
S30       August 2019, Vol. 109, No. 8 (Suppl 1)

RESEARCH

The major histocompatibility complex 
(MHC), referred to as the human leukocyte 
antigen (HLA) complex in humans, is 
located on the short arm of chromosome 
6 (Fig. 1). This region encodes cell surface 
proteins that form part of the innate and 
adaptive immune responses through binding 
killer-cell immunoglobulin-like receptor 
(KIR) molecules on the surfaces of natural 
killer (NK) cells and the recognition and 
binding of self and non-self peptides.

The HLA region is the most polymorphic 
region in the human genome.[1] Allelic 
variants mostly arise within the nine classic 
genes (HLA-A, -B, -C, -DPA1, -DPB1, 
-DQA1, -DQB1, -DRA and -DRB1) of the 
HLA region. Classic HLA molecules present 
peptides to the T cell receptor (TCR) of 
CD4+ and CD8+ T cells, while non-classic 
HLA molecules mediate inhibitory or 
activating stimuli.[2] There are currently 
21 499 HLA alleles listed in the IMGT/HLA 
database (https://www.ebi.ac.uk/ipd/imgt/
hla/stats.html release 3.35.0 January 2019), 
of which 15 586 are class I and 5 913 class II 
alleles (Fig. 2).[3]

The class I HLA region spans >2 000 kb 
and consists of ~20 genes. There are three 

classic HLA genes within the class I region: 
HLA-A, -B, and -C. The HLA-B locus is the 
most polymorphic of the class I genes,[4] 
with 5 881 alleles currently documented 
in the HLA database, while HLA-A has 
4 846 and HLA-C 4 654 alleles.[3] The 
classic HLA class I genes consist of eight 
exons, while the polymorphisms reside 
in gene regions that encode the peptide-
binding groove. Class I molecules consist of 
two chains, the α chain and non-covalently 

bound β2-microglobulin. The α1 and α2 
chains are the variable regions within the 
class I genes. These variable regions form 
the peptide-binding groove designed to bind 
endogenously derived peptides, which in 
turn are recognised by the TCR on CD8+ 
T cells. The peptide-binding groove binds 
endogenously derived peptides, which in 
turn are recognised by the TCR on CD8+ 
T cells. The class I endogenous pathway is 
associated with defence against intracellular 
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Fig. 1. The HLA region on chromosome 6. The HLA region is located on the short arm (p21.3) of 
chromosome 6 and spans >3.6 Mb. This region comprises three classes (I, II and III) that play an 
important role in immune responses.
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pathogens such as viruses. In addition, class I 
molecules are also recognised by KIRs which 
mediate tolerance and response of NK cells.

Class II molecules include the classic 
HLA-D genes, which are subdivided into 
DQ (DQA1 and DQB1), DP (DPA1 and 
DPB1), and DR (DRA and DRB1), and are 
restricted to immune competent cells (B 
cells, macrophages, and endothelial cells of 
T cells). The class II genes encode proteins 
that are expressed on the cell surface of 
antigen-presenting cells (APCs), where they 
present peptides to helper T cells. Within 
the class II genes, exon 2 is the most variable 
region and also forms the peptide-binding 
groove. All class II molecules consist of two 
transmembrane chains: α and β domains. 
The extracellular component of each class 
II molecule consists of two domains (α1, α2 
and β1, β2). The α1 and β1 domains form 
the peptide-binding groove. Broadly, class 
II molecules are involved in the exogenous 
pathway and are associated with defence 
against extracellular pathogens such as 
bacteria. The TCR, which binds to the 
exogenously-derived peptide class II HLA 
complex, is found on CD4+ helper T cells.

The human immune system has evolved 
to interact with and mount immune 
responses against viral, parasitic, bacterial 
and other pathogen-derived peptides 
through high HLA diversity across 
populations. HLA needs to present an 
enormous array of antigenic peptides to T 
cells so that a unique immune response to 
a wide variety of peptides can be elicited. 

The mechanisms that have been proposed to 
act on the evolution of HLA genes include: 
(i) accumulation of deleterious variants 
in nearby genes;[5] (ii) gene conversion/
interlocus genetic exchange;[6] (iii) over-
dominant balancing selection (heterozygote 
advantage);[7] and (iv) frequency-dependent 
selection.[8] The HLA variability observed 
can also be the result of the presence of 
duplicated genes with similar or overlapping 
functions.[9] This assumption is made on 
the basis of the observation that the HLA 
complex consists of genes with similar 
but not completely identical structure and 
function. The variants within these genes 
mostly arise in the form of single-nucleotide 
polymorphisms (SNPs) and have directed 
the allelic diversity observed today.[10] The 
diversity of these molecules has occurred 
due to the presence of different alleles at a 
specific locus within a species. The alleles 
can differ from one another by an alteration 
at a minimum of one SNP. Several thousand 
allelic variants of the HLA genes have 
already been described, with many alleles 
being present at frequencies below 1%.[11] 
The variation observed is often population-
specific and accounts for the diversity among 
populations.[12] The divergence rate of the 
HLA genes is due to the long history of 
independent haplotype evolution, where 
Africans (including South Africans) are 
considered to be genetically more diverse 
than other populations.[13] This has been 
shown using several genetic markers[14–16] 
including HLA genes.[17] Interestingly, most 

HLA gene families that exist globally are 
found in African populations.[18]

The presence of specific HLA alleles in 
black South Africans has recently been 
reviewed by Tshabalala et al.[19] however, 
HLA typing data for these individuals 
remains limited. The under-representation 
of black South Africans in the South African 
Bone Marrow Registry (SABMR) accentuates 
the paucity of HLA typing data available 
for this population. There is therefore an 
increased need for HLA typing data in black 
South Africans.

HLA typing methods
HLA typing methods have evolved over time 
from phenotypic identity using serology 
to genotyping at high resolution using 
DNA sequencing technology. Serology-
based methods identify HLA molecules to 
antigen level, with DNA methods being 
able to identify to protein level. Despite 
high resolution, sequencing-based typing 
(SBT) has limitations of usually typing 
certain exons within the HLA loci, thereby 
giving partial sequences of about 10% 
of the reported alleles.[20] Clinical HLA 
typing laboratories rarely sequence exons/
introns outside the peptide-binding 
groove for transplantation matching, with 
the assumption that they are not directly 
involved in T cell allo-recognition.[21,22] This 
assumption is supported by modelling HLA/
peptide/ TCR interactions,[23] and studying 
allele-specific peptide repertoires[24] and other 
allo-recognition studies.[25] Ambiguous allele 
combinations arising due to heterogeneity 
limit resolution in SBT, making it difficult to 
accurately assign HLA alleles. It is possible 
to sequence the entire HLA gene region 
using current SBT methods, but at a very 
high cost and requiring specific expertise. 
Another potential source of ambiguity in 
SBT is the cis/trans assignment of DNA 
bases in a heterozygous sample.[26] There have 
been advances in the use of next-generation 
sequencing (NGS) to improve coverage of 
HLA gene loci at high throughput, while 
at the same time reducing ambiguity 
associated with SBT.[27] Challenges of NGS 
HLA typing include the high number of 
polymorphisms associated with this gene 
region, with most individuals having 
heterozygous genotypes for most alleles. 
Other problems arise from the high number 
of pseudogenes in this region and long 
indels which cannot be efficiently covered 
by basic sequencing. The complex nature of 
some loci makes reference-based alignment 
of NGS reads less reliable.[28] To fully 
appreciate NGS HLA typing tools, there is a 
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Fig. 2. The number of HLA alleles has been increasing since 1987 owing to advancement in typing 
methods. There are currently more than 14 000 and 5 000 class I and II alleles respectively in the IMGT 
HLA database (figure from http://hla.alleles.org/inc/images/graph_hires.png, accessed 23 April 2019).[3]
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need for complete full-length HLA allele sequences in the reference 
database.[27]

HLA imputation as a tool for better 
understanding HLA diversity
There is an information gap regarding the extent of HLA genetic 
diversity among South African populations and southern Africans 
in general.[19] Additionally, there are limited high-resolution HLA 
allele frequency data (except for HLA-disease associations) publicly 
available for the SA population.[11] Advances in computational 
biology make it possible to impute HLA alleles at a high degree of 
accuracy by inferring them from surrounding SNP markers across 
the MHC region[29] based on the high linkage disequilibrium (LD) 
within this region.[30] Additionally, high-resolution (up to 8 digit 
typing) HLA genotyping from whole genome sequence (WGS) and 
whole exome sequence (WES) datasets is possible from existing 
resources.[31–34] These tools borrow from existing genomic projects 
and studies to better understand HLA diversity in those populations. 
There are several efforts to understand genetic diversity in Africans 
and South African populations in general, including the Southern 
African Human Genome Programme (https://www.sahgp.org/index.
php),[35] H3 Africa (https://h3africa.org/), 1000 Genomes project 
(http://www.internationalgenome.org/), and the African Genome 
Variation Project (https://www.sanger.ac.uk/science/collaboration/
african-genome-variation-project). There are numerous other studies 
generating WGS, WES and SNP data from SA and African populations 
from which data for HLA imputation may be accessed. Several HLA 
imputation tools, including SNP2HLA,[36] HLA Genotype Imputation 
with Attribute Bagging (HIBAG)[37] and HLA*IMP[38] have been used 
to successfully determine HLA genotypes from SNP data. Despite the 
high imputation accuracy, these tools will augment, but not replace, 
routine HLA typing methods.

HLA applications
The role of HLA in the recognition of self and non-self peptides was 
first described 60 years ago. Since this discovery, there has been an 
increasing body of knowledge that emphasises the important role 
of HLA in basic and clinical immunology. The initial groundwork 
of the HLA complex was performed by Dausset[39] in 1958, 
and earned him a Nobel prize in 1980. His work was based on 
antibodies detected in multiparous women and multitransfused 
patients which reacted against leukocytes of numerous, but not all, 
individuals. These alloantibodies were proposed to play a critical 
role in tissue transplantation. A primary application of HLA typing 
is donor-recipient matching for solid organ and haematopoietic 
stem cell transplantation (HSCT). HLA mismatching between a 
haematopoietic stem cell donor and a recipient could result in a 
higher risk of rejection and occurrence of graft vs. host disease 
(GVHD) in the transplanted recipient. Four-digit molecular typing 
and a minimum of 9/10 matched alleles at five HLA loci (HLA-A, -B, 
-C, -DQB1 and -DRB1) between donor and recipient are imperative 
to ensure engraftment success following a bone marrow-derived 
HSCT.[40] The degree of HLA matching between donor and recipient 
varies with the type of transplantation; solid-organ transplantation 
requires less stringent HLA matching than does HSCT. In South 
Africa, for example, HLA-A, -B, -C and -DR typing for renal allograft 
donor-recipient matching is not done at all centres, and is done more 
to precisely identify donor-specific antibodies (DSAs) to the kidney 
allograft. Pre-transplant DSAs would be a contraindication to a 
transplant, for example, or would indicate tailoring post-transplant 
immunosuppressive treatments. The increased longevity of grafts 

transplanted in accordance with lower HLA mismatched loci is 
well-known[41] and has been confirmed in a meta-analysis of over 480 000 
transplanted patients.[42] HLA typing and consequent matching of 
HLA donor-to-recipient phenotype forms an integral part of the 
bone marrow graft allocation protocol internationally as well as in 
the SA transplantation fraternity. Among other criteria for patients 
awaiting transplantation, novel strategies are being employed to 
establish improved HLA matching between unrelated living donors 
and recipients.

Most studies focus on the immuno-regulatory role of HLA and its 
related diagnostic or disease-associated applications. HLA disease 
associations have been published from the onset of HLA typing, and 
the phenomenon of LD has resulted in a vast body of evidence that 
ties certain diseases to a given HLA genotype. However, with ever-
improving molecular techniques allowing high-resolution typing, not 
only are these associations strengthened but they have also allowed 
fine mapping of HLA loci and/or alleles as being either protective 
against or increasing susceptibility to a given disease. Identification 
and targeting of neo-antigens and immunopeptidomes in cancer is 
the most recent clinical application of HLA, and holds great promise 
for precision medicine.[31]

Several HLA alleles in South Africans have been identified as 
associated with protection against, or susceptibility to, a wide variety 
of diseases which include autoimmune diseases, infectious diseases, 
and drug-induced hypersensitivity (Table 1). Autoimmune diseases 
include coeliac disease (CD), rheumatoid arthritis (RA), diabetes 
mellitus, and various other diseases. Infectious diseases associated 
with HLA alleles include human immunodeficiency virus/acquired 
immune deficiency syndrome (HIV/AIDS) and tuberculosis (TB). 
Heterozygosity and certain HLA alleles confer protection in HIV-
infected individuals; however, other alleles such as HLA-B*35 have 
been reported to increase susceptibility to HIV, and are associated 
with rapid progression to AIDS.[43] A recent study by Ramsuran et al.[44] 
has shown that increased mRNA expression of HLA-A leads to 
increased HLA-E expression, which results in increased NKG2A-
mediated NK cell inhibition which, in turn impairs targeting of HIV-
infected cells, ultimately leading to impaired HIV control. Blocking 
of HLA-E:NKG2A-mediated inhibition is currently being explored in 
clinical trials as a possible treatment option for various diseases. In 
black South Africans, HLA-DRB1*01:02 and HLA-B*58:01 have been 
associated with hepatotoxicity during HIV combination antiretroviral 
therapy (cART) initiation in regimens containing nevirapine.[45] This 
is of particular importance in the context of precision medicine.

In SA, most HLA disease association testing is being done for 
HLA-B*27. The initiation of molecular typing techniques has shown 
HLA-B*27:05 to have the strongest association with ankylosing 
spondylitis.[46] CD has been shown to have a significant association 
with HLA-DQ2 (DQA1*05/DQB1*02 allele groups) and HLA-DQ8 
haplotypes (DQA1*03/DQB1*03:02 alleles). More than 95% of CD 
patients have HLA-DQ2 and/or HLA-DQ5.[47] The majority of work 
on HLA disease association has been on autoimmune diseases and 
especially RA. Scherak et al.[48] reported the association of RA with 
HLA-Dw4 in 1980. New evidence suggests that RA is associated 
with RAA shared epitope sequences (positions 72 - 74), modulated 
by amino acid sequences at positions 70 and 71, resulting in six 
genotypes with low to high RA risk.[49] The HLA-DR4 as well as the 
RAA sequence phenomenon has been well described in the black SA 
populations.[50]

There is a great need to develop and test vaccines that are specific 
for the diseases that affect southern African populations. The genetic 
diversity of pathogens together with the genetic diversity of HLA in 
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these populations are necessary for the development and efficacy of 
HLA-based vaccines.[51] The majority of HLA frequency studies have 
focussed on high-income countries, where the prevalence of most 
infectious diseases is low,[51,52] while countries mostly affected by 
such diseases would benefit more from these types of studies. HLA 
frequency studies would need to be extended to lower-to-middle-
income countries in order to get an idea of the most common HLA 
alleles present in populations affected by diseases such as HIV and 
TB, to name a few. Alleles that occur frequently could be grouped 
into supertypes and used as targets for vaccines. Supertypes are 
HLA groups that share peptide-binding specificity. Twelve different 
supertypes have been identified to date and have been shown to be 
effective in identifying and characterising T cell epitopes from a 
variety of different disease targets.[53] Applying the concept of HLA 
supertypes to vaccines is promising, as supertypes would narrow 
the search for antigenic peptides that will bind the HLA alleles of 
a large proportion of the population.[54] This knowledge would be 
particularly beneficial in populations with high genetic diversity, 
such as Africans.

Conclusion
South Africa has a high disease burden, including communicable 
(HIV, TB) and non-communicable (cancer, cardiovascular disease, 
obesity, diabetes) diseases (http://www.who.int/gho/mortality_
burden_disease/en/). There are limited HLA diversity data for South 
African populations,[19] which affects our understanding of HLA-
disease association, donor-recipient matching for transplantation, 
population genetics and population-specific vaccine design. In the 
present article, we have reviewed the importance of HLA and its 
clinical applications for South Africans. Furthermore, we highlight 
how tools such as HLA imputation might increase our understanding 

of HLA diversity in our populations. As access to NGS becomes easier 
and cheaper, more South Africans may have their HLA genotypes 
determined; this will better inform disease association studies, 
donor recruitment strategies in bone marrow registries, and our 
understanding of human genetic diversity in South Africa in general.
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