
 Electronic copy available at: http://ssrn.com/abstract=2623726 

 

1 

 

 

 

 
 

Is Real Per Capita State Personal Income Stationary? 

New Nonlinear, Asymmetric Panel-Data Evidence  
 

Furkan Emirmahmutoglu
a
, Rangan Gupta

b
, Stephen M. Miller

c 
and Tolga Omay

d 

  

 

 

 

 

 

 

ABSTRACT 

 

This paper re-examines the stochastic properties of US State real per capita personal income, 

using new panel unit-root procedures. The new developments incorporate non-linearity, 

asymmetry, and cross-sectional correlation within panel data estimation. Including nonlinearity 

and asymmetry finds that 43 states exhibit stationary real per capita personal income whereas 

including only nonlinearity produces the 42 states that exhibit stationarity. Stated differently, we 

find that 2 states exhibit nonstationary real per capita personal income when considering 

nonlinearity, asymmetry, and cross-sectional dependence.  
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1. Introduction 

The pioneering empirical analysis of Nelson and Plosser (1982) revolutionized macroeconomic 

analysis, in general, and business cycle investigations, in particular. The debate between 

Keynesian and real business cycle proponents hinges in large part on whether real output follows 

a stationary or nonstationary process. Thus, much research focuses on strengthening the power of 

tests to distinguish between stationary and nonstationary macroeconomic time series. 

One of the most frequently investigated variables is real GDP or real GDP per capita. This 

study investigates the stationarity properties of the US State real per capita personal income. Few 

researches investigate this variable at state level. In an exception, Romero-Ávila (2012) 

examines the nonstationarity of real per capita state personal income using the Carrion-i-

Silvestre et al. (2005) (CBL) test for nonstationarity, which extends the Hadri (2000) test to a 

panel-data setting by allowing multiple breaks in the intercept and trend. That is, Romero-Ávila 

(2012) tests the null hypothesis of stationarity with a linear, symmetric panel-data test that 

permits multiple breaks in the mean and slope of the time trend and controlling for cross-

sectional dependence. He examines the 48 contiguous states and the District of Columbia, using 

annual data from 1929 to 2004. 

Romero-Ávila (2012) finds that the Hadri test rejects the null of stationarity at the 1- and 

10-percent levels, where the 10-percent level rejection uses Monte Carlo simulation to generate 

the finite sample critical values. Additionally, he finds that the CBL test also rejects the null 

when the test accounts for multiple breaks in the intercept and trend at the 1-percent level, 

including the test based on the Monte Carlo simulated critical values. He then runs univariate 

tests of the Kwiatkowski, Phillips, Schmidt, and Shin (1992) (KPSS) test on each state, finding 

that 41 states cannot reject the null of stationarity and 8 states -- Alabama, Arkansas, Florida, 

Kentucky, Maryland, Oklahoma, Virginia, and Wyoming -- do reject the null at the 5- or 10-
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percent levels. He then reruns the pooled test for only the 41 states that report univariate 

stationarity, finding that the pooled test cannot reject the null hypothesis. Further, he reruns the 

pooled test for all contiguous states and the District of Columbia, dropping, in turn, each of the 8 

states that rejected the null hypothesis in the univariate tests. He concludes that Wyoming alone 

causes the rejection of the null hypothesis of stationarity in the full panel test that allows for 

multiple structural breaks and controls for cross-sectional dependence.
1
 

The approach adopted by Romero-Ávila (2012) possesses some shortcomings with respect 

to panel-data analysis and the identification of the data generation process. Taylor and Sarno 

(1998) note that panel unit-root tests may reject joint nonstationarity even if only one of the 

processes exhibits stationarity under the alternative hypothesis. If the test rejects the unit-root 

null, it still proves important to distinguish between nonstationary and stationary series within 

the panel. To resolve this problem, Choartareas and Kapetanios (2009), propose a sequential 

panel selection method (SPSM) that allows the identification of the stationary series. The 

Romero-Ávila (2012) method creates some deficiencies, because it does not account for the 

panel properties of the sample. Besides, with the Romero-Ávila (2012) approach, no unique way 

exists to determine and separate the stationary and non-stationary series in the sample. Therefore, 

the SPSM method can identify such stationary or nonstationary series in the panel sample. 

Furthermore, the Romero-Ávila (2012) paper does not offer a test to determine whether the 

various series experience structural breaks or nonlinearities. This issue of nonlinearity represents 

another shortcoming of the Romero-Ávila (2012) approach. For this purpose, we use the linearity 

test of Luukkonen et al. (1988) to identify the appropriate process for the real per capita state 

                                                 
1
 Why Wyoming exerts such influence over the pooled test remains an unanswered question. Further, finding non 

rejection of the null hypothesis of stationarity does not necessarily mean that all states in the pool exhibit stationary 

real per capita personal income. In fact, the univariate tests suggest that 8 states exhibit nonstationary behavior. 



4 

 

personal income. This linearity test identifies whether the series exhibits state-dependent or time-

varying nonlinearity. We apply these additional preliminary tests to our sample. 

These linearity tests determine that at the 31 of the 48 states exhibit state-dependent 

(regime-wise) nonlinearity and 16 states exhibit time-varying nonlinearity, where 11 states 

exhibit both significant state-dependent and time-varying nonlinearity. Hence, the linearity test 

suggests that only 5 of the 48 states achieve a superior model with a structural break. From these 

linearity tests, we can conclude that the Romero-Ávila (2012) structural-break approach does not 

prove suitable for our sample. As an additional robustness test of our linearity test results that 

sheds more light on the real data generation, we further estimate the nonlinear trend functions of 

the states by using the Leybourne et al (1998) (LNV) smooth structural-break methodology
2
. The 

nonlinear trend functions appear linear, since we include a long span data in our sample. Some 

structural shifts exist in the trends, but these shifts do not seem robust. This effect relates to the 

dimension of the sample. For example, if the same shift occurred in a small sample (time 

dimension), then nonlinear least squares identifies this shift as an important data generation 

characteristic and it receives a high weight in the nonlinear least squares procedure. At the same 

time, in a longer sample (time dimension), the nonlinear least squares estimation will weight this 

structural break less heavily than in the small sample (time dimension). The linearity results also 

support this view as only 16 out of 48 states exhibit time-varying nonlinearity. Thus, we 

conclude that we can well approximate these nonlinear trend functions by linear trend functions. 

That is, the nonlinearity tests and the LNV type nonlinear trend estimation allow us to conclude 

that the state-dependent nonlinearity best suits our sample data generation structure. 

                                                 
2
 We can also use the Kalman filter approach, or the Fourier transformation approach to detect smooth structural 

breaks.  
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Romero-Avila (2012) assumes that the long-run equilibrium occurs at a nonlinear trend 

attractor, which implies time-varying nonlinearity. Romero-Avila (2012) does not consider any 

prior identification tests to identify the data generating process. That is, the deterministic 

component of the stochastic process embodies the nonlinearity with the state variable time and 

the stationarity of the stochastic process investigates whether the process converges linearly to 

this nonlinear trend attractor. Thus, the mechanism implies that the convergence to this nonlinear 

long-run equilibrium occurs linearly and symmetrically. When we apply prior identification 

tests, we conclude that we can best represent our sample with nonlinear asymmetric convergence 

to a linear trend attractor.  

Unlike Romero-Ávila (2012), who postulated the emergence of nonlinearity due to 

structural breaks, we investigate whether nonlinearities exist in the form of threshold effects, 

whereby the output dynamics follows a nonstationary process at some threshold, but a stationary 

outside of that threshold. In addition, we also incorporate asymmetric response depending on 

whether output falls above or below its trend. The testing for stationarity that incorporates 

nonlinearity and asymmetry makes sense in that the conventional view argues that the business 

cycle exhibits such behavior. For example, the observed business cycle in the US shows that 

expansions exhibit longer durations than recessions. The documentation of asymmetries in the 

business cycle appears in many papers, including Neftci (1984), Diebold and Rudebusch (1989), 

Hamilton (1989), and Sichel (1993). Our analysis focuses on real per capita state personal 

income. Much less work examines the business cycle at the state level (e.g., Carlino and Sill 

2001 and Owyang, Piger, and Wall 2005). Thus, we use nonlinear symmetric and asymmetric 

panel unit root test in this study
3
 

                                                 
3
 The low power of single-equation, unit-root tests leads to the development of panel unit-root tests by Levin, et al. (2002) (LLC) 

and Im, et al. (2003) (IPS), where the power of the test improved dramatically. Hadri developed the panel data equivalent to the 
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Depending on all the aforementioned issues, we employ two different, but related, tests of 

a unit-root null hypothesis, first with a nonlinear symmetric heterogeneous panel-data approach 

developed by Ucar and Omay (2009) (UO), which builds on the work of Kapetanios et al. (2003) 

and, second, with a nonlinear asymmetric heterogeneous panel-data approach developed by 

Emirmahmutoglu and Omay (2014) (EO), which builds on the work of Sollis (2009). In addition, 

we also test the real per capita Bureau of Economic Analysis (BEA) region personal income in a 

panel data framework as well as a univariate test for stationarity of national real per capita 

personal income, using the method of Sollis (2009), covering the annual period of 1929 to 2013.  

We find, using the Chortareas and Kapetanios (2009) sequential panel selection method 

(SPSM), that 43 states exhibit stationarity from the EO test -- 42 states exhibit stationary real 

personal income per capita because of nonlinearity whereas the same 43 states exhibit 

stationarity because of nonlinearity and asymmetry. In other words, we find only 5 states that 

exhibit nonstationarity after we accommodate nonlinearity and asymmetry. 

This paper proceeds as follows. Section 2 briefly describes the methods of the nonlinear 

and nonlinear asymmetric heterogeneous panel estimation introduced by UO (2009) and EO 

(2014), respectively. Section 3 describes the data and presents the econometric results. Section 4 

concludes. 

2. The Model and Testing Framework 

Preliminary Identification Tests 

In order to determine our testing framework, we employ some preliminary identification tests – 

tests for linearity, estimates of structural breaks using the Luukkonen et al (1988) method, and 

                                                                                                                                                             
KPSS single-equation test, where stationarity is the null hypothesis. Carrion-i-Silvestre et al. (2005) (CBL) extend the Hadri 

(2000) test to a panel-data setting with multiple breaks in the intercept and trend. Ucar and Omay (2009) (UO) introduce 

nonlinear response by extending the KSS time-series unit-root test to a panel setting. Finally, Emirmahmutoglu and Omay (2014) 

(EO) extend the Sollis (2009) nonlinear panel-data unit-root test to include asymmetric adjustment. 
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tests for cross-sectional dependence. We start with the appropriate linear model. The linearity 

tests are complicated by the presence of unidentified nuisance parameter under the null 

hypothesis. To overcome this problem, we can replace the transition function with the 

appropriate Taylor approximation following the suggestion of Luukkonen et al (1988). The 

linearity test obtained from the first-order Taylor approximation results in the following auxiliary 

regression
4
 

' '

0,0 0 1,0 1t t t t t ty x tv x tv e        .               (1) 

where ttv  denotes the transition variable. The null hypothesis of linearity implies that the 

parameters 1,0  and '

1  of the auxiliary equation equal zero. We test this null hypothesis by a 

standard variable addition test. The test statistic, denoted as LM1, conforms to an asymptotic 2  

distribution with degrees of freedom p+1, where p is the dimension of the vector tx . Here, in our 

testing process, the vector tx  contains the independent variables obtained from the Taylor 

approximation, whereas the state (transition) variable ttv  is defined as 1ty   for the nonlinear unit-

root tests. The transition function is the composite function used in Solis (2009). 

To estimate the nonlinear deterministic trend, we use model C of the Leybourne et al. 

(1998), which is given as follows: 

   1 1 2 2, ,t t t ty t S tS             ,              (2) 

where   1, [1 exp{ ( )}]tS t T         is the logistic smooth transition function based on a 

sample of size T , 0  , and   determines the mid-point of transformation.  

                                                 
4
 For further details, see Luukkonen et al (1988). 
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For panel unit-root testing, the issue of cross-sectional dependence proves important in the 

testing procedure. We employ the cross-sectional dependence (CD) test of Pesaran (2004), which 

is given as follows: 

1

1 1

2
ˆ

( 1)

N N

ij

i j i

T
CD

N N




  

 
  

  
 ,                          (3) 

where ˆ
ij  is the estimated correlation coefficient between error terms for the individuals i  and 

j . 

Cross-Sectionally Dependent Nonlinear Unit-Root Tests 

Since the UO test emerges as a special case of the EO test, we consider the EO test in this 

section. EO (2014) extends the test of Sollis (2009) to nonlinear asymmetric heterogeneous 

panels as follows: 

1 , 1 2 , 1 1 2 , 1 2 , 1( , ){ ( , ) (1 ( , )) } ,it it i i t it i i t i it i i t i i t ity G y S y S y y                       (4) 

2

1 , 1 1 , 1 1( , ) 1 exp( ) 0 for allit i i t i i t iG y y i                    (5) 

1

2 , 1 2 , 1 2( , ) [1 exp( )] 0 for allit i i t i i t iS y y i  

                 (6) 

where 2~ (0, )it iiid  . If 1 0i   and 2i  , a large deviation of the state variable ( , 1i ty  ) 

exists and an ESTAR transition occurs between the central regime and outer regime model, 

where 1i  measures transition speed. For negative deviations of the state variable, the outer 

regime is 2 , 1it i i t ity y     and for positive deviations, the outer regime is 1 , 1it i i t ity y    , 

where the transition functions take the extreme values 0 and 1, respectively, for these two cases. 

If 1 2i i   for all i , the model generates asymmetric autoregressive adjustment.
5
 Because of the 

                                                 

5
 Eq. (1) nests the panel symmetric ESTAR specification of the UO (2009) test when 1 2i i i

   
 
for all i. That is, 

the UO test imposes the restriction that no asymmetry exists exogenously. 
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extreme assumption 2i  , the logistic function reduces to a simple step function and 

behaves like the TAR model. Asymmetry can also occur for small and moderate values of 2i . 

At the other extreme for 2i 2( . .,  0)ii e   , no matter the values of 1i  and 2 ,i
 
the composite 

function 
1 , 1 2 , 1 1 2 , 1 2( , ){ ( , ) (1 ( , )) }it i i t it i i t i it i i t iG y S y S y       

 
becomes symmetric since 

2 , 1( , ) 0.5it i i tS y    for andt i  . Therefore, this feature can test whether the series exhibits 

symmetric or asymmetric dynamics. 

For serially correlated errors in Eq. (4), EO (2014) extend Eq. (4) to allow for higher order 

dynamics as follows:  

       1 , 1 2 , 1 1 2 , 1 2 , 1 ,
1

, , 1 ,
ip

it it i i t it i i t i it i i t i i t ij i t j it
j

y G y S y S y y y          


      

     

(7) 

We can test the unit-root hypothesis against the alternative hypothesis of globally 

stationary symmetric or asymmetric ESTAR nonlinearity with a unit-root central regime by 

testing 0 1: 0iH    in Eq. (4). Unidentified parameters exist, however, under this null, that is, 

2i , 1i  and 2i . Following the KSS test, EO (2014) address this problem by deriving an 

auxiliary model using a Taylor approximation. To solve the unidentified parameters problem, the 

composite function must contain two different transition functions and, therefore, Taylor 

approximations around both 1 0i   and 2 0i   are derived. Thus, EO (2014) follow Sollis 

(2009) and obtain the auxiliary equation in two steps within the panel context. Replacing 

1 , 1( , )it i i tG y 
 in Eq.(4) with a first-order Taylor expansion around 1 0i   gives  

    3 3

1 1 , 1 2 , 1 2 1 , 1 2 , 1, 1 ,it i i i t it i i t i i i t it i i t ity y S y y S y                         (8) 

Replacing 
2 , 1( , )it i i tS y 

 in Eq.(7) with a first-order Taylor expansion around 2 0i   gives  
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* * 4 * 3

2 1 1 2 , 1 2 1 , 1( )it i i i i i t i i i t ity a y y                          (9) 

where 1/ 4a  . Rearranging the coefficients as 
*

1 2 1i i i    and 
* *

2 2 1 1 2( )i i i i ia      ,
6
 the 

following auxiliary equation emerges: 

3 4

1 , 1 2 , 1it i i t i i t ity y y                     (10) 

EO (2014) extend Eq. (10) and its augmented version as follows: 

3 4

1 , 1 2 , 1 ,
1

ip

it i i t i i t ij i t j it
j

y y y y     


                  (11) 

The null hypothesis 0 1: 0iH    for all i  in Eq.(1) becomes 0 1 2: 0i iH     for all i  in the 

auxiliary model. EO (2014) compute the proposed test statistic by taking the average of the 

individual 
,i AEF  statistics for the AESTAR processes. Thus,  

1
,

1

.
N

AE i AE

i

F N F



                 (12) 

Since individual ,i AEF  exhibits a non-standard F distribution, the panel AEF  test statistic 

also exhibits a non-standard distribution. EO (2014) compute exact critical values of AEF  via 

stochastic simulation for different values of N and T. On the other hand, if we reject the unit-root 

hypothesis that 1 2 0i i    for all i , then we can test the null hypothesis of symmetric ESTAR 

nonlinearity against the alternative of asymmetric ESTAR nonlinearity. That is, we test 

0 2: 0iH    for all i  against 1 2: 0iH    in Eq. (11). Under the symmetric null hypothesis, Since 

Sollis (2009) proposes using the individual t  statistics (
,
as
i AEt ) with standard t  distribution, EO 

(2014) compute as
AEt , in the panel framework, taking the average of the individual statistics, 

which have a standard distribution.   

                                                 
6
 Our notation follows that in Emirmahmutoglu and Omay (2014). 
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If the disturbances are not independent, then the limit distributions of the test statistics 

proposed no longer remain valid, given cross correlations among the cross section units. 

Therefore, EO (2014) use the Sieve bootstrap methodology proposed by Chang (2004) to obtain 

the empirical distributions of 
AEF  and as

AEt  test statistics.  

3.  Real per Capita Personal Income 

This paper improves over the traditional panel-data testing procedures that assume linearity, 

symmetry, and cross-sectional independence. Therefore, our testing procedure incorporates 

nonlinearity, asymmetry within a heterogeneous panel context via the sieve bootstrap method. 

Our proposed panel unit-root test appears in Eq. (4). Section 2 derives that precise estimating 

form as shown in Eq. (11). 

The supporting identification test for our testing procedure are employed and given in the 

Appendix. As indicated in Tables A1 and A2 in the Appendix, we reject the null of no cross-

sectional dependence at conventional levels of significance both for the case of the 48 contiguous 

states as well as the aggregated census regions by using the test in equation (3). Clearly, these 

results provide support for our decision to use a panel-data framework rather than a pure time-

series structure to test for the unit-root properties of the real personal per capita income. On the 

other hand we also employ the linearity test in equation (1) and report the linearity test results in 

Table A3 in the Appendix. These results suggest that the best model for the data generation 

process is state-dependent nonlinearity. In addition, we estimate the nonlinear trend using 

equation (2), support the results reported in Table A3 in the Appendix. We also graph the 

estimation results in Figure A1 in the Appendix.  

We prove that real per capita state personal income potentially follows an asymmetric, 

nonlinear, and cross-sectional dependent stationary process. We compare and contrast three 
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different unit-root tests that all use sieve bootstrap technique – the IPS (2003, 
BIPSt ) linear, 

symmetric test, the UO (2009, NLt ) nonlinear, symmetric test, and the EO (2014, 
AEF  and as

AEt ) 

nonlinear, asymmetric test. We apply the various tests to the natural logarithms of annual real per 

capita state personal income of the 48 contiguous states over the 1929 to 2013 sample period. 

Note that we deflate the nominal personal per capita state personal income by the consumer price 

index (CPI) of the overall US economy to obtain the real counterpart of the variable, given that 

state-level CPI is not available for the period under consideration. As with the nominal personal 

per capita income of the states, the CPI data also comes from the BEA.  

Table 1 reports the results of the tests applied using the sieve bootstrap method outlined in 

EO (2014). We use the empirical distributions of the tests generated by 5000 replications to 

obtain their p-values. For all tests, we choose the lag length using the Swartz-Bayesian 

information criterion (SBIC).   

We see that two of the three tests -- 
AEF , 

BIPSt , and NLt  -- can reject the null hypothesis of 

nonstationarity against the alternative of globally stationary nonlinear symmetric or asymmetric 

process. These results establish that the real data generating process of real per capita state 

personal income follows either a nonlinear or a nonlinear and asymmetric process. Thus, panel 

unit-root tests that do not incorporate nonlinearity, asymmetry, and cross-sectional dependence 

may generate misleading findings.  

Taylor and Sarno (1998) argue that panel unit-root tests may reject joint nonstationarity 

even if only one of the processes exhibits stationary under the alternative hypothesis. If we reject 

the unit-root null, we need to distinguish between nonstationary and stationary series. We adopt 
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the sequential panel selection method (SPSM) in Chortareas and Kapetanios (2009) (CK) to 

identify the stationary series in the panel of observations
7
.  

The SPSM procedure of CK (2009) proceeds as follows:
8
 First, we estimate using all series 

in the panel and apply the unit-root test to the full sample. If we cannot reject the unit-root null, 

then we stop and accept nonstationarity of the panel. If we reject the null, then we continue to 

other steps. Second, we drop the series with the maximum significant i ,AEF  statistic, which 

indicates the state with the strongest evidence for stationarity, repeat the analysis for the 

remaining panel data set. We end when the individual i ,AEF  proves insignificant. 

Tables 2 reports the results of the SPSM findings for the i ,AEF  and ,
as

i AEt  tests while Table 3 

reports the SPSM findings for the ,i NLt  tests. In Table 2, we reject linear nonstationarity against 

the alternative of stationary ESTAR nonlinearity with the i ,AEF  for 43 states. Further, we reject 

with the ,
as

i AEt  test the null hypothesis of symmetric ESTAR nonlinearity against the alternative of 

stationary asymmetric ESTAR nonlinearity for 43 states. Finally, in Table 3, we reject linear 

nonstationarity against the alternative of stationary nonlinearity for 42 states.
9
  

Comparing the EO (2014) and UO (2009) tests of the panel unit-root null hypothesis, we 

see that the EO and UO tests nearly encompass each other. More specifically, the i ,AEF  and ,
as

i AEt  

tests identify 43 states that reject nonstationarity. The ,i NLt  symmetric, nonlinear panel test 

                                                 
7
 The steps of the SPSM procedure are as follows. First, estimate the model for all the series in the panel. If the unit 

root null is not rejected, then accept the nonstationary hypothesis and stop. In this case, all the series in the panel are 

found to be non-stationary. On the contrary, if the null is rejected, go to Step 2. Second, drop the series with the 

maximum i ,AEF  statistic, which shows the strongest evidence in favor of stationarity and go to Step 3. Third, return 

to Step 1 for the remaining series, or stop if all series are removed from the panel.  

8
 Since we cannot reject the unit-root null for the BIPS  tests, we cannot use the SPSM procedure for these tests.  

9
 The EO test implicitly sets 1 = 2 exogenously. 
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identifies 42 states that reject the null hypothesis. The i ,AEF  and ,
as

i AEt  tests identify Arizona, 

Connecticut, Delaware, and Georgia as rejecting the null, whereas the ,i NLt  test does not. Further, 

the ,i NLt  symmetric, nonlinear panel test identifies that Kentucky, North Carolina, and South 

Carolina reject the null hypothesis of nonstationarity, but the i ,AEF  and ,
as

i AEt  tests do not.
10

  

In sum, either the EO or the UO test, or both identify 46 states that reject the null 

hypothesis of nonstationarity. Nevertheless, 2 states still do not reject either null of 

nonstationarity – California and Wyoming. The inability to reject nonstationarity for Wyoming 

proves consistent with Romero-Ávila (2012), who finds that Wyoming alone causes the rejection 

of the null hypothesis of stationarity in the full panel test that allows for multiple structural 

breaks and controls for cross-sectional dependence. Our finding for California differs from 

Romero-Ávila (2012). The linearity test and the nonlinear trend estimations in the Appendix also 

confirm these results.  

Considering an alternative level of aggregation, we redid the four tests -- AEF , as
AEt , NLt , 

and 
BIPSt  -- using the eight BEA regions as the unit of analysis.

11
 Table 4 reports the findings for 

the full panel estimates for the eight BEA regions. Once again, we find that two of the three tests 

-- AEF , and NLt  -- can reject the null hypothesis of nonstationarity against the alternative of 

                                                 
10

 In the symmetry cases, the UO test possesses more power than the EO test, since we estimate more parameters 

with the EO test. That is, although the EO test nests the UO test, the power of the UO test exceeds that of the EO 

because of symmetry. Thus, we identify these three states as stationary. 

11
 The BEA regions are defined as follows: New England (Connecticut, Maine, Massachusetts, New Hampshire, 

Rhode Island, and Vermont); the Mideast (Delaware, District of Columbia, Maryland, New Jersey, New York, and 

Pennsylvania); the Great Lakes (Illinois, Indiana, Michigan, Ohio, and Wisconsin); the Plains (Iowa, Kansas, 

Minnesota, Missouri, Nebraska, North Dakota, and South Dakota); the Southeast (Alabama, Arkansas, Florida, 

Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, and West 

Virginia); the Southwest (Arizona, New Mexico. Oklahoma, and Texas); the Rocky Mountain (Colorado, Idaho. 

Montana, Utah, and Wyoming); and the Far West (Alaska, California, Hawaii, Nevada, Oregon, and 

Washington).When we use the data for BEA regions, Alaska and Hawaii enter the data for the Far West region and 

the District of Columbia enters the Mideast region. We do not consider these three “states” in our prior analysis.  
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globally stationary nonlinear symmetric or asymmetric process. Tables 5 reports the results of 

the SPSM findings for the i ,AEF  and ,
as

i AEt  tests while Table 6 reports the SPSM findings for the 

,i NLt  tests. In Table 5, we reject linear nonstationarity against the alternative of stationary 

ESTAR nonlinearity with the i ,AEF  for seven BEA regions. Only the Far West region cannot 

reject the null hypothesis. Further, we reject with the ,
as

i AEt  test the null hypothesis of symmetric 

ESTAR nonlinearity against the alternative of stationary asymmetric ESTAR nonlinearity for 

one BEA regions, the Far West again. Finally, in Table 6, we reject linear nonstationarity against 

the alternative of stationary nonlinearity for seven BEA regions. And again, only the Far West 

region cannot reject the null hypothesis. This proves consistent with our state by state findings, 

since we could not reject nonstationarity for California. California is the major component of the 

Far West region.  

Finally for completeness, we examine the Sollis (2000) univariate test for nonlinear 

asymmetric nonstationarity using the aggregate real per capita personal income data from the 

BEA. The AEF  (=10.079) and as
AEt  (=1.808) both reject the null hypothesis of nonlinear, 

asymmetric nonstationarity at the one- and ten-percent levels, respectively. 

4. Conclusion 

This paper uses recently developed panel unit-root tests by EO (2014) and UO (2009) that allows 

for the simultaneous existence of nonlinear and asymmetric mean reversion within a panel 

context to test for the stationarity of real per capita state personal income for the 48 contiguous 

states in the US. The procedure tests whether a series exhibits a unit root against the alternative 

of globally stationary symmetric or asymmetric ESTAR nonlinearity. In addition, the tests 

accommodate cross-sectional dependence, using the sieve bootstrap algorithm. We compare the 
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findings from these tests to the standard IPS (2003) panel test, where we also employ the sieve 

bootstrap algorithm. 

Romero-Ávila (2012) finds that real per capita state personal income exhibits stationary 

behavior in the panel stationarity test of CBL (2005), which incorporates multiple breaks in the 

intercept and trend of the panel test. We consider nonlinear, asymmetric mean reversion in panel 

data tests that includes sieve bootstrapping developed recently by EO (2014) and UO (2009). 

Our findings generally support those of Romero-Ávila (2012), except that we find consistent 

evidence of nonstationary behavior for California and Wyoming. Moreover, the nonstationary 

behavior for California carries over to the Far West region. In light of this, an interesting 

extension of our work would use a hybrid testing process that accommodates nonlinearities both 

due to structural breaks and threshold effects. By using this newly proposed test, may resolve the 

stationarity problem of Wyoming and California. 
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Table 1. Panel Unit-Root Test Results for US State Real Personal per Capita Income 

EO UO IPS 

AEF   
as

AEt  NLt  
BIPSt   

6.493
*
 

 (0.000) 

1.668
*
 

(0.033) 

-2.733
*
 

(0.000) 

-1.461  

(0.511) 

Note: 
*  

and
 **

 denote significance at the 5% and 10% levels, respectively, based on the sieve bootstrap p-values.. 
 

Table 2. SPSM results based on EO Test for Real Personal per Capita Income  

Sequence AEF  
as

AEt  

Max 

individual 

F Stat. 

I(0) Series Sequence AEF  
as

AEt  

Max 

individual 

F Stat. 

I(0) Series 

1 10.144
*
 1.723

*
 26.600 Utah 23 6.833

*
 1.427

*
 9.610 Washington 

2 9.794
*
 1.733

*
 23.062 Rhode Island 24 6.722

*
 1.464

*
 8.444 Oklahoma 

3 9.506
*
 1.647

*
 18.285 Nevada 25 6.650

*
 1.439

*
 8.352 Ohio 

4 9.311
*
 1.580

*
 17.849 New Mexico 26 6.576

*
 1.422

*
 8.348 Arizona 

5 9.117
*
 1.583

*
 16.248 Delaware 27 6.495

*
 1.384

*
 8.278 Kansas 

6 8.951
*
 1.577

*
 16.130 Massachusetts 28 6.410

*
 1.435

*
 8.210 Illinois 

7 8.780
*
 1.521

*
 15.788 South Dakota 29 6.320

*
 1.414

*
 8.156 New Hampshire 

8 8.609
*
 1.532

*
 15.059 Iowa 30 6.224

*
 1.481

*
 8.119 Vermont 

9 8.448
*
 1.550

*
 13.982 New York 31 6.119

*
 1.520

*
 7.959 Florida 

10 8.306
*
 1.510

*
 13.598 Tennessee 32 6.010

*
 1.478

*
 7.920 Georgia 

11 8.167
*
 1.501

*
 13.509 Texas 33 5.891

*
 1.360

*
 7.844 Louisiana 

12 8.022
*
 1.498

*
 13.371 Nebraska 34 5.761

*
 1.268

*
 7.355 Wisconsin 

13 7.874
*
 1.478

*
 12.550 Pennsylvania 35 5.647

*
 1.266

*
 7.200 Indiana 

14 7.740
*
 1.474

*
 11.317 Idaho 36 5.528

*
 1.292

*
 6.835 Virginia 

15 7.635
*
 1.506

*
 10.773 New Jersey 37 5.419

*
 1.290

*
 6.778 Maine 

16 7.540
*
 1.542

*
 10.759 Connecticut 38 5.295

*
 1.275

*
 6.568 Mississippi 

17 7.439
*
 1.457

*
 10.240 Oregon 39 5.168

*
 1.340

*
 6.261 West Virginia 

18 7.349
*
 1.484

*
 10.204 Michigan 40 5.046

*
 1.344

*
 6.165 Missouri 

19 7.254
*
 1.481

*
 10.102 Montana 41 4.907

*
 1.296

*
 5.980 Maryland 

20 7.155
*
 1.500

*
 10.023 Arkansas 42 4.753

**
 1.396

*
 5.524 Minnesota 

21 7.053
*
 1.489

*
 10.020 Alabama 43 4.625

**
 1.292

**
 5.250 North Dakota 

22 6.943
*
 1.493

*
 9.814 Colorado      

Note: 
*  

and
 **

 denote significance at the 5% and 10% levels, respectively, based on the bootstrap p-values. 
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Table 3. SPSM results based on UO Test for Real Personal per Capita Income 

Sequence NLt  

Min 

individual  

t stat. 

I(0) Series Sequence NLt  

Min 

individual  

t stat. 

I(0) Series 

1 -4.027
* 

-7.145 Utah 22 -3.342
*
 -4.082 Kansas 

2 -3.960
*
 -5.751 New Mexico 23 -3.314

*
 -4.062 New Hampshire 

3 -3.921
*
 -5.506 South Dakota 24 -3.284

*
 -4.040 Arkansas 

4 -3.886
*
 -5.436 Iowa 25 -3.252

*
 -3.964 Vermont 

5 -3.851
*
 -5.224 Nebraska 26 -3.221

*
 -3.963 Ohio 

6 -3.819
*
 -5.203 South Carolina 27 -3.188

*
 -3.876 New York 

7 -3.786
*
 -5.128 North Carolina 28 -3.155

*
 -3.780 Massachusetts 

8 -3.753
*
 -4.968 North Dakota 29 -3.124

*
 -3.683 Indiana 

9 -3.723
*
 -4.876 Texas 30 -3.094

*
 -3.655 Maine 

10 -3.693
*
 -4.835 Minnesota 31 -3.063

*
 -3.641 Rhode Island 

11 -3.663
*
 -4.793 Tennessee 32 -3.029

*
 -3.587 Mississippi 

12 -3.633
*
 -4.772 Idaho 33 -2.994

*
 -3.488 Oklahoma 

13 -3.601
*
 -4.692 Pennsylvania 34 -2.961

*
 -3.436 Virginia 

14 -3.570
*
 -4.657 New Jersey 35 -2.928

*
 -3.421 Maryland 

15 -3.538
*
 -4.504 Oregon 36 -2.890

*
 -3.352 Nevada 

16 -3.509
*
 -4.399 Montana 37 -2.851

*
 -3.322 West Virginia 

17 -3.481
*
 -4.378 Washington 38 -2.808

*
 -3.311 Wisconsin 

18 -3.452
*
 -4.230 Alabama 39 -2.758

*
 -3.219 Florida 

19 -3.426
*
 -4.227 Louisiana 40 -2.707

**
 -3.158 Kentucky 

20 -3.398
*
 -4.197 Michigan 41 -2.650

**
 -3.033 Colorado 

21 -3.370
*
 -4.115 Illinois 42 -2.596

**
 -3.018 Missouri 

Note: 
*  

and
 **

 denote significance at the 5% and 10% levels, respectively, based on the bootstrap p-values. 

 

Table 4. Panel Unit Root Test Results  

EO UO 

AEF   
as

AEt  NLt  

9.251
*
 

(0.000)
 

1.654
**

 

(0.000)
 

-3.764
* 

(0.000) 

Note:
*  

and
 **

 denote significance at the 5% and 10% levels, respectively, based on the bootstrap p-values. 
 

Table 5. SPSM results based on EO Test  

Sequence AEF  
as

AEt  
Max individual  

F Stat. 
I(0) Series 

1 9.251
*
 1.654

*
 12.933 Southwest 

2 8.789
*
 1.615

*
 11.498 Mideast 

3 8.214
*
 1.450

*
 11.315 Rocky Mountain 

4 7.639
*
 1.454

*
 9.102 Plains 

5 6.861
*
 1.505

*
 8.278 New England 

6 6.038
*
 1.126 7.344 Great Lakes 

7 5.167
**

 1.380 6.364 Southeast 

Note: 
*  

and
 **

 denote significance at the 5% and 10% levels, respectively, based on the bootstrap p-values. 
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Table 6. SPSM results based on UO Test  

Sequence NLt  
Min individual 

t stat. 
I(0) Series 

1 -3.764
*
 -4.539 Southwest 

2 -3.655
*
 -4.427 Rocky Mountain 

3 -3.523
*
 -4.035 Plains 

4 -3.338
*
 -3.879 Great Lakes 

5 -3.194
*
 -2.967 Mideast 

6 -2.954
*
 -2.614 New England 

7 -2.785
**

 -2.516 Southeast 

Note: 
*  

and
 **

 denote significance at the 5% and 10% levels, respectively, based on the bootstrap p-values. 
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Appendix: 

 

Table A1. Cross-sectional dependence tests for aggregated by local area  

 EO UO IPS 

BP 2922.8* 2777.4* 2642.4* 

CD 161.1* 156.0* 150.1* 

Note: * and ** denote significance at the 5% and 10% levels, respectively, for all CD tests, we use the residuals 

from related model. For example, to implement the CD-LM test for the EO model, we estimate the EO model and 

recover the residuals from that model. BP stands for the Breusch and Pagan (1980) test and CD stands for the 

Pesaran (2004) test. 

 

Table A2. Cross-sectional dependence (CD) tests for states depending on full sample 

 EO UO IPS 

BP 962.6* 925.5* 863.8* 

CD 30.1* 29.3* 28.1* 

Note: * and ** denote significance at the 5% and 10% levels, respectively, 
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Table A3. Linearity Tests 

States 
State Dependent 

1t ts y   Time Varying 
ts t  Results 

F-Test Significance F-Test Significance  

Alabama 7.437 0.008 3.482 0.066 SD*/TVǂ 

Arizona 2.962 0.089 3.338 0.071 SDǂ/TVǂ 

Arkansas 3.574 0.062 2.411 0.124 SD** 

California 1.117 0.294 1.744 0.190 - 

Colorado 4.073 0.047 3.020 0.086 SD**/TVǂ 

Connecticut 0.220 0.640 1.776 0.186 - 

Delaware 0.027 0.870 2.917 0.092 TVǂ 

Florida 6.380 0.013 3.996 0.049 SD**/TV** 

Georgia 7.681 0.007 4.646 0.034 SD*/TV** 

Idaho 22.311 0.000 1.943 0.167 SD* 

Illinois 2.139 0.147 2.067 0.154 - 

Indiana 3.626 0.060 2.440 0.122 SD** 

Iowa 10.328 0.002 1.351 0.249 SD* 

Kansas 2.981 0.088 1.951 0.166 SDǂ 

Kentucky 2.927 0.091 2.985 0.088 SDǂ/TVǂ 

Louisiana 4.063 0.047 1.847 0.178 SD** 

Maine 1.122 0.293 2.226 0.140 - 

Maryland 0.717 0.400 3.363 0.070 TVǂ 

Massachusetts 1.431 0.235 2.350 0.129 - 

Michigan 6.017 0.016 2.439 0.122 SD** 

Minnesota 6.511 0.013 2.488 0.119 SD** 

Mississippi 4.040 0.048 2.412 0.124 SD** 

Missouri 4.154 0.045 3.436 0.067 SD**/TVǂ 

Montana 3.260 0.075 1.760 0.188 SDǂ 

Nebraska 14.654 0.000 1.392 0.241 SD* 

Nevada 3.543 0.063 4.497 0.037 SDǂ/TV** 

New Hampshire 1.554 0.216 3.477 0.066 TVǂ 

New Jersey 1.048 0.309 3.103 0.082 TVǂ 

New Mexico 4.846 0.031 2.447 0.122 SD** 

New York 1.784 0.185 1.834 0.179 - 

North Carolina 8.932 0.004 4.379 0.040 SD 

North Dakota 1.856 0.177 1.366 0.246 - 

Ohio 2.406 0.125 2.238 0.139 - 

Oklahoma 3.035 0.085 1.023 0.315 SD 

Oregon 3.851 0.053 2.566 0.113 SD 

Pennsylvania 1.651 0.203 2.404 0.125 - 

Rhode Island 1.197 0.277 1.463 0.230 - 

South Carolina 7.179 0.009 4.645 0.034 SD*/TV** 

South Dakota 5.678 0.020 1.375 0.244 SD** 

Tennessee 7.307 0.008 3.225 0.076 SD*/TVǂ 

Texas 2.970 0.089 2.016 0.159 SDǂ 

Utah 3.710 0.058 2.166 0.145 SDǂ 

Vermont 0.904 0.345 1.248 0.267 - 

Virginia 4.299 0.041 4.646 0.034 SD**/TV** 

Washington 2.127 0.149 2.766 0.097 TVǂ 

West Virginia 4.447 0.038 1.876 0.175 SD** 

Wisconsin 3.012 0.086 2.321 0.132 SDǂ 

Wyoming 0.759 0.386 0.042 0.839 - 

West Virginia 4.447 0.038 1.876 0.175 SD** 

Note: The linearity tests obtained by using the Solis (2009) unit root test for time series. SD denotes the state 

dependent nonlinearity; TV denotes time varying nonlinearity and – means no nonlinearity captured at conventional 

significance levels. *, **, and ǂ denote significance at the 1%, 5%, and 10% levels, respectively.  
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Table A3 reports the linearity test findings, using the Sollis (2009) unit-root test. Using 

the significance level, 31 of the 48 states exhibit state-dependent (regime-wise) nonlinearity and 

16 states exhibit time-varying nonlinearity, where 11 states exhibit both significant state-

dependent and time-varying nonlinearity. Finally, 12 states exhibit linearity at conventional 

significance levels. Except for three states, Rhode Island, Vermont, and Wyoming – the other 

nine states exhibit nonlinearity when we use the 20-percent significance level. We noted in the 

introduction that “approximating time-varying nonlinearity by using state-dependent (regime-

wise) nonlinearity proves the better approach” based on our empirical findings. The test results 

find 36 of the 48 states exhibit nonlinear behavior with significance levels close to each other as 

we claimed in the introduction. Therefore, nonlinear panel unit-root tests or panel unit-root tests 

with structural break can successfully model long time spans of data without loss of any relevant 

information. On the other hand, Table A3 shows and we argue that the nonlinear and asymmetric 

test (EO 2014) provides a better test than a structural break type panel unit-root test. 
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Figure A1. Nonlinear Trend Function with structural break in intercept and trend (LNV)  

 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

0

2500

5000

7500

10000

12500

15000

17500

 
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

2000

4000

6000

8000

10000

12000

14000

16000

18000

 
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

0

2000

4000

6000

8000

10000

12000

14000

16000

 
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

 

Alabama Arizona Arkansas California 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

2500

5000

7500

10000

12500

15000

17500

20000

22500

 
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

0

5000

10000

15000

20000

25000

30000

 
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

 
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

 

Colorado Connecticut Delaware Florida 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

 
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

0

2000

4000

6000

8000

10000

12000

14000

16000

 
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

2500

5000

7500

10000

12500

15000

17500

20000

22500

 
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

2000

4000

6000

8000

10000

12000

14000

16000

18000

 

Georgia Idaho Illinois Indiana 

 

 

 

 

 

 

 



26 

 

Figure A1. Nonlinear Trend Function with structural break in intercept and trend (LNV) 

(continued) 
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Figure A1. Nonlinear Trend Function with structural break in intercept and trend (LNV) 

(continued) 
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Figure A1. Nonlinear Trend Function with structural break in intercept and trend (LNV) 

(continued) 
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Figure A1 shows that we can well approximate the nonlinear trend functions obtained by 

Leybourne, Newbold, and Vogus (1998) method (Model C) with a linear trend function.  


