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Abstract  

Nutritional stress due to habitat transformation and loss is one of several factors  

contributing to current declines in global bee populations. Bees obtain protein from pollen,  

which in honeybees is consumed and digested by nurse bees. They then distribute the  

protein to the rest of the colony in the form of hypopharyngeal gland secretions. Little is  

known of how efficiently honeybees digest protein. Moreover, antibiotics are used by  

beekeepers as in-hive treatments for diseases, and may interfere with microbial  

contributions to protein digestion. Caged, newly emerged workers of Apis mellifera  

scutellata, were fed caseinate as protein source, to investigate the effects of protein intake  

and antibiotic treatment on digestive efficiency. These workers were fed  

protein:carbohydrate ratios of 1:120, 1:50, 1:15 or pure sucrose for nine days. Half the  

cages received dietary oxytetracycline at a concentration used by beekeepers. Antibiotic  

exposure did not affect survival or protein consumption. Protein digestive efficiency  

increased with increasing levels of protein in the diet, although a decrease would have  

contributed to maintaining nutrient balance. Importantly, we show that antibiotic exposure  

impaired protein digestive efficiency, especially on low protein diets. This may be  

particularly important when colonies are restricted to a single protein deficient source of  

pollen.  

 

Keywords: bee nutrition / protein digestion / digestive efficiency / antibiotic /  

oxytetracycline  
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1. INTRODUCTION   

  

Nutritional stress due to habitat transformation and loss is thought to be among the major  

factors contributing to current declines in global bee populations (Goulson et al. 2015;  

Vanbergen and the Insect Pollinators Initiative 2013). In honeybees, nutritional stress  

negatively impacts brood rearing and development, lifespan, foraging capacity, and  

resistance to diseases and pesticides (Di Pasquale et al. 2016; Scofield and Mattila 2015;  

Avni et al. 2014; Schmehl et al. 2014; Alaux et al. 2010).  

  

Honeybees meet all their nutritional needs with nectar and pollen collected from a  

diversity of floral resources (Wright et al. 2018; Brodschneider and Crailsheim 2010).  

Pollen is the primary source of protein, and its main consumers are nurse bees, young  

workers that digest the pollen and produce protein-rich jelly in their hypopharyngeal  

glands (Crailsheim and Stolberg 1989). This jelly is fed to the larvae and queen, but also to  

nest mates through trophallactic interactions, efficiently distributing the protein and other  

nutrients extracted from the pollen throughout the colony (Wright et al. 2018; Crailsheim  

et al. 1992). Pollen consumption starts about 10 hours after worker emergence, steadily  

increasing to reach a maximum in about 8-day-old nurse bees before declining to minimal  

amounts in foragers (Crailsheim et al. 1992). Proteolytic activity measured in the midgut  

of workers follows a similar pattern: increasing shortly after emergence and reaching a  

maximum in around 8-day-old nurse bees (Crailsheim and Stolberg 1989). In foraging  

workers, sufficient proteolytic activity remains for the digestion of proteins in the jelly  

received through trophallaxis (Brodschneider and Crailsheim 2010; Crailsheim et al. 1992;  

Crailsheim and Stolberg 1989).   

  

There are few measurements of the efficiency with which honeybees digest consumed  

protein (DeGrandi-Hoffman et al. 2016; Wang et al. 2014; Schmidt and Buchmann 1985).  

Pollen is notoriously difficult to digest (Nicolson et al. 2018), but the commercially  

available protein supplements provided by beekeepers to compensate for poor nutrition  

may be even less digestible (DeGrandi-Hoffman et al. 2016). Research using such  

supplements shows that protein source and protein intake may influence protein digestive  

efficiency (DeGrandi-Hoffman et al. 2016; Brodschneider and Crailsheim 2010). Diet  

composition is also important. When nutrient balance cannot be achieved by adjusting  

food selection and intake, as when insects are restricted to nutritionally imbalanced diets,  
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they may use post-ingestive regulation mechanisms. These include modulating digestive  

efficiency and absorption through differential secretion of digestive enzymes, changing the  

gut passage rate or gut morphology, as well as adjusting metabolism and excretion after  

absorption (Clissold et al. 2010, 2013; Behmer 2009). For example, when the caterpillar  

Estigmene acrea consumes protein in excess, excretion of undigested protein increases  

(Telang et al. 2003), while in locusts (Locusta migratoria) uric acid excretion increases  

(Zanotto et al. 1993). Conversely, when dietary protein is diluted, grasshoppers  

(Melanoplus differentialis) increase protein digestive efficiency by increasing gut width  

and length (Yang and Joern 1994).  

  

Another factor to consider is the role of the gut microbial communities in the breakdown  

and absorption of nutrients. Gut microbiota possess a large repertoire of metabolic  

capabilities (Douglas 2009). In humans, herbivorous vertebrates and insects there is strong  

evidence that gut microbes are involved in the utilisation and catabolism of essential and  

non-essential amino acids, provide hosts with vitamins, or aid in making nutrients more  

readily available to the hosts e.g. by fermenting complex dietary carbohydrates (Davila et  

al. 2013). Honeybees are associated with specific gut microbiota dominated by eight to ten  

phylotypes (Lee et al. 2015, 2018; Kwong and Moran 2016; Moran et al. 2012). These  

include the proteobacteria Snodgrassella alvi (Betaproteobacteria), Parasaccharibacter  

apium (Alphaproteobacteria), Frischella perrara and Gilliamella apicola  

(Gammaproteobacteria), Lactobacillus species (Firmicutes), a Bifidobacterium species  

(Actinobacteria), and a rarer Bacteroidetes (Lee et al. 2015, 2018; Kwong and Moran  

2016). Metagenomic and experimental studies suggest roles in defence against pathogens  

(Raymann et al. 2017; Koch and Schmid-Hempel 2011) and in digestion and neutralization  

of dietary toxins (Lee et al. 2018; Zheng et al. 2016). The Gilliamella, Lactobacillus Firm- 

5 and Bifidobacterium clades are able to utilize plant-derived saccharides, including the  

complex carbohydrate pectin, and also plant-derived secondary sugars that are toxic to  

bees (Lee et al. 2018). Metagenomic analysis revealed that Bacilli possess a diverse  

repertoire of peptidase encoding genes for protein hydrolysis, while γ-Proteobacteria and  

the Actinobacteria are predicted to synthesize all essential amino acids, as well as other  

non-essential amino acids (Lee et al. 2015).   

  

The honeybee gut microbiome is altered in both size and composition by exposure to  

antibiotics  (Li et al. 2019; Raymann et al. 2017). Managed colonies are routinely treated  

with antibiotics such as oxytetracycline to prevent and control American and European  
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foulbrood, highly contagious bacterial diseases of honeybee larvae caused by  

Paenibacillus larvae and Melissococcus plutonius, respectively (Tian et al. 2012;  

Genersch 2010). Oxytetracycline, like most other tetracyclines, binds to the microbial 30S  

ribosomal subunit preventing the amino-acyl tRNA from binding to the ribosomal acceptor  

(A) site, thereby inhibiting polypeptide elongation (i.e. protein synthesis) resulting in  

eventual cell death (Chopra and Roberts 2001). Aside from the latter, impairment of  

microbial protein synthesis can influence essential functions of beneficial microbiota at the  

microbial-host interface, which include protein catabolism and amino acid metabolism.  

Consequently, it is plausible that the overuse of antibiotics could negatively affect the  

digestive efficiency of protein by disrupting the natural gut microbiota, contributing to  

nutritional stress.  

  

A better understanding of the factors that influence protein digestive efficiency is central to  

developing effective means to alleviate the effects of poor nutrition in managed honeybees.  

In this study, we investigated the effects of protein intake and antibiotic treatment on  

digestive efficiency in 3- to 9-day-old worker bees, the age range responsible for digesting  

and distributing protein in the colony. We predicted that (1) when bees are fed high protein  

diets, they will consume less than when feeding on low protein diets, and (2) that the  

excess protein consumed while feeding on high protein diets will not be digested and  

therefore should appear in the excreta. We further predicted that (3) antibiotic treatment  

will interfere with protein metabolism.  
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2. MATERIALS AND METHODS  

  

2.1 Caged bees  

Frames with capped brood were collected during late spring and summer from six colonies  

of Apis mellifera scutellata Lepeletier maintained at the University of Pretoria apiary.  

Newly emerged workers were collected within 24 h of emergence, placed in clear hoarding  

cages (50 bees per cage, see Fig. S1) and kept in an incubator at 34 ± 1 °C and 45% RH in  

darkness, to simulate conditions within the hive. Feeding vials (2 ml Eppendorf tubes)  

were inserted horizontally into the cages, one with water and one with diet, provided fresh  

daily. Dead bees from each cage were removed and counted on a daily basis.   

  

2.2 Diets and feeding trials  

Caged workers were presented with no-choice liquid diets made to specific protein to  

carbohydrate (P:C) ratios by weight. Caseinate (Sodium caseinate, Sigma-Aldrich, St  

Louis, MO, USA), a milk-derived protein, was used as protein. Caseinate is not part of the  

natural diet of honeybees but it is commonly used in nutritional studies on a variety of  

animals including honeybees (Altaye et al., 2010; Archer et al., 2014). The carbohydrate  

concentration remained constant (30% sucrose (Paoli et al. 2014)). Three P:C ratios (1:15,  

1:50, 1:120) were used. For each colony (N = 6 colonies), cages were divided into eight  

groups of three, each group provided with one of eight diets: 0:1 (sucrose-only), 1:15,  

1:50, 1:120 P:C, and the same diets containing 450 µg/ml antibiotic (18 hoarding cages in  

total per treatment group). Oxytetracycline (Oxytetracycline hydrochloride, Sigma- 

Aldrich, St Louis, MO, USA) a commonly used antibiotic in apiculture, was included at a  

dose of 450 µg/ml, slightly lower than used in beekeeping (Raymann et al. 2017) (The  

oxytetracycline powder was dissolved in the liquid diets to a final concentration of 450  

µg/ml). After 3, 6 and 9 days, one cage per diet group was randomly selected and given a  

sucrose-only diet for 72 h to ensure that undigested protein and byproducts of protein  

catabolism reached the rectum (Wang et al. 2014). The trial therefore took 12 days (Fig.  

1A). After 72 h, rectal contents were collected by dissection (caged honeybees do not  

defecate). For each diet, pooled samples from 10 bees were collected in either 400 µl  

double distilled deionised water before being freeze-dried and stored at 4 ºC until free  

amino acid analysis, or in 400 µl 40 mM Tris buffer containing SigmaFast™ Protease  

inhibitor tablets (Sigma-Aldrich, St Louis, MO, USA) before being stored at -20 ºC for  

protein and uric acid analysis.  
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To determine diet consumption, diet tubes were weighed and replaced every 24 h. We  

measured evaporation rates for each diet in cages without bees and adjusted consumption  

accordingly. Consumption (mg/bee) was adjusted for declining bee numbers in each cage  

during the feeding trials. Protein digestive efficiency was calculated using the formula:  

(protein intake – faecal protein)/protein intake x 100 (Schmidt and Buchmann 1985).  

Samples obtained from the control diets (sucrose-only) were used to correct for  

endogenous protein in the rectum (Wang et al. 2014).   

  

2.3  Determining protein, uric acid and free amino acid content of faecal samples  

Collected samples were homogenised in 400 µl of 40 mM Tris buffer containing  

SigmaFast™ Protease inhibitor tablets, followed by centrifugation at 14 000 x g for 10  

min. The supernatant was diluted 50 times before determining the total soluble protein  

content by the Bradford assay, using Sigma Bradford Reagent (Sigma-Aldrich, St Louis,  

MO, USA) according to the manufacturer’s instructions with BSA as standard (Sigma- 

Aldrich, St Louis, MO, USA). Absorbance was measured at 595 nm using a BioTek Eon  

microplate reader (Analytical and Diagnostic Products, Johannesburg, South Africa).   

  

Uric acid in each sample was determined by an enzyme-based colorimetric assay using a  

commercial kit (Uric Acid Assay Kit MAK077, Sigma-Aldrich Co., St. Louis, MO, USA).  

Three hundred microliters of the provided uric acid assay buffer was added to 100 µl of the  

remaining homogenate. Samples were vortexed vigorously and centrifuged at 14 000 x g  

for 10 min. Twelve microliters of the supernatant were transferred to a 96-well plate (in  

triplicate) before adding uric acid assay buffer to a final volume of 50 µl and performing  

the assay according to the manufacturer’s instructions.   

  

The free amino acid content was determined using a Waters AccQTag™ Ultra Chemistry  

kit (Milford, MA, USA) which includes the AccQTag™ Ultra Derivatization Kit, an  

AccQTag™ Ultra C18 column (2.1 x 100 mm x 1.7 µm), as well Eluents A and B. Before  

derivatization, the freeze-dried samples were reconstituted in 500 µl double distilled de- 

ionised water (using vortexing and ultrasonication) before precipitating the proteins by  

adding 500 µl of acetonitrile. After centrifugation, 800 µl of the supernatant was  

concentrated by complete evaporation followed by reconstitution in 200 µl Eluent A  

before adding the internal standard L-Norvaline to a final concentration of 20 ppm. The  
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chromatographic analysis was performed on an ACQUITY UPLC™ system coupled to a  

Waters PDA detector (Milford, MA, USA) with MassLynx™ software. Column  

temperature was maintained at 60 ºC and the flow rate was 0.7 ml/min. The following  

gradient was used: 0–0.54 min, 0.1% B; 0.54–5.74 min, 0.1–9.1% B; 5.74–7.74 min, 9.1- 

21.2% B; 7.74–8.04 min, 21.2-59.6% B; 8.04–8.05 min, 59.6-90.0% B; 8.05–8.64 min,  

90.0% B; 8.64–8.73 min, 90.0-0.1% B; 8.73–9.50 min, 0.1% B. The injection volume was  

1 µl.   

  

2.4 Statistical analysis   

All data were evaluated for normality and homogeneity of variance prior to analysis.  

Kaplan–Meier survival regression analyses were performed to test for differences in  

survival between test diets, followed by Kruskal–Wallis ANOVA with multiple  

comparisons of mean ranks. ANOVA and post hoc comparisons were performed to  

evaluate the effect of the different test diets on consumption, protein digestive efficiency,  

uric acid excretion and free amino acid content in the rectum. When the data distribution  

was normal but the assumption of homogeneity of variance was violated, Welch ANOVA  

was used. The alpha level was set to 0.05 for all analyses. All analyses were performed  

using IBM SPSS® Statistics v25.   
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3. RESULTS  

  

3.1 Effect of dietary protein content and oxytetracycline on survival  

Cumulative survival was not significantly affected by protein content or the presence or  

absence of oxytetracycline when the bees consumed test diets for 3, 6 or 9 days [H (7) =  

2.750, p = 0.907; H (7) = 2.865, p = 0.897; H (7) = 1.276, p = 0.287], compared to sugar- 

only diet controls (Fig. 1B). Survival during the feeding trials was high at day 3, ranging  

between 97-100% and decreased slowly to 83-91% at day 6. After day 6 survival  

decreased more rapidly and ranged from 43-53% at day 9. At day 12, the average survival  

decreased to <30%. Consequently, bees fed the test diets for 9 days and then sampled on  

day 12 were excluded from protein digestive efficiency calculations, as the number of bees  

remaining in these cages was too low to allow random and representative sampling from a  

cage.  

  

3.2 Effect of dietary protein concentration on diet consumption, protein intake, and  

excretion of protein, uric acid and free amino acids  

Cumulative diet consumption did not differ significantly between protein diets consumed  

for 3, 6 or 9 days (Fig. 2A). When the average daily diet consumption per bee (Fig. S2)  

was compared across protein diets fed for 3, 6 and 9 days, there was a significant  

difference for the sucrose-only (P:C 0:1) control diets [Welch F (11, 18.268) = 8.608, p  

<0.001], but not for the protein diets. Bees consuming the sucrose-only diet without  

oxytetracycline for 9 days consumed slightly more per day than bees subsisting on sucrose  

diets for 3 [mean difference 12.655 mg/bee p = 0.001] or 6 [mean difference 8.474  

mg/bee, p = 0.049] days (Fig. S2). Taken together, these analyses suggest that dietary  

protein content does not significantly influence food intake.    

  

Because total diet consumption did not differ between diets, protein intake was  

significantly higher for cohorts of bees on the higher protein diet (P:C 1:15 and 1:50)  

compared to those on the low protein diet (P:C 1:120) over 3 [Welch F (5, 11.808) =  

62.106, p < 0.001], 6 [Welch F (1, 13.576) = 0.743, p < 0.001] or 9 [Welch F (5, 13.166) =  

34.038, p < 0.001] days (Fig. 2B). Specifically, protein intake on P:C 1:15 diets was  

greater than P:C 1:50 diets (p < 0.001, p < 0.001, p = 0.014 for 3, 6 and 9 days  

respectively) and P:C 1:120 diets (p = 0.001, p < 0.001, p = 0.005 for 3, 6 and 9 days  

respectively). Protein intake for P:C 1:50 was also greater than protein intake for P:C  
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1:120 (p = 0.048, p < 0.001, p < 0.001 for 3, 6 and 9 days, respectively). However, a  

higher protein intake did not generate any significant difference in uric acid [Welch F (11,  

20.179) = 0.632, p = 0.782], total free amino acid content [Welch F (7, 5.993) = 1.475, p =  

0.146] (Table I, Table SI) or cumulative undigested protein [Welch F (17, 16.919) =  

0.980] (Fig. 2C and Table SII) in the excreta.  

   

Protein digestive efficiency was significantly affected by protein intake [Welch F (8,  

13.325) = 27.243, p < 0.001], increasing with higher protein intake as illustrated in Fig.  

3A.  For 3-day-old bees, the increase in digestive efficiency with increased levels of  

dietary protein was not significant. However, when 6-day-old bees consumed the high  

protein diet (P:C 1:15) protein digestive efficiency was significantly higher than on the low  

protein diet (P:C 1:120) [p = 0.039].  

  

3.3 Effect of dietary oxytetracycline on diet consumption, protein intake and protein  

excretion  

Bees consuming sucrose-only diets (P:C 0:1) for 3 days consumed significantly less when  

oxytetracycline was present in the diets (p = 0.043) (Fig. 2A). For all other diets, there  

were no significant differences in cumulative diet consumption (Fig. 2A) or daily average  

consumption per bee (Fig. S2), in the presence or absence of oxytetracycline.  

Consequently, oxytetracycline had no effect on protein intake overall (Fig. 2B). When we  

compared cumulative protein intake and output for 3 and 6 days (Fig. 3B & C  

respectively), with or without oxytetracycline in the diet, a pronounced shift along the  

vertical axis for cumulative protein output was only observed after 6 days on diets  

containing oxytetracycline. The presence of dietary oxytetracycline significantly increased  

protein excretion [Welch F (17, 27.240) = 37.736, p < 0.001] when protein diets  

containing oxytetracycline were consumed over 6 days [P:C 1:15 < P:C 1:15 +  

oxytetracycline, p = 0.004; P:C 1:50 < P:C 1:50 + oxytetracycline, p = 0.059 and P:C  

1:120 < P:C 1:120 + oxytetracycline, p < 0.001] (Fig. 2C). A significant decrease in  

protein digestive efficiency was observed in the presence of dietary oxytetracycline when  

consumed for 3 [Welch F (5, 10.712) = 17.199, p < 0.001] and 6 [Welch F (5, 11.237) =  

22.41, p < 0.001] days. Specifically, protein digestion efficiency decreased significantly in  

the presence of oxytetracycline when bees consumed low (P:C 1:120, p = 0.005; p =  

0.017) and intermediate (P:C 1:50, p = 0.034; p = 0.049) protein diets for 3 and 6 days.  
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The most pronounced decreases in digestion efficiency were observed when bees were fed  

the low protein diets (Fig. 3A).    
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4. DISCUSSION  

  

Here we show that protein digestive efficiency of honeybees, contrary to expectation,  

increases with increasing levels of protein in the diet. Importantly, we show that antibiotic  

exposure impairs protein digestive efficiency, with the negative affect becoming more  

pronounced during consumption of low protein diets.    

  

The varying protein levels in the test diets had no adverse impact on survival. For the  

African honeybee, Apis mellifera scutellata, the survival curves are not out of the ordinary  

and within the range of what we have recorded in previous studies using caged Apis  

mellifera scutellata (Démares et al. 2016; Archer et al. 2014a, 2014b; Köhler et al. 2012;  

Altaye et al. 2010; Pirk et al. 2010). Although we have previously shown that  

overconsumption of protein shortens the lifespan of honeybees (Archer et al. 2014b; Paoli  

et al. 2014; Altaye et al. 2010; Pirk et al. 2010), this effect may be more pronounced in  

longer term survival studies or when feeding on diets with higher protein concentrations.  

Likewise, we found no effect of oxytetracycline on survival, in contrast with Raymann et  

al. (2017) which reported decreased survival after treating bees with tetracycline for five  

days followed by exposure to bacterial pathogens for 10 days. Li et al. (2019) measured  

significant decreases in survival of bees treated with a mixture of penicillin and  

streptomycin for 15 days, partially counteracted by including pollen in the diet.  

  

By monitoring food consumption, we can surmise to what extent the bees regulated their  

nutrient intake. The varying levels of dietary protein had no impact on diet consumption,  

suggesting that the bees regulated their carbohydrate intake rather than protein intake. This  

strong bias of broodless workers towards dietary carbohydrate was also demonstrated in  

our previous studies that investigated nutrient intake in honeybees, with intake targets  

converging on low protein to carbohydrate ratios when feeding on artificial (Archer et al.,  

2014a; Démares et al., 2016) or natural diets (Altaye et al. 2010; Pirk et al. 2010; Human  

et al. 2007). The nutrient intake of caged worker bees without the demands of larvae to  

feed, is more closely related to their own physiological requirements than those of a colony  

(Lass and Crailsheim 1996). The propensity to keep carbohydrate intake high and constant  

may reflect the high metabolic rate of honeybees even under resting conditions (Kovac et  

al. 2007). Honeybees also keep their blood glucose levels rather constant and digest nearly  

all the carbohydrate they consume (Crailsheim 1988). As in previous studies (Archer et al.  
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2014a; Köhler et al. 2012), older 9-day-old bees consumed slightly more per day of the  

sucrose-only diet (P:C 0:1) than 3- and 6-day old bees. This is consistent with the  

transition from hive worker to forager and the accompanying physiological changes  

(Crailsheim et al. 1992). Interestingly, in several of the cages that were fed protein diets  

for more than three days, bees were observed to have active wax glands which enabled  

them to build small combs on the wax foundation. This indicates that minimum nutritional  

requirements to allow normal gland development were met.   

  

The presence of oxytetracycline also had no significant effect on diet consumption. Only  

bees consuming a sucrose-only diet for the first three days after emergence consumed  

significantly less when oxytetracycline was present in the diet, indicating that they might  

be able to taste the oxytetracycline. Evidently, bees do not experience any perceptible  

malaise effects after consumption of oxytetracycline, which would have induced lower diet  

intake.   

  

Since total diet consumption did not differ between protein-containing diets, protein intake  

increased with the proportion of protein in the diet (Fig. 2). Because protein excretion  

levels did not reflect a similar trend, the digestive efficiency of protein increased with  

dietary protein content (Fig. 3). This was more pronounced in 6-day-old bees, consistent  

with the age-related increase of proteolytic activity in nurse bees (Crailsheim and Stolberg  

1989). Limited research suggesting that protein intake influences protein digestive  

efficiency in bees (DeGrandi-Hoffman et al. 2016; Brodschneider and Crailsheim 2010),  

together with the evidence that caged workers can regulate protein intake to maintain low  

protein to carbohydrate ratios (Démares et al. 2016; Archer et al. 2014b; Altaye et al.  

2010), led to our  expectation that protein digestive efficiency would decrease on the high  

protein no-choice test diets to maintain the balance of nutrients absorbed post-ingestively.  

This would be similar to what is observed in L. migratoria (Clissold et al. 2010). However,  

the observed increase in protein digestive efficiency with increased levels of protein is in  

better agreement with the view that animals maximise nutrient absorption from food by  

modulating levels of digestive enzymes and transporters coupled with post-absorptive  

mechanisms to regulate retention and eliminate surpluses (Karasov et al. 2011).    

  

It is possible that, as in tobacco budworms (Heliothis virescens) (Telang et al. 2003),  

excess protein is digested and absorbed across the gut before being eliminated as uric acid  
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(McNally et al. 1965). In honeybees, the nitrogenous waste products of protein catabolism  

are mainly excreted as uric acid, with very small percentages of amino nitrogen, creatine  

and creatinine (McNally et al. 1965). Although the levels of uric acid excretion varied to  

some extent across the test diets, these changes were not significant (Table I). The mean  

levels of 1.2% in the total excreta can be compared to the 2.2% uric acid detected in the  

excreta of bees fed casein by McNally et al. (1965). There were also no significant changes  

in excretion of free amino acids, another possible route of eliminating excess protein  

(McNally et al. 1965) (Table I and Table SI; rectal amino acid content of the  

oxytetracycline-treated groups was not determined). Amino acids in the rectal contents  

were determined and compared between age groups, but did not include other regions of  

the gut where the bee microbiota may contribute to the total amino acid pool as  

demonstrated by Kešnerová et al. (2017) and Zheng et al. (2017) who used whole guts and  

specific regions of the gut, respectively. A difference in amino acid content in the rectum  

would be expected if amino acids are present in excess in bees fed high protein diets,  

which does not seem to be the case. It is possible that the excess protein is catabolised,  

absorbed across the gut epithelium and contributes to jelly production in the  

hypopharyngeal glands (Crailsheim et al. 1992). Measurement of the total protein content  

of the heads of the bees would confirm increased jelly production and storage. However,  

Altaye et al. (2010) did not find a positive correlation between dietary protein levels and  

hypopharyngeal gland activation within a specific age group. It is more likely that the  

surplus protein is stored in the haemolymph and fat body as vitellogenin (Cabbri et al.  

2018; Amdam and Omholt 2002) and hexamerin 70a (Cabbri et al. 2018; Martins et al.  

2008; Amdam and Omholt 2002), the only hexamerin present in adult workers (Danty et  

al. 1998). It has even been suggested that non-laying workers can store protein in their  

ovaries as vitellogenin (Amdam and Omholt 2002).  

  

We did not observe any acute effects on survival when cohorts of caged bees were exposed  

to oxytetracycline. However, the presence of oxytetracycline in the diet reduced protein  

digestive efficiency, leading to increased levels of undigested protein being excreted by the  

bees (Fig. 2 and Fig. 3). Since Raymann et al. (2017) and Li et al. (2019) demonstrated  

that antibiotics significantly reduce the gut microbiota of honeybees, this result strongly  

suggests that the gut microbiota play a role in protein digestion as proposed by previous  

genomic studies (Kakumanu et al. 2016; Lee et al. 2015).  The impairment of digestive  

efficiency was more pronounced when the bees were fed low protein diets, and Li et al.  
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(2019) similarly found an influence of nutritional stress, with some effects of dietary  

antibiotics being more dramatic in the absence of pollen.    

  

One of the three major bacterial classes found in the honeybee gut, the Bacilli, has a  

diverse inventory of proteolytic enzymes (Lee et al. 2015) and these bacteria are the most  

likely candidates contributing to protein catabolism in bees. Interestingly, the three most  

dominant clades (Gilliamella, Lactobacillus Firm-5, and Bifidobacterium) can digest  

pectin (Lee et al. 2015, 2018), a major component of the inner wall layer (intine) that  

surrounds the protoplasm of pollen grains. In addition, honeybee gut microbiota can utilize  

other indigestible components of the pollen wall such as ω-hydroxy acids, phenolamides,  

and flavonoid glycosides (Kešnerová et al. 2017). This suggests that the effect of antibiotic  

exposure on protein metabolism overall may be more substantial when bees consume their  

natural diet of pollen: the gut microbiota might not only be involved in protein catabolism,  

but might also make the protein more accessible by digesting the pectin component of the  

pollen wall as well as other hard to digest components of the pollen wall.  

  

The effect of oxytetracycline on digestive efficiency is more prominent when the bees  

consume the low protein diet. At lower protein levels the host may rely more on the  

microbiota for the digestion capacity than on its own enzymes: only when the protein  

levels are higher does the host increase the capacity to digest protein by secreting more  

proteolytic enzymes, as it is metabolically expensive to maintain high levels of digestive  

enzymes (Karasov and Douglas 2013). There is evidence that an insect host and its gut  

microbes can contribute distinct but complementary enzymes to the same metabolic  

pathway (Douglas 2009).  

  

Honey bees acquire the full complement of the gut microbiome mainly through contact  

with hive members after eclosion (Powell et al. 2014). Workers were collected from the  

brood frame within 24 h of emergence and likely did not acquire the full microbiome  

complement, nor were these bees artificially supplemented with their natural microbiome.  

For the purpose of investigating whether antibiotic treatment affects protein digestive  

efficiency, both the control and the experimental groups were treated consistently in regard  

to acquisition of the gut microbiome. It would be interesting to perform similar  

experiments with bees with a confirmed full gut microbiome complement as the effect of  
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oxytetracycline on protein digestive efficiency might have been underestimated in our  

experiments.  

  

Although antibiotic exposure has no immediate acute effects, overexposure to antibiotics  

likely leads to downstream effects very similar to those when there is no adequate source  

of protein available to honeybees. The impact on protein digestive efficiency is more  

pronounced when consuming a low protein diet, which has implications for honeybee  

management practices. When colonies are restricted to a single protein deficient source of  

pollen, such as when pollinating a monoculture of sunflowers (Nicolson and Human  

2013), antibiotic exposure could exacerbate the negative effects of the low protein diet.  

Collectively, this knowledge broadens our understanding of the factors that influence the  

digestive efficiency protein in honeybees, which in turn aids in developing effective  

strategies to reduce the risks of developing protein deficiencies in managed colonies of  

honeybees.  
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Figure legends  

  

Figure 1. Experimental design and cumulative survival of bees fed varying levels of  

protein in the presence and absence of oxytetracycline (OTC). [A] The 12-day dietary  

study was conducted using caged workers presented with no-choice liquid diets made to  

specific protein to carbohydrate (P:C) ratios. We used weight-to-weight proportions where  

the carbohydrate concentration remained constant (30% sucrose). After 3, 6 or 9 days, the  

bees were placed on a sucrose-only diet for 72 h to ensure that all the undigested protein and  

byproducts of catabolism reached the rectum before sampling of the rectal contents. [B] The   

cumulative survival plots of bees fed varying levels of dietary protein in the presence and  

absence of 450 µg/ml oxytetracycline (OTC) for 3, 6 and 9 days. Data is presented as the  

mean ± SE (N = 6, 50 bees per cage).  

  

Figure 2. Cumulative diet consumption, protein intake and protein excretion. Indicated  

is the total diet consumed [A], along with the cumulative protein intake [B] and excretion  

[C] across varying levels of dietary protein in the presence and absence of 450 µg/ml  

oxytetracycline (OTC) in bees fed for 3, 6 and 9 days. Data are presented as the mean ± SE  

(N = 6; 50 bees per cage). Significant differences are indicated with an asterisk (*) (Welch  

ANOVA, p < 0.05). Samples obtained from the control diets (0:1, sucrose-only) were used  

to correct for endogenous protein in the rectum.  

  

Figure 3. Protein digestion efficiency and the protein utilization plots in the presence  

and absence of oxytetracycline. [A] Protein digestion efficiency in the presence and  

absence of the antibiotic OTC. Scatter plots show protein intake relative to protein output  

following 3 [B] and 6 [C] days of feeding on various protein to carbohydrate (P:C) diets  

with or without OTC. Data is presented as the mean ± SE (N = 6, 50 bees per cage).  

Significant differences are indicated with an asterisk (*) (Welch ANOVA, p < 0.05).  
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Table I. Total uric acid and free amino acids detected in excreta of bees fed on varying  
protein diets. Data presented as the mean ± SE (N = 6; 50 bees per cage).   

Days 
Diet(s) 

P:C 

Uric acid 

(μg/bee) 

Mean ± SE* 

% Uric acid in 

total excretaa 

Mean ± SE* 

Total free amino 

acids (µg/bee) 

Mean ± SE* 

3 

0:1 21.49 ± 2.31 1.35 ± 0.14 6.63 ± 1.05 

1:15 17.77 ± 2.39 1.17 ± 0.15 11.15 ± 0.81 

1:50 16.42 ± 3.34 1.29 ± 0.26 10.85 ± 1.84 

1:120 16.42 ± 1.86 1.13 ± 0.12 7.42 ± 1.38 

6 

0:1 20.99 ± 2.88 1.23 ± 0.16 8.34 ± 0.99 

1:15 15.89 ± 1.54 1.20 ± 0.11 9.76 ± 2.27 

1:50 17.27 ± 2.45 1.07 ± 0.15 9.07 ± 2.01 

1:120 16.21 ± 3.15 0.9 ± 0.17 6.34 ± 0.58 

*No significant differences detected (Welch ANOVA, p < 0.05)  

a g/100 g dried excreta  
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