
ARTI-based Holonic Control
Implementation for a Manufacturing
System Using the BASE Architecture

by
Alexander Wasserman

Thesis presented in partial fulfilment of the requirements for the
degree of Master of Engineering (Mechatronic) in the Faculty of

Engineering at Stellenbosch University

Supervisor: Dr. Karel Kruger
Co-supervisor: Prof. Anton Basson

April 2022

i

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof (save
to the extent explicitly otherwise stated), that reproduction and publication thereof
by Stellenbosch University will not infringe any third-party rights and that I have
not previously in its entirety or in part submitted it for obtaining any qualification.

April 2022

Copyright © 2022 Stellenbosch University

All rights reserved

Stellenbosch University https://scholar.sun.ac.za

ii

Abstract

ARTI-based Holonic Control Implementation for a
Manufacturing System Using the BASE Architecture

A. Wasserman

Department of Mechanical and Mechatronic Engineering

Stellenbosch University
Private Bag X1, 7602 Matieland, South Africa

Thesis: M.Eng. (Mechatronic Engineering)

April 2022

With industry’s drive to adopt Industry 4.0 technologies, and their enabling
technologies, in manufacturing processes, intelligent automated manufacturing has
become largely sought after. With defining features such as robustness,
reconfigurability and scalability, the Holonic Manufacturing Execution System
(HMES) approach shows great potential to satisfy Industry 4.0 requirements.
Implementations of these systems have been historically known to require great
development effort and time. These implementations are however being aided by
the development of holonic reference architectures, such as the Product-Resource-
Order-Staff-Architecture (PROSA) and its recent revision the Activity-Resource-
Type-Instance (ARTI) architecture.

This thesis presents an ARTI-based HMES implementation. The implementation of
this system is aided through the use of the Biography-Attributes-Schedule-
Execution (BASE) architecture for digital administration shells. The BASE
architecture was initially developed as a framework for the development of a digital
administration shell for a human worker, in order to elevate the human worker to
the level of a Cyber-Physical System. It was however proposed that the BASE
architecture also had the potential to be used in a manufacturing context. The
possibility of implementing the ARTI-based HMES using the BASE architecture
for the respective ARTI holons is confirmed through a mapping of the ARTI
architecture to the BASE architecture.

The HMES is implemented on a Fischertechnik Industry 4.0 Training Factory, a
small-scale manufacturing system, as a case study system. The complexity of the
case study, which comprises several interacting subsystems, provides a good basis
for evaluating the ARTI and BASE architectures for HMES development. The

Stellenbosch University https://scholar.sun.ac.za

iii

thesis concludes that the ARTI architecture provides a well-defined structure for
the conceptual design of HMESs, while the BASE architecture effectively supports
the implementation of ARTI-based HMESs with little additional development
required.

Stellenbosch University https://scholar.sun.ac.za

iv

Uittreksel

ARTI-gebaseerde Holoniese Beheerimplementasie vir 'n
Vervaardigingstelsel met die Gebruik van die BASE-

Argitektuur

A. Wasserman

Departement van Meganiese en Megatroniese Ingenieurswese

Universiteit Stellenbosch
Privaatsak X1, 7602 Matieland, Suid-Afrika

Tesis: M.Ing. (Megatroniese Ingenieurswese)

April 2022

Met die industrie se strewe om Industrie 4.0-tegnologieë, en hul bemagtigende
tegnologieë, in vervaardigingsprosesse aan te neem, het intelligente
geoutomatiseerde vervaardiging grootliks gesog geword. Met kenmerke soos
robuustheid, herkonfigureerbaarheid en skaleerbaarheid, toon die Holonic
Manufacturing Execution System (HMES) benadering groot potensiaal om aan
Industrie 4.0 vereistes te voldoen. Dit is histories bekend dat die implementering
van hierdie stelsels groot ontwikkelingspogings en tyd verg. Hierdie
implementerings word egter aangehelp deur die ontwikkeling van holoniese
verwysingsargitekture, soos die Product-Resource-Order-Staff-Architecture
(PROSA) en die onlangse hersiening daarvan die Activity-Resource-Type-Instance
(ARTI) argitektuur.

Hierdie tesis bied 'n ARTI-gebaseerde HMES-implementering aan. Die
implementering van hierdie stelsel is aangehelp deur die gebruik van die
Biography-Attributes-Schedule-Execution (BASE) argitektuur vir digitale
administrasiedoppe. Die BASE argitektuur is aanvanklik ontwikkel as 'n raamwerk
vir die ontwikkeling van 'n digitale administrasiedop vir 'n menslike werker, om die
menslike werker tot die vlak van 'n Cyber-Physical System te verhef. Daar is egter
voorgestel dat die BASE argitektuur ook die potensiaal het om in 'n
vervaardigingskonteks gebruik te word. Die moontlikheid om die ARTI-gebaseerde
HMES te implementeer deur gebruik te maak van die BASE argitektuur vir die
onderskeie ARTI-holone, is bevestig deur 'n kartering van die ARTI argitektuur na
die BASE argitektuur.

Stellenbosch University https://scholar.sun.ac.za

v

Die HMES is geïmplementeer op 'n Fischertechnik Industry 4.0 Training Factory,
'n kleinskaalse vervaardigingstelsel, as 'n gevallestudiestelsel. Die kompleksiteit
van die gevallestudie, wat verskeie interaktiewe substelsels bevat, bied 'n goeie
basis vir die evaluering van die ARTI en BASE argitekture vir HMES-
ontwikkeling. Die tesis bevind dat die ARTI argitektuur 'n goed-gedefinieerde
struktuur vir die konseptuele ontwerp van ‘n HMES verskaf, terwyl die BASE
argitektuur die implementering van ‘n ARTI-gebaseerde HMES effektief
ondersteun, met min bykomende ontwikkeling wat nodig is.

Stellenbosch University https://scholar.sun.ac.za

vi

Acknowledgements

Firstly, I have to thank Dr. Karel Kruger and Prof. Anton Basson for the many hours
of sitting and conceptually discussing the details of the implementation in this thesis
and attempting to piece it all together. Thank you for asking the questions that
challenged my way of thinking about the problem at hand, and for guiding me to
find my own answers to questions that I couldn’t think of answering on my own. I
appreciate all of your time and effort that you have dedicated to ensuring that my
thesis is of the best possible quality.

Aan my Pa, baie dankie vir al jou ondersteuning deur die jare, en dat jy altyd in my
geglo het, veral wanneer ek moeg en moedeloos was en nie meer in myself geglo
het nie. Baie dankie vir al die finansiele ondersteuning deur my studies; ek weet dit
was lank, maar ek waardeur dit meer as wat jy weet. Aan my Ma, baie dankie vir
jou ondersteuning, liefde, en lang gesprekke waar ek probeer verduidelik wat ek
doen, en toevallig my werk beter leer ken in die process. Ek waardeur al die
kospakkies wat jy oor die jare by my kom aflewer het, dit het my deur ‘n hele paar
lang nagte gebring. Aan my broer Marco, dankie vir al die lang gesprekke waar ek
kla oor my werk, en dan na ‘n ruk gee jy my die beste raad: “Dis eenvoudig. Doen
dit net…” Ek waardeur al jou ondersteuning Marco.

Holly, thank you so much for your endless support. Thank you for listening when I
need to let it out, and for always trying to help me solve my problems. There was
more than once where your unique outlook solved a complex problem with a simple
solution. I appreciate everything that you have done for me, and I couldn’t have
done it without you.

Stellenbosch University https://scholar.sun.ac.za

vii

Table of Contents
 Page

List of Figures ... x

List of Tables ... xi

List of Abbreviations ... xiii

1 Introduction .. 1

1.1 Background .. 1

1.2 Objectives .. 3

1.3 Motivation ... 3

1.4 Methodology ... 5

2 Literature Review .. 6

2.1 State of Industry .. 6
2.1.1 Overview .. 6
2.1.2 Challenges .. 7
2.1.3 Enabling Technologies ... 8

2.2 Holonic Manufacturing Systems ... 9
2.2.1 Overview .. 9
2.2.2 Holonic Manufacturing Execution Systems 10
2.2.3 HMES Requirements .. 11
2.2.4 HMES Evaluation ... 12
2.2.5 HMES Reference Architectures ... 13

2.3 ARTI Holonic Reference Architecture .. 15
2.3.1 Overview .. 15
2.3.2 Holon Types ... 16
2.3.3 Intelligent Agents and Intelligent Beings................................... 17
2.3.4 Delegate Multi-Agent Systems .. 17
2.3.5 Implementations ... 18

2.4 BASE Architecture for Digital Administration Shells 18

2.5 Conclusion ... 21

3 Mapping the ARTI Architecture to the BASE Architecture 22

3.1 System Features and Functions .. 22

3.2 Communication ... 23

3.3 Discussion .. 24

4 Case Study Development ... 25

Stellenbosch University https://scholar.sun.ac.za

viii

4.1 Case Study Selection ... 25

4.2 Case Study Description .. 27
4.2.1 Hardware ... 27
4.2.2 Mini-Factory Stations .. 28
4.2.3 TXT Controllers .. 29
4.2.4 Gateway ... 30

4.3 HMES Requirements ... 30

4.4 Case Study HMES Architecture ... 31
4.4.1 Holon Identification ... 31
4.4.2 Holon Aggregation ... 37

5 ARTI-based HMES Implementation .. 39

5.1 BASE Architecture Version .. 39

5.2 Implementation Programming Language ... 39

5.3 Case Study System Low-Level Control .. 40

5.4 Scheduling ... 41

5.5 Communication ... 42
5.5.1 Inter-platform Communications.. 43
5.5.2 Inter-holon Communications .. 44
5.5.3 Intra-holon Communications .. 44

5.6 Plugin Development .. 45
5.6.1 Overview .. 45
5.6.2 Resource Type Plugins ... 45
5.6.3 Resource Instance Plugins ... 49
5.6.4 Activity Type Plugins .. 60
5.6.5 Activity Instance Plugins .. 63
5.6.6 Basic Resources ... 65

5.7 User Interface .. 66

5.8 Discussion .. 68

6 Case Study Evaluation ... 69

6.1 Evaluation Criteria ... 69

6.2 Experiments ... 70
6.2.1 Baseline Experiment and Evaluation ... 70
6.2.2 Reconfigurability Experiment and Evaluation 74
6.2.3 Robustness Testing and Evaluation ... 78

6.3 Discussion .. 79

7 Conclusions and Recommendations ... 81

8 References .. 83

Stellenbosch University https://scholar.sun.ac.za

ix

Appendix A Case Study ... 87

Appendix B MQTT Hardware Interface .. 91

Appendix C User Interface Functionalities ... 94

Appendix D Evaluation Metrics ... 95

Appendix E Experiment Results .. 98

Stellenbosch University https://scholar.sun.ac.za

x

List of Figures

 Page

Figure 1: BASE architecture showing the core and plugin components (Sparrow,
2021) ... 18

Figure 2: Reference architecture model for Industrie 4.0 (RAMI4.0)
"Umsetzungsstrategie Industrie 4.0 (Adolphs et al., 2015) 20

Figure 3: BASE to ARTI mapping of core components ... 22

Figure 4: Fischertechnik Industry 4.0 Training Factory .. 27

Figure 5: Simplified Default Order Process Steps .. 28

Figure 6: Case Study System Holarchy Structure ... 32

Figure 7: NEU Protocol ... 36

Figure 8: Parallel Production Paths .. 38

Figure 9: Generic Holon Plugin Modules ... 45

Figure 10: FSM State Diagram ... 55

Figure 11: RFP Process for Aggregated HMES ... 59

Figure 12: Factory Control Dashboard Screenshot (Image 1 of 2) 67

Figure 13: Factory Control Dashboard Screenshot (Image 2 of 2) 67

Figure 14: Default Mini-Factory Order Process Steps ... 88

Figure 15: Default Mini-Factory Delivery Process Steps .. 89

Stellenbosch University https://scholar.sun.ac.za

xi

List of Tables

 Page

Table 1: Commonly Identified HMES Requirements ... 11

Table 2: Relationships between requirements and performance measures
(Kruger & Basson, 2017) ... 13

Table 3: Case Study Requirements .. 26

Table 4: RI Services .. 35

Table 5: ARI Services .. 35

Table 6: Relationship Matrix between Requirements and Evaluation Metrics 69

Table 7: Experiment 1a Results.. 71

Table 8: Experiment 1a Resource Utilization ... 72

Table 9: Experiment 1b Results ... 72

Table 10: Experiment 1b Resource Utilization .. 73

Table 11: Experiment 2a Results.. 75

Table 12: Experiment 2a Resource Utilization ... 76

Table 13: Experiment 2b Results ... 77

Table 14: Experiment 2b Resource Utilization .. 77

Table 15: MPO MQTT Interface ... 91

Table 16: HBW MQTT Interface ... 91

Table 17: VGR MQTT Interface .. 92

Table 18: SLD MQTT Interface ... 93

Table 19: Evaluation Metric Descriptions .. 95

Table 20: Experiment 1a Order Results ... 98

Table 21: Experiment 1a Resource Utilization ... 98

Table 22: Experiment 1a CNP Durations .. 99

Table 23: Experiment 1b Order Results ... 99

Table 24: Experiment 1b Resource Utilization .. 99

Table 25: Experiment 1b CNP Durations ... 100

Table 26: Experiment 2a Order Results ... 100

Table 27: Experiment 2a Resource Utilization ... 101

Stellenbosch University https://scholar.sun.ac.za

xii

Table 28: Experiment 2a CNP Durations .. 101

Table 29: RI Attribute Updating ... 101

Table 30: Experiment 2b Order Results ... 102

Table 31: Experiment 2b Resource Utilization .. 102

Table 32: Experiment 2b CNP Durations ... 103

Table 33: Experiment 3 Test Results .. 103

Stellenbosch University https://scholar.sun.ac.za

xiii

List of Abbreviations

3SAL Three-Stage Activity Lifecycle

AAI Aggregate Activity Instance

AAT Aggregate Activity Type

ADACOR ADAptive holonic Control aRchitecture

AI Activity Instance

AP Analysis Plugin

API Application Programming Interface

ARI Aggregate Resource Instance

ART Aggregate Resource Type

ARTI Activity-Resource-Type-Instance

AT Activity Type

BASE Biography-Attributes-Schedule-Execution

BC Business Card

CM Communication Manager

CNP Contract Net Protocol

CPS Cyber Physical System

DMAS Delegate Multi-Agent System

DOHA Department of Holon Affairs

DSI Input Station

DSO Output Station

DT Digital Twin

EP Execution Plugin

FSM Finite State Machine

Stellenbosch University https://scholar.sun.ac.za

xiv

GPIO General Purpose Input Output

HBW High-Bay Warehouse

HMES Holonic Manufacturing Execution System

HMS Holonic Manufacturing System

HRH Human Resource Holon

IA Intelligent Agent

IB Intelligent Being

IoT Internet of Things

I4.0 Industry 4.0

MPO Multi-Processing Station

NEU Next-Execute-Update

NFC Near-Field Communication

PID Process Identifier

PKS Packaging Station

PLA Production Line Aggregate

PROSA Product-Resource-Order-Staff-Architecture

QoS Quality of Service

RAMI4.0 Reference Architecture Model for Industry 4.0

RFP Request for Proposal

RI Resource Instance

RP Reflection Plugin

RT Resource Type

SLD Sorting Line Station

SP Scheduling Plugin

UID Unique ID

Stellenbosch University https://scholar.sun.ac.za

xv

VGR Vacuum Gripper Robot

WOI World of Interest

WP Workpiece

Stellenbosch University https://scholar.sun.ac.za

1

1 Introduction
The background to this thesis is given in this introductory chapter, along with the
context wherein the research took place. The objectives are then discussed,
followed by the motivation for carrying out the research, and then finally the
methodology of how the research was conducted.

1.1 Background

With the Digital Revolution having reached its goal of the digitization and
automation of industry, the Fourth Industrial Revolution, known as Industry 4.0
(I4.0), has commenced with the goal of advancing these digital systems to become
‘smart’ systems. Since I4.0 intends to improve many industries by using a variety
of digital means, it relies on the rapid development and implementation of digital
systems. This is typically done by either refitting existing manufacturing systems
or by designing new manufacturing systems from the ground up to integrate I4.0
principles and technologies. For this to be done, two things need to be known first:
what exactly an Industry 4.0 system should be capable of, and how would these
systems be deployed on a large scale. The first question has been comprehensively
detailed by the Deutsche Kommission Elektrotechnik in their paper titled: German
Standardization Roadmap for Industry 4.0 (Adolph, Anlahr, Bedenbender, et al.,
2016). The second question is currently being worked on by multiple researchers
around the world; creating frameworks and architectures for the standardization of
I4.0 systems.

I4.0 is being implemented through the use of various new and older enabling
technologies, one of which are Cyber Physical Systems (CPS). “CPSs are
automated systems that enable connection of the operations of the physical reality
with computing and communication infrastructures” (Bigliardi, et al. 2020). In
essence, these are systems that can link the physical world with the digital world,
in order for the physical system to benefit from the enhanced information that it can
receive from the digital system, and vice-versa. Ideally, a CPS would be created in
such a way that the digital and physical systems are in a symbiotic relationship,
where each one benefits the other.

An example of a CPS is the notion of a Digital Twin (DT). A DT is a digital
representation of a physical entity in cyber space, with which it has bidirectional
communication. The physical twin would typically contain sufficient sensors to
fully represent its state in the digital world. Bidirectional communication allows the
DT to create detailed models and/or simulations of the physical twin using the data
from these sensors. The DT could then analyse this modelled/simulated data for use
in an advanced control system for the physical twin. With the use of various
computational techniques on the collected data, these DT systems could become
invaluable in industry (Jones, Snider, Nassehi, et al., 2020).

Stellenbosch University https://scholar.sun.ac.za

2

Alongside I4.0 and its enabling technologies, the development of Holonic
Manufacturing Systems (HMSs) has been rapidly advancing. They have also been
seeing increasing deployment since the pinnacle of the Digital Revolution. A HMS
is a “highly distributed control paradigm” (Van Brussel, Wyns, Valckenaers, et al.,
1998) that consists of a system of holons that work together to accomplish tasks
within a manufacturing system. In the context of this research, a holon refers to a
self-contained component of a system that is autonomous in itself, but cooperates
with other holons in order to execute tasks to achieve a common goal (Kruger &
Basson, 2017). Together this system of holons is called a holarchy, with each holon
cooperating to form a network of functionalities and behaviours that can carry out
complex manufacturing and control tasks (Kruger & Basson, 2018).

Closely related to HMSs are Holonic Manufacturing Execution Systems (HMESs).
HMSs are regularly confused with HMESs and often the terms are used
interchangeably. “The wording manufacturing control commonly denotes the task
performed by a manufacturing execution system” (Valckenaers & Van Brussel,
2005). HMESs are essentially the high-level control systems used for the control of
process control systems. This can include tasks such as product route planning,
process step execution, process scheduling and reactive response to system
changes. In this thesis, the term HMES will be used for these types of systems.

HMESs offer many advantages, but the biggest advantages of such systems are:
they are relatively easily reconfigurable in order to adapt to changing manufacturing
cycles; they are robust in design, still functioning if one or multiple holons fail; and
they offer reduced software development costs as system complexity is reduced.

Research in this field has made the development and implementation of HMESs
more accessible due to the creation of holonic reference frameworks for
manufacturing systems. Two of the most influential frameworks are the Product-
Resource-Order-Staff-Architecture (PROSA) (Van Brussel et al., 1998), and the
Activity-Resource-Type-Instance (ARTI) architecture (Valckenaers, 2020).
Essentially, PROSA splits the HMES into four holons with differing functionalities:
Resource, Product, Order, and Staff holons. ARTI is an improvement on PROSA,
which also splits the HMES into four holons: Activity Type and Activity Instance
holons, and Resource Type and Resource Instance holons. The largest changes,
besides the holon types, are that the ARTI architecture has improved upon the
terminology of PROSA in order to make the architecture more accessible and
applicable within different industries.

Closely related to the ARTI framework is the Biography-Attributes-Schedule-
Execution (BASE) architecture (Sparrow, Kruger & Basson, 2021). In Sparrow’s
paper (Sparrow et al., 2021) an architecture for a digital administration shell is
developed, for use in a Human Resource Holon (HRH). The BASE architecture
splits the holon into four core components: Biography, Attributes, Schedule, and
Execution components. Upon inspection, close relations can be seen between the
BASE architecture and the ARTI reference framework, indicating that the BASE

Stellenbosch University https://scholar.sun.ac.za

3

architecture could potentially be used in an implementation of the ARTI reference
architecture for an HMES. In literature there are very few implementations of the
ARTI reference framework, especially for the development of an HMES, making
research in this field worthwhile. This thesis thus aims to develop an ARTI-based
HMES implementation for a case study system, using the BASE architecture for
the development of the respective holons.

1.2 Objectives

The objectives of this thesis are:

• The development of an ARTI-based HMES implementation for a case study
system and the evaluation thereof.

• The demonstration and evaluation of the BASE architecture’s suitability for
use in a manufacturing environment through the implementation of an
ARTI-based HMES using the BASE architecture as a development building
block.

• To evaluate to what extent the ARTI and BASE architectures assist
developers with the development of HMESs.

The scope of the thesis is limited to the development of the HMES for the case
study system and the evaluation thereof and does not include further development
of the BASE architecture, ARTI architecture or development of case study system
features that are not essential for evaluation.

1.3 Motivation

With a variety of well-established manufacturing control paradigms available for
use, such as hierarchical manufacturing execution systems, heterarchical
manufacturing systems and HMESs, it was decided to research holonic systems due
to their wide range of functionalities and advantages.

Due to the nature of a holonic control system having distributed control, the system
is very resilient to disturbances, as well as adaptable in response to issues within
the system (Kruger & Basson, 2017). Another advantage of the distributed nature
of holonic systems is that they are easily scalable as the communication network
between holons could easily allow for more holons to be added to the system.
Holonic control systems, such as HMESs, also have a reduced system complexity
when compared to other types of control, as their functionalities are carefully split
into different holons with strict communication protocols between them. Complex
systems can thus be broken down into many simpler parts, which reduces the
development complexity. This reduced complexity leads to reduced software
development costs, improved maintainability, and improved reliability.

Stellenbosch University https://scholar.sun.ac.za

4

Additionally, another advantage of holonic control systems is that holons are by
definition autonomous, meaning that it would be possible to create a holonic control
system on several different platforms and networks, so long as the communication
protocol used between the holons is universal. This once again leads to lower
development costs, improved compatibility, as well as allowing these holonic
control systems to be implemented within pre-existing manufacturing systems that
use different platforms for different devices.

Using an existing architecture for the implementation of an HMES is advantageous
as it reduces the complexity and cost of software development. It also ensures that
all required functionalities are present within the completed system by guiding the
developer through the theoretical system design. For these reasons it was decided
to use an architecture for the implementation of a HMES.

The ARTI reference architecture is a new architecture built on mature concepts,
with great potential for large-scale market adoption. Having learnt lessons from the
PROSA architecture, which was very influential, ARTI was developed with the
intention of improving the language used in the terminology in order to make the
architecture more universal for use in other industries, besides manufacturing.
There also exist few real-world implementations of the ARTI architecture, which
would make a case study implementation thereof valuable research. Considering
that ARTI is a relatively new architecture, with few implementations, it would also
be of value to determine to what extent the ARTI architecture assists with the
development of a holonic system.

The BASE architecture was developed to be a modular, vendor neutral, adaptable
and generic architecture which fulfils all of the roles of a resource holon (Sparrow
et al., 2021). The architecture is easily scalable as it is based on holonic systems
principals, meaning that multiple digital administration shells, implemented as
holons, could form an HMES. Its original intended use was as a digital
administration shell for a Human Resource Holon (HRH) in a CPS, but it is believed
that the BASE architecture could be used for other entities and processes in the
manufacturing industry, and that it could form the basis for all holons in an ARTI
HMES implementation. BASE is a generic architecture, which allows for
customization and optimization plugin components. This also allows for the
architecture to be further developed in any language and implemented on any, and
multiple, platforms. The BASE architecture has many value-adding features and
strong advantages, which motivates that it would be beneficial to investigate
whether or not it would be a suitable architecture for the basis of the development
of an HMES.

Overall, it would be of great value to obtain quantifiable metrics with which the
effect on development of using the ARTI and BASE architectures for the
implementation of HMESs can be measured. The case study in this thesis would
provide a good testbed with which these metrics could be obtained.

Stellenbosch University https://scholar.sun.ac.za

5

1.4 Methodology

This section provides a discussion on the methodology used during this thesis,
which covers key decisions made regarding approach, implementation, and
evaluation. Before any system development could take place, it was necessary to
first conduct a literature review to examine what reference architectures exist in
literature and how they relate to each other, and then also to see what, if any,
implementations of these architectures exist. This information was used to assist
with the decision of choosing the ARTI architecture for implementation, as well as
using the BASE architecture for the implementation thereof. These
implementations from literature, as well as supplementary literature, were
investigated to ascertain what criteria is commonly used in the testing and
evaluation of HMESs.

The second step followed for this research was to investigate whether it would be
feasible to use the BASE architecture for an ARTI implementation and whether
BASE would be suitable for the manufacturing environment. This was done
through mapping the BASE architecture to the ARTI reference architecture. This
entailed comparing the structure and functionalities of the BASE architecture to
those of the ARTI framework and determining if BASE was capable of performing
these functions, or if BASE would need to be modified. This comparison served as
a basis to make a well-informed decision on whether or not it would be feasible to
use the BASE architecture for an ARTI-based HMES implementation.

The third step was making the decision, and motivating the decision, to use a case
study approach, which would allow for meaningful results for the objectives of this
thesis. It was then necessary to select and define a case study system. This involved
selecting a case study system and investigating its system components and
functionalities, in order to ensure that the system would provide an accurate
reflection of what real-life systems might be like. A systems design approach was
then followed to develop the system architecture for the case study, while following
the ARTI architecture for holon design. This involved the development of system
requirements and the development of the system holarchy with functions and
features dedicated to their respective holons. After the system architecture was
developed it was necessary to implement the case study system using BASE as a
basis for the development of all the respective holons.

Once the system had been implemented it had to be thoroughly evaluated. In order
for the evaluation to have value, suitable evaluation criteria were formulated. This
evaluation criteria had to evaluate all aspects related to the system requirements in
order to provide scientifically meaningful results. It was also of importance to select
evaluation criteria that were not only qualitative, but also quantitative. This would
allow for the degree to which the thesis objectives are met to be quantified in a
meaningful manner. From these evaluation criteria, a set of experiments were
designed to test the case study system to evaluate it. This methodology is based-on
previous work from literature, which had similar objectives.

Stellenbosch University https://scholar.sun.ac.za

6

2 Literature Review
For the purpose of gaining insight into the process of developing an HMES
implementation, the current state of industry, holonic systems, and reference
architectures are investigated in this chapter through a literature-based review. In
Section 2.1 an overview of the manufacturing industry’s current state is given,
including technologies that are currently in use in industry. Section 2.2 covers
holonic manufacturing and its adoption in industry. This includes HMESs, HMES
evaluations and holonic reference architectures. Section 2.3 looks at the ARTI
reference architecture, and Section 2.4 looks at the BASE architecture. Finally,
conclusions will be drawn from the literature review in Section 2.5.

2.1 State of Industry

2.1.1 Overview

The world has undergone three industrial revolutions and is currently undergoing
the fourth industrial revolution. The first industrial revolution period was marked
with the evolution of water and steam-powered mechanical production plants, and
the second was the period of major technological innovations such as electricity and
electronic mechanisms and was also a “period when industrial plants burgeoned
both in volume and variety” (Yin, Stecke & Li, 2018). The third industrial
revolution, which is still ongoing in some respects, has been about the use of
electronics and Information Technologies in production. Automation and
digitization within the Third Industrial Revolution paved the way for the kick-off
of I4.0 (Bigliardi et al., 2020).

The first concrete concept of I4.0 materialized in the paper German Standardization
Roadmap for Industry 4.0 (Adolph et al., 2016). This paper introduced the notion
of a “digitally integrated industry” (Galati & Bigliardi, 2019) where digital systems
that were incorporated into physical systems from the third Industrial Revolution
are superseded by more ‘intelligent’ systems which are capable of communicating
with other systems as well as the outside world, connected to many different
services such as data analytics and advanced control systems, in order to enable
these systems to become ‘smart’ so as to increase their capabilities. This would be
accomplished through the use of various enabling technologies, which will be
discussed in section 2.1.3, but the main goals were: to improve efficiency in
production; improve quality; increase output; reduce costs; and to optimize value
chains (Galati & Bigliardi, 2019).

I4.0 has been a widely researched topic since its inception, which has led to the
continuing development of I4.0 enabling technologies. Some of these enabling
technologies include: the Internet of Things (IoT), Big Data Analytics, Cloud-
Computing, Internet of Service, Augmented Reality, Cyber-Physical Systems
(CPSs), Holonics and advanced Simulation and Modelling (Bigliardi et al., 2020).

Stellenbosch University https://scholar.sun.ac.za

7

In many cases, multiple of these enabling technologies would need to be integrated
together in order to make up the functionality needed to implement an I4.0 system,
which has made the development of I4.0 systems challenging. This has led to an
increase in research towards developing reference architectures for I4.0 systems,
which would help with the implementation of mixed technology systems. One of
the most notable such architectures is the Reference Architecture Model for
Industry 4.0 (RAMI4.0) (Adolphs, Bebenbender, Dirzus, et al., 2015).

2.1.2 Challenges

The development of I4.0 systems has been greatly hindered by high development
difficulties (Leitão, Colombo & Karnouskos, 2016; McKinsey Digital, 2016; Raj,
Dwivedi, Sharma, et al., 2020; Schuh, Anderl, Gausemeier, et al., 2017); however,
architectures have greatly reduced this associated difficulty. There are however still
many other significant barriers to entry. As noted in Industrie 4.0 Maturity Index
(Schuh, Anderl, Gausemeier, et al., 2017), one of the major obstacles to the
introduction of I4.0 to many enterprises, especially SMEs, is that of companies not
fully comprehending the benefits of I4.0 technologies. Schuh et al., (2017) goes on
to say that, in 2017, I4.0 “would appear to be a long way off in the industrial sector.”
They also mention that most of the I4.0 systems that were implemented at that time
were technological feasibility studies, where enterprises were testing to see whether
I4.0 technologies could indeed aid their processes. These studies often resulted in
unfavourable results as vital parts of the implementation of I4.0 were overlooked,
such as the enterprise’s organisational structure and culture towards new
technology (Schuh et al., 2017).

Raj, Dwivedi, Sharma, et al. (2020) revealed through a survey that enterprise CEOs
are still not confident in their firm’s abilities to introduce I4.0 technologies. In a
differing, but also somewhat similar view, Bigliardi et al. (2020) suggests that the
research of I4.0 might be nearing the point of maturation. This, however, indicates
that I4.0 has not yet reached the required maturity for the mass adoption of I4.0
technologies within industry. In terms of making actual progress in the
implementation of I4.0 technologies, a survey from 2016 found that up to 40% of
surveyed companies made very little progress in the previous year (McKinsey
Digital, 2016). It is suggested that this is due to various development difficulties,
such as development time and cost (McKinsey Digital, 2016; Raj et al., 2020; Schuh
et al., 2017). This did, however, vary significantly by region, which might suggest
that there are other economical and/or socio-political factors involved. Even though
the adoption of I4.0 technologies has increased in the past few years, it can be seen
that there are still significant barriers limiting enterprises from taking full advantage
of I4.0.

I4.0 enabling technologies are generally well developed and matured technologies,
but when they need to be used in conjunction with one another, and then integrated
with people, problems and difficulties arise. Raj et al. (2020) mentioned that some
of the major factors that limit I4.0 from being adopted broadly are high

Stellenbosch University https://scholar.sun.ac.za

8

implementation and development costs, fears of data security, low standardization
between I4.0 technologies, poor understanding of I4.0 advantages and applications,
a lack of a skilled workforce that can work with the I4.0 technologies and also fears
of these technologies causing jobs to be lost. As previously discussed, Schuh et al.,
(2017) also suggested that the organizational structure of an enterprise, as well as
people’s attitudes towards new technologies have been a large limiting factor.
McKinsey Digital (2016) stated that, in addition to the previously mentioned
barriers, there are large concerns about data ownership when using third-party
hardware/software, there is an uncertainty about the opportunities available to
enterprises to implement I4.0, and that there are large complications with the
integration of data acquired from different sources to be used together for I4.0
applications.

2.1.3 Enabling Technologies

The concept of HMSs has been a popular field of study since the early 1990’s for
a variety of reasons, but primarily due to the abundance of advantages to the use of
holonic systems for manufacturing control (Kruger & Basson, 2018). A HMS’s
holons work together to accomplish a common goal/task within a manufacturing
system, much like machines on a manufacturing shop-floor. Holons can be seen as
“any component of a complex system that, even when contributing to the function
of the system as a whole, demonstrates autonomous, stable and self-contained
behaviour or function” (Paolucci & Sacile, 2005). Although the holons work
together, they are individually autonomous and possess the ability to carry out
multiple functions or behaviours. Due to the nature of holonic systems relying
heavily on digital communication and cooperation, and their popularity in the
manufacturing industry, they are considered a key I4.0 enabling technology. HMSs
and their reference architectures are further investigated in section 2.2. Closely
related to HMSs, and another key I4.0 enabling technology are CPSs.

Lee et al., (2015) define a CPS as a set of technologies that manage communication
and connection between a physical entity and its computational capabilities. It goes
on to describe that CPSs are one of the leading enabling technologies of I4.0 as, if
they are implemented correctly, they can provide immense value and information
using existing networks, sensors, and computational capabilities to leverage Big
Data to transform production industries into I4.0 facilities with great potential (Lee
et al., 2015).

A DT is very closely related to a CPS. First introduced in the paper Digital Twin:
Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems
(Grieves & Vickers, 2017), DTs are close relatives of CPSs in that they possess all
attributes of CPSs and then also have a few added functionalities. Where a CPS
would simply be the system of communication and interaction between a physical
entity and computational capabilities, a DT takes that further in that a DT receives
data from the physical entity (the physical twin) and then, using various
computational means, it turns this data into valuable information. DTs typically

Stellenbosch University https://scholar.sun.ac.za

9

provide real-time modelling of the physical twin, as well as potentially provide
data-driven simulations of future states of the physical twin. This information can
then either be used for control purposes or used for further data analytics. Jones et
al. (2020) corroborate this definition of a DT by going on to define a DT as
“consisting of three components, a physical product, a virtual representation of that
product, and the bi-directional data connections that feed data from the physical to
the virtual representation, and information and processes from the virtual
representation to the physical”. The DT has been described as a multi-role, hugely
versatile technology as it can be developed to carry out many functions. In Jones et
al.’s (2020) paper a large number of these possible benefits that DTs bring to
industry are listed. Some of these include: “reducing costs, risk and design time,
complexity and reconfiguration time; improving after-sales service, efficiency,
maintenance decision making, security, safety and reliability, manufacturing
management, processes and tools; [and] enhancing flexibility and competitiveness
of manufacturing system[s]”.

The development of DTs is possibly one of the largest barriers to their widespread
adoption. As described in both Zheng & Sivabalan (2020) and Redelinghuys et
al.’s (2019) papers, the development of DTs typically relies on developers
separating the required functionalities of the DT into separate ‘layers’ in which each
layer characteristically addresses one critical function. These layers then
communicate and interact with one another, passing data and information back and
forth, in order to realise the full capabilities of the DT. This makes development
easier as only one layer needs to be focused upon at a time.

2.2 Holonic Manufacturing Systems

Considering the large role that HMSs have played in manufacturing, and the large
role they are expected to play in the future of manufacturing, this section will
investigate them further.

2.2.1 Overview

HMSs have attempted to bridge the gap between automated manufacturing systems
and smart manufacturing systems. Researchers have concentrated on addressing the
problem of manufacturing control for many years, and HMSs partly address this
problem. In the paper Industry 4.0: contributions of holonic manufacturing control
architectures and future challenges, Derigent, et al. (2020) detail a range of key
enablers for I4.0, namely: sustainability, secure communication, real-time
capabilities, process virtualisation, service orientation, interoperability,
adaptability, data analysis, autonomous and decentralized decision support systems
and connectivity. HMSs satisfy many of these key enablers; “autonomous and
decentralized decision support systems” is satisfied by a holon’s ability for making
its own decisions as well as its ability to be autonomous; “adaptability” is directly
satisfied by a holon’s need to be adaptable to its surrounding environment; “real-
time capabilities” is satisfied by a holon being reactive and adapting to changes in

Stellenbosch University https://scholar.sun.ac.za

10

the system and its environment; and “connectivity” is satisfied by a holon’s ability
to cooperate with other holons in the system in order to complete a goal. The fact
that these key enablers, amongst others, are satisfied by holonic systems shows that
HMSs are a key I4.0 enabling technology and could play a large role in the future
of the manufacturing industry. Due to this value of HMSs, researchers have
developed multiple reference architectures for HMSs in order to reduce the
difficulty of implementing these systems.

2.2.2 Holonic Manufacturing Execution Systems

HMESs differ from HMSs in that HMS refers to the entire holonic system,
including software and hardware, whereas HMES refers to the software that
manages the execution of the hardware. Valckenaers (2020) likened an HMES to a
computer operating system, as the operating system manages and controls the
execution of programmes on a computer’s hardware, so does an HMES control the
execution of tasks in a factory. The term HMS is however often used
interchangeably with HMES in literature. HMESs ensure that certain process plans
are executed correctly and timeously. This is done by managing manufacturing
resources’ workloads and schedules, which allows for the planning of product
routing through production lines as well as the prediction of lead times. Execution
control also comprises of the handling of process outcomes, whether those are
successes or failures (Valckenaers & Van Brussel, 2005).

The concept of HMESs has been a popular field of research for a variety of reasons,
but primarily due to the abundance of advantages to the use of holonic systems for
manufacturing control. Some of these advantages are: HMESs organise production
tasks in such a manner that they become scalable and robust, still functioning if
holons fail (Kotak, Wu, Fleetwood, et al., 2003); the organization of HMES
holarchies promote lower system complexity, improved maintainability and
reliability, which leads to reduced development costs (Scholz-Reiter & Freitag,
2007); and HMESs are resilient to system faults and errors, as they are highly
adaptable to system disturbances (Vyatkin, 2015). The biggest advantage of
HMESs is, however, that they are relatively easily reconfigurable to a changing
manufacturing cycle, as they are modular in nature, allowing for only certain
components to be changed while not affecting the others. One major disadvantage
to using HMESs, however, is that they require a larger computational effort than
traditional centralized manufacturing control systems (Valckenaers & Van Brussel,
2005).

Although there have only been a few successful implementations of HMESs in
industry (Almeida, Terra, Dias, et al., 2010), there have been many successful
HMES implementations in research literature. Many of these successful
implementations followed a common methodology for the development of their
systems: first the facilitation of communications was developed and implemented,
including inter and intra-holon communications; and then the individual holon
functional components were identified and implemented. The majority of these

Stellenbosch University https://scholar.sun.ac.za

11

implementations were done using the Multi-Agent System approach using either
the Java Agent Development framework, the object orientated approach using C#,
and more recently an approach using Erlang (Kruger & Basson, 2017; Leitão &
Restivo, 2008).

2.2.3 HMES Requirements

The requirements for a HMES are largely dependent on the specific use case of the
system and are thus fairly broad. There are however certain requirements which are
commonly found in literature, where HMES implementations were developed.
These identified common requirements could be seen as the fundamental
requirements of an HMES and are shown in Table 1.

Table 1: Commonly Identified HMES Requirements

Requirement Description References

Reconfigurability Handle additions/removals/changes
of hardware or software to/from the
HMES. This would lead to the
minimization of system down-time.
This can also include maintenance-
related system modifications.

(Bi, Lang, Shen, et
al., 2008; Kruger &
Basson, 2019; Leitão
& Restivo, 2008)

Robustness Handle unplanned system
disturbances, such as faults or
errors. The goal is for the system to
remain available for production.

(Kruger & Basson,
2019; Leitão &
Restivo, 2008)

Reactive React and respond timeously to
system inputs, unexpected
disruptions, faults, and errors.

(Giret & Botti, 2006;
Kruger & Basson,
2019; Leitão &
Restivo, 2008)

Intelligence Acquire information from
surroundings and convert this
information into data which can be
acted upon.

(Giret & Botti, 2006;
Kruger & Basson,
2019; Leitão &
Restivo, 2008)

Autonomous Operate without user interventions,
and capability for products to drive
their own production.

(Giret & Botti, 2005;
Kruger & Basson,
2017)

Collaborative Communicate and collaborate with
other elements of the system to
perform certain tasks.

(Giret & Botti, 2006;
Kruger & Basson,
2019)

Stellenbosch University https://scholar.sun.ac.za

12

2.2.4 HMES Evaluation

The evaluation of HMESs is a complex and highly subjective matter as each HMES
differs from others, with different goals, functionalities, and emphasis on different
performance metrics. It was however found that there were performance metrics
that were common to many implementations. The most common performance
metric that was measured during the evaluation of HMESs was that of throughput
(Kruger & Basson, 2017; Leitão & Restivo, 2008; Valckenaers & Van Brussel,
2005). This metric measured the number of products that the HMES could produce
per specified time period. This is a highly universal metric as most HMES
implementations have the common goal of producing a certain product in the
shortest duration possible, and it is also a highly valuable metric, as throughput is
the primary goal of the factory. Other metrics that were found to be commonly
measured, and that are closely related to throughput, are lead times and resource
utilization rates (Kruger & Basson, 2017; Leitão & Restivo, 2008; Valckenaers &
Van Brussel, 2005).

Kruger and Basson (2019) compiled an extensive list of evaluation criteria from
literature for holonic control implementations in manufacturing systems, which
identifies the most important characteristics, requirements, evaluation criteria and
performance measures from literature. A summary of the relationship between these
performance metrics and characteristics is shown in Table 2. These performance
measures were selected as metrics that could be measured in the evaluation of an
HMES, that could then be used to quantify the extent to which the HMES
requirements are satisfied.

Kruger and Basson (2019) also specify that for these performance measures to
provide the greatest value, it is necessary that the measures be used on similar
HMES implementations. These could be the same system at different stages of the
implementation, or with slight changes in configuration, or it could be two similar
systems that were implemented in a different manner. The quantitative results that
can be obtained from these performance measures can offer greater value than
qualitative and subjective measures, as they are verifiable, and often repeatable
(Kruger & Basson, 2019).

Stellenbosch University https://scholar.sun.ac.za

13

Table 2: Relationships between requirements and performance measures
(Kruger & Basson, 2017)

 Characteristics

Availability
Supportability

Development Productivity
 Requirements

 Re
co

nf
ig

ur
ab

ili
ty

Ro
bu

st
ne

ss

M
ai

nt
ai

na
bi

lit
y

Co
nt

ro
lle

r
Re

qu
ire

m
en

ts

Co
m

pl
ex

ity

Ve
rif

ic
at

io
n

Re
us

ab
ili

ty

Pe
rf

or
m

an
ce

 M
ea

su
re

s

Q
ua

nt
ita

tiv
e

Reconfiguration Time * * * *
Development Time * * *
Code Complexity * *
Code Extension Rate * * *
Code Re-use Rate * * * *
Computational
Resource
Requirements

*

Q
ua

lit
at

iv
e

Modularity * * * *
Integrability * *
Diagnosability * * * *
Convertibility * *
Fault Tolerance *
Distributability *
Developer Training
Requirements

*

* *

2.2.5 HMES Reference Architectures

2.2.5.1 Overview

An HMES reference architecture is a basis from which HMESs can be developed.
Using an architecture for development negates the process of deciding which
technologies should be used, which standards should be followed and how the
backbone of the HMES should be implemented. These choices for technologies and
protocols have already been researched and validated for use in the architecture
implementations, which leads to the biggest benefit of these architectures; that of
potentially greatly reducing the development time of the systems. Another benefit
is that of reusability; one architecture could be used to develop multiple systems for
varying use cases and applications. These reference architectures refer

Stellenbosch University https://scholar.sun.ac.za

14

predominantly to software architectures; however, these architectures also
encompass all necessary systems for the function of holonic systems. This includes,
but is not limited to, communication, data, and information architectural elements.

Since HMESs can be applied to a wide variety of use cases and scenarios, reference
architectures are forced to either be highly generic, or highly context specific. A
highly generic reference architecture requires more development for an
implementation than a context-specific one but is also applicable to more
implementations. HMES reference architectures often also define certain protocols
that need to be used with the implementation, which for some implementations,
might not be feasible. Consequently, it is of great importance that, if a reference
architecture is used for the implementation of a HMES, the best possible reference
architecture for that implementation be chosen. Some of the most influential HMES
reference architectures are discussed in the next section.

2.2.5.2 ADACOR

The ADAptive holonic COntrol aRchitecture (ADACOR) for distributed
manufacturing systems (Leitão & Restivo, 2006) was developed out of a need for
manufacturing control systems to be designed and implemented with the capability
for adaption and evolution. ADACOR was designed to improve performance of
manufacturing systems in terms of agile reactions to system disturbances and
change, and it was also designed to be a flexible and adaptive manufacturing
execution system. ADACOR shares many of the previously discussed generic
HMES characteristics, such as being autonomous, collaborative, robust, and
scalable.

The ADACOR architecture is comprised of four manufacturing holon classes:
product, task, operational and supervisor holon classes; with the product, task and
operational holons being similar to the PROSA (Van Brussel et al., 1998) product,
order and resource holons, respectively. The supervisor holons are responsible for
the creation and management of the hierarchy of the system, in order to coordinate
and optimise the HMES. The product holons exist for each product that the HMES
is capable of producing, and each product holon is responsible for the management
and process planning for that product. Task holons represent individual production
orders, in likeness to an instance of a product holon. This holon contains all
information relevant to that specific order and is responsible for the management of
the order’s execution. Operational holons represent the physical resource hardware,
and manage the resources’ operations in order to fulfil the goals of the task holons.

ADACOR’s main advantages are that of being well suited to dealing with
manufacturing problems in a distributed manner, and that of being comprised of
holons that make it possible to “add a new element without the need to re-initialize
and re-programme the system”, leading to good system reconfigurability (Leitão &
Restivo, 2006).

Stellenbosch University https://scholar.sun.ac.za

15

2.2.5.3 PROSA

As briefly mentioned previously, the PROSA architecture consists out of four types
of holons: Product, Resource, Order, and Staff holons. The Product holons represent
all the different classes of products that the HMES is capable of producing. They
are responsible for holding the process plans and product knowledge necessary for
producing the specific product and offer this knowledge to surrounding holons as a
service. Order holons are then essentially single instances of the production of one
of these products, as they represent an order placed within the system. They can
also represent any other task in the manufacturing system, such as maintenance
related activities or other production related activities. Resource holons represent
the physical hardware of the resource in the manufacturing system. They are
responsible for managing and processing all information regarding their specific
resource and are responsible for offering the resource’s service to surrounding
holons in the HMES. Staff holons assist other holons in completing their work and
operate in an advisory role. The staff holon can provide advice on a certain matter,
by providing information or functionality, but the other holon is still responsible for
making the decisions.

PROSA enables easy reconfiguration through having a “high degree of self-
similarity,” meaning that many holons in the system are highly similar to each other,
and can thus easily be reproduced or changed in reconfiguration (Van Brussel et
al., 1998). PROSA handles aggregation by structuring the holons in a dynamic
hierarchy, which in turn leads to dynamic aggregation. Thus, aggregated holons are
clustered together to form an aggregate holon with its own identity, which in turn
creates an aggregate hierarchy, which is also open to aggregation within itself. This
way, highly complex systems with interactions between a large number of low-level
holons that can be difficult to control can be simplified into less complex, and more
manageable systems. PROSA does not dictate the number of hierarchical levels and
are thus dependant on the specific implementation.

A revision was made to the PROSA reference architecture which mainly addressed
the terminology used. PROSA was created with the intention of the architecture
being used in the manufacturing industry, but it was soon found that there was a
high interest in using the architecture in other domains. The revision avoids using
manufacturing-specific wordings and has more symmetry in its structure. This
revision was named the Activity Resource Type Instance (ARTI) architecture
(Valckenaers & Van Brussel, 2020).

2.3 ARTI Holonic Reference Architecture

2.3.1 Overview

The ARTI reference architecture was developed as update to the PROSA reference
architecture, addressing some required refinements. The major refinement was the
terminology used, as PROSA’s terminology was manufacturing-specific, and

Stellenbosch University https://scholar.sun.ac.za

16

difficult to apply to neighbouring fields (Valckenaers & Van Brussel, 2020). The
ARTI reference architecture is intended to be used in many different holonic use-
cases, not just in manufacturing systems, so it was designed to have universal
terminology and functionality. ARTI does however preserve the aggregation and
specialization from PROSA.

2.3.2 Holon Types

As mentioned before, the ARTI reference architecture consists of four different
types of holons: Resource Type and Instance holons, as well as Activity Type and
Instance holons. These four holons are then each sub-divided into decision making
and reality reflection components: Intelligent Agents (IAs) and Intelligent Beings
(IBs), respectively.

Activity Type (AT) holons refer to holons that represent a class of an activity. The
holon has the activity-related knowledge that would be common amongst all
instances of that particular activity such as process plans, material requirements,
expected activity time etc., but it does not contain instance specific information,
such as the instance’s current state values or its activity progress. An example given
by Valckenaers & Van Brussel (2015) is that an AT would be similar to a person
who is an expert in his field. Each different type of activity within a holonic system,
including process activities, maintenance, transport, worker activities etc. would
have its own AT holon, and this holon would communicate with the Activity
Instance holons in order to complete an activity. The AT holons would be likened
to Staff holons in PROSA.

Activity Instance (AI) holons are then holons that represent the real-world activity
taking place and are likened to Order holons in the PROSA architecture. These AIs
contain the current state information specific to that instance of the activity’s
execution only, as well as the activity’s history, and rely on their ATs for the
information that is generic to the activity. AIs also manage the execution of their
real-world activity, which includes resource selection and management of schedule
bookings with the resource. An example used is that AIs are similar to managers in
how they operate. These AIs would exist for every instance of a real-world activity,
whether it is production related, maintenance related, or worker related. AIs are
known to be decision-intensive and have significant responsibilities.

Resource Type (RT) holons are similar to AT holons in that they represent a class
of a certain type of resource. The holon has the resource-related knowledge that
would be common amongst all instances of that particular resource, such as
capabilities, dimensions, maintenance needs etc. but it does not contain instance
specific information, such as the resource instance’s current state values or
schedule. In practice, all different types of physical resources, such as transport,
materials, machinery, workers, infrastructure etc. would need RT holons. RT holons
communicate with AT holons in order to see whether or not the real-world resource

Stellenbosch University https://scholar.sun.ac.za

17

would be able to complete the given activity. They would also communicate as to
how this activity would take place.

Resource Instance (RI) holons represent real-world instances of resources. As with
AI holons, they contain the current state information specific to that instance of the
resource’s execution only, as well as the resource’s history, and rely on their RTs
for the information that is generic to the resource. RIs also manage the operation of
their real-world resource, which includes, but is not limited to, topological
information collection, state tracking, management of schedule bookings with the
activity etc. Similar to AIs, the RIs are also decision-intensive components with
large responsibilities.

2.3.3 Intelligent Agents and Intelligent Beings

IBs are seen as the reality-reflecting components of a holon, using either sensors,
models, or other types of inputs to mirror the reality of their World of Interest
(WOI), and can be seen as DTs of the hardware resource. IAs, on the other hand,
are seen as the components of a holon that are responsible for decision making using
a variety of methods, including computationally simple (such as first-come, first-
served) principles, or more computationally complex methods (such as complex
scheduling algorithms or even machine learning algorithms in some cases).

2.3.4 Delegate Multi-Agent Systems

Within ARTI there is the option of using Delegate Multi-Agent Systems (DMASs)
for assistance in decision making. With a DMAS, the previously mentioned ARTI
holons delegate the responsibility of scheduling tasks with the resource holons to a
swarm of light-weight agents. These lightweight agents, called ants, are spawned
dynamically (usually at a fixed rate, depending on the computing resources
available) by a holon that performs activities, such as an AI holon, in order to assist
the holon to perform its required scheduling functions. The holons which created
these ants are responsible for them during their lifetime and these ants are not aware
of what is going on outside of their given responsibilities. There exist three types
of ants: Intention, Feasibility and Exploring Ants. Exploring ants can be seen as
processes that virtually travel around within the holarchy looking for possible
production routes that a product can take and relay this information back to the AI.
The AI then chooses the best option out of the presented routes, and using the
Intention ants, propagates this decision (the AI’s intentions) to the respective
holons, where the task is added to the resource’s schedule. Leading up to, and
during the execution of this planned task, Feasibility ants virtually travel around the
holarchy looking for possible disturbances to the system, and also constantly look
for alternate production paths. If a better suited production path is found, the
Feasibility ant reports back to the AI, who can then change its schedule booking so
that the product takes the optimal path.

Stellenbosch University https://scholar.sun.ac.za

18

This system creates a network of advanced decision-making capabilities that AI
holons can use to optimally schedule tasks with RIs and allows for the optimisation
of production within the HMES.

2.3.5 Implementations

Implementations of the ARTI reference architecture are scarce in literature and
virtually non-existent in industry. One implementation in literature is that of
Rossouw (2021), where they implemented an ARTI architecture based system to
aid table grape production management. Their implemented system was then
evaluated against an existing legacy management system, showing improvements
in communications, information management and decision support. The ARTI
architecture was also used in the development and implementation of an “embedded
aggregate digital twin for the hybrid supervised control of semi-continuous
production process” (Borangiu, Oltean, Răileanu, et al., 2019).

2.4 BASE Architecture for Digital Administration Shells

The BASE architecture (Sparrow, 2021; Sparrow et al., 2021) was developed as an
administration shell for an HRH in an HMS, and was developed with holonic
systems and ARTI principles in mind. It uses centralized core components, with
additional plugin components that add extra functionalities which would be specific
to its use-case. “BASE stands for Biography, Attributes, Schedule, and Execution,
and is a time-based separation of concerns for key augmentations provided to the
human worker” (Sparrow, 2021). An outline of this structure is provided in
Figure 1. A major advantage of this architecture, even though it has been designed
for humans, is that with the use of plugins it can be extremely versatile.

The core components of BASE are depicted in Figure 1 as the blocks labelled ‘B’,
‘A’, ‘S’, ‘E’ and ‘Communication Manager’. The Schedule deals with future events
that are scheduled for execution by the holon using the Three-Stage Activity

Figure 1: BASE architecture showing the core and plugin components
(Sparrow, 2021)

Stellenbosch University https://scholar.sun.ac.za

19

Lifecycle (3SAL) description (Sparrow, Kruger & Basson, 2020). The Schedule
can include activities, maintenance, database validation, communication etc that
has been scheduled for execution. Execution deals with the holon’s present. It
interfaces with sensors, calculates the system’s current state and interfaces with the
Execution plugin to execute activities. The Biography deals with past events that
have transpired within the holon and its surroundings. These could include logs
from completed activities, maintenance logs, errors etc. Attributes deals with the
properties of the holon that are considered stable and that do not change (or, in some
cases, only change steadily). This would include properties such as a holon’s
specifications, capabilities, age, make/type etc. Lastly, there is the Communication
Manager which facilitates the communication between internal components, and
between the holon and other external systems.

In Figure 1, the yellow-coloured corner blocks are called the BASE plugins. These
plugins consist of the Analysis, Scheduling, Reflection and Execution plugins (AP,
SP, RP, and EP, respectively). These plugins interface mainly with the core
components that are depicted on either side of the plugin.

SPs represent a set of tools, algorithms, software systems and decision-making
interfaces, which create, manage, and optimise the scheduled activities of the HRH.
The activities that are to be scheduled can originate from external logistics holons
as service requests or internal (BASE component) requests. EPs are responsible for
managing the execution of scheduled activities. The EPs take scheduled activities
and instantiates their execution by monitoring and communicating with the resource
through the Execution component. RPs create and maintain biographic entries of
completed activities or events. When an activity has been completed it is entered
into the Biography. Data about the events of an activity can still be gathered post
execution such as reviews, quality checks etc. APs generate value from the data
recorded in the Biography with the aim of updating and amending the Attributes.
The APs close the information flow loop of the BASE architecture by updating
Attributes from Biography, which enables the self-improving, self-analysis and
self-optimisation of the HRH. The cycle repeats with the SPs utilising the updated
Attributes to make better scheduling decisions and the EPs better execution
decisions (Sparrow, 2021).

Data flow through the BASE architecture follows that of the activities as they flow
through the architecture. The flow is time-based and follows the 3SAL structure as
mentioned before. The 3SAL structure defines that activities have a three-stage
lifecycle: the first being the scheduled stage, the second the executing stage, and
the third the completed stage.

Sparrow (2021) implemented the BASE architecture in Erlang software, which
included all concepts from the architecture. This implementation can be used as a
tool for the development of holonic systems as the implementation provides an
administration shell for holons to communicate with one another. This allows for
holons providing services to form a network of functionalities and behaviours. The

Stellenbosch University https://scholar.sun.ac.za

20

BASE implementation caters for service provision and finding through a directory
facilitator of sorts: the Department of Holon Affairs (DOHA). Holons can register
services with DOHA and clients can then find these service providers through
DOHA. Service provision is based on contracts between the client and the service
provider, detailing the expected service, the parties to the contract, service request
arguments and other information that is used in contract processing. Holons in the
BASE implementation are identified via their Business Cards (BCs), which contain
all relevant information pertaining to the holon. A revision has also been made to
the BASE architecture implementation (Van Niekerk, 2021). This revision
improved multiple features of the BASE implementation, but the most noteworthy
was that of increasing the scalability of the implementation, allowing thousands of
instances of the BASE core to be spawned while using minimal computational
resources.

The BASE architecture is envisioned as a I4.0 enabling architecture, and as such, it
was developed with other I4.0 architectures in mind. The most notable being the
RAMI4.0 reference architecture (Adolphs et al., 2015), which BASE draws close
similarities with. RAMI4.0 is a reference architecture for digital systems in the I4.0
age. It specifically focuses on I4.0 systems and was described as “a uniform
architecture model [used] as a reference, serving as a basis for the discussion of its
interrelationships and details” (Adolphs et al., 2015). RAMI4.0 is a six-layered,
three-dimensional architecture represented by a layered cube as shown in Figure 2.
It was developed with meeting I4.0 requirements as a priority, and it is currently
largely accepted as doing so. Each layer of the architecture represents a different
component of an I4.0 system that is required for the entire system to operate.

Figure 2: Reference architecture model for Industrie 4.0 (RAMI4.0)
"Umsetzungsstrategie Industrie 4.0 (Adolphs et al., 2015)

Stellenbosch University https://scholar.sun.ac.za

21

RAMI4.0 was designed as a digital administration shell that encapsulates a physical
entity, which would then allow it to communicate with other digital components,
systems and CPSs. Similar to RAMI4.0, the BASE architecture was also developed
as a digital administration shell, however it was designed for human administration
shells as opposed to other physical entities. Similar to BASE, RAMI4.0 also
separates concerns of a digital system, however BASE separates these concerns
based on time (as seen by the 3SAL structure) and RAMI4.0 separates concerns
based on physical interfacing layers.

2.5 Conclusion

It was found in this literature review that systems comprising of I4.0 enabling
technologies are being implemented more often. It is, however, evident that even
though the adoption of I4.0 enabling technologies is increasing, there are still large
barriers in place that prevent enterprises, especially SMEs, from transitioning their
systems to I4.0 platforms. It can be seen, arguably, that the largest barrier to the
widespread introduction of I4.0 systems is the development difficulty of these
systems. This barrier is hoped to be overcome with the aid of reference architectures
for the development of I4.0 systems and their enabling technologies.

It was found that CPSs and HMESs were major drivers of I4.0 systems’
implementation, as these systems inherently incorporate many I4.0 enabling
technologies. Existing infrastructure can be repurposed or augmented with these
technologies for an implementation, instead of having to construct an entirely new
system, which is seen as highly beneficial. These systems, HMESs in particular, are
also widely seen to provide many advantages to manufacturing systems over
traditional manufacturing execution systems. Benefits such as reconfigurability and
robustness are highly desirable in industry. It was also found, however, that the
development of these HMESs is also a barrier to adoption in itself, due to the high
development time, cost and difficulty associated with them.

Through examining some of the most influential reference architectures for holonic
systems, it was seen that the optimal selection of reference architectures for use in
an implementation of a HMES is very important. During the examination of these
reference architectures, it was also found that very few implementations exist in
literature, and even less in industry, of the ARTI reference architecture, and thus it
would be of worth to research ARTI architecture implementations further.

Key HMES requirements and evaluation criteria were also identified from literature
and will be used in Chapter 6 of this thesis for the evaluation of the case study
implementation.

Stellenbosch University https://scholar.sun.ac.za

22

3 Mapping the ARTI Architecture to the
BASE Architecture

This chapter details the mapping of the ARTI architecture to the BASE architecture.
This involves investigating what features and functionalities are required by the
ARTI architecture and then to evaluate whether the BASE architecture satisfies
these requirements. Mapping these ARTI features onto the BASE architecture
provides an indication of the BASE architecture’s suitability to be used in the
implementation of an ARTI-based HMES.

3.1 System Features and Functions

The ARTI architecture defines that IBs encompass reality reflection components,
and that IAs encompass decision making components and other functionalities that
carry great responsibilities. From a high-level, individual BASE holon components
can thus be split up between being IA and IB components. This can be seen in
Figure 3 where BASE components are mapped to their respective ARTI
components. The BASE core serves as an IB component, as the core is dedicated
to communication, execution, and storage of the state of the holon and its World of
Interest (WOI), which all contribute to reality-reflection of the holon’s current state.
BASE core components also do not implement any crucial decision making; this is
rather left to the plugins, which distinctly splits the IB components from the IA
components. The four different types of BASE plugins together represent the IA
component of the BASE holon as these plugins are dedicated to making context-
specific decisions, which influence the behaviour and execution of the holon.

It must, however, be noted that for certain implementations, it might seem that the
plugin is not making any decisions (such as a Reflection Plugin that simply reflects
data to the biography), but it was seen in this thesis that the developer/programmer

Figure 3: BASE to ARTI mapping of core components

Stellenbosch University https://scholar.sun.ac.za

23

that developed the algorithm/program made important decisions when writing the
algorithm that converts the data into information, and it is believed that that is
sufficient reasoning for all plugins to be classified as IAs.

The four types of holons that form part of the ARTI reference architecture need to
each be implemented for the ARTI architecture. Each type of holon can be
implemented as an instance of the BASE core along with various respective plugins.
Each holon would receive its own set of all types of plugins, providing for the
required functionality as dictated by ARTI. This requirement is followed by the fact
that most of these types of holons will need multiple instances of them. BASE is
fortunately highly scalable, especially in its recent version, BASE Factory (Van
Niekerk, 2021), and this will sufficiently satisfy the scale requirements of the ARTI
architecture. Instance holons will rely primarily on the Execution and Schedule core
components along with SPs and EPs, whereas the Type holons will rely primarily
on the Attributes and Execution core components as well as the APs, EPs, and SPs.
Since the BASE architecture implementation runs in Erlang, processes are
lightweight and spawned easily, thus it would not be resource intensive, and thus
problematic, to have BASE instances running for each holon in the ARTI
architecture, along with its plugins.

It is also necessary for the ARTI holons (specifically the Resource holons) to
communicate with their hardware resources. This is accommodated for with
BASE’s open communication philosophy. BASE can support multiple
communication protocols which can be used to communicate with hardware, such
as TCP/IP connections, MQTT, Serial, etc.

The BASE architecture thus accommodates for the required features and
functionalities of the ARTI architecture as an overall system. Communication will
be considered next.

3.2 Communication

The BASE architecture allows for a great degree of freedom with communication.
The Communication Manager (CM) core component, that is solely dedicated to
communication between BASE holons, has multiple in-built functionalities such as
to send and receive requests between holons, and to receive Requests for Proposals
(RFPs) as part of the Contract Net Protocol (CNP). Additional functionalities and
communication protocols can be added to the CM with relative ease. ARTI specifies
that it is necessary for AT holons to communicate activity instructions with AI
holons, and visa-versa, using the Next-Execute-Update (NEU) communication
protocol, and BASE has the in-built functionality for communication between “an
entity with process knowledge and an entity with the ability to execute process
actions” (Sparrow, 2021) using the NEU protocol. BASE also takes this
requirement a step further in that it accommodates for many different
communication protocols through the CM.

Stellenbosch University https://scholar.sun.ac.za

24

Within ARTI there is the option of using DMASs for assistance in decision making.
The implementation of each type of these lightweight agents within BASE would
be in the form of an Erlang module within a plugin that spawns ant processes.
Exactly which plugin the process would exist in would be context specific and
therefore selected by the developer. The reason for these ants not being individual
BASE instances is because these ants typically require very limited functionality,
and their lifespan is generally very short. Also, a BASE instance normally consists
of at least five Erlang processes, thus it would be much less computationally
intensive to have an ant only be a single Erlang process.

3.3 Discussion

As seen by the above mapping, all inter and intra-holon features and functions that
are required by the ARTI reference architecture are able to be fulfilled by the BASE
architecture’s core components and plugins. In some areas there would have to be
more development for implementation than others, but overall, the BASE
architecture is adaptable and versatile thanks to its use of plugins and open
communication standards. The BASE architecture’s scalability also plays a major
role in its ability to behave as any one of the individual ARTI architecture holons.

In the mapping process, it was found that there are some ambiguities in the ARTI
architecture’s descriptions and classifications of what separates an IB from an IA.
The ARTI architecture does not clarify precisely where the line is drawn when
looking at decision making as the deciding factor between IAs and IBs. If only
surface-level functionalities are inspected, it may seem in some cases that there is
no decision-making taking place, but if the decisions of the developer/programmer
are inspected, then it is evident that important decisions have indeed been made
within that function. It is believed that this could be sufficient reasoning to classify
such functions as IAs.

Concluding this chapter, it can be seen that the BASE architecture is a suitable tool
for use in developing an accurate implementation of the ARTI reference
architecture. The BASE architecture is adaptable and versatile, and able to be
developed as any one of the individual holons required by the ARTI architecture. It
is also expected that the BASE architecture could greatly decrease the development
difficulty due to having many built-in features, such as task management,
communication, and holon management. The BASE architecture also facilitates
communication between holons, and it has features and functionalities that would
support an accurate, reliable, robust, and relatively simple implementation of the
ARTI reference architecture.

Stellenbosch University https://scholar.sun.ac.za

25

4 Case Study Development
This chapter details the development of the ARTI-based HMES case study. This
involves an introduction to the case study system and motivation for the choice of
the system. It also includes an overview of the case study system’s hardware. The
requirements for the development of the HMES are then detailed. The system
structure and holarchy are then developed.

4.1 Case Study Selection

This case study aims to satisfy the objectives of this thesis as set out in Section 1.2
of developing an ARTI-based HMES implementation using the BASE architecture
as a development building block. For this purpose, it is necessary to ensure that the
selected case study system allows for these objectives to be met.

Requirements for the case study system are outlined in Table 3. These requirements
will be used to evaluate whether the selected case study is suitable to achieve the
research objectives.

The selected case study system is the Fischertechnik Industry 4.0 Training Factory
(henceforth referred to as the Mini-Factory). It is a small-scale manufacturing
system built as a training tool for I4.0 technologies. It can be seen from Table 3 that
the selected case study system meets all requirements and will provide a platform
of sufficient complexity similar to real-life production systems on which the ARTI-
based HMES implementation can be developed and evaluated.

Stellenbosch University https://scholar.sun.ac.za

26

Table 3: Case Study Requirements

Req.
No.

Description Mini Factory Properties

R1 The system needs to be extendable
by the user so that new resources
could be added to the system. This
will enable reconfigurability
experiments to be performed.

Consists of six unique stations
and is completely extendable as
the physical system is
constructed piecewise from a
wide range of plastic
components, similar to
LEGOTM, but also includes
many types of interchangeable
sensors and actuators. The user
can add and remove parts or
whole stations to/from the
factory as desired, leading it to
be easily scaled.

R2 The system needs to be able to be
extended with more than one
instance of a resource. This will
enable scalability and
reconfigurability experiments.

R3 The system needs be able to be
programmed by the user/developer
so that the correct low-level
functionalities can be implemented
in order to interact with the high-
level control system.

Controlled on the low-level by
six user-programmable
controllers, that are network
connected for process
communications. The six
hardware stations need to
interact with each other in order
to move workpieces through the
production line, but the
resources are not physically
connected to one another, which
leads to sufficient complexity to
satisfy the requirement.

R4 The system needs to have multiple
resource/hardware stations.

R5 The system needs to have complex
interactions between hardware
resources in order for the interactions
between holons to be tested
thoroughly.

R6 The system needs to be able to
process multiple activities in order to
enable resource selection and
scheduling experiments.

Capable of producing three
different coloured workpieces,
and it has two main modes of
operation: receiving workpieces
to store in the warehouse; and
producing workpieces for
dispatch.

R7 The system needs to have multiple
paths which production can follow in
order to enable scheduling and
aggregation experiments.

The default setup only has one
linear production path, but due
to the system being easily
extendable and scalable, it
should be possible to add more
stations to the production line in
order to provide multiple
production paths.

Stellenbosch University https://scholar.sun.ac.za

27

4.2 Case Study Description

4.2.1 Hardware

The Fischertechnik Mini-Factory hardware and firmware are detailed in this section
in order to provide a better understanding of the case study system and its
capabilities. The system is shown in Figure 4.

Figure 4: Fischertechnik Industry 4.0 Training Factory

The Mini-Factory consists of six different hardware stations, as identified in
Figure 4: a High-Bay Warehouse (HBW) for storing unprocessed workpieces; a
Multi-Processing station (MPO) where two simulated processes are executed on the
Workpieces (WPs), being fired in a kiln and being worked on in a milling machine;
a Sorting Line Station (SLD) that sorts WPs based on colour; a Vacuum Gripping
Robot (VGR) that transports the workpieces between different stations; an Output
Station (DSO) where the completed workpieces are taken to be dispatched from the
factory; and a Input Station (DSI) where ‘raw’ workpieces are delivered to the
factory before being stored in the HBW. Each of these six stations consist of a
different combination of sensors and actuators, which are listed in Appendix A.1.

The system is equipped with a default low-level automated control system, using
Fischertechnik TXT controllers. The system is setup to connect to a Fischertechnik
Cloud Dashboard where the user/operator can view the system’s real-time state, as

Stellenbosch University https://scholar.sun.ac.za

28

well as place orders for red, white, or blue workpieces. The system includes
environmental sensors, as well as a camera which can be monitored from the Cloud
Dashboard.

The TXT controllers communicate with one another using the MQTT protocol, with
one of the controllers (which acts as a ‘main’ controller) being setup as a MQTT
Broker and the rest as Clients. The Broker (and main controller) also behaves as the
connection to the Cloud Dashboard via an MQTT Tunnel, as a part of the MQTT
broker. The network for the system is provided by a wireless router that is bridged
to an internet connection.

The default system operation is capable of performing orders and deliveries. These
processes consist of various steps that the WP needs to follow through the Mini-
Factory. This default order process is depicted in a simplified flowchart in Figure 5.
The full flowcharts for the default order and delivery processes can be found in
Appendix A.2 and A.3, respectively.

4.2.2 Mini-Factory Stations

4.2.2.1 High-Bay Warehouse

The HBW resource consists of three separate sub-stations that interact with one
another: a high-bay storage facility which holds containers in a 3-by-3 vertical rack;
a two-axis Cartesian robot that stores WPs in the high-bay storage; and an
Input/Output station with conveyor belt which moves containers between the robot
and the location where the VGR picks and drops WPs. The I/O station has
photoelectric sensors which detect a container. The robot uses rotary encoders on
its DC motors in order to save and return to different locations within the HBW.

Figure 5: Simplified Default Order Process Steps

Stellenbosch University https://scholar.sun.ac.za

29

4.2.2.2 Multi-Processing Station

The MPO resource consists of a simulated kiln, a vacuum gripper, a milling station,
and a short conveyor belt. The simulated kiln has a DC Motor actuated platform
which moves the WP into, and out of the kiln. The vacuum gripper consists of a
two-axis cartesian robot with a vacuum gripping nozzle. The milling station
consists of an actuated turntable and a simulated milling machine which uses a DC
motor to spin a plastic cutting bit. And lastly, the conveyor consists of a conveyor
belt driven by a DC motor, and a photoelectric barrier sensor at the end of the
conveyor to signal to the system that the WP has reached the end of the conveyor.

4.2.2.3 Sorting Line

The SLD consists of a conveyor belt, a colour sensing booth, and a sorting station.
The conveyor belt is similar to the MPO’s conveyor belt and it also has a
photoelectric barrier sensor at the start of the conveyor belt to signal to the system
that the WP has moved onto the SLD’s conveyor belt. The colour detection booth
consists of a dark enclosure over the conveyor belt with a LED light and colour
detection sensor in it. The colour detection booth also has a photoelectric barrier
sensor at the exit of the booth, to trigger a timer for the sorting station. The sorting
station uses this timer to determine when to eject a WP into its respective colour
bin. The WPs are ejected into their bins by being pushed off of the conveyor belt
by a pneumatic actuated piston. The bins also have photoelectric barrier sensors
which signal to the system that the WP has been sorted.

4.2.2.4 Vacuum Gripper Robot

The VGR consists of a three-axis rotating robot with a vacuum gripping head which
is used to transport WPs between stations. The VGR has a base which can rotate
approximately 270 degrees, a boom arm which can move up and down using a
linear screw-driven rail, and the boom arm can extend and retract using a linear
screw-driven rail. All actuation is done via DC motors with rotary encoders. The
vacuum gripping head is actuated by use of a combination of an air compressor, a
solenoid valve and two pneumatic piston cylinders.

4.2.2.5 Input and Output Stations

The DSI and DSO both consist of a WP sized bay which has a photoelectric barrier
sensor which is activated when a WP is placed in the bay. This signals to the system
that a WP has either been delivered or dispatched.

4.2.3 TXT Controllers

The Mini-Factory uses six ARM Cortex-based Fischertechnik TXT controllers for
the low-level control of the system. One of these acts as a main controller which
hosts the MQTT broker and also acts as the MQTT tunnel to the Cloud Dashboard.
This main controller is also responsible for publishing the data from the

Stellenbosch University https://scholar.sun.ac.za

30

environmental sensor, and the image stream from the camera. The second TXT
controller is the HBW controller. The third and fourth controllers are used for the
control of the MPO. One controller is the primary controller and the second acts as
a slave. This is done to increase the number of available GPIO pins to interface with
the sensors and actuators of the resource. The fifth controller is responsible for the
control of the SLD. The last controller controls the VGR, the DSI, and the DSO.
The TXT controllers’ most noteworthy features can be found in Appendix A.4.

The controllers run a distribution of the Linux Operating System which allows them
to incorporate many features. Some of these features include: a VNC server; an FTP
server; a webserver; and a MQTT broker (server). The controllers can be
programmed via the ROBO Pro software or by uploading compiled C files via either
webserver or FTP.

4.2.4 Gateway

The local network for the Mini-Factory is provided by a TP-link nano router which
is then bridged to an internet connection via either Wi-Fi or Ethernet. This allows
the TXT controllers to connect to the router’s wireless network and then
communicate with the other controllers over the network (using MQTT). This
gateway also allows the Mini-Factory to connect to the remote Fischertechnik
Cloud MQTT broker, which enables Cloud Dashboard control and monitoring.

4.3 HMES Requirements

HMESs are diverse in application and implementation. This leads to system
requirements needing to be specific to the implementation. It is possible however
to identify common and reoccurring requirements from implementations and
discussions in literature. The majority of these requirements are however qualitative
requirements, which results in the evaluation of the system being somewhat
subjective and open to interpretation. For the development of the ARTI-based
HMES for this case study, the following primary requirements were identified from
literature, as discussed in section 2.2.1.

The system needs to be reconfigurable, meaning that it should be possible to adapt
the HMES to a changing manufacturing system with relative ease. If the
manufacturing process changes, or if resources are added or removed, it should be
within the system’s capability to be able to simply add or remove resources or
change the production steps/process in the control system. Scalability ties in with
the requirement of reconfigurability, as the system needs to be able to be
reconfigured for a larger scale, where the system needs to scale as new resources
are added to the system, and as new instances of activities or resources are spawned.

The system also needs to be robust, adaptable, and reactive to changes within the
system. This means that if the system experiences some unforeseen state, that it can
handle the state and provide a suitable outcome. The system needs to be able to

Stellenbosch University https://scholar.sun.ac.za

31

react appropriately to knowledge that it gains from itself or the environment. This
includes error handling, the handling of resources going offline and new resources
being added, the handling of unforeseen schedule changes, and the handling of
successfully completed activities.

The system must consist of autonomous, self-organising holons which can exist on
their own with no reliance on other holons in order to perform their tasks, besides
when the task requires other holons. The holons must organise themselves into a
holarchy in order to form a network of functionalities and behaviours, with which
complex manufacturing and control tasks can be executed. This leads to the
requirement that the individual holons, and the system as a whole, needs to be
collaborative. This means that holons need to be able to work together to achieve a
common goal. An example of this might be for two resource holons to work
together to produce a single product.

Intelligence is also a key requirement for a HMES, but it is a highly subjective
requirement. In the most basic sense, the system needs to be capable of making
decisions which generate the desired outcome. This could involve using various
simulation or optimisation models to inform decision making. This leads to the
requirement of being pro-active. The system needs to be capable of responding to
system inputs and stimuli in a goal-orientated manner, in which the system chooses
to react in a manner that favours its own goal.

The system also needs to be able to learn from the information that it has gained
from its past actions and from the environment, by generating knowledge from
collected data. This information could then be used for future process planning and
scheduling, or for maintenance related activities.

Lastly, the implementation of the ARTI-based HMES should not negatively affect
the throughput of the system, as measured against a baseline experiment.

4.4 Case Study HMES Architecture

4.4.1 Holon Identification

A crucial step in the development of the ARTI-based HMES is that of developing
the holarchy structure of the system. This involves defining: the individual holons
and their types; the hierarchical layout of the holons within the system; the inter-
holon interactions; the individual holon internal architecture; and their intra-holon
interactions.

Stellenbosch University https://scholar.sun.ac.za

32

As per the ARTI architecture, Type, and Instance holons form the foundation of the
system, with each respective holon category comprising of Resource and Activity
Types and Instances. This case study system is thus comprised of Resource Type,
Resource Instance, Activity Type and Activity Instance holons. Each of these
holons have their own respective sub-structure consisting of Intelligent Agent and
Intelligent Being components. The system architecture is hierarchical with Type
holons being at the top of the hierarchy, followed by Instance holons, and then
followed by sub-Types that fall below RIs and then sub-Instances. This case study
contains an aggregate RI holon called the Production Line Aggregate (PLA) which
encompasses the MPO and SLD in a single RI. This hierarchy is shown in Figure
6. It must however be noted that the holons in this Holonic system have an ever-
adapting structure, which at times could be classified as a heterarchy. This depends
on which holon is currently in a contract with another, and where they thus have a
client-service provider hierarchy. The tree structure shown in Figure 3 is derived
from a certain situation in which the Activity Type holons request a service from
the Resource Instance holons, and thus form a temporary hierarchy during the
execution of that contract. This situation is the primary operating situation for the
system. This architecture is expanded on in this section below by examining each
of the holons that the system is comprised of.

4.4.1.1 Resource Types

The system has two RTs: one that represents the five different resource stations in
the system (HBW, VGR, PLA, DSI and DSO); and another that represents the
aggregated resources (MPO and SLD). This was done as all the resources in the
system are similar in operation and execution with only minor differences, related

Figure 6: Case Study System Holarchy

Stellenbosch University https://scholar.sun.ac.za

33

to communication (e.g., MQTT topics) and attributes. The services that these RTs
would provide to the resources remains unchanged for each of the resources in this
case study, which justifies using a single RT for multiple types of resources. This
is also valid for the Aggregate RT (ART). Also, both the RT and ART would be
very similar, besides for the slight changes that are required for the RT to operate
as an ART.

An alternative approach would be to create an RT for each different station in the
system and have a single instance of each RT for each respective station. This was
decided against as this would introduce a large amount of code repetition, with no
added advantages.

The RT is present in the system for as long as there is an instance of it in the system
and has the role of being the major decision maker and manager for the RIs. RIs
request the RT to perform more complex computations for them, as a service. This
is done to keep the RIs free from computationally heavy tasks, to be available to
handle and execute their tasks and communications with hardware, which may be
sensitive to delays. An advantage of using Erlang for the implementation of the
system is that processes can easily be spawned as needed, which is beneficial for
the RT as a handler process can be spawned for each request that is received from
RIs, alleviating any bottlenecks. RTs are also responsible for managing their RIs,
which includes providing their attributes after being spawned, as a part of attribute
inheritance, and also to monitor the state of their tasks and provide this information
to ATs as a service. The following services are provided by the RT and ART:

• Resource status monitoring: used by the ATs to initiate the process of the
RT/ART retrieving the status of the RIs/ARIs, and then forwarding this
information to the AT. This includes collecting workpiece stock information
and resource states. This is a service that can be requested by the AT holons
at a fixed interval (e.g., 1 Hz) to continually keep up to date with the status
of the system resources.

• Process Time Calculations: used by the RIs for scheduling purposes, to get
the earliest estimated available schedule slot for a new task to take place.
This service is requested by RI holons when the RI has received an RFP.
The earliest estimated completion time is returned to the RI, along with the
starting time of the respective schedule slot.

• Resource Attribute Inheritance: used by RIs when they first spawn in order
to get their starting attributes. This method is used to get the most up-to-date
starting attributes from the RT. The RIs do however spawn with default
starting attributes. These include default task durations, hardware timeout
limits etc.

Stellenbosch University https://scholar.sun.ac.za

34

4.4.1.2 Resource Instances

The system comprises of five RIs and two Aggregate RIs (ARIs): one for each
hardware station in the system. An instance is spawned or terminated when a
hardware resource enters or leaves the system. RIs are spawned with a set
configuration for the type of resource hardware, which is specified in the start-up
file of the instance and includes information such as configuration name, MQTT
topics that the instance needs to subscribe to for communication with the hardware
and default attributes for the instance.

Scheduling of internal tasks for the RI holons is carried out using the CNP. The
resource advertises its services to other holons in the holarchy and then once an
RFP has been received, the RI requests a service from its RT to calculate when the
RI’s first available timeslot in its schedule is, considering the RI’s schedule and
process time attributes. This information is then used by the RI to send a proposal
back to its client with the earliest estimated completion time for the requested task.
Upon receiving an ‘accept’ response from the client, the RI adds the requested task
to its schedule, to start execution at the agreed upon time.

Execution within the RI is carried out by a finite state machine (FSM), which
ensures that the correct sequence of tasks is followed for that specific resource, to
execute the requested task (this is discussed further in section 5.6). The RI holon
communicates to its respective low-level controller using JSON encoded messages
sent via MQTT to that resource’s hardware topic.

The RI stores data, such as scheduled start time, actual start time, completion time
and completion state, from its executed tasks. This information can then later be
used to update the attributes of the resource through various means of analysis.
These updated attributes are then used in future for improved scheduling. The RIs
provide the services in Table 4 to the holarchy. The ARIs provide the services in
Table 5 to the aggregate holons of the holarchy.

Stellenbosch University https://scholar.sun.ac.za

35

Table 4: RI Services

Resource
Instances:

Services:

High-Bay
Warehouse

Fetch WP from storage and store container once fetched.
Fetch Container from storage and store the WP once it has been
dropped.
Reset storage to default state (empty).

Vacuum
Gripping
Robot

Start an order by fetching a fetched WP from the HBW and take it
to the MPO.
Fetch a WP from a specific SLD sorting bin and take it to the
DSO.
Fetch a WP from the DSI and take it to the NFC reader and colour
sensor.
Take a WP from the NFC reader to the HBW.

Production
Line
Aggregate

Start the production of a WP.

Output
Station

Await a dispatched WP.

Input
Station

Await a delivered WP.

Table 5: ARI Services

Aggregate Resource Instances: Services:
Multi-Processing Station Start producing a WP.

Inherit attributes from ART.
Sorting Line Station Start sorting a WP.

Inherit attributes from ART.

4.4.1.3 Activity Types

Four AT holons were used in the system, namely: Order, Delivery and Maintenance
ATs, and then an Aggregate AT (AAT) for the PLA’s Process activity. The Order
Type manages orders that were placed by the user via the dashboard. It allows for
the ordering of red, white, and blue workpieces. Once an order has been placed, the
AT spawns an AI holon, as well as an FSM with which it handles the order. Once
the AI has initialized, the AT sends the first process step in the order process to the
AI. These process steps are read in from the AT’s configuration file, which allows
the user to change the process steps of the order production process in the case that
reconfiguration is needed. The process steps are then provided to the AI in order,
after the previous has been completed, until all process steps have been completed.
This is done according to the NEU protocol (Valckenaers & De Mazière, 2015) as
illustrated in Figure 7. In a similar manner the Delivery and Maintenance Type
holons manage the execution of maintenance and delivery activities. A

Stellenbosch University https://scholar.sun.ac.za

36

Maintenance AI books-out the schedule of a selected RI for a specified duration,
ensuring that no tasks are scheduled with that resource during that time, so that
maintenance can take place. A Delivery AI starts the delivery process of a WP that
has been delivered to the Mini-Factory.

The AT offers services to its instances, just as the RT does, and it also has some
additional managerial roles. The AT is responsible for monitoring the state of
activities that the AIs are busy handling, attribute inheritance, and spawning and
terminating AIs. The AT also communicates and interacts with the dashboard
service to receive user input as well as to display information to the user. As a part
of the dashboard interfacing, the AT also collects the state of all resources in the
system to display this information to the user.

4.4.1.4 Activity Instances

An AI is spawned by the AT for each activity (Order, Delivery, etc.) that is
requested from the AT. When spawned, the AI registers for service handling of its
specific type, thereby notifying its AT that it is initialized and ready for activity
handling. As mentioned previously, the AI receives process steps that it needs to
carry out to complete the activity, one at a time, and notifies its AT once each
process step is completed. Process steps are carried out by the RIs that advertise
service handling for those specific process steps. As mentioned before, the
coordination of which RI will execute which process step is handled via the CNP.
Once all proposals are received from service providers, the best proposal is chosen
based on which service provider estimates that it can complete the requested task
the earliest (scheduling is discussed further in section 4.7). The AI is responsible
for service handling to remove computational load from the AT, since the AT needs
to handle multiple requests from numerous instances. The AI is only required to
handle one process step at a time and is thus very unlikely to become over-
encumbered with requests, or other computations.

Figure 7: NEU Protocol

Stellenbosch University https://scholar.sun.ac.za

37

Once the AI has completed its list of required process steps and the activity has
been completed, it sends a message to its AT containing an information packet with
all relevant information from the activity, such as activity state, start time, predicted
completion time, and actual completion time. This information is then saved to the
ATs non-volatile biography. The AI is then terminated by the AT. The collected
activity information is then analysed by the AT to update attributes in the AT that
relate to the specific type of activity. These updated attributes will then be inherited
by future AIs.

4.4.1.5 Basic Resources

The system requires two additional software resources for its operation: a MQTT
service provider, as well as an Application Programming Interface (API) service
provider for the web dashboard. These are hosted in the ‘BASE factory’ as ‘Basic
Resources’, which offer their services to other holons within the system. The
MQTT service provider provides MQTT messaging to the HMES as a service. This
could potentially create a bottleneck, but with the scale of the case study system not
being very large, should not present a problem. This problem could however be
alleviated by simply spawning another instance of the MQTT service provider. The
MQTT Service uses the EMQTT Erlang library (Lee, 2012) to provide services to
subscribe and unsubscribe to/from MQTT topics. The Dashboard Service provides
services to send order requests from the dashboard to the AT, and to send data such
as status updates to the web dashboard.

4.4.2 Holon Aggregation

Aggregation is the process of combining a group of resources that lie in a lower
level of the hierarchy into a single Aggregate Resource, whose position in the
hierarchy is a level higher. This Aggregate acts as all of the resources encompassed
below it and offers the services of its resources/parts. Often though, an aggregated
service could be provided instead.

An aggregation process is demonstrated in the PLA resource in this case study
system. The PLA is an aggregate of the MPO and SLD resources and provides a
single service to other holons; that service is “Produce Workpiece.” However, this
service consists of a combination of the services of the MPO “Produce” and SLD
“Sort” services.

From the viewpoint of the AIs, this PLA resource will appear as only a single
resource with its own service, but within this Aggregate holarchy, there will be
multiple different holons. The aggregate holarchy is comprised of an AAT, ART,
Aggregate AIs (AAIs) and ARIs. Within this aggregate holarchy, the functions of
the different holons are the same as if they were on any other level of the holarchy,
besides for a slight change in the AAT; instead of receiving its activity requests
from the User Dashboard, it will receive its requests from the PLA RI, which acts
as a dummy RI that advertises the aggregate service to the other holons, and just
relays service requests on to the AAT for processing.

Stellenbosch University https://scholar.sun.ac.za

38

This aggregation process is useful in many situations. One such situation is when
the resource holon’s hardware system becomes too complex to be able to be handled
by a single holon. The resource holon could then be converted into an aggregate,
with its subsystems becoming their own resource holons within an aggregate. An
example of this could be a manufacturing plant that consists of multiple different
manufacturing cells, with each cell containing multiple machines or stations. In this
case it would be beneficial for the cell to be represented by an aggregated resource
holon, and each machine/station inside the cell to be represented by its own resource
holon. The aggregate resource holon would then advertise the service that the entire
cell provides, instead of all of the services of the individual machines/stations.

The second scenario where aggregation is useful is for parallel production paths, of
the same types of resources, that do not interact with one another besides for a
common starting point, such as shown in Figure 8. The challenge that this situation
presents is with the scheduling of production steps; since the resources are of the
same type, scheduling via a non-complex method such as the CNP could allow for
consecutive process steps to be scheduled on different branches of the production
line, which would not be physically feasible. A solution to this would be to create
an aggregate of each parallel line. Scheduling would thus see this as a single
resource and the scheduling of production steps would remain within that
aggregate. The aggregate would then be responsible for the internal scheduling of
the line. This would greatly simplify system scheduling and reduce possible
scheduling errors.

The advantages of this method of aggregation are thus clear: service handling and
execution control for complex systems is simplified as the top-level of the holarchy
is simplified by limiting the granularity of the services offered; and scheduling
clashes and scheduling infeasibilities are eliminated by simplifying complex
production lines. The one major disadvantage of this, however, is that the overall
complexity of implementation may be increased, as additional new holons will be
required, namely ART, AAT, and AAI holons.

Figure 8: Parallel Production Paths

Stellenbosch University https://scholar.sun.ac.za

39

5 ARTI-based HMES Implementation
This chapter details the implementation of the developed ARTI-based HMES on
the case study system. Section 5.1 discusses the version of the implementation of
the BASE architecture that is used for this implementation, while section 5.2
discusses the programming language which is used for this implementation. Section
5.3 discusses the low-level controllers’ programming, section 5.4 discusses the
scheduling strategy used, and section 5.5 discusses system communications. The
development of the plugins used for each BASE holon is detailed in section 5.6,
which is followed by a section discussing the system’s user interface. Finally, the
chapter concludes with a discussion of the implementation process.

5.1 BASE Architecture Version

The version of the BASE architecture implementation that was used for this case
study implementation is called ‘The BASE Factory’ (Van Niekerk, 2021). This
version of the BASE architecture added the functionality of large-scale scalability,
the addition of a service directory, and improvements on robustness and resilience.
This version also introduced ‘basic resources’ which is a method of adding non-
BASE entities to the holarchy in order to provide services to the holons.

It must be noted, however, that this version of BASE uses the term activity for the
description of a task that a single holon executes. This term can cause confusion
when utilizing the BASE architecture for an ARTI architecture implementation, as
the ARTI architecture includes Activities. To avoid such confusion, these BASE
activities are simply referred to as tasks and the ARTI Activities remain Activities.
It may be seen within the implementation code however, that the implementation
still uses the term activity or the abbreviation act when referring to a BASE task.

 A basic web dashboard was also added for the management of holons. These were
all features that were found to be necessary for the implementation of this case study
system, and this was also the most recent revision of the BASE architecture at the
time of implementation, thus it was found to be a good choice for the
implementation of the ARTI-based HMES.

5.2 Implementation Programming Language

The BASE architecture implementations have been developed using the
Erlang/OTP programming language. Erlang is a functional programming language
“used to build massively scalable soft real-time systems with requirements on high
availability” and “has built-in support for concurrency, distribution and fault
tolerance” (Ericsson Computer Science Labratory, 2021). Although the Erlang
programming language was designed for use in the telecommunications industry, it
has been shown that it can work well as a platform on which to implement holonic

Stellenbosch University https://scholar.sun.ac.za

40

systems (Kruger & Basson, 2017; Sparrow et al., 2021). Implementing the BASE
architecture on the Erlang/OTP platform allows it to be an easily scalable and fault-
tolerant platform on which to build holonic systems. For these same reasons, and
for improved interoperability, and reduced development effort, the Erlang/OTP
programming language was selected for the implementation of this case study
system.

5.3 Case Study System Low-Level Control

The hardware setup for the case study implementation remains largely unchanged
from the default setup of the Mini-Factory. The only software changes that were
made were that the ‘Main’ controller was not utilised for the case study, besides for
its function as an MQTT broker. This is due to it not providing much valuable
contribution to the case study, as it is solely responsible for the MQTT broker, the
MQTT bridge connection, the surveillance camera, and the environmental sensor;
most of which were not needed in the case study. The major changes that were made
to the system, however, are all software-based changes. The Mini-Factory’s default
software setup uses an FSM on each controller for the control of the hardware
resource. The controllers listen for messages from the main controller on certain
MQTT topics for instructions to perform their pre-defined tasks. Once a task is
triggered, the process is mostly automated on the low-level, with the main controller
waiting for acknowledge messages from the other controllers before starting the
next activity.

The low-level software on the resource controllers was thus rewritten to provide
more granular control over the resources using MQTT messages. The topic names
were also changed to be more suitable to the implementation. Tables 15 to 18 in
Appendix B outline the new MQTT interfaces of each resource after the changes
had been implemented, including the topics that it is subscribed to, the topics that
it publishes to, the payload format, and a description of the payload.

These changes essentially removed the intelligence, decision making and
automation from the low-level hardware control system in order to allow full
control of the system from the high-level HMES. The changes also increased the
granularity of the control possible from the high-level, such that more individual
operations were possible. The low-level control system did however remain in
control of individual hardware components and their actuations.

Further changes to the case study system were carried out during the testing and
evaluation phase of the case study. These subsequent changes are discussed in
section 6.2.

The high-level HMES implementation runs in an Erlang shell on a host PC which
is connected to the Mini-Factory wireless network. This allows the host PC to be
able to send/receive messages to/from the controllers on the network via the MQTT
protocol.

Stellenbosch University https://scholar.sun.ac.za

41

5.4 Scheduling

This case study system uses a simple but effective method of scheduling.
Scheduling consists of AIs contracting the services of RIs through the CNP for each
process step that needs to be carried out. Once the first process step is completed,
the CNP is followed again to secure a service provider for the second step and so
on. Schedule slots are also booked sequentially, meaning that an activity cannot
book its task between two other tasks in the resource’s schedule. This is done to
prevent the case of an activity taking longer than it is expected to and running into
the booked schedule slot of the next task. Since the system state is constantly
monitored, this scheduling method allows for the case where if one resource goes
offline, that the system is able to detect the offline resource and carry on with the
activity, provided that there is another resource of the same type in the system. A
problem that could arise from this method, however, is that it is possible for a
workpiece to become ‘stuck’ on the production line, if for some reason midway
through the production cycle the next resource in line became unavailable. This
problem is fortunately highly unlikely in the case of the Mini- Factory, as the
workpiece follows a single, linear production line, where the next resource station
in the production line could not be booked unless the previous station was booked
as well. This could however happen if one of the resources went offline and the WP
did not have an alternative path.

In the CNP followed by the AI when scheduling tasks, proposals are received from
the RIs that contain their earliest estimated completion times. These estimated
completion times are calculated by the RTs by using the resource’s schedule and
the “maximum task duration” attribute. The resource’s schedule consists of a list of
scheduled tasks, each with their expected starting and end times and, depending on
the task’s state, recorded start, and end times.

The latest task on the resource’s schedule is found; if that task has already been
completed, and there are no other tasks on the schedule, the proposed task’s starting
time is set as the current system time. The estimated completion time for the
proposed task is calculated by adding the maximum task duration to the starting
time.

If the latest task in the resource’s schedule is still ongoing (thus the task is in
execution), then the starting time is set as the estimated completion time of the
ongoing task, which is calculated using the task’s maximum duration attribute,
added to the task’s actual starting time. The proposed task’s estimated completion
time is then calculated by adding the proposed task’s maximum duration to the
starting time.

Lastly, if the latest task on the schedule has not started yet, then the start time of the
proposed task is set as the ongoing task’s estimated completion time (calculated
from maximum duration attribute and estimated starting time).

Stellenbosch University https://scholar.sun.ac.za

42

These estimated completion times received in the proposals are then all compared
in order to find the proposal with the earliest estimated completion time. This
method of calculating the estimated completion time of the proposed task can
however be very inefficient, as the resource utilization rate drops very low if there
are big variances in individual task durations, as the schedule is based on maximum
waiting times. This is fortunately not a significant problem for this case study as
task durations are fairly consistent. For tasks that have higher variances in their
durations, it is suggested that alternative scheduling methods be used.

This scheduling strategy is reactive and adaptive, where if a resource goes offline
before a booking is made, the system will react and book an alternative resource for
the required task. Scheduling is also proactive as the selection of which resource to
use is based on the earliest estimated completion time for a certain task. The AI
proactively selects the option that favours its own goal of completing its task in the
shortest time possible, which also makes the scheduling system a rational decision-
making component. Through the use of holon attributes, the system is also capable
of learning from its experiences by analysing previous task durations in order to
update the estimated task duration. This allows for scheduling to potentially
improve over time, as the system learns what its resources are capable of.

More complex scheduling systems can be implemented for the system in order to
improve scheduling and system performance, but for the purposes of this case study
a simplistic and reliable scheduling system was favoured in order to keep the focus
of the case study on the implementation of the ARTI-based HMES. A possible
alternative method of scheduling is with the aid of a DMAS that would calculate
the best schedule based on information from all holons that is constantly updated.
The Exploring Ants would constantly ‘explore’ the holarchy for potential paths for
the production process to follow and for the best path for the next production step
and relay this information back to the scheduling holon (the AI in this case). Once
the AI has selected its intended resource holon and schedule time, the Intention
Ants spread these AIs intentions and decision to the other holons in the holarchy.
The Feasibility Ants then constantly look for alternative paths in the background,
and if a better or more suitable path is found (a path with an earlier estimated
completion time) then they will inform the AI, and the schedule will be changed.
This method of scheduling is potentially more efficient and performance improving,
but it is also vastly more complex. Since the simpler scheduling system is still
sufficient for the purposes of this case study and its goals and requirements, the
simpler scheduling is selected.

5.5 Communication

System communications are detailed in this section. Communication types include:
inter-platform communications, which are communications between the high-level
HMES and the low-level hardware control platform; inter-holon communications,
which are communications between different holons in the HMES; and intra-holon

Stellenbosch University https://scholar.sun.ac.za

43

communications, which refer to the internal communications between different
components of a holon.

5.5.1 Inter-platform Communications

As briefly mentioned before, inter-platform communications messages are
broadcast using the MQTT protocol. The high-level execution control system uses
a MQTT client service provider which subscribes and publishes to the respective
topics of the different resources, as shown in Tables 2 to 5. Each low-level
controller also runs a MQTT client to subscribe to their respective topics to listen
for control instructions. The low-level controller also publish state and
acknowledge messages to their respective topics.

The MQTT Quality of Service (QoS) differs depending on what type of message is
being sent. For control instructions that are being sent to the resources, as well as
acknowledge messages sent by the resources, a QoS level 2 is used, to ensure that
the message is received by the resource, and that the message is only received once,
as duplicate messages could cause problems in the system by triggering the same
task twice. For other types of messages, such as state messages and stock messages,
a QoS level 1 is used to ensure that the message is sent at least once, but it is not
catastrophic if the message is received more than once.

As a precautionary measure, and as a means of organising data, a timestamp is also
included in each MQTT message sent. This timestamp is checked on the receipt of
the message, and only processed if the timestamp matches the current time within
a couple seconds.

In terms of security, for the purposes of this case study, the MQTT messages are
transmitted unencrypted over socket 1883 as messages remain on the local network
and there is a low chance of the messages being intercepted. TLS/SSL could also
be used instead with relative ease if it were deemed necessary. The MQTT broker
that all messages are transferred through is hosted on the Main TXT controller and
uses the TCP/IP protocol over the local wireless network to transmit the messages.

The format of the MQTT messages vary depending on the type of message, but all
messages are formatted using the JSON syntax. Tables 17 to 20 in Appendix B
show the payload formats for all types of system MQTT messages. An example of
a control instruction message is shown in the JSON snippet below:

1. {"ts":"2021-04-27T13:51:03.010Z",

2. "code":4,

3. "workpiece”: {"id": "0416ae4a616080",

4. "state”: "RAW",

5. "type": "BLUE"}}

Stellenbosch University https://scholar.sun.ac.za

44

5.5.2 Inter-holon Communications

Inter-holon communications are handled primarily by the BASE architecture’s CM,
which is a part of each BASE holon. Communication consists of synchronous
messages between holons’ CMs. These messages include the message type, as well
as a service contract that is generated by the client.

Message types vary depending on the purpose of the message; primarily inter-holon
messages are in the form of requests, and generally request a service from the other
holon. These service contracts are mutual agreements between a service provider
and a client for the service provider to provide a certain service at a certain time for
the client. Contracts contain information such as client details, service provider
details, service details, a service proposal, and a service package. The service details
could contain any information that is relevant to the specific service but will always
contain the type of service that is required, the starting time of the service and any
additional request arguments. The service proposal is used for messages sent as part
of the CNP and contain a proposal from the service provider to the client. This
proposal remains a part of the contract for the duration of the contract’s life. The
service package is a package that is delivered to the client, as a part of the contract,
once the requested service has been completed. This package contains the
completion status of the service (whether it completed successfully or if it failed),
the actual starting and completion times of the service, as well as any other relevant
information. Included together with this service package is the method of delivery
to the client that is necessary.

Another type of communication that occurs between holons is ‘inform’ messages.
These are also synchronous messages and are purely for the purpose of delivering
information to a holon. These messages contain the ‘inform type’ data field, as well
as a data field which includes the message payload. These inform messages are
primarily used by the MQTT service provider to notify a holon of a received MQTT
message but can be used for a multitude of purposes.

5.5.3 Intra-holon Communications

Intra-holon communication varies widely. Primarily, these messages consist of
synchronous calls between a plugin and a BASE core component. The BASE
architecture also provides a comprehensive API for communication with the core
components. Generally, when possible, API functions are used instead of direct
calls to components, but for certain functionalities it is necessary to use direct calls.
API functions are used for multiple functionalities, namely: service finding and
service requests; starting activities; adding, removing, and retrieving activities from
the schedule; retrieving, deleting, and updating attributes; retrieving and updating
activity data; retrieving core component reception addresses; and retrieving and
updating business cards. Since intra-holon communications are very specific to the
function that is being performed, it will be discussed in greater depth in section 5.6.

Stellenbosch University https://scholar.sun.ac.za

45

5.6 Plugin Development

5.6.1 Overview

The plugins developed in this section were combined with instances of the BASE
core to form the holons of the ARTI architecture. Each holon within the defined
holarchy for this implementation consists of an instance of the BASE core, along
with four plugins (SP, EP, RP and AP), an additional plugin functionality module,
and in some cases a module with the behaviour of an FSM. Figure 9 illustrates the
internal software architecture of a generic holon in the implementation, including
the primary plugin modules, the additional plugin functionality module, as well as
the FSM module.

Figure 9: Generic Holon Plugin Modules

Figure 9 serves to provide an illustration of the plugins and interfacing modules of
a generic holon as a reference for the remainder of this chapter. Individual holons
may, however, differ in configuration.

5.6.2 Resource Type Plugins

5.6.2.1 Overview

The HMES included two RT holons. One for the RI holons on the top-level of the
holarchy; and the second for the ARI holons. Besides for the change in service

Stellenbosch University https://scholar.sun.ac.za

46

names, these holons are essentially identical. As discussed previously, this is due to
the hardware resources in the case study system being highly similar in
functionality. For the purposes of differentiating between the two holons, the top-
level RT will simply be referred to as the RT, and the Aggregate RT will be referred
to as the ART. These holons each offer three services to other holons. The RT offers
the following services to the top-level holarchy:

• FIND_PROCESS_TIMES – This service finds the earliest estimated
completion time of a proposed task for a RI holon.

• RESOURCE_INSTANCE_STATUS_MONITORING – This service is used
by the AT holon in order to request the RT to check its RIs’ statuses and
report these back to the AT.

• RESOURCE_TYPE_STATUS – This service is also used by the AT holon in
order to request the status of the RT holon to be sent to the AT.

The ART offers similar services to the aggregate holarchy (the network of holons
that the aggregate holons are aware of), with slightly altered names.

These services are each complemented with internal RT and ART holon tasks of
the same names. These tasks are enabled through the use of scheduling, execution,
reflection, and biography plugins. For the purposes of reducing repetition, only the
RT holon plugin development will be detailed.

When the RT holon is started up, a plugin settings file is passed to the BASE core.
This is a text file formatted using JSON with the following data: the names and
locations of all the plugins that need to be started and added to the holon; and
arguments for each plugin. A snippet of the RT plugin settings file for a single
plugin (AP) is shown below:

1. "1":{"args":{"config": "resource_type",

2. "attributes": []},

3. "file_or_folder": "resource_type_ap",

4. "type":"file"}}

The arguments that are specified for each plugin are passed to the plugin start-up
functions upon plugin initiation, which allows the plugins to access these arguments
and process them as needed.

5.6.2.2 Scheduling Plugin

The purpose of the SP in the RT is, as the name suggests, to handle the scheduling
of the holon tasks. This includes handling requests from other holons and handling
other administration related tasks.

Stellenbosch University https://scholar.sun.ac.za

47

In the init function, the resource configuration of the RT is read from its start-up
arguments and saved to the plugin’s variable map. For this SP the configuration
could either be resource_type or aggregate_resource_type. This affects many
functionalities within the plugin, but primarily the services that it provides and the
tasks that it can perform. During the initialisation of the plugin, it must also register
for service handling with DOHA, for its services to be added to DOHA’s service
registry, for other holons to use.

The RT SP handles requests from other holons by checking received contracts to
find what the requested service is. If the requested service is a part of the holon’s
provided services, further information is fetched from the request arguments in the
contract, and a new task is scheduled through the Schedule API. In this call, the
Stage 1 activity data map (henceforth referred to as S1Data) is also added to the
task, which includes the task’s contract, and the activity’s scheduled status.

Due to RT tasks not interacting with hardware, it is not necessary to follow the CNP
for scheduling. Requested tasks are scheduled for immediate execution. In
conventional programming languages this could become a bottleneck if many
requests are received simultaneously, but thanks to Erlang’s high concurrency, it is
possible for a new process to be spawned for the handling of each call that the plugin
receives.

5.6.2.3 Execution Plugin

The EP is responsible for receiving a call from the Schedule component of BASE
core to signal that a scheduled task is ready to be started. The plugin then utilizes
the Schedule API to start the activity. The execution of the activity is then started,
after ensuring that the activity contains S1Data and that the S1Data contains a valid
contract. The activity status is then updated to reflect that the activity has started.
If the S1Data was not valid, the activity would be ended, and its status would be
changed to failed and a reason for failure would be attached.

The EP then continues the execution of the task by calling a function in an auxiliary
module called resource_type, as shown in the code snippet below:

1. Reply = resource_type:tasks(Contract, Act, MyBC, maps:get(my_pid,
VariableMap), State);

This module and the task execution is detailed in section 5.6.2.6. The execution of
the task is then moved to this module in order to keep this EP as generic as possible
so that it can be used by both the RT and the ART.

The tasks function can return one of two reply tuples: either {ok, done} or {error,
Error}, with Error being a variable that contains the reason for the error. The task
is then completed once this tasks function returns with a reply, and the Stage 2
activity data (henceforth referred to as S2Data) for the activity is updated, based on
the outcome of the task.

Stellenbosch University https://scholar.sun.ac.za

48

The successful completion of a task is done by making a call to the ActivityHandler
and updating the task’s state to done. The unsuccessful completion of a task is also
updated with the ActivityHandler as done, in order to stop the execution of the task.
Note that the task status as well as the error reason is added to the Stage 2 data, so
that this information can be sent to the client that requested the service. This is
shown in the code snippet below:

1. ok = gen_server:call(ActivityHandler, {done, #{task_status => failed,
error => Error}});

The RT EP is also responsible for receiving the status of its RIs. Once a status
message has been received, the resource configuration is retrieved from the
message, and then the message is parsed based on the resource configuration. The
parsed information from the status message is then saved to the RT variable map,
where it can be accessed later when requested by the AT.

5.6.2.4 Reflection Plugins

The RT’s RP is primarily responsible for recording completed task information to
the BASE Biography. In order to do this, the RP has to register for the reflection of
certain task types. This is done through the Execution component’s API, with a list
of task types, for which to register, as an argument.

When the plugin receives a call to notify it that there is a completed task that is
ready to be reflected, the plugin calls a function in the resource_type module that
handles the reflection of the respective task. The task data is passed to this function
as an argument. This is done so as for the RP to remain as generic as possible, so
that it can be used for both the RT and the ART.

5.6.2.5 Analysis Plugins

The AP has the primary function of analysing the Biography of the holon in order
to update its attributes. However, for the case of the RT and ART plugins, no
attributes are updated as in this implementation they do not have attributes that are
used that are common to more than a single resource.

5.6.2.6 Resource Type Plugin Functionalities

The resource_type module is specific to the RT holon, however the ART holon’s
aggregate_resource_type module is extremely similar, besides for the names of the
tasks. This module is used as a code container for functions used by the RT plugins.
It contains functions for the execution, reflection, and analysis of tasks, as required
for the RT holon. Its functionalities are:

• Execute, reflect on, and analyse the find_process_times task.

• Execute, reflect on, and analyse the resource_type_status task.

Stellenbosch University https://scholar.sun.ac.za

49

• Execute, reflect on, and analyse the resource_instance_status_monitoring
task.

The find_process_times function receives a list of scheduled and executing tasks,
as well as the max_wait_time attribute for that task from the RI as request arguments
in the contract. This information is then used to calculate the earliest estimated
completion time for the proposed task, using the method previously discussed in
section 5.4. The calculated earliest estimated completion time and its corresponding
starting time is then returned to the RI as a part of the service package.

The resource_type_status function sends the RT status to the requester, which
includes statuses of all RI holons. The function receives the following arguments:
a reply address from the service contract to which it sends the requested RT status;
and the EP state blackboard. The statuses of all configurations of RIs are retrieved
from the EP variable map, as well as the RT status. This information is then
compiled into a status message and sent to the client via a call to the client’s reply
address.

The resource_instance_status_monitoring function finds all RIs, through DOHA,
which advertise the service resource_instance_status. A request is then sent to them
requesting their statuses. The list of business cards of these RIs is found through the
DOHA API, as shown below:

1. {ok,BCList}=doha_api:find_service_providers(“resource_instance_status”),

For the case of the RT and ART holons, it is not necessary to add any additional
information to the biography for tasks, besides the already captured S1Data and
S2Data. As discussed before, the analysis of the biography for the RT is also not
necessary. Thus, the reflection and analysis functions of the RP and AP do not serve
any purpose in this holon.

5.6.3 Resource Instance Plugins

5.6.3.1 Overview

The HMES in this case study consists of five RI holons and two ARI holons. The
five RI holons each use the same plugins for their BASE core, which have been
designed to be generic to all the configurations of the hardware resources. These
plugins interface with configuration-specific function modules, as with the RT and
ART, for their customised functionalities. The ARI holons work in a similar
manner, with a single set of plugins servicing the two ARI holons. The ARI and RI
plugins are extremely similar, besides for tasks, services and configurations having
different names. For the purposes of detailing the implementation of these holons,
all seven of these holons are considered to use the same set of plugins for their
instance of the BASE core. Key differences between the RI and ARI plugins are
discussed. The RI and ARI holons also each make use of custom FSM modules for

Stellenbosch University https://scholar.sun.ac.za

50

controlling task execution. These modules are also discussed together with the
function modules.

Similar to the RT holons, the RI holons’ configurations are set when the holon is
initialized, by reading in a configuration file. This configuration file specifies which
plugins are to be used by the holon, what the holon’s hardware configuration is,
what MQTT topics should be used for communication with the resource, and then
any additional arguments for the plugins, such as default attributes. A HBW RI
configuration file snippet for the EP and AP modules is shown below as an example
of these configuration files:

1. {"1":{"args":{"config": "hbw",

2. "topics": ["hbw/ack", "hbw/stock", "state/hbw",

3. "vgr/ack"]},

4. "file_or_folder": "resource_instance_ep",

5. "type":"file"

6. "4":{"args":{"config": "hbw",

7. "attributes":[{"id": "MAX_WAIT_TIME_FETCH_WP",

8. "type": "PROCESS_TIME",

9. "context": "SECONDS",

10. "value": "45"}]},

11. "file_or_folder": "resource_instance_ap",

12. "type":"file"}}

5.6.3.2 Scheduling Plugins

The SP of the RI holons has two essential responsibilities: RFP handling; and
request handling. The SP is also responsible for registering with DOHA for service
handling. Since each of the RI holons provide unique services to the holarchy, their
individual service definitions are contained within the holons’ configuration-
specific function modules. This service information is then retrieved by the SP for
use in service registration and handling. The process followed for service
registration is similar to that of the RT SP.

This SP also has to register to receive attributes of a certain type, which are used in
the handle_rfp function to facilitate scheduling. The attribute type that the SP needs
are defined as follows:

1. -define(ATRTYPE, ["PROCESS_TIMES"]).

This ATRTYPE definition is then used when the plugin registers itself, during
initialization, to receive updates to all attributes of this type.

When the RI SP receives an RFP call from another holon (typically an AI holon),
the handle_rfp function is called. This function retrieves the holon’s scheduled and
currently executing tasks for the next hour (through the Schedule and Biography

Stellenbosch University https://scholar.sun.ac.za

51

APIs), and then makes a request to the holon’s RT to calculate its process times,
with the Schedule and Biography information, as well as the proposed task’s
max_wait_time attribute, as arguments. The DOHA API is used to find the BC (and
thus the address) of the RT holon, as having the RI permanently store the address
of the RT could lead to a situation where the saved address is no longer the RT’s
address, as the RT’s address had changed for some reason. Calculating process
times involves calculating the earliest estimated task completion time, along with
the corresponding starting time, using the Execution and Schedule information of
the holon, as discussed previously.

Once these process times have been received from the RT, a proposal is created,
indicating that the RI has accepted the RFP, and which includes the RI’s proposed
best task completion time. This proposal is attached to the contract received in the
RFP and returned to the requester. This simple proposal is shown below:

1. Proposal = #{reply => accept, proposed_finish_time => FinishTime},

If the requester decides to accept the proposal, they make a request, including the
proposed contract, to the RI SP to add the proposed task to the RI’s schedule. This
is handled by the handle_request function. This function confirms the validity of
the contract and proceeds to add the proposed task to the RI’s schedule through the
Schedule API. The S1Data map is also created before scheduling the task, which
includes the contract, task-specific data, such as the task status, and a timeout value.
This timeout value is configuration and task specific, and is used within the FSM,
which handles the execution of the task, as a timeout for waiting for the completion
of a specific task. An example of the scheduling of a HBW task is shown in the
code snippet below:

1. S1DataMap = #{contract=>Contract,activity_data=>#{activity_status =>
scheduled}, timeout => hbw:get_timeout()},

2. {ok,"success"}=sched_api:new_act(Sched, ServType, StartTime, S1DataMap)

5.6.3.3 Execution Plugins

The EP of the RI holons has multiple responsibilities: to subscribe to required
MQTT topics for communication with the respective hardware stations; to receive
MQTT messages from those subscribed topics, from the MQTT service provider;
and to start the execution of tasks and update their status.

The EP subscribes to MQTT topics that are defined in the start-up arguments of the
holon. It does this by using the DOHA API to search for a MQTT service provider
in the system, and then sending a request to this service provider to subscribe to a
certain topic. This MQTT service provider will then inform the EP of any new
messages on this topic. The subscription to these topics is carried out in the
initialization of the holon through a recursive function that receives a list of topics,
as well as the service provider’s BC as arguments. Each time that the function is
recursively called, it makes a request to the MQTT service provider to subscribe to

Stellenbosch University https://scholar.sun.ac.za

52

a single topic. The contract that is created between the RI EP and the MQTT service
provider includes the task that is being requested from the service provider
(subscribe), the topic that needs to be subscribed to, as well as the Process Identifier
(PID) of the EP as the delivery address for the received MQTT messages.

The initialization of the EP then also includes registration with DOHA for the
execution of tasks of a certain type. This is done similarly to the RT EP where the
task types that are being registered for are configuration-specific and are retrieved
from the configuration-specific function module. An added step to the initialization
of the RI EP is that of spawning and starting the configuration-specific FSM process
that handles the execution process of tasks. The FSM process can be seen as another
EP, as it is only utilized within the EP. Communications between the primary EP
process and the FSM process are however not direct, as the communications first
pass through the plugin functionality module’s process.

The execution of tasks is handled in a similar manner that tasks are handled in the
RT EP. Once the task is ready for execution, the EP is called to handle the task.
This then starts the handle_act function, which subsequently calls the execute
function. This function updates the S2Data of the task to reflect that the task is in
progress. A MQTT service provider is then found through the DOHA API, which
returns a BC.

This is done as the execution of RI tasks relies on MQTT communications with the
hardware resource. If there are no MQTT service providers, the task fails, and the
client is notified of the reason for the failure. If a service provider is found, the
validity of the contract in the S1Data is checked, and if not valid, the task’s S2Data
is updated with the reason for failure. If the contract is valid, the configuration of
the EP is checked via a simple case statement and the task is handed off to the tasks
function of the respective configuration-specific function module.

This function, similarly to in the RT EP, replies with a tuple that either contains
{done, WP} or {error, Error}, depending on the outcome of the task. The task’s
S2Data is then updated accordingly. The WP variable that is also returned in the
reply from the function contains the WP information relating to the WP that the
executing task was executed on. This WP data is included in the final S2Data and
is eventually relayed to the AI which requested the task, which allows the AI holon
to keep track of the WP as it progresses through the production line.

Received MQTT messages are handled by the handle_call function, which handles
calls with the packet: {inform, Content}. This function is used for messages with
the intent to inform the EP of external events. The Content variable is a map, and
contains a key called purpose. The value related to this key is checked, and if it is
mqtt_received, the function relays the message to the respective configuration-
specific function module for further processing.

Stellenbosch University https://scholar.sun.ac.za

53

5.6.3.4 Reflection Plugins

The RI reflection plugin calls a function in the configuration-specific function
module to handle the reflection of the task. The specific function depends on the
task type that needs to be reflected. The resource_instance_status task is, however,
reflected from within the RP, as it does not need any additional Stage 3 activity data
(henceforth referred to as S3Data) added. Reflection functionalities for the
remaining task types are discussed in each configuration-specific function module’s
section.

5.6.3.5 Analysis Plugins

The RI AP is responsible for analysing RI tasks that have been completed and
moved into the biography, and using this analysis to update the holon’s attributes.
The primary attribute type that is analysed and updated within the RI holons is the
process_times attribute type. This is due to the process_times attribute type
encompassing the max_wait_time attribute, which is used in the scheduling of tasks.
This attribute must be continuously updated after each task in order for the attribute
to remain relevant and for the scheduling to remain functional. Another function
that is performed in the AP is that of attribute inheritance from the RT upon
initialization of the RI.

The AP registers with the Biography so that completed tasks are sent to the AP for
analysis. This is done through a Biography API function call, with the task type
(ActType) of the task that the AP wants to register for as an argument:

1. {Res,OldActs}=bio_api:register_analysis_plugin(BioPid, MyPid,
hd(ActType)),

This function call returns with a response of whether the call was successful or not,
and with a list of previously completed tasks that have not been analysed yet.

In order to keep the AP generic between RI configurations, the analysis of tasks is
completed by a function in the configuration-specific function module, similarly to
how reflection is done by the RP. This is done by calling the respective analysing
function for the task, as shown below in the code snippet from the HBW
configuration, for the hbw_fetc_wp task:

1. {NewVariableMap, NewAttributeList} = hbw:analyse_hbw_fetch_wp(Act,
VariableMap, AttributeList);

This function receives a completed task, the AP state variable map, and the AP
attributes list as arguments, and returns a new variable map, containing a attributes
list with the updated attributes.

Attribute inheritance for RI holons takes place in the following manner: the RT
holon sends a request to the RI holon to start the attribute inheritance task (e.g.

Stellenbosch University https://scholar.sun.ac.za

54

hbw_inherit_attributes). The contract sent in this request contains a single attribute
that needs to be either added to or updated in the RI. The task is then scheduled,
and when executed, the task completes immediately, and passes through the RP to
the Biography, without any processing being done. This is in order to get the task
to the AP, where the attributes of the holon can be updated. The AP then retrieves
the attribute elements from the contract and creates a new attribute record with these
values. This new attribute is then either added to the attribute list, or the existing
attribute is updated with the new values. This new/updated attribute list is then
saved to the Attributes through the Attributes API:

1. {ok,"success"} = atr_api:save(AtrRecep, AttributeList),

This process is then repeated for all attributes that need to be inherited.

5.6.3.6 Configuration-specific Function Modules and FSMs

Besides for task and function name changes, respective to the tasks offered as
services by each configuration of RI, the configuration-specific function modules
and FSMs are very similar to each other. For the sake of reducing repetition, only
the function module and FSM for the HBW configuration will be detailed, as it is
representative of all the other modules. The only exception to this is the PLA
configuration module, as it is an aggregate and will be discussed in the following
section.

The HBW RI module is called hbw and is responsible for the execution of most
functionalities and tasks related to the HBW RI configuration. The HBW RI
provides multiple services to the holarchy. These services are defined in the
functions get_serv_types() and get_act_types(). These functions are used by
plugins to retrieve HBW service information. Shown below are these functions, as
well as the function get_atr_types() used by the SP to find the attribute types that
are needed for scheduling:

1. get_serv_types()->

2. ["HBW_FETCH_CONTAINER", "HBW_STORE_WP", "HBW_FETCH_WP",
"HBW_STORE_CONTAINER","HBW_RESET_STORAGE","HBW_INHERIT_ATTRIBUTES",
"RESOURCE_INSTANCE_STATUS"].

3. get_act_types()->

4. ["HBW_FETCH_CONTAINER", "HBW_STORE_WP", "HBW_FETCH_WP",
"HBW_STORE_CONTAINER","HBW_RESET_STORAGE","HBW_INHERIT_ATTRIBUTES",
"RESOURCE_INSTANCE_STATUS"].

5. get_atr_types()->

6. ["PROCESS_TIMES"].

Executing tasks are handled by the function tasks. This function is called from the
EP and takes the FSM PID, the contract, the task type, the MQTT service provider’s
BC, the EP’s state and the hardware timeout, as arguments. The function checks the
task type, and then depending on the type of task, calls the respective FSM function
to start the execution of the task. Two exceptions are the resource_instance_status

Stellenbosch University https://scholar.sun.ac.za

55

task and the hbw_inherit_attributes task, which are executed from within the
module. The former is executed by retrieving the RI’s current state from the EP’s
state variable map and sending the created status message to the client.

The hbw_inherit_attributes task, as mentioned before, has no executing elements
and is immediately completed so that the task can continue to the AP. This is done
by having the function return {done, #{}} immediately.

The remaining service tasks are executed by the hbw_fsm FSM module. The HBW
FSM has four states: idle, notify_vgr, waiting_vgr and waiting. Figure 10 shows the
state diagram for a generic FSM as used by multiple RIs in the HMES.

The idle state waits for a synchronous event call to the FSM that initiates the start
of a specific event. This call is made from within the hbw_fsm module from task-
specific functions that are exported for use by the tasks function in the hbw module,
in order to start the execution of the tasks that are offered as a service by the RI. An
example of this for the hbw_fetch_wp task is shown below:

Figure 10: FSM State Diagram

Stellenbosch University https://scholar.sun.ac.za

56

1. hbw_fetch_wp(OwnPid, Contract, ServBC, Timeout) ->

2. try

3. Reply = gen_fsm:sync_send_event(OwnPid, {fetch_wp, Contract,
ServBC}, Timeout*1000)

4. catch

5. Error:Reason -> _Res = timeout(OwnPid),

6. {error, hbw_timeout}

7. end.

This call then sends a synchronous event to the gen_fsm. If the FSM (and thus the
resource) is in the idle state, the call is handled by the function:

1. idle({fetch_wp, Contract, ServBC}, From, State) ->

This function then retrieves the request arguments from the contract and creates a
new contract with the MQTT service provider that was included in the function
arguments. This contract includes the following information as part of its request
arguments:

1. Mqtt_message = {"ts": Mqtt_time,

2. "code": Code,

3. "workpiece":{"id": WP_ID,

4. "state" : WP_State,

5. "type" : WP_Type}},

6. OutRequestArgsMap = #{task => publish_message, topic => Topic,
message => Mqtt_message, qos => QoS},

The Mqtt_time variable is populated by the hbw:mqtt_time() function which gets
the current UTC time and formats it in the ISO-8601 format, which is supported by
the low-level hardware controllers, and shown below:

“YYYY-MM-DDThh:mm:ssZ”

When the low-level hardware controllers receive a message on their respective
MQTT topics, they check the code value in the MQTT message to determine which
task needs to be carried out. Thus, the code variable in the above code snippet refers
to the hardware tasks as specified in Appendix B. As previously discussed, the QoS
for these instruction messages is set to 3 in order to ensure that the message is
delivered, and that it is only delivered once. The Mqtt_message also includes the
information on the WP related to the task. This contract is then included in the
request that is sent to the MQTT service provider. If the MQTT message is
successfully sent, the FSM is then moved to the notify_vgr state. If the request is
denied, the FSM replies to the initial calling function (the hbw_fetch_wp function)
with the respective error. This is then passed back to the hbw:tasks function as a
reply, which in turn passes the error message back to the RI EP as a reply. The
executing task is then marked as done, with the task status failed.

Stellenbosch University https://scholar.sun.ac.za

57

The notify_vgr state then waits for the HBW hardware resource to send an MQTT
acknowledge message that the WP has been fetched and is awaiting collection. The
message is initially received by the RI EP and is then passed on to the
hbw:mqtt_received function. This function is later discussed in more detail. This
function then calls the hbw_fsm:fetched() function to notify the FSM. The FSM
then moves onto the WaitingVGR state, where an inform message is then sent to the
client that requested the hbw_fetch_wp task to notify it that the WP has been fetched
and is ready for collection. This allows the AI to start the next step, which in normal
use would be for the VGR to pick up the WP. The FSM then transitions to the
waiting_vgr state, where it awaits, until a timeout, for the VGR to notify it that it
has picked up the WP. Once this message has been received, the FSM sends an
MQTT message, in a similar manner to previously described, to the HBW hardware
resource to store the now-empty container. If the VGR does not notify that the WP
has been picked up within the allotted timeout time, the WP is stored again. The
FSM then transitions to the waiting state, where it awaits the completion of either
store_container or store_wp. Once the acknowledge message that the WP/container
has been stored has been received from the hardware resource, the FSM replies to
the original calling function (hbw_fetch_wp) with {done, WP}, where the WP
variable is a map that contains the current WP’s information. This in turn gets sent
back to the hbw:tasks function as a reply, and then gets sent to the EP, again as a
reply. The function is then successfully completed from the EP.

The other service tasks that can be performed by the HBW RI are executed in a
similar manner, except that they do not utilize the notify_vgr and waiting_vgr states.
Once the task is started from the idle state, the FSM transitions to the waiting state,
where it awaits the acknowledge message that indicates that the task completed
successfully.

The mqtt_received function in the hbw module receives any MQTT message that
the EP received, along with the topic that the message was sent in, as arguments.
The message is then decoded depending on the topic of the message. If the topic
indicates that the message is an acknowledge (ack) message, then the JSON
message is decoded and information such as the timestamp, ack code, and WP
information is retrieved from the message. Then, depending on the ack code
received, a message is sent to the FSM that the HBW hardware has either fetched a
WP/container, or it has stored a WP/container. If the topic indicates that the
message is a status update message, the message is decoded and information such
as the timestamps, the state code, the active code, the description of the current
state, and the station’s name is retrieved and stored to the EP state blackboard. Stock
updates are also received in this manner, with the received current stock being saved
to the EP state blackboard. The HBW RI also subscribes to VGR ack messages, in
order to listen for Code 3 VGR ack messages which indicate that the VGR has
picked up a WP from the HBW.

The hbw module also contains functions that are used by the RP to reflect on the
various HBW RI tasks. These reflection functions are all similar in operation, only

Stellenbosch University https://scholar.sun.ac.za

58

using the different task names. The function is responsible for creating the service
package of the completed task, sending the service package to the client, and
updating the S3Data. This is done similarly to how it is done for the RT holons. An
example of the service package and service package delivery for the
hbw_fetch_container task shown below:

1. Contract = maps:get(contract,Stage1Data),

2. Package = #{act_name => "HBW_FETCH_CONTAINER", act_status =>
Act#stage3Activity.execution_info#execution_info.s2data, completion_time
=> Act#stage3Activity.biography_info#biography_info.tend},

3. FinalContract = maps:update(return_package, Package, Contract),

4. spawn_monitor(fun()->
contracts:deliver_package(FinalContract,Package)end),

The hbw module lastly contains functions for the analysis of completed tasks in the
AP. The analysis that occurs is relatively simple for the RIs in this case study, as
the only attributes that are used for the RIs are the task process_times attributes.
These are updated by first calculating the duration of the completed activity, and
then updating the max_wait_time attribute for that task by determining if the current
task’s duration was greater than the existing max_wait_time value for that task, and
if so, updating the attribute with the new duration value.

5.6.3.7 PLA Function Module and FSM

The PLA RI is a unique holon in that it is essentially a broker for the services of the
aggregate system. It thus does not require any functionality of its own besides
relaying requests from the top-level system to the aggregate system. Due to the
plugins used by the other RI holons being generic between configurations, the PLA
RI uses some of the same plugins, albeit with a few changes.

The aggregate system only provides two services: process and pla_maintenenace,
and since the maintenance activity does not encompass much functionality, the
process activity is used as an example for this discussion.

Similar to the other RI holons, the SP of the PLA advertises the services that the
aggregate system provides to the holarchy and handles requests and RFPs from
other holons. The inner workings of these functions differ to the other RIs however,
as requests and RFPs are relayed to the AAT holon for processing. As it would not
be feasible to spawn an entire new AAI holon to send out RFP calls to the ARIs,
this responsibility falls on the AAT. The AAT thus advertises an
aggregate_process_rfp activity to the PLA RI. When receiving an RFP for the
execution of a certain task, the PLA RI SP requests the AAT to perform the
aggregate_process_rfp activity, in a similar manner that the AT receives a request
to start a new activity (more on this in the next section). This RFP process is
illustrated in Figure 11.

Stellenbosch University https://scholar.sun.ac.za

59

RFPs are then sent by the AAT to the ARIs for each process step in the process
activity, in order to calculate the earliest estimated completion time for the proposed
process activity. The result of this activity is then sent back to the PLA RI SP to be
returned to the client as a part of the proposal.

When the PLA RI SP then receives a request, the SP schedules a pla_process task
for immediate execution. The execution of this task then follows a similar method
as for the other RIs, by passing the task from the EP to the pla module and then to
the pla_fsm module, with the only change being that instead of sending an MQTT
message to a hardware resource, a synchronous call is made to the AAT to request
the start of the proposed process activity at the agreed upon time, as stated in the
service contract. This activity then executes in the same manner that a top-level
activity would execute.

 When this activity has been completed, the service package is delivered to the
AAT, as it is seen as the client within the aggregate system, and the AAT relays this

Figure 11: RFP Process for Aggregated HMES

Stellenbosch University https://scholar.sun.ac.za

60

service package back to the PLA as a part of the service package delivery for the
pla_process activity, along with the status of the activity (either completed or
failed). The task then follows a similar process to other RI tasks, until it is
eventually completed in the PLA RI EP. The task then follows the normal procedure
of going through the RP, where the service package is created to reflect the status
of the aggregate activity and is then sent to the original client. The task is then sent
to the AP where the task duration is used to update the max_wait_time attribute of
the process task. This attribute is then seen as the aggregated information of the
lower-level aggregate system.

The top-level system thus does not know of the existence of the lower-level
aggregate system, which simplifies operations and hides complexity.

5.6.4 Activity Type Plugins

Three AT holons and two AAT holons exist in this HMES case study system. The
three AT holons are: Order Type, Maintenance Type and Delivery Type holons.
The two AAT holons are the Aggregate Process Type and the Aggregate
Maintenance Type holons. Although the AT and AAT holons differ slightly in
function, they are very similar once again in implementation. Due to this, and for
the purpose of reducing repetition, this section details the implementation of the AT
holons, and provides overviews of how the AAT holons differ in implementation.

Similar to RI holons, the AT holons all share a single set of plugins that have been
implemented to be generic amongst AT holons, with configuration-specific
functionalities handled by individual function modules and the execution of tasks
handled by FSM modules. Also, similarly to the RI and RT holons, the AT holons’
configurations are defined in a configuration file which is loaded when the holons
are initialized.

5.6.4.1 Scheduling Plugins

The scheduling plugins of the AT holons are very similar to the RT holons, in that
their primary responsibility is to handle requests to perform tasks that they are
registered to provide as a service. The Order AT registers to provide three services:
order_type, resource_type_status_monitoring, and activity_type_status services.
The order_type activity receives the requested WP colour in the request arguments
of the contract. This could also have been implemented as three different activities
(order_red, order_blue, order_white), but this was decided against as it would lead
to unnecessary code repetition as the activities would be virtually identical besides
for the colour of the WP. If the activities differed more, it might have been
justifiable to implement these as different activities. The Maintenance AT registers
maintenance and resource_type_status_monitoring services, the Delivery AT
registers a delivery_type service, the Process AAT registers a process service and,
lastly, the Maintenance AAT registers aggregate_maintenance and
aggregate_resource_type_status_monitoring services. The function within the SP
that handles requests schedules the requested activity to start immediately.

Stellenbosch University https://scholar.sun.ac.za

61

The requests that the ATs receive primarily come from the Dashboard Service basic
resource, which handles interactions between the web dashboard and the HMES
(discussed further in sections 5.6.5.2 and 5.7), and the requests that the AATs
receive are primarily from the PLA RI holon.

5.6.4.2 Execution Plugins

The EP of the AT is mostly similar to the EP of the RT but differs slightly in some
areas. An additional type of call that the AT EP needs to handle is a
service_package_delivery call. This call is made from a service provider, indicating
that a requested task has been completed. The EP handles this call by relaying the
call to the respective configuration’s FSM where the delivery package is processed.
The arguments passed to the EP on initialization are also unique, in that they include
a list of the individual process steps that are required to complete the respective
activity that the AT represents. The execution of a task from the EP standpoint is
similar to that of the RT holons in that the task is handed to the configuration-
specific module for execution, albeit with one change, the list of process steps is
also passed as an argument to the tasks function. The EP also sends a message to
the dashboard when an activity completes with the status of that activity.

5.6.4.3 Reflection Plugins

The reflection plugin works in the same way as the RT RP, with different function
names for the function calls to the configuration-specific module to reflect on the
tasks.

5.6.4.4 Analysis Plugins

The analysis plugin is similar to that of the RI and RT APs, in that it is responsible
for analysing completed tasks and updating the holon’s process_times attributes,
based on the analysis of completed activities. This analysis is done in the
configuration-specific module, as before.

5.6.4.5 Configuration Specific Function Modules and FSMs

The configuration-specific modules are similar to the RI configuration specific
modules in that they encompass task execution functionalities, reflection
functionalities and analysis functionalities. They also make use of gen_fsm modules
to carry out the execution of the tasks. To detail the workings of the configuration-
specific modules, the Order AT order_type module will be used as an example, as
the other configuration-specific modules work in a similar manner.

 The tasks function handles the execution of the tasks and separates the execution
functionalities based on the task type. The resource_type_status and
activity_type_status tasks work similarly to the
resource_instance_status_monitoring and resource_instance_status tasks in the

Stellenbosch University https://scholar.sun.ac.za

62

RT holons. The order_type task works in a different manner, as the AT holon
spawns AI holons to handle the activities of the AT.

The function starts by creating a unique name for the AI holon that is about to be
spawned. It does this by appending the Unix time to the word “ORDER.” This is
done to ensure a unique name of the AI holon as its name is used for identification.
The holon’s type is then set as “activity_instance” and the holon is spawned using
the spawn_activity_instance function. This function reads in the configuration file
for an order configuration AI, creates a new clean BC for the holon, and then creates
a new holon with this information, using the BASE resource creator API. This
process is shown in the code snippet below:

1. PluginSettingsFile = "activity_instance_order.txt",

2. Addr = #{ipv4 => "pending", erl_addr => Resource_ID},

3. Services = #{},

4. {ok, ChildBC} = business_cards:create_new_bc(Resource_ID, Resource_ID,
“activity_instance”, Addr, Services, pending, pending, []),

5. Response = base_resource_creator:new_base_resource(top_sup, ChildBC,
PluginSettingsFile),

The response from the API function process is then checked to see if the AI started
up correctly. This response is then sent as a reply to the calling tasks function
process.

If the spawning of the AI was not successful, the task fails and notifies the user that
the task failed for reason: spawn_ai_failed. However, if the spawning of the AI was
successful, the task continues by saving the AI holon’s BC to the task contract as
the service provider. An instance of the order_type_fsm is then spawned to handle
the NEU protocol communications between the AT and the AI. The order WP
colour is then retrieved from the contract and a WP is then found from the RI’s
stock. This is done by finding the WP, from the HBW stock status, of the right
colour nearest to the position A1 in the HBW (which is closest to the ‘home’
location of the HBW robot). This is done by simply looping through the stock map,
column by column, until a WP of the right colour is found. If no WP is found, the
activity is failed with the reason: no_wps_in_hbw. This WP’s information, along
with the contract, is then included in the arguments of the
order_type_fsm:start_order function, which sends a synchronous event call to the
AI’s FSM instance.

The order_type_fsm has two states, idle and process. The idle state has an entry
point for an event called start_order. This event starts the execution of the first
process step in the process step list for the order_type activity. This is done by the
AT requesting the AI to perform the order task. This task receives the name of the
process step task that the AI needs to perform, and then starts the CNP process for
the requested process step task. This process step is then removed from the list of
process steps, and the FSM transitions to the process state, until such a time that it

Stellenbosch University https://scholar.sun.ac.za

63

receives a service package delivery indicating that the requested task has been
completed.

The task status is retrieved from the service package, if the task failed, the failed
activity state and error reason from the service package is returned to the AT EP
where the activity is then updated as done, along with the status of failed. From the
EP the dashboard is then also notified of the activity (order) failure. If the task
completed successfully, the process steps list is checked to see if there are any
remaining process steps required for the activity. If there are none, the current WP
information along with the successfully completed activity status is returned to the
AT EP where the activity is updated as done, along with the status of completed,
and the dashboard is notified of the successful completion of the activity.

If there are remaining process steps in the list, the same procedure as in the idle
state is followed, and the FSM transitions again to the process state, waiting for the
delivery of the executing task’s service package, and repeating the process until all
process steps have been completed (or until a single task fails). Once all of the
process steps have been completed, or one of the steps have failed, the FSM replies
to the original calling tasks function process with the results of the execution. These
results are then included in the reply to the AT EP, where the activity is updated as
done, along with the status of the activity. The FSM is then terminated from the
order_type configuration-specific module. Once that has completed, the AI is also
terminated.

The other configurations of AT holons are implemented in a similar manner, with
the main differences being that the function, task, and activity names are different,
and that the process steps specified in the configuration file are different. The AAT
holons are also implemented in a similar manner, however for the AAT holons, the
client is the PLA RI instead of the Dashboard Service.

5.6.5 Activity Instance Plugins

Since AI holons are dynamically spawned and terminated as activities are started
and completed, there is no set number of AIs in the system at one time, but there
are four different configurations of the AI and AAI holons. These configurations
are tied to the configurations of the AT and AAT holons, as they are their instances.
There are three AI configurations: order, delivery, and maintenance; and there are
two AAI configurations: process and maintenance. As with all other holons, plugins
and plugin arguments are specified in the configurations’ respective start-up
configuration files. Similar to before, due to the similarity between configurations
of the AI and AAI holons, only the AI holons’ implementation will be detailed, with
key differences discussed.

Stellenbosch University https://scholar.sun.ac.za

64

5.6.5.1 Scheduling Plugins

The SP of the AI holons are responsible for handling requests from the AT holons
and scheduling these requested tasks for immediate execution. The AI SP is thus
very similar to the SP of the AT.

5.6.5.2 Execution Plugins

The EP of the AI is mostly similar to the EP of the AT but differs slightly in some
areas. The EP also receives service package delivery calls and relays them to the
FSM, where the service packages are received from the RIs. The EP start-up
settings files are also different, as they do not include a list of the individual process
steps that are required to complete the respective activities. Process steps are
received one at a time from the AT via the NEU protocol. The EP also spawns a
single FSM at initialization to handle execution, similarly to the RI holons. The
execution of a task from the EP standpoint is similar to that of the AT holons in that
the task is handed to the configuration-specific function module for execution.

5.6.5.3 Reflection Plugins

The RP works in the same way as the AT RP, with different function names for the
function calls to reflect on the completed tasks.

5.6.5.4 Analysis Plugins

The AP is similar to that of the AT AP, in that it is responsible for analysing
completed tasks and updating the holon’s process_times attributes based on the
analysis. This analysis is done in the configuration-specific module, as before.

5.6.5.5 Configuration Specific Modules and FSMs

Once again, due to a large similarity between the AI and AAI configuration-specific
modules, only the implementation of the order AI configuration will be detailed,
with key differences highlighted. The order function module is very similar to the
AT configuration-specific modules, however with one major difference: the AI
holons do not spawn instance holons or FSM instances.

The order_fsm is a module with the behaviour of a gen_fsm (as with all of the FSMs
in this system implementation), and it has two states: idle and process. The process
of a task executing within the AI is similar to that of a RI, except that the AI
communicates with RI service providers and schedules tasks via the CNP, instead
of communicating with an MQTT service provider.

The CNP process between the AI and potential service providers, for the service
requested by the AT, is handled in the idle state of the FSM. A list of BCs of
potential service providers is first obtained through the use of the DOHA API. If no
service providers are found, the task fails and the AI sends a service package to the

Stellenbosch University https://scholar.sun.ac.za

65

AT with the failed task status and the reason for failure: no_service_provider. If
service providers are found, the proposed contract is sent to all service providers as
part of an RFP, as shown in the code snippet below:

1. {ok, ReceivedProposedContract} =
gen_server:call(FirstBcAddr,{rfp,Contract}, 1000),

A one second call timeout was chosen for the timeout of the call, as it was unknown
what the maximum time would be between an RFP call being sent and the reply,
containing the proposal, being received. It was evident that an experiment needed
to be performed to determine what the average duration of the CNP process was.
The received contract, including proposal, that is received as a reply to this call is
then examined to see whether the RFP was accepted or rejected. If the proposal was
accepted by the RI, the proposal is added to a list of received proposals. Once all
the proposals have been received, the best proposal is selected by examining which
proposes the earliest estimated completion time for the requested task. The service
provider responsible for this proposal is then selected as the service provider for the
requested task. The start time and service provider in the proposed contract is then
updated with the start time and service provider specified in the selected proposal,
and this contract is then sent as a part of a service request to the selected service
provider. This step acts as the accept step from the client, in the CNP. The FSM
then transitions to the process state.

Similar to the process state in the AT, the FSM awaits a service package delivery
from the service provider of the executing task. The task status of the service
package is then examined to determine if the task has successfully completed or if
it had failed. If the task failed, the task status, and any other information that the AI
would like to return to the AT before its termination (such as attribute information),
is returned to the EP, where the task status is updated as failed and the information
is added to the S2Data. This data is then returned to the AT by the RP, as a part of
the service package. A similar process is followed for a successfully completed
activity, where the current WP information is also added to the service package, for
use by the AT. The FSM then returns to the idle state, awaiting the start of the next
process step.

5.6.6 Basic Resources

5.6.6.1 MQTT Service

The MQTT Service basic resource is implemented as a generic server process and
utilises the EMQTT library (Lee, 2012) for MQTT communications. It provides the
mqtt service to the HMES. The MQTT broker network IP address as well as the
broker’s username and password are defined for use in connecting to the broker.
During initialization, the emqtt server is started and connected to the MQTT broker.
The emqtt server then communicates with the emqtt_service module to provide its
functionalities as a service to the HMES. It allows for the subscription and
publication to MQTT topics and saves the IDs of each holon that is subscribed to a

Stellenbosch University https://scholar.sun.ac.za

66

certain topic. When a message is received on a topic, the subscription list is checked
to see which holons are subscribed to that topic, and the message is sent to that
holon via the inter-holon network as an inform message.

5.6.6.2 Dashboard Service

The Dashboard service is also a basic resource that provides the dashboard service
to the HMES. This service includes delivering order, delivery, and maintenance
requests from the dashboard to the HMES, which is done by using the DOHA API
to find either order_type, delivery_type, or maintenance_type service providing
holons in the HMES and sending them a request to perform the respective task. The
service also caters to alert_dashboard requests, in which a holon can request the
dashboard_service basic resource to display an alert on the web dashboard with the
requested content. The dashboard service also requests status updates from the
holarchy periodically (in the case study set to 1 Hz) in order to provide the system
status to the user, via the web dashboard, in near real-time. This is done by the
dashboard requesting the activity_type_status, resource_type_status_monitoring,
and resource_instance_status_monitoring services from all respective holons in the
holarchy.

5.7 User Interface

The system includes a web-based user interface dashboard which is built on top of
the holarchy management web-dashboard created in the ‘BASE-Factory’
implementation of the BASE architecture. The initial dashboard included pages for
viewing existing holons (BASE holons), viewing individual holon information,
adding, or removing holons, adding or removing basic resources, adding or
removing users, as well as a page for managing plugins. Functionality was added
to the holon viewing pages to enable the functionality to restart a resource if
necessary. A new page was also added named “Order Dashboard” which allowed
the user to interact with, view, and control the implemented system. A list of
functionalities of the dashboard can be found in Appendix C. Screenshots of the
Order Dashboard are shown in Figure 12 and Figure 13. The dashboard runs on an
HTTP server which was implemented using the Cowboy library (Hoguin, 2012).
The web page for the dashboard was developed using a combination of HTTP, CSS,
and JavaScript, and communicates with an Erlang web socket module, which in
turn communicates with the Dashboard Service basic resource.

Stellenbosch University https://scholar.sun.ac.za

67

Figure 12: Factory Control Dashboard Screenshot (Image 1 of 2)

Figure 13: Factory Control Dashboard Screenshot (Image 2 of 2)

Stellenbosch University https://scholar.sun.ac.za

68

5.8 Discussion

This section aims to briefly discuss a few points of interest in the implementation
of the HMES. Most of these points are not evaluated in Chapter 6, but are deemed
significant enough to warrant mentioning.

Although the implementation of the BASE architecture is thorough, there were two
functionalities that were found to not be present in the implementation that was
used. This included checking of the validity of contracts used when requesting the
services of basic resources, and a method with which to get the BC of a holon from
the EP. Both of these functionalities were added for use in this implementation.
However, it must also be noted that these issues have been resolved in the most
recent implementation of the BASE architecture.

The BASE architecture aided the implementation of the HMES by providing a
comprehensive system with which the ARTI holons could be implemented. The
Communications Manager assisted greatly with communication between holons,
especially sending/receiving RFPs, service requests and basic service requests.
Request handling was also assisted greatly by the CM as checks were done to ensure
contracts were valid and that the requested service provider is capable of that
particular service. Task scheduling and the initiation of task execution was greatly
aided by the BASE Schedule component, which handled this in the background.
The BASE Attributes component also greatly aided with the management and use
of attributes, which included adding additional attributes, and globally updating
attributes. Lastly, the DOHA greatly reduced the difficulty of holons registering
their service, and for other holons to be able to find these services.

It is believed that the implementation of this ARTI-based HMES was effectively
supported through the use of the BASE architecture implementation as a backbone
and administration shell for the ARTI holons that the system consisted of. The next
chapter aims to quantify this.

Stellenbosch University https://scholar.sun.ac.za

69

6 Case Study Evaluation
This chapter aims to evaluate the implemented system as detailed in the previous
chapter, against the requirements set out in section 4.3. This process includes the
formulation of evaluation criteria that will be used in the testing of the system, the
design and execution of experiments that aim to evaluate the system based on the
evaluation criteria, and the interpretation of the experiment results.

6.1 Evaluation Criteria

The requirements set out in section 4.3 are predominantly qualitative requirements,
as quantitative requirements are largely not applicable to the implementation
requirements of this case study system. For evaluation purposes, it is however
helpful to have quantitative measures with which the performance of the system
can be measured. Thus, it is necessary to formulate a set of criteria by which the
system requirements can be quantitatively evaluated. These metrics were obtained
largely from literature, as was discussed in section 2.2.2 and 2.2.3 of the Literature
Review. Table 6 provides a relationship matrix between system requirements and
the selected evaluation criteria. The remaining system requirements are evaluated
qualitatively.

Table 6: Relationship Matrix between Requirements and Evaluation Metrics

 Evaluation Metrics:
 Quantitative Qualitative

 N
ew

 L
in

es
 o

f C
od

e

C
ha

ng
ed

 L
in

es
 o

f C
od

e

D
ev

el
op

m
en

t T
im

e

C
od

e
R

eu
se

 R
at

e

Pr
od

uc
tio

n
Ti

m
e

R
es

ou
rc

e
U

til
iz

at
io

n
R

at
e

Th
ro

ug
hp

ut

Er
ro

r H
an

dl
in

g

R
eq

ui
re

m
en

ts
: Reconfigurability X X X X X X

Robustness X
Decision Making X
Goal-Orientated X

Self-Learning X X
Throughput Maintained X X X X

These evaluation criteria were selected to be as quantifiable as possible, while
maintaining the ability to, completely and accurately, evaluate the performance of

Stellenbosch University https://scholar.sun.ac.za

70

the implemented system. Some criteria are however still qualitative, as some
requirements, such as that of being goal-orientated, robust, and autonomous, are not
suited to being quantifiably measured. The evaluation metrics, and how they were
measured, is discussed in Appendix D. Additional qualitative metrics are also
discussed within each experiment.

6.2 Experiments

The experimenting phase of the evaluation aimed to gather evaluation metric data,
which could then be used to evaluate the implemented system. The experimentation
of the system was carried out over three experiments in order to collect sufficient
data. The first experiment was a baseline experiment, which collected baseline data
that was used for comparison against data from the remaining experiments. The
second experiment was a reconfiguration experiment, which primarily tested the
system’s ability to be reconfigured, and the third experiment was a robustness
experiment, which primarily tested the system’s error/fault handling and tolerance.

For the experimentation phase of the evaluation, tests were only conducted on the
order activity process. This was done to provide a consistent testbed for the
evaluation. The order activity was chosen specifically for two reasons: it utilises all
resources within the Mini-Factory, providing a good overview of the performance
of the entire system; and it is the most emphasised activity that is of importance in
the manufacturing environment.

6.2.1 Baseline Experiment and Evaluation

The baseline experiment was a vital experiment, as the data collected in this
experiment was used to compare to the data collected in the reconfigurability and
robustness experiments, providing a baseline from which to evaluate the system’s
performance. The baseline experiment was split into two parts: baseline testing of
the system in a default configuration, similar to the default configuration of the
Mini-Factory; and baseline testing of the system with the MPO and SLD resources
aggregated into a single aggregate resource, the PLA. The order process steps list
needed to be standardised for the baseline test, to ensure that the tests were
repeatable and relatable to each other. Thus, the standard order process steps list
was defined as: hbw_fetch_wp, vgr_order, mpo_produce, sld_sort and finally
vgr_dispatch.

6.2.1.1 Default Resource System – Experiment 1a

6.2.1.1.1 Experiment Description

The system was initially tested in its default configuration without aggregation.
This gave a ‘true’ baseline, from which the effect the aggregation of the MPO and
SLD RIs could be assessed. The baseline tests, that this experiment consisted out
of, involved ordering three WPs, one of each colour, and waiting for the process to

Stellenbosch University https://scholar.sun.ac.za

71

complete. It was ensured that the HBW was fully stocked before each experiment,
with the WPs organised in columns, by colour. This ensured consistent times for
the HBW robot to fetch the three required WPs, for each test.

The first measured metric for this test was the individual order start times and end
times, as recorded by the system. The order durations were then calculated from
these times, with system throughput, measured in WPs per minute, calculated from
the total number of WPs produced (three WPs, if all were completed successfully)
divided by the average duration of a test. These tests were each repeated three times,
and the average times from the three tests were calculated. This was done to ensure
the validity and repeatability of the data. The second measured metric during the
baseline test was that of the average duration of the execution of the CNP. This
provides valuable insight into possible delays caused by the scheduling technique
used, where the CNP is carried out after each completed process step. Another
requirement that was tested for in this experiment, was that of robustness. Thus the
error/fault handling of the system during these tests was observed and noted.
Resource utilization was also measured in order to determine to what extent each
the resources were being used during the testing process. This was measured as a
percentage of the total test duration that each resource was busy. Lastly, source lines
of code were counted.

6.2.1.1.2 Results

The results of the baseline experiment with no aggregation are shown below in
Table 7 and Table 8. Table 7 shows the average duration of a test, system
throughput in WPs per minute, the average measured CNP duration, and the source
lines of code for the implementation. Lastly, average resource utilization rate is
shown in Table 8.

Table 7: Experiment 1a Results

Average Test
Duration

System Throughput CNP Average Duration Source Code

00:06:36 0,455 WPs/min 126.3 ms 13,138 lines

The test durations for this experiment were highly consistent, with the durations
ranging from 00:06:31 to 00:06:37. This indicates a stable system implementation
and scheduling system. CNP duration was measured from the time that the first RFP
was sent, until the time that the selected RI replied to the final request_service call.
This time varied between 63ms and 203ms depending on the number of currently
executing and scheduled tasks, which increased scheduling difficulty. Source lines
of code were manually counted, and included all code written for the
implementation, and excluded BASE core code.

Stellenbosch University https://scholar.sun.ac.za

72

Table 8: Experiment 1a Resource Utilization

Resource HBW MPO SLD VGR

Average
Utilization 65.74% 45.09% 46.80% 53.15%

It can be seen from the resource utilization that the HBW resource was a bottleneck
in the system, with the VGR also being a secondary bottleneck. It can also be noted
that overall, the resource utilization rate is relatively low, which indicates that
optimizations can be made to the scheduling of system tasks.

6.2.1.2 Aggregated Resource System – Experiment 1b

6.2.1.2.1 Experiment Description

The second part of the baseline experiment tested the system in its aggregated
configuration, where the MPO and SLD RIs were aggregated into a single PLA RI.
This served as the baseline to which the remaining experiments were compared.
This baseline experiment was conducted in the same manner as the first baseline
experiment, with the same metrics being measured, along with additional
development metrics such as development time, and code reuse rate. The order
process steps list needed to be updated for the second baseline experiment, as the
services provided by the MPO and SLD were now aggregated into a single PLA
service. Thus, the order process steps list was set as: hbw_fetch_wp, vgr_order,
pla_process and finally vgr_dispatch.

6.2.1.2.2 Results

The results of the baseline experiment with aggregation are shown in Table 9 and
Table 10. Table 9 shows the average duration of a test, system throughput in WPs
per minute, the average measured CNP duration, the source lines of code for the
implementation, as well as other development metrics. Lastly, average resource
utilization rate is shown in Table 10.

Table 9: Experiment 1b Results

Average Test
Duration

System Throughput CNP Average Duration Source Code

00:06:33 0,458 WPs/min 145.38 ms 20,410 lines
Additional Lines

of Code
Development Time Changed Lines of Code Code Reuse Rate

for New Lines
8,077 lines 32 hours 382 lines 91.16%

From these results it can be seen that the implementation of aggregation within the
HMES did not lead to any reduction in performance in the system as the system
throughput remained relatively constant, with the new average test duration being

Stellenbosch University https://scholar.sun.ac.za

73

on average three seconds faster, which is within margin of error. The new measured
CNP average duration was approximately 19 ms higher than previously. This higher
CNP duration was however expected, as the aggregated CNP process is more
complex and involves more messages being sent. It can also be seen that the
reconfiguration of the system to incorporate an aggregate system required a
considerable number of additional lines of code, as new RI, ART, AAT, AAI and
ARI holons were needed to be added to the system. A minimal number of lines also
needed to be changed in existing plugins and modules, which showed that these
plugins/modules were sufficiently generic.

Table 10: Experiment 1b Resource Utilization

Resource HBW PLA VGR

Average Utilization 68.62% 79,39% 56,23%

As seen from the resource utilization, the HBW and VGR resources were very
similar to the measured values in Experiment 1a. This once again shows that the
introduction of aggregation did not negatively impact the system’s performance. It
can be seen that the utilization rate for the PLA aggregate resource was high, which
was expected as this shows the utilization for the combination of the MPO and the
SLD.

6.2.1.2.3 Discussion of Results

As can be seen from the results of these two baseline experiments, the system
operated consistently and predictably, which provides for a good baseline from
which to evaluate the upcoming experiments. These results also showed that it was
possible to implement aggregation into the HMES without noticeably sacrificing
performance, which is useful for simplifying complex processes and interactions.
These experiments also showed preliminarily that it is possible to reconfigure the
system without needing to redevelop the entire system. Full results of the baseline
experiments can be seen in Appendices E.1 and E.2.

In terms of fault detection and error handling, no errors or faults occurred during
these experiments, however two faults occurred during the pre-testing for the
experiments. Both faults were SLD resource hardware faults, where the hardware
went offline during the execution of an activity. This caused the respective RI holon
to timeout during execution, which caused the currently executing process step to
fail. This in turn caused the order activity to fail, and the user was notified via the
web dashboard. Error/fault detection, handling and reporting is handled in more
depth in section 6.2.3.

Stellenbosch University https://scholar.sun.ac.za

74

6.2.2 Reconfigurability Experiment and Evaluation

The second experiment was aimed at testing the system’s ability to be reconfigured.
This was done as reconfigurability is commonly known as one of the major
benefits/advantages of HMESs, and it would be valuable to demonstrate the
developed system’s ability to be reconfigured with relative ease. It would also be
beneficial to quantify the extent to which using the ARTI architecture, as well as
the BASE architecture, assists and lessens the development effort of system
reconfiguration. This experiment consisted out of two parts, the first was to develop
a new type of resource and add it to the system, and the second was to add an
additional instance of an existing resource to the system.

6.2.2.1 New Resource Addition – Experiment 2a

6.2.2.1.1 Experiment Description

For the first part of the experiment, a new type of resource was added in series to
the existing production line. The new resource was arbitrarily chosen as a
Packaging Station (PKG) which would simulate the packaging of WPs after they
came off of the sorting line. It would be the VGR’s responsibility to move the WP
from the SLD to the PKG, and from the PKG to the DSO. This however meant that
a new process steps list was required for the order process. The new process steps
list was: hbw_fetch_wp, vgr_order, pla_process, vgr_pla2pkg, pks_package, and
finally vgr_dispatch_pkg.

The additional resource was added in order to fully test the system’s
reconfigurability, as a new set of plugins had to be developed for the PKG RI, and
additions had to be made to the RT to include the new resource. The ease of
reconfigurability of the system was also quantified by this experiment, as various
metrics such as development time and code reuse rate were measured. For the
purposes of the experiment, the physical hardware of the PKG was not
developed/implemented due to spatial constraints and constraints on the VGR’s
reach. The existing ‘reject’ bin in the Mini-Factory was repurposed to be used as a
temporary PKG resource. An ESP32 microcontroller with a proximity sensor was
then added to the reject bin to detect the presence of a WP and was connected to the
factory’s MQTT broker as a client. The ESP32 was programmed to send an
acknowledge message and start a timer for an arbitrary amount of time (15 seconds
in this case) when it detected a WP being placed in the bin, and then when the timer
completed, send another acknowledge message, indicating that the process had
completed.

Adding the ESP32 MQTT client to the system also proved to be an experiment in
itself, as it demonstrates the system’s ability to be platform agnostic, allowing it to
interface with any type of device that communicates via the correct protocols. This
would be a valuable attribute for an implementation in the real world, as often
systems are comprised out of a variety of different makes and types of controllers.

Stellenbosch University https://scholar.sun.ac.za

75

Once the new PKG resource was added to the system, the same test as used in the
baseline was then run. The same metrics were captured from the experiment, with
the addition of measuring the number of lines of code that needed to be changed or
added for the additional resource, the code reuse rate for the additional resource,
and the development/implementation time. RI attributes were also recorded during
this experiment, to provide an indication of the system’s ability for self-learning.

6.2.2.1.2 Results

The results of experiment 2a are shown below in Table 11 and Table 12. Table 11
shows the average duration of a test, system throughput in WPs per minute, the
average measured CNP duration, the source lines of code for the implementation,
as well as other development metrics. Lastly, average resource utilization rate is
shown in Table 12.

Table 11: Experiment 2a Results

Average Test
Duration

System Throughput CNP Average Duration Source Code

00:07:59 0.376 WPs/min 142.90 ms 21, 017 lines
Code Reuse

Rate
Development Time New Lines of Code Changed Lines of

Code
71.99% 7 hours 607 lines 9 lines

As expected, the average test duration increased, and the system throughput
decreased in this experiment, due to two additional process steps in the production
process. It is noteworthy that the average CNP duration remained relatively
constant, indicating that the CNP duration is not significantly affected by increased
system complexity on the same hierarchical level. The development time required
to develop and implement the new resource was much lower than the time required
to implement aggregation in the baseline tests, which shows that simple
reconfiguration, such as adding a new type of resource, is greatly aided by the
provisions of the ARTI architecture and the ability for BASE plugins to be generic
between resource types. This is evidenced by the number of new lines of code, the
number of changed lines of code, and the code reuse rate. The relatively low number
of new lines of code indicates that the ARTI architecture allows for the addition of
new resources, and thus functionality, with a minimal amount of added code. The
low number of changed lines of code indicates that the BASE architecture allows
for additions to the system without greatly affecting the rest of the system. Lastly,
the relatively high code reuse rate indicates that, due to the BASE architecture
allowing for plugins to be relatively generic amongst resources, the majority of
added lines of code are reused from other plugins. The RI attributes were recorded
after each order in each test, and it was observed that the resource’s attributes
successfully updated to reflect max_wait_time as well as average_wait_time. These
attributes, as well as full results for this experiment can be found in Appendix E.3.

Stellenbosch University https://scholar.sun.ac.za

76

Table 12: Experiment 2a Resource Utilization

Resource HBW PLA VGR

Average Utilization 61.64% 71.52% 61.80%

The resource utilization results are as expected. The HBW and PLA resources saw
lower overall utilization as the HBW continued to be a bottleneck in the system,
limiting the throughput, and thus utilization, of the PLA, and due to the extended
test duration, the utilization rates fell. The VGR, on the other hand, saw increased
utilization, as it had two additional tasks that it needed to perform per order.

6.2.2.1.3 Discussion of Results

This experiment showed that system reconfiguration is not only possible in this
HMES implementation, but it is possible to do with relatively little development
effort. This experiment reconfigured the system by adding a new resource to the
system that included new functionalities. It also reconfigured the product, as the AT
was also reconfigured, through changing the process steps in the configuration file,
which led to a new product being produced by the system. This experiment also
provided evidence to support the theory that the ARTI and BASE architectures
decrease the development difficulty of HMESs. It must be noted here that the
reduced development time per new lines of code compared to experiment 1b is due
to the decreased amount of software design needed for adding an additional
resource to the system, whereas a significant amount of system design was needed
in experiment 1b to implement aggregation.

6.2.2.2 Resources in Parallel – Experiment 2b

6.2.2.2.1 Experiment Description

For the second experiment, a new PLA resource was added in parallel to the existing
PLA resource. This was done to demonstrate that the system is capable of utilizing
additional resources to increase the overall throughput of the system. For the
purposes of the experiment, the physical hardware of the PLA (MPO and SLD
resources) was not reproduced due to spatial constraints and constraints on the
VGR’s reach. The existing ‘reject’ bin in the Mini-Factory was repurposed to be
used as a temporary PLA resource, in a similar manner to experiment 2a. The
duration that the WP needed to stay in the simulated PLA2 station was set at a fixed
time of ten seconds less than the average processing time of the PLA1. This would
give the system the opportunity to make a decision to use the PLA resource that has
the shortest production time.

Once the second PLA RI (PLA2) was added to the system, the same test as used in
the baseline was then run, including the new PLA RI. The same metrics were
captured from the experiment, with the addition of measuring the number of lines

Stellenbosch University https://scholar.sun.ac.za

77

of code that needed to be changed or added for the additional resource, the code
reuse rate for the additional resource, and the development/implementation time.

6.2.2.2.2 Results

The results of this second reconfigurability experiment are shown below in Table
13 and Table 14. Table 13 shows the average duration of the tests, system
throughput, CNP average duration, lines of code metrics, and development time.
Lastly, average resource utilization rate is shown in Table 14.

Table 13: Experiment 2b Results

Average Test
Duration

System Throughput CNP Average Duration Source Code

00:06:20 0.474 WPs/min 152.92 ms 20,859 lines
Additional Lines

of Code
Development Time Changed Lines of Code Code Reuse Rate

for New Lines
48 lines 1 hour 41 lines 85.42%

Table 14: Experiment 2b Resource Utilization

Resource HBW PLA1 PLA2 VGR

Average
Utilization

71.92% 0.00% 79.21% 57.48%

As seen by the average test duration being approximately ten seconds less than the
baseline, and by the PLA1 utilization rate being zero, the system made the decision
to use the PLA2 resource for each order, as it had the shorter production time.
Although this result does increase the system throughput, it does not do so by
making use of both PLA resources, but by purely using the resource with the shorter
production time. The reason for the system not making use of both PLA resources
is that there is never a situation in the order process where two WPs are able to use
the PLA at the same time, as the HBW creates a throughput bottleneck. Production
can only move as quickly as the HBW can fetch WPs, which coincidentally only
allows for one WP to travel through the PLA at a time. Although the HBW is a
bottleneck, it is seen that its utilization rate is not 100%. This is due to poor
scheduling efficiency and could be improved with a more advanced scheduling
technique. The results also show that the development time of adding an additional
instance of a resource to the HMES is minimal, with the new code that needed to
be added having a high code reuse rate. The average CNP duration increased by
approximately 8 ms, which is expected, as an RFP must be sent to and received
from an additional resource in the third production step. Full results for this
experiment can be found in Appendix E.4.

Stellenbosch University https://scholar.sun.ac.za

78

6.2.2.2.3 Discussion of Results

This experiment showed that it is possible to reconfigure the system to incorporate
an additional instance of a resource with relative ease. The experiment also showed
that the system is capable of making goal orientated decisions in terms of resource
selection. This experiment did, however, fail to provide evidence that the system is
capable of utilizing two of the same resources simultaneously. Theoretically this
experiment would have been better performed by creating a second HBW RI, which
would alleviate the bottleneck. This was, however, unfortunately not practically
feasible. This experiment did however still provide valuable data, as it can be seen
that the system is capable of making use of multiple resources of the same type, and
that the system’s decisions are goal orientated.

6.2.3 Robustness Testing and Evaluation

The last experiment was an experiment to test the robustness of the HMES
implementation. Robustness in this case referred to the system’s ability to detect,
handle, and recover from, faults and/or errors. Robustness is considered as a critical
attribute of HMESs as these systems often control the production of high-value or
time sensitive products and cannot afford for the whole system to crash when a fault
or error occurs. Thus, it is valuable to test the system’s robustness in order to
determine if the system’s fault and error handling works as expected.

6.2.3.1 Experiment Description

For this experiment the system setup as used in experiment 2b was used again, with
the two PLA resources in parallel. This provided the opportunity to be able to
manually disable one of these resources during production and observe whether the
system accurately determined the resource’s offline state and observe if the system
reacted in a favourable manner, by scheduling the production of the WP with the
remaining PLA resource. The results expected from this experiment were purely
qualitative. These metrics included the result of the order (completed or failed), if
the system informed the user of the error, if the system accurately determined the
fault and displayed that to the user, and what the effect was of the disturbance to
the rest of the system and orders. This was also followed by the offline resource
being brought online again and observing the system’s reaction to this.

6.2.3.2 Results

The experiment consisted out of three tests: in the first test the SLD resource
hardware (as a part of PLA1) was turned off while the WP from the second order
was busy being processed by the PLA; in the second test the SLD was turned off
while the WP was being fetched by the HBW; and in the third test, the PLA2 was
off for the start of the test, but then switched back on during the production of the
first order. It was seen in the first test that the second order failed, this was due to
the WP being stuck on the offline SLD conveyor, and thus the SLD timeout being

Stellenbosch University https://scholar.sun.ac.za

79

reached. This fault was reported to the user as an sld_timeout error, and the activity
status was changed to failed. The remaining order completed successfully with the
remaining PLA2 resource. In the second test, production carried on as normal,
however with the PLA1 resource offline. This then led to the system only receiving
a proposal from the PLA2 resource during the CNP phase, and thus the system only
used this resource. In the third test, while the PLA2 resource was offline, the first
order was produced as normal with the PLA1 resource. Just as the second order
started, the PLA2 resource was turned back on. The second and third orders then
utilized the PLA2 resource, as its processing duration is shorter than that of the
PLA1. The results of the orders in this experiment are shown in Table 31 in
Appendix E.5.

6.2.3.3 Discussion of Results

This experiment showed that the developed HMES was resilient to disturbances as
well as faults/errors. When a resource went offline, the system accurately detected
the issue, and handled it by diverting the following orders through an alternate
resource. The failure of an order in the first test resulted in a WP becoming stuck
on the production line. This is however acceptable, as in a real-world system it
would be necessary for a worker to inspect the fault and ensure that the system is
safe to resume operations, including removing failed products from the production
line. This experiment also showed that the system is capable of readopting resources
which have come back online during the production process. It must be noted that
the system took a long time to detect a failure, as a failure would only be detected
once the resource had timed out (the timeout value is equal to the maximum
production time plus five seconds). A more advanced activity status monitoring
system would allow for the failure of a production step to be detected sooner. This
could be done by having the resource send acknowledge messages at more stages
during production steps.

6.3 Discussion

These experiments aimed to provide the results necessary to determine whether the
implemented ARTI-based HMES satisfied the system requirements as set out in
section 4.3. Experiments 1b, 2a and 2b demonstrated the system’s ability to be
reconfigured with relative ease. These tests included: reconfiguring the system to
incorporate aggregation; adding new resources to the system; and adding more
instances of a single resource. Minimal additional lines of code were necessary for
the addition of a new resource, and very few were necessary for the addition of an
additional instance of a resource. The code reuse rate for these experiments was
also high, which indicated that most of the functionality already existed elsewhere
in the system and could be reused. Additionally, very few lines of code had to be
changed elsewhere in the system when these experiments were run, indicating that
it is possible to reconfigure the system without affecting the rest of the system. The
development time of these experiments was also relatively low, as the combination
of the previously mentioned metrics resulted in decreased development difficulty.

Stellenbosch University https://scholar.sun.ac.za

80

Experiment 3 demonstrated the system’s robustness. It was demonstrated that the
system is fault tolerant, being able to detect and handle most hardware faults. It
does so by checking if a task has been completed within a certain maximum time,
and if not, an error is registered. This method allows for the detection of faults, but
not in a very timely manner. When a fault is detected, it is accurately handled, and
the respective task is failed. An error is presented to the user to inform them of the
fault. The system purposefully does not handle faults by restarting the failed task,
as often in a manufacturing environment it is necessary for a user to check the
hardware for physical problems/issues before manufacturing can continue.

The system’s decision-making and goal orientation was demonstrated in all
experiments, but primarily in experiment 2b. When presented with a choice of two
production paths to take, the system consistently chooses the path that leads to the
fulfilment of its goal: completing the required production steps in the shortest time
possible. This goal-orientation and decision making is captured in the system’s
ability to follow the CNP when scheduling production steps with resources. The
system was also shown to possess the capability of self-learning. The system
demonstrated this through updating its attributes, as shown in Experiment 2a. The
attribute of primary importance that was updated was the max_wait_time attribute
for each service type, as this constantly updating time value was used in the
scheduling of tasks.

Throughout the experiments, the throughput of the system was measured, as this
would be the requirement of the most importance to a manufacturing plant.
Transitioning between baseline experiments 1a and 1b showed no noticeable
reduction in throughput, even though system complexity was increased
dramatically. Experiment 2a showed a slight reduction in throughput as expected,
as an additional process step was added to the production process, and experiment
2b showed an increase in the system throughput, but not as a dramatic increase as
one would hope. This was due to the MPO and SLD throughput being bottlenecked
by the HBW’s throughput. It is expected that if this experiment were repeated,
except with an additional HBW instead of PLA, the system throughput would
increase substantially. Throughout all experiments the system’s ability for
collaboration and autonomy was demonstrated through having multiple resources
work together to achieve a common goal, as well as being capable of performing
certain tasks independently.

Overall, the system performed well and achieved all of the set-out requirements for
the implementation of an ARTI-based HMES using the BASE architecture. The
primary improvements that could be made to the system would be with the
scheduling and status monitoring subsystems. The overall low resource utilization
rate can be attributed to low efficiency scheduling which doesn’t make use of the
resources’ full capacities. The status monitoring system could also be improved to
more accurately and timeously detect a resource’s hardware status and react faster
to faults.

Stellenbosch University https://scholar.sun.ac.za

81

7 Conclusions and Recommendations
This thesis presents an ATRI architecture based HMES that was implemented using
the BASE architecture as a building tool for development of the holonic system.
This implemented system was used for the fulfilment of the objectives as set-out in
section 1.2 of this thesis.

An ARTI-based HMES implementation for a case study system was completed on
the Fischertechnik Industry 4.0 Training Factory. This system was implemented
using the BASE architecture for the development of the system holons. Once the
HMES implementation was completed, it was evaluated using evaluation criteria
and performance metrics compiled from literature. The system was developed with
the primary requirements of being reconfigurable and robust, while not sacrificing
throughput. It was found in the evaluation of the system that the system met all
requirements, however there were improvements that could be made.

The ARTI architecture proved to be a valuable reference framework for use in the
implementation of HMESs as it assists in functionally and logically splitting the
system into its respective holons, and it guides the developer in the implementation
thereof. The structure in which the ARTI architecture separates Resources and
Activities, and their Types and Instances allows for the development of systems
which are reconfigurable, scalable, intelligent, and robust. This structure also aids
the developer in implementation as it breaks down a highly complex system with
complex interactions into smaller, less complex, and manageable components
(holons), which can each be tested individually during development.

This case study HMES implementation also provided the opportunity to evaluate
the BASE architecture’s suitability for use in a manufacturing environment. During
reconfiguration experiments, the BASE architecture demonstrated its ability to
greatly reduce the development time and effort by allowing for holon plugins to be
greatly generic between the holons, which lead to favourably high code reuse rates
during the evaluation experiments. The BASE architecture also aided development
by making use of holonic principles, in that when the system was reconfigured, the
changes hardly affected the other holons in the system. The BASE architecture also
greatly simplified the implementation of all the ARTI holons, as the administration
functionalities were already a part of the BASE architecture implementation. From
the case study implementation and evaluation, it can be concluded that the BASE
architecture is indeed suitable for the manufacturing industry and is capable of
being used as the foundation for all ARTI holons.

Multiple recommendations can be made for the continuation of the work carried out
in this thesis:

• The implementation of a DMAS within the HMES for use in advanced
scheduling and disturbance handling. It is believed that the overall system
performance could be increased through the use of a more complex

Stellenbosch University https://scholar.sun.ac.za

82

scheduling system such as DMAS, as it was seen during system evaluation
that the scheduling efficiency of the system is poor. It could also improve
fault and disturbance handling as the DMAS constantly looks for
feasible/infeasible production pathways and optimizes scheduling based on
this information.

• The implementation of a similar HMES on the same case study system,
however, without using any reference architectures. This would provide a
more informative baseline for the evaluation of to what the extent reference
architectures assist the development of HMESs.

In conclusion, it has been demonstrated that the ARTI and BASE architectures are
both individually suitable for the implementation of HMESs, but, when used
together, can become a powerful toolset with which the development difficulty of
HMES implementations can be greatly reduced, and thus, lessening one of the
major barriers to widespread I4.0 enabling technology adoption.

Stellenbosch University https://scholar.sun.ac.za

83

8 References
Adolph, L., Anlahr, T., Bedenbender, H., Bentkus, A., Brumby, L., Diedrich, C.,

Dirzus, D., Elmas, F., Epple, U., Friedrich, J., Fritz, J., Gebhardt, H., Geilen,
J., Hecker, C., Heidel, R., Hemberger, K., Hiensch, S., Hilgendorf, E.,
Hörcher, G., Klemm, E., Mehrfeld, J., Metzger, T., Middelkamp, S., Mosch,
C., Nickel, P., Pichler, R., Prinz, C., Rauchhaupt, L., Rolle, I., Sasaki, F.,
Seidel, U., Stein, J., Tieves-Sander, D., Ullrich, C., Weber, I., Wei, W.,
Winkel, L., 2016. German Standardization Roadmap - Industry 4.0. German
Institue for Standardization & German Commission for Electrical,
Electronic & Information Technologies of German Institute for
Standardization and Association for Electrical, Electronic & Information
Technologies. 1–76.

Adolphs, P., Bebenbender, H., Dirzus, D., Ehlich, M., Epple, U., Hankel, M.,
Heidel, R., Hoffmeister, M., Huhle, H., Kärcher, B., Koziolek, H., Pichler,
R., Pollmeier, S., Schewe, F., Walter, A., Waser, B., Wollschlaeger, M.,
2015. Status Report -Reference Architecture Model Industrie 4.0 (RAMI4.0).

Almeida, F.L., Terra, B.M., Dias, P.A. & Gonçalves, G.M. 2010. Adoption issues
of multi-agent systems in manufacturing industry. Proceedings - 5th
International Multi-Conference on Computing in the Global Information
Technology, ICCGI 2010. (September):238–244.

Bi, Z.M., Lang, S.Y.T., Shen, W. & Wang, L. 2008. Reconfigurable
manufacturing systems: The state of the art. International Journal of
Production Research. 46(4):967–992.

Bigliardi, B., Bottani, E. & Casella, G. 2020. Enabling technologies, application
areas and impact of industry 4.0: A bibliographic analysis. Procedia
Manufacturing. 42(2019):322–326.

Borangiu, T., Oltean, E., Răileanu, S., Anton, F., Anton, S. & Iacob, I. 2019.
Embedded digital twin for ARTI-type control of semi-continuous production
processes. in Studies in Computational Intelligence Vol. 853. Springer. 113–
133.

Derigent, W., Cardin, O., Trentesaux, D., Derigent, W., Cardin, O. & Trentesaux,
D. 2021. Industry 4.0: contributions of holonic manufacturing control
architectures and future challenges. Journal of Intelligent Manufacturing.
32(7):1797–1818.

Ericsson Computer Science Labratory. 2021. Erlang. [Online], Available:
https://www.erlang.org/ [2021, September 13].

Stellenbosch University https://scholar.sun.ac.za

84

Galati, F. & Bigliardi, B. 2019. Industry 4.0 : Emerging themes and future
research avenues using a text mining approach. Computers in Industry.
109:100–113.

Giret, A. & Botti, V. 2005. Analysis and design of holonic manufacturing
systems. in 18th International Conference on Production Research. 2–6.

Giret, A. & Botti, V. 2006. From system requirements to holonic manufacturing
system analysis. International Journal of Production Research. 44(18–
19):3917–3928.

Grieves, M. & Vickers, J. 2017. Digital Twin: Mitigating Unpredictable,
Undesirable Emergent Behavior in Complex Systems. Springer International
Publishing Switzerland.

Hoguin, L. 2012. Cowboy. [Online], Available: https://ninenines.eu/ [2021,
October 31].

Jones, D., Snider, C., Nassehi, A., Yon, J. & Hicks, B. 2020. Characterising the
Digital Twin: A systematic literature review. CIRP Journal of Manufacturing
Science and Technology. 29(2019):36–52.

Kotak, D., Wu, S., Fleetwood, M. & Tamoto, H. 2003. Agent-based holonic
design and operations environment for distributed manufacturing. Computers
in Industry. 52(2):95–108.

Kruger, K. & Basson, A. 2017. Erlang-based control implementation for a holonic
manufacturing cell. International Journal of Computer Integrated
Manufacturing. 30(6):641–652.

Kruger, K. & Basson, A. 2018. JADE Multi-Agent System Holonic Control
Implementation for a Manufacturing Cell. Technical Report, Stellenbosch
University.

Kruger, K. & Basson, A.H. 2019. Evaluation criteria for holonic control
implementations in manufacturing systems. International Journal of
Computer Integrated Manufacturing. 32(2):148–158.

Lee, F. 2012. EMQ. [Online], Available: https://emqtt.io/ [2021, October 22].

Lee, J., Bagheri, B. & Kao, H.A. 2015. A Cyber-Physical Systems architecture for
Industry 4.0-based manufacturing systems. Manufacturing Letters. 3:18–23.

Leitão, P., Colombo, A.W. & Karnouskos, S. 2016. Industrial automation based
on cyber-physical systems technologies: Prototype implementations and
challenges. Computers in Industry. 81:11–25.

Leitão, P. & Restivo, F. 2006. ADACOR: A holonic architecture for agile and

Stellenbosch University https://scholar.sun.ac.za

85

adaptive manufacturing control. Computers in Industry. 57(2):121–130.

Leitão, P. & Restivo, F.J. 2008. Implementation of a holonic control system in a
flexible manufacturing system. IEEE Transactions on Systems, Man and
Cybernetics Part C: Applications and Reviews. 38(5):699–709.

McKinsey Digital. 2016. Industry 4.0 after the initial hype: Where manufacturers
are finding value and how they can best capture it. McKinsey&Company.

Paolucci, M. & Sacile, R. 2005. Agent-Based Manufacturing and Control
Systems. New Agile Manufacturing Solutions for Achieving Peak
Performance. CRC Press.

Raj, A., Dwivedi, G., Sharma, A., Beatriz, A. & Sousa, L. De. 2020. Barriers to
the adoption of industry 4 . 0 technologies in the manufacturing sector : An
inter-country comparative perspective. International Journal of Production
Economics. 224(October 2019):107546.

Redelinghuys, A., Basson, A. & Kruger, K. 2019. A six-layer digital twin
architecture for a manufacturing cell. Studies in Computational Intelligence.
803(April):412–423.

Rossouw, J.J. 2021. An ARTI Holonic Architecture Implementation for Table
Grape Production Management. Masters Thesis, Stellenbosch University.

Scholz-Reiter, B. & Freitag, M. 2007. Autonomous Processes in Assembly
Systems. CIRP Annals - Manufacturing Technology. 56(2):712–729.

Schuh, G., Anderl, R., Gausemeier, J., Hompel, M. ten & Wahlster, W. 2017.
Industrie 4.0 Maturity Index. National Academy of Science andEngineering,
Berlin.

Sparrow, D.E. 2021. The BASE architecture for the integration of human workers
into an Industry 4.0 environment. PhD Dissertation, Stellenbosch University.

Sparrow, D., Kruger, K. & Basson, A. 2020. Activity lifecycle description for
communication in human-integrated industry 4.0 environments. Studies in
Computational Intelligence. 853(January):85–97.

Sparrow, D.E., Kruger, K. & Basson, A.H. 2021. An architecture to facilitate the
integration of human workers in Industry 4.0 environments. International
Journal of Production Research. 1–19.

Valckenaers, P. 2020. Perspective on holonic manufacturing systems: PROSA
becomes ARTI. Computers in Industry. 120:103226.

Valckenaers, P. & Van Brussel, H. 2005. Holonic manufacturing execution
systems. CIRP Annals - Manufacturing Technology. 54(1):427–432.

Stellenbosch University https://scholar.sun.ac.za

86

Valckenaers, P. & De Mazière, P.A. 2015. Interacting holons in evolvable
execution systems: The NEU Protocol. in Proceedings of 7th International
Conference, HoloMAS 2015 Vol. 9266. V. Mařík, A. Schirrmann, D.
Trentesaux, & P. Vrba (eds.). Cham: Springer International Publishing V.
Mařík, A. Schirrmann, D. Trentesaux, & P. Vrba (eds.). 120–129.

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L. & Peeters, P. 1998.
Reference architecture for holonic manufacturing systems: PROSA.
Computers in Industry. 37(3):255–274.

Van Niekerk, D.J. 2021. Extending the BASE architecture for complex and
reconfigurable Cyber-Physical Systems using holonic principles. Masters
Thesis, Stellenbosch University.

Vyatkin, V. 2015. Function Blocks for Embedded and Distributed Control
Systems Design. International Society of Automation.

Yin, Y., Stecke, K.E. & Li, D. 2018. The evolution of production systems from
Industry 2.0 through Industry 4.0. International Journal of Production
Research. 56(1–2):848–861.

Zheng, P. & Sivabalan, A.S. 2020. A generic tri-model-based approach for
product-level digital twin development in a smart manufacturing
environment. Robotics and Computer-Integrated Manufacturing.
64(January):101958.

Stellenbosch University https://scholar.sun.ac.za

87

Appendix A Case Study
A.1 Fischertechnik Hardware Components

Each of the six Fischertechnik Industry 4.0 Training Factory stations consist of a
different combination of the following sensors and actuators:

• 9V DC motors

• Rotary encoders

• Air compressors

• Pneumatic piston cylinders

• DC solenoid actuated valves

• Limit Switches

• Photoelectric barrier sensors

• Phototransistors

• Photo-resistors

• Environmental sensors

• Near-Field Communication (NFC) readers

• NFC tags

• Colour detection sensors

• Fischertechnik TXT controllers

Stellenbosch University https://scholar.sun.ac.za

88

A.2 Default Order Process Steps

Figure 14: Default Mini-Factory Order Process Steps

Stellenbosch University https://scholar.sun.ac.za

89

A.3 Default Delivery Process Steps

Figure 15: Default Mini-Factory Delivery Process Steps

Stellenbosch University https://scholar.sun.ac.za

90

A.4 Fischertechnik TXT Controller Features

The TXT controllers are designed by Fischertechnik, and their main features are:

• ARM Cortex A8 processor

• 128MB flash storage

• 8 universal digital and analogue inputs

• 4 quick counter digital inputs

• 4 9V PWM motor outputs

• Touch screen display

• WLAN/Bluetooth module

• USB connection port

• 10-pole pin row to increase I/O

• I2C-port

Stellenbosch University https://scholar.sun.ac.za

91

Appendix B MQTT Hardware Interface
Table 15: MPO MQTT Interface

TXT Factory MPO
Subscribe Topic Payload Description
TOPIC_DO_MPO base/do/mpo {"ts":"YYYY-MM-

DDThh:mm:ss.fffZ",
"code":0, "workpiece":{...}
}

Code:
0=MPO_QUIT,
1=MPO_PRODUCE

Publish Topic Payload Description
TOPIC_STATE_MPO state/mpo {"ts":"YYYY-MM-

DDThh:mm:ss.fffZ",
"station":"hbw", "code":0,
"description":"text",
"active":1, "target":""}

TOPIC_MPO_ACK mpo/ack {"ts":"YYYY-MM-
DDThh:mm:ss.fffZ",
"code":0 }

code:
1=MPO_STARTED,
2=MPO_PRODUCED

Table 16: HBW MQTT Interface

TXT Factory HBW
Subscribe Topic Payload Description
TOPIC_DO_HBW base/do/hb

w
{"ts":"YYYY-MM-
DDThh:mm:ss.fffZ",
"code":0, "workpiece":{...} }

code:
0=HBW_EXIT,
1=
HBW_FETCH_CONTAINE
R,
2= HBW_STORE_WP,
3= HBW_FETCH_WP,
4=
HBW_STORE_CONTAINE
R,
5= HBW_RESETSTORAGE

Publish Topic Payload Description
TOPIC_HBW_ACK hbw/ack {"ts":"YYYY-MM-

DDThh:mm:ss.fffZ",
"code":0, "workpiece":{...} }

code:
1=HBW_FETCHED,
2=HBW_STORED

TOPIC_STOCK hbw/stock {"ts":"YYYY-MM-
DDThh:mm:ss.fffZ",
"stockItems": [{
"workpiece": {
"id":"123456789ABCDE",
"type":"<BLUE/WHITE/RED>
",
"state":"<RAW/PROCESSED>
" }, "location":"A1" },{ ... },{
"workpiece":null,
"location":"B3" }] }

Stellenbosch University https://scholar.sun.ac.za

92

TOPIC_STATE_HB
W

state/hbw {"ts":"YYYY-MM-
DDThh:mm:ss.fffZ",
"station":"hbw", "code":0,
"description":"text",
"active":1, "target":""}

Table 17: VGR MQTT Interface

TXT Factory VGR
Subscribe Topic Payload Description
TOPIC_DO_VGR base/do/vgr {"ts":"YYYY-MM-

DDThh:mm:ss.fffZ",
"code":0,
"workpiece":{...} }

code:
VGR_HOME = 0,
VGR_MOVE_DELIVERY_IN_GRIP =
1,
VGR_MOVE_NFC = 2,
VGR_MOVE_COLOR = 3,
VGR_MOVE_HBW = 4,
VGR_HBW_PICKUP = 5,
VGR_MOVE_MPO_RELEASE = 6,
VGR_MOVE_SSD1 = 7,
VGR_MOVE_SSD2 = 8,
VGR_MOVE_SSD3 = 9,
VGR_MOVE_DISPATCH_RELEASE
= 10,
VGR_NFC_READ = 11,
VGR_NFC_DELETE = 12,
VGR_MOVE_REJECT_RELEASE =
13,
VGR_QUIT = 14,
VGR_GRIP = 15,
VGR_RELEASE = 16,

VGR_SLD_SORTED = 17,
VGR_HBW_FETCHED = 18,
VGR_ORDER = 19,
VGR_MPO_STARTED = 20,
VGR_PLA1_SORTED = 21,
VGR_PLA2_SORTED = 22,
VGR_MOVE_PLA1 = 23,
VGR_MOVE_PLA2 = 24

Publish Topic Payload Description
TOPIC_VGR_ACK vgr/ack {"ts":"YYYY-MM-

DDThh:mm:ss.fffZ",
"code":0,
"workpiece":{...} }

code:
VGR_STARTED = 1
VGR_COMPLETED = 2

TOPIC_STATE_VGR state/vgr {"ts":"YYYY-MM-
DDThh:mm:ss.fffZ",
"station":"vgr",
"code":0,
"description":"text",
"active":1,
"target":"hbw"}

Stellenbosch University https://scholar.sun.ac.za

93

TOPIC_STATE_DSI state/dsi {"ts":"YYYY-MM-
DDThh:mm:ss.fffZ",
"station":"dsi",
"code":0,
"description":"text",
"active":1}

TOPIC_STATE_DSO state/dso {"ts":"YYYY-MM-
DDThh:mm:ss.fffZ",
"station":"dso",
"code":0,
"description":"text",
"active":1}

Table 18: SLD MQTT Interface

TXT Factory SLD
Subscribe Topic Payload Description
TOPIC_DO_SLD base/do/sld {"ts":"YYYY-MM-

DDThh:mm:ss.fffZ",
"code":0, "workpiece":{...} }

code:
SLD_QUIT=0,
SLD_SORT=1

Publish Topic Payload Description
TOPIC_STATE_SLD state/sld {"ts":"YYYY-MM-

DDThh:mm:ss.fffZ",
"station":"sld", "code":0,
"description":"text",
"active":1, "target":"hbw"}

TOPIC_SLD_ACK sld/ack {"ts":"YYYY-MM-
DDThh:mm:ss.fffZ",
"code":0, "type":<>,
"colorValue":<> }

code:
1=SLD_STARTED,
2=SLD_SORTED

Stellenbosch University https://scholar.sun.ac.za

94

Appendix C User Interface Functionalities
The user interface ‘Order Dashboard’ had the following functionalities:

• Button to start all system holons.

• Button to start continuous system status monitoring.

• Button to refresh dashboard status display in case background refresh of
webpage did not work correctly.

• Buttons to order red, blue, or white WPs.

• Button to start delivery of ‘RAW’ WP to the Mini-Factory.

• Button for each RI to schedule maintenance.

• Display status of activities in progress.

• Display status of completed activities.

• Display Mini-Factory WP stock.

• Display Mini-Factory RI states. Green indicates online, yellow indicates
currently busy, and grey indicates offline.

Stellenbosch University https://scholar.sun.ac.za

95

Appendix D Evaluation Metrics
An explanation of the formulated evaluation metrics is provided in Table 19 in this
appendix. This will additionally include an explanation of how the metrics are
measured during experimentation.

Table 19: Evaluation Metric Descriptions

Metric: Description: Measurement:

New Lines of Code

[lines]

This is the number of
new Source Lines of
Code that were added to
the programme. This
helps quantify the
development and
reconfiguration effort.
Lower is better.

This is measured by
physically counting new
lines of code that are
added to the programme
during the development
of the experiment.

Changed Lines of Code

[lines]

This is the number of
existing Source Lines of
Code that needed to be
changed for the
development and
implementation of the
experiment. This
provides an indication of
the modularity of the
system, as well as the
reconfigurability of the
system. Lower is better.

This is measured by
physically counting
changed lines of code
during the development
of the experiment.

Development Time

[hh:mm:ss]

This is the number of
hours, rounded up, that
were required for the
development and
implementation of the
features/function
required for the
experiment. This helps
quantify the
development and
reconfiguration effort.
Lower is better.

This is measured
through timing the actual
development time using
a stopwatch.

Stellenbosch University https://scholar.sun.ac.za

96

Code Reuse Rate

[%]

This is the percentage of
reused lines of code
compared to new lines of
code. This helps
quantify the
development and
reconfiguration effort.
Higher is better.

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟
𝑙𝑙𝑟𝑟𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟

∗ 100

Production Time

[hh:mm:ss]

This is the processing
duration of a single WP
order. This is used in the
calculation of factory
throughput. Lower is
better.

Calculated using the
difference between the
system’s recorded
ending time and start
time for an individual
order.

Resource Utilization
Rate

[%]

This is the percentage of
the total test duration
that a resource is busy
working on/with a WP.
This metric effects
throughput. This
provides an indication of
the system’s
reconfigurability,
decision making, goal-
orientation, and ability
for self-learning. Higher
is better.

𝑡𝑡𝑙𝑙𝑡𝑡𝑟𝑟 𝑏𝑏𝑟𝑟𝑟𝑟𝑏𝑏
𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑡𝑡𝑙𝑙𝑜𝑜𝑙𝑙

∗ 100

Throughput

[WPs/min]

This is the number of
WPs that the system can
produce per minute. This
provides an indication of
the system’s
reconfigurability and
ability for self-learning.
Higher is better.

𝑜𝑜𝑜𝑜 𝑊𝑊𝑊𝑊𝑟𝑟 𝑝𝑝𝑟𝑟𝑜𝑜𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟𝑟𝑟
𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑡𝑡𝑙𝑙𝑜𝑜𝑙𝑙

Stellenbosch University https://scholar.sun.ac.za

97

Error Handling This is the ability of the
system to handle faults
and errors accurately and
in a desirable manner.
This includes detecting
errors/faults in a timeous
manner. This is a
qualitative metric used
to determine robustness.
This also effects
throughput.

Qualitative.

Stellenbosch University https://scholar.sun.ac.za

98

Appendix E Experiment Results
E.1 Experiment 1a

Table 20: Experiment 1a Order Results

 Activity Type
Start
Time

End
Time Result

Order
Duration

Test
Duration

TEST
1

ORDER
WHITE 12:20:01 12:23:47 COMPLETED 00:03:46

 ORDER BLUE 12:20:04 12:25:31 COMPLETED 00:05:27
 ORDER RED 12:20:08 12:26:38 COMPLETED 00:06:30 0:06:37
TEST
2 ORDER RED 12:55:15 12:59:01 COMPLETED 00:03:46
 ORDER BLUE 12:55:18 13:00:44 COMPLETED 00:05:26

ORDER
WHITE 12:55:21 13:01:52 COMPLETED 00:06:31 0:06:37

TEST
3 ORDER BLUE 13:07:56 13:11:41 COMPLETED 00:03:45

ORDER
WHITE 13:07:59 13:13:26 COMPLETED 00:05:27

 ORDER RED 13:08:02 13:14:27 COMPLETED 00:06:25 00:06:31
TEST
4 ORDER BLUE 13:18:48 13:22:33 COMPLETED 00:03:45

ORDER
WHITE 13:18:50 13:24:17 COMPLETED 00:05:27

 ORDER RED 13:18:51 13:25:25 COMPLETED 00:06:34 00:06:37
Average Duration 00:05:14 0:06:36
System Throughput 0,455

Table 21: Experiment 1a Resource Utilization

Resource Active time Test Duration Utilization %
HBW 00:04:21 0:06:37 65,74
MPO 00:02:59 00:06:37 45,09
SLD 00:03:03 00:06:31 46,80
VGR 00:03:31 00:06:37 53,15

Stellenbosch University https://scholar.sun.ac.za

99

Table 22: Experiment 1a CNP Durations

CNP Duration Non-aggregated:
Test 1 step 1 63 Test 2 step 1 63
 step 2 94 step 2 94
 step 3 110 step 3 187
 step 4 141 step 4 121
 step 5 187 step 5 203
AVERAGE: 126,3 ms

E.2 Experiment 1b

Table 23: Experiment 1b Order Results

 Activity Type
Start
Time

End
Time Result

Order
Duration

Test
Duration

Test
1

ORDER
WHITE 10:46:18 10:50:02 COMPLETED 00:03:44

 ORDER BLUE 10:46:20 10:51:41 COMPLETED 00:05:21
 ORDER RED 10:46:22 10:52:51 COMPLETED 00:06:29 0:06:33
Test
2

ORDER
WHITE 11:10:36 11:14:22 COMPLETED 00:03:46

 ORDER BLUE 11:10:38 11:16:00 COMPLETED 00:05:22
 ORDER RED 11:10:40 11:17:08 COMPLETED 00:06:28 0:06:32
Test
3

ORDER
WHITE 11:25:12 11:28:55 COMPLETED 00:03:43

 ORDER BLUE 11:25:14 11:30:37 COMPLETED 00:05:23
 ORDER RED 11:25:16 11:31:45 COMPLETED 00:06:29 0:06:33
Average Duration 00:05:12 0:06:33

System Throughput 0,436

Table 24: Experiment 1b Resource Utilization

Resource Active time Test Duration Utilization %
HBW 00:04:29 0:06:32 68,62
PLA 00:05:12 00:06:33 79,39
VGR 00:03:41 00:06:33 56,23

Stellenbosch University https://scholar.sun.ac.za

100

Table 25: Experiment 1b CNP Durations

CNP Duration Aggregated:
Test 1 step 1 63 Test 2 step 1 63
 step 2 110 step 2 141
 step 3 141 step 3 187
 step 4 203 step 4 150
AVERAGE: 129,25 ms

E.3 Experiment 2a

Table 26: Experiment 2a Order Results

Activity
Type

Start
Time End Time Result

Order
Duration

Test
Duration

Test 1
ORDER
WHITE 18:57:45 19:02:16 COMPLETE 00:04:31

ORDER
BLUE 18:57:47 19:04:24 COMPLETE 00:06:37

ORDER
RED 18:57:49 19:05:42 COMPLETE 00:07:53 0:07:57

Test 2
ORDER
WHITE 19:14:52 19:19:23 COMPLETE 00:04:31

ORDER
BLUE 19:14:55 19:21:34 COMPLETE 00:06:39

ORDER
RED 19:14:57 19:22:53 COMPLETE 00:07:56 0:08:01

Test 3
ORDER
WHITE 19:33:10 19:37:42 COMPLETE 00:04:32

ORDER
BLUE 19:33:12 19:39:50 COMPLETE 00:06:38

ORDER
RED 19:33:14 19:41:09 COMPLETE 00:07:55 0:07:59

Test 4
ORDER
WHITE 19:44:35 19:49:05 COMPLETE 00:04:30

ORDER
BLUE 19:44:37 19:51:13 COMPLETE 00:06:36

ORDER
RED 19:44:39 19:52:32 COMPLETE 00:07:53 0:07:57

Average
Duration 00:06:21 0:07:59
System Throughput 0,376

Stellenbosch University https://scholar.sun.ac.za

101

Table 27: Experiment 2a Resource Utilization

Resource Utilization

Resource Active time Test Duration Utilization
HBW 00:04:54 0:07:57 61,64
PLA 00:05:44 00:08:01 71,52
VGR 00:04:56 00:07:59 61,80

Table 28: Experiment 2a CNP Durations

CNP Duration Non-aggregated:
Test 1

step 1 62
Test 2

step 1 62
Test 3

step 1 32
step 2 78 step 2 78 step 2 94
step 3 141 step 3 234 step 3 172
step 4 156 step 4 78 step 4 78
step 5 172 step 5 188 step 5 141
step 6 235 step 6 188 step 6 125
step 6 328 step 7 187 step 7 172

AVERAGE: 142,90

Table 29: RI Attribute Updating

Resource
Instance: Attribute ID:

Starting
Value:

Post 1st
Order
Value:

Post 2nd
Order
Value:

Post 3rd
Order
Value:

HBW MAX_WAIT_TIME_FETCH_WP 25,00 27,00 27,00 31,00
AVG_WAIT_TIME_FETCH_WP 25,00 26,00 26,33 27,50

MPO MAX_WAIT_TIME_PRODUCE 40,00 45,00 45,00 45,00
AVG_WAIT_TIME_PRODUCE 40,00 42,50 43,33 43,75

SLD
MAX_WAIT_TIME_SORT 10,00 11,00 13,00 13,00
AVG_WAIT_TIME_SORT 10,00 10,50 11,33 11,75

VGR MAX_WAIT_TIME_ORDER 10,00 10,00 10,00 10,00
AVG_WAIT_TIME_ORDER 10,00 10,00 10,00 10,00
MAX_WAIT_TIME_PLA2PKG 5,00 6,00 8,00 9,00
AVG_WAIT_TIME_PLA2PKG 5,00 5,50 6,33 7,00

MAX_WAIT_TIME_DISPATCH_PKG 5,00 9,00 9,00 9,00
AVG_WAIT_TIME_DISPATCH_PKG 5,00 7,00 7,67 8,00

PKG
MAX_WAIT_TIME_PACKAGE 15,00 15,00 20,00 20,00
AVG_WAIT_TIME_PACKAGE 15,00 15,00 16,67 17,50

Stellenbosch University https://scholar.sun.ac.za

102

E.4 Experiment 2b

Table 30: Experiment 2b Order Results

Activity
Type

Start
Time End Time Result

Order
Duration

Test
Duratio
n

Test 1
ORDER
WHITE 12:43:10 12:46:44 COMPLETED 00:03:34

ORDER
BLUE 12:43:12 12:48:24 COMPLETED 00:05:12

ORDER
RED 12:43:14 12:49:31 COMPLETED 00:06:17 0:06:21

Test 2
ORDER
WHITE 13:03:42 13:07:17 COMPLETED 00:03:35

ORDER
BLUE 13:03:44 13:08:58 COMPLETED 00:05:14

ORDER
RED 13:03:46 13:10:02 COMPLETED 00:06:16 0:06:20

Test 3
ORDER
WHITE 13:17:10 13:20:44 COMPLETED 00:03:34

ORDER
BLUE 13:17:12 13:22:25 COMPLETED 00:05:13

ORDER
RED 13:17:14 13:23:30 COMPLETED 00:06:16 0:06:20

Test 4
ORDER
WHITE 13:35:35 13:39:09 COMPLETED 00:03:34

ORDER
BLUE 13:35:37 13:40:51 COMPLETED 00:05:14

ORDER
RED 13:35:39 13:41:56 COMPLETED 00:06:17 0:06:21

Average
Duration 00:05:01 0:06:20
System Throughput 0,474

Table 31: Experiment 2b Resource Utilization

Resource Utilization

Resource Active time Test Duration Utilization
HBW 00:04:34 0:06:21 71,92
PLA1 00:00:00 00:06:20 0,00
PLA2 00:05:01 00:06:20 79,21
VGR 00:03:39 00:06:21 57,48

Stellenbosch University https://scholar.sun.ac.za

103

Table 32: Experiment 2b CNP Durations

CNP Duration Non-aggregated:
Test 1

step 1 58
Test 2

step 1 63
Test 3

step 1 62
step 2 110 step 2 78 step 2 128
step 3 235 step 3 260 step 3 265
step 4 170 step 4 234 step 4 172

AVERAGE: 152,92

E.5 Experiment 3

Table 33: Experiment 3 Test Results

Activity
Type

Start
Time End Time Result

Order
Duration

Test
Duration

Test
1

ORDER
WHITE 15:13:10 15:16:44 COMPLETED 00:03:34

ORDER
BLUE 15:13:12 15:18:24

FAILED:
sld_timeout 00:04:43

 ORDER RED 15:13:14 15:19:31 COMPLETED 00:06:17 0:06:21
Test
2

ORDER
WHITE 16:13:41 16:17:16 COMPLETED 00:03:35

ORDER
BLUE 16:13:43 16:18:57 COMPLETED 00:05:14

 ORDER RED 16:13:45 16:20:01 COMPLETED 00:06:16 0:06:20
Test
3

ORDER
WHITE 16:27:15 16:31:01 COMPLETED 00:03:46 16:31:01

ORDER
BLUE 16:27:17 16:32:30 COMPLETED 00:05:13 16:32:30

 ORDER RED 16:27:19 16:33:36 COMPLETED 00:06:17 16:33:36
Average Duration 00:04:58 0:06:21

Stellenbosch University https://scholar.sun.ac.za

	Declaration
	Abstract
	Uittreksel
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Background
	1.2 Objectives
	1.3 Motivation
	1.4 Methodology

	2 Literature Review
	2.1 State of Industry
	2.1.1 Overview
	2.1.2 Challenges
	2.1.3 Enabling Technologies

	2.2 Holonic Manufacturing Systems
	2.2.1 Overview
	2.2.2 Holonic Manufacturing Execution Systems
	2.2.3 HMES Requirements
	2.2.4 HMES Evaluation
	2.2.5 HMES Reference Architectures
	2.2.5.1 Overview
	2.2.5.2 ADACOR
	2.2.5.3 PROSA

	2.3 ARTI Holonic Reference Architecture
	2.3.1 Overview
	2.3.2 Holon Types
	2.3.3 Intelligent Agents and Intelligent Beings
	2.3.4 Delegate Multi-Agent Systems
	2.3.5 Implementations

	2.4 BASE Architecture for Digital Administration Shells
	2.5 Conclusion

	3 Mapping the ARTI Architecture to the BASE Architecture
	3.1 System Features and Functions
	3.2 Communication
	3.3 Discussion

	4 Case Study Development
	4.1 Case Study Selection
	4.2 Case Study Description
	4.2.1 Hardware
	4.2.2 Mini-Factory Stations
	4.2.2.1 High-Bay Warehouse
	4.2.2.2 Multi-Processing Station
	4.2.2.3 Sorting Line
	4.2.2.4 Vacuum Gripper Robot
	4.2.2.5 Input and Output Stations

	4.2.3 TXT Controllers
	4.2.4 Gateway

	4.3 HMES Requirements
	4.4 Case Study HMES Architecture
	4.4.1 Holon Identification
	4.4.1.1 Resource Types
	4.4.1.2 Resource Instances
	4.4.1.3 Activity Types
	4.4.1.4 Activity Instances
	4.4.1.5 Basic Resources

	4.4.2 Holon Aggregation

	5 ARTI-based HMES Implementation
	5.1 BASE Architecture Version
	5.2 Implementation Programming Language
	5.3 Case Study System Low-Level Control
	5.4 Scheduling
	5.5 Communication
	5.5.1 Inter-platform Communications
	5.5.2 Inter-holon Communications
	5.5.3 Intra-holon Communications

	5.6 Plugin Development
	5.6.1 Overview
	5.6.2 Resource Type Plugins
	5.6.2.1 Overview
	5.6.2.2 Scheduling Plugin
	5.6.2.3 Execution Plugin
	5.6.2.4 Reflection Plugins
	5.6.2.5 Analysis Plugins
	5.6.2.6 Resource Type Plugin Functionalities

	5.6.3 Resource Instance Plugins
	5.6.3.1 Overview
	5.6.3.2 Scheduling Plugins
	5.6.3.3 Execution Plugins
	5.6.3.4 Reflection Plugins
	5.6.3.5 Analysis Plugins
	5.6.3.6 Configuration-specific Function Modules and FSMs
	5.6.3.7 PLA Function Module and FSM

	5.6.4 Activity Type Plugins
	5.6.4.1 Scheduling Plugins
	5.6.4.2 Execution Plugins
	5.6.4.3 Reflection Plugins
	5.6.4.4 Analysis Plugins
	5.6.4.5 Configuration Specific Function Modules and FSMs

	5.6.5 Activity Instance Plugins
	5.6.5.1 Scheduling Plugins
	5.6.5.2 Execution Plugins
	5.6.5.3 Reflection Plugins
	5.6.5.4 Analysis Plugins
	5.6.5.5 Configuration Specific Modules and FSMs

	5.6.6 Basic Resources
	5.6.6.1 MQTT Service
	5.6.6.2 Dashboard Service

	5.7 User Interface
	5.8 Discussion

	6 Case Study Evaluation
	6.1 Evaluation Criteria
	6.2 Experiments
	6.2.1 Baseline Experiment and Evaluation
	6.2.1.1 Default Resource System – Experiment 1a
	6.2.1.1.1 Experiment Description
	6.2.1.1.2 Results

	6.2.1.2 Aggregated Resource System – Experiment 1b
	6.2.1.2.1 Experiment Description
	6.2.1.2.2 Results
	6.2.1.2.3 Discussion of Results

	6.2.2 Reconfigurability Experiment and Evaluation
	6.2.2.1 New Resource Addition – Experiment 2a
	6.2.2.1.1 Experiment Description
	6.2.2.1.2 Results
	6.2.2.1.3 Discussion of Results

	6.2.2.2 Resources in Parallel – Experiment 2b
	6.2.2.2.1 Experiment Description
	6.2.2.2.2 Results
	6.2.2.2.3 Discussion of Results

	6.2.3 Robustness Testing and Evaluation
	6.2.3.1 Experiment Description
	6.2.3.2 Results
	6.2.3.3 Discussion of Results

	6.3 Discussion

	7 Conclusions and Recommendations
	8 References
	Appendix A Case Study
	A.1 Fischertechnik Hardware Components
	A.2 Default Order Process Steps
	A.3 Default Delivery Process Steps
	A.4 Fischertechnik TXT Controller Features

	Appendix B MQTT Hardware Interface
	Appendix C User Interface Functionalities
	Appendix D Evaluation Metrics
	Appendix E Experiment Results
	E.1 Experiment 1a
	E.2 Experiment 1b
	E.3 Experiment 2a
	E.4 Experiment 2b
	E.5 Experiment 3

