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Abstract

Estimation of Healthy Bone Shape and Density

Distribution from Partial Inputs for Implant Design

D. Kramer

Department of Mechanical and Mechatronic Engineering,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: Master of Engineering (Mechatronic)

April 2022

When reconstructing segmental bone loss, segmentation and surface recon-
struction require extensive specialist knowledge to be repeated for each new
patient. This has proven to be time-consuming and cost-ine�cient through-
out literature and practice. Statistical modelling is widely used in biomedical
�elds for automated segmentation and is a viable alternative for reconstruct-
ing healthy bone anatomy in the absence of healthy contralateral geometry.
Therefore, as part of this study, statistical models of shape and appearance
were constructed from sample data based on femur and tibia data of the male
and female South African population, and their application in automated seg-
mentation, reconstruction and density estimation was investigated. The study
uses a novel combination of an active shape and a mean appearance model to
estimate missing bone geometry and density distribution from sparse inputs
simulating segmental bone loss around the diaphyseal area. Estimations of
diaphyseal resections were obtained by probabilistic �tting of the active shape
model to sparse inputs consisting of proximal and distal bone data on computed
tomography images. The resulting shape estimates of the diaphyseal resections
were then used to map the mean appearance model to the patients' missing
bone geometry, constructing density estimations. The models constructed re-
produced the shape and density distribution of the population with an average
error below 1.47 mm and a 90 % density �t. Resected bone surfaces were es-
timated with an average error below 1.64 mm, and density distributions were
approximated above 84 % of the intensity of the original target images. These
results fall within the acceptable tolerance limits of reconstructive surgery and
appear promising for practical use in patient-speci�c implant design.
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Uittreksel

Skatting van Gesonde Been Vorm and Digtheids

Verspreiding van Gedeeltelike Insette vir Inplantaat

Ontwerp

D. Kramer

Departement Meganiese en Megatroniese Ingenieurswese,

Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: Magister in Ingenieurswese (Megatronies)

April 2022

Tydens die herstel van segmentele beenverlies, vereis segmentering en op-
pervlak herkonstruksie uitgebreide spesialiskennis wat vir elke nuwe pasiënt
herhaal moet word. Dit is bekend as 'n tydrowend en koste-ondoeltre�ende
aktiwiteite in literatuur sowel as in praktyk. Statistiese modellering word
algemeen gebruik in biomediese velde vir geoutomatiseerde segmentering en
is 'n lewensvatbare alternatief vir die herkonstruksie van gesonde beenanato-
mie in die afwesigheid van gesonde kontralaterale geometrie. Daarom, as deel
van hierdie studie, is statistiese modelle van vorm en voorkoms geskep uit
steekproefdata gebaseer op femur en tibia data van die manlike en vroulike
Suid-Afrikaanse bevolking en hul toepassing in geoutomatiseerde segmente-
ring, rekonstruksie en digtheidsskatting is ondersoek. Hierdie studie gebruik
'n nuwe kombinasie van 'n aktiewe vorm en 'n gemiddelde voorkomsmodel
om ontbrekende beengeometrie en digtheidsverspreiding te skat vanaf gedeel-
telike insette wat segmentele beenverlies rondom die dia�seale area simuleer.
Beramings van dia�se-reseksies is verkry deur waarskynlike passing van die ak-
tiewe vorm model op gedeeltelike insette wat bestaan uit proksimale en distale
been data op rekenaar tomogra�e beelde. Die gevolglike vormskattings van
die dia�se-reseksies is dan gebruik om die gemiddelde voorkomsmodel na die
pasiënte se ontbrekende beengeometrie oor te dra en digtheidsskattings te kon-
strueer. Die modelle wat gekonstrueer is het die vorm en digtheidsverspreiding
van die populasie weergegee met 'n gemiddelde fout onder 1.47 mm en 'n 90 %
digtheidspassing. Gedeeltelike beenoppervlaktes is geskat met 'n gemiddelde
fout onder 1.64 mm en digtheidsverspreidings was akkuraat tot meer as 84 %
van die intensiteit van die oorspronklike teikenbeelde. Hierdie resultate val
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binne die aanvaarbare toleransiegrense van herkonstruktiewe chirurgie en lyk
belowend vir praktiese gebruik in pasiënt-spesi�eke inplantaat ontwerp.
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Chapter 1

Introduction

1.1 Background

Delayed treatment of severe skeletal trauma, infections, and malignancy can
lead to segmental bone loss, which requires additional specialist healthcare in
the form of surgical intervention for correction and e�ective treatment (Wang
and Yeung, 2017; Wang et al., 2016). Additional delays in treatment could re-
sult in further bone loss, increased morbidity, and possible amputation (Marais
et al., 2013).

Bone grafting is the most common method used to treat and correct seg-
mented bone loss and is seen as the gold standard to which all segmented
bone loss treatments are compared. Autografts use healthy bone tissue from
the patient to treat the a�ected area. However, extracting the bone tissue
introduces a second surgical site that may cause further complications, e.g.
increased pain, blood loss, additional recovery time, possible infections etc.
Allografts, or donor tissue, are also sometimes used, but this has a reduced
success rate due to the patient's immune response and may also introduce
viral transmission. It is also mostly not practical due to limited donor avail-
ability (Wang and Yeung, 2017; Mau�rey et al., 2015). The use of grafting for
lower limb salvage has also proven to be particularly challenging. It often re-
sults in 'non-union' and then requires multiple additional surgical procedures,
extending the recovery and reconstruction process (Dekker et al., 2018).

1.2 Motivation

Patient-speci�c implants (PSIs) o�er a modern alternative to conventional
treatment methods such as grafting and stock implants for segmented bone re-
pair (Hawkins et al., 2020; Siegmund et al., 2019; Elledge et al., 2019; Tetsworth
et al., 2017). The advantages of PSIs include reduced recovery time, improved
patient outcomes, reduced surgical time, lower long-term costs, and no sec-
ondary morbidity (Hamid et al., 2016; Wang et al., 2016; So et al., 2018).
Additionally, PSIs for long-bone defects are mainly manufactured using ad-

1
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CHAPTER 1. INTRODUCTION 2

ditive manufacturing such as 3D printing (Haglin et al., 2016; Zhang et al.,
2019).

The PSI design process, however, requires extensive specialist knowledge
and procedures, which essentially need to be repeated for each new case. This
makes PSI design time-consuming and cost-ine�cient when compared to cur-
rent conventional treatment options (Haglin et al., 2016; Tetsworth et al.,
2017). Traditionally, the geometry for PSI design is inferred from healthy
contralateral bone anatomy derived from computed tomography (CT) images
of the patient (Mauler et al., 2017; Letta et al., 2014). However, healthy con-
tralateral bone anatomy is not always available due to high energy trauma or
pre-existing conditions (Mauler et al., 2017; Saleh et al., 1999). Furthermore,
signi�cant di�erences between bilateral anatomy, especially in long bones, have
been reported in literature (Schepers et al., 2015; Auerbach and Ru�, 2006).

Statistical models can provide the turn-key solutions required to make PSIs
�nancially and practically feasible. These models could allow automation
of time-consuming activities such as the image segmentation, surface recon-
struction and density estimation of missing bone anatomy, thereby reducing
the overall cost, time and specialist knowledge required for PSI design (Zad-
poor and Weinans, 2015; Tetsworth et al., 2017; Heimann and Meinzer, 2009;
Sarkalkan et al., 2014; Mauler et al., 2017). Statistical models can represent
the normal variability of an anatomical shape and density distribution within
a speci�c population due to the prior knowledge captured when trained.

Statistical shape models (SSMs) and statistical appearance models (SAMs)
are trained on the variation of bone shape and density from segmentation and
CT data for a statistical population (Lüthi et al., 2017; Cootes et al., 2004). Ac-
tive shape models (ASMs) combines the shape and density information around
the bone surface area from an SSM and SAM. When used in combination with
optimization algorithms, the ASM can automate costly activities such as seg-
mentation and estimation of bone geometry (Cootes et al., 2004; Heimann and
Meinzer, 2009; Sarkalkan et al., 2014; Morel-Forster et al., 2018). Additionally,
active appearance models (AAMs) include the full SAM when a complete im-
age of the entire density distribution from the population is required (Cootes
et al., 2004; Sarkalkan et al., 2014). However, AAMs are computationally more
expensive to build, process, store, and �t successfully than ASMs, making them
inconvenient for practical design applications (Cootes et al., 2004; Sarkalkan
et al., 2014).

To make PSIs �nancially and practically more feasible, a novel method for
estimating healthy bone shape and density distribution using an ASM and
mean appearance model (AM) is presented in this study. The technique com-
bines ASMs with mean AMs to reconstruct simulated segmental bone lose
pathologies within the diaphyseal area of the femoral and tibial long bones.
The model combination enables relatively fast geometrical and reasonable den-
sity estimates for segmental bone repair, automating PSI design procedures
such as segmentation and reconstruction.
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1.3 Aim and Objectives

The aim of this study was to develop a method that automatically performs the
segmentation and estimation of healthy bone shape and density distribution
from partial inputs for segmental bone repair. To achieve this aim, the project
objectives were as follows:

1. Construct and validate SSMs and mean AMs for a given bony population
from CT images.

2. Fit the validated SSMs and mean AMs to a sparse dataset simulating
segmental bones loss, solving the segmentation problem for the long bone
structure.

3. Implement optimization and reconstruction algorithms that map healthy
shape and density distribution data to partial inputs.

It is important to note that the partial inputs referred to throughout this
study represent CT bone data from which the pathology or segmental bone
was removed.

1.4 Scope

This project does not include actual PSI design. PSI design is covered only
to establish the wider system of interest. The study is focused on the devel-
opment and implementation of model construction software, the validation of
the models constructed, and the estimation of healthy bone shape and density
distribution from partial inputs.

Additionally, the fundamental mathematics and considerations of statis-
tical modelling used throughout this thesis were outside the thesis's scope.
However, the fundamentals are discussed in much detail within the appendices
for the interested reader.

1.5 Overview

A detailed literature review is given in Chapter 2. This is followed by a brief
study of statistical models and their mathematical theory in Chapter 3. Chap-
ter 4 will discuss the actual model construction and validation results. Chap-
ters 5 and 6 use the models for segmental bone repair by estimating healthy
bone shape and density distribution. Final remarks are given in Chapter 7.

The appendices contain supplementary notes and data to further the un-
derstanding of the work represented in this thesis. Appendices A and B have
additional notes on software implementation and the mathematical theory be-
hind model construction, geometrical and density re-estimation, and �tting
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procedures. Appendix C contains additional documentation such as inter-
views and the segmentation protocol. Due to size, the raw validation data
and test results will be submitted to the main supervisor within the electronic
database accompanying this thesis.

Stellenbosch University https://scholar.sun.ac.za



Chapter 2

Literature Review

This chapter contains the vital background research required to understand
the study objectives set in the introduction. Sections 2.1 to 2.3 brie�y discuss
the medical and biological aspects of this project. After that, Section 2.4
will review current means of reconstruction for implant design in literature
and industry. Additionally, a discussion on design constraints and tolerances
for PSI design will also be given in Section 2.4. Chapter 3 will continue the
literature review but with a focus placed on statistical modelling.

2.1 Anatomy

Understanding the anatomical features that de�ne long bone structure is nec-
essary to ensure statistical model construction and healthy bone estimation
is done correctly. This will also aid in understanding the pathologies that
a�ict long bone structures and the treatment methods used to correct these
pathologies.

2.1.1 Long Bone Anatomy

Long bone structures from the appendicular skeleton can be divided into three
main parts called the diaphysis, metaphysis and epiphysis (Betts et al., 2013;
Visible, 2020). Figure 2.1 illustrates these divisions within long bone struc-
tures, in addition to anatomical attributes associated with long bone anatomy
(Betts et al., 2013).

The diaphyseal region consists of a tubular shaft that runs from the prox-
imal to the distal end of a long bone structure. Diaphyseal walls are densely
packed cortical bone and enclose a hollow region, the medullary cavity, �lled
with yellow marrow. The inner wall surrounding the medullary cavity has a
membranous lining, called endosteum, responsible for the growth, repair and
remodelling of surrounding bone. The metaphyseal regions are comprised of
the widening diaphyseal tubular shaft and the epiphyseal growth plate, the
leading site of longitudinal growth for long bones. When adulthood is reached

5
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Figure 2.1: Long bone anatomy (Illustration: Betts et al. (2013, p. 221))

(18-21 years), a layer of transparent cartilage on the epiphyseal growth plate is
replaced with osseous tissues forming the epiphyseal line (Betts et al., 2013).
The epiphyseal regions mainly consist of spongy, porous trabecular or cancel-
lous bone with thinly layered sections of cortical bone. The porous trabecular
bone is also mostly �lled with red marrow (Betts et al., 2013).

The periosteum, a �brous membrane, forms on the outer surface of long
bone structures and contains blood vessels, nerves, and lymphatic vessels that
nourish the bone. Tendons and ligaments also attach to long bone structures
through the periosteum. This membrane covers most of the long bone surface
except where joints form on the epiphyseal regions; articular cartilage covers
the joint area on these surfaces. The articular cartilage forms a thin layer that
reduces friction and acts as a shock absorber (Betts et al., 2013).
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Figure 2.2: Femoral and tibial landmarks (Illustration: D. Kramer)

2.1.2 Anatomical Landmarks

The anatomical landmarks used throughout this study are listed in Tables 2.1
and 2.2, and illustrated in Figure 2.2 for both the femoral and tibial long bones.
The de�nitions given are at times descriptive of an entire region; thus, the most
protruding, sunken or central point in the area was used when identifying
landmarks within samples.

2.2 Segmental Bone Loss

It is essential to know which areas and parts of long bone structures are a�ected
by pathologies that cause segmental bone loss to automate segmental recon-
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Table 2.1: Femoral landmark descriptions (Betts et al., 2013)

Proximal Epiphysis/Metaphysis

Fovea
A small oval-shaped dimple on the proximal end
of the femur head. Forms part of the hip joint.

Greater
trochanter

A quadrilateral elevation with a crest projecting
upward from the lateral aspect of the femoral neck
and shaft junction.

Lesser
trochanter

A conical projection arising from the posteromedial
surface of the neck-shaft with its angle directed
medially.

Diaphysis

Linea
aspera

A longitudinally-oriented ridge on the posterior
aspect of the femur, anchors several thigh muscles
and functions as a buttress preventing the anterior
bowing of the shaft.

Nutrient
foramen

A canal through the cortex of the femur, where
nutrient arteries and veins pass through.
Distal Epiphysis/Metaphysis

Medial
condyle

The lateral surface that creates the medial boundary
of the intercondylar fossa. The epicondyle is the
most notable point on the medial condyle.

Lateral
condyle

Stouter then the medial condyle but less notable.
Creates the lateral boundary of the intercondylar
fossa. The epicondyle is the most notable point on
the lateral condyle.

Intercondylar
fossa

A deep notch, which divides the medial and lateral
condyles posteriorly. Part of the knee joint.

struction. Understanding this will also give an estimate of the reconstruction
size required.

Segmental bone loss is de�ned in literature as the smallest bone defect for
a particular species that will not enter a state of spontaneous healing or re-
generation without some form of intervention or correction (Wang and Yeung,
2017). Bone regions a�ected by segmental bone loss are generally subject to
minimal or no re-vascularization and tissue di�erentiation, leading to density
reabsorption, spontaneous bone fractures and non-union that drastically af-
fect the patient's overall health and standard of life (Wang and Yeung, 2017;
Strohmeyer, 2015).

For human adult patients, defects in bone regions greater than 20 mm in
length or 50 % of the circumferential area are unlikely to spontaneously self
regenerate (Tosounidis and Giannoudis, 2017; Mau�rey et al., 2015). In an
epidemiology study done by Keating et al. (2005) it was shown that of all the
segmental bone loss injuries recorded, 68% was found in the tibial anatomical
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Table 2.2: Tibial landmark descriptions (Betts et al., 2013)

Proximal Epiphysis/Metaphysis

Medial and
lateral condyles

A greatly expanded area at the proximal end of
the tibia with no epicondyles present. The top
surfaces are �attened and smooth. Part of the
knee joint.

Intercondylar
emince

Situated between the medial and lateral condyles
are the medial and lateral intercondylar tubercles,
elevated crests that from part of the knee joint.

Tibial
tuberosity

On the anterior side of the tibia, an elevated area
near the proximal end, attaches a muscle-tendon
associated with the patella.

Diaphysis

Soleal line

A prominent ridge on the posterior aspect of the
tibia which anchors several calf muscles. It
begins below the base of the lateral condyle and
continues down the medial and proximal third
of the posterior tibia.

Interosseous
border

Formed by a small ridge on the lateral side of the
tibial shaft. An interosseous membrane connects
to the ridge and unites the �bula and tibia bone.
Distal Epiphysis/Metaphysis

Medial
malleolus

A large bony expansion on the medial side of the
distal tibia. Part of the ankle joint.

Inferior
articular surface

A smooth, concave and quadrilateral surface
articulates with the talus to form part of the ankle
joint.

Fibular notch
A wide groove on the lateral side of the distal tibia.
The distal tibio�bular joint is formed by the notch
that articulates with the distal end of the �bula.

area and 22% in the femoral anatomical area, with a bone loss greater than
30 mm primarily encountered in the tibial region (Tosounidis and Giannoudis,
2017).

Segmental bone loss can usually be attributed to four reasons: a) high
energy trauma, b) tumour resection, c) bacterial infection resection and d)
revision surgery (Wang and Yeung, 2017; Wang et al., 2016; Strohmeyer, 2015;
Tosounidis and Giannoudis, 2017). A more detailed discussion of these reasons
can be found in the subsections below.
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2.2.1 High Energy Trauma

High energy trauma usually results from high kinetic energy transfer to bone
structures within the human body. The energy transfer can be from tra�c
injuries, blast injuries, crushing injuries or falling from heights. The resulting
fractures can be open or closed and generally result in high levels of tissue
damage around the fracture site due to high energy transfer (Jovanovi¢ et al.,
2002).

High energy trauma resulting in open fracture or large amounts of bone
splintering generally leads to signi�cant bone and length loss. These fractures
also have a 10 to 30% chance of non-union and poor fracture healing depending
on the treatment method used and the fracture location (Wang et al., 2007).

With high energy segmental bone loss, the surrounding tissue damage and
bone splintering directly a�ect re-vascularization and tissue di�erentiation.
More precisely, tissue damage leads to the obstruction of bone volume in-
crease through the recruitment of stem cell di�erentiation and bone retardation
through chondrocyte apoptosis (processes active during blood clotting and in-
�ammatory response stages). If left untreated, it usually results in non-union
of the fractured bone site, seriously diminishing patients' standard of life and
health (Wang and Yeung, 2017).

2.2.2 Tumour Resection

Tumours are formed when a particular cluster of tissue cells grow irregularly
or do not die o� during certain life cycle phases. Tumours are classi�ed as
benign (non-cancerous) or malignant (cancerous). Benign tumours can grow
large but cannot transfer into surrounding tissues or body parts as malignant
tumours can through blood and lymph systems. When malignant tumours
spread in this way, it is referred to as metastasis (National Cancer Institute,
2018).

When looking at bone tissue, two kinds of tumours can form. The �rst
is primary bone tumours that develop from bone tissue, and the second is
metastatic tumours that form elsewhere and then spread to bone tissue. Be-
nign primary bone tumours are more common than primary malignant tu-
mours and are rarely life-threatening. Both compress healthy bone tissue, but
benign tumours do not spread and destroy bone tissue as malignant tumours
do (National Cancer Institute, 2018).

Table 2.3 lists common tumours that can a�ict long bones, with Ew-
ing's sarcoma and Osteosarcoma being the most common. These tumours
can cause fractures, pain and hypercalcemia within long bone structures.
Treatment methods vary between surgical resection, chemo therapy, radiation,
cryosurgery and targeted therapy depending on the location, size and type of
tumour (National Cancer Institute, 2018; Chen et al., 2007).

Of these treatment methods, surgical resection has become the most com-
mon for malignant tumours in recent years as limb-salvage methods have de-
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veloped. During surgery, the surgeon removes the entire tumour with clean
margins (National Cancer Institute, 2018). Due to the signi�cant tissue de-
fects in long bone sarcoma, resection usually leads to high volumes of segmental
bone loss (Chen et al., 2007; Sewell et al., 2011). In a study done by Chen et al.

(2007) resection lengths due to sarcoma for the tibial bone ranged between 110
and 270 mm (Chen et al., 2007; Sewell et al., 2011).

Table 2.3: Long bone tumours (National Cancer Institute, 2018)

Tumour Class Initially Infected Tissue Area

Osteosarcoma Malignant Osteoblasts in osteoid tissue Metaphysis
Chondrosarcoma Malignant Cartilaginous tissue Epiphysis
Ewing Sarcoma Malignant Bone and soft tissue Diaphysis
Osteoclastoma
(Giant cell tu-
mour)

Benign
or Malig-
nat

Bone tissue Epiphysis,
Metaph-
ysis,

Osteoblastoma Benign Cortical bone tissue Diaphysis
Fibrous Dyspla-
sia

Benign Bone and marrow Tissue Diaphysis,
metaph-
ysis

Myeloma Malignant Marrow tissue Diaphysis
Osteoid Osteoma Benign Bone tissue Diaphysis

2.2.3 Bacterial Infection

Osteomyelitis is a bio�lm-based infection that can lead to necrosis and de-
struction of bone tissue while also inhibiting new bone growth. Osteomyelitis
generally takes hold through bacterial inoculation in combination with either
ischaemia, trauma or necrosis. It a�ects both adults and children and infects
any bone structure. It is characterised by purulent secretion, necrotic bone,
compromised soft tissue and �stulas (Marais et al., 2013; Rao et al., 2011).

Osteomyelitis can spread through haematogenous (blood) or contiguous
(trauma) bacterial inoculation. Chronic osteomyelitis usually results from
acute haematogenous osteomyelitis that forms necrotic bone segments, result-
ing in a source of ongoing infection if left untreated. Research shows that 10
to 30% of acute haematogenous osteomyelitis translates to a chronic infection.
Contiguous bacterial inoculation generally results from open fractures. De-
pending on the injury and quality of the subsequent management, 3 to 50% of
open fracture cases have been reported to translate to contiguous osteomyelitis
(Marais et al., 2013).

Generally, host cells establish a protective cellular layer that includes a de-
fence mechanism and invading bacteria establishes a bio�lm. The bio�lm forms
part of the growth pattern of the invading bacteria. It consists of interactive
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communities capable of gene expression alterations, ensuring their survival.
The formation of this layer-like aggregation occurs in �ve stages: 1) adhesion,
2) production of the extra-cellular matrix, 3) colonisation, 4) maturation, and
5) dispersion of bacteria (Marais et al., 2013).

Even with the advancement in antibiotic therapy, treatment of osteomyelitis
still proves challenging. Due to mechanical and osmotic di�culties, antibiotics
struggle to penetrate bio�lm. To date, chronic osteomyelitis, accompanied by
necrotic bone, is most e�ectively treated through surgical debridement (Rao
et al., 2011). Depending on the stage of the infection, surgical treatment aims
to be curative with wide clean resection margins, ensuring no tissue containing
bacteria is left behind. Up to 220 mm defects have been recorded during limb
salvage operations (Rao et al., 2011).

2.2.4 Revision Surgery

Revision surgery is a term used to describe a wide variety of operations but gen-
erally refers to any surgery used to correct, replace or compensate for implant
failure. Implant failure requiring revision include aseptic loosening, osteolysis
around well-�xed implants, periprosthetic fractures, implant instability, infec-
tions like osteomyelitis, and implant fractures. Of these, aseptic loosening is
the most common reason for revision surgery overall, with instability being the
most common for early revision and osteolysis around well-�xed implants for
late revision (Clohisy et al., 2004).

Aseptic loosening, osteolysis around well-�xed implants and periprosthetic
fractures generally occur due to stress shielding. Stress shielding is used to
describe bone resorption and density reduction due to stress reduction within
bone structures. Stress usually carried by the bone gets transferred to the
implant through implant sti�ness and �xation. This reaction �ts perfectly
into Wol�'s law, which states that bone will model and remodel according
to the loads being carried. Bone resorption and density reduction lead to a
decrease in bone volume and strength, leading to spontaneous fractures and
implant loosening (Sumner and Galante, 1992; Wang et al., 2016).

The combination of stress shielding, bone resorption, revision and spon-
taneous fractures can lead to large volumes of segmental bone loss exceeding
80 mm (Tetsworth et al., 2017). Revision surgery leads to increased patient
morbidity and, sometimes, additional surgical sites (Wang and Yeung, 2017).

2.3 Segmental Bone Repair

To ensure the reconstruction methods used within this study are adequate, it
is necessary to study and understand the current methods used for segmental
bone repair. Historically, the standard treatment for long bone defects was
amputation (Strohmeyer, 2015). It is only in the last several decades that
limb-salvage techniques have developed to become as e�ective, if not more,
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than amputation. If successful, limb salvage restores full limb functionality to
the patient, increasing or maintaining the patient's quality of life (Chen et al.,
2007). However, limb salvage requires bone reconstruction through surgical
intervention to ensure union between functional, healthy bone structures or
segments (National Cancer Institute, 2018).

In the 1950s, Ilizarov devised many reconstructive techniques and devices,
e.g. external �xation frames, that have become the standard for reconstruction
surgeries in long bone defects, such as tibial deformities. Of these techniques
devised, Ilizarov describe four fundamental principles for the reconstruction,
correction and management of bone deformities: 1) precise amount of fracture
support; 2) minimal surgical intervention; 3) immediate weight-bearing; and
4) mobilisation of joints (Saleh et al., 1999). Following these principles, some
standard and modern limb salvage methods were investigated in the subsec-
tions below.

2.3.1 Bone Grafting

Bone grafting utilises transplanted bone or other osteoconductive material to
rebuild damaged bone tissue and stimulate bone regeneration. It has been
used as the standard treatment method for segmental bone loss, bone defects,
delayed union or non-union, and spinal fusions since the mid-1900s (Wang and
Yeung, 2017; Mau�rey et al., 2015; Masquelet and Begue, 2010). Osteoinduc-
tive material can roughly be divided into autografts, allografts and synthetic
grafts. The osteoinductive material used during surgery is dependent on the
defect site, defect size, the grafting material available, and the treatment meth-
ods used (Wang and Yeung, 2017; Mau�rey et al., 2015). Autologous bone is
seen as the gold standard in grafting material, stimulating bone regeneration
through: a) osteoconduction, b) osteoinduction and c) ontogenesis. These
three properties are usually not found in the same osteoconductive material
(Wang and Yeung, 2017).

In addition to these properties, an optimal mechanical environment is also
required to encourage and ensure early weight-bearing capability, secondary
healing, bone regeneration and union (Tosounidis and Giannoudis, 2017; Mauf-
frey et al., 2015). To achieve an optimal mechanical environment, internal or
external �xation techniques are used to stabilise pathological or defective long
bone structures, as shown in Figure 2.3. These techniques make use of exter-
nal frames, intramedullary (IM) nails, screws, plates, meshes and cages usu-
ally made from a biocompatible material such as titanium (Saleh et al., 1999).
When defects exceed 200 mm, maintaining the limb axis becomes di�cult ex-
ternally, and intramedullary nails are used, as shown in Figure 2.3.b. Modern
techniques and materials make early weight-bearing safe and desirable, with
full weight-bearing capability recorded at 8-12 weeks after surgery (Mau�rey
et al., 2015; Saleh et al., 1999).

Long bone defects greater than 50 mm often still leads to non-union due to
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Figure 2.3: Bone �xation : a) Internal �xation for implant fracture repair on a
femur (Prins et al., 2018); b) Internal �xation through IM nail(Kim et al., 2021); c)
External �xation for grafting procedures on a tibia (Kostic et al., 2019); d) External
�xation for Masquelet PPMA spacer (Tong et al., 2017)

graft resorption, even when using autografts (Mau�rey et al., 2015; Masquelet
and Begue, 2010). To combat this Masquelet and Begue (2010) describe an
induced membrane technique that is performed in two stages. First, the defect
is debrided, and a Polymethyl methacrylate (PMMA) cement spacer is used
to �ll the segmental defect, as shown in Figure 2.3.d. The bone defect is then
stabilised with external or internal �xation. It then takes six to eight weeks
for a foreign body membrane to form around the PMMA spacer. Second, the
PMMA spacer is removed after the membrane is matured while the membrane
is preserved and left intact. The membrane is then �lled with autograft mate-
rial. Weight-bearing capability is then dependent on the �xation method used
(Mau�rey et al., 2015; Masquelet and Begue, 2010). The technique has three
main bene�ts:

� The induced membrane creates a boundary that limits graft resorption.

� The PMMA spacer allows for delayed bone grafting ensuring the proper
grafting volume can be collected.

� The induced membrane is rich in growth factors, improving graft consol-
idation and union (Mau�rey et al., 2015).

Masquelet and Begue (2010) reconstructed long bone defects between 50 to
240 mm in 35 patients with autograft compositions and the induced membrane,
achieving a much lower graft resorption rate. Still, the induced membrane
does not guarantee union and requires additional surgery for the spacer to
be inserted and the membrane to mature, increasing patient morbidity in the
short term.
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Figure 2.4: Distraction osteogenesis: a) A osteotomy is performed on the diaphyseal
region, an Ilizarov frame is placed, and IM nails are introduced. b) The distal femur
(transport segment) is then transported 1 mm per day using the frame structure till
the defect length is recovered. c) The frame is removed after consolidation, the IM
nails are left in place, and reconstruction is complete. (Illustration adapted from:
Popkov et al. (2010))

2.3.2 Distraction Osteogenesis

Distraction osteogenesis requires the transport of a healthy bone segment
through the length of the segmental bone defect (Mau�rey et al., 2015). The
bone transfer is controlled and maintained using external �xation or IM de-
vices, e.g. Ilizarov frames, monolateral frames or IM lengthening nails. For
long bone defects, an osteotomy is performed on healthy diaphyseal or meta-
physeal bone regions to produce the bone segment that will be transported, as
shown in Figure 2.4. The method of �xation and distraction is then applied,
and the transfer phase can begin after surgery. The bone segment is transferred
1 mm per day for the length of the defect to allow bone tissue formation. Once
the end of the defect is reached, the bone segment is compressed for several
weeks until fracture callus forms, aiding consolidation (Mau�rey et al., 2015).

The main advantages for distraction osteogenesis include weight-bearing
during reconstruction, reliability, minimal soft tissue injury, and no constraints
with regards to reconstruction length (Mau�rey et al., 2015). The drawback
is the time required for reconstruction. The consolidation phase is generally
double the time of the transport phase. Thus, a 10 cm segment can take 300
days (ten to eleven months) to reconstruct, lowering the patient's morbidity
for an extended period.

2.3.3 Sca�olds and Truss Cages

With the advancement of additive manufacturing, 3D printed sca�olds, truss
cages and lattice structures have become a novel approach for managing seg-
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Figure 2.5: Femoral truss cage implant (Illustration adapted from: Tetsworth et al.
(2017))

mental bone defects (Tetsworth et al., 2017; Zhang et al., 2019). Sca�olds,
truss cages and lattice structures (grouped further as sca�olds) are printed
using bio-compatible alloys or bio-substitutes, e.g. titanium alloys or bio-
ceramics (Haglin et al., 2016; Zhang et al., 2019). Typically, sca�old design
for PSIs requires the combined input of an orthopaedic surgeon, orthopaedic
engineer and biomedical engineer. The design process typically starts with
some form of medical imaging, such as CT or magnetic resonance imaging
(MRI), followed by a semi-automated segmentation process that produces a
3D model. This model can then be used to plan and design the sca�old required
for segmental bone reconstruction (van der Merwe et al., 2018; Tetsworth et al.,
2017).

Sca�olds are used in combination with bone grafting and IM nails. It has
also become practice to incorporate the Masquelet technique to minimise graft
resorption and stimulate consolidation (Tetsworth et al., 2017). An IM nail
is inserted with the sca�old structure during surgery to stabilise the defect
site and keep the sca�olding in place. The porous sca�old is then packed
with morselised bone grafting material. If the Masquelet technique is used,
the defect surface, sca�old and graft material is enclosed within the induced
membrane, as shown in Figure 2.5 (Tetsworth et al., 2017; Hamid et al., 2016).
Depending on the defect size and location, the patient can then be in full
weight-bearing capacity 6 to 12 weeks after the surgery (Hamid et al., 2016;
Hollister, 2009).

Porous sca�olds have many advantages when compared to solid metal im-
plants. Solid metal implants have higher sti�ness levels than bone which can
result in stress shielding. This could lead to resorption of the bone surround-
ing the implant, which in turn may cause implant failure and additional bone
loss (Long and Rack, 1998; Sumner and Galante, 1992). Solid implants also

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW 17

obstruct new bone growth and nutrient �ow at the implant site where porous
metal implants more closely match and support the natural properties of bone
(Wang et al., 2016; Tetsworth et al., 2017; Ghavidelnia et al., 2020). Porous
implants not only carry the required anatomical load but also mitigate stress
shielding by adjusting the porosity to reduce the equivalent sti�ness (Hollister,
2009; Ghavidelnia et al., 2020). Pore networks will also enable �uid transfer
to facilitate bone regrowth and nutrient �ow (Zhang et al., 2013).

2.4 Reconstruction and Estimation for Implant

Design

This section is focused on methods and tolerance limits used for surface re-
construction in industry and literature. First, surface reconstruction and the
general implant design procedure will be investigated in Subsection 2.4.1. Sec-
ond, the design constraints and tolerance limits used for PSIs will be discussed
in Subsection 2.4.2. To gain a better understanding of how surface estimation
for PSI design is achieved in practice, an interview with CranioTech (PTY)
Ltd. (specialists in patient-speci�c solutions) was conducted (see Appendix C
for interview documentation). The knowledge gained during the interview will
be discussed in detail throughout this section.

2.4.1 Procedures for Surface reconstruction and

Implant design

Figure 2.6 shows a generalised patient-speci�c implant design process. First, a
medical image of the pathological bone region is taken with healthy contralat-
eral anatomy if available. Manual segmentation on the medical image is then
performed to generate 3D models of the surface geometry (Jun and Choi, 2010;
CranioTech (PTY) Ltd., 2021). From the image and model, the surgeon de-
cides what is required to surgically correct the pathology and stipulates initial
design speci�cations for the implant (Jun and Choi, 2010; CranioTech (PTY)
Ltd., 2021). The contralateral model, statistical model or technical expertise is
then used to estimate the target shape required to reconstruct the pathological
bone surface. The interface between current and reconstructed surface geom-
etry, and the �xation method of the implant is then developed and integrated
into the implant design. FEM analysis, stress, destruction or prototype test-
ing is then done to assess the implant's load-bearing capacity and �xation to
the required anatomical surface (CranioTech (PTY) Ltd., 2021). Though sur-
geon supervision is constant throughout the design process, surgeon approval
is required to �nalise the implant design and surgical plan. If approval is not
given, the design, requirements, segmentation or medical image is altered and
the process is repeated. With surgeon approval, the PSI is manufactured ac-
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Figure 2.6: Patient-speci�c implant design procedure (Adapted from: Jun and
Choi (2010))

cording to design speci�cations (Jun and Choi, 2010; CranioTech (PTY) Ltd.,
2021).

As already stated, healthy contralateral bone anatomy is the main source
used when reconstructing surface geometry, in both literature and practice
(CranioTech (PTY) Ltd., 2021; Mauler et al., 2017; Letta et al., 2014). Us-
ing medical imaging and segmentation software, the geometrical information
of both the pathological and healthy contralateral bone anatomy is extracted
and stored in 3D models (CranioTech (PTY) Ltd., 2021; Jun and Choi, 2010).
The healthy contralateral bone surface is then mirrored and superimposed on
the pathological surface to estimate the surface geometry required for recon-
struction and PSI design. In addition to this, specialist knowledge is required
to integrate the remaining bone anatomy of the pathological site with the
estimated surface geometry and establish the �xation location and methods
(Haglin et al., 2016; CranioTech (PTY) Ltd., 2021).

However, healthy contralateral bone anatomy is not always available due
to high energy trauma or pre-existing conditions (Mauler et al., 2017; Saleh
et al., 1999). Additionally, signi�cant di�erences between bilateral anatomy,
especially in long bones, have been reported in literature (Schepers et al.,
2015; Auerbach and Ru�, 2006). In such cases, statistical models or models
of healthy bone anatomy are used to infer, based on prior knowledge, the
surface geometry generally taken from healthy contralateral bone anatomy
(Zadpoor and Weinans, 2015; Heimann and Meinzer, 2009). If no source of
example geometry is available in the worst-case scenario, specialist knowledge
and technical expertise alone are used to reconstruct the pathological surface
geometry (Haglin et al., 2016; CranioTech (PTY) Ltd., 2021).

2.4.2 Estimation Tolerances and Constraints

This study is focused on automated segmentation and reconstruction. Thus
tolerances need to be established to evaluate the models constructed and re-
construction methods used. Unfortunately, due to the unique nature of each
new case, setting tolerance limits for PSI design and surface reconstruction is
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a complex subject. While literature does not state any well-established limits,
pre-and post-operative reviews show successful outcomes for implant overhangs
and variations in size ranging from 2 to 4 mm for knee and hip arthroplasty
Abram et al. (2014); KR et al. (2020). In an interview with CranioTech (PTY)
Ltd. (2021) it was revealed that anatomical and design constraints play a more
signi�cant role than actual tolerance limits.

In practice, constraints are unique to each patient and take priority during
surface reconstruction, even when working with healthy contralateral anatomy
(CranioTech (PTY) Ltd., 2021). Constraints include: a) medical imaging qual-
ity, b) bone stock quality and location, and c) �xation sites for implant at-
tachment. The accuracy of the �tting surface and implant is highly dependent
on the image quality used for segmentation. Inaccurate imaging could result
in poor edge alignment, implant �tting and �xation stability. This could lead
to implant instability and possible failure. Additionally, establishing areas
for �xation is essential, and depending on the available healthy bone stock,
the surface estimation is generally altered to accommodate implant �xation
(CranioTech (PTY) Ltd., 2021).

Still, CranioTech (PTY) Ltd. (2021) stipulated that their surgeons are in
general comfortable with 2 to 3 mm overhangs. For surface reconstruction,
an average error of 5 to 10 mm is acceptable with a Hausdor� error of ± 10
mm at the centre of the diaphyseal area. A higher error in the centre of the
diaphyseal area is accepted if it is required for IM-nail placement when working
with truss cage implants. Again, the �xation method used takes priority over
surface reconstruction.

Bone density considerations, for CranioTech (PTY) Ltd. (2021), are gen-
erally limited to the availability of healthy, stable bone stock for �xation.
Implant strength is determined through stress and destructive testing. For
femoral truss cages, the load caring capacity is designed to support ten times
the weight of an average person. (CranioTech (PTY) Ltd., 2021). Thus, if the
average weight was assumed as 80 kg, the lower limit designed for would-be
800 kg. CranioTech (PTY) Ltd. (2021) determined through stress and de-
structive testing that their titanium femoral truss cages, with varying truss
diameters around ± 1.5 mm, could support a 2 ton load. In practice, truss
cages are generally over-engineered to ensure the implant won't fracture or
break apart within the patient (CranioTech (PTY) Ltd., 2021).

PSI design is generally more focused on surface reconstruction and implant
stability (Zadpoor and Weinans, 2015; Mauler et al., 2017). It is only in recent
years that functionally graded lattice structures have been incorporated into
PSI design procedures (Ghavidelnia et al., 2020). Thus, accuracy limits for
density estimation are not clear. To establish if estimated density distributions
from this study are su�cient to generate a functionally graded lattice structure
capable of supporting the load associated with the femur and tibial bones,
additional work in future studies will be required.
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Chapter 3

Study of Statistical Models

This chapter is focused on the basic theory required when approaching statis-
tical modelling. Section 3.1 gives a theoretical overview of the main concepts
necessary when constructing statistical models. Section 3.2 follows with a
brief discussion on how statistical models are used and �tted to example data.
Additionally, supplementary notes on statistical modelling and mathematical
considerations can be found in Appendix B. Chapters 4 to 6 discuss the
modelling considerations and implementations used throughout this thesis in
greater detail.

3.1 Statistical Shape and Appearance Models

When applied to anatomical bone structures, SSMs and SAMs respectively
describe the mean shape and density distribution along with the main modes
of variation of a given population or shape family (Sarkalkan et al., 2014). A
population can, for example, refer to patients with a skeletal disease such as
osteoporosis or healthy individuals with a shared ethnicity or gender (Sarkalkan
et al., 2014; Heimann and Meinzer, 2009). Anatomical shape is de�ned as
the geometrical information that remains when location and rotational e�ects
are �ltered out (Luthi and Bouabene, 2020). Statistical models of bone are
trained using a data set focused on a speci�c bone structure within a particular
population. The focused data set provides the model with prior knowledge
about the bone structure's main shape and density distribution. These models
can then be �tted to an unseen bone structure within the same population to
generate a statistical patient-speci�c three-dimensional approximation. The
approximation can then be used in a variety of medical applications, including
motion tracking, computer-aided surgeries or, in the scope of this project,
estimating health bone anatomy for PSI design from partial inputs (Sarkalkan
et al., 2014; Mauler et al., 2017). Estimating healthy bone anatomy gives way
to a new form of treatment for skeletal bone diseases. For example, segmented
bone loss can be remodelled speci�cally for PSI design, matching the patient's
characteristics and physical traits without extensive specialist intervention.

20
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Figure 3.1: A discrete set of landmarks

Figure 3.2: A dense face-vertex surface mesh

3.1.1 Statistical Shape Models

Point distribution models (PDMs) are the most basic and important of all
statistical model variations. PDMs represent object boundaries, i.e. shape,
through a collection of point positions in a two- or three-dimensional plane.
PDMs are trained using training objects or shapes, Γi, of a speci�c bone struc-
ture within a statistical population. The size of the training set, {Γ1, ...,Γn},
and its contents must represent all possible shape variations within the bone
structure (Sarkalkan et al., 2014; Lüthi et al., 2017). Bone shapes are repre-
sented through a discrete set of landmark points; i.e Γi = {xik|xk ∈ R3, k =
1, ..., N} where N denotes the number of landmark points Lüthi et al. (2017).
Figure 3.1 illustrates a discrete set of landmarks describing a two-dimensional
femur head derived from an image. These landmarks can also be represented
through face-vertex surface meshes, containing not only a dense set of point co-
ordinates but connectivity information describing the bony structure, as shown
in Figure 3.2.

As described by Cootes et al. (2004) there are three main steps to follow
when building an SSM. The �rst is to establish correspondence within the
dataset. Establishing correspondence is important to ensure that the anatom-
ical variance found in the data set is accurately interpreted when constructing
the statistical model (Cootes et al., 2004). Correspondence means that the
kth landmark of shape Γi and Γj, xjk and xjk, represent the same anatomical
point on both instances (Cootes et al., 2004; Luthi and Bouabene, 2020). Cor-
respondence is established either through manual identi�cation and assignment
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of anatomical landmarks or automated registration algorithms such as the it-
erative closest point (ICP) or ASM algorithms (Heimann and Meinzer, 2009;
Sarkalkan et al., 2014). A more detailed discussed on correspondence and how
it may be established manually or automatically for three-dimensional shapes
can be found in Subsection B.4.

The second step is to align the data set. After correspondence is estab-
lished, the dataset can be aligned to eliminate all translational and rotational
dependencies within the data set, leaving only dependencies that represent
pure shape variation within the bone population being analysed (Heimann
and Meinzer, 2009). Again, the alignment can be done manually through rigid
alignment and the assignment of manually placed anatomical landmarks, or
automated through alignment algorithms such as the generalised Procrustes
alignment algorithm (Heimann and Meinzer, 2009; Sarkalkan et al., 2014). A
detailed discussion on these methods can be found in Subsection B.5.

Finally, the shape variation from the dataset must be extracted using sta-
tistical analyses. Constructing the SSM then consists of extracting the mean
shape and the main modes of variation within the bone population by assuming
the shape variation can be modelled using a normal distribution, s ∼ N (x, S),
where the mean shape, x, and covariance matrix, S, are calculated from the
training data by:

xk =
1

n

n∑
i=1

xik (1)

Sk =
1

n− 1

n∑
i=1

(xik − xk)(xik − xk)
T (2)

The covariance matrix, S , measures the variation in the training instances,
xik, with regards to the the mean shape xk (Cootes et al., 2004; Luthi and
Bouabene, 2020).

The main modes of variation, Φi, present in the covariance matrix, S, can
be estimated using principal component analysis (PCA), with Φi and λi being
the eigenvectors and eigenvalues of S. The principal modes of variation, Φi,
are conventionally ordered in descending order with regards to the percentage
of shape variation λi ≥ λi+1. Ordering is done so that the �rst few modes of
variation describe most of the possible shape distributions within the statistical
population, be it a shape within or out of the data set (Cootes et al., 2004;
Heimann and Meinzer, 2009). The bone shape of the entire population can be
then described by:

xk = xk +
c∑

s=1

bsΦs (3)

where c is the number of modes a�ecting the accuracy and the compactness
of the resulting model and bs is the contribution of Φs in the model instance.
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A higher number of modes results in a more accurate model, which is less
compact and vice versa (Sarkalkan et al., 2014). The most common approach
for establishing the number of modes required is given by the threshold value
r:

r =

∑c
s=1 λs∑N−1
s=1 λs

(4)

with r generally between 0.90 and 0.98 (Heimann and Meinzer, 2009).
Modes beyond r are assumed to be noise, and including them may lead to
over�tting.

3.1.2 Statistical Appearance Models

Just as SSMs, the SAM needs to be trained using a data set focused on a
population. However, instead of using surface meshes or landmarks, the density
distribution is obtained from the intensity values found in medical images.
Thus, models of appearance can also be called models of intensity or density
(Heimann and Meinzer, 2009). Where SSMs only contain the surface geometry
of the bone shape, a SAM contains the density distribution of the bone shape
and can thus infer the average bone density distribution within a population
and its principal modes of variance (Sarkalkan et al., 2014).

As described by Cootes et al. (2004) there are three main steps to follow
when building a SAM. The �rst is to collect the intensity or pixel data from
the data set. Through image warping, a consistent method can be devised to
collect or capture the intensity values representing the bone density distribu-
tion. For this purpose, image warping is used to transform the images from one
spatial con�guration into another. Deriving the texture information from the
training instances consists of warping the training set to �t a standard bone
shape of the population which can be given by the mean bone shape of the
SSM, x. With correspondence already established during SSM construction,
image warping then consists of a point set transformation x′

i = f(xi), where
f is a continuous mapping function containing some form of transformation
matrix. The warped images are often referred to as being shape normalized
(Cootes et al., 2004; Heimann and Meinzer, 2009; Sarkalkan et al., 2014). In
literature, two forms of the function f is commonly used, the piecewise a�ne
and thin-plate spline (Cootes et al., 2004). After shape normalization, the
intensity information can then be sampled and stored into a texture vector
gim.

The second step is to normalise the pixel and intensity data. Normalisa-
tion of intensity values is essential to obtain a SAM that will represent the
statistical population as accurately as possible. Due to machine calibration,
acquisition errors and imaging software, di�erent intensity values in a data
set can represent the same density value for various medical imaging devices
(Cootes et al., 2004; Sarkalkan et al., 2014). In literature, intensity normal-
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ization is often accomplished by scaling gim with α while applying β as an
additional o�set (Sarkalkan et al., 2014):

g =
gim − β1

α
(5)

where 1 is a unit vector. The α and β parameters are usually chosen such
that all intensity values are transformed to a zero mean with a unit variance
(Cootes et al., 2004):

α = gim · g

β =
gim · 1
Nim

where Nim represents the length of vector gim. With g being the mean nor-
malized intensity vector, g (Equation 6)), determining α becomes an iterative
process (Cootes et al., 2004).

Finally, the SAM is constructed using the normalised intensity data. Con-
structing the SAM using the normalized intensity data follows the same pro-
cedures as constructing the SSM. The only di�erence is that instead of using
the point position for shape representation the normalised intensity data g is
used to extract the mean and modes of variance (Cootes et al., 2004):

g =
1

n

n∑
i=1

gi (6)

Sg =
1

n− 1

n∑
i=1

(gi − g)(gi − g)T (7)

As in the SSM construction, the PCA method can be used to extract the
main modes of varianceΦg. In this way most of the possible density or intensity
distributions within the statistical population can be described by:

g = g +
c∑

g=1

bgΦg (8)

Similar to the SSM, the vector length of bg could be determined by the
value of c using Equation 4 (Cootes et al., 2004; Sarkalkan et al., 2014).

Furthermore, SSMs and SAMs can be combined into a compact model to
simultaneously describe the shape and density distribution within the bone
shape population. These models are often referred to as a combined statistical
shape and appearance model (SSAM) (Sarkalkan et al., 2014). The interested
reader may refer to Cootes et al. (2004) for additional mathematical informa-
tion.
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3.2 Active Shape and Appearance Models

After establishing the SSM and SAM, a capable optimisation algorithm is still
required to �t the model to a set of unseen data inputs. These inputs can
be from two-dimensional scalar images such as CT or MRI scans, a partial
surface mesh or a small group of landmark measurements. In either case, the
optimisation algorithm is only focused on determining the parameter vectors
bs and bg, which best �t the models to the inputs (Sarkalkan et al., 2014).

Establishing an optimisation algorithm requires consideration of certain
factors. One such aspect forms part of the initialisation process, i.e. the
starting point for the optimisation protocol. When the search procedure is ini-
tialised, rotational and translational dependencies must be minimised so that
shape and density variation are the main dependencies between the model and
the target data. A second factor relates to the cost function of the algorithm
and its tendency to get stuck within a local minimum. Both these factors are
ampli�ed when working with medical images due to the large search space
(Heimann and Meinzer, 2009). However, providing an initial pose, location
and shape instance through user interaction can minimise these two factors.
The image input and model can be aligned by manually placing corresponding
landmarks, thereby minimising the possibility of getting trapped in local min-
ima. The landmarks can also be used to calculate an initial posterior model,
allowing for a more focused �tting procedure. Thus, bs and bg can be found in
a way where the cost function, representing the quality of �t, is truly optimised
(Heimann and Meinzer, 2009).

Optimisations algorithms used to successfully �t SSMs and AAMs to un-
seen data include:

� The Quasi-Newton method (Haslam et al., 1994).

� The Nelder-Mead simplex approach (Tang and Ellis, 2005).

� The conjugate gradient algorithm (Lötjönen et al., 2004).

� Gradient descent optimization (Nain et al., 2007).

� Genetic algorithms (Hill and Taylor, 1992).

� Simulated annealing (Fleute et al., 1999).

� The Marquardt-Levenberg algorithm (Okada et al., 2008).

Though many di�erent optimisation algorithms and methods can establish
the shape and density parameters for automating registration and segmen-
tation, the ASM and AAM have been well established within literature and
industry (Heimann and Meinzer, 2009; Cootes et al., 2004; Lüthi et al., 2017).
The algorithms and methods listed above have been shown to be slower and
less e�cient than ASM and AAM implementations (Heimann and Meinzer,
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2009; Cootes et al., 2001). For example, implementations of the Quasi-Newton
method have been shown to be 40 times slower than ASM implementations
(Haslam et al., 1994). The ASM and AAM are generally used when �tting
SSMs and SAMs to partial inputs. ASM traditionally only �ts the SSM where
AAM usually �nds the best shape and density representation of the input data
(Sarkalkan et al., 2014).

ASMs are often used in industry to �t 3D models to a set of patient-speci�c
two-dimensional scalar images. The three-dimensional modal can then esti-
mate data speci�c to the patient, providing a patient-speci�c three-dimensional
model at the cost of 2D imaging. If this were done using an AAM, it would
both solve the segmentation problem and provide us with a patient-speci�c
3D model containing shape and density distribution. From this model, a PSI
design can be established at a fraction of the time and cost usually required
for designs reliant only on specialist knowledge (Heimann and Meinzer, 2009).

AAMs are generally very successful when matching a 2D model to a 2D
image, e.g. facial recognition software. However, it is rarely used to segment
3D images due to the computational load and memory storage required to
match and store the model, respectively. Even though methods for scaling
down the intensity resolution exist, it diminishes the accuracy of the AAM.
Additionally, the intensity representation of medical images also mostly lack
the required resolution and quality to produce a robust model from a training
set (Heimann and Meinzer, 2009).

Due to these problems, ASMs remain the most popular method for the
segmentation of 3D medical images. The approach is straightforward to im-
plement in software, providing a reasonably robust method at a fraction of
the computation costs consistent with AAM search schemes. Many variants
of the ASM have been developed over the years, trying to improve on outlier
errors. Methods have also been identi�ed to map a SAM to a segmented shape
from the ASM. Though less robust than using AAMs, it remains computation-
ally less intensive and easier to implement in software (Heimann and Meinzer,
2009).
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Chapter 4

Model Construction

This chapter details the construction of the statistical models used for segmen-
tal bone repair in Chapters 5 and 6. Section 4.1 details data collection and
processing, where Section 4.2 discusses the SSM, ASM and mean AM con-
struction and developed software. Section 4.3 shows the results found when
validating the models, and Section 4.4 discusses the models' validity.

4.1 Data Collection and Processing

The statistical models were constructed using retrospectively collected CT
scans of the femur and tibia. As the study aimed to restore the non-
pathological geometry of the femur and tibia, the training data consisted of
healthy anatomy to avoid introducing a bias towards a pathology within the
statistical models' behaviour. Furthermore, due to di�erent anatomical traits
between men and women, it is essential to analyse the statistical variability of
the two groups separately (Nieves et al., 2005).

Therefore, data collection was targeted at diagnostic CT scans of male and
female South African patients between the ages of 18 and 45 with healthy
bone anatomy, no prior radiologically identi�able disability, obesity, arthritis,
or other musculoskeletal conditions that could a�ect bone mineral density. The
target sample size for each model was 50 (n = 50) to re�ect that of prior studies
in literature (Heimann and Meinzer, 2009; Audenaert et al., 2019). However,
this was not possible for each training set due to limited availability.

Table 4.1 summarises all the essential information required to describe the
statistical population of each training set. Data collection was done after
ethical clearance was received from the Health Research Ethics Council (Ref:
S20/07/171). Note that after data collection, either the left or right anatomy
for the population was selected due to the available healthy bone samples in
each data set.

After collection, the bone anatomy required from each CT scan was seg-
mented using Mimics (Materialise NV, Belgium) software. During segmenta-
tion, the cortical and trabecular bone structure was isolated using thresholding

27
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Table 4.1: Statistical population data

Male
femur

Male
tibia

Female
femur

Female
tibia

Right or
left anatomy

Right Right Left Left

Sample
size (n)

50 50 50 37

Age
[years]

26.90
( ± 6.08 )

26.90
( ± 6.08 )

29.26
( ± 7.24 )

30.16
( ± 7.63 )

Slice thickness
[mm]

1 1
1.06

( ± 0.11 )
1.06

( ± 0.11 )
Pixrel resloution

[mm]
0.79

( ± 0.11 )
0.79

( ± 0.11 )
0.80

( ± 0.14 )
0.82

( ± 0.12 )

operations and manual editing, resulting in a mask of the intensity informa-
tion of the femoral and tibial bone structures. Using the mask of each training
sample, a face-vertex surface mesh was then constructed that de�ned the outer
surface of each training sample. Appendix C contains the segmentation pro-
tocol used during data processing.

The surface meshes (or segmentations) produced consisted of ±75000 ver-
tices each. Using 3-Matic (Materialise NV, Belgium) software, the segmenta-
tions were reduced to 5 000 vertex points with a geometrical error lower than
0.1 mm. This produced samples that were computationally light and easy to
work with during debugging but still gave good results during testing. After
vertex reduction, the surface meshes were then used to programmatically crop
and extract the voxel density distribution of each training sample from the CT
images using the Scalismo (University of Basel, Switzerland) library.

4.2 Statistical Model Construction

The SSMs, ASMs, and mean AMs were constructed using the standard ap-
proaches proposed in the literature (Lüthi et al., 2017; Morel-Forster et al.,
2018; Cootes et al., 2001). Figure 4.1 gives an overview of the construction
procedures with the data inputs and model outputs. First, the SSMs were con-
structed and validated to ensure the shape variation of the populations was
captured su�ciently. The SSMs and cropped density distributions were then
used to construct the ASMs and mean AMs. The ASMs, combined with an au-
tomated segmentation algorithm, could then produce automated face-vertex
surface meshes from the training images. These automated surface meshes
could then be compared to the manual segmentations for validation of the
ASMs. To validate the mean AMs, healthy density estimates for training sam-
ples were produced by warping the mean AMs to the surface mesh boundaries
of the training samples. The estimates were then compared to the original den-
sity distribution of each training sample. A more detailed discussion on the
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Figure 4.1: Model construction overview.

construction procedures for each model is given in the subsequent subsections.
The detailed validation procedures and results will be given in Section 4.3.

All programming was done in Scala, a strong statically typed general-
purpose programming language, using Scalismo library, a scalable image anal-
ysis and shape modelling library. Appendix A contains additional notes on
software considerations that were not discussed in this chapter. Detailed notes
on modelling and mathematical considerations, not fully addressed in this
chapter, can be found in Appendix B. For the reader who is not familiar with
Gaussian processes or PCA a review of Sections B.2 and B.6 is recommended.
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Figure 4.2: Statistical shape model construction.

4.2.1 Shape Model Construction

SSMs were constructed using the Gaussian Process Morphable Model (GPMM)
construction methodology proposed by Lüthi et al. (2017). Where shape
variation is modelled as deformations, {u1, ..., uN}, from a reference surface,
ΓR ⊂ R3, which is representative of the average shape of the target popu-
lation (Lüthi et al., 2017). In this study, the GPMM methodology can be
simpli�ed to two main activities: 1) establishing correspondence within the
training data, and 2) storing shape variation within a Gaussian Process (GP).
Figure 4.2 illustrates these two main activities and their underlying steps.

As already mentioned, correspondence means that the landmark of each
shape in the training set represents the same anatomical points (Cootes et al.,
2004). Thus, for GPMMs all the training data must be in correspondence with
ΓR to ensure that the anatomical variance found in the data set is accurately
interpreted when constructing the statistical model. Five steps were required
to establish correspondence in the training set:

1. Manual landmark placement.

2. Rigid alignment.
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3. Reference shape selection.

4. Initial SSM construction with smooth deformation kernels.

5. Non-rigid registration.

A set of landmarks (or points) ( Nfemur = 12; Ntibia = 10 ) similar to those
seen in Figure 2.2, were manually placed on each training sample (or face-vertex
surface mesh) of the particular training set used. It was assumed throughout
the study that manual landmark placement had a radial uncertainty of 5 mm.
To accommodate this error, a noise variable in the form of a GP was introduced
during �tting operations to allow additional variance when calculating the
posterior for registration, segmentation and reconstruction.

The manually placed landmarks were then used to align the training set
rigidly by minimizing the mean squared error over the corresponding landmark
points. Using the Scalismo library, a transformation matrix was calculated to
rigidly align the training samples to the reference frame of the �rst training
sample in the sequence. Using basic translation and rotation operations, the
calculated transformation matrix for each sample was used to align the dataset
to the �rst surface mesh. A detailed mathematical explanation of the alignment
methods used can be found in Subsection B.5.

To construct a GPMM, a reference shape, ΓR, close to the mean of the
population has to be selected from the training set, Γ1→n. In this study, it
was assumed that the volume of a training sample, VΓ1→n , would be a good
indicator for the population mean. The volume of each sample was estimated
by multiplying the length, width and height of the bounding box around the
surface mesh of the sample. The average volume, Vavg, was derived, and the
training sample closest to the average volume, Vavg ≈ VΓi

, was then selected
to be the reference shape, ΓR ≈ Γi. Even though the volume estimate was not
the actual sample volume, it was simple to compute. Visual inspection also
showed that the selected ΓR closely approximated the population's mean after
the SSM was created.

During registration a shape instance, Γ, within the statistical population
can be created by sampling û ∼ GP (µ, k) and warping the reference shape,
Γ = {x + û(x)|x ⊂ ΓR}. If ΓR ≈ Γavg a simple GP can be constructed by
setting µ = 0 and de�ning a scalar valued covariance matrix or kernel, kscalar,
that models smooth deformations by:

kscalar(xi1, xi2) = e
−∥xi1−xi2∥

2

σ2 (9)

where kscalar is the covariance matrix and σ2 de�nes the range over which
the deformations are correlated, i.e. the smoothness. Thus, for example, for
σ ≫ 10, deformation �elds will be much smoother over a speci�c region than
for σ = 10. To translate kscalar to the x1→N components of the vertex mesh, a
matrix-valued kernel can be de�ned as
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ksmooth(xi1, xi2) = s · I3×3kscalar(xi1, xi2) (10)

where I3×3 is a 3×3 identity matrix and s ∈ R3 determines the scale of the
variance. Additionally, when modelling with GPs, simple kernels, such as the
smooth deformation kernel in Equation 10, can be combined to de�ne a new
kernel that models di�erent deformations over similar or di�erent regions in the
same covariance matrix (Lüthi et al., 2017). In this study three scalar valued
smooth deformation kernels with varying smoothness, σ, and constant scale,
s, were combined to de�ne GPsmooth(µ = 0,ksmooth1 +ksmooth2 +ksmooth3). The
GP could then be combined with ΓR to de�ne a smooth GPMM as an initial
SSM. See Sections B.1 and B.7 for a detailed explanation of the mathematical
considerations, and Table A.2 for the values of σ and s.

The smooth SSM could then be used in combination with parametric gradi-
ent based optimisation for non-rigid registration (Lüthi et al., 2017; University
of Basel, 2021). A non-rigid registration problem was established by de�ning
four things:

1. A 'transformation space' in which instances of the smooth SSM can be
sampled.

2. A 'metric' to measure the distance between the target surface, ΓT , and
ΓR.

3. A 'regularizer' which penalizes unlikely GP transformations.

4. An 'optimizer' to ensure e�cient registration.

Note that ΓT is the sample shape, Γi, for which correspondence is being
established. The de�ned registration problem could then be used to calculate
the GP transformation, α, required to warp ΓR to ΓT . In the study, the
registration problem was carried out for a sequence of iterations and only
for a randomly selected number of vertices on ΓR. Thus, after the de�ned
number of iterations, the vertices not yet located on the target surface were
projected normally to the closest point on ΓT . This resulted in a reference
shape where all the vertices were �tted to the surface of the target mesh,
giving a corresponding face vertex surface mesh where a vertex on ΓR closely
relates to the same vertex on the new ΓT . For a more detailed explanation
of the registration algorithm, iteration sequence and sampled points used see
Appendix A (University of Basel, 2021).

With correspondence established the shape variation within the statistical
population can now be stored within a GP by training a GPMM using the
ΓR ⊆ Ω (where Ω ⊂ R3) and the new target shapes. The vertices on ΓR and a
particular ΓT can be used to calculate a sequence of deformation vectors, u =
{u1, ..., uN}. The deformations can be stored within a GP, uk ∈ GP (µk,kk)
with the mean deformation µk : Ω → R3 and covariance matrix kk : Ω× Ω →
R3. Similar to Equations 1 and 2, µk and kk, can be derived through:

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. MODEL CONSTRUCTION 33

µk =
1

n− 1

n−1∑
i=1

uik (11)

kk =
1

n− 2

n−1∑
i=1

(uik − µk)(uik − µk)
T (12)

When working with surface meshes, the number of landmarks, N , equals
the number of vertices used to describe the surface boundary in question. For
the femur and tibia meshes used in this study, N is greater or equal to 5000
vertices. Thus, the covariance matrices derived during training are quite large,
making it di�cult to store and process. Fortunately, as with Equation 3, PCA
can be used to represent the derived GP in terms of an orthogonal set of basis
functions. Through low-rank approximation, the GP can be presented by:

ũ(x) ∼ µ(x) +
r∑

r=i

αi

√
λiΦi(x) (13)

were αi is the contribution of (λi,Φi), the eigenpairs. The GPMM can be
stored and processed much easier in this form while sampling shape instances
from the population can be done by simply adjusting αi.

4.2.2 Active Shape Model Construction

The procedure for modelling local structures was used (Cootes et al., 2004;
Morel-Forster et al., 2018) in combination with the GP Morphable Model con-
struction methodology (Lüthi et al., 2017) to construct the ASM. The GP of
the SSM was combined with intensity pro�les around the surface boundaries of
each training sample. The intensity pro�les were extracted from the cropped
CT images using the corresponding face-vertex surface meshes to identify the
surface boundaries. Figure 4.3 gives an illustration of the ASM construction
procedure used during the study.

First, the reference shape was used to uniformly sample 250 vertices
(Nprofile = 250) on the surface mesh. Second, using the corresponding face
vertex surface meshes and their accompanying images, intensity pro�les were
extracted on the same 250 corresponding points of each image. An intensity
pro�le, as seen in Figure 4.3, consists of a centre point (kth

profile of Nprofile) on
the mesh boundary and ten sub-points, �ve on each side of the boundary line.
Each sub-point was spaced 1 mm apart, and the pro�le line was set normal
to the surface boundary. The intensity pro�le values on each image were sam-
pled using the centre and sub-point coordinates. Third, using the sampled
intensity pro�le values for each image in the training set, a GP of the intensity
gradient was derived for each of the 250 vertices (University of Basel, 2021).
The intensity gradient made the ASM more robust against intensity variation
due to acquisition errors and machine settings. Finally, the pro�le data was
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Figure 4.3: Active shape model construction.

stored in a sequence containing the pro�le GPs, and vertex ID where it was
sampled. The pro�le sequence, ΓR and SSM GP were then stored in the same
data structure to create the ASM. See Table A.4 for more detail regarding the
data structure.

A segmentation algorithm also had to be implemented in software to �t
the ASM to unseen images. For this, Markov Chain Monte Carlo (MCMC)
combined with the Metropolis-Hastings (MH) algorithm was used following
the methodology set out by Morel-Forster et al. (2018). This method uses a
probabilistic interpretation of the ASM as Bayesian inference. Thus, we assume
a prior distribution on considered parameters such as shape and length. This
method allows for the easy integration of user or specialist information during
optimisation for a more accurate �t, it is simpler to implement, and is more
robust against local minima than the traditional ASM �tting methodology
(Morel-Forster et al., 2018).

Following the segmentation procedures illustrated in Figure 4.4, �tting op-
erations �rst require some user input through manual landmark placement.
By manually placing corresponding points on the unseen image and ΓR, ini-
tial parameters, θ0, can be calculated to initialise the automated segmentation
procedures. Parameters consist of the model's translation, rotation and shape
coe�cients, θ = (t, r, α), with respect to the origin of the model's reference
frame. Initial translation, t0, and rotation, r0, parameters can be derived by
calculating the transformation matrix that rigidly aligns the ASM and the un-
seen image. The best initial GP coe�cients, α0, are assumed to be the mean
shape deformation, Γmean, contained within GP (µ, k).

An initial posterior was calculated using the manually placed landmarks
and MH algorithm to ensure the intensity pro�les were �tted as accurately as
possible. As seen in Figure 4.5, model parameters consisting of translation,
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Figure 4.4: Segmentation procedures.

Figure 4.5: Metropolis Hastings sampling (Adapted from: Morel-Forster et al.

(2018)).
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rotation and GP coe�cients are sampled normally from a user-de�ned normal
distribution, Q(θ′|θ) ∼ N (t, r, α). The user must specify a normal distribution
around zero for t, r and α at the beginning of the MH algorithm. The range
of the distribution was classi�ed as step sizes. If, for example, the step size for
translation was 1 mm, then t′ = t+N (−1, 1) for each new iteration.

Additionally, for each iteration, only one parameter (t, r or α) was sampled.
The parameter selected for sampling in each iteration was selected randomly
through a given probability, i.e. a random number, following a uniform dis-
tribution between zero and one, was generated and depending on the given
probability, a parameter was selected and sampled. Assuming θ0 was selected
properly, shape variation would be the main concern during the �tting oper-
ation. Thus, adjustments to α would be favoured over adjustments of (t, r).
In this study, it was assumed that 80 % of the samples from Q(θ′|θ) would
have to be α to gain a proper segmentation and (t, r) would both have a 10
% probability (0.0 ≥ p(t) ≥ 0.1, 0.1 > p(r) ≥ 0.2, 0.2 > p(α) ≥ 1.0). For
example, if a new iteration began and the random value generated was 0.1 the
t would be selected and sampled,t′ = t+N (−1, 1). Thus (r, α) would remain
constant for the iteration. In each iteration, the sampled step would be used
to adjust the current θ, producing θ′. See Table A.3 and Morel-Forster et al.
(2018) for more detail.

The likelihood of the posterior for both the current θ and newly sampled
θ′ is then calculated using:

p(θ|I) = p(θ)p(D|θ) (14)

where I donates the observed image, p(θ) the likelihood given the observed
distribution captured in the GP of the SSM, and p(D|θ) the likelihood given
either the manually placed landmarks (D = LM) or ASM pro�les (D = P ).
The likelihood p(θ) is determined by calculating the log-likelihood of the model
parameters t, r and α. For t and r a uniformly distributed distribution was
de�ned around the model origin (t ∼ U(−1, 1) m, r ∼ U(−π, π) rad). Thus,
all transformations within this range would be equally likely. For α, the log-
likelihood for the observed GP in the SSM was calculated. The three log-
likelihoods were then combined through summation to produce p(θ). The
likelihood p(D|θ) was calculated similarly using either a normal distribution
around zero error for the manually placed landmarks or the GPs of the ASM
pro�le sequence.

To calculate p(LM |θ), the corresponding manually placed landmark posi-
tions would be subtracted from each other to determine the root mean square
error. Using a normal distribution around zero, errors closer to zero would have
a higher log-likelihood. With each iteration, the positions of the landmarks
would change, and the new log-likelihood would be calculated. For p(P |θ),
using each pro�le's main vertex position, the intensity pro�les of θ were sam-
pled from the image and then compared to the ASM pro�les by calculating the
log-likelihood of the observations using the GPs' of the ASM pro�le sequence.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. MODEL CONSTRUCTION 37

Additionally, the log-likelihoods of p(θ) and p(D|θ) can be combined through
summation as before to produce p(I|θ).

Furthermore, if the θ′ was more likely than θ, it was accepted, and the
next iteration was started. Otherwise, θ′ was rejected and θ was carried for-
ward. The acceptance ratio, Ratio(Q), was calculated by dividing the num-
ber of accepted θ′ by the number of rejected θ′, to demonstrate to the user
the e�ectiveness of the proposed step sizes of (t, r, α). If the ratio was high
(Ratio(Q) > 0.5), only local minima were sampled, and the step sizes are
considered ine�ective. If low (Ratio(Q) < 0.25), the step sizes were too large,
and the samples are too far from the global minima. However, Ratio(Q) is
only for the user to analyse the suggested step sizes. The �tting operation will
continue to run for the number of iterations de�ned at the start of the MH
algorithm. For this study, 10 000 iterations were run for both the LM and
pro�le posterior calculations. With code optimisation, 10 000 iterations took
approximately 30 to 40 seconds.

Returning to Figure 4.4, the landmark posterior was then used for the pro-
�le �tting operation. Again, the MH algorithm was used, except the ASM
pro�les were used to calculate p(D|θ) instead of the manually placed land-
marks. Using each pro�le's main vertex, the intensity pro�les of θ and θ′ were
sampled from the image and then compared to the ASM pro�les. The sample
parameters, θi, with the highest log-likelihood p(I|θ) of all the iterations, was
then used to set the model for the �nal segmentation.

4.2.3 Appearance Model Construction

The construction procedure used for the mean AM can be seen in Figure 4.6.
Using linear interpolation, the deformations, ut = {u1, ..., uN}, calculated for
each target shape during registration in Subsection 4.2.1, were extended to
the entire CT image for each sample. This warped the voxel data of each CT
image to the reference shape, ΓR. With the sample images shape-normalised,
the corresponding intensity vector, gim, from each training image could be
extracted by calculating which voxels fall within the ΓR boundary. Thus, the
voxel data contained in gim for each image included only bone intensity data
of the bone structure studied.

To combat intensity variation from di�erent machine imaging settings, the
intensity data contained within gim was normalized to the mean intensity
vector, ḡ (Cootes et al., 2004; Heimann and Meinzer, 2009). However, with ḡ
of the sample population not yet known at this stage, the method discussed in
Section 3.1.2 was used. Brie�y summed up, Cootes et al. (2004) proposed the
following process:

1. Assign one of the samples as the initial ḡ.

2. Normalize the intensity values of all samples to ḡ.

3. Calculate the new ḡ of the normalized samples using Equation 6.
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Figure 4.6: Mean appearance model construction.

4. Iterate until convergence.

In this study, the corresponding intensity vector, gR, of ΓR was selected
as the initial ḡ. The vector zero mean unit standard deviation was selected
to normalise the intensity values of all samples. Refer to Subsection 3.1.2 for
more detail. The convergence criterion was the average di�erence between the
elements of the old and new ḡ of each iteration. An average di�erence value
of 0.1 yielded good results. After the �nal ḡ was calculated, it was used to
generate a mean CT image.

4.3 Model Validation

Model generalisation was investigated through leave-one-out testing on ten
samples to determine how well the SSM, ASM and mean AM represent mem-
bers of the statistical population outside of the training data used during
construction (Audenaert et al., 2019). Partial models were constructed by re-
moving a selected sample from the training data (n′ = n − 1). The resulting
models were then �tted to the corresponding unseen test sample. The shape
and density �ts were assessed by calculating the average distance error, Haus-
dor� distance error, R square (R2), and the average intensity error (AIE).
First, the average distance (AD) and Hausdor� (HD) errors were calculated
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Table 4.2: Male femur model validation

Male
femur

SSM ASM Mean AM

Sample
ID

AD
[mm]

HD
[mm]

HD
Pos.

AD
[mm]

HD
[mm]

HD
Pos.

R2
[%]

AIE
[HU]

NS_401 0.57 3.28 Prox 1.25 7.00 Prox 96% 89
PB_126 0.80 4.59 Prox 1.66 8.07 Prox 92% 118
SD_235 0.56 3.43 Prox 1.47 8.53 Prox 92% 107
SM_517 0.58 3.30 Dist 1.26 8.82 Prox 95% 101
SN_234 0.66 4.01 Dist 1.11 5.51 Prox 92% 116
SZ_234 0.76 4.65 Prox 1.60 7.80 Dist 90% 132
TC_603 0.64 4.79 Prox 1.45 5.71 Dist 96% 84
TG_375 0.59 3.55 Prox 1.32 8.11 Prox 93% 112
TL_126 0.52 3.88 Dist 1.48 7.30 Prox 86% 148
TS_710 0.72 5.38 Dist 1.52 7.20 Dist 87% 141
Avg. 0.64 4.09 1.41 7.41 92% 115
Std. 0.09 0.69 0.16 1.05 3% 20

to evaluate the quality of the bone shape estimation. The shortest distance
to the estimated surface was calculated for each vertex point on the unseen
test surface. The average distance error was de�ned as the overall average of
all distances, and the Hausdor� error was the maximum, minimum distance.
Secondly, the density estimation was assessed using the R2 metric and the av-
erage intensity error. Before calculating these metrics, the density estimation
was shape normalised, and its intensity values vector normalised to that of the
original density image. The normalised density estimation can be viewed in the
same reference frame as the original CT image. This gives a visual representa-
tion of the estimations residuals, ensuring the correct interpretation of the R2

value while aiding in understanding the location of density errors within the
estimation. It is important to note that the CT intensity data were analysed
in Houns�eld units (HU), and with the HU bone scale being quite large (226
to 3071 HU depending on the population and bone structure (Chougule et al.,
2018)), the R2 value was also used to bring the average intensity error into
perspective.

4.3.1 Shape Model Validation

Tables 4.2 to 4.5 show the average AD and HD errors for all the SSMs, ranging
from 0.52 (± 0.08) mm to 0.64 (± 0.09) mm and 4.09 (± 0.69) mm to 3.34
(± 1.06) mm, respectively. Through visual inspection, the HD error for each
test sample was found to occur at the proximal or distal end of both the femur
and tibia models. In most cases, this was at the trochanteric fossa for the
femur, and at the medial or lateral condyle, or tibial tuberosity for the tibia.
Visual inspection also showed that the diaphyseal and metaphyseal areas of
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Table 4.3: Male tibia model validation

Male
tibia

SSM ASM Mean AM

Sample
ID

AD
[mm]

HD
[mm]

HD
Pos.

AD
[mm]

HD
[mm]

HD
Pos.

R2
[%]

AIE
[HU]

NS_401 0.58 3.01 Prox 0.96 4.41 Dist 96% 95
PB_126 0.67 3.93 Prox 1.28 5.05 Dist 93% 124
SD_235 0.40 2.73 Dist 0.97 4.56 Prox 95% 97
SM_517 0.56 3.42 Prox 0.92 4.25 Prox 91% 131
SN_234 0.52 3.04 Prox 0.89 5.20 Prox 88% 141
SZ_234 0.74 4.75 Prox 1.69 6.86 Prox 91% 130
TC_603 0.54 2.92 Dist 0.99 5.35 Dist 94% 96
TG_375 0.58 3.02 Prox 1.22 6.23 Dist 91% 126
TL_126 0.63 3.49 Prox 0.92 4.09 Dist 90% 138
TS_710 0.69 3.51 Prox 1.25 4.77 Distal 89% 165
Avg. 0.59 3.38 1.11 5.08 92% 124
Std. 0.09 0.57 0.24 0.84 3% 21

Table 4.4: Female femur model validation

Female
femur

SSM ASM Mean AM

Sample
ID

AD
[mm]

HD
[mm]

HD
Pos.

AD
[mm]

HD
[mm]

HD
Pos.

R2
[%]

AIE
[HU]

SA_303 0.53 3.01 Prox 1.02 4.55 Prox 95% 83
SL_401 0.62 3.69 Dist 1.66 8.10 Prox 91% 105
SL_077 0.54 4.15 Prox 1.33 8.15 Prox 94% 95
SP_054 0.64 4.60 Prox 1.50 8.08 Prox 89% 145
SS_161 0.54 2.91 Dist 1.02 4.29 Prox 89% 111
SS_107 0.62 3.48 Prox 1.42 8.57 Prox 93% 96
TM_355 0.60 4.60 Prox 1.62 6.56 Dist 94% 86
VL_124 0.64 3.76 Prox 1.05 5.50 Prox 87% 119
VW_006 0.45 2.44 Prox 0.89 4.60 Dist 95% 78
WK_503 0.52 3.06 Prox 1.07 5.62 Prox 70% 175
Avg. 0.57 3.57 1.26 6.40 90% 109
Std. 0.06 0.69 0.27 1.61 7% 29
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Table 4.5: Female tibia model validation

Female
tibia

SSM ASM Mean AM

Sample
ID

AD
[mm]

HD
[mm]

HD
Pos.

AD
[mm]

HD
[mm]

HD
Pos.

R2
[%]

AIE
[HU]

NB_320 0.43 2.36 Prox 0.78 4.70 Prox 95% 84
RC_631 0.48 2.55 Prox 0.89 4.46 Dist 95% 94
RS_700 0.66 5.57 Dist 0.97 6.74 Dist 90% 136
SA_303 0.44 2.82 Prox 0.75 4.22 Dist 95% 93
SL_401 0.48 2.70 Dist 0.90 4.06 Prox 90% 123
SL_077 0.61 3.87 Prox 1.46 7.44 Prox 92% 125
SP_054 0.53 3.68 Prox 0.98 5.76 Prox 91% 131
SS_161 0.48 2.96 Prox 0.75 3.86 Dist 92% 107
SS_107 0.64 4.76 Prox 0.95 6.05 Dist 93% 102
VW_006 0.49 2.16 Prox 1.06 4.88 Dist 95% 81
Avg. 0.52 3.34 0.95 5.22 93% 107
Std. 0.08 1.06 0.20 1.16 2% 19

the femur were �tted more accurately than the epiphyseal areas. The female
tibia SSM performed the best of the four statistical populations tested, and
the male femur SSM the worst.

4.3.2 Active Shape Model Validation

Tables 4.2 to 4.5 also shows the average AD and HD errors for all the ASMs,
ranging from 0.95 (± 0.20) mm to 1.42 (± 0.16) mm and 5.08 (± 0.84) mm
to 7.41 (± 1.05) mm, respectively. Again, the HD was inspected visually and
observed to occur on the proximal or distal ends of both the femur and tibia
models. This is most likely due to neighbouring bone geometry or protrusions
at the joint areas within the CT image. The ASM pro�les at these areas were
�tted to the local minima of the bony protrusions close to the joints, not the
femoral or tibial ends. The female tibia ASM performed the best for the four
statistical populations tested and the male femur ASM the worst.

4.3.3 Appearance Model Validation

Figures 4.7 and 4.8 show the mean image and standard deviation from the
training population for all four sample groups. From the �gures, we can see
that most of the variation for the groups occur within the medullary cavity
and the proximal and distal ends. The diaphyseal and metaphyseal cortical
bone were represented accurately.

When analysing the R2 metric in Tables 4.2 to 4.5, it becomes apparent
that the mean AM gave a reasonable estimation of the intensity distribution
for the test samples, averaging above 90 % of the original density distribution.
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Figure 4.7: An image of the mean AM: a) Male femur, b) Male tibia, c) Fe-
male femur, and d) Female tibia. The images were viewed with a window width in
Houns�eld Units (HU) ranging from 0 to 2400.

Figure 4.8: An image of the univariate standard deviation from the training pop-
ulation: a) Male femur, b) Male tibia, c) Female femur, and d) Female tibia. The
images were viewed with a window width in Houns�eld Units (HU) ranging from 0
to 700.

Visual inspection of residuals throughout AM testing also revealed that the
R2 metric was most accurately calculated. Looking at the standard deviation
for all the population groups in Figure 4.8, we �nd that most AIE lies within
the cancellous bone regions.

4.4 Discussion

Audenaert et al. (2019) showed that SSMs constructed from 50 training femurs
or tibias could have a model generalisation error below 1 mm. It is clear from
Tables 4.2 to 4.5 that the full SSMs should have a generalization error below
0.7 mm. This showed that the constructed SSMs could describe members of
the South African male and female population outside of the sample data used
to train the models. Audenaert et al. (2019) also found that the generalisation
error for their femur and tibia models did not go below 0.5 mm with a sample
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size of 250. Though the generalisation error is also dependent on the statistical
population, increasing the dataset would most likely have a limited e�ect on
the generalisation ability of the SSM.

When analysing the results for the ASMs, it was found that the average AD
and HD errors ranged from 0.95 (± 0.20) mm to 1.42 (± 0.16) mm and 5.08
(± 0.84) mm to 7.41 (± 1.05) mm, respectively. From Subsection 2.4.2 these
are acceptable errors for reconstruction surgery as observed in literature and
industry. More speci�cally, the AD error falls below the 2 to 4 mm overhangs
reported from literature Abram et al. (2014); KR et al. (2020), and below the
5 to 10 mm tolerance from industry (CranioTech (PTY) Ltd., 2021). Though
the HD error is below the 10 mm range, it lies within the proximal and distal
epicondyle ends. Thus, the HD error based on diaphyseal resections and es-
timations, as measured in the following chapter, will be a better indicator of
the models' performance with respect to this study's aim and objectives. Still,
the segmentations were done automatically without any specialist knowledge
and completed within a few minutes as opposed to typical manual processes
which could take up to half an hour or longer. Additionally, the ASM pro�les
�tting to the bony protrusions close to the joints could be prevented through a
better initial starting position, manual intervention during the �tting process,
or an added MH parameter, θ. These considerations will be discussed further
in Chapters 5 and 6.

In Figures 4.8.a and 4.8.b, it can be observed how the mean AM represents
the intensity distribution of the sample sets. The largest standard deviations
were found within the medullary cavity and epiphyseal ends, most likely due
to the dynamic nature of cancellous bone tissue (Betts et al., 2013). The
relatively low standard deviation of the compact cortical bone, especially in
the diaphyseal area, indicates an accurate representation by the mean image.

In literature, AMs of bone have been used for two applications. Firstly,
to assess risk factors for fractures in long bone structures and joint anatomy
related to osteoporosis (Sarkalkan et al., 2014). Secondly, to calculate the
stress and strain distribution, study bone tissue adaptation and simulate cycle
loading on implants via patient-speci�c �nite element (FE) models (Sarkalkan
et al., 2014; Poelert et al., 2013). For both applications, an AM or FE model is
populated by estimating the bone mineral density (BMD) of the patient from
in vivo imaging using several direct methods (Poelert et al., 2013; Duchemin
et al., 2008; Lekadir et al., 2015). Lekadir et al. (2015) describe a novel method
for estimating the trabecular micro-architecture from healthy CT images us-
ing a combined statistical shape and appearance model, trained from ex vivo
micro-CT images. However, while direct methods are computationally less
expensive, they do not incorporate prior knowledge of variation within a pop-
ulation to guide a statistically valid outcome. Secondly, while a statistical
AM can accurately model the variation within a population, training requires
a healthy high-resolution training database, and it is computationally much
more expensive during data processing, model construction, and model �tting
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(Cootes et al., 2004; Sarkalkan et al., 2014; Lekadir et al., 2015).
Thus, the mean AMs used and validated during this study is a useful

compromise. When estimating the density distribution, we get the speed of
the direct methods with the additional statistical validity of a partial AM,
as seen from the +90% average density �t throughout testing. Furthermore,
the appearance estimate based on CT image intensity can be directly linked
to BMD, which can be used to estimate the Young's modulus and ultimate
strength of bone (Duchemin et al., 2008). Thus, even with some error in the
estimation, the density distribution captured within the mean AM could enable
the design of patient-speci�c functionally graded lattice structures that closely
resemble the mechanical properties of an individual's healthy bone structure
to avoid stress shielding and stimulate new bone growth and nutrient �ow at
the implant site (Wang et al., 2016).

This chapter presented a method in which a representative mean density
image can be warped to a patient's image using ASMs. The results are promis-
ing, with accuracies within acceptable tolerances for an application aimed to-
wards the surgical reconstruction of long bone defects. Chapters 5 and 6 will
focus on estimating and reconstructing pathological geometry based on sparse
inputs, typically seen in patients su�ering from long bone defects.
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Chapter 5

Estimating Missing Bone Shape

and Density

In reference to the models and methods developed in Chapter 4, the ability
to estimate missing bone anatomy was investigated within this chapter by re-
constructing digitally simulated segmental bone loss in healthy femoral and
tibial bones. This chapter is used to evaluate the estimated surface geome-
try and density distribution accuracy before introducing misalignment. This
shows how well the prior knowledge captured within the statistical models can
estimate missing anatomy.

5.1 Simulated Bone Loss

To simulate segmental bone loss on the test samples from Section 4.3, the
centre of each sample's volume was calculated and used as a datum for clipping
segments of the diaphyseal shaft, dividing the test sample into proximal and
distal ends. The length of the cut segments ranged from 5 to 70 % in 5 %
increments, based on the test sample's total length. After cutting, the sample's
target image would only contain voxel data of the remaining proximal and

Table 5.1: Length of total bone structure and segmental bone loss segments

[mm]
Male
femur

Male
tibia

Female
femur

Female
tibia

Length
431.16

( ±20.93 )
390.03

( ±28.36 )
410.77

( ±17.67 )
366.06

( ±18.17 )

5%
21.56

( ±1.05 )
19.50

( ±0.88 )
20.57

( ±0.88 )
18.30

( ±0.91 )

35%
150.91

( ±7.33 )
136.51

( ±9.92 )
143.77

( ±6.18 )
128.12

( ±6.36 )

70%
301.81

( ±14.6 )
273.02

( ±19.85 )
287.54

( ±12.37 )
256.24

( ±12.72 )

45
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distal ends. Table 5.1 gives a summary of the average length of the ten test
samples used for each population group.

5.2 Estimation Method

Figure 5.1 gives a visual overview of the estimation process followed when
re-estimating the diaphyseal segment cut from the test samples. Note that
an understanding of Figures 4.3 and 4.4 is required to fully understand the
estimation process explained below.

To ensure the ASM �ts the global minima of the remaining proximal and
distal ends, an appropriate initial alignment and shape instance was required
(Cootes et al., 2004; Morel-Forster et al., 2018). To determine this alignment
and shape instance, two sets of manually placed anatomical landmarks were
needed. In this study, the landmarks used for alignment consisted of three
proximal points and three distal points. Figure 2.2 illustrates the landmarks
used for both the femoral and tibial bones. After the shaft segment was cut, the
aforementioned corresponding landmarks were placed manually on the ASM
and the partial CT image. Two landmarks were placed on the anterior and
posterior of the model's shaft centre to guide the shaft shape pro�le during ini-
tialisation. The corresponding landmarks were again placed on the partial CT
image. When calculating the initial shape instance, the posterior of the ASM
was computed for the two sets of corresponding landmarks. To compute the
posterior, a Metropolis-Hastings �tting was derived following the methodology
set out in Subsection 4.2.2.

The resulting posterior and ASM pro�les were then used to compute the
most probable �t to the partial image. First, viable ASM pro�les used during
the �tting procedure had to be determined. Assuming Γ(θLM) is a reasonable
�rst estimate of the target boundary, the coordinates of the ASM pro�les were
used to sample intensity pro�les from the partial image. If no voxel data was
found for an image intensity pro�le, the ASM pro�le was assumed to be within
the cut segment or out of the image frame. These intensity pro�les would
be disregarded during the �nal �tting procedure, as �tting pro�les in the cut
segment would lead to grouping of the pro�le points at the proximal and distal
cut edges, resulting in a stretched model surface over the cut segment. The �nal
ASM posterior was again calculated using the Metropolis-Hastings algorithm
by evaluating the ASM pro�les against the intensity pro�les from the partial
image with each new Γ(θ′). This was done to establish correspondence between
the ASM surface boundary and the partial image's proximal and distal femur
surface. The mean surface of the resulting posterior was then used to infer the
missing surface geometry of the partial image to estimate the healthy shape
after simulated segmental bone loss. The accuracy of the approximation was
then measured using the average distance error and Hausdor� error metrics.

Afterwards, the shape normalised mean AM was warped to �t the outer
surface of the estimated diaphyseal segment via linear interpolation. The cor-
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Figure 5.1: Shape en density estimation pipeline.
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responding vertex coordinates on both the estimated mesh surface and the
known AM surface boundary mesh was used to calculate a set of deforma-
tion �elds, {u1, ..., uN}, for each point on the shape estimate. Through linear
interpolation, the deformation �elds were extended to the entire 3D space con-
taining the mean AM. This warped the voxel data of the mean AM to produce
an appearance estimate that was �tted to the shape estimate, thereby esti-
mating a healthy density distribution based on the population mean. The
accuracy of the density approximations was then measured using the R2 and
average intensity error metrics.

Additionally, to ensure a more accurate estimate, the intensity data of the
mean AM was normalised to �t the remaining intensity data of the test sample.
This was done to account for the anatomical variance of the test sample as well
as to combat intensity variation from di�erent machine imaging settings and
algorithms (Cootes et al., 2004; Heimann and Meinzer, 2009; Sarkalkan et al.,
2014). These procedures were iterated for each test sample of each population
group, spanning the entire range of the length of the cut segments.

5.3 Estimation Results

The same leave-one-out test procedure and metrics, as during model valida-
tion, were used to measure the estimated bone shape and density distribution
accuracy. The estimations were measured against the ground truths, i.e. the
segments cut from the target shapes and images were stored and compared to
the shape and density estimates. In this section, the results are shown through
a series of graphs for each population group. Afterwards, �gures showing the
shape and density estimate of one test sample from each group are given and
brie�y discussed.

Figures 5.2.a and 5.2.b show the average and Hausdor� errors obtained
for the male femur population. As the cut length increased, the accuracy of
the shape estimation decreased, with the average distance error ranging from
0.71 (± 0.21) mm to 2.36 (± 0.53) mm for the 5 % and 70 % resections, respec-
tively. Similarly, the average Hausdor� error ranged from 1.41 (± 0.43) mm
to 5.02 (± 1.90) mm. Figures 5.2.c and 5.2.d show the R2 and average inten-
sity error of the density distribution obtained after warping the AM. There
was a gradual decrease in R2, ranging from 89 (± 4) % for resections of 5 %
of the total length to 87 (± 6) % for resections of 70 % of the total length.
The average intensity error was relatively constant regardless of the size of the
resection, with an average error of approximately 180 HU.

Figures 5.3.a and 5.3.b show the average and Hausdor� errors obtained
for the male tibia population. As the cut length increased, the accuracy of
the shape estimation decreased, with the average distance error ranging from
0.82 (± 0.31) mm to 1.47 (± 0.32) mm for the 5 % and 70 % resections, respec-
tively. Similarly, the average Hausdor� error ranged from 2.75 (± 0.79) mm to
5.10 (± 0.74) mm. Figure 5.3.c shows a gradual increase in R2, ranging from
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Figure 5.2: The combined statistical analysis of the test results for segmental bone
repair of the male femur.

86 (± 7) % for resections of 5 % of the total length to 90 (± 4) % for resec-
tions of 70 % of the total length. The average intensity error, Figure 5.3.d, also
showed an increase in accuracy, ranging from 226 (± 70) HU for resections of
5 % of the total length to 180 (± 44) HU for resections of 70 % of the total
length.

Figures 5.4.a and 5.4.b show the average and Hausdor� errors obtained
for the female femur population. As the cut length increased, the accuracy of
the shape estimation decreased, with the average distance error ranging from
0.64 (± 0.14) mm to 1.64 (± 0.41) mm for the 5 % and 70 % resections, respec-
tively. Similarly, the average Hausdor� error ranged from 2.00 (± 0.65) mm to
4.49 (± 0.87) mm. Figure 5.4.c shows that the average R2 was relatively con-
stant regardless of the size of the resection, with an average of approximately
89 (± 6) %. The average intensity error, Figure 5.4.d, was also relatively
constant, with an average error of approximately 160 HU.
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Figure 5.3: The combined statistical analysis of the test results for segmental bone
repair of the male tibia.

Figures 5.5.a and 5.5.b show the average and Hausdor� errors obtained
for the female tibia population. As the cut length increased, the accuracy
of the shape estimation slightly decreased, with the average distance error
ranging from 0.58 (± 0.12) mm to 1.06 (± 0.36) mm for the 5 % and 70 %
resections, respectively. Similarly, the average Hausdor� error ranged from
1.61 (± 0.41) mm to 3.60 (± 1.03) mm. Figure 5.5.c shows that there was a
gradual increase in R2, ranging from 84 (± 5) % for resections of 5 % of the
total length to 89 (± 2)% for resections of 70% of the total length. The average
intensity error, Figure 5.5.d, also showed an increase in accuracy, ranging from
208 (± 25) HU for resections of 5 % of the total length to 159 (± 20) HU for
resections of 70 % of the total length.

Figures 5.6 to 5.9 show the shape of the estimated diaphyseal segments
for one left-out sample of each population group. Visual inspection shows
that as the size of the resected portion increases, the accuracy of the estimate
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Figure 5.4: The combined statistical analysis of the test results for segmental bone
repair of the female femur.

deteriorates. This is most noticeable at the centre of the resection, while
sections towards the distal and proximal end more closely match the left-out
shape's original geometry. Note that the edge alignment on the proximal end
for the 70 % tibial resections are not as well estimated as the distal ends.

Figures 5.10 to 5.13 show axial and coronal slices of the original and esti-
mated density distributions for one target sample of each population group.
In general, the estimations follow the cortical wall thickness and pro�le, with
slight variations in wall thickness. Furthermore, visual inspection reveals that
the density estimations are more accurate towards the exterior of the shape
pro�le. However, the estimations produce minor artefacts of cortical bone at
the inner wall of the medullary cavity.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. ESTIMATING MISSING BONE SHAPE AND DENSITY 52

Figure 5.5: The combined statistical analysis of the test results for segmental bone
repair of the female tibia.

5.4 Discussion

The combined ASM and mean AM used in this study could reconstruct and
estimate the shape and density distribution of resected femoral or tibial dia-
physeal segments with an average distance error ranging from 0.58 to 1.64 mm
and a R2 above 84 % of the intensity of the original target images. These re-
sults indicate that the method proposed in this study was able to estimate the
original, healthy condition of long bones after segmental bone loss, suggesting
that it is viable for automating PSI design procedures such as reconstruction
and segmentation.

The ASM and automated segmentation algorithms produced diaphyseal
estimates with a mean average error below 2.5 mm and a mean Hausdor�
error below 5 mm during leave-one-out testing. While direct comparisons are
di�cult to make, pre-and post-operative reviews in literature show successful
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Figure 5.6: The shape estimation for sample NS-401 of the male femur population.
The estimations had an average distance error and a Hausdor� error of 0.49 mm and
2.34 mm for the 5 % resection, 1.09 mm and 3.03 mm for the 35 % resection, and
1.11 mm and 3.13 mm for the 70 % resection (recorded length 458 mm).
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Figure 5.7: The shape estimation for sample NS-401 of the male tibia population.
The estimations had an average distance error and a Hausdor� error of 0.79 mm and
2.19 mm for the 5 % resection, 1.00 mm and 2.69 mm for the 35 % resection, and
1.78 mm and 4.80 mm for the 70 % resection (recorded length 398 mm).
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Figure 5.8: The shape estimation for sample SA-303 of the female femur population.
The estimations had an average distance error and a Hausdor� error of 0.63 mm and
1.71 mm for the 5 % resection, 1.00 mm and 2.69 mm for the 35 % resection, and
1.78 mm and 4.80 mm for the 70 % resection (recorded length 398 mm).
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Figure 5.9: The shape estimation for sample NB-320 of the female tibia population.
The estimations had an average distance error and a Hausdor� error of 0.41 mm and
0.88 mm for the 5 % resection, 0.71 mm and 2.44 mm for the 35 % resection, and
1.03 mm and 3.97 mm for the 70 % resection (recorded length 347 mm).

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. ESTIMATING MISSING BONE SHAPE AND DENSITY 57

Figure 5.10: The appearance estimation for sample NS-401 of the male femur
population. The estimations had a R square and average intensity error of 90 % and
169 HU for the 5 % resection, 91 % and 161 HU for the 35 % resection, and 92 %
mm and 143 HU for the 70 % resection (recorded length 458 mm).
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Figure 5.11: The appearance estimation for sample NS-401 of the male tibia popu-
lation. The estimations had a R square and average intensity error of 93 % and 175
HU for the 5 % resection, 93 % and 168 HU for the 35 % resection, and 95 % mm
and 135 HU for the 70 % resection (recorded length 398 mm).
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Figure 5.12: The appearance estimation for sample SA-303 of the female femur
population. The estimations had a R square and average intensity error of 92 % and
160 HU for the 5 % resection, 91 % and 173 HU for the 35 % resection, and 92 %
mm and 151 HU for the 70 % resection (recorded length 398 mm).
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Figure 5.13: The appearance estimation for sample NB-320 of the female tibia
population. The estimations had a R square and average intensity error of 85 % and
166 HU for the 5 % resection, 88 % and 147 HU for the 35 % resection, and 89 %
mm and 135 HU for the 70 % resection (recorded length 347 mm).

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. ESTIMATING MISSING BONE SHAPE AND DENSITY 61

outcomes for implant overhangs and variations in size ranging from 2 to 4 mm
for knee and hip arthroplasty (Abram et al., 2014; KR et al., 2020). Based on
the results from Figures 5.2.a to 5.5.a, the average distance errors were below
2.5 mm regardless of the size of the resected segment. Considering Figures 5.2.b
to 5.5.b, the average Hausdor� errors were below 5 mm in all cases, although
some cases had maximum errors of close to 10 mm. Nevertheless, it is essential
to note that the Hausdor� errors occurred close to the centre of the resected
shaft in all test cases. Furthermore, the highest Hausdor� error was less than
4 % of the total estimated length when 70% of the diaphysis was resected.
With the femur and tibia being the longest bones in the body and their length
being the main contributor to shape variance (Zhang et al., 2016), the e�ect
of the Hausdor� error measured in the radial direction close to the centre of
the shaft becomes comparatively negligible.

The proximal and distal edge alignment in Figures 5.6 and 5.9 exhibit mi-
nor misalignment for estimates of resections 30% and less. The edge alignment
deteriorates from the 35 % increment as the registration and segmentation al-
gorithms have fewer data points from which to derive a reasonable estimate.
Still, due to the statistical data captured within the validated SSM, the sur-
face geometry at the edge can be considered anatomically valid (Mauler et al.,
2017) and that, within reason, overhangs are a general occurrence when work-
ing with long bone implants (Abram et al., 2014; KR et al., 2020). Even when
working with healthy contralateral bones to infer surface geometry for PSIs,
adjustments are still required due to the bilateral asymmetry between left and
right long bones (Mauler et al., 2017; Auerbach and Ru�, 2006). However, it
may be possible to improve the edge alignment of the estimation by altering
the ASM used during this study. The ASM was constructed using the method
of the local structure set out by Cootes et al. (Cootes et al., 2004), where
intensity pro�les were sampled during construction. The positions of these
pro�les were chosen randomly over the model's surface, using a uniformly dis-
tributed algorithm. Suppose instead that the pro�les were assigned to have a
radial-grid con�guration over the length of the shaft. In that case, the intensity
pro�les might have �t better to the remaining edge of the healthy proximal
and distal end, resulting in better edge alignment.

Analysing graphs c and d in Figures 5.2 to 5.5, we see that the mean AM
gives a similar result for the entire cutting range. The model shows an average
�t quality above 84 % and an average intensity error below 226 HU. The R
square metric measured how well the �tted mean AM explained the actual
density distribution of the target sample; the higher the value, the better the
�t was between the estimated density distribution and the ground truth. For
the average intensity error, which could be an over or underestimation, it is
essential to note that the target cortical bone density within all four data
sets could be as high as 3200 HU. From these results, the mean AM can be
considered to produce density estimations that closely resemble the original
healthy density distribution.
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Within Figures 5.10 to 5.13 we �nd artefacts of cortical bone on the
medullary cavity wall. These artefacts were a product of the warping pro-
cedures used and not knowing the shape boundary of the medullary cavity.
Still, we see that the estimations follow the cortical wall thickness and pro-
�le accurately when looking at the coronal slices. Some slices show a slightly
larger wall thickness but maintain a similar wall pro�le. It may be possible to
correct the cortical artefact formation by including the inner wall geometry of
the medullary cavity in the face-vertex surface meshes when training the sta-
tistical GP for the SSM and ASM. This would then establish a clear boundary
when warping the voxel data. Nevertheless, prior knowledge of only the outer
surface geometry yielded a good density distribution pro�le against the outer
surface.

Additionally, in Figures 5.3 and 5.5 we see the density estimate improve
slightly as the cut segment increases. From Figures 5.11 and 5.13 we also see
that the cortical bone artefacts were less prominent in the proximal and distal
ends of the tibial estimations as the cut segment increases. Thus, by increasing
the medullary cavity with each cut, the voxel data increases and the error due
to the cortical bone artefacts average out. In Figures 5.2 to 5.5 we also �nd,
for some cuts, that the maximum value falls below the standard deviation.
This is due to several observations and outliers that fall below the calculated
average. Thus, even though the standard deviation of the observations shows a
statistical possibility for the cut size, no observations past the maximum were
recorded.

This chapter partially simulated segmental bone loss by removing diaphy-
seal segments and leaving the proximal and distal ends in their original posi-
tions. Segmental bone loss could be the result of bacterial infection, pending
resection, revision surgery, or high energy trauma (Wang et al., 2016; Wang
and Yeung, 2017). With bacterial infection and pending resection, there is a
good chance that the remaining healthy bone anatomy will be available in the
original position. However, with revision surgery and high energy trauma, it
may be necessary to realign the remaining healthy anatomy so that the shape
and density estimate will be accurate. The alignment and re-estimation of
simulated segmental bone loss due to high energy trauma will be investigated
in Chapter 6.
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Chapter 6

Aligning Bone Segments

This chapter investigates a basic method for aligning the proximal and distal
ends of long bones that have been misaligned due to segmental bone loss. As in
the previous chapter, reconstructing bone anatomy requires proper alignment
between the remaining proximal and distal ends. As already stated, this is
not always the case when segmental bone loss results from high energy trauma
or revision surgery. A basic method for aligning the epiphyseal ends was de-
veloped and tested within this study to investigate shortcomings and consider
future work.

6.1 Simulated Misaligned Bone Loss

The proximal and distal ends were programmatically misaligned to simulate
segmental bone loss as a result of high energy trauma or revision surgery. Us-
ing the same simulated segmental bone loss procedure set out in Section 5.1,
the distal end of the image was translated and rotated in a random direction
with a distance and angle ranging from 0 to 50 mm and 0 to 180 degrees,
respectively. A simple transformation matrix was constructed for translation
by randomly assigning values to the (x, y, z) coordinates from the given range.
The same was done for the (Rx, Ry, Rz) rotation axes around the zero coordi-
nate point of the samples 3D space. Combined, a rigid transformation matrix
was formed and applied to each voxel coordinate on the distal image. This ran-
dom transformation was calculated for each sample after simulating segmental
bone loss.

6.2 Alignment Method

To align the proximal and distal ends, knowledge of the bone structure be-
fore pathology is required. This knowledge is gained through the statistical
data captured within the SSMs and ASMs constructed throughout this study.
To align the proximal and distal images, full segmentations of both ends are
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Figure 6.1: Shape en density estimation pipeline for misaligned proximal and distal
ends.

calculated by �tting the ASM to each partial misaligned image. The segmen-
tations can then be rigidly aligned and a single partial image constructed. A
�nal segmentation of both ends can then be calculated, and the partial image
reconstructed as in Section 5.2. Figure 6.1 gives an overview of the alignment
and reconstruction procedure used.

First, the input data is constructed by simulating segmental bone loss and
misaligning the distal end of each sample. The proximal and distal images,
Iprox and Idist, are then used in combination with the ASM to derive the initial
parameters for each end. Additionally, the user is required to input an assumed
total length for the sample being tested. With the ends misaligned, an added
parameter Lbone, is introduced along with θ. When �tting each end, Lbone

aids in ensuring the segmentations are not too long or short, as this would
compromise proximal and distal end alignment. In practice, the assumed total
length can be derived from contralateral anatomy, the patient's total length or
surgical expertise. For this study, the assumed length was measured from the
CT image before simulating misalignment. However, to accommodate error
generally made in practice when aligning and reconstructing segmental bone,
Lbone did not just consist of a single length but a prior distribution where the
user given length is µlength and the error is θlenth, Lbone ∼ N (µlength, θlenth). In
this study, a 5 mm error was assumed.
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To segment the proximal and distal image, the MH algorithm was used as
in Subsection 4.2.2. First, the LM posterior was calculated, then the intensity
posterior using only the landmarks and intensity pro�les over the end being
�tted. During the �tting procedure, the likelihood of both p(θ) and p(Lbone)
was evaluated when determining the likelihood of the sampled distribution
(see Subsection 4.2.2 and Figure 4.5). At the end of the �tting procedure,
full-length segmentations for the proximal, Γprox, and distal, Γdist, ends were
produced.

By using the corresponding points on Γprox and Γdist a transformation ma-
trix that minimises the root mean square between the vertices could be calcu-
lated and used to align Iprox and Idist. A single image, Ialigned, was then con-
structed by combining Iprox and the aligned Idist. Using Lbone during proximal
and distal segmentation ensures the ends are far enough apart to accurately
represent the segmental bone loss segment cut when constructing the partial
image. Additionally, the landmarks manually placed during initialisation are
aligned using the transformation matrix and combined to a corresponding LM
set. Using Ialigned a �nal segmentation, Γ(θprofile), is made and the missing
shape and density, Γest and Iest, is estimated and reconstructed as in Sec-
tion 5.2.

6.3 Results

Again, the same leave-one-out test process and metrics were used to measure
the estimated bone shape and density distribution accuracy after alignment.
The estimation accuracy was measured against the ground truth, i.e. the
segments cut from the target shapes and images before misalignment were
stored and compared to the shape and density estimates. The test results are
shown below through a series of graphs and �gures for each population group.

Figures 6.2.a and 6.2.b show the average and Hausdor� errors obtained
for the male femur population. As the cut length increased, the accuracy of
the shape estimation decreased, with the average distance error ranging from
1.27 (± 0.52) mm to 3.04 (± 0.70) mm for the 5 % and 70 % resections, respec-
tively. Similarly, the average Hausdor� error ranged from 3.14 (± 1.06) mm to
10.10 (± 2.29) mm. Figure 6.2.c shows that the average R2 was relatively con-
stant regardless of the size of the resection, with an average of approximately
87 %. The average intensity error, Figure 6.2.d, was also relatively constant,
with an average error of approximately 190 HU.

Figures 6.3.a and 6.3.b show the average and Hausdor� errors obtained
for the male tibia population. As the cut length increased, the accuracy of
the shape estimation decreased, with the average distance error ranging from
1.55 (± 0.87) mm to 2.91 (± 0.94) mm for the 5 % and 70 % resections, respec-
tively. Similarly, the average Hausdor� error ranged from 3.84 (± 1.61) mm
to 12.14 (± 5.49) mm. Figure 6.3.c shows a gradual increase in R2, ranging
from 86 (± 7) % for resections of 5 % of the total length to 90 (± 3) % for
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Figure 6.2: The combined statistical analysis of the test results for segmental bone
repair of misaligned male femur samples.

resections of 70 % of the total length. The average intensity error, Figure 6.3.d,
also showed an increase in accuracy, ranging from 227 (± 68) HU for resections
of 5 % of the total length to 180 (± 41.39) HU for resections of 70 % of the
total length.

Figures 6.4.a and 6.4.b show the average and Hausdor� errors obtained for
the female femur population. As the cut length increased, the accuracy of
the shape estimation decreased, with the average distance error ranging from
1.66 (± 0.87) mm to 2.87 (± 1.50) mm for the 5 % and 70 % resections, respec-
tively. Similarly, the average Hausdor� error ranged from 3.42 (± 2.18) mm to
11.02 (± 3.83) mm. Figure 6.4.c shows that the average R2 was relatively con-
stant regardless of the size of the resection, with an average of approximately
89 (± 6) %. The average intensity error, Figure 6.4.d, was also relatively
constant, with an average error of approximately 160 HU.

Figures 6.5.a and 6.5.b show the average and Hausdor� errors obtained
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Figure 6.3: The combined statistical analysis of the test results for segmental bone
repair of misaligned male tibia samples.

for the female tibia population. As the cut length increased, the accuracy
of the shape estimation slightly decreased, with the average distance error
ranging from 1.35 (± 0.74) mm to 2.41 (± 0.85) mm for the 5 % and 70 %
resections, respectively. Similarly, the average Hausdor� error ranged from
3.78 (± 1.66) mm to 9.12 (± 3.32) mm. Figure 6.5.c shows that there was a
gradual increase in R2, ranging from 85 (± 5) % for resections of 5 % of the
total length to 90 (± 3)% for resections of 70% of the total length. The average
intensity error, Figure 5.5.d, also showed an increase in accuracy, ranging from
204 (± 25) HU for resections of 5 % of the total length to 158 (± 20) HU for
resections of 70 % of the total length.

Figures 6.6 to 6.9 show the shape of the estimated diaphyseal segments for
one misaligned left-out sample of each population group. Visual inspection
shows that as the size of the resected portion increases, the accuracy of the
estimate deteriorates as well as the alignment quality. The added error due
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Figure 6.4: The combined statistical analysis of the test results for segmental bone
repair of misaligned female femur samples.

to alignment is clear from the distal ends of the 70 % resections. Still, shape
estimations below the 35 % resection remain accurate for the proximal and
centre segments, where the accuracy of distal estimation varies throughout
testing. Due to the similarities in the density estimation, visual examples
are not given in this chapter. Figures 5.10 to 5.13 are very similar to the
estimations made during misalignment testing.

6.4 Discussion

When comparing Figures 6.2 to 6.5 to the results from Section 5.3 we �nd
that the shape estimates follow the same trend but with error almost two or
three times the size. However, the density estimation results are similar for
both the aligned and misaligned reconstruction. When measuring the density
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Figure 6.5: The combined statistical analysis of the test results for segmental bone
repair of misaligned female tibia.

estimation accuracy, the voxel data is shape normalised to ensure the density
estimation accuracy is calculated correctly. Thus, with the intensity data
of each voxel of the mean AM remaining constant, similar results are to be
expected. Therefore, the performance of the alignment method developed are
best evaluated by comparing the shape estimations from the previous chapter
to the results found in this chapter.

For resections below 35 % of the samples' total length, enough anatomy
is available to calculate proper full segmentations from only the proximal or
distal end. That is to say that enough of the diaphyseal shaft is available to
accurately estimate the opposing end's distance, angle and size from the prior
knowledge captured in the SSM. However, for resections 35 % and above,
the available anatomy renders statistically viable full segmentations, but with
angle and size estimations not similar to the test samples' opposing ends. When
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Figure 6.6: The shape estimation for misaligned sample NS-401 of the male femur
population. The estimations had an average distance error and a Hausdor� error of
1.11 mm and 2.75 mm for the 5 % resection, 3.01 mm and 9.32 mm for the 35 %
resection, and 3.56 mm and 7.90 mm for the 70 % resection (recorded length 458
mm).
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Figure 6.7: The shape estimation for misaligned sample NS-401 of the male tibia
population. The estimations had an average distance error and a Hausdor� error of
0.94 mm and 2.78 mm for the 5 % resection, 2.32 mm and 5.61 mm for the 35 %
resection, and 2.43 mm and 6.83 mm for the 70 % resection (recorded length 398
mm).
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Figure 6.8: The shape estimation for misaligned sample SA-303 of the female femur
population. The estimations had an average distance error and a Hausdor� error of
0.61 mm and 1.57 mm for the 5 % resection, 1.48 mm and 4.12 mm for the 35 %
resection, and 3.63 mm and 14.20 mm for the 70 % resection (recorded length 398
mm).
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Figure 6.9: The shape estimation for misaligned sample NB-320 of the female tibia
population. The estimations had an average distance error and a Hausdor� error of
0.88 mm and 3.00 mm for the 5 % resection, 1.29 mm and 3.97 mm for the 35 %
resection, and 2.00 mm and 9.12 mm for the 70 % resection (recorded length 347
mm).

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. ALIGNING BONE SEGMENTS 74

comparing the shape estimations to the results from the previous chapter, we
�nd that the estimations for resections 35 % and below still render average
distance errors within the 2 to 4 mm tolerance limit generally seen in long
bone stock implants (Abram et al., 2014; KR et al., 2020). When resections
are larger than 35 % the Hausdor� error greatly increases, this points to local
regions with signi�cant surface estimation errors, mostly found at the distal
end.

To correct this, possible future work could include an alteration to the
pipeline suggested in Figure 6.1. By segmenting the proximal and distal end
individually, data on the opposite end's angle and size are not considered. By
solving both segmentations in a single MH �tting operation, the full data range
can be utilised. An MH iteration would be able to adjust the translation, t,
and rotation, r, of both the proximal and distal image while sampling from
the model's shape distribution, α. Thus, the shape boundary data contained
within Iprox and Idist can be utilised to align and derive the missing surface
geometry within a single segmentation, giving a more complete picture of the
available healthy bone anatomy. This would reduce three separate segmenta-
tions to one, saving on time, and most likely render more accurate estimations
as there are more data points to �t the ASM to. With the MH functions de-
veloped during this study (Appendix A) minor alterations can be made to the
function's input and pipeline structure to make this possible in future studies.

The alignment algorithm used during this chapter was able to correct mis-
aligned segmental bone to some degree. Although additional work is required
to improve the method's results, it proved to be a step in the right direction
for developing an alignment method for automating not only reconstruction
but alignment using the prior knowledge captured in the constructed SSMs
and ASMs.
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Conclusions

7.1 Introduction

Segmental bone loss can be treated with PSIs, which o�er advantages such
as reduced recovery time, improved patient outcomes, reduced surgical time,
lower long-term costs, and no secondary morbidity (Siegmund et al., 2019;
Tetsworth et al., 2017; Wang et al., 2016). PSI design, however, requires exten-
sive specialist knowledge and procedures, which essentially need to be repeated
for each new case, making PSI design time-consuming and cost-ine�cient
when compared to current conventional treatment options such as autograft-
ing (Haglin et al., 2016; Tetsworth et al., 2017). Of these time-consuming
activities, automating image segmentation, surface reconstruction, and den-
sity estimation of missing bone anatomy would reduce the overall cost, time
and specialist knowledge required for PSI design (Zadpoor and Weinans, 2015;
Tetsworth et al., 2017; Heimann and Meinzer, 2009; Sarkalkan et al., 2014;
Mauler et al., 2017).

The study aimed to develop a method that automatically performs the
segmentation and estimation of healthy bone shape and density distribution
from partial inputs for segmental bone repair. To achieve this aim, the project
objectives were as follows:

1. Construct and validate SSMs and mean AMs for a given bony population
from CT images.

2. Fit the validated SSMs and mean AMs to a sparse dataset simulating
segmental bones lose, solving the segmentation problem for the long bone
structure.

3. Implement optimisation and reconstruction algorithms that map healthy
shape and density distribution data to partial inputs.

75
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7.2 Main Findings and Contributions

To make PSIs �nancially and practically more feasible, a novel method for
estimating healthy bone shape and density distribution using an ASM and
mean AM was presented in this study. The technique combined ASMs with
mean AMs to reconstruct simulated segmental bone lose pathologies within
the diaphyseal area of the femoral and tibial long bones for a male and a
female South African population. The model combination enabled relatively
fast geometrical and reasonable density estimates (60 to 90 seconds and 50
to 60 seconds, respectively) for segmental bone repair, automating PSI design
procedures such as segmentation and surface reconstruction.

During model validation, leave-one-out testing revealed that the SSMs
could represent the statistical population with average distance and Haus-
dor� errors below 0.65 mm and 4.10 mm, respectively. When validating the
ASM, the maximum average length and Hausdor� errors increased to 1.47 mm
and 7.41 mm. For the mean AMs, density distributions were approximated
within ± 90 % of the intensity of the test samples, with average intensity errors
around ± 124 HU.

The combined ASMs and mean AMs used in this study could reconstruct
and estimate the shape and density distribution of resected femoral or tib-
ial diaphyseal segments with an average distance error ranging from 0.58 to
1.64 mm and a R2 above 84 % of the intensity of the original target images
for the 5 to 70 % resections. When aligning and reconstructing misaligned
proximal and distal segments, the accuracy of surface reconstruction declined
but remained constant for density estimation. The shape and density distri-
bution of resected and misaligned femoral or tibial diaphyseal segments were
re-estimated with an average distance error ranging from 1.35 to 3.04 mm and
a R2 around 84 % of the intensity of the original target images for the 5 to
70 % resections.

Through literature and an interview with Craniotech (PTY) Ltd. (see
C), acceptable design and reconstruction methods and tolerances were inves-
tigated. Traditionally, surface reconstruction uses healthy contralateral bone
anatomy to infer the missing surface geometry (Mauler et al., 2017; Letta et al.,
2014). However, healthy contralateral bone anatomy is not always available
due to high energy trauma or pre-existing conditions (Mauler et al., 2017; Saleh
et al., 1999). In cases such as these, missing geometry is estimated through
SSMs or specialist knowledge (Schepers et al., 2015; Zadpoor and Weinans,
2015; Heimann and Meinzer, 2009). The literature revealed an acceptable 2 to
4 mm over or under-hang error when working with hip and knee stock implants
(Abram et al., 2014; KR et al., 2020).

CranioTech (PTY) Ltd. (2021) stated that healthy contralateral anatomy,
if available, is the primary resource used when reconstructing segmented bone.
When designing PSIs, the main concern is the anatomical constraints posed
by each unique patient and not a speci�c set of design tolerances. Though
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there are curtain rules of thumb when reconstructing surface geometry, design
tolerances are generally established through patient-speci�c constraints and
surgeon expertise. During the interview, however, it became clear that sur-
geons are usually comfortable with surface reconstruction errors between 5 to
10 mm, and edge alignment errors between 2 to 3 mm. When considering both
the lost and available bone in the PSI design, the main area of concern is viable
bone stock for �xation screws, not the implant strength. A PSI is generally
over-designed to handle a much greater load than it will ever experience within
the human body. For the femoral truss cages designed by CranioTech (PTY)
Ltd. (2021), the truss diameter generally used is approximately 1.5 mm and is
capable of supporting a 2 ton load.

When looking at the shape model validation and surface reconstruction
results from Chapters 4 and 5 we �nd that the surface reconstruction and
estimation methods used within this study are viable for automating PSI design
procedures such as surface reconstruction and segmentation. Though density
estimations seem reasonable, additional studies will have to be done in future
work to relate the HU density estimations to bone strength for the South
African population. This relation would allow for FEM analysis, which would
reveal if the density estimations made in this study are capable of the same
load-carrying capacity as the original bone sample.

The results from Chapter 6 revealed, however, that the alignment method
used still requires some additional work. The edge alignment for the 35 % to
70 % resections, speci�cally on the distal end, was much greater than the 2 to
4 mm (over or under-hang) or 2 to 3 mm error from literature or industry.

In summary, the author implemented and combined existing and well-
established methods to meet the aim and objectives of this study. Existing
functionality was acquired through Scalismo, a Scalable Image Analysis and
Shape Modelling library. Table 7.1 contains a list of existing functionality
compared to the list of contributions by the author.

7.3 Recommendations

As the author's understanding of the material and methods grew through-
out the study, certain assumptions, implementations and methods were used
that could be improved upon if the study was repeated. This section aims to
highlight these recommended improvements for future studies. These recom-
mendations have already been discussed in previous chapters in greater detail.
Thus, they are summarised within this section for completeness.

When constructing the SSM and ASM, the face vertex surface mesh seg-
mentations used for training were reduced to 5 000 vertex points. Using
3-Matic (Materialise NV, Belgium) software, the segmentations from Cran-
ioTech, of ±75000 vertices each, were reduced to 5 000 vertex points with a
geometrical error lower than 0.1 mm. This produced SSMs and ASMs that
were computationally light and easy to work with during debugging but still
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Table 7.1: List of contributions

Existing
Functionality

Author
Contributions

SSM and ASM construction
functionality.

The processing of an extensive
data set for viable samples.

Vertex mesh software toolset.

The drafting of a segmentation
protocol that could be used to
professionally segment all
four data sets.

Medical imaging software
toolset.

Establishing correspondence
within all four data sets.

Statistical modelling user
interface.

Functionality to construct
mean AMs.

MCMC and parametric
optimisation toolkit.

Validated statistical models
for all 4 data sets.

Statistcal modelling data
structures and classes.

A tailored optimisation
function to �t the validated
models and estimate the
missing bone shape and
density distribution.
Promising results showing how
the prior capture within the
statistical models can be used as
an alternative to the specialist
knowledge required for
conventional reconstruction
procedures.

gave good results during testing. The author would recommend increasing the
reduction scale 10 000 points. With software debugging complete, this would
produce higher resolution models, mitigating the possible e�ects of pixelation
within the automated segmentation procedures.

The proximal and distal edge alignment in Chapter 5 could be improved
by altering the intensity pro�le construction of the ASMs. The ASMs' main
intensity pro�le points were sampled randomly over the SSMs' surface, using
a uniformly distributed algorithm during construction. Assigning the pro�les
in a radial-grid con�guration over the length of the shaft could better �t the
intensity pro�les to the remaining edge of the healthy proximal and distal end,
resulting in better edge alignment.

Artefacts of cortical bone on the medullary cavity wall were found when
warping the Mean AM for density estimation in Chapter 5. These artefacts
were a product of the 3D interpolation and warping procedures used and not
knowing the shape boundary of the medullary cavity. It may be possible to
correct the cortical artefact formation by including the inner wall geometry
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of the medullary cavity in the face-vertex surface meshes when training the
statistical GP for the SSM and ASM. The mask and segmentation data used
to segment the training samples were stored within their separate Mimics �les.
Thus, adding the medullar cavity surface would require recalculating the mesh
surface from the available mask data without wrapping the outer bone struc-
ture. The added medullar cavity surface would then establish a clear boundary
when warping the voxel data. Additionally, the interpolation method used to
shape-normalise or warp the voxel data of the training images and the mean
AM was linear interpolation. The author would recommend changing the in-
terpolation method to a B-spline or Thin Plate Spline interpolation method,
which is better suited for image warping (Cootes et al., 2004).

When aligning proximal and distal ends for surface reconstruction, alter-
ations to the current alignment method in Chapter 6 are required. The full
data range can be utilised by solving both the proximal and distal segmenta-
tions in a single MH �tting operation. An MH iteration would be able to adjust
the translation, t, and rotation, r, of both the proximal and distal image while
sampling from the model's shape distribution, α. Thus, the shape boundary
data contained within Iprox and Idist can be utilised to align and derive the
missing surface geometry within a single segmentation, giving a more compre-
hensive picture of the available healthy bone anatomy. This would most likely
produce more accurate estimations as there are more data points to �t the
ASM pro�les.

Lastly, within the study, the vertex and pro�le data of the ASMs and the
corresponding voxel data of the mean AM were stored separately. Tetrahedral
meshes, already operational within the Scalismo library (University of Basel,
2021), can combine both data sets within a single model or data structure.
Using a combined tetrahedral model would most likely decrease computational
power and bene�t shape normalising the mean AM as the ASM is �tted to
image data.

7.4 Future Work

With segmentation, surface reconstruction and density estimation automated,
the next steps in making PSIs more feasible and �nancially more cost-e�ective
would be to automate lattice or truss generation. The density estimate can be
directly linked to bone mineral density and thus Young's modulus and ultimate
bone strength (Duchemin et al., 2008). The density estimate could then be
used to design a functionally graded lattice structure, closely resembling the
mechanical properties of healthy bone structures. This would mitigate stress
shielding, stimulate new bone growth, and allow nutrient �ow at the implant
site (Wang et al., 2016; Tetsworth et al., 2017; Long and Rack, 1998; Sumner
and Galante, 1992; Zhang et al., 2019).

Future studies would then need to �rst calculate the relationship between
the intensity values in the density estimate and the bone mineral density for
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the statistical population in question (Duchemin et al., 2008). Once com-
plete, software will have to be developed that takes the density and shape
estimates of this study as input to derive a functionally graded lattice struc-
ture as output. Additional considerations will also have to be made for the
�xation method used. From literature, we �nd that surgeons who use lattices
or truss cages for segmental bone repair generally prefer an IM-nail for inter-
nal �xation (Hollister, 2009; Ghavidelnia et al., 2020). The IM-nail keeps the
truss cage stable and in position while the bone graft calci�es. It also allows
for early weight-bearing, further improving new bone growth and so patient
morbidity.

7.5 Conclusion

SSMs, ASMs, and mean AMs were constructed and validated throughout this
study for four bony populations (male femur, male tibia, female femur and
female tibia). The validated models and automated segmentation algorithms
were used to successfully reconstruct missing bone anatomy that simulated
segmental bone loss. These results indicate that the methods proposed in this
study successfully estimated the original, healthy condition of long bones after
segmental bone loss, suggesting that it is viable for automating PSI design
procedures such as reconstruction and segmentation. This achieved the aims
and objectives set out at the beginning of this study.
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Appendix A

Supplementary Notes on Software

Structure and Development

This appendix contains notes on the model construction, automated segmen-
tation, estimation, reconstruction and alignment software developed and im-
plemented. The code will be submitted to the main supervisor within an
electronic record of all the work done throughout this study. This appendix
will brie�y describe the packages and the software structure and give a record
of the user-supplied inputs. The code itself is well commented throughout to
aid in future work.

All programming was done in Scala, a strong statically typed general-
purpose programming language, using Scalismo library, a scalable image anal-
ysis and shape modelling library (University of Basel, 2021). Within Scala,
Objects were de�ned within Packages. Each Object contained code, functions
and data structures for each main activity in Chapters 4 to 6. Table A.1
will illustrate the package structure and brie�y describe each of the developed
objects. Figure A.1 will illustrate the sequence of object implementations re-
quired for Model construction and shape and density estimation. Table A.2
and A.4 gives a record of the user-de�ned inputs and the outputs of each ob-
ject. Note that the inputs given are constant within each package. Finally,
Table A.5 will give a brief description of the functions written in the Modelling

Function object. Each function's input and output is indicated within the
code comments.

82
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Table A.1: Package and Object Structure

Pakage Object Description Chapter

Statistical
Model
Generation

Contains all objects required for model
construction.

4

Landmarking
Tool

Used to place and store manual landmarks
on all samples.

4.2

Referencing
Tool

Used to identify the reference shape of
each bony population (shape closest to
mean volume).

4.2

Reslice
Tool

Used to reslice and crop sample images
to 1 mm slice thickness around the bone
structure in question (lowers computational
intensity).

4.1

SSAM
Construction

Used to construct the GPMM and mean
AM for each bony population.

4.2

SSM
Validation

Calculates metrics for validation (leave-
one-out testing) of the GPMM for each
bony population.

4.3

SAM
Validation

Calculates metrics for validation (leave-
one-out testing) of the mean AM for each
bony population.

4.3

ASM
Construction

Constructs and samples pro�le sequence
from all samples of each bony population
and combines with GPMM.

4.2

ASM
Validation

Calculates metrics for validation (leave-
one-out testing) of the ASM for each
bony population.

4.3

Modelling
Functions

Contains all the functions written for both
the 'Statistical Model Generation' and
'Statistical Model Fitting' packages.

4 to 6

Statistical
Model
Fitting

Contains all objects required for simulat-
ing segmental bone loss, misaligning
proximal and distal ends, and estimating
the shape and density distribution.

5 to 6

ASM Fiting
Partial Images

Simulates and repairs segmental bone loss
for shape and density estimation. Proximal
and distal ends remain aligned. Leave-one-
out testing and metric calculations are
performed simultaneously.

5

ASM Fiting
Partial
Misaligned
Images

Simulates and repairs segmental bone loss
for shape and density estimation. Proximal
and distal ends are misaligned. Leave-one-
out testing and metric calculations are
performed simultaneously.

6
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Table A.2: Model construction inputs

Input Value Description

Directory
data/Male/
Femur/

Directory path where training data of bony
the population is stored.

ModelName Male_Femur Used to label models after construction.
TestingRange 40 to 50 Samples used for leave-one-out testing.

Noise 5 mm
A noise variable to account for human
error when placing landmarks.

KernelScale 80 mm
Used de�ne smooth deformation kernel
for establishing correspondence (Variance
scale).

KernelSigma1 100 Large deformations.
KernelSigma2 60 Medium deformations.
KernelSigma3 30 Small deformations.

RegWeight e−1, e−2, e−4, e−6
Penalty weights for unlikely transformations
during registration sequence (Parametric
registration, regularisation).

RegIterations 20, 30, 40, 50
Max number of iterations for each
registration sequance.

RegSamplePts
1000, 1000,
2000, 4000

Number of points sampled during each
registration sequance.

InterDegree 1
Degree 0 is nearest neighbour, degree 1 is
linear interpolation, and degree 3 scalar
images with not many artefacts.

LowDomVal 0
Used when resampling images.
Lowest HU value, water = 0 HU.

SAMiter 20
Max number of iterations when
constructing stable mean AM.

SAMtol 1 HU

When the average di�erence between
the current and previous mean AM is
smaller than 'SAMTolerance', stability
is assumed.

ProNr 250 Number of pro�les for ASM.
ProSize 11 Number of points per pro�le.

ProSpacing 1 mm Distance between each point.
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Figure A.1: Object implementation sequence
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Table A.3: Shape and density estimation inputs

Input Value Description

Directory
data/Male/
Femur/

Directory where training data of bony
the population is stored.

ModelName Male_Femur Used to label models after construction.
TestingRange 40 to 50 Samples used for leave-one-out testing.

Noise 5 mm
A noise variable to account for human
error when placing landmarks.

Tstep 1
MH mean stepping range for translational
adjustments (t).

Rstep 0.01
MH mean stepping range for rotational
adjustments (r).

LSstep 0.5
MH mean stepping range for large shape
adjustments (α).

SSstep 0.1
MH mean stepping range for small shape
adjustments (α).

Burn-
Counter

1000

MH algorithm requires a burn-in phase due
to slight misalignment after initialisation.
Thus, the �rst 1000 samples are run but not
evaluated or stored.

Samp-
Counter

11000
Maximuim number samples during MH
�tting operation.

Clip-
Range

5 to 70 %
steps of 5 %

Range of segments cut when simualting
segmental bone loss.

To�set-
Range

0 to 50 mm
Range for translation when misaligning
distal end.

Ro�set
-Range

0 to 90 degrees
Range for rotation when misaligning
distal end.
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Table A.4: Object outputs

Model Construction

Landmarking
Tool

'.json'
Coordinates for manually placed
landmarks of the proximal and
distal end for each training sample.

Referencing
Tool

'.txt'
The sample ID of the shape closest
to the mean bone volume of the
population.

Reslice
Tool

'.vtk'
The resliced and croped sample
images.

SSAM
Construction

'.h5'
'.vtk'

The full and partial SSMs and
mean AMs for leave on out testing.

ASM
Construction

'.h5'
The full and partial ASM for
leave-one-out testing.

SSM
Validation

'.txt' Metric results.

SAM
Valdiation

'.txt' Metric results.

ASM
Validation

'.txt' Metric results.

Shape and Density Estimation

ASM Fitting
Partial Images

'.txt'

Metric results. Note that all .stl and
.vtk �le of each estimations would
be to large to store for each
poppulation. Thus, only the metric
results were stored after
reconstruction.

ASM Fitting
Partial
Misaligned
Images

'.txt'

Metric results. Note that all .stl and
.vtk �le of each estimations would
be to large to store for each
poppulation. Thus, only the metric
results were stored after
reconstruction.
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Table A.5: Function descriptions

Function Description

FileComp() Evaluate if loaded .stl IDs and .vtk IDs match.

ParametricReg()
Used to �t generic GPMM to training data for
correspondence.

MCMCReg()
Used for automated segmentation. Contains
MH algorithm and implmentation.

IsInside()
Determines if an image voxel is within the
corresponding vertex mesh.

ExstractBony()
Removes all voxel data not within the
corresponding vertex mesh.

IntensityNorm()
Normalises the intensity data of an image to a
corresponding image.

VectorNorm()
Normalises the data of one vector to a
corresponding vector through zero mean unit
standard deviation.

BuildSSM()
Extracts deformation vectors from
corresponding images and constructs a GPMM
using Scalismo.

SmoothSSM()
Constructs a GPMM using a reference mesh and
user-de�ned smooth deformation kernel. Used
for registration and correspondence.

BuildMeanAM()
Uses shape and intensity normalised image data
to construct a mean image.

UnivariateSAM()
Uses mean AM and normalised training images
to calculate the univariate standard deviation of
the sample population.

WarpTransform()
Uses a target and original vertex mesh to calculate
a transformation matrix that would transform the
original point set to the target surface.

CenterOfMesh() Calculates the centre of volume for a vertex mesh.

ModelCoef()
Calculates the shape coe�cients, (α), that
best describes a shape instance corresponding to the
model.

ShapeNorm()
Uses a corresponding target and original vertex mesh
to calculate deformation �elds and warp the original
image to the target shape through linear interpolation.

Project()
Projects vertex points of an original mesh, normally
towards the surface of the target mesh.

LMPlacement()
Used to sample manually placed landmarks
coordinates from corresponding vertex meshes and
images.

DistanceMeshLMs()
Calculates the distance between two landmarks
placed on a target vertex mesh.

DistanceImagesLMs()
Calculates the distance between two landmarks
placed on a target image.

AverageImage()
Calculates the deformation �elds between an
estimated and target vertex mesh. Then displays
the error visually.

Hausdor�Image()
Calculates the Hausdor� deformation �eld between an
estimated and target vertex mesh. Then displays the
error visually.
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Supplementary Notes on

Modelling and Mathematical

Considerations

This appendix provides a detailed overview of the concepts and mathematical
theories required when constructing SSMs using Scalismo. It aims to expand
on the theory and mathematical consideration used in Chapters 3 to 6. Most
of the theory discussed in this appendix is a summary of the knowledge gained
through a statistical modelling course set out by Luthi and Bouabene (2020).

B.1 Basic Statistical Concepts

Shape is de�ned as the geometrical information which remains when location,
scale and rotational e�ects are �ltered out from an observed object set. This
geometrical information then describes a shape family. Anatomical shapes,
however, do not quite �t this description due to the role scale plays in anatom-
ical shape variance, e.g. the femur of a child would not match that of a grown
man. Thus, to accommodate this characteristic of anatomical shapes, the def-
inition of anatomical shape is the geometrical information that remains when
location and rotational e�ects are �ltered out from an anatomical object Luthi
and Bouabene (2020).

This de�nition becomes important when constructing SSMs and ASMs in
software. Statistical models are trained using training data; therefore, when
looking at the de�nition of anatomical shape, it is essential to ensure the
entire data set is correctly aligned to one image frame before extracting any
geometrical information.

Assuming we were to align the data to a single reference frame and extract
the geometrical information, we still require some way to store and model the
observed shape variance. In software, the biggest assumption made is that
the shape variations within the shape family can be modelled by a normal
distribution (Luthi and Bouabene, 2020):

89
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p(x) = N (µ, σ2) (15)

Where µ is the mean, i.e. location of the distribution and σ is the shape
variance within the family. p(x) is an indication of how likely a given observa-
tion is.

It is also assumed that the normal distribution is unimodal, symmetric and
centred around the mean. p(x) values far from the mean quickly become un-
likely. In shape modelling, we are not interested in modelling a single random
variable. Instead, we always have a set of random variables that we want to
model together. Thus, we use a multivariate normal distribution (Luthi and
Bouabene, 2020):

x ∼ N (µ,Σ) (16)

Let x be a set of jointly normally distributed random variables with µ
de�ned as:

µ = (µ1...µN)
T (17)

containing the mean vector with the location of the distribution. µk can
easily be calculated using Equation 1 if muk = xk. Using Equation 2, Σ in
this appendix is de�ned by:

Σ =

S11 ... S1N

| ... |
SN1 ... SNN

 (18)

When the geometrical information has been extracted from the data set, an
analysis of which shapes are more likely than others will be required. In other
words, what shapes can be described by the observed geometrical information
and which are so unlikely that they probably don't belong to the shape family?
This probability can be analysed by using the density function:

p(x) = N (µ,Σ)

= (
1

(2π)N/2
√

det(Σ)
)exp(−1

2
[(x− µ)TΣ−1(x− µ)])

= (Normalization)exp(−1

2
[Mahalanobis Distance])

(19)

where N is the total number of variables or landmark points. Equation 19
primarily consists of a normalisation factor and Mahalanobis Distance, which
respectively ensures the density integrates to one and takes the shape of the
distribution into account, through the presence of Σ−1.

When given a full joint distribution, we are mostly interested in a subset
of the variables when constructing an SSM. It is then logical to ask :

Stellenbosch University https://scholar.sun.ac.za



APPENDIX B. SUPPLEMENTARY NOTES ON MODELLING AND

MATHEMATICAL CONSIDERATIONS 91

1. What is the distribution of x1 given no knowledge of x2 → xk ?

2. What is the distribution of x1 given we have observed the positional
values of x2 → xk?

Respectvily these two questions are catagorised as the Marginal and Condi-
tional distribution of x. For practical reasons the amount of random variables
will be limited to x1 and x2 for further discusion. Transforming Equation 16:

p(x1, x2) = N (

[
µ1

µ2

]
,

[
σ2
1 σ12

σ12 σ2
2

]
) (20)

where the corelation of the two random variables can be calculated by
ρ = σ12

σ1σ2

As can be seen from Equation 20, Σ needs to be symmetric and positive
de�nite (SPD). The variance stored within the matrix along the diagonal line
determines how spread out the values are in each direction. The covariance
within the upper and lower triangle of the matrix determines how the random
variables, x1 → xN , correlate according to the observed data, i.e. how much
the points within the model change together. This correlation can easily be
calculated for these two variables by:

ρ = σ12

σ1σ2

If the correlation between the two random variables is zero, the variables
don't in�uence each other, and they can change their values entirely and in-
dependently. A positive correlation will show similar large or small variable
values, where a negative correlation will have a signi�cant value if the other is
small and visa versa (Luthi and Bouabene, 2020).

Following Equation 20 the density functions of the marginal and conditional
distribution can respectively be expressed as p(x1) and p(x1|x2 = x̃2). The
marginal and conditional distribution can thus be represented in a multivariate
normal distribution form as seen below:

p(x1) = N (µx1 ,Σx1x1) (21)

p(x1|x2 = x̃2) = N (µ,Σ) (22)

where through linear algebra:

µ = µx1 +Σx1x2Σ
−1
x2x2

(x̃2 − µx2)

Σ = Σx1x1 −Σx1x2Σ
−1
x2x2

Σx2x1
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This shows that both marginal and conditional distributions are normal
distributions (Luthi and Bouabene, 2020).

The last distribution to take into account is a degenerate multivariate nor-
mal distribution. When constructing an SSM based on anatomical shapes,
we usually have many more landmark points than examples in the data set.
Using Equation 2 to estimate the covariance matrix results in a matrix that is
only positive semi-de�nite. While it is still possible to de�ne a valid multivari-
ate normal distribution, we can no longer derive a density function to assess
the probability of a particular shape recurring. This will be addressed within
Section B.6.

In summary, assuming that shape variations can be modelled using a nor-
mal distribution, it is sensible to think that a mean shape exists around which
all plausible shapes of the family can cluster. It is then equally likely that
shapes of the same anatomical family can be smaller or larger than this mean,
but we are highly unlikely to ever observe much larger or smaller shapes than
the mean. When compared to bone shapes, we can see that these are rea-
sonable assumptions when we restrict the statistical data used to train the
model to a speci�c population based on age, gender and ethnicity (Luthi and
Bouabene, 2020).

B.2 The Gaussian Process

Where PDMs model di�erent shape distributions of a given shape family di-
rectly, in Scalismo, a di�erent approach is taken. SSMs and ASMs are estab-
lished by modelling shape changes as deformations from a given shape, i.e.
how the points move between the shapes (Luthi and Bouabene, 2020).

Modelling shape deformations using Scalismo one assigns a point set de-
scribing the reference shape, ΓR, from a data set:

ΓR = {x1|x1ϵRd}

All other shapes from the data set then function as traget shapes, ΓT :

ΓT 2→n = {x2→n|x2→nϵRd}

The target shapes are then seen as a set of deformations from the reference
shape, and thus the variables xk can be found on all the shapes of the data
set. This means a deformation vector u(xk) can be found, containing the
deformation of xk from the reference shape in all the target shapes:

u : ΓR → Rd

For a �xed reference shape we can reformulate the problem of shape mod-
elling as the problem of modelling shape deformations. Thus, we need to
specify the deformation u(x) for the point set x (Luthi and Bouabene, 2020).
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Assuming the deformation follows a multivariate normal distribution we can
derive and state the following:

∼ N (u(x),Σ(x))

1. The mean deformation, u(x), moves the applicable landmark points (xk)
to the position where it will be found in an average shape according to
the dataset.

2. The covariance matrix, Σ(x), de�nes how much the position of the land-
mark point can vary

3. The model derived above can be generalised to any number of points.

However, generalising the model above to any number of points can be
quite cumbersome. Therefore, assume we have a mean function available which
assigns for every landmark point in the reference a mean deformation vector
stating where it will move on average:

µ⃗ : ΓR → Rd

and a covariance function which de�nes the covariance between the land-
mark points

k : ΓR × ΓR → Rd×d

Using these two functions we can now compute for any �nite set of reference
points ΓR, the corresponding normal distribution:

u ∼ N (µ⃗,K) (23)

with

µ⃗ = (µ(x))xϵΓR

K = (k(x,x′))x,x′ϵΓR

The model de�ned in Equation 23 is known as a Gaussian Process and is
de�ned by:

u ∼ GP (µ,k) (24)

Where

µ : ΓR → ℜd

k : ΓR × ΓR → ℜd×d
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A GP is a more general model of the multivariate normal distribution and
works for an in�nite number of points. It allows us to model a distribution over
a function without choosing a discretisation upfront. Gaussian Processes are
commonly used in machine learning and statistics, providing us with a wide
variety of tools already well established in software (Luthi and Bouabene,
2020).

B.3 Building a SSM From Example Data

Using the GP model described above and a data set focusing on a speci�c bone
shape, an SSM can be constructed by following six steps as set out by Luthi
and Bouabene (2020):

1. De�ne a reference shape,ΓR = {x|xϵRd}, from one of the shapes in the
data set.

2. Align and establish correspondence between the reference shape, ΓR and
the remaining target shapes, ΓT 2→N = {x2→n|x2→nϵRd}.

3. Assuming correspondence has been established, �nd the deformations
ui = {u1, ..., uN} from the target shapes ,ΓT1→n−1 .

4. Learn shape variability through the estimation of µ (Equation 11) and
k (Equation 12).

5. Construct u ∼ GP (µ,k).

6. The �nal shape model can be described by:

Γ = {x+ u(x)|xϵΓR} (25)

with u(x) being the probabilistic entity for some u : ΓR → Rd

These steps are the basic framework for establishing an SSM using land-
mark deformations. However, a list of intermediary steps discussed below
needs to be considered before steps two to six can be performed.

B.4 The Registration Problem

When constructing an SSM or �tting a model to a 2D scalar image or 3D mesh,
it is essential to establish correspondence between the reference shape ΓR, and
the target shape, ΓT , so that all discretised points describing the contour line,
de�ne the same landmark or position in both instances. This ensures the
calculated deformation �eld u truly represents the shape variation within the
statistical population. Establishing correspondence, however, is di�cult due
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to the translation and rotational e�ects and acquisition calibration when the
scalar images were taken or segmented to the required surface mesh for training
(Luthi and Bouabene, 2020).

The �rst thing required for establishing correspondence is the alignment
of the refernce and target shapes, ΓR and ΓT . This mitigates the e�ects of
rotation and translation, ensuring the model represents the actual shape vari-
ation within the shape family. One method for the alignment of shapes is the
generalised Procrustes analysis found in Section B.5.

Now assuming the ΓR and ΓT shapes are already aligned, we will need to
�nd the deformation between the two shapes. This is easy to do if we know the
discretised points, describing the contour in each shape, are in correspondence,
which is not the case in most practical applications, as already discussed.

To �nd correspondece we �rst need to build a posterior model (Section
B.8) using the reference shape, ΓR, and a smooth defomation Gaussian kernel
(Section B.7) so de�ning a GP, u ∼ GP (µ,ksmooth).

We will then be able to use the posterior model to establish correspondence
by �tting the reference shape model to the entire set of target shapes ΓT1→n−1 .
Many optimisation algorithms can be used for this purpose. One of the sim-
plest is the Iterative Closest Point (ICP) algorithm, which is well established
within the shape modelling community (Luthi and Bouabene, 2020). It is a
classical optimisation algorithm used for minimising the distance between two
point sets and can be described for model �tting as follows:

1. Find the closest points between the ΓT and ΓR point sets.

2. Perform GP regression using deformations as noisy observations (Sub-
section B.8).

3. Set ΓR = Γregresion.

4. Iterate till convergence criteria are met.

In practice, convergence criteria are characterised by assuming correspon-
dence after a set number of iterations. The number of iterations used is usually
veri�ed visually (Luthi and Bouabene, 2020).

At the end of the ICP cycle, the point set should reasonably �t the target
shape, resulting in correspondence with the posterior model's reference shape.
If we were to then run all the target shapes ΓT1→n through the ICP cycle, we
should have a new data set containing the corresponding 1 → n−1 point sets.
These point sets should then contain all the variance from the original target
shapes while corresponding to each other and the reference shape. This new
data set can then be used in Section B.3 to construct an SSM.
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B.5 Aligning Shapes

In practice, a collected data set is very rarely in correspondence or even in
the same reference frame (Luthi and Bouabene, 2020). Thus, to ensure that
the deformation �elds measured between the reference and target shapes are
pure shape changes, we require methods to align and establish correspondence
between the shapes in the data set.

The translational and rotational e�ects between two shapes described by
individual point sets can be minimised through Procrustes alignment. This
method states that for two shapes Γ1 and Γ2 the correct pose can be established
by minimising:

(t∗, R∗) = argmin
N∑
k=1

||xk,1 −R(xk,2 − t)||2 (26)

where t ϵ Rd, R ϵ Rd×d, RTR = I and det(R) = 1. By obtaining the
translation vector t∗ and rotation matrixR∗ we can superimpose the two shapes
to �t the same reference frame. This method provides a closed-form solution
for both 2D and 3D shapes and can be e�ciently computed using a singular
value decomposition (SVD) (Luthi and Bouabene, 2020).

When applying this process to a data set of more than two-point sets,
Γ1, ...,ΓN , we can use an iterative process called Gengeneralised Procrustes
alignment:

1. Assign a reference shape from the data set, e.g. ΓR = Γ1.

2. Align all shapes, Γ2, ...,ΓN individually to ΓR by optimizing Equation 26
and then superimposing the target shape.

3. Compute the mean shape Γµ from the aligned data set using Equation 11.

4. Assign ΓR = Γµ and iterate from step 2.

The process is repeated until the mean shape stops showing any noticeable
change with each additional iteration, a feature which is usually examined
through visual inspection.(Luthi and Bouabene, 2020)

Another term for aligning shapes in this manner is rigid-alignment, which
is de�ned as a composition of translation and rotation. This sort of alignment
comes into play when we need to align a data set in which correspondence has
not yet been established. The task at hand is then to retrieve the transforma-
tion, which best aligns the target shapes, ΓT2→n−1 , to the reference shape, ΓR.
It is essential to normalise the pose so that the target shapes, ΓT2→N

, represent
transformed shapes dependent solely on shape variance. The easiest way to
retrieve this transformation in practice is by manually prede�ning some land-
marks using a Graphical User Interface (GUI) framework on all the shapes in
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the data set. Using the Procrustes analysis above, we can then retrieve the
best transformation and align the shapes (Luthi and Bouabene, 2020).

It is also worth mentioning that the ICP method can be adapted to auto-
matically rigidly align a data set:

1. Find the closest points between ΓT and ΓR point sets.

2. Estimate transformation based on these corresponding points by using
Equation 26.

3. Transform the reference using the transformation estimated above

4. Iterate till convergence criteria are met

B.6 Principal Component Analysis

The problem with GPs are that even for a �nite discrete multivariate normal
distribution, the resulting covariance matrix can be too large to computational
process and store on computers. For example a 3D face mesh consisting of
±50000 vertices ,a standard resolution, will produce a covariance matrix of
the size (50000 · 3) × (50000 · 3). A solution to this problem is the low-rank
approximation of the Karhunen-Loéve expansion (Luthi and Bouabene, 2020):

u = µ+
r∑

i=1

αi

√
λiΦi (27)

with Φi as a eigenfunction with associated eigenvalue λi and αi ∼ N (0, 1)
(Luthi and Bouabene, 2020). Looking at Equation 27, its similarities to equa-
tions found in the previous two sections should be evident. This subsection
aims to better explain Principal Component Analysis (PCA).

The main idea of the low-rank approximation of the Karhunen-Loéve ex-
pansion is to Represent the GP using only the �rst r components. Giving
us a �nite, parametric representation of the GP from which the deformation
u could be determined by coe�cients α = {α1, ..., αr}. This expansion also
allows us to calculate the probability of a given shape deformation using only
the α coe�cients:

p(u) = p(α) =
r∏

i=1

1
1√
2π

exp(
−α2

i

2
) (28)

This expansion also holds some bene�cial computational aspects. Φi and λi

can easily be computed from the covariance matrix using conventional numeri-
cal methods, which are well established within software and practice. Comput-
ing elements are very e�cient for models learned from examples and general
models. The entire covariance model is never fully computed; only estimations
must be made according to the desired accuracy. And lastly, if the rank of r
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is low, the representation is e�cient, and the expansion can represent shapes
with millions of landmark points (Luthi and Bouabene, 2020).

PCA is a popular method in shape modelling and closely relates to the
Karhunen-Loéve expansion as described above. PCA is used for a GP de�ned
on a discrete domain. The covariance matrix from this discrete domain can be
estimated and stored as a compact covariance function for exploring the shape
variations of a shape family (Luthi and Bouabene, 2020).

A more detailed explanation can be given by making two assumptions.
Firstly, we have a set of discrete deformation �elds {u1, ...,un}, and secondly,
by using Equation 29, we can estimate the covariance matrix. Thus, the rank
of Σ is at most n, the number of target shape deformations.

Σ =
1

n

n∑
i=1

(ui − µ)(ui − µ)T :=
1

n
XXT (29)

These assumptions produce two advantages:

1. By performing a SVD we are able to compute the decomposition for a
much smaller data matrix X = (ui − µ) more e�ciently.

2. Σ has only n non-zero eigenvalues, thus r = n and the expansion reduces
to:

u = µ+
n∑

i=1

αi

√
λiΦi (30)

where αi ∼ N (0, 1). From Equation 30 we can then conclude that any
deformation u can be accuratly speci�ed using a coe�cient α ϵ Ren (Luthi
and Bouabene, 2020).

Additionally, PCA can also generate shape instances using the principal
components or eigenmodes, Φi. The �rst few eigenmodes represent the main
modes of variation and contain the highest variance directions within the data
set. This represents most of the variation present within the population using
the rank n eigenmodes. To analyse the particular variation presented by a
speci�c eigenmode, j, we set the coe�cient αj = v and αi̸=j = 0 we can then
visualise this e�ect through:

u = µ+ v
√
λiΦi (31)

v can than be changed in accordance with the 3σ standard deviation, thus
vϵ{−3, 3} (Luthi and Bouabene, 2020).

B.7 Kernel Construction

The parameters used to de�ne Gaussian Processes can be derived using many
di�erent techniques and inputs. Using example data to determine the mean
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shape and covariance matrix of a shape population ensures that the GP will
only represent shapes within that shape population. This raises the question of
how many samples are required to describe a statistical population and what
can be done if a su�cient set of data samples are out of reach?

The �rst question is di�cult to answer when it comes to anatomical shape
variation. To the best of our knowledge, there has been no accurate method
determined in literature to estimate the required sample size. In literature,
this question is mainly answered by validating the SSM through one of two
methods. The �rst method consists of a 'leave-one-out cycle' where the SSM
is constructed by leaving a sample out of the data set with each cycle. The
mean shape is then analysed to see if the particular sample left out causes
drastic changes. The second method consists of �tting the SSM to a set of
unseen data samples from the same statistical population. Therefore, if the
mean does not change and the SSM can be �tted to a series of unseen data, it
is logical to assume the data set is large enough (Heimann and Meinzer, 2009).

The second question can be answered through kernel construction, i.e. co-
variance function manipulation. As established k : X×X → Rd×d de�nes how
deformation, u, can deviate from the mean. Kernel construction can make k
more robust or �exible so that we can include variances not seen within a data
set.

To illustrate the power of kernel construction or manipulation, we �rst
discuss the possibility of de�ning a GP with only one point set available to
describe a statistical population:

1. If we have but one shape, the mean function becomes 0. The reference
shape then illustrates the average shape found in the population.

2. It is then logical to asume µ(x) = 0 ,where 0 is a vector the size of µ.

3. The covariance function or kernel de�nes the deformation �elds' charac-
teristics, and we assume the deformation �elds describing the population
are smooth.

4. Mathematically we know the covariance function k(x,x′) should be a
symmetric, positive semi-de�nite (PSD) kernel. And we know k is posi-
tive semi-de�nite if it gives rise to a positive semi-de�nite kernel matrix
K → ℜd×d which satis�es vTKv ≥ 0 for all vectores v ϵ ℜd.

5. Then lastly, with Kij = k(xi,xj), i, j = 1, ..., k for any choice of k and
x = (x1, ..., xk) we are ensured that the GP de�nes a valid N(µ,K) for
any discritization (Luthi and Bouabene, 2020).

As discussed in Section B.1 we know the kernel shows how two function
values x and x′ are correlated. Thus, multiple components are available when
modelling vector �elds to describe the correlation, and a matrix-valued kernel
is required. But if only real functions had to be modelled, it would be enough
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to get one scalar value to describe the correlation. From this discussion, we
de�ne a classical scalar-valued Gaussian kernel used everywhere in literature:

k(x,x′) = s× exp(−∥ x− x′ ∥2

σ2
) (32)

where s relates to the scale of the deformation �eld variance and σ charac-
terises the smoothness of the correlation between the two function values x and
x′. From this scalar-valued covariant function, we can build a matrix-valued
covariance function required for modelling deformation �elds. Of which the
most straightforward construction method can be de�ned by:

k(x,x′) =

k1(x,x
′) ... 0

: ... :
0 ... kd(x,x

′)


=

s1 × exp(−∥x−x′∥2
σ2
1

) ... 0

: ... :

0 ... sd × exp(−∥x−x′∥2
σ2
d

)


(33)

where k1, ...,kd : X × X → R are scalar-valued kernels and k : X ×
X → Rd×d becomes a matrix-valued kernel. The main assumption is that
each dimension can be modelled independently. Thus, the output dimensions
are uncorrelated. The equation de�ned above then satis�es the original goal
of modelling smooth deformation �elds. It is important to note that kernels
de�ned in such a manner are not just con�ned to the deformation of the contour
of the shape but the whole model space (Luthi and Bouabene, 2020).

Turning back to the second question asked at the start of this section, we
now discuss how kernel construction can be used for modelling shape variances
of the population not included in the data set, i.e. increasing the �exibility of
the Gaussian kernel. We know that the seed needs to be PSD to de�ne a good
GP. We know from literature that a known PSD kernel can construct a new
kernel with the same attribute. This can be done by using a set of rules for
combining kernels:

1. k(x,x′) = k1(x,x
′) + k2(x,x

′)

2. k(x,x′) = αk1(x,x
′), αϵR

3. k(x,x′) = k1(x,x
′)⊙ k2(x,x

′)

4. k(x,x′) =
∫
(x)

∫
(x′)T

5. k(x,x′) = BTk(x,x′)B, BϵRd×r

6. k(x,x′) = k3(ϕ(x), ϕ(x
′)), ϕ : Ω → Rn, k3 : Rn × Rn → Rd×d a PSD

kernel
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where k1,k2 : X×X → Rd×d are SPD and f : X → Rd is a vector-valued
function used to generete k : X × X → Rd×d a new PSD kernel (Luthi and
Bouabene, 2020).

The rest of this section now uses these rules to show how some powerful
models of shape deformations can be constructed to enhance certain attributes
in an existing model or increase its �exibility. These models include but are
not restricted to:

� A Multiscale model:

When working with anatomical shape variations (e.g bone shapes) we can
see a combination of long-ranging, smooth deformations (e.g the length of
the femur) and small-scale local deformations (e.g. the femur head shapes).
Using rule (1) and (2) we can build a model with varying smoothnesses and
deformations on multiple scales (Luthi and Bouabene, 2020):

kms(x,x
′) =

k∑
i=1

sikσi(x,x
′) (34)

with si de�ning scale and σi smoothness. Using this equation with Equa-
tion 33 we can de�ne the full kernel matrix required. If σ is chosen larger than
the domain of X, smooth deformations will dominate local deformation, and
if σ is chosen small, the opposite will be true.

� Anisotropic scaling

Using a diagonal kernel as in Equation 33 we can obtain anisotropic de-
formation �elds, where each component is scaled individually. Unfortunately,
this method is limited to 2D shape representation and is thus not su�cient for
3D modelling. To counter this we can use rule (5) with a d×d rotation matrix
R :

kR(x,x
′) = RTk(x,x′)R (35)

allowing us to choose an arbitrary direction of anisotropy. (Luthi and
Bouabene, 2020)

� Changepoint kernels:

When looking at anatomical shape such as the femur it becomes clear that
some regions feature di�erent forms of variation, e.g. the femur head and shaft.
To incorporate this into a model we can use changepoint kernels constructed
from rule (4) together with rule (1) and rule (3):

kcp(x,x
′) = X(x)X(x′)T⊙k1(x,x

′)+(12−X(x))(12−X(x′))T⊙k2(x,x
′) (36)
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with

X(x) =

{
12, if x ϵ femur shaft region

02 otherwise

where 12 and 02 are vectors the length of d. The function X is used as a
mask to specify which kernel is active in what region (Luthi and Bouabene,
2020).

� Kernels from Example Data:

From the rules described above, we can prove that Equation 12 used to
extract the covariance matrix kk from example data is PSD. By visual inspec-
tion, one can see a combination of rule (4) (the part inside the sum), rule (1)
(the sum) and rule (2) (the scaling factor 1

n−1
). With kk being a PSD kernel

we can use the rules described above to combine the kernel with any other SPD
kernel model. This will increase the models' �exibility and overcome model
bias where there is an insu�cient data set (Luthi and Bouabene, 2020).

� Modelling the missing variability:

The main assumption made here is that the missing variability can be ex-
plained to the GP model by adding a general smoothness kernel to ks, rule (1).
This additional model will then add a more general set of smooth deformations
to the learned shape deformations ks forming:

GP (µs,ks(x,x
′) + sId×dexp(−

∥ x− x′ ∥2

σ2
)) (37)

where s corresponds to the average error present in the model and σ is
chosen relatively large to ensure the error is highly correlated within the new
kernel. Additionally, it would be wise to visually inspect the added shape
deformation to ensure appropriately selected parameter values.

� Localised shape models:

Where addition of a smoothnes kernel can add to the missing variability,
we can aslo enlarge the shape variability at a localized region by mutiplication,
rule (3). We can thus de�ne a model GP (µs,klocal) where klocal is de�ned as:

klocal(x, x
′) = ks(x,x

′)⊙ sId×dexp(−
∥ x− x′ ∥2

σ2
) (38)

Using an example set by Luthi and Bouabene (2020) the intuition is as
follows. If a dataset exists that is too small to model the entire shape popu-
lation, say a femur shape, it may still represent the deformational variance of
the subset shapes like the femur shaft or proximal head. Through multiplica-
tion this can be achieved, for any point x, the covariance klocal(x,x

′) with any
other point x′ is virtually 0 if ||x− x′|| is large. Thus, klocal suppresses global
correlations and preserves locally learned correlations.
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B.8 Model Fitting with SSMs

After establishing an SSM from the given data set, we will need to �t this
model to some form of input. The most practical way of accomplishing this
task is called the Gaussian Process Regression, an inference technique used to
estimate the complete shape from partial or sparse data using the information
found in an SSM (Luthi and Bouabene, 2020).

For SSM the regresion problem can be formulated so that x is a data set
of the reference shape ΓR and the regresion model can be de�ned as:

u = u0(x) + ε

where u0 : ΓR → Rd is a set of regresion functions contaning the defor-
mation �elds which explain the observed observation, i.e. the partial inputs.
Additionaly, ε ∼ GP (0, σ2Id×d) is independent Gaussian noise. To solve the
regression problem we will need to estimate the set regression functions u0,
which we asume are distributed according to a u0 ∼ GP (µ,k), from a set of
observations ũ. (Luthi and Bouabene, 2020)

To accomplish this task, we will use the conditional multivariate normal
distribution as discussed in Section B.1. Now lets us assume we have a prior
model, i.e. a reference shape together with a GP model u ∼ GP (µ,k). Be-
cause we know the prior model is a GP, that can be evaluated at a �nite
discrete number of points knowing the corresponding discrete distribution is
also a multivariate normal distribution. We can then, for simplicity, say we
have a jointly normally distributed set of variables xR ⊂ ΓR and xT ⊂ ΓT

(Luthi and Bouabene, 2020).
By using Equation 16 we can then formulate:[

u(xR)
u(xT )

]
∼ N(

[
µ(xR)
µ(xT )

]
,

[
K(xR,xR) K(xR,xT )
K(xT ,xR) K(xT ,xT )

]
)

For which we are given observations

ũ(x̃T ) = (ũ1, ..., ũk)
T

Where through conditional normal distribution, we can state

p(u(xR)|u(xT ) = ũ) = N(µ,Σ) (39)

with

µ = µ(xR) +K(xR,xT )K
−1(xT ,xT )(µ̃− µ(xT ))

Σ = K(xR,xR)−K(xR,xT )K
−1(xT ,xT )K(xT ,xR)
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We have now derived a discretised conditional distribution of the GP, which
is still a multivariate normal distribution. For a �xed u(xT ) = ũ the mean
and the covariance matrix can be computed for an arbitrary number of points
X = {x1, ..., xk} (Luthi and Bouabene, 2020). So we can further simplify the
closed-form expressions to �t a single point:

µp(xR) = µ(xR) +K(xR,xR)K(xT ,xT )
−1(ũ− µ(xT )) (40)

kp(xR.x
′
R) = k(xR, x

′
R)−K(xR,xT )K(xT ,xT )

−1K(xT , x
′
R) (41)

where Equations 40 and 40 respectivley allow us to compute the mean for
any point xR and the covariance function for any pair of points xR, x

′
R for any

set of observations ũ(x̃T ). (Luthi and Bouabene, 2020)
This is known as a posterior process or model GP (µp,kp). It de�nes a

distribution of vector �elds that match the given observations perfectly. When
trying to reconstruct a shape using the posterior model, the mean will give
the best statistical representation of the complete bone shape. The problem is
that observations are rarely 100% correct and always contain some human or
measurement error (Luthi and Bouabene, 2020).

To accommodate this we add a noise term. For the given observations
ũ(x̃T ), we assume that ũ(x̃T ) + ε = ũ where ε ∼ N(0, σ2Idxd). We then
reformulate the above to �nd:[

u(xR)
u(xT )

]
∼ N(

[
µ(xR)
µ(xT )

]
,

[
K(xR,xR) K(xR,xT )
K(xT ,xR) K(xT ,xT ) + σ2Idk×dk

]
)

thus,

µp(xR) = µ(xR) +K(xR,xR)(K(xT ,xT ) + σ2Idk×dk)
−1(ũ− µ(xT )) (42)

kp(xR.x
′
R) = k(xR, x

′
R)− (K(xT ,xT ) + σ2Idk×dk)

−1K(xT , x
′
R) (43)

These expressions give us a symbolical answer of the regression problem
containing the posterior process GP (µp,Kp) which de�nes a distribution over
the observed vector �elds. The mean µp solves the regression problem, and the
covariance kernel Kp illustrates deformations of the mean, which still agrees
with the given observations. We also de�ned σ to account for noise, to control
accuracy.
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Interview questionnaire for the estimation of healthy bone shape and density 
distribution from partial inputs for implant design. 

Company questioned: CranioTech (PTY) Ltd 

Participants (Job description): Bernard Swart (CEO) 
Sven Delport (Chief Biomedical Engineer) 

Interviewer: DP Kramer 

 
Question 1: 
How do you in the industry estimate or reconstruct pathological bone surface geometry?  

Contralateral anatomy if available. In practice constraints are unique to each patient and take 
priority during surface reconstruction, even when working with healthy contralateral anatomy. 
Constraints: 1) bone stock quality and location, b)imaging quality, c) fixation of implant. 
 
Question 2:  
What are the tolerance limits you generally work with for: 

1. Edge alignment (where the implant and bone surface meet)? 
2. Surface reconstruction (average and Hausdorff errors)? 
3. Center shaft profile for femur and tibia (see illustration below)? 

 
1. 2 to 3 mm over and under hangs acceptable (surgical error also needs be considered).  
2.For femur truss cages (50 to 70% of the bone length), 5 to 10 mm surface tolerance generally 
accepted by surgeons.   
3. ± 10 mm, IM-rod placement more important than center point accuracy. 
 
Question 3: 

 

What consideration is given to implant strength, the load it must carry, and how does healthy or 
patient bone density contribute to implant design or specifications? 

Available bone surface for fixation is important, differs for each patient and depending on the 
bone density, surface reconstruction need be changed to accommodate fixation and healthy bone 
stock.   

- Implant load and destructive testing used for thickness analysis. Aim, ten times the 
average wait of a person for femoral truss cages (80kg x 10 = 800 kg).  

- ± 2-ton load for ± 1.5 mm Ti truss diameter (over engineer PSI). 
 
Question 4: 

 

Does the diagram below seem feasible for the PSI design pipeline? If not, indicate what you would 
add or change. 

Medical CT 
Image

(Bone Tissue 
Scan)

Design 
Requirements

(Surgeon)

Manual 
Segmentation 

(3D Model)

Implant Design

• Reconstruction
• Implant fitting 

surface
• Implant 

Fixation
• FEM Analysis

Surgeon
Approval

Manufacture 
PSI

Design 
Requirementt 

changes

Yes

No

Yes

 
 

-stress and 

destruction 

testing 

NB!

! 

Or 
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Segmentation Protocol 

 
 
Estimation of healthy bone shape and density distribution from 
partial inputs for implant design 
 
 
 
 
Investigator: DP Kramer, Student, Master’s Candidate, Mechanical and Mechatronic 

Engineering Department, Biomedical Research Group, Stellenbosch 
University. 

 
Supervisor:   Dr Johan van der Merwe, Lecturer, Mechanical and Mechanical 

and Mechatronic Engineering Department, Biomedical Research Group, 
Stellenbosch University. 

 

 
Co-Supervisor:  Dr M. Lüthi, Lecturer, Graphics and Vision Research Group, Basel 

University. 
 
 

 
 
 
 
 
 
 
 

Please address all correspondence to:  
DP Kramer, MEng  

Department of Mechanical and Mechatronic Engineering  
Stellenbosch University  

Corner of Banghoek and Joubert Street  
Mechanical Engineering Building  

Stellenbosch  
Phone: (+27) 82 604 6131  

Email: 19865481@sun.ac.za 
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Introduction 
 
Segmentation is the process of labelling the desired anatomy and isolating it from the remainder 
of the image. This process is semi-automatic and is considered the gold standard against which to 
compare automatic segmentation algorithms. A user would essentially first apply a threshold to 
the grey values of the image scan to isolate the bone, and afterwards manually clean each image 
slice by filling in holes and trimming away unwanted artefacts. This is followed by the generation 
of a 3D mesh of the desired anatomy using a mask which was constructed during the thresholding 
process.  
 
CranioTech, with industry expertise, will conduct image segmentation of the collected dataset 
using Mimics, which is software specifically for segmentation, analysis and visualisation of medical 
images. When transferring the data to CranioTech for segmentation the dataset will be stored on 
an external hard drive. When segmentation is complete the original data and service deliverables 
will be retrieved using the same storage device. CranioTech, being paid for their services from the 
project budget, will not store, keep or otherwise make use of any data. See the DTA, ‘Data 
Transfer Agreement’, documentation at the back for further details.  
 

Objectives 

The main objective of this protocol is to establish a step by step process which will ensure 
reproducibility of segmentation quality and the production of the required deliverables from the 
segmentation services rendered. 
 
The deliverables specified below are required for the completion of a Master’s thesis and will 
form part of the training data set required for the construction of a statistical module that will 
intern be used for the reconstruction of segmented bone loss. 
 

Dataset 

The data set will consist of a 100, 50 male and 50 female, diagnostic CT scans collected 
retrospectively. The scans are in both DICOM and pre-generated .mcs file format. The .mcs files 
were generated using MIMICS Innovation Suite, version 16.0. Each scan is anonymized and 
assigned a deidentified identification number to protect each patient’s identity.  
 
When imported into MIMICS each .mcs file will contain a patient-specific medical image with 
anatomical density data captured within the voxel intensities.  Different voxel intensities will 
illustrate different anatomical geometries and structures within the medical images. The 
Hounsfield Unit (HU) scale can be used to assist in identifying the different anatomical structures 
being analysed, Figure 1. Note that the values given in Figure 1 are only estimates and that these 
ranges will differ depending on the anatomical structure being analysed, the imaging machine 
and global lighting effects present.    
 
As mentioned the segmentations generated by CranioTech will be used for the construction of 
statistical models which will focus primarily on the healthy femur long bone structure. 
Segmentations of healthy tibia long bone structures will also be collected where possible for the 
construction of secondary statistical models. Each scan will contain one healthy femur long bone 
and possibly a healthy tibia long bone. Scans might be singular or bilateral. The last section of this 
document will contain the segmentation lists for both the male and the female CT scans. The list 
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will identify which femur, regarding the median plane, must be segmented on each scan. The list 
will also identify if a healthy tibia is present and if the segmentation of this tibia is required. 
 

 
Figure 1: HU scale for different anatomical structures  (Kalra, 2018) 

Slice thickness and pixel resolution might vary for each image. This is due to the diagnostic and 
retrospective nature of the scans collected for the study. Imaging practices may change annually 
or as needed for diagnosis when the images were taken. Typically, the slice thickness will be 1 to 
1.5 mm and the pixel resolution will be centred around 0.75 mm. 
 

Service Deliverables    

Following the guidelines provided below CranioTech will generate three masks for each long bone 

structure identified in the segmentation list. They will have to use their anatomical knowledge, 

industry expertise and MIMICS Innovation Suite, version 16.0, to ensure the masks generated are 

anatomically correct and accurate to the images given.  

The first mask of each long bone structure will highlight the entire bone geometry, containing 

both cortical and trabecular bone geometries. The second will focus only on the cortical bone and 

the third on the trabecular bone. These three masks will then be properly labelled as set out in 

Table 1 and stored to the .mcs file. 

After mask generation, full 3D segmentation models (containing the cortical and trabecular bone 

geometries) of the masked long bones will be generated. Using varies shaping, smoothing, 

wrapping, colouring and clipping techniques CranioTech will ensure the 3D segmentation will be 

an accurate representation of the femur and tibia long bone geometries. The 3D segmentation 

models will then also be saved to the .mcs project file of each image and so be labelled 

appropriately, see Table 1.  

Stellenbosch University https://scholar.sun.ac.za



3 
 

The external surface geometry information, of the femur long bone and possible tibia long bone, 

from the 3D segmentations models will then be exported to .stl files in binary format and labelled 

appropriately as shown in Table 1.    

Table 1: Deliverable summary for each Image/Scan 

Deliverable Label/ Name Mask Color/ Format Storage Location 

Mask 1: 
Full bone geometry 

of femur/tibia 

Femur_Full Green mask 
To MIMICS file (.mcs): 
“Deidentified-ID.mcs” Tibia_Full Blue mask 

Mask 2: 
Cortical bone 

geometry of femur/ 
tibia 

Femur_Cor Orange mask 
To MIMICS file (.mcs): 
“Deidentified-ID.mcs” Tibia_Cor Yellow mask 

`Mask 3: 
Trabecular bone 

geometry of femur/ 
tibia 

Femur_Tra Purple mask 
To MIMICS file (.mcs): 
“Deidentified-ID.mcs” Tibia_Tra Pink mask 

3D Model/ Object: 
Full 3D segmentation  

Femur_Model Green model To MIMICS file (.mcs): 
“Deidentified-ID.mcs” Tibia_Model Blue model 

Surface Model: 
3D Model export  

Deidentified-
ID_Femur.stl 

Binary format 

To individual 
deidentified scan 

folder: 
“…\1.De-Identified CT 

Scans\1. Accepted 
Scans\ Deidentified-

ID-Folder \...”. 

Deidentified-
ID_Tibia.stl 

Binary format 

 

All the deidentified CT scans can be found by following the file path “…\1.De-Identified CT Scans\1. 

Accepted Scans\...”. Inside this directory the DICOM and .mcs files for each scan are contained 

within individual folders labelled using the unique deidentified identification number given to 

each scan during anonymization. It is also within these individual folders that the exported .stl 

files are stored.       

Segmentation Guidelines 

These guidelines rely on the discretion of the service provider and the toolkit provided by their 
expertise and MIMICS Innovation Suite, version 16.0. The list containing the relevant ID’s and long 
bone structures for segmentation can be found in the section below.  
 

1. Import the deidentified .mcs file containing the CT image data.  
 

2. Using the list provided identify the femur long bone for segmentation trough visual 
inspection. 
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3. Set contrast to highlight the anatomical structure of bone. A good contrasting range used 

throughout literature is HU[-250,750]. Mimics also has built-in contrasting options to 
select from.    

 
4. Threshold the image to isolate the long bone geometries that are of interest. The Intensity 

range describing Trabecular bone is usually between HU[100,250], for Cortical bone the 
range is from 250+ HU, Figure 1. These intensity ranges might differ on the image being 
segmented due to global lighting effects present during image capturing. Visual inspection 
during thresholding is of high importance and the generation and analysis of profile lines 
might also be of use. 

 
5. Finalizing the thresholding procedure will produce a mask describing all geometries within 

the thresholding range.  
 

6. For the first mask isolate both the cortical and trabecular bone geometry of the long bone 
in question. Isolating the geometry can be done by using tools such as clipping and region 
growing.   

 
7. Manually clean and fill the isolated mask by either stepping through the image slice by 

slice or from the 3D window when selecting the ‘Edit in 3D’ option and setting the 
bounding box. Manually cleaning will consist of closing all irregular gaps in the bone 
geometry, the elimination of islands and geometries not consistent with the overall 
anatomical shape and character of the bone structure and finally a smoothing process to 
eliminate all noise in the mask. Tools for this process can range between local 
thresholding, removing, erasing and drawing procedures. Label and store the first mask 
according to Table 1. 

 
8. The second mask can be generated by duplicating the first and applying a local 

thresholding procedure that isolates the cortical bone. The cortical bone range can be 
established through a mixture of profile lines, visual inspection, Figure 1 and anatomical 
knowledge. Label and store the second mask according to Table 1. 

 
9. The third mask can be generated through a ‘Boolean Operation’. By subtracting the 

second mask from the first the trabecular bone will be isolated and captured in the third 
mask. Label and store the third mask according to Table 1. 

 
10. Using the first mask generate a full 3D segmentation model of the femur long bone 

geometry. The selection of generation quality should reflect the anatomical geometry of 
the long bone in question and as such should be selected through visual inspection. 

 
11. Due to the study for which the segmentations are required the 3D model should reflect 

only the exterior geometry of the long bone being segmented. Thus, operations such as 
wrapping and smoothing are required to close holes and eliminate any noise or irregular 
artefacts remaining on the surface contour. Giving a more accurate representation of the 
true long bone shape. Parameters for wrapping and smoothing procedures need to be 
established during segmentation trough visual inspection. It is important however to 
remember to account for shrinkage during these operations.   
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12. Ensure the segmentation model is a true representation of the original image contour and 
has remained aligned with said image. This can easily be visualised by enabling the surface 
contour of the model in the frontal, sagittal and transverse planes. Label and store the 3D 
segmentation models according to Table 1. 

 
13. Export the external surface geometry to a .stl file. Label and store the file as stipulated in 

Table 1. Ensure that the size factor is set to 1.0 and that the binary format is selected. 
  

14. Repeat step 3 through 13 for the tibia long bone if listed. 
 

15. Repeat step 1 through 14 for all deidentified images on the segmentation list below.  
 

16. Copy all data files and deliverables back to the external hard-drive for collection from the 
primary investigator (PI). 

 
17. Once data has been securely transferred to PI’s server remove all remaining data from 

company-owned servers upon notification as per DTA documentation. 

 

Segmentation List 

Nr. De-Identified ID Gender 
Segmentation Structure Segmentation 

List (S) 

Femur Tibia 

1 AS_13557240 M R R S1 

2 BH_32656201 M R R S1 

3 CH_27273704 M R R S1 

4 CG_37677742 M R R S1 

5 DT_57631372 M R R S1 

6 GS_25575064 M R R S1 

7 KC_30230415 M R R S1 

8 KS_44412450 M R R S1 

9 LK_50500727 M R R S1 

10 LE_31371454 M R R S1 

11 MN_34037317 M R R S1 

12 NC_17447673 M R R S1 

13 NS_44640047 M R R S1 

14 SM_32340517 M R R S1 

15 SZ_72700234 M R R S1 

16 TG_47354375 M R R S1 

17 TC_56067603 M R R S1 

18 AB_12761655 M R R S1 

19 FJ_51005421 M R R S1 

20 FL_47044712 M R R S1 

21 GG_20305124 M R R S1 

22 HP_14125063 M R R S1 
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Nr. De-Identified ID Gender Femur Tibia 
Segmentation 

List (S) 

23 KI_74032300 M R R S1 

24 LL_10414033 M R L S1 

25 MO_34426047 M R R S1 

26 NS_63613401 M R R S1 

27 PB_47525126 M R L S1 

28 SN_70712234 M R R S1 

29 TS_57126710 M R L S1 

30 TL_03410126 M R L S1 

31 AA_24053370 M R R S1 

32 BD_35264326 M R R S1 

33 CN_06252254 M R R S1 

34 DL_42653364 M R R S1 

35 DJ_33544752 M R R S1 

36 GA_01733033 M R R S1 

37 HS_51400415 M R R S1 

38 LL_01526011 M R R S1 

39 LA_35153557 M R R S1 

40 LM_66420230 M R R S1 

41 MS_53433456 M R R S1 

42 MM_07747377 M R R S1 

43 MH_25353647 M R R S1 

44 MS_30272377 M R R S1 

45 MS_11472072 M R R S1 

46 MR_24322376 M R R S1 

47 MK_74130321 M R R S1 

48 NR_21544507 M R R S1 

49 NB_00142132 M R R S1 

50 SD_63246235 M R R S1 

51 AM_04134222 F L L S1 

52 BT_40373731 F L L S1 

53 DE_17556043 F L R S1 

54 GN_21434102 F L R S1 

55 JS_27100611 F L L S1 

56 LB_76652532 F L - S1 

57 MN_61036532 F L L S1 

58 MM_12006211 F L R S1 

59 MZ_65542530 F L - S1 

60 SS_20716161 F L L S1 

61 SS_41571107 F L L S1 

62 SA_03365303 F L L S1 

63 TM_03454355 F L - S1 

64 VW_52766006 F L L S1 

65 CS_06256227 F L L S1 

66 DS_51700206 F L L S1 
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Nr. De-Identified ID Gender Femur Tibia 
Segmentation 

List (S) 

67 KN_07357472 F L L S1 

68 KL_25433306 F L L S1 

69 MS_40012352 F L - S1 

70 NB_25221320 F L L S1 

71 RS_76107700 F L L S1 

72 AL_72230651 F L L S1 

73 BF_06363205 F L L S1 

74 BP_46407074 F L L S1 

75 CM_64705547 F L L S1 

76 CS_42123275 F L L S1 

77 DM_62044177 F L L S1 

78 DB_35202674 F L - S1 

79 GN_51474054 F L L S1 

80 GA_66420615 F L R S1 

81 HC_64160440 F L - S1 

82 HF_44735422 F L L S1 

83 HN_43567247 F L L S1 

84 JD_61267713 F L - S1 

85 JA_63753647 F L - S1 

86 KT_73730224 F L - S1 

87 KY_15540755 F L L S1 

88 LC_36626094 F L L S1 

89 MY_11516670 F L L S1 

90 MD_51123267 F L L S1 

91 MA_40151355 F L R S1 

92 MN_03154610 F L - S1 

93 NL_41007715 F L - S1 

94 PI_47511244 F L - S1 

95 RC_21554631 F L L S1 

96 SP_04373054 F L L S1 

97 SL_04722401 F L R S1 

98 SL_17746077 F L R S1 

99 VL_66105124 F L - S1 

100 WK_67436503 F L L S1 
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