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Abstract Biotic interactions influence species niches and may thus shape distributions. Nevertheless, species 

distribution modelling has traditionally relied exclusively on environmental factors to predict species distributions, 

while biotic interactions have only seldom been incorporated into models. This study tested the ability of 

incorporating biotic interactions, in the form of host plant distributions, to increase model performance for two host-

dependent lepidopterans of economic interest, namely the African silk moth species, Gonometa postica and  

Gonometa rufobrunnea (Lasiocampidae). Both species are dependent on a small number of host tree species for the 

completion of their life cycle. We thus expected the host plant distribution to be an important predictor of Gonometa 

distributions. Model performance of a species distribution model trained only on abiotic predictors was compared to 

four species distribution models that additionally incorporated biotic interactions in the form of four different 

representations of host plant distributions as predictors. We found that incorporating the moth-host plant interactions 

improved G. rufobrunnea model performance for all representations of host plant distribution, while for G. postica 

model performance only improved for one representation of host plant distribution. The best-performing 

representation of host plant distribution differed for the two Gonometa species. While these results suggest that 

incorporating biotic interactions into species distribution models can improve model performance, there is 

inconsistency in which representation of the host tree distribution best improves predictions. Therefore, the ability of 

biotic interactions to improve species distribution models may be context-specific, even for species which have 

obligatory interactions with other organisms. 
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INTRODUCTION 

Biotic interactions contribute to determining the realised niche of species (Araújo & Guisan 

2006; Godsoe & Harmon 2012), and may strongly influence species distributions, either limiting 

or expanding the conditions, and total area in which a species can occur (Leathwick & Austin 

2001; Araújo & Luoto 2007; Schweiger et al. 2008; Meier et al. 2010; le Roux et al. 2012). 

While climate has been proposed to be the main factor driving species distributions at broad (e.g. 

continental) scales, with biotic interactions expected to be more important at local scales 

(Pearson & Dawson 2003), several studies have documented the importance of biotic 

interactions in shaping species distributions at broad scales (Araújo & Luoto 2007; Heikkinen et 

al. 2007; Gilman et al. 2010; Meier et al. 2010; Schweiger et al. 2012; Wisz et al. 2013). 

However, SDMs, a widely utilised tool for predicting species distributions, often model species 

distributions based only on abiotic factors (usually climatic variables), overlooking the role of 

biotic interactions in shaping species distributions, particularly at broad spatial scales (Guisan et 

al. 2006; Wisz et al. 2013). Species distribution models that are trained only on environmental 

variables model the fundamental niche of a species, i.e. the niche where the climate and edaphic 

conditions are suitable for an organism to occur (Guisan & Zimmermann 2000; Pulliam 2000; 

Wiens et al. 2009). However, the actual distribution of a species (i.e. as represented by the 

realised niche) is a complex expression of several overlapping factors (Pearson & Dawson 2003; 

Soberón & Peterson 2005; Soberón 2007; Kearney 2006; Jiménez-Valverde et al. 2008), which 

in addition to abiotic variables, also include biotic interactions, dispersal ability and the 

evolutionary capacity of populations of species to adapt to novel conditions (see BAM diagram 

[B = biotic, A = abiotic, M = accessibility] of Soberón & Peterson 2005 and Soberón 2007). 

Including the effects of biotic interactions in SDMs may thus significantly improve the 
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predictive abilities of SDMs. Indeed, studies that have examined the influence of biotic 

interactions on species distributions and richness patterns at broad scales have generally shown 

that explicitly considering inter-specific interactions in SDMs increases model accuracy, 

indicating the importance of biotic interactions influencing species distributions at broad scales 

(e.g. Araújo & Luoto 2007; Heikkinen et al. 2007; Gilman et al. 2010; Meier et al. 2010; 

Bateman et al. 2012; Boulangeat et al. 2012; Schweiger et al. 2012; Wisz et al. 2013). 

Several approaches have been used to model the influence of biotic interactions on species 

distributions, mainly at local scales (Kissling et al. 2012; Silva et al. 2014; Anderson 2017). The 

most widely used approach involves adding the occurrence of purportedly interacting species as 

a proxy for biotic interactions (or by adding the cover or abundance of a species as a proxy for 

the intensity or frequency of an interaction) (Leathwick & Austin 2001; Kissling et al. 2012). A 

related approach is to use abiotic variables to model the distributions of interacting species 

individually, and then to restrict the distribution of the one species based on the modelled 

distribution of the other species (Schweiger et al. 2008). Biotic interactions have also been 

incorporated into SDMs by combining classic SDM approaches with process-based models (for 

example, modelling physiological representations of resource competition; Lischke et al. 2006; 

Hickler et al. 2012). With all of these approaches, the effects of biotic interactions on species 

distributions have frequently been limited to investigating just the effect of a single species or the 

influence of one type of interaction (Van der Putten et al. 2010). More novel approaches involve 

incorporating biotic interactions into SDMs within multispecies systems (Kissling et al. 2012). 

However, this kind of modelling often requires detailed knowledge of all interactions, which is 

unavailable for most species. 
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The objective of this study is therefore to assess the ability of four fairly simple methods of 

accounting for biotic interactions on SDM performance. We consider these methods as they are 

simple to implement and can be used for species for which only fairly basic life history 

information is available. We make use of two economically-important African wild silk moth 

species (Gonometa species, Lasiocampidae), that are dependent on specific tree hosts for food, as 

a model system. More specifically, we compare the performance of models run using only 

climatic (i.e. abiotic) variables as predictors with the performance of models run with both 

climate predictors and different representations of the occurrence of host tree species as a proxy 

for moth-host plant interactions (i.e. abiotic and biotic predictors; see Silva et al. 2014 for 

comparison). 

METHODS 

Study species 

The moths Gonometa postica Walker 1855 and Gonometa rufobrunnea Aurivillius 1922 occur in 

southern and East Africa and are of economic value due to the high-quality silk derived from 

their cocoons (Akai et al. 1997; Veldtman et al. 2002; Veldtman et al. 2004; Delport 2006). 

However, the extent and drivers of the distribution of these moths are poorly understood 

(Chikwenhere 1992; Hartland-Rowe 1992; Veldtman et al. 2007). Indeed, these species exhibit 

large inter-annual population fluctuations, and outbreaks of these moths are patchily distributed 

(Veldtman et al. 2007), varying across space (both locally and regionally) and time. 

Gonometa larvae feed only on a small number of host tree species, and usually also pupate 

on these species. The main G. postica host plant in southern Africa is Vachellia erioloba (camel 

thorn, Fabaceae), while other host plants include Vachellia tortilis (umbrella thorn acacia, 
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Fabaceae), Senegalia mellifera (blackthorn, Fabaceae) and Burkea africana (wild seringa, 

Caesalpiniaceae). 

Gonometa rufobrunnea forages predominantly on Colophospermum mopane (Fabaceae) 

which occupies dry savannas in southern Africa (Huntley & Walker 1982). Other plants such as 

Parinari curatellifolia (mobola-plum, Chrysoalanaceae) and Brachystegia species have also been 

reported as hosts of G. rufobrunnea (Kroon 1999). However, only Brachystegia spiciformis 

(zebrawood, Fabaceae) was considered in addition to C. mopane as a host plant for G. 

rufobrunnea in this study because it is an important host plant for G. rufobrunnea in East Africa 

(Kroon 1999) where C. mopane does not occur. 

Locality records 

The majority of the locality records of G. postica (n = 302) and G. rufobrunnea (n = 89) were 

obtained from museums (Afromoths; Denver Museum of Nature and Science; Ditsong Museum; 

Mississippi Entomological Museum; Natural History Museum of Zimbabwe; Natural History 

Museum of London and Oxford University Museum), private collections (of W. Mey; A. 

Prozorov; H. Staude and M. Ströhle) and the literature. Additional records were obtained from 

personal observations made by amateur lepidopterists (J. Boomker; A. Curle; J. Groenewald and 

M. Maclean). The locality records for the host tree species were obtained from databases (Greve 

et al. 2012; PRECIS; Flora of Namibia; Flora of Zimbabwe) and herbaria (H.G.W.J. 

Schweickerdt Herbarium and Buffelskloof Nature Reserve Herbarium). Records of both moth 

and host tree species for which locality descriptions, but not co-ordinates, were supplied were 

georeferenced using the gazetteer ACME Mapper 2.1. 

Species distribution models are frequently built using occurrence records that are spatially 

biased towards areas that are more accessible and easy to survey (Phillips et al. 2009). This leads 
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to spatial clumping of occurrence records and therefore over-representation of some 

environmental features which can result in poor model predictions (Kramer-Schadt et al. 2013). 

Therefore, the ‘thin’ function in the SpThin package (see Aiello-Lammens et al. 2015) was used 

to spatially thin the both moth and host tree occurrence records prior to modelling (Table S1 and 

Fig. S1-S3 in Appendix S1). 

Environmental predictor variables 

Seven climate variables were downloaded from the Worldclim database (v.1, Hijmans et al. 

2005) at 2.5’ spatial resolution: annual mean temperature (BIO1), maximum temperature of the 

warmest month (BIO5), mean temperature of the driest quarter (BIO9), annual precipitation 

(BIO12), precipitation seasonality (BIO15), precipitation of the driest quarter (BIO17) and 

precipitation of the coldest quarter (BIO19). BIO9 and BIO19 were subsequently removed 

because of their high correlation (r > 0.8) with BIO1 and BIO17 respectively. Five soil variables, 

namely soil organic carbon content, pH, cation exchange capacity, percentage sand content and 

bulk density were obtained from the SoilGrids database, downloaded at 1 km spatial resolution 

(Hengl et al. 2014) and resampled to 2.5’ spatial resolution. These soil variables did not display 

high collinearity. All map conversions were conducted in ArcMap v. 10.1. 

 Modelling and model evaluation 

Species distributions were modelled for Africa south of the equator using a maximum entropy 

approach in Maxent (Phillips et al. 2006). Maxent is amongst one of the best performing SDM 

methods for presence-only data (Elith et al. 2006; Hernandez et al. 2006; Phillips et al. 2006; 

Elith et al. 2011) because it is not sensitive to sample size and can use both categorical and 

continuous predictors. Maxent models produce a probability of occurrence distribution over the 
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defined study area (Phillips & Dudík 2008) and the target distribution is estimated by finding the 

distribution that is closest to uniform (i.e. the distribution of maximum entropy) under a set of 

environmental constraints (or features) derived from species’ occurrence records (Phillips et al. 

2006). 

Initially, the current potential distributions of G. postica and G. rufobrunnea were modelled 

using only the climatic variables (excluding the soil variables) mentioned above (hereafter 

referred to as “Abiotic models”; Fig. 1). These variables were selected based on the seasonal 

nature of Gonometa species’ outbreaks and their sensitivity to rainfall and drought periods 

(Hartland-Rowe 1992; Delport 2006). In southern Africa, G. postica and G. rufobrunnea have 

two generations per year coinciding with rainfall seasonality (Hartland-Rowe 1992). It is 

therefore expected that temperature and precipitation will have an effect on Gonometa 

distribution, which is in line with other SDM studies on Lepidoptera (Beaumont & Hughes 2002; 

Tóth et al. 2013). 

It is expected that host tree distributions (i.e. biotic predictors) will play a role in shaping 

Gonometa distributions because Gonometa species are largely dependent on a limited number of 

host plant species for the completion of their life cycles (Hartland-Rowe 1992; Fening et al. 

2008; Fening et al. 2010). Therefore, a second set of models was run that incorporated moth-host 

plant interactions, in the form of host plant distributions, when predicting Gonometa species 

distributions. The distributions of the host plants V. erioloba, S. mellifera, V. tortilis and B. 

africana (for G. postica) and C. mopane and B. spiciformis (for G. rufobrunnea) were modelled 

in Maxent using the five bioclimatic and the five soil variables as predictors, all of which have 

been shown to be important drivers of savanna tree distributions (Huntley & Walker 1982; Smith 

& Goodman 1986). 
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Fig. 1. Diagram illustrating the different types of models run to predict Gonometa species distributions.
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To model Gonometa distributions that include biotic interactions, four different models 

(hereafter referred to as Biotic 1, Biotic 2, Biotic 3 and Biotic 4) incorporating different 

representations of modelled host plant distributions as predictors, in addition to the climatic 

variables, were run for each Gonometa species. 

The different representations of host plant distributions (Fig. 1) were: the probability 

distribution maps of the individual host trees (Biotic 1), the presence-absence distribution maps 

of the individual host trees (Biotic 2), the presence-absence distribution maps of all host trees 

combined into a single host tree presence-absence distribution map (Biotic 3) and the probability 

distribution maps of all host trees combined into a single host tree probability distribution map 

(Biotic 4). In the Biotic 1 models, all individual host tree probability maps, as produced by the 

Maxent output, were included in the moth SDMs as predictors (Fig. 1). In Biotic 2 models, these 

probability maps were converted to presence-absence maps by applying the “maximum training 

sensitivity plus specificity” threshold (Liu et al., 2005), and the presence-absence map of each 

host tree species included as a separate predictor in the moth SDMs. In Biotic 3 models, the 

individual presence-absence maps were combined into a single presence-absence map of where 

any host tree species of the modelled moth species occur (i.e. all areas where at least one of the 

host trees occurred was considered a presence). This map was included as a predictor in SDMs. 

To combine the individual host tree probability distribution maps into a single map of host tree 

probability (Biotic 4), the individual host tree probability maps were summed to produce one 

map that was included as a predictor in the moth SDM. Because the two different moth species 

utilize different host trees, the host tree maps used in models of the two moth species differed. 

For all SDMs (host tree and Gonometa), localities were divided into five random training 

(80%) and test (20%) datasets. The model was built using the training dataset, and statistical 
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model evaluation (see below) was based on the test dataset (Phillips & Dudík 2007). To account 

for the effects of sampling bias for the models predicting Gonometa species distributions, 

pseudo-absences were chosen randomly from the locality records for all Lepidoptera in southern 

and East Africa available from GBIF. These pseudo-absence data were selected based on the 

assumption that sampling biases for Lepidoptera overall will be a good proxy for sampling biases 

in Gonometa species (see Elith & Leathwick 2007; Barbet-Massin et al. 2012). For modelling 

host tree distributions, pseudo-absences were taken from an extensive database of locality 

records of all African acacia species (Greve et al. 2012), as these data were considered to be 

representative of the tree sampling bias in African savannas. Although this method does not 

guarantee that pseudo-absences are true absences, as collectors often target specific species and 

not all species in an area, this method will reduce bias with respect to selecting pseudo-absences 

from the landscape at random (see Elith et al. 2011). The maximum number of background 

points (i.e. pseudo-absences) was specified to be 5000. Presence-absence maps for the modelled 

moth distributions were generated using the “maximum training sensitivity plus specificity” 

threshold (Liu et al. 2005). 

The performance of our models was assessed using the area under the ROC curve (AUC), 

true skills statistic (TSS) and test gain. The AUC is a threshold-independent measure of model 

performance (Thuiller 2003) and its values range from 0.5 to 1, where model performance is 

excellent if the AUC is > 0.9, good if 0.8 < AUC < 0.9, fair if 0.7 < AUC < 0.8, poor if 0.6 < 

AUC < 0.7, bad if 0.5 < AUC < 0.6 and no better than random if AUC < 0.5 (Swets 1988). These 

AUC values represent the ability of a model to discriminate between areas where a species is 

predicted to be present and those where it is predicted to be absent (Hanley & McNeil 1982). 

Model performance was also assessed using the TSS (Allouche et al. 2006) because the AUC 
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can be a misleading measure of model performance (Lobo et al. 2008). Both omission and 

commission errors are accounted for by the TSS. Furthermore, TSS is unaffected by prevalence 

and the size of a validation set (Allouche et al. 2006). The TSS values range between -1 and +1, 

where TSS > 0.75 is excellent, 0.40 < TSS < 0.75 is good, TSS < 0.40 is poor and TSS < 0 

indicates that model performance is no better than random (Allouche et al. 2006; but see also 

Landis & Koch 1977). Biotic and abiotic model performances were statistically compared from 

ten cross-validated replicate models (per abiotic/biotic model) using one-way analysis of 

variance (ANOVAs). This method of comparison is not particularly robust, as there are a limited 

number of presence-absence records to test this and tests are not independent of one another; 

nevertheless, they were run to provide an additional comparison. We also report the test gain, a 

likelihood statistic which maximises the probability of presence in relation to background data 

for the data used to evaluate how well Maxent predicts distributions.

To understand which variables were most important for the prediction of Gonometa 

distributions, analysis of variable contribution to the model and estimates of variable importance 

(using Jackknife tests) were extracted from the Maxent output for each Gonometa species. 

RESULTS 

 Model performance and predicted distribution of Gonometa species 

The models predicting host tree distributions (Fig. 2) had a fair to high predictive power (AUC > 

0.70 and TSS > 0.4; Table S2) (except V. tortilis, AUC = 0.67, TSS = 0.38) and predicted host 

tree distributions overlapped fairly well with the Gonometa species’ distributions (Fig. S4-S5). 

The abiotic model predicting G. postica distribution performed fairly well (AUC > 0.70 and 

TSS > 0.5; Table 1). Occurrence records of G. postica showed good overlap with the predicted 
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Table 1. Model performance for the SDMs used to predict Gonometa distributions. Abiotic models were run using 

climatic predictor variables only. Biotic models were run using host tree maps in addition to climatic predictors. In 

Biotic 1 models individual probability maps of each host plant distribution were used; in Biotic 2 models individual 

host plant presence-absence maps were used; in Biotic 3 models the combined presence-absence maps of host plant 

distributions were used; and in Biotic 4, host plant probability maps were summed and used as predictors of moth 

distribution 

599 

600 

601 

602 

603 

604 

605 

606 

607 

608 

609 

610 

†
Different models used to predict Gonometa species distributions. The AUC is the area under the curve and is used as a measure of model performance for

 ‡
test data (i.e. data 

set aside for statistical analyses), §training data (i.e. data used to build the model)
. ††

Standard deviation of the measure of model performance.
 ‡‡

Gain of the model: a likelihood  

statistic (maximising the probability of Gonometa presence in relation to background data) for the test data (i.e. data used to evaluate how well Maxent predicts independent data).

§§
 The true skill statistic (TSS) is takes omission and commission errors into account and is unaffected by prevalence and the size of the validation set.

Model† Test AUC‡ Training AUC§ SD AUC†† Test gain‡‡ TSS§§ 

G. postica (Abiotic) 0.7811 0.7816 0.0634 0.4861 0.54417 

G. postica (Biotic 1) 0.7193 0.8473 0.0443 0.2883 0.59177 

G. postica (Biotic 2) 0.768 0.8058 0.0724 0.411 0.58878 

G. postica (Biotic 3) 0.8097 0.8139 0.068 0.6369 0.59467 

G. postica (Biotic 4) 0.7574 0.7951 0.0792 0.4463 0.51864 

G. rufobrunnea (Abiotic) 0.7643 0.6906 0.086 0.3062 0.55545 

G. rufobrunnea (Biotic 1) 0.8346 0.7387 0.028 0.25 0.78983 

G. rufobrunnea (Biotic 2) 0.8513 0.7576 0.0169 0.3991 0.81985 

G. rufobrunnea (Biotic 3) 0.8514 0.7529 0.0206 0.8514 0.84988 

G. rufobrunnea (Biotic 4) 0.9245 0.7314 0.0151 0.7789 0.90266 
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Fig. 2. Predicted presence (grey)-absence (white) maps of the current distribution of (a) Burkea africana, (b) Senegalia mellifera, (c) Vachellia erioloba, (d) 
Vachellia tortilis, (e) Colophospermum mopane and (f) Brachystegia spiciformis. Known occurrence records (thinned) are illustrated in black. Maps were 
generated using the “maximum training sensitivity plus specificity” threshold.
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Fig. 3. The abiotic (a) and biotic (b−e) presence-absence maps generated for the current predicted distribution of 622 Gonometa postica. In (a) only climatic data 
were used as predictors (Abiotic model). In (b), the individual probability maps of host plant distributions were used in addition to climate data as predictor 
variables (Biotic 1). In (c), the individual presence-absence maps of host plant distributions were used in addition to climatic data as predictor variables (Biotic 
2). In (d) the combined presence-absence maps of host plant distributions were used in conjunction with climate data as predictor variables (Biotic 3), and in (e), 
the combined probability maps of host plant distributions were used in conjunction with climate data as predictor variables (Biotic 4). Thinned known occurrence 
records of G. postica are illustrated in black. Presence-absence maps were generated using the “maximum training sensitivity plus specificity” threshold.
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distribution from the abiotic model (Fig. 3a). When host plant distributions were incorporated 

into the model as biotic predictors of G. postica distribution (Figs. 3b-e), the predicted range of 

the species was more restricted than when they were excluded (Fig. 3a). Incorporating biotic 

interactions into the SDMs of G. postica only resulted in improved model performance when the 

combined presence-absence map of host plant distributions was incorporated as additional 

predictor, i.e. in the Biotic 3 model (Table 1). Model performances for Biotic 1, Biotic 2 and 

Biotic 4 were weaker compared to the abiotic model, although these model performances 

remained fairly good (AUC > 0.70 and TSS > 0.5). 

The abiotic model of G. rufobrunnea distribution performed fairly well (AUC > 0.75 and 

TSS > 0.55; Table 1). In comparison, all biotic models of G. rufobrunnea distribution performed 

better than the abiotic model, with higher AUC scores and TSS values (AUC > 0.83 and TSS > 

0.78; Table 1). Incorporating the summed host plant probability predictor of G. rufobrunnra 

distribution (Biotic 4) resulted in the best performing model (AUC = 0.92 and TSS = 0.90; Table 

1). Again, the abiotic model (Fig. 4a) predicted a broader range of suitable conditions for G. 

rufobrunnea than the biotic models (Fig. 4b-e). 

The TSS values did not significantly differ between different model types (G. postica: F(45) = 

0.08711, P = 0.986; G. rufobrunnea: F(45) = 0.5025, P = 0.734), though we did not consider these 

tests to be particularly robust, as they were built on subsets of the same dataset (see Methods). 

Analyses of variable importance (based on Jackknife tests) and variable contribution 

(obtained as outputs from Maxent) revealed that annual mean temperature, annual precipitation 

and precipitation seasonality were the most important variables for defining Gonometa species 

distributions in the abiotic models (Table S3, Table S4). When the moth-host plant interactions 

were incorporated into the models, host tree distributions were important predictors of G. 

16



Fig. 4.The abiotic (a) and biotic (b−e) presence-absence maps generated for the current predicted distribution of Gonometa rufobrunnea. In (a) only climatic data were used 
as predictors (Abiotic models). In (b), the individual probability maps of host plant distributions were used in addition to climate data as predictor variables (Biotic 1). In  
(c), the individual presence-absence maps of host plant distributions were used in addition to climatic data as predictor variables (Biotic 2). In (d) the combined presence-
absence maps of host plant distributions were used in conjunction with climate data as predictor variables (Biotic 3), and in (e), the combined probability maps of host plant 
distributions were used in conjunction with climate data as predictor variables (Biotic 4). Thinned known occurrence records of G. rufobrunnea are illustrated in black. 
Presence-absence maps were generated using the “maximum training sensitivity plus specificity” threshold.
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rufobrunnea distribution and contributed strongly to the models predicting G. postica 

distribution, although climatic variables remained most important in biotic models of G. postica. 

DISCUSSION 

This study assessed the performance of SDMs incorporating different types of biotic predictors 

(along with abiotic variables) against models built using only abiotic predictors, examining 

Gonometa as a study group. Because the association between Gonometa species and their host 

plants is necessary for the completion of the moths’ life cycles (Hartland-Rowe 1992; Fening et 

al. 2008; Fening et al. 2010), we expected that host plants would strongly shape Gonometa 

distributions, and that incorporating the moth-host plant interaction into the modelling process 

would improve model performance. 

We found that incorporating the moth-host plant biotic interaction into the model improved 

model performance for G. rufobrunnea in all cases; the combined host plant probability maps 

resulted in the best performing G. rufobrunnea model. However, incorporating the moth-host 

plant biotic interaction only improved G. postica model performance in one instance, i.e. when 

the combined host plant presence-absence map was included in the model. Given the two 

Gonometa species differ in terms of host plant species range (Veldtman et al. 2002; Veldtman et 

al. 2007), it could be expected that the biotic interaction would have a stronger impact on G. 

rufobrunnea given its more limited host species range. Thus, although at least one of biotic 

models performed better than the abiotic model for both moth species (in agreement with e.g. 

Araújo & Luoto 2007; Giannini et al. 2013), which representation of the biotic interaction gave 

the best outcome was inconsistent between the species, despite them being closely related 

(Veldtman et al. 2004; Veldtman et al. 2007). 
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Other studies have shown that incorporation of biotic interactions can improve model 

explanatory power at both local (Leathwick & Austin 2001; Leathwick 2002; Pellissier et al. 

2010) and broader (Araújo & Luoto 2007; Giannini et al. 2013) spatial scales, although there are 

exceptions (McPherson & Jetz 2007; Bateman et al. 2012; Silva et al. 2014). Studies which used 

similar methods to ours to model species distributions also showed that host plant occurrence in 

conjunction with climatic predictors improved model performances significantly compared to 

climate-only models (i.e. Araújo & Luoto 2007; Preston et al. 2008; Bateman et al. 2012), 

although in some studies this did not improve predictive ability of models and even reduced 

model performances (e.g. Silva et al. 2014). 

The abiotic models for both G. postica and G. rufobrunnea predicted larger moth ranges 

than the biotic models, suggesting that host plant distributions may constrain the distribution of 

Gonometa, likely due to the association between Gonometa species and their host plants for 

development and survival (Veldtman et al. 2007; Fening et al. 2008; Fening et al. 2010). A 

similar result was observed by Silva et al. (2014) who demonstrated that including biotic 

variables (i.e. host plant distributions) into distribution models of a bee species (Lithurgus 

huberi) did not improve the models’ predictive abilities; however, host plant species’ 

distributions constrained the distribution of the bee. 

Annual precipitation, annual mean temperature and precipitation seasonality were important 

predictors of Gonometa species distribution irrespective of the inclusion of host plant data, in 

broad agreement with studies showing that Gonometa species are dependent on both temperature 

and precipitation cues for outbreak initiation and emergence from cocoons (Hartland-Rowe 

1992, Delport 2006). 
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Whether the inclusion of biotic variables in lepidopteran SDMs will consistently improve 

model predictions remains to be determined. Many studies have concluded that climate is the 

main driver of lepidopteran distributions (Araújo & Luoto 2007; Menèndez et al. 2007; 

Schweiger et al. 2012). However, biotic variables can increase or decrease model performance 

(Araújo & Luoto 2007), and while several studies find improved predictions if biotic variables 

are included (Araújo & Luoto 2007; Heikkinen et al. 2007; Gilman et al. 2010; Meier et al. 

2010; Bateman et al. 2012; Boulangeat et al. 2012; Schweiger et al. 2012; Wisz et al. 2013), the 

type of model and the species used may determine whether model performance is improved by 

biotic predictors (Araújo & Luoto 2007; Giannini et al. 2013). Furthermore, biotic interactions 

(e.g. competition) may impact on species distributions at spatial scales that are much smaller 

than the course-grained scales that are typically used in ecological niche modelling (Eltonian 

Noise Hypothesis, Soberón & Nakamura 2009). In addition, the particular species (e.g. the life 

history traits of the particular species) being modelled may also determine the importance of 

biotic variables in predicting species ranges, e.g. the influence of biotic interactions may vary 

with the degree of specialisation of species (Hernandez et al. 2006; Araújo & Luoto 2007; 

Menèndez et al. 2007; Preston et al. 2008; Giannini et al. 2013), the direct effect of climate on 

species biology or the level of environmental stress experienced by species (Hanspach et al. 

2014). Furthermore, the strength of the interaction (i.e. obligate versus facultative interaction) 

between a modelled organism and the species that it interacts with may influence the 

contribution of biotic variables to the distribution of a species. Clearly, the influence of inter-

specific interactions on species distributions is species- and context-specific (Schweiger et al.  

2012; le Roux et al. 2012; Eskildsen et al. 2013). 
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Due to the simple nature of the SDMs used here, some aspects of the study species’ biology 

were not included in the models (see also Text S1). Gonometa species, which are characterised 

by eruptive, unpredictable population cycles and display large inter-annual fluctuations in 

population size over different spatial and temporal scales (Delport 2006; Veldtman et al. 2007), 

are probably influenced by stochasticity within their environments, which could influence model 

performance (Pöyry et al. 2008), but can be difficult to incorporate into SDMs at broad scales. 

Such population fluctuations are characteristic of many moth species (Alalouini et al. 2013; 

Tamburini et al. 2013) and can be attributed to both density-dependent factors (e.g. presence of 

host trees and natural enemies), or density-independent factors (e.g. climate). Both Gonometa 

species occur in regions that display high inter-annual variation in precipitation and display high 

geographic and temporal variation in population outbreaks. Therefore, information on when and 

where Gonometa outbreaks have occurred in the past, and how these outbreaks relate to annual 

variation in climate would be ideal for modelling Gonometa distributions. Currently, this 

information is not available. 

In addition, the modelled species is could be influenced by a range of biotic interactions (e.g. 

predation and parasitism) that were not included in our models (Case et al. 2005; Schweiger et 

al. 2012; Anderson 2017). Some of these interactions can be labile, and their effects can range 

from antagonistic to mutualistic. More sophisticated modelling techniques, e.g. where error 

matrices are used in multivariate regression models to incorporate biotic interactions between 

multiple species, are available  (Kissling et al. 2012), but to accurately model distributions based 

on all mutualistic, competitive or consumer-resource interactions, a large body of information 

about the ecological networks surrounding them (e.g. the impact of natural enemies) and the 

natural history of the modelled species are needed; this is information which is often not 
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available and may be complex to interpret (Soberón & Peterson 2005). In addition, some spatial 

mismatches between the distributions of host trees and moth species occurs (see Schweiger et al. 

2008; Mateo et al. 2010). For example, although Gonometa are mainly found on the host tree 

species mentioned here, there are isolated cases of them occurring on other species, e.g. the 

invasive Acacia mearnsii in the Western Cape. Equally, the host trees occur in areas where the 

lepidopterans have not been recorded (Fig. S4, S5). Therefore, a better understanding of 

Gonometa interactions with other species (e.g. examining possible regional preference of 

Gonometa for certain host plant species over others and investigating the effect of natural 

enemies on Gonometa distributions and dynamics) may improve predictions of Gonometa 

distributions. 

Conclusions 

This study is comparable to previous research that has found improved SDM performance after 

incorporating consumer-resource interactions into models when predicting broad-scale species 

distributions. However, the incorporation of biotic variables did not always improve model 

performance, and there was no consistency in which biotic model most improved model 

predictions. Nonetheless, our biotic models resulted in more constrained distributions compared 

to climate-only models (e.g. Silva et al. 2014). Therefore, the impact of biotic interactions on 

species distributions may be context-specific, even when the species involved have obligatory 

interactions with other organisms. 
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Appendix S1. 

Table S1. Table showing the original number of occurrence records for each species and the number of occurrence 

records retained for each species following 20 repetitions of thinning using a thinning distance of 100 Km between 

records (see main text for more details). 

Species Original no. occurrences Max. no. occurrences retained 

G. postica 302 60 

G. rufobrunnea 89 30 

V. erioloba 1276 101 

S. mellifera 1396 138 

V. tortilis 1372 153 

B. africana 1051 126 

C. mopane 830 77 

B. spiciformis 409 79 

The AUC is the area under the receiver operating characteristic (ROC) curve and is used as a measure of model performance for
 †

test data (i.e. data set aside for statistical 

analyses), 
‡

training data (i.e. data used to build the model). 
§
Standard deviation of the measure of model performance.

 ††
Gain of the model: a likelihood statistic (maximising the 

probability of host tree presence in relation to background data) for the test data (i.e. data used to evaluate how well Maxent predicts independent data), 
§§

 The true skill statistic 

(TSS) is takes omission and commission errors into account and is unaffected by prevalence and the size of the validation set. 
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Table S2. Model performance for the predictions of the Gonometa host tree distributions: Burkea africana, 

Senegalia mellifera, Vachellia erioloba and V. tortilis (G. postica hosts), and Colophospermum mopane and 

Brachystegia spicifomis (G. rufobrunnea hosts). Models were run using climatic and soil predictor variables 

Model Test AUC† Training AUC‡ SD AUC§ Test gain†† ‡‡TSS 

B. africana 0.7646 0.7407 0.0538 0.4066 0.42993 

S. mellifera 0.7299 0.8008 0.0318 0.3554 0.44561 

V. erioloba 0.8259 - 0.8499 0.0266 0.7462 0.66672 

V. tortilis 0.6745 0.8024 0.0315 0.2427 0.38337 

C. mopane 0.8485 0.8546 0.0307 0.8634 0.64899 

B. spiciformis 0.9377 0.8467 0.0352 0.9377 0.65092 
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Table S3. Important predictor variables in Maxent models of Gonometa postica distribution. Displayed variables had the highest contribution to the models and 

also yielded the highest training gain and AUC scores based on Jackknife tests of variable importance, which was the basis for variable selection and variable 

representation in the table. Variables marked with asterisks did not contribute highly to the models based the analysis of variable contribution, but were important 

predictors of moth distribution based on the Jackknife tests of variable importance (training gain and AUC columns) 

Model Variable 
 Contribution 

to model (%)† 

Permutation 

importance‡ 

Training gain§ Training gain†† AUC‡‡ AUC§§ 

(without variable) (variable only) (without variable) (variable only) 

G. postica (Abiotic) Annual Precipitation 69.0116 73.9499 0.2582 0.3439 0.8289 0.8223 

Annual Mean Temperature* 15.7964 7.0404 0.3942 0.1509 0.7426 0.7655 

Vachellia tortilis 30.7355 16.3532 0.4375 0.188 0.7212 0.6265 

G. postica (Biotic 1) Vachellia erioloba 26.9526 6.2948 0.4641 0.2248 0.7384 0.8171 

Annual Precipitation* 15.483 47.7332 0.4293 0.337 0.7656 0.8164 

Annual Precipitation 40.819 55.3198 0.3436 0.317 0.7762 0.8199 

G. postica (Biotic 2) Annual Mean Temperature 27.437 0 0.4191 0.1897 0.7466 0.64 

Vachellia erioloba* 13.9353 0 0.4143 0.0908 0.7488 0.6849 

Annual Precipitation 50.7669 61.5029 0.3621 0.337 0.8236 0.8164 

G. postica (Biotic 3) Host trees 23.2795 10.2607 0.4116 0.1347 0.7323 0.7549 

Annual Mean Temperature* 13.1277 7.7395 0.4492 0.1474 0.7877 0.7625 

Annual Precipitation 62.4444 66.4212 0.3288 0.337 0.1038 0.8164 

G. postica (Biotic 4) Annual Mean Temperature* 12.6867 7.7637 0.419 0.1474 0.1038 0.7625 

Host plant distribution* 10.6005 6.8206 0.4116 0.1038 0.7323 0.7065 

†
 Percentage contribution of each of the variables to the models.

 ‡
Permutation importance is determined by randomly permuting values of the variable in question among the training points. The gain given in the table starts at 0 during a 

model run, increasing towards an asymptote and gives the maximum likelihood ratios of average presences to average background points. The
 §

training gain without the variable represents the model gain once the variable in question has been 

removed from the model, whereas the
 ††

training gain with the variable only, represents the gain of the model when the variable in question is considered in isolation from all the other variables. The
 ‡‡

AUC (without variable) represents the 

predictive power of the model when the variables in question are excluded from the model, and the
 §§

AUC (variable only) represents AUC from a model containing only the predictor variable. 
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Table S4. Important predictor variables in Maxent models of Gonometa rufobrunnea distribution. Displayed variables had the highest contribution to the models 

and also yielded the highest training gain and AUC scores based on Jackknife tests of variable importance, which was the basis for variable selection and variable 

representation in the table.  

Species model Variable 

 Contribution 

to model (%)† 

Permutation 

importance‡ 

Training gain§ Training gain†† AUC‡‡ AUC§§ 

(without variable) (variable only) (without variable) (variable only) 

G. rufobrunnea (Abiotic) Precipitation Seasonality 99.9848 99.4354 0.041 0.1206 0.6747 0.7628 

G. rufobrunnea (Biotic 1) Colophospermum mopane 68.7705 8.9111 0.1751 0.2035 0.8383 0.84 

  Precipitation Seasonality 30.8968 78.9111 0.2288 0.1751 0.2035 0.8383 

G. rufobrunnea (Biotic 2) Colophospermum mopane 63.1869 28.5087 0.1861 0.1659 0.878 0.4605 

  Precipitation Seasonality 9.3046 52.5995 0.2447 0.1751 0.8043 0.8383 

G. rufobrunnea (Biotic 3) Host trees 96.1712 52.0275 0.1751 0.3038 0.8383 0.8431 

  Precipitation Seasonality 3.7054 40.7638 0.3135 0.1751 0.8784 0.8383 

G. rufobrunnea (Biotic 4) Host trees 67.1476 19.6506 0.1751 0.1775 0.8383 0.9512 

  Precipitation Seasonality 32.8524 80.3494 0.1902 0.1751 0.9437 0.8383 

† 
Percentage contribution of each of the variables to the models. 

‡
Permutation importance is determined by randomly permuting values of the variable in question among the training points. The gain given in the table starts at 0 during a 

model run, increasing towards an asymptote and gives the maximum likelihood ratios of average presences to average background points. The 
§

training gain without the variable represents the model gain once the variable in question has been 

removed from the model, whereas the
 ††

training gain with the variable only, represents the gain of the model when the variable in question is considered in isolation from all the other variables.
 
The

 ‡‡
AUC (without variable) represents the 

predictive power of the model when the variables in question are excluded from the model, and the
 §§

AUC (variable only) represents AUC from a model containing only the predictor variable. 
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Fig. S1. Locality records of a) Gonometa postica and b) Gonometa rufobrunnea showing retained (grey crosses) 

and dropped (black dots) occurrence records following thinning. 
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Fig. S2. Locality records of a) Burkea africana, (b) Senegalia mellifera, (c) Vachellia erioloba, and (d) Vachellia 

tortilis showing retained (grey crosses) and dropped (black dots) occurrence records following thinning. 
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Fig. S3. Locality records of a) Colophospermum mopane and (b) Brachystegia spiciformis showing retained 

(grey crosses) and dropped (black dots) occurrence records following thinning. 
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Fig. S4. Comparison between the distribution of a) Gonometa postica (from model using only abiotic variables) and 

b) the combined presence-absence maps of G. postica host plants (Burkea africana, Senegalia mellifera, Vachellia 

erioloba and Vachellia tortilis). Gonometa postica occurrence records are indicated by black dots on the maps. 

 

Fig. S5. Comparison between the distribution of a) Gonometa rufobrunnea (from model using only abiotic 

variables) and b) the combined presence-absence maps of G. rufobrunnea host plants (Colophospermum mopane 

and Brachystegia spiciformis). Gonometa rufobrunnea occurrence records are illustrated in black on both maps. 
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Text S1. Potential shortcomings of SDM performance that could have influenced model 

performance. 

A number of issues can influence SDM model performance. While we included abiotic and 

biotic interactions in the models, dispersal limitation, which was not considered here, may 

prevent species from occurring in areas where the climate is suitable (Blach-Overgaard et al. 

2010), leading to contingent absences (Lobo et al. 2010). However, Gonometa have the ability to 

disperse over fairly large distances (Veldtman et al. 2002; Veldtman et al. 2007); therefore, it is 

unlikely that many false presences were predicted due to dispersal limitation. In addition, 

because of the eruptive life cycle of Gonometa populations, a locality recorded as a presence 

during one time period may be recorded as an absence in another time period. Such sampling 

bias would be easily accounted for if the location of collection could be matched to seasonal 

weather patterns and so incorporates into models. However, this information is difficult to come 

by. This scarcity of knowledge on species distributions that exists is referred to as the Wallacean 

shortfall (Lomolino 2004) and is a reality for many organisms, especially invertebrates (Beck et 

al. 2013). 
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