shape, and contained more

gradient information to guide a search. The Gdev values were similar or smaller than

the corresponding Gavg values for most problems considered, with the exception of XOR

([−10, 10] setting) and Cancer (all settings). For these two problems, Gdev exceeded

Gavg, indicating sudden step-like changes in the landscape. The XOR problem contains

four data patterns only, and is thus expected to be ill-defined. Cancer is known to be

a trivial classification problem, solvable with over 95% accuracy by NNs with a single

hidden layer [9]. The simplicity of the dataset clearly contributed to the simplicity of

the landscape. Cancer also exhibited the smallest FEM values compared to the other

datasets, indicating that the loss surface associated with this problem was smooth.

Finally, the neutrality metrics M1 and M2 calculated for all problems considered are

shown in Figure 7.25. Surprisingly, none of the problems, except the Cancer problem,

exhibited much neutrality. This observation indicates that the loss surfaces were gener-

ally highly searchable, and the gradient walks did not have to traverse flat areas. Lack

of neutrality is also indicative of oscillations exhibited by the walks, attributed to the

fact that minima is located at the bottom of ravines ans valleys, and the ravines can

have steep walls. The Cancer problem is the only exception to this rule. The flatness

observed on the Cancer dataset is again attributed to the triviality of the dataset. If the
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Figure 7.23: FLA metrics for the XOR, Iris, Diabetes, and Glass problems.
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Figure 7.24: FLA metrics for the Heart, Cancer, and MNIST problems.

valleys were wide enough, the gradient walks would have exhibited fewer oscillations.

Perhaps valley width is associated with the separability of a problem.
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Figure 7.25: Neutrality metrics for the various problems considered.
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7.5 Conclusions

This study presented a visual and numerical analysis of local minima and the associated

basins of attraction for two common NN loss functions, i.e. quadratic loss and entropic

loss. The study was performed by analysing the samples obtained by a number of

progressive gradient walks proportionate to the dimensionality of the problems. The

gradient walks were not restricted to any specific search space bounds, but were initialised

in two distinct intervals, i.e. [−1, 1] and [−10, 10]. Additionally, two granularity settings

were considered for the gradient walks, namely micro and macro.

Both loss functions exhibited convex local minima for the XOR problem. The amount

of observed convexity decreased with an increase in problem dimensionality. Saddle cur-

vature was the most prevalent curvature observed, and some higher-dimensional problems

considered exhibited only saddle curvature for all sampled points.

SSE consistently exhibited more local stationary points and associated attractors

than CE. Analysis of the individual walks further revealed that transition between differ-

ent attractors was unlikely, and that the paths connecting different attractors exhibited

singular Hessian matrices, indicative of flatness. Thus, CE exhibited a more consistent

and searchable structure across the selection of problems considered in this study.

With an increase in problem dimensionality, the number of zero or low gradient

attractors decreased. The majority of the problems exhibited a single main attractor

around the global optimum. For CE, the gradient was for the most part positively

correlated to the error value, indicating that the CE loss surface is highly searchable

from the perspective of gradient-based methods. This study did not attempt to quantify

the number of optima, but the obtained results clearly indicated that the majority of

the optima exhibited similar loss values.

The results confirmed previously made observations of the presence of valley-shaped

optima in NN error landscapes. For the majority of the problems, descending into a

valley was easily accomplished by the walks. Travelling down the bottom of the valley

towards the global minimum yielded a decrease in generalisation performance for both

SSE and CE. CE exhibited stronger gradients than SSE in all experiments conducted,

and the stronger gradients promoted overfitting in CE. For some of the problems, SSE

exhibited better generalisation performance. It can be speculated that the CE loss
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surface is more prone to sharp minima (narrow valleys) than SSE; thus, CE is more

easily overfitted. The experiments revealed the tendency for the points sampled on CE

to fall into two major clusters: points of low error and high gradients, and points of

higher error and low gradients. These are hypothesised to represent narrow and wide

valleys, respectively. The results of this study confirmed that superior generalisation

performance was exhibited by the points in the wide valleys.

FLA estimates of ruggedness, gradients, and neutrality were also calculated for the

two losses. The ruggedness results suggested that the discovered valleys became wider

further away from the origin. The gradient results confirmed that CE exhibited stronger

gradients than SSE, as well as a more searchable global shape, with steeper gradients

further away from the origin. Neutrality was observed for the Cancer problem only,

indicating that the width of the discovered valleys may be associated with the separability

of the dataset.

An analysis of the progressive gradient samples thus illustrated a number of current

theories regarding the shape of NN error surfaces, and highlighted the differences be-

tween SSE and CE loss surfaces, confirming that FLA, and specifically the l-g clouds

proposed in this study, provide a viable method for visualisation and analysis of NN

error landscapes.

The observation that the SSE landscape may have superior generalisation proper-

ties suggests that a hybrid of SSE and CE may produce a landscape that combines the

searchability of CE with the robustness of SSE. Additionally, the presence of a single

attractor in the majority of the problems considered suggests that an exploitative rather

than an exploratory approach should be taken for the purpose of NN training. This ob-

servation has strong implications for population-based training algorithms, which so far

failed to be effectively applied to high-dimensional NN training problems. A population-

based approach designed with exploitation rather than exploration in mind may perform

competitively, especially if gradient information is used as one of the guides for the popu-

lation. This hypothesis is further supported by a recent study of PSO in high-dimensional

spaces [102], were the efficacy of exploitation over exploration in high-dimensional spaces

was observed. Investigation of exploitative population-based techniques applied to NNs

is an interesting topic for future research.
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Another interesting observation is the impressive ability of a randomised algorithm

to find the global optima, when guided by nothing besides the direction of the gradient.

As Appendix B indicates, the average classification error calculated at the last step of

the gradient walks approached 100% accuracy on most problems under at least one of

the granularity settings. Perhaps gradient-guided stochastic training algorithms should

be considered for deeper, more complex problems.

The next chapter presents an FLA study of NN error landscapes exhibited by various

activation functions.



Chapter 8

Activation Functions

Non-linear activation functions enable multilayer NNs to model arbitrary complex map-

pings between inputs and outputs [53], and thus play a crucially important role in NN

design, training, and performance. Kordos and Duch [68] have shown that the activation

function used in the hidden layers of a NN has a significant effect on the resulting loss sur-

face, but their study was limited to monotone (sigmoidal) and non-monotone bounded

functions. Kordos and Duch [68] concluded that non-monotone activation functions

yield more complex loss surfaces than the monotone activation functions, and that non-

smooth monotone activation functions introduce more plateaus than smooth monotone

activation functions.

Bounded activation functions such as sigmoid and TanH, discussed in Section 2.5,

are prone to saturation, which was shown to be detrimental to NN performance for

shallow [109] and deep [51, 52] architectures alike. Modern activation functions such as

ReLU and ELU, also discussed in Section 2.5, are less prone to saturation, and thus

became the primary choice in the deep learning community [4, 117, 152]. However, the

effect of the various activation functions on the resulting NN loss surfaces has not been

established yet. Recent studies have shown that, on a bounded set in the weight space,

the ReLU activation function yields strong piece-wise convexity around the isolated local

minima on NN loss surfaces [89, 111]. However, these theoretical studies rely on numerous

limiting assumptions. To the best of the author’s knowledge, no dedicated studies of the

loss surfaces associated with the ELU activation or the softmax activation exist to date.

141
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This chapter aims to investigate NN loss surfaces under various activation functions

using the FLA techniques. The rest of the chapter is structured as follows: Section 8.1

discusses the experimental procedure. Section 8.2 presents a visual and numerical anal-

ysis of stationary points and basins of attraction associated with various activation func-

tions. Section 8.3 presents FLA measures of gradients, ruggedness, and neutrality asso-

ciated with the various activation functions. Section 8.4 concludes the chapter.

8.1 Experimental Procedure

The aim of the study was to visually and numerically investigate the local minima and

basins of attraction exhibited by a diverse set of activation functions. This section

discusses the experimental set-up of the study, and is structured as follows: Section 8.1.1

describes the NN hyperparameters and activation functions considered in this study,

Section 8.1.2 lists the benchmark problems used, and Section 8.1.3 outlines the sampling

algorithm parameters.

8.1.1 Activation functions

All experiments employed feed-forward NNs with a single hidden layer. The entropic

loss function (CE), discussed in Section 2.4, was used in the experiments. The entropic

loss was chosen based on the findings presented in Chapter 7, where CE was shown

to produce more searchable landscapes with fewer local minima. The following three

activation functions, previously discussed in Section 2.5, were considered for the hidden

neurons:

1. Hyperbolic tangent, TanH.

2. Rectified linear units, ReLU.

3. Exponential linear units, ELU.

The three activation functions were chosen based on their widespread success in modern

NN architectures [116, 117, 150]. For the output layer neurons, the sigmoid activation
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function was used for binary classification problems. For multinomial classification prob-

lems, both the sigmoid and softmax activation functions were considered in the output

layer.

8.1.2 Benchmark problems

For the purpose of this study, the seven classification problems described in Appendix A

were used, of which four were examples of binary classification (XOR, Diabetes, Cancer,

Heart), and three were examples of multinomial classification (Iris, Glass, MNIST).

8.1.3 Sampling parameters

The same sampling parameters as discussed in Section 7.2.3 were used for the exper-

iments. Progressive gradient walks (refer to Section 6.1.1) were used for the purpose

of sampling. The total number of walks was set to be 10 ×m, where m is the dimen-

sionality of the search space. The walks were unbounded, but two distinct initialisation

ranges were considered, namely [−1, 1] and [−10, 10]. Two granularity settings were

used throughout the experiments: micro, where the maximum step size was set to 1%

of the initialisation range, and macro, where the maximum step size was set to 10% of

the initialisation range. Micro walks performed 1000 steps each, and macro walks per-

formed 100 steps each. All datasets except XOR were split into 80% training and 20%

test subsets. To calculate the training (Et) and the generalisation (Eg) errors, the entire

train/test subsets were used for all the problems except MNIST. For MNIST, random

batches of 100 patterns were sampled from the respective training and test sets.

8.2 Empirical Study of Modality

This section presents an analysis of apparent local minima and the corresponding basins

of attraction as captured by the progressive gradient walks. L-g clouds, proposed in

Chapter 6, are employed for the purpose of this study. Sections 8.2.1 to 8.2.7 present

the analysis of the three different hidden neuron activation functions for each problem.
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Section 8.2.8 presents the analysis of the softmax activation for the multinomial classi-

fication problems.

8.2.1 XOR

Figures 8.1, 8.2, 8.3, and 8.4 show the l-g clouds obtained for the XOR problem, separated

into panes according to the curvature.

Figure 8.1 indicates that the three activation functions considered have all yielded

local minima similar to the minima discovered on the sigmoid error surface (refer to

Fig. 7.1 in Chapter 7). However, the loss surface characteristics around the local min-

ima varied for the three activation functions. TanH yielded stronger gradients than the

sigmoid, which is to be expected, but otherwise exhibited a loss surface with a clear tran-

sition between saddle and convex curvatures. The gradient walks generally descended to

a stationary point in the saddle space, and then made the transition to one of the convex

minima from there. The three convex minima discovered were disconnected, i.e. the

walks generally did not make transitions between the convex minima. This observation

is confirmed by the nstag and lstag values reported in Table 8.1.

Table 8.1: Basin of attraction estimates calculated for the XOR problem for the different

hidden neuron activation functions. Standard deviation is shown in parenthesis.

TanH ReLU ELU

nstag lstag nstag lstag nstag lstag

[−1, 1], 1.3667 623.1000 5.3778 257.4255 1.7000 492.9157

micro (0.4819) (188.8277) (4.7972) (258.8352) (0.5467) (210.9447)

[−1, 1], 1.0333 60.1833 1.1778 26.2259 1.1778 47.8111

macro (0.1795) (15.7269) (0.5692) (17.7395) (0.3823) (18.3239)

[−10, 10], 1.1222 905.0130 1.7556 818.8688 1.0889 919.2556

micro (0.3599) (158.2318) (2.1925) (276.1865) (0.3542) (135.3812)

[−10, 10], 1.0222 71.3333 1.1889 46.0889 1.0889 69.0389

macro (0.3326) ( 26.2463) (0.5753) ( 32.4271) (0.3542) (22.8096)
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(a) TanH, micro, [−1, 1]

(b) ReLU, micro, [−1, 1]

(c) ELU, micro, [−1, 1]

Figure 8.1: L-g clouds for the micro gradient walks initialised in the [−1, 1] range for the

XOR problem.

The loss surface characteristics associated with ReLU were vastly different from the

sigmoidal loss surfaces. Firstly, as can be seen in Figure 8.1b, there was no clear separa-

tion between convex, saddle, and indefinite curvatures in the different areas sampled for
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ReLU. Secondly, even though two convex local minima were discovered, these minima

were apparently less attractive to the gradient walks than the global minimum. This

observation indicates that a gradient-based algorithm would be less likely to become

trapped in a local minimum exhibited by the ReLU activation function. The reason

for this is the presence of saddle and indefinite (flat) points around the local minima,

providing pathways through which a gradient-based algorithm can escape. Additionally,

vertical clusters can be observed around the local minima, indicating that diverse gra-

dient information was available in the neighbourhood of the local minima. The nstag

and lstag values reported in Table 8.1 confirm that the gradient walks generally exhibited

multiple transitions between the stagnant areas. The predominance of indefinite curva-

ture is explained by the fact that the ReLU function outputs zero for all negative inputs,

which inevitably causes flatness.

The ELU activation yielded a loss surface similar to the sigmoidal functions, but

with no clear separation between the convex and saddle curvatures. Four convex minima

were discovered, but the suboptimal minima were again less atrractive to the gradient

walks than the global minimum. The local minima were less connected than for ReLU,

but more connected than for TanH. Better connectivity is illustrated by the nstag and

lstag values in Table 8.1. The band connecting the global minimum to the stationary

attractors of high error was wider for ELU than for TanH, indicating that the surface

was smoother, and the connecting valleys were likely wider.

Figure 8.2 shows the l-g clouds as sampled by the [−1, 1] macro walks. Larger step

sizes did not prevent the gradient walks from discovering the same convex minima for

the TanH activation. Clear transition from the saddle to convex curvature can still be

observed in Figure 8.2a. Stronger gradients were sampled around the global minimum at-

tractor, indicating that larger steps bounced off the walls of the attraction basin. Larger

steps also allowed gradient walks to proceed directly to one of the minima, sometimes

avoiding prior convergence to a saddle stationary point, confirmed by the nstag values in

Table 8.1.

For the ReLU activation function, larger step sizes yielded very noisy behaviour,

with less evident structure, as shown in Figure 8.2b. This indicates that the loss surface

associated with the ReLU activation function was rugged and inconsistent when observed
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(a) TanH, macro, [−1, 1]

(b) ReLU, macro, [−1, 1]

(c) ELU, macro, [−1, 1]

Figure 8.2: L-g clouds for the macro gradient walks initialised in the [−1, 1] range for the

XOR problem.

at a larger scale. Fewer walks have discovered convex global minima. Most points

exhibited flatness. According to the lstag values in Table 8.1, the gradient walks typically

became stuck for less than a quarter of the total steps taken. Thus, although ReLU

offers a higher chance of escaping local minima, searchability of the overall landscape
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(a) TanH, micro, [−10, 10]

(b) ReLU, micro, [−10, 10]

(c) ELU, micro, [−10, 10]

Figure 8.3: L-g clouds for the micro gradient walks initialised in the [−10, 10] range for the

XOR problem.

suffers, and is more dependent on the chosen step size.

The ELU activation function sampled with larger step sizes, as shown in Figure 8.2c,

exhibited more evident structure than ReLU, and stronger gradients than TanH. Com-
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(a) TanH, macro, [−10, 10]

(b) ReLU, macro, [−10, 10]

(c) ELU, macro, [−10, 10]

Figure 8.4: L-g clouds for the macro gradient walks initialised in the [−10, 10] range for the

XOR problem.

pared to TanH and ReLU, ELU did not exhibit any flatness, i.e. indefinite Hessians,

which indicate that the loss surface associated with ELU was more searchable. The lstag

values in Table 8.1 indicate that the gradient walks typically became stuck for half of the
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total steps taken, thus ELU did not prevent exploitation, while preventing premature

convergence to a local minimum.

Figures 8.3 and 8.4 show the l-g clouds obtained for the [−10, 10] gradient walks. The

x-axis is shown in square-root scale for readability. The same four stationary attractors

were sampled for TanH, with two convex local minima. Table 8.1 indicates that the walks

were very unlikely to make transitions between minima. ReLU and ELU both yielded

much higher errors than TanH, although convergence to the global minimum still took

place. ReLU sampled the most flat curvature points, and ELU sampled the most saddle

points. Both ReLU and ELU also exhibited two clusters: points of low error and high

gradient, and points of low gradient and high error. These are attributed to the narrow

and wide valleys present in the landscape, which could not be observed at the smaller

scale.

Under the macro setting, shown in Figure 8.4, all three activation functions still

yielded the discovery of local minima. Out of the three activation functions, ELU exhib-

ited the strongest gradients, and the least number of indefinite curvature points. Thus,

ELU yielded the most searchable loss surface for the XOR problem.

8.2.2 Iris

Figure 8.5 shows the l-g clouds obtained for the Iris problem sampled with the [−1, 1] mi-

cro walks. The l-g clouds for the three activation functions exhibited a similar shape, but

different curvature properties. Only one major attractor around the global minimum was

discovered. Table 8.2 lists the nstag and lstag values generated by the activation functions

for the Iris problem under various settings. The gradient walks did not generally be-

come stuck more than once under all settings considered, confirming that global minima

formed the only strong attractor.

Figure 8.5a shows that TanH was dominated by the saddle curvature. The sampled

points were split into two clusters around the global minimum, namely points of higher

error and lower gradient, and points of higher gradient and low error. The points of high

gradient and low error overlapped with the points of indefinite curvature, indicating

that this cluster exhibited flatness. Lack of curvature in some dimensions means that

those particular dimensions have not contributed to the final fitness. In the case of
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(a) TanH, micro, [−1, 1]

(b) ReLU, micro, [−1, 1]

(c) ELU, micro, [−1, 1]

Figure 8.5: L-g clouds for the micro gradient walks initialised in the [−1, 1] range for the Iris

problem.

NNs, each dimension corresponds to a weight. A non-contributing weight indicates that

the signal generated by that weight is zeroed somewhere in the architecture, and any

change in the weight value would not have an effect on the NN output. For example,
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Table 8.2: Basin of attraction estimates calculated for the Iris problem on the Et and Eg

walks. Standard deviation shown in parenthesis.

TanH ReLU ELU

Et nstag lstag nstag lstag nstag lstag

[−1, 1], 1.0000 886.0829 1.0086 879.1043 1.0000 897.9343

micro 0.0000 22.8566 0.0922 50.2012 0.0000 23.4255

[−1, 1], 1.0000 79.9514 1.0000 80.1371 1.0000 81.7000

macro 0.0000 2.6404 0.0000 3.6728 0.0000 2.8921

[−10, 10], 1.0029 954.3300 1.0000 960.9057 1.0000 960.9057

micro 0.0534 27.1584 0.0000 7.9617 0.0000 7.0884

[−10, 10], 1.0057 84.4300 1.0371 80.3833 1.0229 83.9881

macro 0.0754 8.1484 0.2172 14.7487 0.1675 11.3875

Eg nstag lstag nstag lstag nstag lstag

[−1, 1], 1.0457 848.6614 1.0371 867.5129 1.0057 912.1214

micro 0.2089 97.6926 0.1891 90.6481 0.0754 41.7026

[−1, 1], 1.0000 79.2629 1.0000 79.9714 1.0000 83.0914

macro 0.0000 2.7887 0.0000 3.7438 0.0000 3.0280

[−10, 10], 1.1286 935.8892 1.1543 942.3144 1.0314 951.1780

micro 1.1628 115.1048 1.2735 119.1299 0.3491 71.0568

[−10, 10], 1.0171 83.3657 1.0914 71.2819 1.0343 83.3848

macro 0.1298 10.0162 0.3166 23.4619 0.2242 11.8406

if a neuron is saturated, i.e. the neuron always outputs a value close to the asymptote,

then the contribution of a single weight may become negligible. Therefore, indefinite

curvature is likely associated with saturated neurons. However, neuron saturation is not

the only explanation for non-contributing weights: if certain weights are unnecessary

for the minimal solution to the problem at hand, then techniques such as regularisation

can be employed to reduce the unnecessary weights to zero. Therefore, solutions with

non-contributing weights can also be associated with regularised models. It has been
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observed before that optima for smaller NN architectures are embedded in the weight

space of larger NN architectures [86]. Indeed, if the unnecessary weights in an over-

parametrised NN architecture are set to zero, then the large architecture will map to

a smaller architecture. If there is a minimum associated with the smaller architecture,

the same minimum will be available to the larger architecture, provided the irrelevant

weights are set to zero. Minima associated with smaller architectures that can be found

for a larger architecture are further referred to as embedded minima.

Thus, flat areas around the global minimum are attributed to the non-contributing

weights, which are indicative of saturation. Some of the solutions with saturated neurons

correspond to the minima that require fewer weights than available in the architecture.

This hypothesis has the implication that the steep gradient minima associated with

indefinite curvature can have poor performance, in case of unwanted saturation, or good

performance, in case of implicit regularisation.

For the ReLU activation function, the prevalence of convex curvature is evident in

Figure 8.5b. Again, ReLU exhibited more flatness than the other two activation functions

considered. Such behaviour is attributed to the hard saturation of ReLU, which can easily

yield non-contributing weights. The ELU activation function, as shown in Figure 8.5c,

was dominated by the saddle curvature. The least amount of flatness was discovered

for ELU, again making ELU a potentially good choice for algorithms that rely on the

gradient information.

Figure 8.6 shows the l-g clouds obtained for the [−1, 1] macro walks. Larger step

sizes revealed similar curvature tendencies for the three activation functions, with TanH

exhibiting convexity at the global minimum, but being dominated by saddle points oth-

erwise, ReLU exhibiting strong convexity, and ELU exhibiting no convexity and almost

no flatness. All three activation functions yielded a split into high error, low gradient,

and high gradient, low error clusters. The high gradient, low error clusters were associ-

ated with indefinite Hessians for the three activation functions. This behaviour is again

attributed to the embedded minima that require fewer weights, as well as hidden unit

saturation. Larger steps are likely to arrive at larger weights, thus increasing the chances

of saturation. The classification errors reported in Table B.7 in Appendix B indicate that

the solution quality for the macro walks deteriorated as compared to the micro walks.
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(a) TanH, macro, [−1, 1]

(b) ReLU, macro, [−1, 1]

(c) ELU, macro, [−1, 1]

Figure 8.6: L-g clouds for the macro gradient walks initialised in the [−1, 1] range for the Iris

problem.

To test the saturation hypothesis, the degree of saturation was measured for TanH

and ReLU. For TanH, the ςh saturation measure was used, proposed in [108] for bounded

activation functions. The value of ςh is in the [0, 1] continuous range, where 0 corresponds
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to a normal distribution of hidden neuron activations, 0.5 corresponds to a uniform dis-

tribution of hidden neuron activations, and 1 corresponds to a saturated distribution

of hidden neuron activations, where most activations lie on the asymptotic ends. For

ReLU, the proportion of zero activations for all hidden neurons was used as an estimate

of saturation. Figure 8.7 shows the box plots [84, 132] generated for TanH and ReLU for

a few selected scenarios. Box plots represent the distribution of a continuous variable,

visualising the median (the line in the middle of the box), the 25th and 75th percentiles

(hinges, or upper and lower bounds of the box), and the 1.5×inter-quartile range from

the hinges (the whiskers, or lines extending from the box). Points that lie outside of

the whiskers are plotted separately as outliers. Figure 8.7 shows that singular curvature

(indefinite Hessians) was indeed associated with higher saturation under various scenar-

ios, especially under the [−1, 1] macro setting, which yielded a steep gradient cluster of

indefinite points.

Figures 8.8 and 8.9 show the l-g clouds for the [−10, 10] walks for the micro and macro

settings, respectively. The x-axis is shown in square-root scaling for readability. Accord-

ing to Figure 8.8, TanH exhibited two convex attractors around the global minimum,

but was mostly dominated by the saddle curvature. Under the macro setting, shown

in Figure 8.9, TanH exhibited very few convex points. Large step sizes prevented the

walks from converging to a convex basin, indicating that the width of the convex basin

must have been smaller than 2 (maximum step size calculated as 10% of the [−10, 10]

initialisation range). ReLU exhibited the most convexity out of the three activation

functions, and the most flatness. Thus, ReLU yielded a wider convex attraction basin

than TanH, and was also more likely to saturate. ELU exhibited little to no convexity,

and flatness only along the steeper cluster, associated with embedded minima and/or

saturation. The split into two clusters was still evident for all activation functions. In

general, with the increase in step size, the steep cluster became heavier than the shallow

cluster. Thus, the steep cluster is confirmed to be associated with large weights, which

cause saturation.

Table 8.2 shows that the nstag and lstag values calculated for Eg yielded higher stan-

dard deviations than for Et, especially under the [−10, 10] micro setting. To further

study the generalisation behaviour of the three activation functions, Figure 8.10 shows
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(a) TanH, macro, [−1, 1] (b) ReLU, macro, [−1, 1]

(c) TanH, micro, [−10, 10] (d) ReLU, micro, [−10, 10]

Figure 8.7: Box plots illustrating the degree of saturation associated with the different cur-

vatures for the Iris problem.

the l-g clouds for the micro walks colourised according to their Eg values. Figure 8.10 il-

lustrates for the [−1, 1] setting that ELU exhibited the best generalisation behaviour, not

deteriorating in Eg as Et approached zero. The classification errors reported in Table B.7

confirm this observation. For the [−10, 10] setting, the low error, high gradient cluster

generalised better than the high error, low gradient cluster for both ReLU and ELU. If

the cluster of steep gradients corresponds to the embedded minima comprised of fewer

contributing weights, then the steeper gradient solutions can be considered regularised,

which explains better generalisation performance.
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(a) TanH, micro, [−10, 10]

(b) ReLU, micro, [−10, 10]

(c) ELU, micro, [−10, 10]

Figure 8.8: L-g clouds for the micro gradient walks initialised in the [−10, 10] range for the

Iris problem.

8.2.3 Diabetes

Figure 8.11 shows the l-g clouds obtained for the Diabetes problem for the [−1, 1] micro

setting. The three activation functions yielded l-g clouds of a similar shape: gradient
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(a) TanH, macro, [−10, 10]

(b) ReLU, macro, [−10, 10]

(c) ELU, macro, [−10, 10]

Figure 8.9: L-g clouds for the macro gradient walks initialised in the [−10, 10] range for the

Iris problem.

walks descended to the general area around global minimum attractor, and then ex-

ploited that area. No disconnected local minima were found. The nstag and lstag values

in Table 8.3 confirm that the walks generally did not become stuck more than once.
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(a) TanH, micro, [−1, 1], Et < 0.05 (b) TanH, micro, [−10, 10], Et < 0.05

(c) ReLU, micro, [−1, 1], Et < 0.05 (d) ReLU, micro, [−10, 10], Et < 0.05

(e) ELU, micro, [−1, 1], Et < 0.05 (f) ELU, micro, [−10, 10], Et < 0.05

Figure 8.10: L-g clouds colourised according to the corresponding Eg values for the Iris

problem.

Thus, once again, the various activation functions did not introduce new minima. How-

ever, the curvature and width of the global minimum was affected by the activation

function choice. TanH exhibited convexity around the global minimum, but was other-

wise dominated by the saddle curvature. ReLU was dominated by the convex curvature,

with some saddle and indefinite curvature discovered around the global minimum. ReLU
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(a) TanH, micro, [−1, 1] (b) ELU, micro, [−1, 1]

(c) ReLU, micro, [−1, 1]

Figure 8.11: L-g clouds for the micro gradient walks initialised in the [−1, 1] range for the

Diabetes problem.

also exhibited steeper gradients and a wider range of error values than TanH, indicating

that ReLU yielded a steeper and more convex attraction basin. ELU exhibited saddle

curvature only, with the strongest gradients. Despite exhibiting the least convexity out

of the three activation functions, ELU yielded a highly searchable attraction basin with

no flat areas.

For the [−1, 1] macro setting, illustrated in Figure 8.12, ReLU was the only activation

function that exhibited convexity. Both TanH and ELU exhibited only saddle curvature.

The split into two clusters of steep and low gradients was again observed for the ELU

and ReLU activation functions. Indefinite Hessians were obtained for the steep gradient

cluster using the ReLU activation. Figure 8.13a shows that indefinite curvature was

associated with the largest degree of saturation for the [−1, 1] macro setting. Thus,
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Table 8.3: Basin of attraction estimates calculated for the Diabetes problem on the Et and

Eg walks. Standard deviation shown in parenthesis.

TanH ReLU ELU

Et nstag lstag nstag lstag nstag lstag

[−1, 1], 1.0000 955.0790 1.0000 957.6765 1.0000 964.2988

micro (0.0000) ( 10.3712) (0.0000) ( 7.0533) (0.0000) ( 5.1385)

[−1, 1], 1.0012 86.9463 1.0086 84.5179 1.0062 85.9068

macro (0.0351) ( 3.4553) (0.0926) ( 7.8686) (0.0928) ( 6.9681)

[−10, 10], 1.0000 957.5432 1.0000 961.3630 1.0000 961.7667

micro 0.0000) ( 6.0317) (0.0000) ( 5.0449) (0.0000) ( 5.1574)

[−10, 10], 1.0062 84.9864 1.0728 76.2551 1.0679 77.8084

macro (0.0783) ( 5.9030) (0.3234) ( 20.1278) (0.2705) (18.3192)

Eg nstag lstag nstag lstag nstag lstag

[−1, 1], 1.1296 921.4922 1.1111 941.5796 1.0136 961.5564

micro (0.7399) (145.2101) (1.0399) (109.9153) (0.2999) (40.5750)

[−1, 1], 1.2346 64.1361 1.0852 75.1210 1.0432 82.5895

macro (0.5061) (28.5435) (0.3427) ( 20.8204) (0.2208) (14.3887)

[−1, 1], 1.0074 943.7086 1.0000 959.9605 1.0000 961.1333

micro (0.0857) (44.1027) (0.0000) ( 5.7900) (0.0000) ( 6.1131)

[−1, 1], 1.0420 79.0010 1.1198 67.3222 1.0815 75.5739

macro (0.2066) (15.3752) (0.4088) (26.3781) (0.3116) (20.3869)

indefinite curvature associated with the narrow valleys once again indicates that the

narrow valleys correlate with neuron saturation.

Figure 8.14 illustrates the l-g clouds obtained for the [−10, 10] micro setting. When

observed at a larger scale, TanH exhibited a much smaller error range than ReLU and

ELU, indicating that ReLU and ELU generated steeper landscapes for the same ini-

tialisation range. ReLU again exhibited the most convexity out of the three activation

functions, and ELU exhibited the least convexity, and the most saddle curvature. The

split into steep and low gradient clusters is evident for ReLU and ELU, less so for TanH.
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(a) TanH, macro, [−1, 1] (b) ELU, macro, [−1, 1]

(c) ReLU, macro, [−1, 1]

Figure 8.12: L-g clouds for the macro gradient walks initialised in the [−1, 1] range for the

Diabetes problem.

This observation indicates that ReLU and ELU shared certain properties not present in

TanH. The clear split into two clusters is again explained by the presence of deep and

shallow valleys. Due to steeper gradients, the different valleys are more strongly man-

ifested in ReLU and ELU than in TanH. Interestingly, the indefinite points exhibited

by ReLU were present in both the steep and the shallow cluster for the [−10, 10] micro

setting. Figure 8.13 confirms that for this setting, indefinite points did not correspond

to higher saturation.

Similar behaviour can be observed for the macro [−10, 10] setting, illustrated in Fig-

ure 8.15. For large steps in the large initialisation range, ReLU still exhibited convexity,

as well as flatness. For the larger steps in the [−10, 10] range, TanH also exhibited the

split into two clusters. For both activation functions, indefinite curvature corresponded
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(a) ReLU, macro, [−1, 1] (b) ReLU, micro, [−10, 10]

(c) ReLU, macro, [−10, 10] (d) TanH, macro, [−10, 10]

Figure 8.13: Box plots illustrating the degree of saturation associated with the different

curvatures for the Diabetes problem.

to the steeper cluster. Figure 8.13 again shows that the indefinite points in the steep

cluster yielded higher degrees of saturation for both TanH and ReLU. Thus, the steep

gradient cluster solutions definitely correlated with neuron saturation.

The classification results in Table B.8 in Appendix B show that TanH yielded lower

errors than ReLU and ELU under the [−10, 10] setting, indicating that the TanH land-

scape was in fact more searchable using larger steps than the ReLU and ELU landscapes.

To evaluate the generalisation performance of the activation functions, l-g clouds

colourised according to the Eg values are shown in Figure 8.16. Table B.8 also sum-

marises the average classification errors obtained at the last step of the gradient walks.
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(a) TanH, micro, [−10, 10]

(b) ReLU, micro, [−10, 10]

(c) ELU, micro, [−10, 10]

Figure 8.14: L-g clouds for the micro gradient walks initialised in the [−10, 10] range for the

Diabetes problem.

Figure 8.16 shows for the [−1, 1] setting that ELU generalised the best out of the three

activation functions. The results in Table B.8 confirm this observation. For ELU, ex-

ploitation of the global optimum had the least negative effect on the final generalisation

performance, which indicates that ELU was resilient to overfitting. For the [−10, 10]
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(a) TanH, macro, [−10, 10]

(b) ReLU, macro, [−10, 10]

(c) ELU, macro, [−10, 10]

Figure 8.15: L-g clouds for the macro gradient walks initialised in the [−10, 10] range for the

Diabetes problem.

setting, both ReLU and ELU yielded error landscapes that were harder to exploit than

the TanH error landscape, causing poor final error. Table B.8 confirms that TanH consis-

tently yielded better training and test errors for the [−10, 10] walks. Thus, while ReLU

and ELU were more robust to overfitting, they were also more sensitive to the chosen
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(a) TanH, micro, [−1, 1], Et < 0.05 (b) TanH, micro, [−10, 10], Et < 0.05

(c) ReLU, micro, [−1, 1], Et < 0.05 (d) ReLU, micro, [−10, 10], Et < 0.05

(e) ELU, micro, [−1, 1], Et < 0.05 (f) ELU, micro, [−10, 10], Et < 0.05

Figure 8.16: L-g clouds colourised according to the corresponding Eg values for the Diabetes

problem.

step size and initialisation range.

8.2.4 Glass

Figures 8.17, 8.18, 8.19, and 8.20 show the l-g clouds obtained for the Glass problem

under various granularity settings. Similar to the Diabetes problem, all activation func-
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(a) TanH, micro, [−1, 1] (b) ELU, micro, [−1, 1]

(c) ReLU, micro, [−1, 1]

Figure 8.17: L-g clouds for the micro gradient walks initialised in the [−1, 1] range for the

Glass problem.

tions yielded convergence to the general area of the global minimum, and then exploited

that area. The results in Table 8.4 confirm for all activation functions that the walks

became stuck exactly once.

TanH exhibited convexity around the global minimum for the micro [−1, 1] walks,

and saddle curvature otherwise. An increase in the step size and initialisation range

yielded TanH to discover fewer convex points and more points of indefinite curvature,

as illustrated in Figures 8.18, 8.19, and 8.20. ELU exhibited no convexity at all, and an

increase in the step size and range increased the number of indefinite points discovered,

even though saddle curvature was still prevalent. ReLU once again exhibited convexity

for all scenarios considered, and the number of convex points gradually reduced with an

increase in the step size and initialisation range. For the [−10, 10] setting, shown in Fig-
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Table 8.4: Basin of attraction estimates calculated for the Glass problem on the Et and Eg

walks. Standard deviation shown in parenthesis.

TanH ReLU ELU

Et nstag lstag nstag lstag nstag lstag

[−1, 1], 1.0000 938.2247 1.0000 945.6920 1.0000 949.5280

micro 0.0000 5.8471 0.0000 6.9634 0.0000 4.7040

[−1, 1], 1.0000 85.7233 1.0000 86.4553 1.0000 86.8427

macro 0.0000 0.5878 0.0000 0.6282 0.0000 0.4582

[−10, 10], 1.0000 956.3840 1.0000 961.2947 1.0000 960.5373

micro 0.0000 4.9462 0.0000 3.5346 0.0000 3.6248

[−10, 10], 1.0000 86.8540 1.0000 87.5760 1.0000 87.5267

macro 0.0000 0.7398 0.0000 0.9523 0.0000 0.7080

Eg nstag lstag nstag lstag nstag lstag

[−1, 1], 1.0067 936.7922 1.1880 905.3526 1.0880 922.7396

micro 0.0892 39.4541 0.9943 162.1228 0.5332 123.1337

[−1, 1], 1.0020 86.1760 1.5913 50.9346 1.0000 87.1727

macro 0.0447 2.2831 0.8924 29.2926 0.0000 1.2983

[−10, 10], 1.0000 952.9680 1.0000 960.2427 1.0000 960.6493

micro 0.0000 7.3825 0.0000 4.1790 0.0000 4.3135

[−10, 10], 1.0000 86.8433 1.0013 87.1951 1.0027 86.9362

macro 0.0000 1.0348 0.0516 2.8150 0.0632 3.1805

ures 8.19 and 8.20, ReLU exhibited the most indefinite curvature compared to the other

two activation functions. As previously discussed, indefinite curvature is associated with

non-contributing weights, and is therefore attributed to the hard saturation exhibited

by ReLU.

The split into steep and low gradient clusters manifested across all settings, and be-

came more evident as the step size and initialisation range increased. Therefore, larger

step sizes and a wider initialisation range exaggerated the split into narrow and wide
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(a) TanH, macro, [−1, 1] (b) ELU, macro, [−1, 1]

(c) ReLU, macro, [−1, 1]

Figure 8.18: L-g clouds for the macro gradient walks initialised in the [−1, 1] range for the

Glass problem.

valleys. The two types of valleys clearly form a part of the global landscape structure.

The higher density of indefinite points associated with the narrow valleys (steep gradi-

ents) once again correlated with a high degree of saturation, as shown in Figure 8.21.

Thus, the narrow valleys were associated with saturated neurons.

The classification results in Table B.9 (Appendix B) show that the ELU activation

function yielded the best generalisation performance in three out of the four settings

considered, confirming the hypothesis that ELU yields loss surfaces that are resilient

to overfitting. Figure 8.22 shows the l-g clouds colourised according to the Eg values.

Exploitation of the global minimum with small steps was evidently detrimental for all

activation functions considered. For the larger steps, ReLU and ELU yielded high errors,

and struggled to exploit. Points of varied Eg values were sampled around the global
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(a) TanH, micro, [−10, 10]

(b) ReLU, micro, [−10, 10]

(c) ELU, micro, [−10, 10]

Figure 8.19: L-g clouds for the micro gradient walks initialised in the [−10, 10] range for the

Glass problem.

minimum attractor along the steeper gradient clusters, indicating that two points of

very similar Et values can have different Eg values. Indeed, non-contributing weights

can either be a result of saturation due to over-training, or of implicit regularisation due

to the discovery of embedded minima.
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(a) TanH, macro, [−10, 10]

(b) ReLU, macro, [−10, 10]

(c) ELU, macro, [−10, 10]

Figure 8.20: L-g clouds for the macro gradient walks initialised in the [−10, 10] range for the

Glass problem.

8.2.5 Cancer

Figures 8.23, 8.24, 8.25, and 8.26 show the l-g clouds obtained for the Cancer problem.

All activation functions yielded convergence to a single simple attractor at the global
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(a) TanH, macro, [−10, 10] (b) ReLU, macro, [−10, 10]

Figure 8.21: Box plots illustrating the degree of saturation associated with the different

curvatures for the Glass problem.

minimum. The results in Table 8.5 confirm for all activation functions that the walks

became stuck exactly once. The lstag values in Table 8.5 show that the walks converged

quickly and exploited the attractor for most of the steps. The Cancer problem is known

to be a trivial classification task, solvable with over 95% accuracy by NNs with a single

hidden layer [9]. The simplicity of the dataset clearly contributed to the simplicity of

the landscape.

Figures 8.23 and 8.24 show the l-g clouds for the [−1, 1] walks. ReLU was once again

the only activation function that exhibited convexity, and ELU was the only activation

function that did not exhibit any indefinite, or flat curvature. Under the macro setting,

the l-g clouds for TanH and ELU had a similar shape, as shown in Figure 8.24, although

ELU yielded much stronger gradients. ReLU exhibited a split into two clusters of steep

and shallow gradients around the global optimum attractor, with convex points associ-

ated with the shallow gradients. The results in Table B.10 (Appendix B) show that all

three activation functions yielded an accuracy score between 98% and 100% under all the

settings considered, confirming that the problem was very easy indeed. When sampled

with the [−1, 1] micro walk, all the activation functions resulted in 100% classification

accuracy on the training set.

Figures 8.25 and 8.26 show the l-g clouds obtained for the [−10, 10] walks. A larger



Chapter 8. Activation Functions 173

(a) TanH, micro, [−1, 1], Et < 0.05 (b) TanH, micro, [−10, 10], Et < 0.05

(c) ReLU, micro, [−1, 1], Et < 0.05 (d) ReLU, micro, [−10, 10], Et < 0.05

(e) ELU, micro, [−1, 1], Et < 0.05 (f) ELU, micro, [−10, 10], Et < 0.05

Figure 8.22: L-g clouds colourised according to the corresponding Eg values for the Glass

problem.

initialisation range resulted in all the activation functions producing points of indefinite

curvature. As before, points of indefinite curvature exhibited a correlation with the

degree of saturation, illustrated in Figure 8.27. According to Figure 8.27, TanH was

much more prone to saturation than ReLU. This behaviour is to be expected, since

ReLU is an unbounded function, and only saturates for negative values, while TanH is
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bounded. The split into steep and shallow gradient clusters around the origin manifested

for all three activation functions, and the steep gradient clusters were associated with a

higher density of indefinite, i.e. flat, points. Figure 8.26 shows that the split into clusters

became especially evident for TanH when sampled with the [−10, 10] macro walks. TanH

is a bounded activation function, prone to saturation when large weights are considered,

as illustrated in Figure 8.27. ReLU and ELU also exhibited the two-cluster split. Thus,

the presence of narrow and wide valleys was again confirmed to be a part of the global

landscape structure.

Figure 8.28 shows the l-g clouds colourised according to the Eg values. For the

[−10, 10] walks, points of high gradient and low error for TanH and ELU often yielded

good generalisation. This observation is attributed to the discovery of embedded minima,

(a) TanH, micro, [−1, 1] (b) ELU, micro, [−1, 1]

(c) ReLU, micro, [−1, 1]

Figure 8.23: L-g clouds for the micro gradient walks initialised in the [−1, 1] range for the

Cancer problem.
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Table 8.5: Basin of attraction estimates calculated for the Cancer problem on the Et and Eg

walks. Standard deviation shown in parenthesis.

TanH ReLU ELU

Et nstag lstag nstag lstag nstag lstag

[−1, 1], 1.0000 969.2556 1.0000 974.0112 1.0000 975.3938

micro (0.0000) (3.4917) (0.0000) (3.2969) (0.0000) (2.6956)

[−1, 1], 1.0000 87.9396 1.0003 87.7855 1.0012 87.7195

macro (0.0000) (0.2912) (0.0176) (2.0024) (0.0353) (2.6253)

[−10, 10], 1.0000 975.3991 1.0000 977.3551 1.0000 977.5683

micro (0.0000) (3.4372) (0.0000) (2.4727) (0.0000) (2.5137)

[−10, 10], 1.0003 87.5972 1.0022 86.6762 1.0019 87.0460

macro (0.0176) (1.7322) (0.0549) (5.3511) (0.0466) (4.4699)

Eg nstag lstag nstag lstag nstag lstag

[−1, 1], 1.2088 920.8136 1.5218 874.1151 1.8218 861.6208

micro (1.0886) (171.6435) (1.7495) (249.7582) (2.5779) (277.8866)

[−1, 1], 1.0044 87.1337 1.0112 86.8358 1.0617 82.0722

macro (0.0748) (4.6555) (0.1111) (7.0472) (0.2733) (16.6101)

[−10, 10], 3.3802 632.1400 1.2591 937.0848 1.0939 960.5525

micro (3.9069) (385.1825) (1.4125) (170.9971) (0.8247) (108.2192)

[−10, 10], 1.0106 86.2966 1.0695 79.7677 1.0503 80.9173

macro (0.1192) (7.7003) (0.3030) (18.9452) (0.2495) (17.5740)

i.e. implicit regularisation. For ReLU, however, the points of steeper gradients generally

exhibited poorer generalisation performance than the points of shallow gradients. For

all scenarios and all activation functions, generalisation deteriorated at the global mini-

mum. Table B.10 indicates that all activation functions exhibited similar generalisation

performance, and that the generalisation of ELU has indeed improved with increased

step size and initialisation range. Due to the simplicity of the dataset, the resulting

landscape was highly searchable, enabling good performance even with larger steps.

Previous studies have suggested that better generalisation performance is typically
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(a) TanH, macro, [−1, 1] (b) ELU, macro, [−1, 1]

(c) ReLU, macro, [−1, 1]

Figure 8.24: L-g clouds for the macro gradient walks initialised in the [−1, 1] range for the

Cancer problem.

observed in the wide valleys [21]. The results in this section suggest that the above

statement may not be universally applicable to all activation functions, and that for

the ELU activation, better generalisation performance can sometimes be obtained in

the more narrow valleys. Indeed, if narrow valleys correspond to the embedded, or

regularised minima, then finding the minima of the necessary steepness can lead to

implicit regularisation, and therefore better generalisation performance.

8.2.6 Heart

Figures 8.29, 8.30, and 8.31 show the l-g clouds obtained for the Heart problem. Conver-

gence to the general area of global minimum with subsequent exploitation of that area

was observed for all activation functions under all scenarios. The results in Table 8.6
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(a) TanH, micro, [−10, 10]

(b) ReLU, micro, [−10, 10]

(c) ELU, micro, [−10, 10]

Figure 8.25: L-g clouds for the micro gradient walks initialised in the [−10, 10] range for the

Cancer problem.

confirm that the walks have converged once for all activation functions considered, and

remained in the discovered basin for most of the steps.

Figure 8.29 shows for the [−1, 1] walks that all activation functions were dominated

by the saddle curvature. Only ReLU yielded a few indefinite points around the global
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(a) TanH, macro, [−10, 10]

(b) ReLU, macro, [−10, 10]

(c) ELU, macro, [−10, 10]

Figure 8.26: L-g clouds for the macro gradient walks initialised in the [−10, 10] range for the

Cancer problem.

minimum attractor. The prevalence of the saddle curvature is attributed to the relatively

high dimensionality of the problem [28].

The split into two clusters under the [−1, 1] setting was evident for all activation

functions, especially for ReLU and ELU, as shown in Figure 8.29. The steep gradient
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(a) TanH, micro, [−10, 10] (b) TanH, macro, [−10, 10]

(c) ReLU, micro, [−10, 10] (d) ReLU, macro, [−10, 10]

Figure 8.27: Box plots illustrating the degree of saturation associated with the different

curvatures for the Cancer problem.

cluster became progressively more dense for ReLU and ELU as the step and initialisa-

tion range increased. Thus, for ReLU and ELU, finer granularity favoured wider basins,

and coarser granularity favoured steeper, sharper basins. For TanH, the steeper basins

did not manifest strongly for the macro [−1, 1] and micro [−10, 10] scenarios, but were

clearly observable for the remaining two scenarios (micro [−1, 1] and macro [−10, 10]).

Figure 8.32 again illustrates that the indefinite points corresponded to points of higher

saturation for both TanH and ReLU. Further, Figure 8.33 shows the l-g clouds for TanH

and ReLU, colourised according to the estimated degree of saturation. For both acti-

vation functions, the steeper gradient cluster was clearly associated with the saturated
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(a) TanH, micro, [−1, 1], Et < 0.05 (b) TanH, micro, [−10, 10], Et < 0.05

(c) ReLU, micro, [−1, 1], Et < 0.05 (d) ReLU, micro, [−10, 10], Et < 0.05

(e) ELU, micro, [−1, 1], Et < 0.05 (f) ELU, micro, [−10, 10], Et < 0.05

Figure 8.28: L-g clouds colourised according to the corresponding Eg values for the Cancer

problem.

neurons.

According to the classification results presented in Table B.11, TanH achieved the

best generalisation performance under the scenarios in which the two-cluster split was

more evident. This observation again indicates that steep valleys can contain solutions

with good generalisation properties.
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Table 8.6: Basin of attraction estimates calculated for the Heart problem on the Et and Eg

walks. Standard deviation shown in parenthesis.

TanH ReLU ELU

Et nstag lstag nstag lstag nstag lstag

[−1, 1], 1.0000 954.2774 1.0000 967.9572 1.0000 969.4890

micro) (0.0000) ( 9.2356) (0.0000) ( 2.7861) (0.0000) ( 2.6436

[−1, 1], 1.0000 86.9760 1.0032 85.8949 1.0050 86.0182

macro) ( 0.0000) ( 0.9320) (0.0567) ( 5.6751) (0.0704) ( 6.6016

[−10, 10], 1.0000 960.0452 1.0000 967.3132 1.0000 967.6488

micro) (0.0000) ( 6.3670) (0.0000) ( 3.2789) (0.0000) ( 3.0297

[−10, 10], 1.0000 86.6836 1.0170 83.5893 1.0103 84.2049

macro 0.0000) ( 1.2558) (0.1423) ( 10.2744) (0.1144) ( 8.4039

Eg nstag lstag nstag lstag nstag lstag

[−1, 1], 2.4809 695.1029 1.0259 962.6718 1.0122 968.0473

micro 2.7620) (354.5025) (0.3175) ( 65.7118) (0.3034) ( 38.4338

[−1, 1], 1.3249 66.4177 1.0610 80.8311 1.0361 83.9103

macro 0.6306) ( 27.4676) (0.2736) ( 16.1697) (0.2170) ( 11.9992

[−10, 10], 1.0021 939.5545 1.0000 968.4547 1.0003 966.7501

micro (0.0453) ( 27.1684) (0.0000) ( 4.0867) (0.0172) ( 9.9001

[−10, 10], 1.0009 86.0808 1.0463 80.6070 1.0531 79.9146

macro (0.0296) ( 3.4324) (0.2352) ( 15.1674) (0.2525) ( 15.9264

According to Table B.11, both ReLU and ELU generalised the best under the [−1, 1]

setting, indicating once again that these activation functions yield loss surfaces that are

sensitive to the step size and initialisation range. Out of the three activation functions,

ELU generalised the best.

Figure 8.34 shows the l-g clouds colourised according to the Eg values. For the

[−1, 1] walks, all activation functions yielded deteriorating Eg values as Et approached

zero. However, the band of good solutions was noticeably wider for both ReLU and ELU
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(a) TanH, micro, [−1, 1] (b) TanH, macro, [−1, 1]

(c) ReLU, micro, [−1, 1] (d) ReLU, macro, [−1, 1]

(e) ELU, micro, [−1, 1] (f) ELU, macro, [−1, 1]

Figure 8.29: L-g clouds for the gradient walks initialised in the [−1, 1] range for the Heart

problem.

as compared to TanH, indicating that it was easier to find a good quality solution on

the ReLU and ELU loss surfaces. For the [−10, 10] initialisation range, the points of

the steepest gradient produced the best generalisation performance for ReLU and ELU,

confirming the hypothesis that steeper gradient cluster contains regularised minima.
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(a) TanH, micro, [−10, 10] (b) ReLU, micro, [−10, 10]

(c) ELU, micro, [−10, 10]

Figure 8.30: L-g clouds for the gradient walks initialised in the [−10, 10] range for the Heart

problem.

8.2.7 MNIST

Due to the high dimensionality of MNIST, Hessians were not calculated for this experi-

ment. The reader is referred to [114] for an empirical analysis of the Hessians associated

with the various NN architectures trained on the MNIST dataset.

Figures 8.35 and 8.36 show the l-g clouds colourised according to the Eg values,

obtained using the [−1, 1] and [−10, 10] initialisation ranges. Convergence to a single

global attractor is evident for all activation functions. The results in Table 8.7 show that

the walks generally did not become stuck more than twice. The nstag > 1 values indicate

that the MNIST error landscape was less trivial than the other problems considered, and

the micro walks initialised in the [−1, 1] range used half of the allocated steps to discover

the global attraction basin. The classification results in Table B.12 in Appendix B show
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(a) TanH, macro, [−10, 10]

(b) ReLU, macro, [−10, 10] (c) ELU, macro, [−10, 10]

Figure 8.31: L-g clouds for the gradient walks initialised in the [−10, 10] range for the Heart

problem.

that a training error above 90% was achieved by each activation function under at least

one of the scenarios, but the final generalisation performance generally did not exceed

60%. Out of the three activation functions considered, ELU once again yielded the most

consistent generalisation performance.

Figure 8.35 shows for the [−1, 1] interval that ReLU and ELU yielded much higher

gradients than TanH. The two-cluster split was evident for all activation functions. For

ReLU and ELU, the steep gradient cluster generally yielded poorer generalisation perfor-

mance than the shallow gradient cluster. This behaviour is especially evident for ReLU

under the macro setting, as shown in Figure 8.35d. The poor generalisation performance

of high gradient points is attributed to neuron saturation.

Figure 8.36 shows for the [−10, 10] range that TanH yielded an l-g cloud without a

well-formed structure. Low gradients and a noisy l-g cloud indicate that the TanH error
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(a) TanH, macro, [−10, 10] (b) ReLU, macro, [−10, 10]

Figure 8.32: Box plots illustrating the degree of saturation associated with the different

curvatures for the Heart problem.

(a) TanH, macro, [−10, 10] (b) ReLU, macro, [−10, 10]

Figure 8.33: L-g clouds for the macro gradient walks initialised in the [−10, 10] range for the

Heart problem, colourised according to the estimated saturation.

landscape was not very searchable under the [−10, 10] granularity setting. The results

in Table B.12 confirm that both the training and the generalisation accuracy were below

50% when sampled in this range. ReLU and ELU also deteriorated with the increased

step size and initialisation range, but not as drastically as TanH. The relative resilience

of ReLU and ELU to the step size is attributed to the high gradients generated by these

unbounded activation functions. ReLU and ELU evidently yielded a more searchable

landscape for the high-dimensional MNIST problem, which correlates with the current



Chapter 8. Activation Functions 186

(a) TanH, micro, [−1, 1], Et < 0.05 (b) TanH, micro, [−10, 10], Et < 0.05

(c) ReLU, micro, [−1, 1], Et < 0.05 (d) ReLU, micro, [−10, 10], Et < 0.05

(e) ELU, micro, [−1, 1], Et < 0.05 (f) ELU, micro, [−10, 10], Et < 0.05

Figure 8.34: L-g clouds colourised according to the corresponding Eg values for the Heart

problem.

deep NN learning insights [44, 117].

The split into two clusters became more pronounced for ReLU and ELU under the

[−10, 10] granularity setting, once again confirming the presence of narrow and wide

valleys in the landscape. For ELU, points of good Eg values were found in the steep

cluster, likely due to the embedded minima discovered. ReLU yielded higher Et and
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Eg values than ELU, confirming that the ELU error landscape was more resilient to

overfitting.

8.2.8 Softmax

As discussed in Section 2.5, the softmax function is often used in the output NN layer

for multinomial classification problems as an alternative to the sigmoid function. The

softmax function ties the outputs into a single probability distribution, which makes the

Table 8.7: Basin of attraction estimates calculated for the MNIST problem on the Et and Eg

walks. Standard deviation shown in parenthesis.

TanH ReLU ELU

Et nstag lstag nstag lstag nstag lstag

[−1, 1], 1.9275 518.7926 1.9556 524.0519 1.9206 522.2484

micro (0.3346) (135.0496) (0.7151) (141.0278) (0.2952) (131.3190)

[−1, 1], 1.0000 81.2046 1.0000 86.7389 1.0000 86.7957

macro (0.0000) (1.4440) (0.0000) (1.2807) (0.0000) (0.5139)

[−10, 10], 1.0000 930.5987 1.6019 779.6422 1.0000 968.7611

micro (0.0000) (5.9444) (1.2018) (283.3337) (0.0000) (2.0536)

[−10, 10], 1.0000 84.7876 1.0001 86.2568 1.0000 87.1465

macro (0.0000) (0.7833) (0.0079) (2.1953) (0.0000) (0.5617)

Eg nstag lstag nstag lstag nstag lstag

[−1, 1], 2.5455 406.9110 8.9498 124.9902 8.9515 123.3717

micro (1.0137) (149.8214) (4.1133) (89.5238) (4.3751) (116.0007)

[−1, 1], 1.0000 79.1788 1.1930 22.9150 1.3948 47.1115

macro (0.0000) (2.0895) (0.4445) (9.1853) (0.5980) (22.2410)

[−10, 10], 1.0000 918.5345 6.5518 84.1472 5.6886 453.8400

micro (0.0000) (7.9246) (1.6881) (28.7148) (5.7706) (381.7540)

[−10, 10], 1.0000 84.3475 1.0889 45.2955 1.4408 45.0293

macro (0.0000) (0.9705) (0.2990) (12.9575) (0.5790) (21.0153)
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(a) TanH, micro, [−1, 1] (b) TanH, macro, [−1, 1]

(c) ReLU, micro, [−1, 1] (d) ReLU, macro, [−1, 1]

(e) ELU, micro, [−1, 1] (f) ELU, macro, [−1, 1]

Figure 8.35: L-g clouds for the gradient walks initialised in the [−1, 1] range for the MNIST

problem.

classification results more interpretable [17, 69]. To study the influence of the softmax

function on the loss surfaces, the multinomial benchmark problems (Iris, Glass, and

MNIST) were considered with the softmax output neurons.
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(a) TanH, micro, [−10, 10] (b) TanH, macro, [−10, 10]

(c) ReLU, micro, [−10, 10] (d) ReLU, macro, [−10, 10]

(e) ELU, micro, [−10, 10] (f) ELU, macro, [−10, 10]

Figure 8.36: L-g clouds for the gradient walks initialised in the [−10, 10] range for the MNIST

problem.

Iris

Figure 8.37 shows the l-g clouds obtained for the Iris problem under the [−1, 1] micro

setting. Compared to the l-g clouds shown in Figure 8.5, the softmax function yielded
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(a) TanH, micro, [−1, 1]

(b) ReLU, micro, [−1, 1]

(c) ELU, micro, [−1, 1]

Figure 8.37: L-g clouds for the gradient walks initialised in the [−1, 1] range for the Iris

problem using softmax in the output layer.

l-g clouds of a similar shape, but different curvature. For all hidden neuron activation

functions, the number of convex points decreased, and the number of indefinite points

increased. Thus, compared to the sigmoid activation, softmax yielded more flatness
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and less convexity. Figures 8.5 and 8.37 also show that the softmax function resulted

in stronger gradients. Indeed, since softmax is a normalised exponential function, the

exponent is expected to produce stronger gradients. Stronger gradients are beneficial

to gradient-based algorithms such as backpropagation, which rely on the gradient mag-

nitude to traverse the search space. Reduced convexity is attributed to the fact that

individual outputs are combined into a single distribution, thus making individual out-

puts more dependent on one another. With the softmax function, changing the weights

leading into one output neuron will have an effect on the quality of the remaining output

neurons. Therefore, the output neuron weights can not be trained independently of one

another, making the problem less separable, and thus increasing the complexity of the

problem.

Similar behaviour was observed for the three remaining scenarios ([−1, 1] macro,

[−10, 10] micro and macro, not shown for brevity): softmax yielded l-g clouds of the

same shape as the ones yielded by sigmoid, but with stronger gradients, and with re-

duced convexity and an increased number of indefinite points. The classification results

presented in Table B.13 show that the gradient walks discovered points of good (> 80%)

classification performance across all scenarios, where smaller steps were associated with

better performance. Comparing these results to the sigmoid results in Table B.7, the

softmax results are somewhat inferior to the sigmoid results. Reduced convexity of the

softmax landscapes made the problem less searchable. Given the simplicity of the Iris

problem, combining the outputs into a single probability distribution did not introduce

a noticeable advantage, and only made the problem harder.

Glass

For the Glass problem, softmax also yielded l-g clouds of the same shape as shown in

Section 8.2.4, but with no convex points and more indefinite points for all activation

functions. Saddle curvature remained prevalent.

Figure 8.38 shows the l-g clouds for the Glass problem using softmax in the output

layer. Compared to the l-g clouds shown in Figure 8.22, the softmax l-g clouds are noisier,

with less well-defined structure. The global minimum attractor is wider, with stronger

gradients, and more variability in Eg values. For the [−1, 1] setting, deterioration of the
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Eg values at the global minimum can be observed. The classification results in Table B.14

show that softmax yielded higher classification accuracy values on the training set than

sigmoid (Table B.9). Thus, wider attraction basins with stronger gradients made the

softmax loss surface easier to search than the sigmoid loss surface. Therefore, softmax

is the preferable output activation choice for the Glass problem.

(a) TanH, micro, [−1, 1], Et < 0.05 (b) TanH, micro, [−10, 10], Et < 5

(c) ReLU, micro, [−1, 1], Et < 0.05 (d) ReLU, micro, [−10, 10], Et < 5

(e) ELU, micro, [−1, 1], Et < 0.05 (f) ELU, micro, [−10, 10], Et < 5

Figure 8.38: L-g clouds colourised according to the corresponding Eg values for the Glass

problem using softmax in the output layer.
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MNIST

Figures 8.39 and 8.40 show the l-g clouds obtained for the MNIST problem with the

softmax output neurons, colourised according to the Eg values. Figure 8.39 shows that

for all activation functions considered, the gradients yielded by softmax were stronger

than the gradients yielded by sigmoid (see Figure 8.35). The split into steep and shallow

gradient clusters also manifested stronger for ReLU and ELU when using the softmax

activation. Wide and narrow valleys are an inherent feature of the NN loss surfaces, and

the stronger gradients imposed by the softmax function have exaggerated this feature.

Figure 8.39 also illustrates that the shallow gradient cluster was associated with better

generalisation performance than the steep gradient cluster, and that the generalisation

performance at the global minimum was generally poor. The classification results re-

ported in Table B.15 show that all the activation functions performed better in terms

of both training and generalisation error with the softmax activation compared to the

sigmoid activation. The MNIST dataset is complex enough to take advantage of the

benefits offered by softmax.

Figure 8.40 shows under the [−10, 10] setting that the l-g cloud shapes were similar to

the l-g clouds obtained for the sigmoid activation function, but the gradients once again

were much stronger. For ReLU and ELU, the steep gradient attractor was heavier than

the shallow gradient attractor, indicating that the loss surface was harder to search under

this granularity setting. The classification results in Tables B.12 and B.15 confirm that

sigmoid yielded better classification errors on the training dataset under the [−10, 10]

setting. Thus, softmax made the error landscape more searchable for fine granularity

walks, but made the problem harder when considered on a larger scale. This observation

once again highlights the sensitivity of ReLU and ELU to the initialisation range and

step size.

8.3 Ruggedness, Gradients, Neutrality

The ruggedness, gradients, and neutrality metrics, as discussed in Section 3.4, were calcu-

lated for all problems to gain more insight into the fitness landscape properties associated

with the various activation functions. The magnitudes of the numerical gradients were
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(a) TanH, micro, [−1, 1] (b) TanH, macro, [−1, 1]

(c) ReLU, micro, [−1, 1] (d) ReLU, macro, [−1, 1]

(e) ELU, micro, [−1, 1] (f) ELU, macro, [−1, 1]

Figure 8.39: L-g clouds for the gradient walks initialised in the [−1, 1] range for the MNIST

problem using softmax in the output layer.

used instead of gradient estimates.

Figures 8.41 and 8.42 show for all activation functions that the FEM values for

the micro setting were generally smaller than the FEM values for the macro setting,
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(a) TanH, micro, [−10, 10] (b) TanH, macro, [−10, 10]

(c) ReLU, micro, [−10, 10] (d) ReLU, macro, [−10, 10]

(e) ELU, micro, [−10, 10] (f) ELU, macro, [−10, 10]

Figure 8.40: L-g clouds for the gradient walks initialised in the [−10, 10] range for the MNIST

problem using softmax in the output layer.

irrespective of the initialisation range. The macro [−1, 1] and micro [−10, 10] setting used

the same maximum step size (0.2, corresponding to 10% of the first interval and 1% of the

second interval), yet yielded different FEM values on all problems considered. Since high
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FEM is associated with oscillating behaviour, a smaller FEM for the larger initialisation

range indicates that fewer oscillations were observed using the same maximum step size.

Therefore, the attraction basins widened as the initialisation range increased. Thus,

if a step size related parameter such as the learning rate is optimised for a particular

initialisation interval, the same parameter is likely to yield suboptimal performance if

applied on a different initialisation range.

Ruggedness under the micro [−1, 1] range was similar for the three activation func-

tions on all problems except for XOR. However, both ReLU and ELU generally exhibited

higher ruggedness than TanH for the macro [−1, 1] and micro [−10, 10] settings. This

observation confirms that ReLU and ELU were more sensitive to the initialisation range,

and became less searchable as the initialisation range increased. For the macro [−10, 10]

setting, TanH exhibited higher FEM than ReLU and ELU on most problems. This be-

haviour is attributed to the saturation exhibited by TanH under the coarse granularity

setting. Saturation is associated with narrow valleys, which cause oscillations, and thus

high FEM values.

Figures 8.41 and 8.42 show that the gradients steadily increased for all activation

functions as the step size and the initialisation range increased. The TanH error land-

scape gradients were consistently smaller than ReLU and ELU gradients for all problems

considered, indicating that the ReLU and ELU landscapes contained more information

to guide a gradient-based search. Figures 8.41 and 8.42 show for ReLU and ELU that

Gdev was larger than Gavg for the XOR, Iris, and Cancer problems, i.e. the easiest

problems considered in this study. Problems of higher dimensionality and/or higher

complexity, such as Glass and MNIST, yielded Gavg > Gdev, i.e. more consistent gra-

dients. Malan [81] made an observation that Gdev >> Gavg is indicative of step-like,

sudden changes in the landscape. According to this observation, and results shown in

Figures 8.41 and 8.42, more complex problems yielded simpler gradient walk trajectories,

with fewer sudden jumps. This corresponds to the previously made observations that

high-dimensional NNs may in fact be easier to optimise than low-dimensional NNs, due

to the prevalence of saddle points and other mathematical properties of high-dimensional

spaces [28, 33].

Figure 8.43 shows the neutrality measures obtained for the seven benchmark prob-
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lems. Once again, no strict neutrality was observed for most problems. The only

two problems that exhibited neutrality were Cancer (micro setting) and MNIST (mi-

cro [−1, 1] setting). Since gradient walks were used for sampling, neutrality is attributed

to convergence to a basin of attraction. Figure 8.42 shows that Cancer and MNIST ex-

hibited low FEM under the settings where neutrality was observed. Thus, the gradient

walks discovered attraction basins, and then exploited them with little to no oscillations.

Finally, Figures 8.44 and 8.45 show the FLA measures obtained for the Iris, Glass,

and MNIST problems using softmax output units. For Glass and MNIST, higher FEM

values were obtained using the softmax activation. Higher gradients were obtained for

Iris, Glass, and MNIST. Higher FEM is attributed to steeper and narrower valleys

yielded by the softmax activation, resulting in stronger oscillations. MNIST yielded less

neutrality with softmax, as shown in Figure 8.45, and Iris resulted in neutrality for the

[−10, 10] micro setting. The same setting corresponded to low FEM values, indicating

that the gradient walks exploited attraction basins with little to no oscillations.

8.4 Conclusions

This chapter analysed the effect of five different activation functions on the resulting NN

error landscapes. TanH, ReLU, and ELU were considered in the hidden layer. Sigmoid

and softmax were considered in the output layer. All experiments were conducted under

four granularity settings, namely, micro and macro walks using the [−1, 1] and [−10, 10]

initialisation ranges.

The choice of activation function did not have an effect on the total number of

attractors in the search space, but affected the properties of the discovered basins of

attraction. ReLU and ELU yielded steeper attraction basins with stronger gradients than

TanH. ReLU exhibited the most convexity out of the activation functions considered,

and ELU exhibited the least flatness. The stationary points exhibited by ReLU and

ELU were generally more connected than the ones exhibited by TanH, indicating that

ReLU and ELU yielded more searchable landscapes. However, ReLU and ELU exhibited

stronger sensitivity to the step size and the initialisation range than TanH.

All activation functions exhibited a split into two clusters of steep and shallow gra-
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dients. The steep gradient cluster was associated with indefinite, i.e. flat curvature on a

selection of problems, caused by inactive, or non-contributing weights. The steep gradi-

ent cluster was also often associated with poor generalisation performance. Thus, steep

gradients were attributed to narrow valleys, which were associated with saturated neu-

rons. In individual cases, points of high generalisation performance were discovered in

the steep gradient clusters. These were attributed to the embedded regularised minima.

Out of the three activation functions considered in the hidden layer, ELU consistently

exhibited superior generalisation performance. Thus, the loss surface yielded by the ELU

activation function was the most resilient to overfitting.

Softmax in the output layer was shown to reduce the convexity of the problem by

introducing a higher degree of non-separability. Only the problems of higher dimensional-

ity and complexity were shown to benefit from the softmax activation function. Softmax

yielded wider attraction basins with stronger gradients, resulting in more searchable

landscapes when considered on a fine granularity scale.

The next chapter considers the effect of the NN architecture parameters on the re-

sulting NN loss surfaces.
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Figure 8.41: FLA metrics for the XOR, Iris, Diabetes, and Glass problems.
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Figure 8.42: FLA metrics for the Heart, Cancer, and MNIST problems.
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Figure 8.43: Neutrality metrics for the various problems considered.
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(f) MNIST, gradients

Figure 8.44: FLA metrics for the Iris, Glass, and MNIST problems using softmax output

neurons.
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Figure 8.45: Neutrality metrics for Iris, Glass, and MNIST problems using softmax output

neurons.
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Neural Network Architectures

NN performance is known to depend on the chosen NN architecture, i.e. the number

of neurons, hidden layers, and the structure of connections [8, 54, 55, 70, 146]. A NN

with too few trainable parameters will not be able to fit complex non-linear data, and a

NN with an excessive number of trainable parameters was argued to be prone to overfit-

ting [146]. However, empirical studies have also been published where excessively large,

i.e. over-parametrised NNs were shown to not be as prone to overfitting as expected [82].

In fact, Caruana et al. [20] provided empirical evidence that the generalisation perfor-

mance does not deteriorate due to over-parametrisation. Indeed, if the excessive weights

of an over-parametrised NN architecture are set to zero by the training algorithm, the

NN can be regularised implicitly. An important question to answer is how easily can

an optimisation algorithm discover such implicitly regularised solutions. Analysis of the

fitness landscapes associated with different architectures can provide some answers.

Kordos and Duch [68] studied the loss surfaces of feed-forward NNs with a varied

number of hidden neurons and hidden layers using the PCA projections. NN error

landscapes were reported to increase in complexity as more hidden layers were added to

the architecture. NNs with more than one hidden layer were shown to contain multiple

high-laying plateaus. Under-parametrisation, i.e. too few hidden neurons, induced a

flat landscape without the ravines and valleys characteristic of NN error landscapes.

A gradual increase in the number of hidden neurons lead to an initial increase in the

number of global minima visible on the PCA projections. However, the landscape visibly

204
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flattened as more redundant weights were added to the architecture [68].

Similarly, Sagun et al. [114] performed a Hessian matrix analysis of over-parametrised

NNs, and showed that an increase in the dimensionality of the search space due to the

addition of hidden neurons yielded an increase in the number of near-zero eigenvalues

of the Hessian, i.e. increased flatness. The same authors observed that no high error

local minima were detected when the NN architecture was over-parametrised [115]. The-

oretical studies have also been published showing that over-parametrised models do not

exhibit high error local minima [6, 74]. In fact, recent studies claim that adding an

excessively large hidden layer (larger than the number of training points in the dataset)

guarantees that almost all local minima will be globally optimal [100]. This correlates

with an earlier study by Gallagher [38], where the FDC measure was used to estimate

the searchability of NN error landscapes of varied dimensionality, and the increase in the

number of inputs and hidden neurons consistently yielded higher searchability scores.

This chapter aims to investigate NN loss surfaces under various NN architecture

settings using the FLA techniques. The rest of the chapter is structured as follows:

Section 9.1 discusses the experimental procedure. Section 9.2 presents a visual and nu-

merical analysis of stationary points and basins of attraction associated with the various

NN architectures. Section 9.3 presents FLA measures of gradients, ruggedness, and

neutrality associated with the various architectures. Section 9.4 concludes the chapter.

9.1 Experimental Procedure

The aim of this study is to visually and numerically investigate the local minima and

basins of attraction exhibited by a representative set of NN architectures. This section

discusses the experimental set-up of the study, and is structured as follows: Section 9.1.1

lists the benchmark problems used, Section 9.1.2 describes the NN hyperparameters and

architectures considered in this study, and Section 9.1.3 outlines the sampling algorithm

parameters.
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9.1.1 Benchmark problems

For the purpose of this study, seven classification problems described in Appendix A

were used, namely XOR, Iris, Diabetes, Glass, Cancer, Heart, and MNIST.

9.1.2 Architectures

All experiments employed feed-forward NNs with the ELU activation function in the

hidden layers. The ELU activation function was chosen based on the findings presented

in Chapter 8, where ELU was shown to exhibit superior generalisation properties. For

the binary classification problems, the sigmoid function was used in the output layer.

For the multinomial classification problems, the softmax activation function was used in

the output layer. The output activation function choices are again based on the findings

presented in Chapter 8. The entropic loss was chosen based on the findings presented

in Chapter 7, where CE was shown to produce more searchable landscapes with fewer

local minima.

To study the influence of the number of hidden neurons on the NN error surfaces,

each problem was considered with h minimal number of hidden neurons (specified in

Appendix A), with twice as many hidden neurons as prescribed by the minimal architec-

ture (2× h), and with ten times as many hidden neurons (10× h). These settings were

chosen to simulate a minor increase in the number of hidden neurons (2× h), as well as

a more substantial increase corresponding to the next order of magnitude (10× h).

To study the influence of the number of hidden layers on the NN error surfaces, 1,

2, and 3 hidden layers were considered for each hidden layer size as discussed in the

preceding paragraph. The same number of hidden neurons was used for each successive

hidden layer.

9.1.3 Sampling parameters

The same sampling parameters as discussed in Section 7.2.3 were used for the exper-

iments. Progressive gradient walks (refer to Section 6.1.1) were used for the purpose

of sampling. The total number of walks was set to be 2 × m, where m is the dimen-

sionality of the search space. The walks were unbounded, but two distinct initialisation
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ranges were considered, namely [−1, 1] and [−10, 10]. Two granularity settings were

used throughout the experiments: micro, where the maximum step size was set to 1%

of the initialisation range, and macro, where the maximum step size was set to 10% of

the initialisation range. Micro walks performed 1000 steps each, and macro walks per-

formed 100 steps each. All datasets except XOR were split into 80% training and 20%

test subsets. To calculate the training (Et) and the generalisation (Eg) errors, the entire

train/test subsets were used for all the problems except MNIST. For MNIST, random

batches of 100 patterns were sampled from the respective training and test sets. The

same data subsets were used to calculate the average classification accuracy obtained

by the last step of the gradient walks. The classification accuracy of the training set

is further referred to as Ct, and the classification accuracy of the generalisation set is

referred to as Cg.

9.2 Empirical Study of Modality

This section presents an analysis of apparent local minima and the corresponding basins

of attraction as captured by the progressive gradient walks for the various NN architec-

tures. L-g clouds, proposed in Chapter 6, are employed for the purpose of this study.

Sections 9.2.1 to 9.2.7 present the analysis of the various NN architectures for each

problem.

9.2.1 XOR

Figure 9.1 summarises the curvature information obtained for the different architectures

and sampling settings considered. Each bar in the plot corresponds to a distinct gran-

ularity setting, and is colourised proportionally to the curvature of the sampled points.

The plots are grouped horizontally according to the total number of hidden neurons

(h, 2 × h, and 10 × h), and vertically according to the total number of hidden layers

(1, 2, and 3). Curvature information was obtained by calculating the eigenvalues of the

Hessian for each sampled point.

According to Figure 9.1, an increase in the hidden layer size caused a reduction

in convexity and an increase in flatness (singular Hessians). Indeed, the addition of
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Figure 9.1: Histogram representation of the curvature information sampled by the gradient

walks for the XOR problem for various NN architecture settings.

extra neurons to a minimal architecture introduces unnecessary, or redundant weights.

Since more compact solutions, i.e. solutions with fewer weights, are embedded in over-

parametrised architectures [86], the discovery of such solutions will cause the unnecessary

neurons to be disabled, thus introducing flatness.

Figure 9.1 shows that an increase in the number of hidden layers had a similar effect:
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Convexity decreased, and flatness increased. In fact, according to Figure 9.1, an increase

in the number of hidden layers increased the flatness more rapidly than an increase in

the hidden layer size. The rapid increase in flatness associated with deeper architectures

is attributed to the inter-dependent variable structure of feed-forward NNs. Since each

layer propagates the signals to the next layer, each layer has the ability to set the

incoming signals to zero. In other words, if a neuron in a later layer saturates, the effects

of saturation will influence the contribution of the weights in all preceding layers.

Out of the four granularity settings, macro walks initialised in the [−1, 1] interval

yielded the least amount of flatness for most architecture settings considered. This

observation indicates that the choice of the initialisation interval and the step size are

important parameters to optimise for a NN training algorithm.

An increase in flatness due to an increase in dimensionality, whether by adding extra

neurons, or by adding extra layers, agrees with the findings of Sagun et al. [114], where

Hessian analysis of over-parametrised NNs was performed. A question that remains

to be answered is whether the modality of the NN error surface changes when hidden

neurons/hidden layers are added, and whether the effect of adding hidden neurons differs

from the effect of adding hidden layers.

The effect of hidden neurons

Figure 9.2 shows the l-g clouds obtained for the single hidden layer architectures with a

different number of hidden neurons. Figure 9.2 clearly shows that the number of convex

attractors, i.e. local minima, reduced as more hidden neurons were added. For h = 2,

four attractors, three of them constituting local minima, were observed (Figure 9.2a).

For h = 4, only three attractors were detected, two of them constituting local minima

(Figure 9.2b). Finally, for h = 20, two non-convex attractors were observed, thus local

minima were eliminated altogether (Figure 9.2c).

Figure 9.3 shows the l-g clouds obtained for the 2-hidden layer architectures with a

different number of hidden neurons. The same trend is evident: The number of attrac-

tors decreased as more hidden neurons were added. Figure 9.3c also indicates that the

addition of the excessive neurons yielded a split into two clusters, namely the high gra-

dient cluster associated with flat curvature in individual dimensions, and a low gradient
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(a) h = 2, micro, [−1, 1]

(b) 2× h = 4, micro, [−1, 1]

(c) 10× h = 20, micro, [−1, 1]

Figure 9.2: L-g clouds for the micro gradient walks initialised in the [−1, 1] range for the

XOR problem for the various number of hidden neurons in a single hidden layer.
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(a) h = 2, micro, [−1, 1]

(b) 2× h = 4, micro, [−1, 1]

(c) 10× h = 20, micro, [−1, 1]

Figure 9.3: L-g clouds for the micro gradient walks initialised in the [−1, 1] range for the

XOR problem for the various number of hidden neurons in two consecutive hidden layers.
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cluster of saddle curvature. In a 2 × 20 × 20 × 1 feed-forward architecture used for the

XOR problem, a large number of neurons can be safely disabled without damaging the

quality of the model, since the optimal architecture for XOR is 2×2×1. Therefore, these

unnecessary neurons contribute to the flatness of the resulting NN loss surface. Thus,

as previously discussed in Chapter 8, steep gradient clusters, associated with narrow

valleys, contain embedded, or implicitly regularised solutions.

Thus, an increase in the number of hidden neurons yielded a decrease in the number

of convex attractors for the XOR problem, and thus reduced the number of local minima.

This observation correlates with the recent study of Nguyen and Hein [100], where using

more hidden neurons than the number of training points in the dataset was theoretically

shown to guarantee that almost all local minima would be globally optimal.

The effect of hidden layers

Figure 9.4 shows the l-g clouds obtained for the [−1, 1] macro walks executed on the

loss surface yielded by a NN architecture with a varied number of hidden layers (1, 2,

and 3) and two hidden neurons per layer. Figure 9.4a shows that four stationary convex

attractors were discovered for the single hidden layer architecture, three of them consti-

tuting local minima. The addition of the second hidden layer (Figure 9.4b) decreased

the convexity and increased the flatness around the attractors, but the total number of

attractors remained the same. The addition of the third hidden layer (Figure 9.4c) also

yielded exactly four zero-gradient attractors. Thus, the number of hidden layers did not

change the modality of the landscape for the XOR problem, i.e. the number of attractors

of a unique error value remained the same. Figure 9.5 shows that the same behaviour

was observed for the architectures with four hidden neurons per layer: For the various

number of hidden layers, exactly two attractors were observed.

Even though the number of attractors was not altered by the number of hidden

layers, the properties of the said attractors changed with a change in the architecture

depth. In addition to the decreased convexity and increased flatness, a drastic increase

in the gradient magnitudes was observed for deeper architectures. Figures 9.4 and 9.5

show that each new layer increased the maximum gradient by an order of magnitude.

Figures 9.2 and 9.3 show that the addition of more hidden neurons also caused an
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(a) 1 hidden layer, macro, [−1, 1]

(b) 2 hidden layers, macro, [−1, 1]

(c) 3 hidden layers, macro, [−1, 1]

Figure 9.4: L-g clouds for the macro gradient walks initialised in the [−1, 1] range for the

XOR problem for the various number of hidden layers, with h = 2 for each layer.

increase in the gradient magnitudes, but not as drastic, especially for the single hidden

layer architecture. The range of the error values also increased rapidly for each new layer

added.
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(a) 1 hidden layer, macro, [−1, 1]

(b) 2 hidden layers, macro, [−1, 1]

(c) 3 hidden layers, macro, [−1, 1]

Figure 9.5: L-g clouds for the macro gradient walks initialised in the [−1, 1] range for the

XOR problem for the various number of hidden layers, with h = 4 for each layer.

Table 9.1 reports the nstag and lstag values calculated for all architectures under the

four granularity settings. The nstag values consistently decreased as the hidden layer size

increased from h to 10×h, confirming that the number of attractors decreased. The same
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Table 9.1: Basin of attraction estimates calculated for the XOR problem for the various NN

architectures. Standard deviation is shown in parenthesis.

h = 2 2× h = 4 10× h = 20

nstag lstag nstag lstag nstag lstag

1
h
id

d
en

layer

[−1, 1], 1.7000 492.9157 1.4059 614.9676 1.0025 884.4772

micro (0.5467) (210.9447) (0.4911) (187.0502) (0.0496) ( 36.3527)

[−1, 1], 1.1778 47.8111 1.1471 51.3588 1.0840 19.5437

macro (0.3823) ( 18.3239) (0.3542) ( 15.7978) (0.6269) ( 16.9338)

[−10, 10], 1.0889 919.2556 1.0412 946.8176 1.3431 879.8992

micro (0.3542) (135.3812) (0.2735) ( 91.5106) (1.0337) (231.6628)

[−10, 10], 1.0889 69.0389 1.0588 56.5343 1.0329 19.0548

macro (0.3542) ( 22.8096) (0.4564) ( 28.4734) (0.7276) ( 20.1805)

[−1, 1], 1.7333 526.2489 1.1838 799.7351 1.4380 781.4364

2
h
id

d
en

layers

micro (0.4989) (187.4153) (0.3873) (169.7235) (0.7723) (264.8623)

[−1, 1], 1.2267 47.5533 1.0973 62.7447 1.0833 63.4931

macro (0.4781) ( 19.4510) (0.4175) ( 17.3743) (0.2764) ( 14.0827)

[−10, 10], 4.0800 447.2633 6.2857 118.2072 7.8147 77.8347

micro (3.3337) (380.1790) (2.8891) (104.0755) (3.2646) ( 97.9395)

[−10, 10], 1.2267 56.3944 1.1739 49.9106 1.3822 30.7981

macro (0.5790) ( 26.4186) (0.4490) ( 23.4397) (0.6021) ( 15.5443)

[−1, 1], 1.8952 523.5546 1.3491 787.2199 5.4840 151.4570

3
h
id

d
en

layers

micro (0.7675) (199.3711) (0.7297) (225.9290) (1.8892) (102.6854)

[−1, 1], 1.4000 49.2786 1.2474 56.9088 1.1341 56.0215

macro (0.6561) ( 24.5483) (0.5836) ( 21.9462) (0.3479) ( 16.2139)

[−10, 10], 4.7524 328.1548 5.6135 152.2001 7.1316 103.3774

micro (3.1556) (329.2022) (3.1569) (161.8085) (2.3415) ( 68.1521)

[−10, 10], 1.3143 51.0778 1.2456 53.4804 1.2727 49.0455

macro (0.5906) ( 22.2077) (0.5645) ( 21.7501) (0.4454) ( 19.2713)
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cannot be said about the number of hidden layers: The nstag values did not decrease,

and in some cases even increased as more hidden layers were added. In particular, the

(a) 1 hidden layer, micro, [−10, 10]

(b) 2 hidden layers, micro, [−10, 10]

(c) 3 hidden layers, micro, [−10, 10]

Figure 9.6: L-g clouds for the micro gradient walks initialised in the [−10, 10] range for the

XOR problem for the various number of hidden layers, with h = 20 for each layer.
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[−10, 10] micro setting yielded high nstag values for 2 and 3 hidden layer architectures.

To better understand this behaviour, l-g clouds were generated for the [−10, 10] micro

walks performed on NN architectures with 10×h hidden neurons, for the various number

of hidden layers (see Figure 9.6). Figure 9.6a shows that horizontal clusters of consis-

tent gradients were detected in the vertical cluster of steep gradients. If these clusters

correspond to valleys of varied steepness, then high nstag values indicate that transition

between various valleys was possible. For all scenarios shown in Figure 9.6, a high degree

of flatness was observed. As the number of layers increased, the steep gradient cluster

became wider. The high number of stagnation points identified by the nstag values is

thus attributed to the increased flatness of the landscape.

The lstag values reported in Table 9.1 also indicate that the average length of the

stagnation areas shrunk as the number of layers increased. Thus, more oscillations

were observed for deeper architectures, and convergence to a basin of attraction became

harder. The lstag values associated with different hidden layer sizes indicate that the

addition of more neurons, especially for shallower NNs, reduced oscillations, and made

convergence easier (larger lstag values corresponded to larger hidden layer sizes).

9.2.2 Iris

Figure 9.7 summarises the curvature information obtained for the different architectures

and sampling settings considered for the Iris problem. Similarly to XOR, an increase in

either the hidden layer size, or the number of hidden layers, yielded increased landscape

flatness, corresponding to the findings of Sagun et al. [114]. The larger initialisation

interval yielded stronger flatness than the smaller initialisation interval. The [−1, 1]

macro setting yielded the least amount of flatness, once again. The effect of the hidden

layer sizes and the number of hidden layers on the modality of the NN loss surfaces is

analysed below.

The effect of hidden neurons

Figure 9.8 shows the l-g clouds obtained using the [−1, 1] macro walks for the single

hidden layer NN architectures with a varied hidden layer size. The minimal architecture

exhibited the split into higher and lower gradient clusters (see Figure 9.8a). As the
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Figure 9.7: Histogram representation of the curvature information sampled by the gradient

walks for the Iris problem for various NN architecture settings.

number of hidden neurons increased, the steep gradient cluster became more prominent

(see Figure 9.8b). Increasing the size of the hidden layer by an order of magnitude

caused the low gradient cluster to completely disappear (see Figure 9.8c). Thus, the

total number of differently shaped attractors reduced with an increase of the hidden

layer size. The lstag values reported in Table 9.2 confirm that for the single hidden layer
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(a) h = 4, macro, [−1, 1]

(b) 2× h = 8, macro, [−1, 1]

(c) 10× h = 40, macro, [−1, 1]

Figure 9.8: L-g clouds for the macro gradient walks initialised in the [−1, 1] range for the Iris

problem for the various number of hidden neurons in a single hidden layer.

architectures, convergence to an attractor became more rapid as the hidden layer size

increased.
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Table 9.2: Basin of attraction estimates calculated for the Iris problem for the various NN

architectures. Standard deviation is shown in parenthesis.

h = 4 2× h = 8 10× h = 40

nstag lstag nstag lstag nstag lstag

1
h
id

d
en

layer

[−1, 1], 1.0000 934.5486 1.0000 956.5746 1.0000 979.9737

micro (0.0000) (13.2580) (0.0000) (7.5175) (0.0000) (1.6723)

[−1, 1], 1.0057 84.3229 1.0075 84.4291 1.0805 61.7025

macro (0.0754) (5.7889) (0.0861) (8.4820) (0.3471) (27.0304)

[−10, 10], 1.0000 967.6429 1.0000 971.3284 1.0062 977.9724

micro (0.0000) (6.8482) (0.0000) (5.6407) (0.0962) (38.7116)

[−10, 10], 1.0514 78.5826 1.1269 70.7127 1.1039 65.0911

macro (0.3255) (19.1828) (0.3545) (24.3757) (0.3628) (25.4561)

[−1, 1], 1.0000 942.1727 1.0000 969.5504 1.1151 931.5000

2
h
id

d
en

layers

micro (0.0000) (10.6863) (0.0000) (5.1211) (0.3993) (163.3820)

[−1, 1], 1.0636 76.5030 1.1007 71.6553 1.1009 65.0349

macro (0.2789) (17.0037) (0.3240) (21.2979) (0.3363) (19.3961)

[−10, 10], 1.0273 966.2295 1.0000 976.1195 1.3489 903.2885

micro (0.2847) (73.6320) (0.0000) (4.7789) (1.3698) (217.5959)

[−10, 10], 1.1455 67.7030 1.1685 66.4667 1.0769 65.2900

macro (0.4008) (22.8917) (0.4539) (22.5405) (0.2985) (17.2733)

[−1, 1], 1.0000 947.6133 1.0000 975.3128 2.0556 646.9148

3
h
id

d
en

layers

micro (0.0000) (11.2504) (0.0000) (4.8822) (1.2681) (336.3288)

[−1, 1], 1.2200 59.2778 1.2180 57.0990 1.2824 45.9907

macro (0.4453) (23.4992) (0.5104) (24.3973) (0.5717) (21.9762)

[−10, 10], 1.6067 853.5418 1.4837 827.4204 8.4442 88.6369

micro (1.9558) (269.8470) (1.1106) (270.1939) (2.9457) (52.0628)

[−10, 10], 1.4667 50.5856 1.4416 49.3801 1.4466 44.7563

macro (0.7087) (22.4714) (0.6505) (21.0175) (0.6224) (17.8009)
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(a) h = 4, micro, [−1, 1]

(b) 2× h = 8, micro, [−1, 1]

(c) 10× h = 40, micro, [−1, 1]

Figure 9.9: L-g clouds for the micro gradient walks initialised in the [−1, 1] range for the Iris

problem for the various number of hidden neurons in two consecutive hidden layers.

The same trend is illustrated in Figure 9.9, where the l-g clouds obtained by the [−1, 1]

micro walks for the 2-hidden layer NN architectures are shown. The steep gradient cluster
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became more and more prominent as the hidden layer size increased, and the low-error

attractors associated with the shallow gradient cluster became smoother. An increase in

the hidden layer size added unnecessary parameters to the architecture, thus the number

of solutions with a proportion of the disabled neurons increased for larger hidden layers.

Thus, the addition of more neurons simplified the loss surface for the Iris problem

by creating a simpler attractor. The increased amount of flatness associated with the

steep gradient clusters confirms the hypothesis that embedded minima corresponding to

smaller architectures were discovered.

Table B.16 in Appendix B shows the average classification accuracy obtained for the

training and generalisation sets for the various granularity settings and architectures.

According to Table B.16, an increase in the hidden layer size improved the training

accuracy, and yielded increased overfitting (Ct > Cg) for most micro granularity settings.

Excessive NN architectures were argued to be prone to overfitting in the past [146], and

the results presented in Table B.16 confirm this hypothesis. However, the tendency to

overfit was clearly dependent on the chosen step size: For the [−1, 1] macro setting, Cg >

Ct was obtained in multiple cases, thus indicating no overfitting. Figure 9.10 shows the l-

g clouds colourised according to the Eg values for the single hidden layer NN architectures

of varied hidden layer size. Deterioration of the generalisation quality around the global

minimum attractor associated with the increased hidden layer size is evident for the micro

walks. However, as indicated by the lstag values in Table 9.2, larger hidden layers caused

quicker convergence to the global minimum attractor, thus the evident overfitting can

be attributed to the longer exploitation of the global attractor rather than the structure

of the loss surface. Larger step sizes, as shown in Figure 9.10 and Table B.16, yielded

better generalisation performance on the larger architectures compared to the smaller

architectures. Counter-intuitively, the NN architectures with more neurons in the hidden

layer required fewer gradient-guided steps than the NN architectures with fewer neurons.

This observation confirms the previously made hypothesis that the addition of neurons

to a hidden layer simplifies the NN error landscape, and makes global minima easier to

find.
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(a) h = 4, micro, [−1, 1], Et < 1 (b) h = 4, macro, [−1, 1], Et < 1

(c) 2× h = 8, micro, [−1, 1], Et < 1 (d) 2× h = 8, macro, [−1, 1], Et < 1

(e) 10× h = 40, micro, [−1, 1], Et < 1 (f) 10× h = 40, macro, [−1, 1], Et < 1

Figure 9.10: L-g clouds colourised according to the corresponding Eg values, obtained for

single hidden layer NN architectures of varied hidden layer size for the Iris problem.

The effect of hidden layers

Figure 9.11 shows the l-g clouds obtained using the [−1, 1] micro walks for the NN

architectures with a varied number of hidden layers, with exactly eight neurons per

hidden layer. According to Figure 9.11, an increase in the number of hidden layers

yielded a heavier steep gradient cluster. The steep gradient cluster overlapped with
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(a) 1 hidden layer, micro, [−1, 1]

(b) 2 hidden layers, micro, [−1, 1]

(c) 3 hidden layers, micro, [−1, 1]

Figure 9.11: L-g clouds for the micro gradient walks initialised in the [−1, 1] range for the

Iris problem for the various number of hidden layers, with h = 8 for each layer.

indefinite, i.e. flat points, once again attributed to the embedded minima. Figure 9.11c

shows that the shape of the attractors did not change otherwise, and that the addition
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of more hidden layers did not have the smoothing effect observed for the addition of

more neurons (Figure 9.9). Classification results in Table B.16 confirm that the training

accuracy Ct for a particular fixed hidden layer size either did not increase, or decreased

as more hidden layers were added for most scenarios considered. The nstag and lstag

values reported in Table 9.2 show that convergence to a single attractor took place

in most cases, and that the addition of more layers marginally increased the speed of

convergence (see micro [−1, 1] setting). However, the deteriorating quality of solutions

illustrated in Table B.16 confirms that the problem did not become easier to optimise.

Thus, additional layers did not simplify the error landscape for the Iris problem.

Table B.16 also shows that addition of more layers did not have a consistent effect

on the generalisation ability of the discovered solutions. Figure 9.12 shows that the

range of Eg values corresponding to the points with Et ∈ [0, 1] increased as more hidden

layers were added. The same observation applies to the addition of hidden neurons

(Figure 9.10), but in case of the hidden layers, the range of Eg values increased more

rapidly. Higher deviation in the Eg values confirms that addition of hidden layers to a

NN architecture increased the likelihood of discovering solutions of poor generalisation

quality, and thus made the problem more difficult to optimise.

9.2.3 Diabetes

Hessian matrices were not computed for problems with dimensionality m > 3000 due

to computational constraints. The curvature information for the different architectures

with m < 3000 for the Diabetes problem is presented in Figure 9.13. Figure 9.13 shows

that the search space was dominated by saddle curvature. An increase in the hidden

layer size did not have a strong effect on the curvature characteristics. An increase in

the number of hidden layers, on the other hand, yielded an increased amount of flatness,

especially further away from the origin (as sampled by the gradient walks initialised in

the [−10, 10] interval). For deeper NN architectures, neurons in the later layers can

reduce the influence of the neurons in the earlier layers, thus causing flatness, i.e. non-

contributing weights.

Table B.17 in Appendix B reports the average classification accuracy obtained at the

last step of the gradient walks for the various architectures. The results in Table B.17
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show that an increase in the number of hidden layers yielded a stronger improvement in

the Ct values than an increase in the number of hidden neurons. The largest architecture

(3 hidden layers with 10 × h = 80 neurons per layer) yielded the highest Ct = 0.9946,

while the smallest (minimal) architecture yielded the highest Cg = 0.7948. However,

according to Table B.17, an increase in either the hidden layer size or the number of

(a) 1 hidden layer, micro, [−1, 1], Et < 1 (b) 1 hidden layer, macro, [−1, 1], Et < 1

(c) 2 hidden layers, micro, [−1, 1], Et < 1 (d) 2 hidden layers, macro, [−1, 1], Et < 1

(e) 3 hidden layers, micro, [−1, 1], Et < 1 (f) 3 hidden layers, macro, [−1, 1], Et < 1

Figure 9.12: L-g clouds colourised according to the corresponding Eg values, obtained for the

various number of hidden layers, with h = 8 for each layer on the Iris problem.
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Figure 9.13: Histogram representation of the curvature information sampled by the gradient

walks for the Diabetes problem for various NN architectures.

hidden layers did not have a strong negative effect on generalisation. Thus, even though

larger architectures exhibited some overfitting, they also exhibited higher searchability.
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(a) [−1, 1], micro

(b) [−10, 10], micro

Figure 9.14: L-g clouds for the micro gradient walks initialised in the [−1, 1] and [−10, 10]

ranges for the Diabetes problem for the various number of hidden neurons in a single hidden

layer.

The effect of hidden neurons

Figure 9.14 shows the l-g clouds obtained by the micro walks for the various hidden layer

sizes on a single hidden layer architecture, colourised according to Eg values. Figure 9.14

illustrates that an increase in the hidden layer size increased the range of error values

and gradient magnitudes produced. The l-g shapes in Figure 9.14 indicate that a single

global attractor was discovered by the smaller architectures. The attractor widened

as the number of hidden neurons increased, and visibly split into two attractors for the

largest (10×h = 80) number of neurons. The split into two attractors correlates with the

split into two clusters, namely steep gradients around the global minimum, and shallow
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(a) [−1, 1], micro

(b) [−10, 10], micro

Figure 9.15: L-g clouds for the micro gradient walks initialised in the [−1, 1] and [−10, 10]

ranges for the Diabetes problem for the various number of hidden neurons in two consecutive

hidden layers.

gradients further away from the minimum. The clusters are attributed to the wide and

narrow valleys exhibited by NN loss surfaces. Thus, the split into two attractors indicates

a stronger separation between the wide and narrow valleys exhibited by the loss surfaces

of the larger architectures. The nstag values reported in Table 9.3 show that the gradient

walks generally did not become stuck more than once for the single-layer architectures.

Thus, each walk converged to either a narrow or a wide valley.

Figure 9.15 shows the l-g clouds obtained by the micro walks for the various hidden

layer sizes of a 2-hidden layer architecture. An increase in the hidden layer size clearly

exaggerated the split into two attractors for the 2-layer architectures. The nstag values in

Table 9.3 confirm that two stagnation regions were sometimes detected for larger hidden
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Table 9.3: Basin of attraction estimates calculated for the Diabetes problem for the various

NN architectures. Standard deviation is shown in parenthesis.

h = 8 2× h = 16 10× h = 80

nstag lstag nstag lstag nstag lstag

1
h
id

d
en

layer

[−1, 1], 1.0000 964.2988 1.0000 972.3447 1.0000 981.4642

micro (0.0000) (5.1385) (0.0000) (3.0608) (0.0000) (1.3061)

[−1, 1], 1.0062 85.9068 1.0435 79.7469 1.1067 42.5487

macro (0.0928) (6.9681) (0.2324) (16.9730) (0.5173) (30.0841)

[−10, 10], 1.0000 961.7667 1.0000 969.4596 1.0000 978.6105

micro (0.0000) (5.1574) (0.0000) (3.3760) (0.0000) (2.8212)

[−10, 10], 1.0679 77.8084 1.0932 68.8349 1.0662 39.2125

macro (0.2705) (18.3192) (0.3663) (25.8064) (0.5843) (31.2463)

[−1, 1], 1.0000 972.1667 1.0000 979.3857 1.0056 974.2042

2
h
id

d
en

layers

micro (0.0000) (4.2551) (0.0000) (1.6652) (0.1003) (37.9072)

[−1, 1], 1.0196 81.6520 1.0104 78.3678 1.4435 31.4245

macro (0.1386) (11.8660) (0.1014) (10.6638) (0.7158) (20.5202)

[−10, 10], 1.0000 972.9641 1.0000 977.6617 1.0240 962.1185

micro (0.0000) (3.1945) (0.0000) (2.8329) (0.2440) (74.8544)

[−10, 10], 1.0098 80.9477 1.0254 72.9863 1.1283 62.2244

macro (0.0985) (8.9638) (0.1905) (14.0427) (0.3961) (19.1883)

[−1, 1], 1.0000 975.7356 1.0000 980.9021 1.0025 960.3480

3
h
id

d
en

layers

micro (0.0000) (4.2915) (0.0000) (2.0474) (0.0514) (33.8877)

[−1, 1], 1.0444 76.8830 1.0170 78.3746 1.2896 41.0136

macro 0.2266) (16.2317) (0.1449) (10.1321) (0.5991) (22.7162)

[−10, 10], 1.0244 968.4817 1.0015 978.4544 1.2883 837.0587

micro (0.2248) (72.4814) (0.0393) (20.1065) (0.6836) (227.2017)

[−10, 10], 1.2135 65.6555 1.1320 70.0759 1.1522 64.6153

macro (0.4528) (23.0145) (0.3716) (18.9212) (0.4213) (20.9157)
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layer sizes, indicating the possibility of transition between the attractors. To further

study the generalisation performance of the discovered attractors, Figure 9.16 shows the

l-g clouds for the subset of points around the global minimum. Figure 9.16 shows that

exploitation of the global minimum attractor had a detrimental effect on generalisation,

but the detrimental effect weakened as more hidden neurons were added. Specifically,

for the 2-hidden layer architecture with 10×h = 80 hidden neurons per layer, the global

minimum not only became easier to exploit, but also exhibited a band of good quality

solutions at the bottom of the attractor leading to the global minimum. Good quality

solutions were also discovered at the bottom of the secondary attractor introduced by

additional hidden neurons, indicating that exploitation of the global minimum may be

altogether unnecessary. This observation once again correlates with previously made

conclusions that wide valleys are likely to exhibit better generalisation properties [21].

Overall, even though the range of errors increased with an increase in the hidden layer

size, convergence to the global optimum became easier for the larger hidden layers,

especially with more than one hidden layer.

The classification results in Table B.17 indicate that increases in the number of hid-

den neurons made the quality of the final solution less sensitive to the step size and

initialisation interval. For the [−10, 10] initialisation interval, the classification results

improved as more neurons were added. Thus, even though low-dimensional NN error

landscapes yielded better results in some cases, the higher-dimensional landscapes exhib-

ited better global structure properties. The l-g clouds in Figure 9.14 also indicate that

the attractors were wider for larger hidden layers. The lstag results in Table 9.3 confirm

that the micro walks discovered wider attraction basins for the larger hidden layers.

The effect of hidden layers

According to the classification results in Table B.17, an increase in the number of hidden

layers yielded consistently better Ct results for the [−1, 1] micro walks. In general, micro

walks for the 2×h and 10×h architectures yielded better results than the macro walks,

regardless of the initialisation interval. This observation highlights the interplay between

the initialisation range and the step size, and the importance of optimising these two

parameters in conjunction.
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(a) h = 8, 1 hidden layer, Et < 0.6 (b) h = 8, 2 hidden layers, [−1, 1], Et < 1

(c) 2× h = 16, 1 hidden layer, Et < 0.6 (d) 2× h = 16, 2 hidden layers, Et < 1

(e) 10× h = 80, 1 hidden layer, Et < 1 (f) 10× h = 80, 2 hidden layers, Et < 5

Figure 9.16: L-g clouds colourised according to the corresponding Eg values, obtained by the

[−1, 1] micro walks for the Diabetes problem.

Figure 9.17 shows the l-g clouds obtained by the [−1, 1] micro walks for the NN

architectures with the various number of hidden layers. The l-g clouds are shown with

a shared scale to emphasise that the shape of the attractors did not change with the

addition of more layers, but rather widened in terms of the error and gradient magnitude

ranges. Figure 9.17 illustrates that exploitation of the global minimum attractor was
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(a) h = 8

(b) 2× h = 16

(c) 10× h = 80

Figure 9.17: L-g clouds for the micro gradient walks initialised in the [−1, 1] range for the

Diabetes problem for the various number of hidden layers.

not only performed successfully for all architectures, but improved as more hidden layers

were added (lower Et values were obtained). Thus, addition of hidden layers improved
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the overall searchability of the landscape. The split into two clusters was observed for

most scenarios. Figure 9.17 shows that the separation into two clusters was smoothed

by the addition of more neurons per layer, but remained the same as more hidden layers

were added for a fixed h.

As far as the generalisation performance is concerned, exploitation of the global

minima consistently yielded a deterioration in the generalisation performance. Thus,

improved exploitation due to higher searchability of many-layered architectures often

resulted in poor generalisation (see Figure 9.16). Figure 9.17c shows that the Eg values

obtained around the global minimum attractor were very poor for the 3-hidden layer

architecture with 10 × h hidden neurons. However, the same figure illustrates that the

Eg performance at the secondary attractor, introduced by the increased hidden layer

size, yielded better performance. Thus, convergence to a local attractor associated with

wider valleys would have been preferable for the Diabetes problem.

To summarise, the addition of hidden neurons had a strong effect on the shape

and number of attractors, and emphasised the split into wide and narrow valleys. The

addition of hidden layers did not change the shape or the number of the attractors, but

increased the width and steepness of the attractors, thereby making the loss surfaces

easier to exploit.

9.2.4 Glass

Figure 9.18 summarises the curvature information obtained for the various NN archi-

tectures considered. Similar to all previous problems considered, flatness increased with

an increase in dimensionality. The addition of hidden layers yielded a faster increase in

flatness than the addition of hidden neurons to a layer. Saddle curvature was prevalent

for the [−1, 1] initialisation interval.

The effect of hidden neurons

Table B.18 in Appendix B summarises the classification results obtained at the last step

of the gradient walks. According to Table B.18, an increase in the hidden layer size

generally improved the Ct values. An interesting trend is observed for the Cg values:

Overfitting (deteriorating Cg associated with improved Ct) is sometimes manifested for
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Figure 9.18: Histogram representation of the curvature information sampled by the gradient

walks for the Glass problem for various NN architecture settings.

2 × h, but the Cg values increase again as the hidden layer size is further increased

to 10 × h. Thus, a somewhat larger than minimal hidden layer promoted overfitting

in some cases, but a more significant increase in h generally had a positive effect on

the generalisation performance for the Glass problem. Overall, improved generalisation

performance was associated with an increased hidden layer size, regardless of the number
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of the hidden layers. Out of all the architecture settings considered, the highest Cg value

was obtained for the single layer architecture with 10×h hidden neurons. The lstag values

in Table 9.4 indicate that an increase in the hidden layer size yielded faster convergence

to an attractor.

(a) h = 9, 1 hidden layer (b) 2× h = 18, 1 hidden layer (c) 10× h = 90, 1 hidden layer

(d) h = 9, 2 hidden layers (e) 2× h = 18, 2 hidden layers (f) 10× h = 90, 2 hidden layers

(g) h = 9, 3 hidden layers (h) 2× h = 18, 3 hidden layers (i) 10× h = 90, 3 hidden layers

Figure 9.19: L-g clouds colourised according to the corresponding Eg values, obtained by the

[−1, 1] micro walks for the Glass problem for the various NN architectures.

Figure 9.19 shows the l-g clouds obtained for the [−1, 1] micro walks for the various

NN architectures. For the single hidden layer architecture, an increase from h to 2 ×
h did not change the shape of the l-g cloud, but yielded stronger overfitting around

the global minimum. An increase of the hidden layer size to 10 × h yielded l-g cloud
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Table 9.4: Basin of attraction estimates calculated for the Glass problem for the various NN

architectures. Standard deviation is shown in parenthesis.

h = 9 2× h = 18 10× h = 90

nstag lstag nstag lstag nstag lstag

1
h
id

d
en

layer

[−1, 1], 1.0000 955.9787 1.0000 966.9201 1.0000 979.9755

micro (0.0000) (4.2559) (0.0000) (2.2312) (0.0000) (0.9297)

[−1, 1], 1.0000 86.8287 1.0000 86.9371 1.0000 81.3340

macro (0.0000) (0.7009) (0.0000) (1.2980) (0.0000) (6.3706)

[−10, 10], 1.0000 963.5053 1.0000 970.1395 1.0000 979.1573

micro (0.0000) (3.8395) (0.0000) (2.6690) (0.0000) (1.1055)

[−10, 10], 1.0000 86.9647 1.0000 86.6752 1.0064 79.9905

macro (0.0000) (1.7961) (0.0000) (2.8173) (0.0799) (9.3428)

[−1, 1], 1.0000 966.7250 1.0000 977.0220 1.0000 982.3361

2
h
id

d
en

layers

micro (0.0000) (3.5741) (0.0000) (1.3398) (0.0000) (0.9954)

[−1, 1], 1.0000 85.6771 1.0000 84.5456 1.0008 75.3811

macro (0.0000) (3.3176) (0.0000) (3.4706) (0.0279) (5.5302)

[−10, 10], 1.0000 971.9645 1.0000 976.3668 1.0393 956.2573

micro (0.0000) (2.6558) (0.0000) (1.6371) (0.2300) (96.0468)

[−10, 10], 1.0063 84.9705 1.0088 79.5937 1.0024 73.9645

macro (0.0792) (6.1181) (0.0937) (8.1220) (0.0493) (5.9678)

[−1, 1], 1.0000 973.6197 1.0000 979.9652 1.0001 980.0378

3
h
id

d
en

layers

micro (0.0000) (3.0230) (0.0000) (1.1209) (0.0092) (5.9478)

[−1, 1], 1.0045 82.6591 1.0194 78.9994 1.3958 34.4549

macro (0.0673) (7.6183) (0.1452) (10.6144) (0.5831) (18.2147)

[−10, 10], 1.0000 976.1552 1.0400 957.1000 3.1031 463.0445

micro (0.0000) (2.6095) (0.1960) (98.5655) (1.9866) (314.7356)

[−10, 10], 1.2601 60.1420 1.2178 64.5984 1.3660 40.0568

macro (0.4931) (23.2638) (0.4683) (22.2337) (0.5609) (17.8004)
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shapes similar to the Diabetes problem: Two connected attractors were observed. The

10 × h architecture exhibited the least overfitting around the global minimum for the

single hidden layer architecture. In general, an increase in the hidden layer size visibly

widened the attraction basin, and increased the steepness of the gradients. A single

major attractor was observed for most settings. The nstag results in Table 9.4 confirm

that a single attractor was detected by the walks for the majority of the settings. The

cluster structure appears smoother and more connected for larger hidden layer sizes.

The split into two clusters manifested across all scenarios, and inferior generalisation

performance was generally associated with the steeper gradient cluster. As before, this

behaviour is attributed to the poor generalisation properties of the minima discovered

in narrow valleys [21].

The effect of hidden layers

The classification results in Table B.18 indicate that, for the [−1, 1] micro walks, the Ct

values generally increased as more hidden layers were added to the architectures, and the

corresponding Cg values decreased. Thus, architectures with a higher number of hidden

layers were more prone to overfitting. For the macro walks, both Ct and Cg decreased as

more hidden layers were added. Thus, deeper architectures were more searchable around

the origin when probed with smaller steps, but less searchable otherwise.

Figure 9.19 shows that an increase in the number of hidden layers exaggerated the

steep gradient cluster for all hidden layer sizes. Thus, the addition of hidden layers

increased the separation into wide and narrow valleys. Additional smaller clusters were

also detected for the increased number of hidden layers, indicating that some additional

landscape structures were introduced by the deeper architectures.

9.2.5 Cancer

Figure 9.20 summarises the curvature information obtained for the Cancer problem for

the various number of hidden layers and hidden layer sizes. Once again, an increase in

dimensionality yielded an increase in flatness. More flatness was observed further away

from the origin. The [−1, 1] macro setting yielded the least amount of flatness across all



Chapter 9. Neural Network Architectures 239

architectures, indicating that the perception of the landscape is strongly dependent on

the step size.

1 hidden layer 2 hidden layers 3 hidden layers

h
2
h

mic1 mac1 mic10 mac10 mic1 mac1 mic10 mac10 mic1 mac1 mic10 mac10

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Granularity Setting

P
ro

p
o
rt

io
n Curvature

saddle

singular

Figure 9.20: Histogram representation of the curvature information sampled by the gradient

walks for the Cancer problem for various NN architectures.

The effect of hidden neurons

Table B.19 in Appendix B shows that most architectures obtained Ct > 90% for most

granularity settings considered. For 1-hidden layer architectures, a 100% training accu-

racy was obtained by the [−1, 1] micro walks for any number of hidden neurons, indicat-

ing that the landscape was highly searchable. The Cg values improved as more hidden

neurons were added for the same granularity setting. Overall, the Ct and Cg values were

not strongly affected by the number of hidden neurons. The Cancer problem is an easy

classification problem, and adding more neurons to the hidden layers did not make this
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problem harder.

(a) h = 10, 1 hidden layer (b) 2× h = 20, 1 hidden layer (c) 10× h = 100, 1 hidden layer

(d) h = 10, 2 hidden layers (e) 2× h = 20, 2 hidden layers (f) 10× h = 100, 2 hidden layers

(g) h = 10, 3 hidden layers (h) 2× h = 20, 3 hidden layers (i) 10× h = 100, 3 hidden layers

Figure 9.21: L-g clouds colourised according to the corresponding Eg values, obtained by the

[−1, 1] micro walks for the Cancer problem for the various NN architectures.

Figure 9.21 shows the l-g clouds obtained by the [−1, 1] micro walks for the various

architectures. A single stationary global minimum attractor was discovered for all ar-

chitectures. For the single hidden layer architecture, the shape of the attractor did not

change with an increase in the hidden layer size, but the error range and the gradient

range widened. Thus, the global attraction basin widened for larger hidden layers. The

lstag values in Table 9.5 confirm that the speed of convergence to the global attractor

increased with an increase in the hidden layer size for the [−1, 1] micro setting.

For the 2-hidden layer architectures, a split into steep and shallow gradient clusters

was observed. The steep gradient cluster was associated with inferior generalisation
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Table 9.5: Basin of attraction estimates calculated for the Cancer problem for the various

NN architectures. Standard deviation is shown in parenthesis.

h = 10 2× h = 20 10× h = 100

nstag lstag nstag lstag nstag lstag

1
h
id

d
en

layer

[−1, 1], 1.0000 975.3938 1.0000 979.7598 1.0000 983.6727

micro (0.0000) (2.6956) (0.0000) (1.5779) (0.0000) (0.6047)

[−1, 1], 1.0012 87.7195 1.0031 87.0997 1.0618 77.6422

macro (0.0353) (2.6253) (0.0683) (4.7251) (0.2850) (18.5088)

[−10, 10], 1.0000 977.5683 1.0000 980.2099 1.0355 969.1150

micro (0.0000) (2.5137) (0.0000) (1.7397) (0.3280) (83.4310)

[−10, 10], 1.0019 87.0460 1.0053 86.3427 1.0130 81.0644

macro (0.0466) (4.4699) (0.0725) (6.6630) (0.1237) (11.1977)

[−1, 1], 1.0000 978.7923 1.0316 968.0676 1.3760 872.6577

2
h
id

d
en

layers

micro (0.0000) (1.8208) (0.2426) (84.7024) (1.1119) (241.2722)

[−1, 1], 1.0012 87.0389 1.0024 85.1268 1.0396 71.5462

macro (0.0340) (2.7952) (0.0485) (5.5808) (0.2052) (14.4155)

[−10, 10], 1.3192 871.7169 3.3058 496.9894 7.1540 142.8222

micro (0.8456) (235.4979) (2.4903) (356.7182) (2.6713) (110.0526)

[−10, 10], 1.0980 75.3461 1.0953 71.3317 1.3820 48.7464

macro (0.3252) (16.5105) (0.3029) (16.9158) (0.6076) (21.0796)

[−1, 1], 1.1273 913.5485 1.1546 931.3474 4.7934 212.0993

3
h
id

d
en

layers

micro (0.3840) (170.6968) (0.6819) (166.8368) (1.8085) (123.4397)

[−1, 1], 1.0665 78.4510 1.0550 76.2268 1.1418 66.2924

macro (0.2565) (14.3946) (0.2382) (14.2675) (0.3752) (18.5221)

[−10, 10], 3.6460 376.2874 4.8486 284.8526 5.5062 182.9733

micro (2.1179) (293.3329) (2.6841) (250.7712) (1.7998) (77.8606)

[−10, 10], 1.1901 61.8568 1.2756 57.9492 1.2659 56.2615

macro (0.4304) (19.4827) (0.5306) (20.5573) (0.5053) (19.2546)
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performance, and increased in width and steepness as more hidden neurons were added

to the layers. The overlap between the two clusters increased as the hidden layer size

increased. The nstag results in Table 9.5 show that the transition between the attractors

became more likely as the hidden layer size increased.

For the 3-hidden layer architecture, an increase in the hidden layer size also resulted in

the steep gradient cluster becoming wider and heavier than the shallow gradient cluster.

The gradient range increased drastically.

The effect of hidden layers

According to the classification results in Table B.19, the Ct values marginally decreased

as more hidden layers were added to the architectures. The Cg values did not exhibit a

consistent trend for the [−1, 1] walks and generally remained the same, while the [−10, 10]

macro walks produced generalisation results of deteriorating quality as the number of

hidden layers increased. Thus, the landscape remained searchable around the origin, and

the areas further away from the origin became less searchable for deeper NNs.

Figure 9.21 shows that the addition of more hidden layers had a strong impact on

the observed cluster structure. For a single hidden layer, the split into steep and shal-

low gradient clusters was not strongly manifested for the [−1, 1] micro walks. Adding a

second hidden layer added a heavy steep gradient cluster to all architectures, regardless

of the hidden layer size. The steep gradient cluster became more exaggerated with the

addition of a third hidden layer. Figure 9.22 illustrates that the same trend was observed

for the [−10, 10] initialisation range: Additional hidden layers reduced the shallow gra-

dient cluster and increased the steep gradient cluster. Thus, deeper architectures were

more prone to narrow valleys than the shallow architectures.

Thus, an increase in the hidden layer size was associated with wider attraction basins,

and an increase in the architecture depth exaggerated the presence of the narrow valleys

in the NN error landscapes.

9.2.6 Heart

Figure 9.23 summarises the curvature information obtained for the Heart problem for

the various architectures. The Heart problem yielded loss surfaces dominated by the
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(a) h = 10, 1 hidden layer (b) 2× h = 20, 1 hidden layer (c) 10× h = 100, 1 hidden layer

(d) h = 10, 2 hidden layers (e) 2× h = 20, 2 hidden layers (f) 10× h = 100, 2 hidden layers

(g) h = 10, 3 hidden layers (h) 2× h = 20, 3 hidden layers (i) 10× h = 100, 3 hidden layers

Figure 9.22: L-g clouds colourised according to the corresponding Eg values, obtained by the

[−10, 10] micro walks for the Cancer problem for the various NN architectures.

saddle curvature. Flatness was observed only for the [−10, 10] initialisation range, and

increased with an increase in dimensionality. An increase in the number of hidden layers

had a stronger influence on the proportion of flat curvature points than an increase in

the hidden layer size.

The effect of hidden neurons

Table B.20 in Appendix B shows that the Ct values generally increased with an increase

in the hidden layer size across all granularity settings, including the [−10, 10] micro and

macro settings. Thus, an increase in the hidden layer size increased the overall search-

ability of the error landscapes. The Cg values also generally improved or remained the
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Figure 9.23: Histogram representation of the curvature information sampled by the gradient

walks for the Heart problem for various NN architectures.

same as the hidden layer size increased. The highest average Cg value (80.5% accuracy)

was observed for the 10× h architecture with a single hidden layer.

Figure 9.24 shows the l-g clouds obtained by the [−1, 1] micro walks for the various

NN architectures. It is evident from Figure 9.24 that the range of error and gradient

magnitudes increased with an increase in the hidden layer size. Thus, the width and

the steepness of the attractors increased. For the smallest hidden layer size, h = 10,

two stationary attractors are visible in Figures 9.24d and 9.24g. An increase of the

hidden layer size caused the non-global stationary attractor to become non-stationary,

as illustrated in Figures 9.24e, 9.24f, 9.24h, and 9.24i. Thus, the search space was

simplified by eliminating local minima. Interestingly, the generalisation performance at

the local minimum was better than at the global minimum. Thus, convergence to a local

minimum may in fact be desirable for NN training.
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(a) h = 10, 1 hidden layer (b) 2× h = 20, 1 hidden layer (c) 10× h = 100, 1 hidden layer

(d) h = 10, 2 hidden layers (e) 2× h = 20, 2 hidden layers (f) 10× h = 100, 2 hidden layers

(g) h = 10, 3 hidden layers (h) 2× h = 20, 3 hidden layers (i) 10× h = 100, 3 hidden layers

Figure 9.24: L-g clouds colourised according to the corresponding Eg values, obtained by the

[−1, 1] micro walks for the Heart problem for the various NN architectures.

Figure 9.25 shows that the [−10, 10] micro walks also discovered two attractors for the

Heart problem. The split into steep and shallow gradient clusters was evident, although

an increase in the number of hidden layers generally increased the overlap between the

two clusters for both [−1, 1] and [−10, 10] walks. The lstag values reported in Table 9.6

indicate that convergence to an attraction basin became easier as the size of the hidden

layers increased. The nstag values also indicate that the transition between attractors

became more likely for the NN architectures of higher dimensionality.
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(a) h = 10, 1 hidden layer (b) 2× h = 20, 1 hidden layer (c) 10× h = 100, 1 hidden layer

(d) h = 10, 2 hidden layers (e) 2× h = 20, 2 hidden layers (f) 10× h = 100, 2 hidden layers

(g) h = 10, 3 hidden layers (h) 2× h = 20, 3 hidden layers (i) 10× h = 100, 3 hidden layers

Figure 9.25: L-g clouds colourised according to the corresponding Eg values, obtained by the

[−10, 10] micro walks for the Heart problem for the various NN architectures.

The effect of hidden layers

Table B.20 shows that the Ct values improved for the [−1, 1] walks as more hidden layers

were added. However, for the [−10, 10] initialisation range, an increase in the number of

hidden layers was associated with decreasing Ct values. Thus, deeper architectures were

easier to search around the origin, but harder to exploit further away from the origin.

The Cg values, however, consistently decreased with an increase in the architecture’s

depth, regardless of the initialisation range. Since no regularisation was applied to the

gradient walks, the observed overfitting is attributed to the better searchability of the

deeper architectures, resulting in stronger global minimum exploitation.
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Table 9.6: Basin of attraction estimates calculated for the Heart problem for the various NN

architectures. Standard deviation is shown in parenthesis.

h = 10 2× h = 20 10× h = 100

nstag lstag nstag lstag nstag lstag

1
h
id

d
en

layer

[−1, 1], 1.0000 969.4890 1.0000 974.4604 1.0000 980.5903

micro (0.0000) (2.6436) (0.0000) (2.0019) (0.0000) (1.4897)

[−1, 1], 1.0050 86.0182 1.0191 82.2622 1.3890 25.3449

macro (0.0704) (6.6016) (0.1472) (11.9345) (0.6797) (20.3909)

[−10, 10], 1.0000 967.6488 1.0000 972.7808 1.0000 979.1629

micro (0.0000) (3.0297) (0.0000) (2.3289) (0.0000) (1.9214)

[−10, 10], 1.0103 84.2049 1.0154 81.8979 1.0769 56.1771

macro (0.1144) (8.4039) (0.1232) (10.5917) (0.3927) (25.9864)

[−1, 1], 1.0000 974.6851 1.0000 978.7494 1.0000 978.6013

2
h
id

d
en

layers

micro (0.0000) (2.2263) (0.0000) (1.3854) (0.0000) (5.2395)

[−1, 1], 1.0000 84.9390 1.0027 81.2629 1.2582 31.1182

macro (0.0000) (4.6369) (0.0521) (6.8659) (0.5339) (17.2483)

[−10, 10], 1.0000 975.5710 1.0000 978.6681 1.0006 972.9974

micro (0.0000) (1.8512) (0.0000) (1.8314) (0.0249) (16.6906)

[−10, 10], 1.0022 81.5626 1.0305 75.6269 1.4328 35.0503

macro (0.0470) (7.2358) (0.1848) (12.9809) (0.6165) (17.4804)

[−1, 1], 1.0000 977.6052 1.0000 980.3423 1.0000 969.1488

3
h
id

d
en

layers

micro (0.0000) (2.5311) (0.0000) (1.9115) (0.0000) (10.1859)

[−1, 1], 1.0027 83.6203 1.0023 82.0634 1.2920 49.2953

macro (0.0516) (5.6872) (0.0543) (5.4075) (0.5641) (22.0752)

[−10, 10], 1.0009 978.0705 1.0000 979.9270 3.1999 419.1983

micro (0.0306) (15.3807) (0.0000) (2.7779) (1.8921) (284.5976)

[−10, 10], 1.2000 62.2581 1.0757 73.8890 1.1661 55.3564

macro (0.4543) (21.3641) (0.2979) (15.3303) (0.4230) (18.4677)
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Figures 9.24 and 9.25 show than an increase in the number of hidden layers yielded

a single sharp global minimum attractor, that was successfully exploited by the gradient

walks. Figure 9.24 also shows that the generalisation behaviour at the global minimum

was generally inferior. The width and steepness of the attraction basin increased rapidly

as more hidden layers were added. For the [−10, 10] initialisation range, an increase in

the number of hidden layers once again resulted in the exaggeration of the steep gradient

cluster. The decline in performance for the [−10, 10] initialisation range, associated with

an increase of the architecture depth, is thus attributed to the visible split into narrow

and wide valleys (see Figure 9.25).

9.2.7 MNIST

Table B.21 in Appendix B summarises the average MNIST classification accuracies ob-

tained at the last step of the gradient walks for the various NN architectures. The results

in Table B.21 show that the Ct generally increased as the hidden layer size increased for

all granularity settings except the [−1, 1] micro setting. Thus, the error landscapes

yielded by wider hidden layers were somewhat harder to exploit with very small steps,

but the overall searchability, i.e. global landscape structure, improved. For the 1-hidden

layer architecture, the Ct accuracy improved from 61% to 87% for the [−10, 10] macro

setting as h increased from 10 to 100. For the 3-hidden layer architecture, the Ct ac-

curacy improved from 15% to 91% as h increased from 10 to 100. This observation

corresponds to a recent theoretical study by Johnson [58], where deep and “skinny” NN

architectures, i.e. architectures with many hidden layers of a limited size, were shown to

not be universal approximators. Table B.21 shows that the generalisation accuracy was

also positively affected by an increase in the hidden layer size for the 2- and 3-hidden

layer architectures.

Figure 9.26 shows the l-g clouds obtained for the various architectures using the

[−1, 1] micro walks. For all architectures considered, the sampled points were split into

the steep and shallow gradient clusters, where the steep gradient cluster generally corre-

sponded to poor generalisation performance. An increase in the hidden layer size affected

the shape of the steep gradient cluster by making it wider and steeper. Figure 9.26 shows

that the transition from h to 2×h, to 10×h, yielded the steep gradient cluster to become
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(a) h = 10, 1 hidden layer (b) 2× h = 20, 1 hidden layer (c) 10× h = 100, 1 hidden layer

(d) h = 10, 2 hidden layers (e) 2× h = 20, 2 hidden layers (f) 10× h = 100, 2 hidden layers

(g) h = 10, 3 hidden layers (h) 2× h = 20, 3 hidden layers (i) 10× h = 100, 3 hidden layers

Figure 9.26: L-g clouds colourised according to the corresponding Eg values, obtained by the

[−1, 1] micro walks for the MNIST problem for the various NN architectures.

progressively wider. The overlap between the two clusters also increased. Table 9.7 shows

that an increase in the hidden layer size resulted in increased nstag values, indicating that

the transition between clusters became more likely.

Figure 9.27 shows the l-g clouds obtained by the [−10, 10] micro walks. For the

wider initialisation range, the same split into two clusters is observed, although the two

clusters appear more connected. The [−10, 10] micro walks used a larger maximum step

size (ε = 0.2) than the [−1, 1] micro walks (ε = 0.02), which enabled the transition

between the attractors. The nstag results in Table 9.7 confirm that the [−10, 10] micro

setting yielded more transitions than the [−1, 1] micro setting. Overall, Figure 9.27
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Table 9.7: Basin of attraction estimates calculated for the MNIST problem for the various

NN architectures. Standard deviation is shown in parenthesis.

h = 10 2× h = 20 10× h = 100

nstag lstag nstag lstag nstag lstag

1
h
id

d
en

layer

[−1, 1], 1.0002 972.4753 1.0003 976.5304 1.2534 869.2570

micro (0.0137) (7.2004) (0.0231) (8.1524) (0.6305) (214.7664)

[−1, 1], 1.0000 87.1719 1.0000 86.8179 1.1187 58.1058

macro (0.0000) (1.0704) (0.0056) (1.9766) (0.3262) (14.0348)

[−10, 10], 1.2259 897.1252 1.9853 736.3558 6.3124 209.9105

micro (0.7907) (196.0541) (1.7754) (328.4335) (3.0031) (217.9327)

[−10, 10], 1.1188 64.2060 1.1204 62.5981 1.2399 39.0601

macro (0.3251) (15.2903) (0.3263) (14.8605) (0.4636) (13.9766)

[−1, 1], 1.0000 975.1188 1.0003 975.3782 5.4535 132.0095

2
h
id

d
en

layers

micro (0.0000) (1.6518) (0.0186) (10.0241) (1.5912) (50.7952)

[−1, 1], 1.0055 82.4143 1.0347 72.3031 1.2228 47.4801

macro (0.0749) (6.7373) (0.1836) (11.2519) (0.4494) (16.1408)

[−10, 10], 1.5375 823.3736 5.7235 189.3396 7.3454 89.0696

micro (1.2952) (272.9467) (2.2454) (153.6532) (1.9763) (34.2737)

[−10, 10], 1.1399 61.4209 1.2137 48.3679 1.2899 42.3394

macro (0.3581) (17.5909) (0.4350) (16.1845) (0.5078) (16.0460)

[−1, 1], 1.0000 977.4182 1.0016 976.3500 6.0636 113.1507

3
h
id

d
en

layers

micro (0.0000) (1.4157) (0.0440) (20.0490) (1.7757) (46.5121)

[−1, 1], 1.0639 75.6586 1.2234 51.7492 1.1649 54.7344

macro (0.2607) (15.4679) (0.4740) (18.9694) (0.3830) (15.8819)

[−10, 10], 2.2607 669.4512 5.6652 156.0723 6.4024 119.4655

micro (1.9355) (347.9560) (1.9549) (83.7339) (1.7800) (46.3345)

[−10, 10], 1.3552 47.1306 1.3467 46.0160 1.1937 51.7768

macro (0.5909) (22.2128) (0.6033) (20.0852) (0.4126) (16.1017)
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(a) h = 10, 1 hidden layer (b) 2× h = 20, 1 hidden layer (c) 10× h = 100, 1 hidden layer

(d) h = 10, 2 hidden layers (e) 2× h = 20, 2 hidden layers (f) 10× h = 100, 2 hidden layers

(g) h = 10, 3 hidden layers (h) 2× h = 20, 3 hidden layers (i) 10× h = 100, 3 hidden layers

Figure 9.27: L-g clouds colourised according to the corresponding Eg values, obtained by the

[−1, 1] micro walks for the MNIST problem for the various NN architectures.

shows that an increase in the hidden layer size increased the overlap between the two

clusters, effectively blending the two clusters into one wide cluster with a single global

attractor at the error of zero. Thus, an increase in the hidden layer size simplified the

error landscapes.

Table B.21 shows that the addition of more layers without an increase in the hidden

layer size generally resulted in deteriorating Ct as well as Cg values. This observation

once again correlates with the theoretical findings in [58]. The l-g clouds in Figures 9.26

and 9.27 show that an increase in the number of hidden layers increased the gradient and

error magnitude ranges, but otherwise did not affect the degree of separation between
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the steep and the shallow gradient clusters. As the depth of the architecture increased,

the steeper cluster became visibly heavier, and the shallow cluster diminished. In Fig-

ure 9.27i, the steep gradient cluster exhibited a few layers, indicating that the global

basin of attraction comprised of valleys of varied steepness. Overall, an increase in the

number of hidden layers did not simplify the MNIST error landscape.

9.3 Ruggedness, Gradients, Neutrality

The ruggedness, gradients, and neutrality metrics, as discussed in Section 3.4, were

calculated for all problems to gain more insight into the fitness landscape properties

associated with the various NN architecture settings. The magnitudes of the numerical

gradients were used instead of gradient estimates.

Figures 9.28 and 9.29 show the FEM values obtained for the various problems. Across

most problems considered and across the various architectures, the [−1, 1] macro setting

consistently yielded the highest ruggedness. It was also observed in Sections 9.2.1 to 9.2.7

that the [−1, 1] macro setting was associated with the least amount of flat curvature,

i.e. indefinite Hessians. These observations indicate that across all problems, the [−1, 1]

macro setting yielded oscillatory behaviour, and the maximum step size typically ex-

ceeded the width of the attraction basin. The same maximum step for the [−10, 10]

initialisation interval yielded less ruggedness, indicating that the attraction basins, hy-

pothesised to have a valley shape, became wider further away from the origin.

Figures 9.28 and 9.29 show that an increase in the hidden layer size often yielded a

smoother FEM curve across the various granularity settings, i.e. a more consistent degree

of ruggedness. This correlates with the observations made in this chapter that an increase

in the hidden layer size makes the NN loss surfaces more searchable, and reduces the

sensitivity of the gradient-guided search to the chosen step size and initialisation range.

An increase in the number of hidden layers also yielded a decrease in the maximal

FEM values for some of the problems, indicating that deeper architectures have indeed

exhibited smoother landscapes for some scenarios.

Figures 9.30 and 9.31 summarise the gradient averages and standard deviations ob-

tained for the various problems. The gradients exhibited a consistently upward trend
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(l) Glass, FEM, 3 hidden layers

Figure 9.28: FEM metrics for the XOR, Iris, Diabetes, and Glass problems.

associated with an increase in the step size, initialisation range, hidden layer size, and

the total number of hidden layers. An increase in the number of hidden layers had a

more drastic effect on the maximal gradient magnitudes than an increase in the hidden
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Figure 9.29: FEM metrics for the Cancer, Heart, and MNIST problems.

layer size. For most problems, Gavg < Gdev was observed, indicating step-like transi-

tions between fitness levels. For problems where Gavg > Gdev was observed for smaller

architectures, an increase in the total number of hidden layers yielded Gdev to gradually

become larger than the corresponding Gavg. This correlates with the observation that

deep and over-parametrised architectures induce flatness and high lying plateaus [68],

thus yielding more drastic transitions between the various landscape structures.

Figures 9.32 and 9.33 show the neutrality metrics obtained for the various problems.

Out of the seven problems considered, only XOR and Cancer exhibited a significant

amount of neutrality. XOR has a very limited number of data patterns, and Cancer is
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(b) XOR, grad, 2 hidden layers
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(c) XOR, grad, 3 hidden layers
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(e) Iris, grad, 2 hidden layers
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(f) Iris, grad, 3 hidden layers
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(h) Diabetes, grad, 2 hidden layers
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(i) Diabetes, grad, 3 hidden layers
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(l) Glass, grad, 3 hidden layers

Figure 9.30: Gradient metrics for the XOR, Iris, Diabetes, and Glass problems.

known to be a trivial classification problem. Thus, the observed neutrality is attributed

to the comparative simplicity of these two problems. Other problems such as MNIST

exhibited a minor degree of neutrality for the smallest initialisation range and step size
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(b) Cancer, grad, 2 hidden layers
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(c) Cancer, grad, 3 hidden layers
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(d) Heart, grad, 1 hidden layer

micro, b1 macro, b1 micro, b10 macro, b10

0.01

0.1

1

10

100

1000

10000

h, Gavg
2h, Gavg
10h, Gavg
h, Gdev
2h, Gdev
10h, Gdev

G
a
v
g

, 
G

d
e
v

(e) Heart, grad, 2 hidden layers
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(f) Heart, grad, 3 hidden layers
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(g) MNIST, grad, 1 hidden layer
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(h) MNIST, grad, 2 hidden layers
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(i) MNIST, grad, 3 hidden layers

Figure 9.31: Gradient metrics for the Cancer, Heart, and MNIST problems.

considered. The observed neutrality is attributed to the successful exploitation of the

global minima. The Heart and the Glass problems exhibited neutrality only for the 3-

hidden layer architectures, which corresponds to the increased flatness associated with an

increase in dimensionality, as well as the improved searchability, i.e. easier exploitation.

9.4 Conclusions

This chapter presented a visual and numerical analysis of the NN loss surfaces associated

with various NN architectures. Seven different classification problems were considered.
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(c) XOR, neutrality, 3 hidden layers
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(d) Iris, neutrality, 1 hidden layer
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(f) Iris, neutrality, 3 hidden layers
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(g) Diabetes, neutrality, 1 hidden layer
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(i) Diabetes, neutrality, 3 hidden layers
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(j) Glass, neutrality, 1 hidden layer
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(k) Glass, neutrality, 2 hidden layers
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(l) Glass, neutrality, 3 hidden layers

Figure 9.32: Neutrality metrics for the XOR, Iris, Diabetes, and Glass problems.

For each problem, h, 2 × h, and 10 × h hidden layer sizes were considered, where h

corresponded to the minimal number of hidden neurons for a 1-hidden layer architec-

ture. Further, for each hidden layer size, 1-, 2-, and 3-hidden layer architectures were
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(c) Cancer, neutrality, 3 hidden layers
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(d) Heart, neutrality, 1 hidden layer
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Figure 9.33: Neutrality metrics for the Cancer, Heart, and MNIST problems.

considered. Each architecture was studied under four different granularity settings in

order to capture the landscape features present at different parts of the search space.

The results presented in this chapter indicated that an increase in problem dimen-

sionality yielded an increase in indefinite, or flat curvature, as previously observed by

Sagun et al. [114]. The flat curvature was especially prevalent further away from the

origin for all problems considered. An increase in the number of hidden layers yielded

a more rapid increase in flatness than an increase in the hidden layer size. This be-

haviour was attributed to the inter-variable dependency between the hidden layers in a

feed-forward architecture.
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For the XOR problem, an increase in the number of hidden neurons was shown to

reduce the number of local minima. For the same problem, an increase in the number

of hidden layers was shown to reduce the convexity and increase the amount of saddle

curvature. However, an increase in the number of hidden layers with a fixed hidden layer

size had no effect on the total number of stationary attractors. Thus, an increase in

the size of the hidden layer was shown to change the shape of the attractor in a more

meaningful way than the addition of extra hidden layers. This observation correlates

with the theoretical studies in [58], where deep and “skinny” NNs were shown to not

exhibit the universal approximator properties.

For most problems, a single major attractor at the global minimum was observed.

An increase in the hidden layer size, as well as an increase in the number of hidden

layers, yielded an increase in the width and steepness of the observed attractor. Most

problems exhibited a split into two clusters of steep and shallow gradients. The clusters

were attributed to the narrow and wide valleys exhibited by the NN loss surfaces. An

increase in the hidden layer size was shown to increase the overlap between the two

clusters, up to a complete merge of the two clusters into a single cluster. An increase

in the number of hidden layers did not exhibit the same effect. Instead, the steep

cluster generally became heavier as more hidden layers were added, up to a complete

disappearance of the shallow cluster. Thus, an increase in the number of hidden layers

was shown to exaggerate the narrow valleys as a landscape feature.

In general, both an increase in the hidden layer size, as well as an increase in the

number of hidden layers, were shown to improve the searchability of the resulting error

landscapes. Quicker convergence to an attraction basin was often observed as a result of

increased dimensionality. However, larger hidden layers were shown to be more instru-

mental in the overall improvement of the landscape structure. Sensitivity to the step size

and the initialisation range was reduced for larger hidden layers. Superior classification

quality was also associated with larger hidden layer sizes.

The steep gradient cluster was associated with inferior generalisation performance

for most problems considered. The increased searchability due to the additional hidden

layers/hidden neurons often resulted in better exploitation of the global minimum, but

worse generalisation performance.
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Thus, an increase in the problem dimensionality was shown to yield a more searchable

and more exploitable error landscape. An increase in the hidden layer size was shown

to effectively reduce the number of local minima, and simplify the shape of the global

attractor. An increase in the number of hidden layers was shown to sharpen the attractor,

thus making it more exploitable.

The next chapter concludes the thesis by summarising the obtained results, and

discusses potential topics for future research.



Chapter 10

Conclusions

This chapter concludes the thesis by summarising the main findings and contributions

in line with the research objectives (Section 10.1), and proposing some topics for future

research (Section 10.2).

10.1 Summary of Conclusions

The main objective of this work was to study NN loss surfaces using FLA techniques,

and to determine the relationship between various NN hyperparameters and the resulting

landscape features. NNs and the associated hyperparameters that influence the error

landscapes were discussed in Chapter 2. In order to apply FLA to NNs, a survey of

the existing FLA methods was performed in Chapter 3. It was determined that the

sampling methods typically used to perform FLA are defined for bounded spaces. Thus,

the first sub-objective of this thesis was to investigate the sensitivity of the FLA metrics

to the chosen search space boundaries, and to determine whether NN loss surfaces exhibit

different characteristics in different subspaces.

The FLA sensitivity to the search space boundaries was studied in Chapter 4. All

FLA metrics used in this study exhibited a sensitivity to the boundaries chosen. NN

loss surfaces exhibited high gradient values on both small and large search subspaces,

indicating that steep gradients constitute an inherent NN error landscape property. Gra-

dient magnitudes increased with an increase in problem dimensionality. An increase in

261
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search space boundaries increased the variance of gradients, indicating that the step-like

transitions between plateaus become increasingly drastic further away from the origin.

NN weights with absolute values within the [0.1, 1] interval were shown to capture in-

formation potentially useful to an optimisation algorithm. Asymmetric regions of the

search space were shown to be less searchable than the symmetric regions.

The second sub-objective of the thesis was to establish FLA as a viable method for

NN error landscape analysis. For this purpose, a selection of existing FLA techniques

were used to study the influence of a regularisation term on the error landscape in

Chapter 5. Weight elimination was considered for the purpose of this study. The weight

elimination term was shown to smooth the error landscape while introducing additional

minima. The backpropagation algorithm was shown to perform robustly on very rugged

landscapes. However, step-like landscapes with rare and sudden fitness changes affected

the backpropagation performance negatively. Additionally, optimisation ranges for the

w0 and λ regularisation parameters were suggested.

The third sub-objective of the thesis was to identify weaknesses in the existing FLA

techniques, and to propose new FLA metrics and algorithms accordingly. Based on the

studies performed in Chapters 3, 4, and 5, the following three main weaknesses of the

existing techniques were identified:

1. The existing metrics do not provide a means to quantify the modality of the NN

error landscapes. Existing modality metrics rely on the Euclidean distance calcu-

lations, which was shown to be unreliable in high-dimensional spaces [95].

2. Sampling algorithms such as the random walk and the progressive random walk

provide no guarantees of discovering high fitness solutions, and thus cannot be

employed for the purpose of modality quantification.

3. The existing adaptive sampling algorithms for continuous spaces use population-

based mechanics to perform hill climbing, which is inefficient in high-dimensional

spaces.

To combat these weaknesses, the following methods were proposed in Chapter 6:

1. The progressive gradient walk was proposed as an efficient alternative to population-

based hill climbing. The progressive gradient walk uses the gradient information
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to determine the direction of each step. The magnitude of the step is randomised

per dimension within the given bounds, thus adding stochasticity and preventing

convergence.

2. An intuitive visualisation of the local minima and the associated basins of at-

traction was proposed, namely loss-gradient clouds. The loss-gradient clouds are

constructed by plotting the loss values against the corresponding gradient vector

magnitudes as sampled by the progressive gradient walk. Points of zero gradient

are identified as the stationary points. To further classify the stationary points as

minima, maxima, or saddles, Hessian matrix information is used to identify the

curvature of each sampled point.

3. Two simple metrics to quantify the number and extent of attraction basins as

sampled by the progressive gradient walks were proposed. The proposed metrics

quantify the connectedness of the various basins, as well as the likelihood of escape

from the discovered basins.

The second main objective was to study the NN loss surfaces with FLA techniques

under various hyperparameter settings, namely loss functions, activation functions, and

NN architectures. Chapter 7 presented a study of the loss surfaces associated with the

quadratic (SSE) and entropic (CE) loss functions. In Chapter 8, FLA was applied to

NN problems with various combinations of the sigmoid, TanH, ReLU, ELU, and softmax

activation functions employed in the hidden and output layers. Chapter 9 concluded the

study by presenting an analysis of various NN architectures in the FLA context. The

main findings of these three chapters are summarised as follows:

1. Loss functions study, Chapter 7:

• Both SSE and CE were shown to exhibit convex local minima for the XOR

problem. The majority of the classification problems considered exhibited a

single main attractor around the global optimum, indicating that no local

minima was detected.

• Saddle curvature was the most prevalent curvature observed, and some of the

higher-dimensional problems exhibited only saddle curvature for all sampled
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points.

• SSE was shown to consistently exhibit more local stationary points and asso-

ciated attractors than CE.

• CE exhibited a more consistent and searchable landscape structure with steeper

gradients for all problems considered.

• SSE was shown to yield superior generalisation performance in some cases.

• The presence of valley-shaped optima in NN error landscapes was confirmed.

The FLA results suggested that the discovered valleys became wider further

away from the origin. For the majority of the problems, descending into a

valley was easily accomplished by the gradient walks. Travelling down the

bottom of the valley towards a global minimum yielded a decrease in the

generalisation performance for both SSE and CE.

• The sampled points were often split into two major clusters: points of low

error and high gradients, and points of higher error and low gradients. These

are hypothesised to represent narrow and wide valleys, respectively. Superior

generalisation performance was exhibited by the points in the wide valleys.

2. Activation functions study, Chapter 8:

• The choice of activation function did not have an effect on the total number

of attractors in the search space, but affected the properties of the discovered

basins of attraction.

• ReLU was shown to exhibit the most convexity out of all the activation func-

tions considered, and ELU was shown to exhibit the least flatness.

• The stationary points exhibited by ReLU and ELU were generally more con-

nected than those exhibited by TanH, indicating that ReLU and ELU yielded

more searchable landscapes. However, ReLU and ELU were shown to exhibit

stronger sensitivity to the step size and the initialisation range than TanH.

• All activation functions exhibited a split into two clusters of steep and shal-

low gradients, associated with narrow and wide valleys. Narrow valleys were

associated with saturated neurons and embedded regularised minima.
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• The ELU activation function exhibited superior generalisation properties com-

pared to the other hidden neuron activation functions.

• Softmax in the output layer reduced the convexity of the problem by introduc-

ing a higher degree of non-separability. Only the problems of higher dimen-

sionality and complexity were shown to benefit from the softmax activation

function.

3. NN architectures study, Chapter 9:

• An increase in problem dimensionality yielded an increase in indefinite, or flat

curvature. The flat curvature was especially prevalent further away from the

origin for all problems considered.

• An increase in the number of hidden layers yielded a more rapid increase in

flatness than an increase in the hidden layer size.

• Despite the flatness, an increase in the problem dimensionality was shown to

yield a more searchable and more exploitable error landscape.

• An increase in the hidden layer size was shown to effectively reduce the number

of local minima, and to simplify the shape of the global attractor by widening

the attraction basin.

• An increase in the number of hidden layers was shown to sharpen the global

attractor, thus making it more exploitable.

• An increase in the number of hidden layers had no effect on the total number of

stationary attractors, indicating that depth without width does not guarantee

a good final solution.

• An increase in the number of hidden layers was shown to exaggerate the

steep gradient cluster, associated with inferior generalisation performance for

most problems considered. Thus, deeper architectures promoted narrow valley

structures.

Overall, the FLA techniques employed in this thesis successfully confirmed the existing

theoretical insights, and provided intuitive, visual means of improving and refining the

current understanding of NN error landscapes.
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10.2 Future Work

This thesis yielded a number of interesting research directions that can be explored in

future. The proposed research topics are discussed below.

10.2.1 Loss surfaces of neural networks for regression

This study was limited to classification problems only. It would be interesting to perform

a similar analysis of NNs for regression tasks, and determine whether regression problems

yield different landscape properties. Regression problems require higher precision than

classification problems, and may therefore exhibit more varied landscape features. It

would be especially interesting to determine whether regression problems exhibit the

same lack of local minima as the classification problems.

10.2.2 Gravitational search

Across all experiments conducted in this study, the samples initialised and/or confined

to a smaller range around the origin typically exhibited superior performance. From

the FLA perspective, wider regions of the search space were classified as highly rugged,

with extremely steep gradients and little information to guide a training algorithm. This

observation not only highlights the importance of the weight initialisation range for the

success of a training algorithm, but also indicates that a search algorithm that gravitates

towards the origin may prove to be a viable search strategy. The design and testing of

such an algorithm is proposed as further research.

10.2.3 Fitness landscape analysis for regularisation

The regularisation study presented in this thesis was limited to the weight elimination

approach. It will be interesting to compare weight elimination error landscapes to other

regularised error landscapes, such as weight decay and dropout. FLA can potentially

be used to optimise the regularisation parameters involved, since FLA metrics provide a

handy visualisation tool for the corresponding error landscapes.
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10.2.4 Multi-objective regularisation

The regularisation coefficient λ was shown to have a significant effect on the resulting

error landscape. The necessity to optimise λ can be eliminated altogether by employing

a multi-objective algorithm to optimise both the loss function and the regularisation

term separately, and to find a suitable trade-off solution thereof.

10.2.5 Exploitative population-based search

The presence of a single global attractor in the majority of the problems considered

suggests that an exploitative rather than an exploratory approach should be taken for the

purpose of NN training. This observation has strong implications for population-based

training algorithms, which so far failed to be effectively applied to high-dimensional NN

training problems. A population-based approach designed with exploitation rather than

exploration in mind may perform competitively, especially if gradient information is used

as one of the population guides. This hypothesis is further supported by a recent study of

PSO in high-dimensional spaces [102], were the efficacy of exploitation over exploration

in high-dimensional spaces was observed. Investigation of exploitative population-based

techniques applied to NNs is an interesting topic for future research.

10.2.6 Stochastic search

The impressive ability of the randomised progressive gradient walks to find the global

optimum suggests that stochastic gradient-guided approaches can be considered for the

purpose of NN training. A hybrid algorithm can be developed that switches between the

classic gradient descent and the stochastic gradient-guided search based on the magni-

tude of the gradient, or some other measure of stagnation.

10.2.7 New loss functions

The observation that the SSE landscape may have superior generalisation properties

suggests that a hybrid of SSE and CE may produce a landscape that combines the

searchability of CE with the robustness of SSE. FLA properties of such a loss function
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can be evaluated using the techniques employed in this study.

10.2.8 Properties of the wide and narrow valleys

The results of this study confirmed previously made observations of the presence of valley-

shaped optima in NN error landscapes. Further, the presence of wide and narrow valleys

was established. Narrow valleys were associated with saturated neurons and embedded

local minima. However, no explicit differentiation between the saturated points and the

embedded minima was made. Further studies can be performed to uncover the properties

of the narrow valleys associated with embedded minima. Identification of the embedded

minima in the narrow valleys may be used to design new training algorithms biased to-

wards the discovery of minimal architectures within the over-parametrised search spaces.

10.2.9 Other neural network architectures

This study was limited to standard, fully connected feed-forward architectures. FLA

analysis of more complex modern NN architectures, such as convolutional NNs, recurrent

NNs, and NNs with residual connections, can be carried out. Larger, more realistic

datasets than the ones used in this study should also be considered to confirm the

various observations and conclusions made in this thesis.

10.2.10 Loss-gradient cloud analysis of continuous optimisation

problems

The loss-gradient cloud visualisation proposed in this study was designed for the anal-

ysis of NN loss surfaces. However, the same principle can be successfully applied to

other continuous optimisation problems. When numerical gradient is unavailable, an

estimate of the gradient can be used. The applicability of the loss-gradient clouds to

other optimisation domains is an interesting topic for future research.
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10.2.11 Improved modality metrics

This study did not attempt to quantify the number of optima. An improved modality

metric can be designed to not only quantify the presence or absence of the stationary

points, but also to map the relationship between the various attractors. Local optima

networks (LONs), originally designed for combinatorial problems [101], can be adapted

for NN problems. The stationary points discovered by the progressive gradient walks

can be mapped onto a LON structure, and LON techniques can be further used to gain

more insight into the structure of the NN error landscapes.

10.2.12 Discrete event stochastic simulation metamodeling for

FLA

This study employed FLA methods to analyse the features of the loss surfaces. An al-

ternative approach would be to employ discrete event stochastic simulation metamodel-

ing [66, 151] for the purpose of understanding the search space. Discrete event simulation

is typically used in the engineering applications when the system output is not directly

observable. A metamodel is constructed in order to simplify the system that cannot

be feasibly sampled. Therefore, a metamodel can potentially be created to capture the

features of a NN loss surface in a lower-dimensional space.
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[101] G. Ochoa, M. Tomassini, S. Vérel, and C. Darabos. A study of NK landscapes’

basins and local optima networks. In Proceedings of the 10th Annual Conference

on Genetic and Evolutionary Computation, pages 555–562, New York, NY, USA,

2008. ACM.

[102] E. T. Oldewage. The perils of particle swarm optimization in high dimensional

problem spaces. Master’s thesis, University of Pretoria, 2018.

[103] T. E. Oliphant. A guide to numpy, 2006. Software available from http://www.

numpy.org.

[104] K. Pearson. The problem of the random walk. Nature, 72(1867):342, 1905.

[105] E. Pitzer and M. Affenzeller. A comprehensive survey on fitness landscape analysis.

In Recent Advances in Intelligent Engineering Systems, pages 161–191. Springer,

2012.

http://www.numpy.org
http://www.numpy.org


Bibliography 281

[106] L. Prechelt. Proben1 – a set of neural network benchmark problems and bench-

marking rules. Technical report, Universität Karlsruhe, Karlsruhe, Germany,

September 1994.

[107] A. Rakitianskaia and A. Engelbrecht. Weight regularisation in particle swarm

optimisation neural network training. In Proceedings of the IEEE Symposium on

Swarm Intelligence, pages 1–8, Florida, USA, 2014. IEEE.

[108] A. Rakitianskaia and A. Engelbrecht. Measuring saturation in neural networks. In

Proceedings of the IEEE Symposium Series on Computational Intelligence, pages

1423–1430. IEEE, 2015.

[109] A. Rakitianskaia and A. Engelbrecht. Saturation in PSO neural network training:

Good or evil? In Proceedings of the IEEE Congress on Evolutionary Computation,

pages 125–132, Sendai, Japan, 2015. IEEE.

[110] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J.

Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti. Detecting novel

associations in large data sets. Science, 334(6062):1518–1524, 2011.

[111] B. Rister and D. L. Rubin. Piecewise convexity of artificial neural networks. Neural

Networks, 94:34 – 45, 2017.

[112] F. Rosenblatt. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review, 65(6):386, 1958.

[113] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representa-

tions by error propagation. Technical report, California University, San Diego La

Jolla Institute for Cognitive Science, 1985.

[114] L. Sagun, U. Evci, V. U. Guney, Y. Dauphin, and L. Bottou. Empirical anal-

ysis of the hessian of over-parametrized neural networks. In Proceedings of the

International Conference on Learning Representations, pages 1–15, 2018.



Bibliography 282

[115] L. Sagun, V. U. Guney, G. B. Arous, and Y. LeCun. Explorations on high di-

mensional landscapes. In Proceedings of the International Conference on Learning

Representations, pages 1–11, 2015.

[116] H. Sak, A. Senior, and F. Beaufays. Long short-term memory recurrent neural net-

work architectures for large scale acoustic modeling. In Fifteenth annual conference

of the international speech communication association, pages 338–342, 2014.

[117] J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks,

61:85–117, 2015.

[118] H. Shen. Towards a mathematical understanding of the difficulty in learning with

feedforward neural networks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 811–820, 2018.

[119] T. Smith, P. Husbands, and M. O’Shea. Not measuring evolvability: Initial in-

vestigation of an evolutionary robotics search space. In Proceedings of the IEEE

Congress on Evolutionary Computation, volume 1, pages 9–16. IEEE, 2001.

[120] S. Solla, E. Levin, and M. Fleisher. Accelerated learning in layered neural networks.

Complex systems, 2:625–640, 1988.

[121] D. Soudry and Y. Carmon. No bad local minima: Data independent training error

guarantees for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

[122] F. Spitzer. Principles of random walk, volume 34. Springer Science & Business

Media, 2013.

[123] I. G. Sprinkhuizen-Kuyper and E. J. Boers. The local minima of the error surface

of the 2-2-1 XOR network. Annals of Mathematics and Artificial Intelligence,

25(1-2):107, 1999.

[124] I. G. Sprinkhuizen-Kuyper and E. J. Boers. A local minimum for the 2-3-1 XOR

network. IEEE Transactions on Neural Networks, 10(4):968–971, 1999.



Bibliography 283

[125] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: a simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15(1):1929–1958, 2014.

[126] P. F. Stadler. Fitness landscapes. In Biological evolution and statistical physics,

pages 183–204. Springer, 2002.

[127] Y. Sun, S. K. Halgamuge, M. Kirley, and M. A. Munoz. On the selection of fitness

landscape analysis metrics for continuous optimization problems. In Proceedings of

the IEEE International Conference on Information and Automation for Sustain-

ability, pages 1–6. IEEE, 2014.

[128] Y. Sun, M. Kirley, and S. K. Halgamuge. Quantifying variable interactions in con-

tinuous optimization problems. IEEE Transactions on Evolutionary Computation,

21(2):249–264, 2017.

[129] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural

networks. In Advances in neural information processing systems, pages 3104–3112,

2014.

[130] G. Swirszcz, W. M. Czarnecki, and R. Pascanu. Local minima in training of neural

networks. arXiv e-prints, page arXiv:1611.06310, November 2016.

[131] T. Tieleman. Training restricted Boltzmann machines using approximations to the

likelihood gradient. In Proceedings of the International Conference on Machine

learning, pages 1064–1071. ACM, 2008.

[132] J. W. Tukey. Exploratory data analysis, volume 2. Reading, Mass., 1977.

[133] P. D. Turney. Increasing evolvability considered as a large-scale trend in evolution.

In Proceedings of the Genetic and Evolutionary Computation Conference Workshop

Program, pages 43–46. ACM, 1999.

[134] W. A. van Aardt, A. S. Bosman, and K. M. Malan. Characterising neutrality in

neural network error landscapes. In Proceedings of the IEEE Congress on Evolu-

tionary Computation, pages 1374–1381. IEEE, 2017.



Bibliography 284

[135] F. Van Den Bergh and A. P. Engelbrecht. Cooperative learning in neural networks

using particle swarm optimizers. South African Computer Journal, 26:84–90, 2000.

[136] A. B. Van Wyk and A. P. Engelbrecht. Overfitting by PSO trained feedforward

neural networks. In Proceedings of the IEEE Congress on Evolutionary Computa-

tion, pages 1–8, 2010.

[137] V. K. Vassilev, T. C. Fogarty, and J. F. Miller. Information characteristics and

the structure of landscapes. Evolutionary computation, 8(1):31–60, 2000.

[138] J. Wang, Z. Ye, W. Gao, and J. M. Zurada. Boundedness and convergence analysis

of weight elimination for cyclic training of neural networks. Neural Networks,

82:49–61, 2016.

[139] E. J. Wegman. Hyperdimensional data analysis using parallel coordinates. Journal

of the American Statistical Association, 85(411):664–675, 1990.

[140] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman. Generalization by weight

elimination with application to forecasting. Advances in Neural information pro-

cessings systems, 3, 1991.

[141] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman. Generalization by weight-

elimination applied to currency exchange rate prediction. In Proceedings of the

International Joint Conference on Neural Networks, volume 1, pages 837–841,

Seattle, 1991. IEEE.

[142] E. Weinberger. Correlated and uncorrelated fitness landscapes and how to tell the

difference. Biological cybernetics, 63(5):325–336, 1990.

[143] P. J. Werbos. Beyond regression: New tools for prediction and analysis in the

behavioural sciences. PhD thesis, Harvard University, Boston, USA, 1974.

[144] D. Whitley, S. Rana, J. Dzubera, and K. E. Mathias. Evaluating evolutionary

algorithms. Artificial intelligence, 85(1-2):245–276, 1996.

[145] H. Wickham. ggplot2: Elegant graphics for data analysis, 2016. Software available

from https://ggplot2.tidyverse.org.

https://ggplot2.tidyverse.org


Bibliography 285

[146] B. M. Wilamowski. Neural network architectures and learning algorithms. IEEE

Industrial Electronics Magazine, 3(4), 2009.

[147] P. R. Winters. Forecasting sales by exponentially weighted moving averages. Man-

agement science, 6(3):324–342, 1960.

[148] S. Wright. The roles of mutation, inbreeding, crossbreeding, and selection in evo-

lution. In Proceedings of the International Congress on Genetics, pages 356–366,

1932.

[149] C. Xing, D. Arpit, C. Tsirigotis, and Y. Bengio. A walk with sgd. arXiv e-prints,

page arXiv:1802.08770, February 2018.

[150] B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of rectified activations

in convolutional network. arXiv preprint arXiv:1505.00853, 2015.

[151] B. Yu and K. Popplewell. Metamodels in manufacturing: a review. The Interna-

tional Journal of Production Research, 32(4):787–796, 1994.

[152] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le, P. Nguyen,

A. Senior, V. Vanhoucke, J. Dean, et al. On rectified linear units for speech

processing. In Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing, pages 3517–3521. IEEE, 2013.



Appendix A

Benchmark problems

A selection of well-known real world classification problems of varied dimensionality were

used in this study. Table A.1 summarises the minimal NN architecture parameters used

for each dataset, as well as the total dimensionality of the weight space. The specified

sources point to publications from which each dataset and/or NN architectures were

adopted.

Table A.1: Benchmark Problems

Problem Input Hidden Output Dimensionality Source

XOR 2 2 1 9 [48]

Iris 4 4 3 35 [37]

Diabetes 8 8 1 81 [106]

Glass 9 9 6 150 [106]

Cancer 30 10 1 321 [106]

Heart 32 10 1 341 [106]

MNIST 784 10 10 7960 [72]

The properties of each dataset are briefly discussed below:

1. XOR: XOR (exclusive-or) is a simple, but linearly non-separable problem that can

be solved by a feedforward NN with at least two hidden neurons. As such, XOR
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is often used to analyse basic properties of artificial neural networks. The dataset

consists of 4 binary patterns.

2. Iris: The famous Iris flower data set [37] contains 50 specimens from each of the

three species of iris flowers, i.e. Iris Setosa, Iris Versicolor, and Iris Virginica.

There are 150 patterns in the dataset. The iris data set, even though relatively

low-dimensional and simple, is not altogether trivial, as two of the three output

classes significantly overlap across two of the four input variables, and two inputs

have low correlation with the class labels [47].

3. Diabetes: The diabetes dataset [106] captures personal data of 768 Pima Indian

patients, classified as diabetes positive or diabetes negative. All inputs are con-

tinuous, and 65.1% of the examples are diabetes negative. The data set contains

noise [106].

4. Glass: The glass dataset [106] captures chemical components of glass shards. Each

glass shard belongs to one of six classes: float processed or non-float processed

building windows, vehicle windows, containers, tableware, or head lamps. There

are 214 patterns in the dataset, all inputs are continuous, and two of the inputs

have very low correlation with the class labels. The frequency of the 6 classes are

70, 76, 17, 13, 9, and 29 instances, respectively.

5. Cancer: The breast cancer Wisconsin (diagnostic) dataset [106] consists of 699

patterns, each containing tumor descriptors, and a binary classification into benign

or malignant.

6. Heart: The heart disease prediction dataset [106] contains 920 patterns, each

describing various patient descriptors. The goal is to correctly predict whether at

least one of four major vessels is reduced in diameter by more than 50%.

7. MNIST: The MNIST dataset of handwritten digits [72] contains 70,000 examples

of grey scale handwritten digits from 0 to 9, where each digit is stored as a 28× 28

grey scale image. For the purpose of this study, the 2-dimensional input is treated

as a 1-dimensional vector.
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Input values for all problems except XOR have been standardised by subtracting the

mean per input dimension, and scaling every input variable to unit variance. All outputs

were binary encoded for problems with two output classes, and one-hot binary encoded

for problems with more than two output classes.



Appendix B

Classification Accuracy

The average classification accuracy values arrived at by the gradient walks are reported

in this appendix. Averages are calculated across the accuracy values as observed at the

last step of each walk. The classification accuracy of the training set is referred to as Ct,

and the classification accuracy of the test set is referred to as Cg. Tables B.1, B.2, B.3,

B.4, B.5, and B.6 list the average Ct and Cg values obtained for the SSE and CE losses for

the Iris, Diabetes, Glass, Cancer, Heart, and MNIST problems, respectively. Tables B.7,

B.8, B.9, B.10, B.11, and B.12 list the average Ct and Cg values obtained for the various

activation functions for the Iris, Diabetes, Glass, Cancer, Heart, and MNIST problems,

respectively. Tables B.13, B.14, and B.15 list the average Ct and Cg values obtained

using the softmax output activation function for the Iris, Glass, and MNIST problems,

respectively. Tables B.16, B.17, B.18, B.19, B.20, and B.21 list the average Ct and Cg

values obtained for the various NN architectures for the Iris, Diabetes, Glass, Cancer,

Heart, and MNIST problems, respectively. Standard deviation is shown in parenthesis.
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Table B.1: Iris, classification accuracy.

micro macro

SSE CE SSE CE

Ct Cg Ct Cg Ct Cg Ct Cg

[−1, 1] 1.00000 0.91819 0.98352 0.93333 0.96638 1.00000 0.97557 0.96667

(0.00000) (0.01660) (0.00125) (0.00000) (0.00881) (0.00000) (0.00646) (0.00000)

[−10, 10] 0.97252 0.97105 0.99245 0.90581 0.92155 0.92829 0.92857 0.92457

(0.07622) (0.08790) (0.00734) (0.05097) (0.09578) (0.10521) (0.05844) (0.05806)

Table B.2: Diabetes, classification accuracy.

micro macro

SSE CE SSE CE

Ct Cg Ct Cg Ct Cg Ct Cg

[−1, 1] 0.91094 0.66913 0.85453 0.73725 0.81141 0.73586 0.81187 0.74165

(0.01002) (0.02400) (0.00991) (0.02684) (0.00959) (0.01712) (0.01017) (0.02307)

[−10, 10] 0.85434 0.74521 0.83494 0.69911 0.79669 0.68657 0.71915 0.66424

(0.01441) (0.02648) (0.01480) (0.03019) (0.02970) (0.03580) (0.06485) (0.05338)

Table B.3: Glass, classification accuracy.

micro macro

SSE CE SSE CE

Ct Cg Ct Cg Ct Cg Ct Cg

[−1, 1] 0.94400 0.55738 0.93769 0.62740 0.79600 0.68398 0.79793 0.67744

(0.01636) (0.04912) (0.01551) (0.04766) (0.02738) (0.04128) (0.02285) (0.05012)

[−10, 10] 0.79578 0.60513 0.90388 0.62657 0.71373 0.58626 0.69585 0.55828

(0.08762) (0.08170) (0.02785) (0.05711) (0.06541) (0.06897) (0.07784) (0.08112)
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Table B.4: Cancer, classification accuracy.

micro macro

SSE CE SSE CE

Ct Cg Ct Cg Ct Cg Ct Cg

[−1, 1] 0.99944 0.97298 1.00000 0.97322 0.99451 0.97656 0.99633 0.97487

(0.00096) (0.00788) (0.00000) (0.00861) (0.00227) (0.00759) (0.00275) (0.00887)

[−10, 10] 0.99813 0.96206 1.00000 0.96408 0.99539 0.96574 0.99357 0.97335

(0.00150) (0.01170) (0.00000) (0.00685) (0.00279) (0.01006) (0.00612) (0.00961)

Table B.5: Heart, classification accuracy.

micro macro

SSE CE SSE CE

Ct Cg Ct Cg Ct Cg Ct Cg

[−1, 1] 0.97447 0.78274 0.97918 0.77466 0.91038 0.83086 0.90601 0.82772

(0.00477) (0.02250) (0.00648) (0.02138) ( 0.00925) (0.01538) (0.00915) (0.01743)

[−10, 10] 0.95409 0.76148 0.93496 0.80585 0.85821 0.83363 0.80135 0.74857

(0.00910) (0.02149) (0.01096) (0.02425) (0.01829) (0.02063) (0.05700) (0.05340)

Table B.6: MNIST, classification accuracy.

micro macro

SSE CE SSE CE

Ct Cg Ct Cg Ct Cg Ct Cg

[−1, 1] 0.98922 0.56534 0.99846 0.57332 0.96611 0.60834 0.98404 0.61831

(0.01097) (0.04874) (0.00395) (0.04828) (0.01829) (0.04600) (0.01334) (0.04547)

[−10, 10] 0.87408 0.49537 0.95444 0.52401 0.74988 0.46981 0.70077 0.44259

(0.05040) (0.05590) (0.02668) (0.05063) (0.06487) (0.06232) (0.07736) (0.06666)
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Table B.7: Iris, classification accuracy for different activations.

TanH ReLU ELU

Ct Cg Ct Cg Ct Cg

[−1, 1], 1.0000 0.9664 0.9990 0.9612 0.9834 1.0000

micro (0.0004) (0.0031) (0.0027) (0.0123) (0.0013) (0.0000)

[−1, 1] 0.9663 0.9783 0.9691 0.9453 0.9703 0.9603

macro (0.0121) (0.0161) (0.0125) (0.0318) (0.0130) (0.0192)

[−10, 10] 0.9899 0.9618 0.9767 0.9672 0.9766 0.9616

micro (0.0074) (0.0258) (0.0232) (0.0355) (0.0179) (0.0267)

[−10, 10] 0.9351 0.8746 0.8597 0.8735 0.8721 0.8963

macro (0.0720) (0.0714) (0.1113) (0.1344) (0.0980) (0.1098)

Table B.8: Diabetes, classification accuracy for different activations.

TanH ReLU ELU

Ct Cg Ct Cg Ct Cg

[−1, 1], 0.8511 0.7488 0.8251 0.7456 0.8040 0.7948

micro (0.0107) (0.0269) (0.0100) (0.0214) (0.0106) (0.0200)

[−1, 1], 0.8217 0.7141 0.7605 0.7737 0.7767 0.7612

macro (0.0103) (0.0216) (0.0192) (0.0502) (0.0159) (0.0231)

[−10, 10], 0.8229 0.7175 0.7459 0.6680 0.7439 0.6818

micro (0.0156) (0.0276) (0.0473) (0.0471) (0.0456) (0.0438)

[−10, 10], 0.7222 0.6751 0.6585 0.6498 0.6494 0.6356

macro (0.0510) (0.0514) (0.0780) (0.0919) (0.0743) (0.0727)
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Table B.9: Glass, classification accuracy for different activations.

TanH ReLU ELU

Ct Cg Ct Cg Ct Cg

[−1, 1], 0.9242 0.6804 0.9106 0.6902 0.8913 0.6950

micro (0.0190) (0.0496) (0.0241) (0.0478) (0.0202) (0.0370)

[−1, 1], 0.7875 0.6342 0.7765 0.6708 0.7323 0.7015

macro (0.0297) (0.0668) (0.0342) (0.0502) (0.0361) (0.0579)

[−10, 10], 0.8430 0.6209 0.7779 0.5605 0.7660 0.6433

micro (0.0445) (0.0730) (0.0580) (0.0735) (0.0586) (0.0635)

[−10, 10], 0.6671 0.6045 0.5437 0.4696 0.5158 0.4310

macro (0.0727) (0.0849) (0.0625) (0.0808) (0.1082) (0.0970)

Table B.10: Cancer, classification accuracy for different activations.

TanH ReLU ELU

Ct Cg Ct Cg Ct Cg

[−1, 1], 1.0000 0.9681 1.0000 0.9685 1.0000 0.9586

micro (0.0000) (0.0107) (0.0000) (0.0133) (0.0000) (0.0105)

[−1, 1], 0.9958 0.9578 0.9919 0.9753 0.9942 0.9661

macro (0.0030) (0.0159) (0.0062) (0.0151) (0.0048) (0.0104)

[−10, 10], 1.0000 0.9669 0.9992 0.9565 0.9990 0.9790

micro (0.0002) (0.0174) (0.0020) (0.0190) (0.0022) (0.0132)

[−10, 10], 0.9825 0.9643 0.9827 0.9604 0.9847 0.9668

macro (0.0473) (0.0453) (0.0190) (0.0274) (0.0134) (0.0210)
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Table B.11: Heart, classification accuracy for different activations.

TanH ReLU ELU

Ct Cg Ct Cg Ct Cg

[−1, 1], 0.9765 0.7883 0.9442 0.7727 0.9304 0.8040

micro (0.0067) (0.0234) (0.0108) (0.0219) (0.0100) (0.0205)

[−1, 1], 0.9211 0.7645 0.8506 0.7917 0.8485 0.8041

macro (0.0088) (0.0246) (0.0251) (0.0281) (0.0213) (0.0282)

[−10, 10], 0.9308 0.7581 0.8700 0.7593 0.8788 0.7540

micro (0.0108) (0.0237) (0.0256) (0.0321) (0.0242) (0.0299)

[−10, 10], 0.7832 0.7737 0.7394 0.7175 0.7487 0.6998

macro (0.0551) (0.0611) (0.0678) (0.0661) (0.0648) (0.0633)

Table B.12: MNIST, classification accuracy for different activations.

TanH ReLU ELU

Ct Cg Ct Cg Ct Cg

[−1, 1], 0.8974 0.4929 0.9629 0.5769 0.9732 0.5816

micro (0.1576) (0.0878) (0.1252) (0.1034) (0.1159) (0.0985)

[−1, 1] 0.9487 0.5714 0.8851 0.5165 0.9705 0.5747

macro (0.0249) (0.0505) (0.0608) (0.0668) (0.0261) (0.0527)

[−10, 10] 0.4144 0.2062 0.7478 0.2944 0.8442 0.4058

micro (0.0706) (0.0425) (0.0940) (0.0551) (0.0774) (0.0599)

[−10, 10] 0.2486 0.1501 0.4901 0.2826 0.4531 0.2701

macro (0.0616) (0.0424) (0.0876) (0.0690) (0.0994) (0.0739)
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Table B.13: Iris, classification accuracy using the softmax activation in the output layer.

TanH ReLU ELU

Ct Cg Ct Cg Ct Cg

[−1, 1], 0.9892 0.9602 0.9835 0.9624 0.9828 0.9855

micro (0.0038) (0.0148) (0.0016) (0.0236) (0.0036) (0.0175)

[−1, 1] 0.9524 0.9684 0.9544 0.9551 0.9538 0.9510

macro (0.0284) (0.0529) (0.0238) (0.0307) (0.0237) (0.0282)

[−10, 10] 0.9968 0.9615 0.9647 0.9730 0.9812 0.9132

micro (0.0058) (0.0155) (0.0353) (0.0442) (0.0211) (0.0247)

[−10, 10] 0.8446 0.8419 0.8256 0.8247 0.8323 0.8305

macro (0.0996) (0.0980) (0.1253) (0.1368) (0.1038) (0.1141)

Table B.14: Glass, classification accuracy using the softmax activation in the output layer.

TanH ReLU ELU

Ct Cg Ct Cg Ct Cg

[−1, 1], 0.9617 0.5913 0.9285 0.7332 0.9293 0.6787

micro (0.0137) (0.0560) (0.0176) (0.0442) (0.0168) (0.0511)

[−1, 1] 0.8014 0.6417 0.7800 0.5738 0.7585 0.6063

macro (0.0344) (0.0513) (0.0422) (0.0699) (0.0455) (0.0577)

[−10, 10] 0.8928 0.6095 0.8038 0.6256 0.7998 0.6105

micro (0.0397) (0.0722) (0.0524) (0.0755) (0.0561) (0.0701)

[−10, 10] 0.6752 0.6064 0.5814 0.4733 0.5896 0.4951

macro (0.0673) (0.1025) (0.0718) (0.0746) (0.0888) (0.0745)
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Table B.15: MNIST, classification accuracy using the softmax activation in the output layer.

TanH ReLU ELU

Ct Cg Ct Cg Ct Cg

[−1, 1], 0.9994 0.5699 0.9980 0.5807 0.9990 0.5899

micro (0.0025) (0.0474) (0.0056) (0.0465) (0.0047) (0.0470)

[−1, 1] 0.9833 0.6041 0.9707 0.6143 0.9683 0.5904

macro (0.0143) (0.0468) (0.0211) (0.0488) (0.0248) (0.0492)

[−10, 10] 0.5589 0.2501 0.5668 0.3230 0.8019 0.4001

micro (0.0757) (0.0462) (0.0736) (0.0493) (0.0819) (0.0618)

[−10, 10] 0.2942 0.1654 0.5151 0.3212 0.6131 0.3446

macro (0.0591) (0.0406) (0.0867) (0.0701) (0.0742) (0.0649)
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Table B.16: Iris, classification accuracy for the various NN architectures.

h = 4 2× h = 8 10× h = 40

Ct Cg Ct Cg Ct Cg

1
h
id

d
en

layer

[−1, 1], 0.9828 0.9855 0.9925 0.9667 0.9791 0.9683

micro (0.0036) (0.0175) (0.0038) (0.0000) (0.0059) (0.0071)

[−1, 1], 0.9538 0.9510 0.9377 0.9470 0.8817 0.8970

macro (0.0237) (0.0282) (0.0468) (0.0382) (0.0682) (0.0800)

[−10, 10], 0.9812 0.9132 0.9622 0.9731 0.9639 0.9448

micro (0.0211) (0.0247) (0.0290) (0.0303) (0.0242) (0.0353)

[−10, 10], 0.8323 0.8305 0.8924 0.9005 0.8939 0.8508

macro (0.1038) (0.1141) (0.0793) (0.0773) (0.0653) (0.0785)

[−1, 1], 0.9829 0.9621 0.9973 0.9618 0.9900 0.8650

2
h
id

d
en

layers

micro (0.0074) (0.0282) (0.0059) (0.0128) (0.0251) (0.0352)

[−1, 1], 0.9185 0.9321 0.9025 0.8980 0.8965 0.9520

macro (0.0695) (0.0543) (0.0596) (0.0685) (0.0573) (0.0376)

[−10, 10], 0.9383 0.9179 0.9473 0.9069 0.9669 0.9461

micro (0.0720) (0.0766) (0.0532) (0.0607) (0.0285) (0.0453)

[−10, 10], 0.6922 0.6415 0.7225 0.7650 0.8741 0.8849

macro (0.1206) (0.1363) (0.1286) (0.1202) (0.0927) (0.0959)

[−1, 1], 0.9823 0.9511 0.9907 0.9657 0.9727 0.9278

3
h
id

d
en

layers

micro (0.0072) (0.0251) (0.0126) (0.0100) (0.0209) (0.0389)

[−1, 1], 0.9010 0.8836 0.8851 0.9156 0.8399 0.8244

macro (0.0653) (0.0796) (0.0722) (0.0891) (0.1126) (0.1205)

[−10, 10], 0.8553 0.8160 0.8630 0.8093 0.8987 0.8015

micro (0.1325) (0.1437) (0.1100) (0.1019) (0.0985) (0.1029)

[−10, 10], 0.4441 0.4362 0.4811 0.4707 0.6510 0.6555

macro (0.1666) (0.1989) (0.1787) (0.2227) (0.1979) (0.1907)
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Table B.17: Diabetes, classification accuracy for the various NN architectures.

h = 8 2× h = 16 10× h = 80

Ct Cg Ct Cg Ct Cg

1
h
id

d
en

layer

[−1, 1], 0.8040 0.7948 0.8326 0.7174 0.7996 0.7329

micro (0.0106) (0.0200) (0.0091) (0.0179) (0.0140) (0.0238)

[−1, 1], 0.7767 0.7612 0.7609 0.7343 0.7115 0.6742

macro (0.0159) (0.0231) (0.0222) (0.0293) (0.0471) (0.0459)

[−10, 10], 0.7439 0.6818 0.7559 0.6948 0.7878 0.6978

micro (0.0456) (0.0438) (0.0288) (0.0391) (0.0355) (0.0368)

[−10, 10], 0.6494 0.6356 0.6914 0.6979 0.7088 0.6676

macro (0.0743) (0.0727) (0.0565) (0.0584) (0.0578) (0.0543)

[−1, 1], 0.8556 0.7195 0.8769 0.7171 0.9281 0.7025

2
h
id

d
en

layers

micro (0.0160) (0.0287) (0.0170) (0.0257) (0.0333) (0.0301)

[−1, 1], 0.7750 0.7433 0.7701 0.6872 0.7135 0.6707

macro (0.0223) (0.0365) (0.0327) (0.0513) (0.0679) (0.0756)

[−10, 10], 0.7348 0.6488 0.8067 0.6679 0.8939 0.6744

micro (0.0548) (0.0462) (0.0420) (0.0355) (0.0384) (0.0339)

[−10, 10], 0.5696 0.5650 0.5673 0.5673 0.7597 0.6720

macro (0.1103) (0.1229) (0.1172) (0.0847) (0.0643) (0.0569)

[−1, 1], 0.8751 0.7391 0.9193 0.7307 0.9946 0.6534

3
h
id

d
en

layers

micro (0.0189) (0.0239) (0.0260) (0.0317) (0.0043) (0.0278)

[−1, 1], 0.7718 0.7103 0.7264 0.6670 0.6896 0.6161

macro (0.0350) (0.0442) (0.0608) (0.0492) (0.1248) (0.0730)

[−10, 10], 0.6405 0.6338 0.8267 0.6825 0.9485 0.6977

micro (0.0791) (0.1161) (0.0767) (0.0492) (0.0389) (0.0355)

[−10, 10], 0.5183 0.5132 0.5421 0.5514 0.6510 0.5989

macro (0.1618) (0.1002) (0.1213) (0.1526) (0.1173) (0.1502)
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Table B.18: Glass, classification accuracy for the various NN architectures.

h = 9 2× h = 18 10× h = 90

Ct Cg Ct Cg Ct Cg

1
h
id

d
en

layer

[−1, 1], 0.9293 0.6787 0.9313 0.6516 0.8664 0.7602

micro (0.0168) (0.0511) (0.0154) (0.0456) (0.0293) (0.0383)

[−1, 1], 0.7585 0.6063 0.7506 0.6371 0.7649 0.5609

macro (0.0455) (0.0577) (0.0466) (0.0639) (0.0388) (0.0470)

[−10, 10], 0.7998 0.6105 0.8824 0.6104 0.9147 0.6288

micro (0.0561) (0.0701) (0.0395) (0.0561) (0.0300) (0.0534)

[−10, 10], 0.5896 0.4951 0.6978 0.6069 0.7587 0.6373

macro (0.0888) (0.0745) (0.0559) (0.0667) (0.0480) (0.0646)

[−1, 1], 0.9576 0.7004 0.9799 0.6447 0.9930 0.7012

2
h
id

d
en

layers

micro (0.0237) (0.0501) (0.0183) (0.0493) (0.0087) (0.0431)

[−1, 1], 0.7524 0.5880 0.7640 0.6733 0.7475 0.5932

macro (0.0481) (0.0696) (0.0500) (0.0676) (0.0584) (0.0784)

[−10, 10], 0.7359 0.5790 0.9044 0.6537 0.9225 0.5561

micro (0.1027) (0.0945) (0.0508) (0.0619) (0.0447) (0.0538)

[−10, 10], 0.3455 0.3077 0.4285 0.3679 0.7927 0.6215

macro (0.1334) (0.1466) (0.1299) (0.1391) (0.0584) (0.0745)

[−1, 1], 0.9783 0.5311 0.9985 0.6407 0.9804 0.6704

3
h
id

d
en

layers

micro (0.0189) (0.0471) (0.0035) (0.0545) (0.0197) (0.0436)

[−1, 1], 0.6815 0.6060 0.6543 0.5783 0.6688 0.5189

macro (0.0566) (0.0778) (0.0774) (0.0977) (0.0673) (0.0774)

[−10, 10], 0.4969 0.4147 0.7174 0.5126 0.8629 0.6021

micro (0.1332) (0.0986) (0.1229) (0.1049) (0.0754) (0.0639)

[−10, 10], 0.2222 0.2184 0.3189 0.2678 0.7321 0.5744

macro (0.1303) (0.1494) (0.1400) (0.1267) (0.0696) (0.0820)
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Table B.19: Cancer, classification accuracy for the various NN architectures.

h = 10 2× h = 20 10× h = 100

Ct Cg Ct Cg Ct Cg

1
h
id

d
en

layer

[−1, 1], 1.0000 0.9586 1.0000 0.9725 1.0000 0.9783

micro (0.0000) (0.0105) (0.0001) (0.0116) (0.0000) (0.0071)

[−1, 1], 0.9942 0.9661 0.9981 0.9502 0.9875 0.9560

macro (0.0048) (0.0104) (0.0026) (0.0172) (0.0120) (0.0292)

[−10, 10], 0.9990 0.9790 0.9982 0.9589 0.9952 0.9590

micro (0.0022) (0.0132) (0.0027) (0.0131) (0.0048) (0.0104)

[−10, 10], 0.9847 0.9668 0.9868 0.9717 0.9874 0.9555

macro (0.0134) (0.0210) (0.0094) (0.0170) (0.0104) (0.0158)

[−1, 1], 1.0000 0.9365 0.9999 0.9605 0.9985 0.9347

2
h
id

d
en

layers

micro (0.0001) (0.0151) (0.0006) (0.0079) (0.0024) (0.0140)

[−1, 1], 0.9939 0.9673 0.9942 0.9457 0.9904 0.9620

macro (0.0059) (0.0157) (0.0060) (0.0148) (0.0120) (0.0154)

[−10, 10], 0.9853 0.9586 0.9850 0.9532 0.9821 0.9575

micro (0.0254) (0.0290) (0.0120) (0.0136) (0.0117) (0.0197)

[−10, 10], 0.9490 0.9336 0.9754 0.9524 0.9772 0.9407

macro (0.0784) (0.0777) (0.0299) (0.0308) (0.0357) (0.0342)

[−1, 1], 0.9994 0.9549 0.9993 0.9548 0.9860 0.9780

3
h
id

d
en

layers

micro (0.0018) (0.0160) (0.0016) (0.0158) (0.0279) (0.0262)

[−1, 1], 0.9855 0.9618 0.9869 0.9576 0.9480 0.9312

macro (0.0387) (0.0388) (0.0236) (0.0275) (0.1023) (0.1058)

[−10, 10], 0.9629 0.9431 0.9713 0.9494 0.9745 0.9723

micro (0.0648) (0.0658) (0.0380) (0.0371) (0.0354) (0.0327)

[−10, 10], 0.8415 0.8476 0.9588 0.9318 0.9209 0.9004

macro (0.1673) (0.1764) (0.0824) (0.0827) (0.1267) (0.1331)
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Table B.20: Heart, classification accuracy for the various NN architectures.

h = 10 2× h = 20 10× h = 100

Ct Cg Ct Cg Ct Cg

1
h
id

d
en

layer

[−1, 1], 0.9304 0.8040 0.9419 0.8033 0.9382 0.8050

micro (0.0100) (0.0205) (0.0108) (0.0215) (0.0166) (0.0179)

[−1, 1], 0.8485 0.8041 0.8235 0.7921 0.7914 0.7207

macro (0.0213) (0.0282) (0.0286) (0.0406) (0.0570) (0.0538)

[−10, 10], 0.8788 0.7540 0.9269 0.7595 0.9782 0.7660

micro (0.0242) (0.0299) (0.0182) (0.0264) (0.0082) (0.0218)

[−10, 10], 0.7487 0.6998 0.8090 0.7687 0.8218 0.7849

macro (0.0648) (0.0633) (0.0446) (0.0444) (0.0448) (0.0430)

[−1, 1], 0.9751 0.7648 0.9853 0.7944 0.9971 0.7511

2
h
id

d
en

layers

micro (0.0110) (0.0234) (0.0090) (0.0229) (0.0027) (0.0218)

[−1, 1], 0.8822 0.7687 0.8905 0.7675 0.8403 0.7454

macro (0.0251) (0.0325) (0.0255) (0.0332) (0.0703) (0.0670)

[−10, 10], 0.8923 0.7081 0.9637 0.7515 0.9830 0.7642

micro (0.0377) (0.0378) (0.0179) (0.0259) (0.0118) (0.0211)

[−10, 10], 0.5906 0.5806 0.7180 0.6748 0.6723 0.6334

macro (0.0624) (0.0758) (0.0812) (0.0727) (0.1335) (0.1193)

[−1, 1], 0.9775 0.7637 0.9987 0.7259 0.9973 0.7735

3
h
id

d
en

layers

micro (0.0108) (0.0278) (0.0014) (0.0240) (0.0030) (0.0219)

[−1, 1], 0.8597 0.7606 0.8278 0.7403 0.8193 0.7126

macro (0.0387) (0.0434) (0.0530) (0.0484) (0.1189) (0.0940)

[−10, 10], 0.7502 0.6597 0.9770 0.7519 0.9519 0.7443

micro (0.0970) (0.0755) (0.0141) (0.0281) (0.0505) (0.0500)

[−10, 10], 0.5403 0.5273 0.6374 0.6091 0.6205 0.5675

macro (0.0745) (0.0659) (0.0770) (0.0732) (0.1417) (0.0916)
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Table B.21: MNIST, classification accuracy for the various NN architectures.

h = 10 2× h = 20 10× h = 100

Ct Cg Ct Cg Ct Cg

1
h
id

d
en

layer

[−1, 1], 0.9990 0.5899 0.9945 0.5757 0.9816 0.5815

micro (0.0047) (0.0470) (0.0143) (0.0472) (0.0260) (0.0506)

[−1, 1], 0.9683 0.5904 0.9755 0.6066 0.9653 0.5898

macro (0.0248) (0.0492) (0.0211) (0.0470) (0.0278) (0.0468)

[−10, 10], 0.8019 0.4001 0.8507 0.4056 0.8802 0.4067

micro (0.0819) (0.0618) (0.0670) (0.0584) (0.0567) (0.0566)

[−10, 10], 0.6131 0.3446 0.7860 0.4387 0.8697 0.4973

macro (0.0742) (0.0649) (0.0819) (0.0723) (0.0641) (0.0618)

[−1, 1], 0.9933 0.5559 0.9816 0.5796 0.9617 0.5747

2
h
id

d
en

layers

micro (0.0142) (0.0538) (0.0267) (0.0527) (0.0334) (0.0455)

[−1, 1], 0.7812 0.4756 0.9300 0.5691 0.9374 0.5792

macro (0.0993) (0.0770) (0.0591) (0.0594) (0.0409) (0.0501)

[−10, 10], 0.5427 0.2776 0.7185 0.3298 0.7818 0.3660

micro (0.1094) (0.0703) (0.0898) (0.0681) (0.0716) (0.0624)

[−10, 10], 0.3525 0.2272 0.7839 0.4593 0.8808 0.5199

macro (0.0928) (0.0652) (0.1337) (0.0925) (0.0638) (0.0628)

[−1, 1], 0.9926 0.4867 0.9783 0.5651 0.9417 0.5213

3
h
id

d
en

layers

micro (0.0129) (0.0594) (0.0264) (0.0527) (0.0407) (0.0480)

[−1, 1], 0.4005 0.2680 0.5536 0.3474 0.9276 0.5792

macro (0.1234) (0.0844) (0.1892) (0.1198) (0.0495) (0.0539)

[−10, 10], 0.3789 0.2203 0.7015 0.3227 0.7136 0.3456

micro (0.1415) (0.0750) (0.1029) (0.0740) (0.0790) (0.0607)

[−10, 10], 0.1488 0.1289 0.4847 0.3052 0.9097 0.5519

macro (0.0627) (0.0530) (0.1841) (0.1132) (0.0558) (0.0580)



Appendix C

Implementation Details

This appendix discusses the implementation details of the experiments conducted for

this thesis. Section C.1 describes the hardware used. Section C.2 discusses the software

used, and provides a reference to the original code developed for the study.

C.1 Hardware

All experiments were run on a single node of a computing cluster with 24 Intel 5th

generation CPUs and 128 GB RAM. The computing facilities were provided by the

The Centre for High Performance Computing (CHPC) in Cape Town, South Africa. A

detailed description of the CHPC facilities is available at the following URL: https:

//chpc.ac.za/

C.2 Software

This study used the Python programming language (Python Software Foundation, https:

//www.python.org/) to set-up and conduct all the experiments. The TensorFlow [1] li-

brary was used to implement the neural networks and the various sampling algorithms.

The NumPy [103] package was used to implement the FLA measures used in this study.

All graphs presented in the thesis were generated using the ggplot2 package [145].

The code developed for the purpose on this study is publicly available at the following
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URL: https://github.com/annabosman/fla-in-tf.

https://github.com/annabosman/fla-in-tf


Appendix D

Acronyms

BP Backpropagation

CE Cross-Entropy Error

ELU Exponential Linear Unit

EWMA Exponentially Weighted Moving Average

FDC Fitness Distance Correlation

FEM First Entropic Measure of Ruggedness

FLA Fitness Landscape Analysis

LOESS Locally Estimated Scatterplot Smoothing

NN Artificial Neural Network

PCA Principal Component Analysis

PSO Particle Swarm Optimisation

ReLU Rectified Linear Unit

SSE Sum Squared Error

TanH Hyperbolic Tangent

XOR Exclusive OR
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Appendix E

Symbols

This appendix lists the mathematical symbols used throughout the thesis, and their

definitions. The symbols used within each chapter are listed under separate sections.

Each section lists only newly introduced or redefined symbols.

E.1 Chapter 2: Artificial Neural Networks

α Momentum coefficient

∆wab Adjustment of the weight between neurons a and b

η Learning rate

θ Bias threshold

λ Penalty coefficient

a, b Indices of neurons in successive layers

D Dataset

DT Training set

DG Generalisation set

E Error metric

Esse Sum squared error

Ece Cross-entropy error

f Activation function
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fok Activation functions of the k’th output neuron

fuj Activation functions of the jth hidden neuron

I Size of the input layer

i Index of an input neuron

J Size of the hidden layer

j Index of a hidden neuron

K Size of the output layer

k Index of an output neuron

M Size of a successive layer

n Number of NN inputs

net Weighted input signal

ok The output of the k’th neuron in the output layer

ok,p The k’th output obtained for data point p

P The number of data points, or patterns

p A single data point, or pattern

t Iteration, or epoch count

tk,p The k’th target value for data point p

uj The jth hidden layer signal

vji A weight connecting the j’th hidden neuron and the i’th input neuron

W The total number of weights in a NN

w0 Sensitivity threshold for weight elimination

wab The weight between neurons a and b

wkj A weight connecting the k’th output neuron and the j’th hidden neuron

wi The ith weight corresponding to the input xi

xi The ith input to a neuron

y Output of a neuron

zi The ith input layer signal
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E.2 Chapter 3: Fitness Landscape Analysis

∆el Difference between the fitness values of xl and xl+1

∆xl Step vector

ε FEM sensitivity threshold

ε Radius of the neighbourhood Nε
ξ Sensitivity threshold for neutrality metrics calculation

ωmax The longest sub-walk of W consisting of neutral 3-point objects only.

b Bit mask

d Distance metric

F Fitness landscape

FDCs Estimated fitness distance correlation

G Set of all fitness values in a sample

Gavg Estimated average gradient

Gdev Standard deviation of Gavg.

g Fitness function

g The mean of G

l Index of a step/point in a sample

L Sample length

M1 First neutrality metric

M2 Second neutrality metric

m Dimension of the search space

Nε Neighbourhood with radius ε

R Real numbers

rmax, rmin Indices of the maximum and minimum values in a 3-point object

S 3-point object

sl Symbolic entropy representation of step l

W Progressive random walk sample

X Set of solutions
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X ′ Approximated set of solutions

x Candidate solution

x∗ Global minimum

x̃ Local minimum

xl The lth point in the sample

xo The oth neighbour of xl

E.3 Chapter 4: Search Space Boundaries

fanin The number of connections leading into a neuron

N Width of the search space boundaries

E.4 Chapter 6: Modality Quantification

β Decay coefficient for the EWMA smoothing

gl The gradient vector calculated for a point xl

lstag The average length of the stagnant regions

nstag The average number of stagnant regions encountered per sample

T A sequence of length L

T ′ An EWMA-smoothed version of sequence T

w Window size for the EWMA smoothing

E.5 Chapter 9: Neural Network Architectures

Cg Classification accuracy of the generalisation set

Ct Classification accuracy of the training set
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Derived Publications

This section provides a list of all publications derived from this thesis. The following

conference and journal articles were published:

• Anna Sergeevna Bosman, Andries Engelbrecht, and Mardé Helbig. Search space

boundaries in neural network error landscape analysis. In Proceedings of the IEEE

Symposium Series on Computational Intelligence, pages 1–8. IEEE, 2016.

• Willem Abraham van Aardt, Anna Sergeevna Bosman, and Katherine Mary Malan.

Characterising neutrality in neural network error landscapes. In Proceedings of the

IEEE Congress on Evolutionary Computation, pages 1374–1381. IEEE, 2017.

• Anna Sergeevna Bosman, Andries Engelbrecht, and Mardé Helbig. Fitness land-

scape analysis of weight-elimination neural networks. Neural Processing Letters,

48(1):353–373, 2018.

• Anna Sergeevna Bosman, Andries Engelbrecht, and Mardé Helbig. Progressive

gradient walk for neural network fitness landscape analysis. In Proceedings of the

Genetic and Evolutionary Computation Conference Companion, pages 1473–1480.

ACM, 2018.

The following preprint was submitted to the Neural Networks journal, and is currently

under review:
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• Anna Sergeevna Bosman, Andries Engelbrecht, and Mardé Helbig. Visualising

Basins of Attraction for the Cross-Entropy and the Squared Error Neural Network

Loss Functions. arXiv e-prints, page arXiv:1901.02302, January 2019.
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