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Abstract

Coverage Directed Algorithms for Test Suite
Construction From LR-Automata

Christoffel Jacobus Rossouw

Division of Computer Science,
Department of Mathematical Sciences,

University of Stellenbosch,
Private Bag X1, 7602 Matieland, South Africa.

Thesis: MSc Computer Science

April 2022

Bugs in software can have disastrous results in terms of both economic 
cost and human lives. Parsers can have bugs, like any other type of software, 
and must therefore be thoroughly tested in order to ensure that a parser 
recognizes its intended language accurately. However, parsers often need to 
recognize many different variations and combinations of grammar structures 
which can make it time consuming and difficult to construct test suites by 
hand. We therefore require automated methods of test suite construction for 
these systems.

Currently, the majority of test suite construction algorithms focus on the 
grammar describing the language to be recognized by the parser. In this 
thesis we take a different approach. We consider the LR-automaton that 
recognizes the target language and use the context information encoded in 
the automaton. Specifically, we define a new class of algorithm and coverage 
criteria over a variant of the LR-automaton that we define, called an LR-graph. 
We define methods of constructing positive test suites, using paths over this 
LR-graph, as well as mutations on valid paths to construct negative test 
suites.

We evaluate the performance of our new algorithms against other state-of-
the-art algorithms. We do this by comparing coverage achieved over various 
systems, some smaller systems used in a university level compilers course and
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ABSTRACT iii

other larger, real-world systems. We find good performance of our algorithms
over these systems, when compared to algorithms that produce test suites of
equivalent size.

Our evaluation has uncovered a problem in grammar-based testing algo-
rithms that we call bias. Bias can lead to significant variation in coverage
achieved over a system, which can in turn lead to a flawed comparison of two
algorithms or unrealized performance when a test suite is used in practice.
We therefore define bias and measure it for all grammar-based test suite
construction algorithms we use in this thesis.
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Uittreksel

Coverage Directed Algorithms for Test Suite
Construction From LR-Automata

Christoffel Jacobus Rossouw
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Universiteit van Stellenbosch,
Privaatsak X1, 7602 Matieland, Suid Afrika

Tesis: MSc Rekernaar Wetenskap

April 2022

Foute in sagteware kan rampspoedige resultate hê in terme van beide eko-
nomiese koste en menselewens. Ontleders kan foute hê soos enige ander 
tipe sagteware en moet daarom deeglik getoets word om te verseker dat ’n 
ontleder sy beoogde taal akkuraat herken. Ontleders moet egter dikwels baie 
verskillende variasies en kombinasies van grammatikastrukture herken wat 
dit tydrowend en moeilik kan maak om toetsreekse met die hand te bou. 
Ons benodig dus outomatiese metodes van toetsreeks-konstruksie vir hierdie 
stelsels.

Tans fokus die meeste toetsreeks-konstruksiealgoritmes op die grammatika 
wat die taal beskryf wat deur die ontleder herken moet word. In hierdie tesis 
volg ons ’n ander benadering. Ons beskou die LR-outomaat wat die teikentaal 
herken en gebruik die konteksinligting wat in die outomaat geënkodeer is. 
Spesifiek, ons definieer ’n nuwe klas algoritme en dekkingskriteria oor ’n 
variant van die LR-outomaat wat ons definieer, wat ’n LR-grafiek genoem 
word. Ons definieer metodes om positiewe toetsreekse te konstrueer deur 
paaie oor hierdie LR-grafiek te gebruik, asook mutasies op geldige paaie om 
negatiewe toetsreekse te konstrueer.

Ons evalueer die werkverrigting van ons nuwe algoritmes teenoor ander 
moderne algoritmes. Ons doen dit deur dekking wat oor verskeie stelsels 
behaal is, te vergelyk, sommige kleiner stelsels wat in ’n samestellerskursus
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UITTREKSEL v

op universiteitsvlak en ander groter werklike stelsels gebruik word. Ons vind
goeie werkverrigting van ons algoritmes oor hierdie stelsels, in vergelyking
met algoritmes wat toetsreekse van ekwivalente grootte produseer.

Ons evaluering het ’n probleem in grammatika-gebaseerde toetsalgoritmes
ontdek wat ons vooroordeel noem. Vooroordeel kan lei tot aansienlike variasie
in dekking wat oor ’n stelsel behaal word, wat weer kan lei tot ’n gebrekkige
vergelyking van twee algoritmes of ongerealiseerde prestasie wanneer ’n toets-
reeks in die praktyk gebruik word. Ons definieer dus vooroordeel en meet dit
vir alle grammatika-gebaseerde toetsreeks-konstruksiealgoritmes wat ons in
hierdie tesis gebruik.
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Chapter 1

Introduction

Bugs in software can have catastrophic effects, both in terms of cost and
potentially human lives. For example, the loss of the Mars Climate Orbiter in
1998 resulted in a loss of a spacecraft worth $125 million [2]. More recently,
a bug in the flight control system for the Boeing 737-Max resulted in the
deaths of 346 people [3]. Parsers are not generally classed as “mission critical”
software systems since they are mostly associated with compilers. However,
bugs in parsers can also have very severe consequences, since parsers are
not only used in compilers, but many other systems attempting to recognize
structured input.

For example, in 2017 Cloudflare, one of the world’s biggest cloud network
solution providers, discovered a vulnerability where private information was
leaked through corrupt HTML pages that were produced by their HTTP
rewrite service [20], which parsed and modified their customers’ web pages on
the fly. This leaked information included a private key of one of Cloudflare’s
internal servers. The leak was caused by a hand-written parser that did
not reflect the intended HTML grammar rule correctly. Below we can see
the grammar rule that shows how the HTML elements were intended to be
parsed.

htmlElement → < htmlAttribute ∗ ( > (htmlContent < / tagName > )? ∣ /> );

However, the bug was in allowing malformed HTML elements like
<script type= at the end of an HTML page. This led to a buffer overflow
which in turn led to data outside of a buffer, used in the on-the-fly page
modification, being written into the resulting HTML page.

Testing parsers to minimize the bugs they contain is thus crucial. Our
goal is to construct a test suite that provides assurance that a parser will
accept all valid words in the (context-free) language it is intended to recognize

1
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CHAPTER 1. INTRODUCTION 2

and reject all invalid words that are not in the language. However, in large,
real-world systems it is often unfeasible to manually construct test suites due
to the scale of these grammars. Therefore, methods for automated test suite
construction are very important.

Currently, the majority of approaches for generating these test suites do
so directly from the input grammar, and construct derivations (and thus
tests) that satisfy a variety of coverage criteria. In this thesis we propose new
algorithms that work on a recognizer corresponding to the input grammar.
Specifically, we look at a graph corresponding to this recognizer and formulate
coverage as paths over this graph. This allows us to explore the extra context
information encoded into the structure of the recognizer. We also describe
methods of mutating the paths that produce positive test cases such that
they produce guaranteed negative test cases which should be rejected by the
system under test. For example, the Cloudflare bug we discussed before could
have been caught by a test suite which covers the htmlElement rule at the
end of an HTML page and uses a deletion mutation to delete the closing >.
Such a test can be generated by the methods described in this thesis.

1.1 Grammar-Based Testing

The goal of software testing is to detect bugs in a software system under test
(SUT) to give developers a certain level of confidence in the correctness of
their software. Grammar-based testing is no different.

In general software testing, a test suite is comprised of a set of individual
test cases which include test input data x and an expected output y. The
SUT U is executed over x and its output U(x) is then compared to y. This
then gives a pass or fail verdict.

For grammar-based testing, the test input is a word x and the expected
output is either accept or reject. x can either be a positive test case, where
the output is accept if x ∈ L(G) for the language L described by the grammar
G, or a negative test case, where the output is accept if x ∉ L(G).

The goal of grammar-based test suite construction is therefore to produce
a suite of tests that exercise an arbitrary SUT U which processes inputs
described by a grammar G. It is common for G to be the grammar for a
programming language and U to be a parser or compiler. However, G may be
the grammar for any input language and U can be any system that contains
an input reader for the language described by G. U does not even necessarily
have to “read” the inputs: G may also describe the user interaction with the
user interface of U or the calling conventions of an API for U . G also does
not have to be the exact grammar for U , it may be an approximation.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 3

The efficacy of a test suite for a software system is often measured as the
coverage it achieves over the target software system, while accounting for the
test suite’s size. In white-box testing, test cases are constructed to exercise
specific execution paths of the SUT. This method of testing can be very
challenging for testing parsers, especially in an automated way. Therefore,
grammar-based testing resorts to a form of black box testing, specifically
partition testing [38], using the grammar as a specification. Equivalence
classes can be defined in terms of the grammar. For example, for the rule
coverage criterion, two test cases can be considered to form part of the
same equivalence class if they exercise the same grammar rule. Most other
grammar-based testing algorithms also define equivalence classes directly from
the input grammar. The algorithms we propose have their coverage criterion,
and hence their equivalence classes, entirely formulated in terms of paths
over an LR-automaton for the input grammar. This is the main difference
between the algorithms proposed in this thesis and the current state of the
art algorithms [24,29].

1.2 Problem Statement

In this thesis we solve the problem of generating test cases for a SUT from
an input grammar from a different perspective. Instead of directly generating
our test cases from the grammar, we construct our test cases by considering
coverage over a recognizer for the grammar, specifically an LR-automaton. We
intend to cover all combinations of transitions and the top-of-stack contexts
which they may be exercised in. We do not define any aspect of the algorithms
in terms of the input grammar but wholly focus on the structure of the
automaton corresponding to the input grammar. In doing this we essentially
produce tests by using a different model for a recognizer for the target
language, the LR-automaton, whereas the majority of the current state-of-
the-art methods model this system by using a context-free grammar. We
solve this problem while keeping in mind the following constraints.

Better coverage over a system under test One of the most common
ways of quantifying whether a test suite construction algorithm produces
effective test suites is by considering the coverage such test suites achieve over
a system under test. However, most current state-of-the-art grammar-based
test suite construction algorithms [24, 29, 47] do not consider the structure
of the system for which the test suite is produced, only the structure of the
input grammar. They are also not feedback-directed, and so do not take the
system under test into account. As such, it is difficult to make assertions
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regarding which structures in the system under test will be exercised by the
produced test suite.

Generally, larger test suites produce better coverage over a system under
test. However, since the solution space for possible test cases for most real-
world grammars is infinite and the time available to test a system is not, the
challenge lies in producing effective, small test suites that achieve sufficient
coverage.

Fair comparison of different algorithms and coverage criteria It is
difficult to compare, in an unbiased way, algorithms that have a very different
structure in how they produce test cases. There are many choices that an
algorithm makes that may be considered equivalent within the context of the
input grammar. However, these seemingly equivalent choices often result in
certain parts of the SUT being exercised more than others. This can lead to a
biased comparison of two different algorithms where an algorithm that would
generally perform worse appearing as if it performs better than an algorithm
that generally performs considerably better.

Guaranteeing negative test cases The primary method for producing
negative test cases [35,47] is by mutating positive test cases to transform them
into invalid words. However, this should ideally be done in a way such that
no further checks, after generating the test suite, are necessary to guarantee
that the test cases in the test suite are indeed negative. Therefore, large scale
mutations are very challenging for purely grammar-based methods since they
do not have all the information readily available to be able to assert that a
mutation is valid in many possible mutation locations.

Concise test cases The usefulness of a test case that reveals an error in
the SUT is largely determined by its ability to help determine the location
of the error. This depends greatly on the size of a test case and the number
of grammar structures that are simultaneously covered. If a test case helps
reveal an error in the SUT but covers many grammar rules it may be difficult
to locate the actual source of the error. Therefore, constructing test cases
that are concise, and test minimal parts of the system at a time, is very
important.
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prog → program id = block .

block → { (decl ;)∗ (stmt ;)∗ }
decl → var id : type
type → bool ∣ int
stmt → sleep ∣ return expr?

∣ if expr then stmt (else stmt)?
∣ while expr do stmt ∣ id = expr ∣ block

expr → expr = expr ∣ expr + expr ∣ ( expr ) ∣ id ∣ num
Figure 1.1: Example grammar Gtoy (adapted from [35])

1.3 Bias in Grammar-Based Test Suite

Construction

The different grammar-based test suite construction algorithms are based on
different criteria, which obviously impact the results. For example, Purdom’s
algorithm [30,34] constructs a minimal set of sentences such that each produc-
tion is used at least once in a derivation, while the PLL coverage algorithm [47]
constructs the set of shortest sentences with S ⇒∗ αAω⇒∗ αaβω⇒∗ w for
each non-terminal A and each terminal a ∈ first(A).

These algorithms have several degrees of freedom and allow some im-
plementation variants, which can impact their results in subtle and often
unexpected ways. For example, Purdom’s algorithm can use any rule A→ α
still unused when A is expanded. Likewise, the PLL coverage algorithm can
use any derivation A⇒∗ aα⇒∗ av leading to a shortest yield av for A.

However, any implementation of a grammar-based test suite construction
algorithm must ultimately resolve these choices in one way or another—
typically deterministically, in some seemingly arbitrary but fixed manner (e.g.,
selecting symbols in alphabetic order or rules in textual order). Unfortunately,
the resolution of these choices introduces biases into the generated test
suites. Consider for example the grammar in Figure 1.1. This allows two
different derivations of a shortest yield for stmt (stmt ⇒ sleep and stmt ⇒
return expr?⇒ return, respectively), and likewise for expr and type. Figure
1.2 shows on the left the test suite generated for this grammar by the generic
cover algorithm shown in Algorithm 3, with rule coverage as criterion, textual
rule order as strategy to choose between rules leading to different shortest
yields, and minimal height derivation trees for embeddings. We can see
that the selected shortest yield for stmt leads to a over-representation or
bias in favor of sleep-statements and an underrepresentation or bias against
return-statements: sleep occurs in eight of the fifteen generated tests, while

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 6

program a = { a = a; }. program a = { a = a; }.

program a = { if (a) then sleep; }. program a = { if a then sleep; }.

program a = { if a + a then sleep; }. program a = { if a then sleep else sleep; }.

program a = { if a = a then sleep; }. program a = { return (a); }.

program a = { if a then sleep; }. program a = { return; }.

program a = { if a then sleep else sleep; }. program a = { return a + a; }.

program a = { if 0 then sleep; }. program a = { return a; }.

program a = { return; }. program a = { return a = a; }.

program a = { return a; }. program a = { return 0; }.

program a = { sleep; }. program a = { sleep; }.

program a = { var a : bool; }. program a = { var a : bool; }.

program a = { var a : int; }. program a = { var a : int; }.

program a = { while a do sleep; }. program a = { while a do sleep; }.

program a = { { }; }. program a = { { }; }.

program a = { }. program a = { }.

Figure 1.2: Test suite for Gtoy satisfying rule-coverage. (left) Shallowest
embeddings (right) Shortest yield embeddings.

return occurs only in the two tests that explicitly cover the corresponding
rules.

These different implementation choices matter, since they can result in
substantially different test suites for the same grammar and the same criterion,
which can in turn result in substantially different coverage of the SUT. For
example, for a SQL grammar with 586 rules the generic cover algorithm
produces different test suites satisfying rule coverage that achieve between
22.1% and 26.2% statement coverage over the SQLite 3.36.0 system, i.e.,
an 18% difference between worst and best case (see Table 5.2 for details).
Moreover, rule coverage leads in many cases to a better coverage than more
comprehensive criteria such as context-dependent rule coverage (CDRC [29]).

The introduced biases therefore constitute a threat to validity for any
experiments that compare different grammar-based testing algorithms based
on coverage over a SUT, and make replication of experiments harder.

1.4 Research Objectives

The goal of this work is to develop a class of grammar-based test suite
construction algorithms that take a different approach from the current
state-of-the-art by exploring paths in the LR-automaton corresponding to
a context-free grammar. We also propose methods of producing negative
test suites by mutations of these paths and the stack of the automaton. We
measure the performance of these algorithms and mutations and compare
them to the current state of the art, in terms of coverage achieved over the
system-under-test, errors revealed and the size of the test suite.
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Specifically, we answer the following research questions through our evalu-
ation:

1. How does the coverage achieved by the automaton-based algorithms
and the size of the test suites produced by them compare to the current
state-of-the-art algorithms?

2. Are there any structural differences in test cases produced by the
automaton-based algorithms compared to similar sized test suites by
the current state-of-the-art algorithms?

3. How well do the edge and stack mutations reveal errors in a system
under test compared to a positive test suite or test suite produced by
current rule mutation algorithms?

4. What is the effect of bias on test suites generated by various different
coverage criteria and algorithms?

1.5 Overview of Approach

Before we define our coverage criterion and algorithms we first define the con-
cept of an LR-graph. This is a graph construct, based on an LR-automaton,
that enables us to use graph theory based ideas like paths and edges. This is
especially important when it comes to dealing with problems like reachabil-
ity of reductions in an LR-automaton and shift/reduce and reduce/reduce
conflicts. Our LR-graph enables us to transform the automaton into a graph
with push and pop edges, corresponding to the stack actions associated with
transitions in the automaton (see Section 3.1).

We then describe the criterion of coverage over of all edges of the newly
introduced LR-graph. We describe a simple, general traversal algorithm for
achieving this coverage, based on breadth-first search (see Section 3.2). This
allows for the cyclic nature of valid paths over the LR-graph and avoids issues
related to infinite loops in order to guarantee termination in a finite amount
of time.

From this first algorithm we then propose a more efficient algorithm that
scales to very large real world grammars, yet still maintains the original
coverage criterion of the first algorithm (see Section 3.3). It does this by
focusing on covering all reductions in all possible top-of-stack contexts, i.e., all
pop edges, which in turn covers all transitions in the underlying automaton
with a considerably smaller test suite size than the first algorithm.

We also formulate negative mutations based on the LR-graph and paths
constructed by the positive test suite construction algorithms (see Section
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3.4). These mutations can be edge-based, for example, inserting or deleting
an edge which produces a guaranteed invalid path over the LR-graph, or
they can be stack-based, mutating entire sub-paths, which we call reduction
paths. Edge-based mutations are similar to token-based mutations found
in grammar-based algorithms, although we generally have more mutation
locations in the LR-graph than grammar-based algorithms (see Table 5.5 for
details) have in a grammar. Stack-based mutations are more complex than
edge-based mutations in that these are large scale mutations that mutate
large sections of the original positive test case. This can help reveal errors in
the underlying system that are caused by a combination of interconnected
errors.

We formalize the concept of bias in grammar-based testing as a severe
threat to validity in evaluations that consider coverage achieved by a test
suite over a SUT as well as confidence in a coverage criterion when testing
real world systems (see Section 5.1). In the context of grammar-based testing
we refer to bias as an over-representation of specific grammar elements and
derivations in a test suite due to equivalent choices made during the test suite
generation process. These are choices between grammar elements that are
considered equal in the test suite generation process, but often result in very
different coverage over the target system.

Finally, we thoroughly evaluate the performance of the proposed algo-
rithms, keeping in mind the concept of bias as discussed before (see Chapter
5). We compare the new algorithms’ results over systems that have been used
by others in their experiments [35,46], as well as over large real world systems.
This allows us to evaluate our new algorithms in a multitude of settings and
make stronger assertions about their performance as compared to the current
state-of-the-art algorithms.

1.6 Original Contributions

Our main contribution is the development of a new coverage criterion and
corresponding algorithms that take a different view of the problem of grammar-
based test suite construction and use the extra context information encoded
in a LR-automaton to produce effective test suites. Our test suites cover all
transitions and top-of-stack contexts in which they can occur. This is a novel
contribution and the main problem we solve in this thesis. However, we also
make a number of other foundational contributions upon which this work is
built.
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Path coverage over automaton using graph constructs Reduction
transitions pose a significant challenge to defining coverage over an automaton.
There are often multiple possible top-of-stack contexts for a reduction. There
may also be conflicts due to ambiguities in the input grammar. By introducing
pop edges to explicitly solve the reachability problem of reductions and handle
all possible choices for resolving conflicts, we are able to easily define paths
over the automaton and ensure that crucial contexts in which a reduction
could occur are not ignored.

Quantifying bias in grammar-based testing Bias is a hitherto
unexplored facet of grammar-based testing. Bias poses a significant threat
to validity for any evaluation that uses coverage results achieved by a test
suite over a SUT. In practical uses of grammar-based testing it can also
lead to unexpected bad performance from a coverage criterion. Quantifying
and measuring bias allows for evaluation between our algorithms and other
state-of-the-art algorithms to be fair. It enables us to make assertions about
their performance in comparison to these other algorithms with a good
degree of certainty.

This work has in part been published and presented at international con-
ferences as Test case generation from context-free grammars using generalized
traversal of LR-automata [39] and Vision: Bias in Systematic Grammar-Based
Test Suite Construction Algorithms [40].

1.7 Outline

In Chapter 2 we present the theoretical background on grammars, testing, LR-
automata and different forms of derivations. Chapter 3 defines and explains
the novel construct of an LR-graph and its components. It also covers the
two different positive test suite construction algorithms. We then discuss all
the different types of negative mutations. Chapter 4 deals with the intricacies
of our implementation and the optimization that we made in order to scale
our algorithms to large, real world systems.

Chapter 5 deals with the evaluation of all our algorithms and compares it
to the state-of-the-art. We also define the concept of bias and illustrate how
it occurs in almost all grammar-based test suite construction algorithms. We
then show the impact that bias may have on an evaluation and in practice.

In Chapter 6 we discuss and compare the work related to our algorithms.
Lastly, in Chapter 7, we conclude this thesis and propose future work and
research that may be performed.
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Chapter 2

Theoretical Background

This chapter gives an overview of the topics that this work builds on and
defines some key concepts used in later chapters. First we start off by defining
context-free grammars and the notations we will be using throughout this
thesis. We then discuss the concept of derivations, including shortest yield
and shallowest embedding that play an important role in our definition of bias.
We discuss the topic of parsing as well as the automaton used in parsing a
word according to a grammar. Lastly, we also discuss testing and the current
state-of-the-art approaches to grammar-based testing.

2.1 Context-Free Grammars and Notation

A context-free grammar (CFG) is a formal replacement system that specifies
the replacement of designated individual symbols by arbitrary symbol strings.
A CFG can be used to define the syntactic structure of most programming
languages in use today. CFGs have a logical recursive structure which allow
them to be easily used in parsers and compilers. All languages that can be
described by CFGs can be recognized by a push-down automaton, a property
we use extensively in this thesis.

Formally, a context-free grammar is a four-tuple G = (N,T,P,S) with
N ∩ T = ∅, P ⊂ N × (N ∪ T )∗, and S ∈ N , where

1. T is the set of terminal symbols. These are the symbols that are used
to make up the words in the language defined by the grammar.

2. N is the set of non-terminal symbols. Non-terminal symbols themselves
represent sets of strings which are defined by the set of productions.

3. P is the set of productions. A production is a rule that consists of a
non-terminal mapped to sequence of terminals and non-terminals.

11
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4. S is the start symbol which is one of the non-terminal symbols.

We use the meta-variables A,B,C, . . . for non-terminals, a, b, c, . . . for
terminals, X,Y,Z for grammar symbols in V = N ∪ T , w,x, y, z for strings
of terminals or words, α,β, γ, . . . for strings of grammar symbols or phrases,
with ∣ α ∣ denoting the length of α and ε denoting the empty string.

In examples, we also use italics and typewriter font for non-terminal
and terminal symbols, respectively; we render the end of the input as $end.
By convention, we consider the non-terminal on the left-hand side of the first
rule as start symbol.

E →E +F
∣E -F
∣ F

F → num

∣ id
∣ (E )

Figure 2.1: Example CFG

In Figure 2.1 we can see a grammar for a simple expression language.
In this case the set of non-terminals is {E ,F} and the set of terminals is
{ + , - , ( , ) , id , num }. The set of productions are the rules shown in Figure
2.1 and the start symbol is E in this case.

2.2 Derivations

We use αAβ ⇒ αγβ to denote that αAβ derives αγβ by application of the
rule A→ γ ∈ P , with ⇒k denoting its k-fold repetition and ⇒∗ its reflexive-
transitive closure. For example, for the grammar in Figure 2.1, ( F ) derives
( id ) by application of the rule F → id . A sentential form is a phrase
α with S ⇒∗ α, a sentence is a word w with S ⇒∗ w. Extending the previous
example, both ( F ) and ( id ) are sentential forms but only ( id ) is
a sentence over the grammar. We also use a simultaneous derivation relation
⇛, where X1 . . .Xn ⇛ γ1 . . . γn if Xi → γi ∈ P for all Xi ∈ N and γi = Xi for
all Xi ∈ T . If we consider derivations AA for A → γ we can see that it will
take two repetitions to derive γγ, however it only takes one repetition of
simultaneous derivation to derive the same sentence. In this case we can see
that ⇛1 is contained in ⇒2.
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The yield of a phrase α is the set of all words that can be derived from
it, i.e., yield(α) = {w ∈ T ∗ ∣ α ⇒∗ w}. The language L(G) generated by a
grammar G is the yield of its start symbol, i.e., L(G) = {w ∈ T ∗ ∣ S ⇒∗ w}. We
generalize the usual definition of the first set to first(X) = {Y ∈ V ∣X ⇒∗ Y α}
and last set to last(X) = {Y ∈ V ∣X ⇒∗ αY }, i.e., allow non-terminal symbols.

An embedding of X in A is a phrase αXω with A⇒∗ αXω ⇒∗ w. It is
called a shortest yield embedding if for all A⇒∗ βXγ ⇒∗ v we have ∣w∣ ≤ ∣v∣.
It is called a shallowest embedding if S ⇒k αXω, and there is no i < k such
that S ⇒i βXγ; hence, the length of a shallowest embedding corresponds to
the height of a minimal derivation tree with the root S and a leaf X (i.e., a
terminal or un-expanded non-terminal).

A derivation tree, is a method of representing derivations as an ordered
tree, with nodes being labeled with non-terminal and terminal symbols. If all
leaf nodes are labeled with terminal symbols it may also be called a parse
tree. Otherwise it may be called a partial parse tree. We can determine the
derivation a tree represents by reading off the leaf nodes in order, from left
to right.

The height of a symbol X is the smallest height of a derivation tree rooted
in X whose leafs are all terminal symbols. By abuse of notation, we also call
the left-to-right sequence of the leaf symbols in such a tree a shallowest yield
of X. We use ⇒∗≤ and ⇒∗⊑ to denote shortest yield and shallowest derivations,
respectively.

stmt → sleep

∣ return expr optional
expr optional → expr

∣ ε
expr → expr == expr

∣ expr + expr
∣ id
∣ num

Figure 2.2: Example CFG with different options for shortest yield and
shallowest embeddings, respectively

If we consider the two derivation trees in Figure 2.3 we can see that, in
terms of shortest yield, we have two options of length one for stmt . However,
this is not the case for shallowest derivations since we only have one option with
minimal height of one. This shows that, although there are often significant
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Figure 2.3: Derivation trees for grammar in Figure 2.2

overlaps between the sets of shortest yields and shallowest derivations for a
symbol, these sets can be quite different, depending on the structure of the
grammar.

2.3 LR-Parsing and Push-Down Automata

When parsing input according to a context-free grammar, there are two main
methods that may be used, top-down parsing and bottom-up parsing. The
key difference between the two methods is that top-down parsing attempts to
construct a preorder parse tree from the root node, i.e., top down, for a given
input while bottom-up parsing attempts to reduce an input from the leaves
of the parse tree to the root node, i.e., bottom up. We focus on the latter in
this thesis.

2.3.1 Push-down automata

A push-down automaton (PDA) is a finite state machine that uses a stack,
with all stack operations being performed on the element at the top of the stack
in the standard way, and can be used in bottom-up parsing. The language
accepted by a PDA is defined as the set of all words that are accepted by
the PDA. The class of languages that PDAs can accept are equivalent to the
class of languages that may be described by a CFG.

We say a word is accepted by a PDA if, after processing the entire word,
the current state is in the set of accepting states or the stack is empty. It can
be shown that, for any language accepted by a PDA by using the empty stack,
we can construct an equivalent automaton that accepts the same language by
a final state [41]. A word is rejected if, during the parsing process, there is
no valid transition for the next input symbol or, after processing the entire
word, the current state is not in the set of accepting states and the stack is
not empty.

Formally a push-down automaton is defined as a 7-tuple P =
(Q , ζ, ρ, δ, q0, Z0, F ) [26], where
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1. Q is a finite set of states.

2. ζ is a finite set of symbols composing the input alphabet.

3. ρ is the stack alphabet, the collection of symbols that are allowed on the
stack.

4. δ is the transition function. It takes a triple (q ,a,X ), comprising a
state q, an input symbol a ∈ ζ or ε and a stack symbol X ∈ ρ, and
returns a finite set of pairs (p, γ) where p ∈ Q is the destination state
and γ ∈ ρ is the string of stack symbols that replace X ∈ ρ on top of the
stack.

5. q0 ∈ Q is the start state of the automaton.

6. Z0 ∈ ρ is the start symbol. This symbol is on the stack before any
transition is made.

7. F ⊆ Q is the set of accepting states.

A PDA may be either deterministic or non-deterministic. If there exists
at most one valid transition, given q, a and X, as defined above, we say the
PDA is deterministic. If there exists more than one valid transition, the PDA
is non-deterministic. A non-deterministic PDA can recognize the entire class
of context-free languages, while a deterministic PDA can only recognize a
subset of this, the class of deterministic context-free languages.

2.3.2 LR-Automata

An LR-automaton is a specific type of deterministic PDA that is constructed
from a CFG. One of the main differences between the LR-automaton and
general PDAs is that one transition in the LR-automaton may result in many
elements being popped off the stack, as compared to popping at most one
element per transition in a general PDA.

There are multiple different variants of this type of automaton (LR(k),
SLR, LALR, GLR etc. [14, 23,45]), mostly dealing with different methods of
resolving conflict via a lookahead or a breadth-first search. In this thesis we
focus on generating tests from the LR(0)-automaton, which does not include
a lookahead.

LR-automata are commonly used to perform a type of bottom-up parsing,
known as shift-reduce parsing, which utilizes a stack along with shift and
reduce transitions. A shift transition simply pushes input symbols onto the
stack. A reduction on the other hand pops a certain number of elements from
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the top of the stack and pushes an appropriate non-terminal symbol. This
continues until either only the start symbol is left on the stack or the input is
rejected. This can be seen in detail in Algorithm 2.

A state in a LR(0)-automaton can be viewed as a set of LR(0)-items.
In this context, an item is simply a grammar rule with a dot indicating
how much of the rule we have seen at this point. For example, the item
stmt → sleep ● indicates that, by parsing some input, we have seen this
entire rule and may reduce the top of the stack to stmt . However, the item
expr → expr ● + expr indicates that we should expect to possibly see the
token + next.

In order to construct the item sets for a LR(0)-automaton for a grammar G
we first need to define an augmented grammar G′. This is done by introducing
a new start symbol S′ and a new production S′ → S for the original start
symbol S. This allows for the parser to know when to accept input, since this
would occur if the parser is about to perform the reduction for S′ → S.

Closure of item sets The closure of an item set, i is defined as the set of
items that may be constructed from a state, given the following two rules [7]:

1. Add every item in i to the closure of i.

2. If A → α ● B β is in the closure of i and there exists a production
B → γ then add B → ● γ to the closure of i, if it does not already
exist. Do this until no new items can be added to the closure of i.

We can divide items into two classes, kernel items and nonkernel items.
Kernel items are the initial item S′ → ● S and all other items who do not
have a dot on the left end of a production rule. Nonkernel items are those
items with a dot on the left end of a production, excluding the initial item.

A goto function may be used to define transitions from one state to another
in terms of an item set i and a grammar symbol X. It is defined as the closure
of the set of items of the form A → α X ● β for all A → α ● X β in the
set i. This gives the transitions of the LR(0)-automaton, since the item sets
correspond to states in the automaton, goto specifies the transition from one
state to another, given an input X. We can see the algorithm for computing
the collection of item sets for the LR(0)-automaton in this way in Figure 1.
In Table 2.1 we can see the LR(0) item sets calculated for the grammar in
Figure 2.1

The primary functions in the LR-parsing algorithm are ACTION and
GOTO (This is not the same as the goto used in computing the sets of the
LR(0)-automaton). They are defined as follows:
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Algorithm 1: Computing an LR(0)-automaton sets (adapted from
[7])

input : Items of the grammar G
output : LR(0)-automaton

1 C = {closure({S′ → ●S})}
2 while new items to be added to C do
3 for I ∈ C do
4 for X ∈ T ∪N do
5 if goto(I,X) ≠ ∅ and goto(I,X) /∈ C then
6 C = C ∪ {goto(I,X)}
7 end

8 end

9 end

10 end

ACTION The ACTION function takes a state i and a terminal a as input.
It can then return one of four values. It can shift a state j onto the stack
to represent a. It can also reduce A → β which reduces a substring β to A
by popping ∣β∣ elements off the stack and pushing A. Lastly, ACTION can
accept the input and finish parsing or report an error.

GOTO The GOTO function takes as input a state i and a non-terminal A
and maps this pair to a corresponding state j. This is the pushing component
of a reduction (see line 10, Algorithm 2) and must happen after symbols have
been popped off the stack.

We can see an example of an LR(0)-automaton in Figure 2.5 with its
parsing table in Figure 2.4. The solid lines represent shift transitions and
the dotted lines the reduction transitions. All terminal labeled solid lines
correspond to line 5 of Algorithm 2 and solid lines labeled with non-terminal
correspond to line 10. The dotted lines with square boxes are reductions
actions (see line 7) and result in the popping of elements of the stack (see
line 8).
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Algorithm 2: LR-Parsing Algorithm (adapted from [7])

input : An input string w and an LR-parsing table with functions
ACTION and GOTO for a grammar G

output : If w is in L(G), the reduction steps of a bottom-up parse for
w; otherwise an error indication

1 let a be the first symbol of w
2 while true do
3 let s be the state on top of the stack
4 if ACTION[s, a] = shift t then
5 push t onto the stack
6 let a be the next input symbol

7 else if ACTION[s, a] = reduce A→ β then
8 pop ∣β∣ symbols off the stack
9 let state t now be on top of the stack

10 push GOTO[t, A] onto the stack
11 output the production A→ β

12 else if ACTION[s, a] = accept then
13 break
14 else
15 call error-recovery routine
16 end

17 end

State Item set
0 {S’ → ● E $, E → ● E + F, E → ● E - F, E → ● F, F → ● num, F → ● id, F → ● ( E )}
1 {S’ → E ● $, E → E ● + F, E → E ● - F}
2 {E → F ● }
3 {F → num ● }
4 {F → id ● }
5 {F → ( ● E ), E → ● E + F, E → ● E - F, E → ● F, F → ● num, F → ● id, F → ● ( E )}
6 {E → E + ● F, F → ● num, F → ● id, F → ● ( E )}
7 {E → E - ● F, F → ● num, F → ● id, F → ● ( E )}
8 {F → ( E ● ), E → E ● + F, E → E ● - F}
9 {E → E - F ● }
10 {E → E + F ● }
11 {F → ( E ) ● }
acc {S’ → E $ ● }

Table 2.1: LR(0) item sets for automaton in Figure 2.5.

2.3.3 Conflicts during Parsing

When using shift-reduce parsing there are grammars for which inputs can
not be parsed uniquely. This stems from ambiguity in the grammar which
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ACTION GOTO

+ - ( ) id num $end E F
0 s5 s4 s3 1 2
1 s6 s7 acc
2 r3 r3 r3 r3 r3 r3 r3
3 r4 r4 r4 r4 r4 r4 r4
4 r5 r5 r5 r5 r5 r5 r5
5 s5 s4 s3 8 2
6 s5 s4 s3 9
7 s5 s4 s3 10
8 s6 s7 s11
9 r1 r1 r1 r1 r1 r1
10 r2 r2 r2 r2 r2 r2
11 r6 r6 r6 r6 r6 r6

Figure 2.4: LR(0) parsing table for automaton in Figure 2.5. The numbers
and letters correspond to shift and reduce under the ACTION columns. So
s6 means shift 6 and r1 means reduce using rule 1. The GOTO columns
correspond to line 10 of Algorithm 2. An empty table entry would result in
an error as it means there is no valid transition from the current state given
the current input symbol.

conflicts with LR-Parsers being deterministic. We can classify these conflicts
into reduce/reduce and shift/reduce conflicts.

Shift/Reduce Conflicts Shift/Reduce conflicts occur when the parsing
table contains multiple entries for a given input symbol, specifically a combi-
nation of shift and reduce actions. Consider the grammar fragment shown
below. If the stack is of the form ⟨... , if , expr , then , stmt , ⟩ (with the top
of stack to the right) and the next input is else it is unclear whether the
parser should shift the else next or whether the current top of stack should
be reduced to stmt .

stmt → if expr then stmt
∣ if expr then stmt else stmt
∣ other

Reduce/Reduce Conflicts Reduce/Reduce conflicts happen when there
are multiple possible reductions from one top-of-stack configuration. If we
consider the grammar fragment below we can see that id can resolve to
both stmt and expr if the top of stack is ⟨... , id , ( , id , ⟩. This results
in a conflict which cannot be deterministically resolved without introducing
further constructs like rule precedence.
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0

3

num

4

id

5

(

1

E

2

F

acc

r1 r2

r3

r4 r5

r6

(any) (any)

num id

(

F

8

E

$end

6

+

7

- (any)

num id

(

9

F num id

(

10

F

+ -

11

)

(any) (any)

(any)

Figure 2.5: Example LR-Automaton for CFG in Figure 2.1, with the start
state denoted by the grey node and the accept state denoted by a double
circle. The square boxes denote a reduction rule. So r1 would correspond to
rule one, E → E + F

.

stmt → id ( parameter list )
∣ expr := expr

parameter list → parameter list , parameter
∣ parameter

parameter → id

expr → id ( expr list )
∣ id

expr list → expr list , expr
∣ expr
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2.4 Testing

Software testing is a dynamic method used to demonstrate that a system-
under-test functions correctly and to reveal any bugs that may be present
in the system. There are many different approaches to software testing but
most follow the general method of executing the target system over a test
suite. Such a test suite is comprised of individual test cases which in turn
are made up of a test input x⃗ and an expected output y. When a SUT is
executed over x⃗ we can compare its output to y in order to generate a pass
or fail verdict [9, 13].

There are two main approaches to testing, white-box and black-box testing,
which affect how test suites for each approach is produced. White-box testing
needs access to the SUT in order to construct a test suite since test cases
produced using this method are generally created to exercise specific execution
paths in the SUT. It is generally used to test specific aspects of the code using
methods like branch and loop testing [16]. In contrast, black-box testing does
not have access to the SUT when generating a test suite. Test suites used in
black-box testing are constructed according to a specification for the SUT.
Common methods of black box testing include partition testing and boundary
value testing [11, 31]. In general, test suites used in black-box testing contain
more redundant test cases but test suites for this method can be constructed
much more quickly.

2.4.1 Systematic Grammar-based Testing

Grammar-based testing is a form of black-box testing, since the test cases
are constructed from an input grammar, the specification, for a system that
attempts to read input according to the input grammar. In grammar-based
testing, the test input is a word x ∈ T ∗ and the expected output is either
accept (for positive tests x ∈ L(G)) or reject (for negative tests x ∉ L(G)).
Note that the verdict is also pass if the program rejects a negative test case,
i.e., identifies an expected syntax error.

Specifically, grammar-based testing can be viewed as an instance of parti-
tion testing, where equivalence classes are defined by a coverage criterion. For
example, for rule coverage (discussed below), the equivalence classes would
be defined in terms of the rules used to construct a test case, i.e., if two
test cases cover the same grammar rule they belong to the same equivalence
class. Therefor, testing all partitions would require constructing a test suite
containing test cases that cover each rule at least once.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. THEORETICAL BACKGROUND 22

Criteria for the Generic Cover Algorithm

Algorithm 3: Generic cover algorithm

input : A CFG G = (N,T,P,S)
input : A coverage criterion C
input : A minimal derivation relation ⇒∗⪯
output : A test suite TS over G

1 TS ← ∅
2 for X ∈ V do
3 compute S ⇒∗⪯ αXω
4 for θ ∈ C(X) do
5 compute αθω⇒∗⪯ w
6 TS .add(w)

7 end

8 end
9 return TS

Most current grammar-based testing algorithms follow a very similar
structure, as shown in Algorithm 3. The algorithm iterates over all symbols of
the grammar and computes their minimal derivations according the coverage
criterion specified. These different coverage criteria result in very different
test suites, however the general structure for constructing these test suites
remain the same.

The various coverage criteria considered in this thesis are described below.

Rule Coverage This coverage criterion ensures that for every production
A→ α it is included in a sentence S in the test suite such that S → γAβ and
forms a test case t such that t → γαβ. We can formulate it as a coverage
criterion for the generic cover algorithm as rule(X) =̂ {α ∣X → α ∈ P}. This
criterion tends to result in relatively small test suites as compared to the
other grammar-based test suite construction coverage criteria we consider.

Context-Dependent Rule Coverage The original rule coverage algorithm
does not take into account the context in which a rule is applied. This means
that a test suite might not reveal a bug with a rule in a different context than
the one considered by that test suite. Context-dependent rule [29] coverage
attempts to solve this problem by ensuring a rule is applied in all possible
contexts in which it directly occurs. For the generic cover algorithm this
criterion can be formulated as cdrc(X) =̂ {αγω ∣ X → αY ω ∈ P,Y → γ ∈ P}.
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This idea is expanded upon by the breadth-first coverage that applies a
rule in all contexts up to a depth k and can be formulated as bfsk(X)
=̂ {αY ω ∣X ⇛k αY ω,Y ∈ V }.

K-Path (Step) Coverage K-path coverage [24] utilizes the derivation tree
for a grammar to produce a test suite. This is done by considering paths
in the derivation tree and limiting the number of nodes in the path to k.
Formally this can be stated as stepk(X) =̂ {αY ω ∣X ⇒k⪯ αY ω,Y ∈ V } for the
generic cover algorithm. For small k test suite sizes are similar to that of
breadth-first coverage, however the test suite size grows much less rapidly
than breadth-first coverage as k is increased.

Derivation Coverage Derivation coverage constructs a test suite by en-
suring that all shortest paths between any pair of symbols are covered. This
often results in a very effective yet compact test suite when compared to other
coverage criteria. It is defined as deriv(X) =̂ {αY ω ∣X ⇒∗⪯ αY ω,Y ∈ V }.

PLL Zelenov et al. [47] propose a method for test suite generation that
ensures that all non-terminal symbols are covered by test cases such that there
exists sentential forms for all non-terminals that start with each terminal
in its first set. This is done by first constructing derivation chains from the
non-terminal to a start symbol. This is then used to construct a sentential
form for the non-terminal of the form αAβ for a non-terminal A. Variants
of this sentential form are then created for each terminal symbol in the first
set of A and other non-terminals in the sentential form are ground out to
form test cases. Although the original algorithm for constructing a test suite
according to this criterion is not the same as the generic cover algorithm, we
may also formulate it as a coverage criterion for the generic cover algorithm
as pll(X) =̂ {aω ∣X ⇒∗⪯ aω,X ∈ N,a ∈ first(X)}.

Other approaches

There are a few grammar-based test generation algorithms that do not conform
to the same structure as the generic cover algorithm. For example, Purdom’s
algorithm [30, 34] proceeds in multiple phases and selects rules based on
different conditions than the generic cover algorithm. Another approach
is the PLR algorithm proposed by Zelenov et al. [47] which utilizes some
information from the LR-automaton for a grammar in generating test suites.
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2.4.2 Grammar-based fuzzing

Software fuzzing is a popular way of testing real world software systems. It
uses randomization of inputs in order to detect bugs and crashes in these
systems. In grammar-based fuzzing a probabilistic context-free grammar
is often used, with probabilities being attached to a grammar’s production
rules [21,43,44]. These probabilities are then used to generate words from the
grammar along with other constraints, like the maximum length of a word.
This method of grammar-based testing makes up the bulk of the work in the
field of grammar-based testing at this time.

Although very effective at finding bugs, fuzzing is often very resource
expensive and requires large test suites to be truly effective. Due to the
random nature of fuzzing, a smaller test suite may be very biased towards
certain grammar structures (see Chapter 5 for the effect of small random
biases on coverage achieved over a system). Feedback directed fuzzing for
grammar-based testing is fairly unexplored and not much more effective than
existing grammar-based fuzzing methods [8].
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Chapter 3

Generating Test Suites by
Covering LR-Graphs

In this chapter we discuss the foundational topic of LR-graphs. We then
describe two different test suite construction algorithms, both of which cover
the LR-graph. Finally, we define two different classes of negative mutations
on valid paths over these graphs that allow us to construct negative test cases.

3.1 LR-Graphs

One method of parsing input according to a CFG is by using a push down
automaton known as an LR-Automaton (see Section 2.3). This type of
automaton contains a stack that is altered by the two possible transitions in
the LR-Automaton. A shift transition reads one element from the input stream
and pushes it onto the stack. The reduce transitions applies a grammar rule
by popping the corresponding number of elements off the stack and pushing
the appropriate non-terminal symbol onto the stack.

We extend the LR-itemset construction by defining an LR-graph LRG =
(V,E, v0, vacc) for a CFG G = (N,T,P,S). LRG is a labeled directed graph
with a set of vertexes V and a set of edges E = E→ ∪ E⇢. The vertexes
correspond to the states of the LR-Automaton, with a single start state
represented by a vertex v0 ∈ V and a single accept state represented by a
vertex vacc ∈ V . In Figures 3.1 and 3.2 the vertex for the start state is shown
in grey and the vertex for the accept state is shown by a double-circle outline
around the vertex.

Edges may be either push edges E→ ⊆ V × (N ∪ T ) × V or pop edges
E⇢ ⊆ V × (N × N) × V . Push edges are written as u →X v with label X
and pop edges are written as u ⇢A/∣γ∣ v with label A/∣γ∣ for a pop edge

25
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Figure 3.1: LR-graph for LR-automaton in Figure 2.5

corresponding to a rule A → γ ∈ P . Push edges labeled with a terminal
symbol correspond to shift actions in the LR parsing table and push edges
labeled with a non-terminal symbol correspond to the GOTO transitions in
the LR parsing table. Pop edges are the part of the LR-graph that deviate
the most from the LR-automaton. They correspond to the reduce actions
in the LR parsing table. However, they also encode specific top-of-stack
contexts in which these reduce actions may occur. Therefore, a single reduce
action may result in multiple pop edges. We can determine the pop edges
corresponding to a reduce transition by traversing back from the current state,
using only push edges, and finding all paths with a length of ∣γ∣. For example,
in Figure 2.5 we can see that, at state 9, we should reduce using the first
rule (from the grammar in Figure 2.1), E → E + F . There are two possible
top-of-stack contexts which may result in this reduction, ⟨... , v0, v1, v6, v9⟩
and ⟨... , v5, v8, v6, v9⟩ which are shown by the two pop edges v9 ⇢E/3 v0
and v9 ⇢E/3 v5 in Figure 3.1. The concept of pop edges allow us to explicitly
encode unique top-of-stack contexts into the graph, which allow us to ensure
coverage of these contexts in our coverage criteria. When either a push edge
or a pop edge may be used the edge is written as ↝ and À.

A path in LRG is the sequence of edges e1...en. Paths are called valid if
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Figure 3.2: Dyck grammar variants and corresponding LR-graphs. These
grammars all describe the same language with different locations of recursion
in the grammar.

the sequence of edges satisfies a set of conditions. In paths over LRG edges are
only valid in specific contexts. A push edge e = u→a v labeled with a terminal
symbol a ∈ T can exists in a valid path iff the edge directly preceding it was
a push edge or it is the first edge in the path. This means that a terminal
push edge is only valid if not preceded by a pop edge, since the pop action
of reduction must be followed by pushing the result of the GOTO function
(which is shown by a non-terminal push edge). For example, in Figure 3.2 (a)
v2 →[ v2 is only valid when it is preceded by v0 →[ v2 and not v2 ⇢D/0 v2.

A pop edge is valid if it is directly preceded by a valid path that results
in the top-of-stack context for which this pop edge was constructed. For
example, in Figure 3.1, the pop edge v9 ⇢E/3 v5 is only valid if the path
directly preceding it results in a stack of the form ⟨... , v5, v8, v6, v9⟩. This
can only be achieved by the sequence of push edges v5 →E v8 →+ v6 →F v9
(see Section 3.1 below for more details on how this sequence of push edges
are determined).

Push edges labeled with a non-terminal symbol correspond to the GOTO
transitions in the LR parsing table. This means that a push edge labeled with
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a non-terminal symbol is valid iff it is preceded by a pop edge such that X = A
for push edge u→X v and pop edge g ⇢A/∣γ∣ u. In Figure 3.2 (a) v0 →D v1 is
only valid if preceded by v0 ⇢D/0 v0 or by v5 ⇢D/4. By construction there
does not exist more than one non-terminal push edge with the same label
originating from the same vertex. This is because having more than one
non-terminal push edge with the same label from a vertex would be equivalent
to a shift/shift conflict, which is not possible in LR-parsers due to the way in
which item sets (and thus states) are constructed.

We identify the (labeled) edges with relations over pairs of vertices in
the usual way, and write ↝ ○ À to denote the composition of two relations
corresponding to ↝ and À, ↝∗ to denote the corresponding transitive closure,
and define ↝I = ⋃i∈I ↝i. We omit I if it is clear from the context.

We represent vertexes along a path p = v1 ↝l1 v2 ↝l2↝ ... ↝ln−1 vn as
v(p) = v1...vn. A word over the path p is defined as the sequence w(p) =
⟨ai ∣ vi →ai vi+1 ∈ p, ai ∈ T ⟩ of terminal symbols labeling the push edges in
p. We call such a path p accepting if v(p) = v0...vacc and the sequence of
states in v(p) reflect a valid sequence of states in a pushdown automaton
A = (V,T, T ∪N, δ, v0, S,{vacc}) with an appropriate transition relation δ. For
example, the path v0 ⇢D/0 v0 →D v1 →[ v2 ⇢D/0 v2 →D v3 →] v4 ⇢D/4 v0 →D

v1 →$end vacc in Figure 3.2 (b) is an accepting path corresponding to the word
[ ] .

Construction of Pop Edges and Reduction Paths

One of the main differences between LR-graphs and LR-Automata is how
reduction transitions are represented. In the automaton a reduction is a
single transition resulting in items being popped off the stack and a single
non-terminal symbol being pushed onto the stack. However, in the LR-graph
this transition is split into a pop-edge and a push edge. We do this in order
to encode the stack contexts in which a reduction can be applied

A single reduction rule can thus result in multiple pop edges. For example,
in Figure 3.2 (a), state 5 contains the reduction transition for the rule
D → [ D ] D. This results in the three pop edges v5 ⇢D/4 v4, v5 ⇢D/4 v2,
v5 ⇢D/4 v0 corresponding to the three possible stack contexts in which the
reduction may be applied. This is because all possible prefix path segments
for a reduction rule are calculated and connected with a pop edge from the
state at which the reduction rule is applied to the source of the prefix path
segment.

Ambiguity and Conflicts One of the key benefits of this construction of
pop edges is that it allows us to deal with ambiguity in the input grammar.
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In Figure 3.2 (c) there are multiple reduce/reduce conflicts at state 3. For
example, the reduction transition for the rule D → ε is always valid at state 3,
which conflicts with the reduction transition for the rule D →D D whenever
it is also valid. Instead of having to use methods such as lookaheads to
resolve this, we simply add pop edges for both rules, namely v3 ⇢D/0 v3 and
v3 ⇢D/2 v1, since the algorithms for edge coverage will ensure both rules are
considered by covering both pop edges. This then allows us to use an LR(0)
automaton as base for the construction of the LR-graph since conflicts do not
pose an issue to the construction or coverage of the LR-graph.

Reduction Paths We describe a rule application over the LR-graph using
reduction paths. A reduction path is path of the form

r = ι(p ∈ E ∣γ∣
→ , vert(p) = v . . . u)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
part 1

○ (u⇢A/∣γ∣ v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

part 2

○ ι(v →A v
′)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
part 3

that is uniquely determined by its pop edge u ⇢A/∣γ∣ v. We say a reduction
path is unique for a pop edge since its two components, other than the pop
edge (part 2), namely the push path component ι(p ∈ E ∣γ∣

→ , vert(p) = v . . . u)
(part 1) and the non-terminal push edge that follows the pop edge, ι(v →A v)
(part 3), are unique by construction. Specifically, the push path component
must be unique since it directly corresponds to the prefix path component
that results in the top-of-stack context for which the pop edge was constructed
and each top-of-stack context for a reduction rule generates a new pop edge.

Reduction paths capture the required stack context for a pop edge and
the resulting reduction. For example, the pop edge v4 ⇢D/4 v0 in Figure
3.2 (b) corresponds to the reduction path v0 →D v1 →[ v2 →D v3 →] v4 ⇢D/4
v0 →D v1. This corresponds directly to the rule D → D [ D ] . The
reduction path indicates that this pop edge requires the stack to be of the
form ⟨... , D, [ , D, ] , ⟩, originating from v0. It also indicates that these
four items will be popped off the stack and replaced by the non-terminal D.

Since the set of all reduction paths will cover all pop edges, and all push
edges must lead to pop edges in order for only the start symbol and $end to
be left on the stack when the accept state is reached in a valid path, reduction
path coverage will lead to coverage over all edges.

3.2 Traversing the LR-graph

The first algorithm we present in this thesis is comprised of two stages, namely
the flooding and path completion phases. The flooding phase generates paths
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Figure 3.3: A LR-graph for an expression grammar

Algorithm 4: Main LR-graph traversal algorithm

input : An LR Graph for a CFG G = (N,T,P,S)
output : A test suite for the CFG

1 paths ← ∅
2 for prefix ∈ flooding(LRG) do
3 paths .∪ {complete path(LRG,prefix)}
4 end
5 return {w(p) ∣ p ∈ paths}

from v0, which are prefixes of valid words in L(G), in a layer-by-layer manner
and ensures all edges in the graph are covered. The path completion phase
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Algorithm 5: Flooding Phase

input : An LR Graph LRG = (V,E, v0, vacc)
output : A List of valid paths starting at v0 covering all edges in LRG

1 Q ← ⟨⟨v0⟩⟩
2 seen edges ← ∅
3 while seen edges ≠ E do
4 p = Q .dequeue ()
5 if p.last = u⇢A/n v then
6 Q .enqueue (p ○ ι(v →A v′ ∈ E))
7 seen edges .∪ {v →A v′}
8 continue

9 end
10 for e in {(v ↝ v ′) ∈ E ∣ p.last = u ↝ v} do
11 if e ∈ E→ ∨ (e ∈ E⇢ ∧ valid(p ○ e)) then
12 Q .enqueue (p ○ e)
13 seen edges .∪ {e}
14 end

15 end

16 end
17 return Q

then completes these prefixes with the shortest possible postfix that results
in a valid path in the grammar. The test suite is then derived from words
over these valid paths.

Both of these phases use breadth-first search (BFS). Breadth-first search
is used since it explores the LR-graph in layers, which results in shorter test
cases. There is also a bound on the maximum path length required to cover
all edges in the graph. This means that we can guarantee termination of the
algorithm after exploring a finite number of layers, without cycle detection or
avoidance. This is due to cycles being required by all valid paths. Consider
the form of the first two parts of a reduction path in Section 3.1, a sequence
of push edges from a node u to a node v followed by a pop edge from v to u.
This forms a necessary cycle. Other cycles may also be necessary, depending
on the structure of the LR-graph. For example, in Figure 3.2 (a) the edges
v2 →d v3 and v3 → ] v4 must be visited a minimum of two times in order to
explore the edge v4 →d v2.

Normally BFS appends children nodes to the end of a queue and continues
until the queue is empty. Instead of only storing next nodes, we duplicate
the current path and stack before exploring valid, reachable edges from the
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Algorithm 6: Path Completion Phase

input : An LR Graph LRG = (V,E, v0, vacc) and a valid path
starting at v0

output : A valid path starting at v0 and ending in vacc
1 Q ← ⟨path⟩
2 while true do
3 p = Q .dequeue ()
4 if p.last = u↝ vacc then
5 return p
6 end
7 if p.last = u⇢A/n v then
8 Q .enqueue (p ○ ι(v →A v′ ∈ E))
9 continue

10 end
11 for e in {(v ↝ v ′) ∈ E ∣ p.last = u ↝ v} do
12 if e ∈ E→ ∨ (e ∈ E⇢ ∧ valid(p ○ e)) then
13 Q .enqueue (p ○ e)
14 end

15 end

16 end

current node. The exploration continues until all edges are covered for the
flooding phase, and until vacc is reached for the path completion phase.

By duplicating the current path and stack it enables the algorithm to
handle conflicts in a similar way to how GLR parsers resolve conflicts. When
a conflict is encountered, we do not attempt to choose a specific traversal and
instead perform both traversals in parallel.

Algorithm The main algorithm (see Algorithm 4) calls the flooding phase
(see Algorithm 5) to obtain a set of prefixes. Each prefix is then individually
completed (see Algorithm 6) and the word over the complete path is extracted
and added to the test suite.

Both the flooding and path completion phases dequeue a path and extend
this path at its head. If the last edge in the path was a push edge, the
path is duplicated and all valid edges, those edges that could be appended
to the current path so that the new path remains valid (see Section 3.1 for
when different types of edges are valid), originating from the current node
are explored in parallel. This entails copying the current path, appending the
edge being explored and then enqueueing this new path.
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If the previous edge was a pop edge then only the corresponding non-
terminal push edge from the current state may be explored. This edge is
determined uniquely by construction as indicated by the ι quantifier (see
Algorithm 5 line 6 and Algorithm 6 line 8). This non-terminal push edge
completes the reduction action that was started by the pop edge that came
before it.

A pop edge u⇢A/∣γ∣ v is considered valid if the target v is in the current
path and the current top-of-stack context resulting from the current path
satisfies the rule corresponding to the pop edge. In Figure 3.2 (c), for a path
v0 ⇢D/0 v0 →D v1 ⇢D/0 v1 →D v3 we can see that only v3 ⇢D/0 v3 and v3 ⇢D/2
v0 are valid pop edges since the top-of-stack context is ... v0 →D v1, v1 →D v3.
Stack context may be viewed as a path comprised of only push edges, less the
push edges which have been removed by pop actions as this directly relates
to the symbols that are currently on the stack.

Example For the LR-graph shown in Figure 3.2(a), we can see the layer-by-
layer exploration of the flooding phase in Table 3.1. It shows how the queue
growth accelerates as more and more layers are explored. We can observe
that, from layer 7, the only edge that remains to be covered is v4 ⇢D/4 v2,
however the queue grows from 3 to 5 paths until the edge is finally covered in
layer 10 of the exploration. This is due to the non-deterministic nature of the
breadth-first search algorithm. Unnecessary stack duplication can be negated
to some extent by turning the queue in Algorithms 5 into a priority queue
where unseen edges have a higher priority.

A priority queue allows the breath-first exploration algorithm to cover
slightly larger LR-graphs like the one seen in Figure 3.3. From this figure
we can also see how the number of edges grows rapidly as more rules are
introduced in a grammar. Even with a priority queue, the breath-first search
algorithm produces 620 paths that require completion. If we extend the
expression grammar from Figure 3.3 with a few extra rules and non-terminal
symbols, as can be seen in Figure 3.4, the breath-first search algorithm does
not terminate in a reasonable amount of time.

This is due to stubborn edges that arise from the structure of the LR-
graph. We have found these edges to exist in LR-graphs for many other
grammars as well. They are pop-edges that require a long, specific prefix to
become valid. These prefixes also often consist of edges that will have to be
covered multiple times in the prefix for the stubborn edge. This means that
many other previously explored cycles have to be considered, which leads
to rapid, redundant queue growth. We have attempted to counteract this
by methods such as bi-directional search and a more intricate edge priority
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e → e + t

∣ e - t
∣ t

t → t * f
∣ t / f
∣ f

f → num

∣ id
∣ ( e )

Figure 3.4: A slightly larger expression grammar

implementation. However, in each case it failed to prove effective against
stubborn edges for real world grammars. It is this problem that we solve by
the algorithm presented in Section 3.3.

3.3 Solving for Pop-Edges

The second algorithm we present in this thesis uses pop-edge coverage to
avoid the pitfalls of the first algorithm. One of the main drawbacks of the
breadth-first exploration algorithms is that it only considers the immediate
edges that are adjacent to the current node when constructing paths that
explore the graph. This leads to a rapid growth in redundant test cases as
the size of the graph is increased, due to the high branching factor in many
nodes leading to a substantial growth in queue size as the required lengths of
paths are increased. By using pop-edge coverage, we can avoid this drawback
by making the calculation much more efficient by avoiding this branching
factor altogether.

The pop-edge coverage algorithm, that we describe in this section, exploits
extra information that is contained in the LR-graph by construction. Since
each pop edge corresponds to a pop action in a specific top-of-stack context,
we know that there exists only one top-of-stack configuration (we focus on
the top ∣γ∣ elements of the stack for a pop edge u ⇢A/∣γ∣ v as described in
Section 3.1 ) per pop edge.

We therefore introduce the concept of a reduction path for a pop edge, i.e.,
the path of push edges that correspond to this pop edge’s stack constraints,
followed by the pop edge itself and its corresponding non-terminal push
edge. These reduction paths may then be embedded in other reduction
paths in a fixed point computation to find the shallowest embeddings of
each reduction path into a valid path in the graph. For example, for the
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Layer: Queue:
0 v0
1 v0 ⇢D/0 v0
2 v0 ⇢D/0 v0 →[ v1
3 v0 ⇢D/0 v0 →[ v1 →$end vacc,

v0 ⇢D/0 v0 →[ v1 →[ v2
4 v0 ⇢D/0 v0 →[ v1 →$end vacc,

v0 ⇢D/0 v0 →[ v1 →[ v2 ⇢D/0 v2
5 v0 ⇢D/0 v0 →[ v1 →$end vacc,

v0 ⇢D/0 v0 →[ v1 →[ v2 ⇢D/0 v2 →D v3
6 v0 ⇢D/0 v0 →[ v1 →$end vacc,

v0 ⇢D/0 v0 →[ v1 →[ v2 ⇢D/0 v2 →D v3 →[ v2,
v0 ⇢D/0 v0 →[ v1 →[ v2 ⇢D/0 v2 →D v3 →] v4

7 v0 ⇢D/0 v0 →[ v1 →$end vacc,
v0 ⇢D/0 v0 →[ v1 →[ v2 ⇢D/0 v2 →D v3 →[ v2 ⇢D/0,
v0 ⇢D/0 v0 →[ v1 →[ v2 ⇢D/0 v2 →D v3 →] v4 ⇢D/4 v0

8 v0 ⇢D/0 v0 →[ v1 →$end vacc,
v0 ⇢D/0 v0 →[ v1 →[ v2 ⇢D/0 v2 →D v3 →[ v2 ⇢D/0→D v3,
v0 ⇢D/0 v0 →[ v1 →[ v2 ⇢D/0 v2 →D v3 →] v4 ⇢D/4 v0 →D v1

9 v0 ⇢D/0 v0 →[ v1 →$end vacc,
v0 ⇢D/0 v0 →[ v1 →[ v2 ⇢D/0 v2 →D v3 →[ v2 ⇢D/0→D v3 →[ v2,
v0 ⇢D/0 v0 →[ v1 →[ v2 ⇢D/0 v2 →D v3 →[ v2 ⇢D/0→D v3 →] v4,
v0 ⇢D/0 v0 →[ v1 →[ v2 ⇢D/0 v2 →D v3 →] v4 ⇢D/4 v0 →D v1 →$end vacc,
v0 ⇢D/0 v0 →[ v1 →[ v2 ⇢D/0 v2 →D v3 →] v4 ⇢D/4 v0 →D v1 →[ v2

10 v0 ⇢D/0 v0 →[ v1 →$end vacc,
v0 ⇢D/0 v0 →[ v1 →[ v2 ⇢D/0 v2 →D v3 →[ v2 ⇢D/0→D v3 →[ v2 ⇢D/0 v2,
v0 ⇢D/0 v0 →[ v1 →[ v2 ⇢D/0 v2 →D v3 →[ v2 ⇢D/0→D v3 →] v4 ⇢D/4 v2,
v0 ⇢D/0 v0 →[ v1 →[ v2 ⇢D/0 v2 →D v3 →] v4 ⇢D/4 v0 →D v1 →$end vacc,
v0 ⇢D/0 v0 →[ v1 →[ v2 ⇢D/0 v2 →D v3 →] v4 ⇢D/4 v0 →D v1 →[ v2 ⇢D/0 v2

Table 3.1: Queue Growth for flooding phase over LR-graph in Figure 3.2 (b)

edge v2 ⇢D/0 v2 in Figure 3.2 (b), we do not require any push edges so
the reduction path is v2 ⇢D/0 v2 →D v3. This reduction path can then be
embedded into another reduction path to give us a complete, valid path
v0 ⇢D/0 v0 →D v1 →[ v2 ⇢D/0 v2 →D v3 →] v4 ⇢D/0 v0 →D v1 →$end vacc.

Algorithm The algorithm contains two main functions that is used within
the main loop, namely the reduction path function and the embed function
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(see lines 1 and 2 of Algorithm 7).
For each reduction path we can see that the push path component, ι(p ∈

E
∣γ∣
→ , vert(p) = v . . . u), and the non-terminal push edge component, ι(v →A v′),

are by construction uniquely determined by the pop edge in the reduction
path. Multiple push path components would imply multiple top-of-stack
contexts which would in turn result in multiple pop edges. For the non-
terminal push edge component, this is unique by construction as there can be
no two non-terminal push edges originating from the same state with the same
label. This means that there can be only one correctly labeled non-terminal
push edge originating from the destination node of the pop edge (see Section
3.1 for more details regarding this property of the LR-graph).

The embed function takes a reduction path p and embeds it into other
reduction paths where there are non-terminal push edges in the push path
component that are equal to the final non-terminal push edge in the current
reduction path. This continues until the resultant path is of the form (v0 ↝
. . .↝ v) ○ p ○ (v′ ↝ . . .↝ v′′ →$end vacc). This effectively results in a shallowest
embedding. Any non-terminal push edge in these embeddings, that is not yet
preceded by a pop edge, is substituted out by the shortest reduction path
that contains this non-terminal push edge as its final edge. For example,
in Figure 3.2 (b), the pop edge v4 ⇢D/4 v2 results in the reduction path
v2 →D v3 →[ v2 →D v3 →] v4 ⇢D/4 v2 →D v3. It may be embedded into the
reduction path v0 →D v1 →[ v2 →D v3 →] v4 ⇢D/0 v0 →D v1 since the non-
terminal push edge v2 →D v3 is contained in the push path component of this
reduction path. This gives the path v0 →D v1 →[ v2 →D v3 →[ v2 →D v3 →]
v4 ⇢D/4 v2 →D v3 →] v4 ⇢D/0 v0 →D v1. The remaining non-terminal push
edges that are not preceded by a pop edge, for example v0 →D v1, can then be
ground out to give the valid path v0 ⇢D/0 v0 →D v1 →[ v2 ⇢D/0 v2 →D v3 →[
v2 ⇢D/0 v2 →D v3 →] v4 ⇢D/4 v2 →D v3 →] v4 ⇢D/0 v0 →D v1 →$end vacc

The algorithm therefore iterates over the set of all pop edges in the graph
and completes the reduction path corresponding to a edge into a valid path
by embedding it. The word over this complete path is then added to the test
suite.

Example We can observe the reduction paths and embeddings found by
the pop edge coverage algorithm for Figure 3.2 (b), an LR-graph for a dyck
grammar, in Table 3.2. From this we can clearly see that the number of paths
considered is far less than the breadth-first search algorithm in Table 3.1. It
is clear that the number of valid paths is limited by the number of pop edges
and provides an upper bound for the size of the test suite. Even though we
have found four embeddings in Table 3.2, the size of the test suite is three
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since the extracted words over the valid paths resulted in some duplicate
words. This is about half the number of test cases produced by the traversal
algorithm, which produces a test suite containing five test cases, while still
covering all the edges of the LR-graph. In Chapter 5 we will show that this
performance improvement not only applies to small grammars and graphs
but scales to production-level grammars such as SQLite that induces 26419
pop edges.

Algorithm 7: Pop Edge Coverage

input : An LR Graph LRG = (V,E, v0, vacc)
output : A test suite covering all edges in LRG

1 reduction path(u⇢A/∣γ∣ v) = ι(p ∈ E ∣γ∣
→ , vert(p) = v . . . u) ○ (u⇢A/∣γ∣

v) ○ ι(v →A v′)
2 embed(rPath) = (v0 ↝ . . .↝ v) ○ rPath ○ (v′ ↝ . . .↝ v′′ →$end vacc)
3 test suite ← ∅
4 for e ∈ E⇢ do
5 test suite.∪ {w(embed(reduction path(e)))}
6 end
7 return test suite

Pop Edge: Reduction Path: Embedding:
v0 ⇢D/0 v0 v0 ⇢D/0 v0 →D v1 v0 ⇢D/0 v0 →D v1 →$end vacc
v2 ⇢D/0 v2 v2 ⇢D/0 v2 →D v3 v0 ⇢D/0 v0 →D v1 →[ v2 ⇢D/0

v2 →D v3 →] v4 ⇢D/0 v0 →D

v1 →$end vacc
v4 ⇢D/4 v2 v2 →D v3 →[ v2 →D v3 →]

v4 ⇢D/4 v2 →D v3

v0 ⇢D/0 v0 →D v1 →[ v2 ⇢D/0
v2 →D v3 →[ v2 ⇢D/0 v2 →D v3 →]
v4 ⇢D/4 v2 →D v3 →] v4 ⇢D/0
v0 →D v1 →$end vacc

v4 ⇢D/0 v0 v0 →D v1 →[ v2 →D v3 →]
v4 ⇢D/0 v0 →D v1

v0 ⇢D/0 v0 →D v1 →[ v2 ⇢D/0
v2 →D v3 →] v4 ⇢D/0 v0 →D

v1 →$end vacc

Table 3.2: Paths constructed by pop-edge algorithm over LR-graph in Figure
3.2 (b)
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3.4 Negative Mutations

A negative test case is a test case that we expect to be rejected by the SUT.
The goal of using a negative test suite on a SUT is to reveal any bugs which
allow invalid input through the parser. For example, the Cloudflare bug
described in Chapter 1 could have been revealed be a negative test case
that tests invalid input at the end of the HTML page. Negative test suites
therefore help reveal instances where a parser is not strict enough in rejecting
invalid input.

One way to generate a negative test suite is to start with a positive test
suite and mutate the positive test cases into negative test cases. We do
not simply want to randomly mutate the positive test cases and check if
the mutation resulted in negative test case. Instead, we want to perform
mutations that are guaranteed to result in negative test cases, without any
further checks being required.

The negative mutations in this thesis mutate positive paths to generate
paths that are guaranteed to be invalid. The negative mutations can be
divided into two distinct types, edge mutations that locally mutate terminal
push edges in a similar way to string edit operations, and stack mutations
that mutate multiple symbols at once and may be seen as editing the stack.
Mutations include insertion, deletion, substitution and prefix cutting. These
mutations depend on the notion of follow sets and almost accepting states.
These notions do not rely on the traversal that has reached a specific state and
are therefore under-approximations. This results in our algorithm discarding
some valid mutations in order to guarantee negative test cases without the
need for further validation.

Follow Set In a grammar, the follow set of a symbol is defined as the set
of tokens that can follow the symbol in any valid derivation. We extend
the idea to be the follow set of a vertex, i.e., the set of labels of the next
terminal push edges that are reachable from the vertex. This is equivalent
to the terminals that can follow a valid prefix that is recognized by the
LR-automaton at this state. More formally we can define the follow set of
a vertex v as F (v) = {a ∈ T ∣ ∃u ∈ V ⋅ (v, u) ∈⇢∗ ○ →a}, given an LR-graph
LRG = (V,E, v0, vacc).

Precede Set We reverse the idea of the follow set to the precede set, the
set of labels on the last terminal push edges that are covered before a vertex
is reached. This is equivalent to the terminals that can precede a valid suffix
that is recognized by the LR-automaton at this state. More formally, given

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. GENERATING TEST SUITES BY COVERING LR-GRAPHS39

an LR-graph LRG = (V,E, v0, vacc), we can define the precede set of a vertex
as P (v) = {a ∈ T ∣ ∃u ∈ V ⋅ (v, u) ∈→a ○⇢∗}.

Almost Accepting State We say a vertex v is almost accepting if the
accept state vacc can be reached through a path without any further terminal
push edges, i.e., without consuming any further input. Formally we can define
whether a vertex is an almost accepting state as AA(v)⇔ (v, vacc) ∈ (→N

∪⇢∗).
Hence, if p = v0 ↝ . . . ↝ v is a valid path and the word over p is in the

language, then v must be almost accepting, i.e., w(p) ∈ L(G)⇒ AA(v), or,
by contraposition, if v is not almost accepting, then the word over p cannot
be in the language, i.e., ¬AA(v)⇒ w(p) ∉ L(G),

First and Last sets We can extend the concept of first and last sets for
grammar symbols to reduction paths. A token is in the first or last sets of a
reduction path if it is the label of the first or last terminal push edge in the
reduction path, after all non-terminal push edges have been ground out.

For a reduction path r, of the form v →a v′ ↝ ..., its first set is {a}. If
it is of the form v →A v′ ↝ ... then first(r) = {first(r′) ∣ r′ = (u ↝ ... ↝
u) ○ (u ⇢A/∣γ∣ v) ○ ι(v →A v′)}. Last sets may be computed similarly by
considering the last push edge in the push path component of the reduction
path, instead of the first push edge.

3.4.1 Edge Mutations

Edge mutations focus on terminal push edges in valid paths. By mutating
these edges we are effectively performing string edit operations on the word
over the path, i.e., deleting a terminal push edge results in deleting a terminal
symbol from the resulting word. Edge mutations may be performed “on the
fly” as the word is extracted from the path, since they only affect one edge at
a time.

Insertion On any edge u↝ v traversed during word extraction, the muta-
tion inserts any terminal symbol a /∈ F (v). This is guaranteed to be invalid as
the next input at the current point in the derivation. Hence, no alternative
valid accepting path exists, and the mutated word is indeed invalid.

For example, in Figure 3.2(a) we may insert [ when have just traversed
the push edge v2 →d v3, since it is not in F (v3). However, we cannot insert
anything after v4 since T − F (v4) = ∅.
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Substitution This mutation creates negative test cases similar to insertion
mutations, by replacing the label a on traversing a terminal push edge u→a v
with a terminal b ∉ F (u) that is guaranteed to be invalid as the next input at
u. Again, no alternative valid accepting path exists, and the mutated word is
indeed invalid.

For example, in Figure 3.2(a) we may replace ] by [ when we traverse
the edge v3 → ] v4, since F (v3) = { ] }. However, the terminal from the edge
v2 → [ v2 cannot be replaced since ] ∈ F (v2)

Deletion Deletion creates negative test cases by removing the terminal a
at a push edge u→a v from the word when it is extracted from the path. The
result is guaranteed to be a negative test if F (u) ∩ F (v) = ∅ and ¬AA(u).
This is because any terminal symbol that should follow state u can not follow
state v in any valid path.

In Figure 3.2, none of the LR-graphs allows any deletion of a terminal
push edge, since all terminal push edges either have almost-accepting source
vertices or have a non-empty overlap in the follow set of the source and
target vertexes. However, in Figure 3.3 we may delete the token id on
the edge v0 →id v3 since F (v0) = { id , num , ( } and F (v3) = { + , * , ) } so
F (v0) ∩ F (v3) = ∅

3.4.2 Stack Mutations

Stack mutations affect an entire sequence of events that would occur on the
stack by performing mutations that may use entire reduction paths. Therefore,
multiple tokens in the resulting word may be affected at once, meaning these
mutation may require backtracking if performed while extracting a word
from a path. These mutations are somewhat similar to rule mutations on
non-terminal symbols.

Insertion We can insert a reduction path r for a pop edge u ⇢A/∣γ∣ v
into a path v0 ↝ ... ↝ a ↝ b ↝ ... ↝ vacc after vertex a if F (a) ∩ first(r) =
∅∨P (b)∩last(r) = ∅ and r is not nullable. Hence, the inserted reduction path
results in a token sequence which is not valid, given the current top-of-stack,
sequence when node a is reached in the traversal and before b is reached in
the traversal.

We can insert the reduction path r = v2 →( v2 →expr v7 →) v10 ⇢expr/3
v2 →expr v7 into the path v0 →( v2 →num v4 ⇢expr/1 v2 →expr v7 →) v10 ⇢expr/3
v0 →expr v1 →$end vacc over the LR-graph in Figure 3.3 after v7, since F (v7) =
{ + , * , ) } and first(r) = { ( } so F (v7) ∩ first(r) = ∅.
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Substitution Substitution performs a combination of deletion and insertion.
Here we replace a reduction path p of the form a↝ ...↝ b with a reduction
path r if F (a) ∩ first(r) = ∅ ∨ P (b) ∩ last(r) = ∅ and r may only be nullable
if p is not nullable. This mutates the top-of-stack sequence caused by the
traversal from a to b by replacing it with a sequence that can not occur
between a and b.

In both Figure 3.2 and Figure 3.3 there do not exist any cases where
substitution may be applied. In Figure 3.2 this is due to the small alphabet
and Figure 3.3 there are no nullable reduction paths and most states have a
follow set that contains all possible first tokens and precede sets that contain
all possible last tokens. We have however verified that substitution is possible
on larger grammars such as SQLite.

Deletion We may delete a reduction path r, of the form a ↝ ... ↝ b, in a
traversal if r is not nullable and F (a) ∩ F (b) = ∅. This will result in gaps
in the top-of-stack context required after b to produce a negative test case.
This is caused by the tokens following b not being able to occur after a in
any valid word in L(G).

For example, we may delete the reduction path r = v2 →num v4 ⇢expr/1
v2 →expr v7 over the LR-graph in Figure 3.3 from any path which contains it
since r is not nullable and F (v2) ∩ F (v7) = ∅;

Prefix Cutting If the target vertex v of an edge is not an almost-accepting
state (i.e., ¬AA(v) we can guarantee that the prefix which has reached v
it is not a valid word for the grammar. Cutting therefore terminates the
word whenever it reaches a vertex that is not a almost-accepting state. This
equivalent to popping all elements off the stack and accepting the invalid
prefix path as a valid path by the empty stack.

For example, in Figure 3.2(a) we can cut after reaching vertex v2 since
every path leaving from this vertex passes through v3 → ] v4, so ¬AA(v2).
However, we cannot cut after reaching the vertex v4 since the path v4 ⇢d/0
v4 →d v5 ⇢d/4 v0 →d v1 →$end vacc can reach the end of the input and the
accept state without any terminal push edge.

3.4.3 Comparison with rule mutations

Rule mutations [37] have many similarities to our proposed edge and stack
mutations. Edge mutations are very similar to rule mutations on terminal
symbols and stack mutations are similar to rule mutations on non-terminal
symbols.
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However, there is a key difference in where rule mutations may be applied
in comparison to our edge and stack mutations. Since rule mutations mutate
the rules of a context-free grammar, it does not have knowledge of the context
in which a mutation is being applied. This means that rule mutations must
be conservatively applied in order to guarantee negative test cases.

By using the LR-graph, constructed from the LR-automaton, we gain extra
context information encoded directly into the automaton. We also have the
advantage of explicitly encoding different top-of-stack contexts for reductions
via pop edges. This results in a greater number of possible mutation locations
in which edge and stack mutations can be applied, when compared to rule
mutations. This is advantageous as the more contexts we can test, the more
granular our testing of the SUT.

For example, the expression grammar in Figure 3.4 can not have a -

symbol inserted before id in the rule f → id , since the - symbol may
precede the id symbol in some applications of the rule. However, in an
LR-graph different rule applications can result in different paths. This allows
us to insert the − symbol in those paths where it should not be possible, such
as the path resulting in the word id , turning it into the invalid word - id .

We can see this in our results (see page 69) when comparing the fault
detecting capabilities of different positive coverage criteria and negative
mutations and the number of test cases being produced.

3.5 Conclusion

We have thus described how to construct an LR-graph and which conditions
apply to edge validity in a path. We have also described two methods of
generating positive test suites by covering the edges of the LR-graph as well
as mutations to generate negative test suites from these positive test suites.
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Implementation

We have implemented the algorithms developed in this thesis using Python
3. Both the breadth-first traversal and pop-edge coverage algorithms’ imple-
mentation closely follow their pseudocode presentations. However, in some
cases we made minor optimizations in order to improve the time it takes
to generate a test suite. We used HYacc [42], a Yacc variant, to produce
an initial LR(0)-automaton. We then used the automaton to construct an
LR-graph. Figure 4.1 provides an overview of the data flow through our
system. Detailed command-line arguments can also be found in Appendix A.
In the following we describe the components in more detail.

Figure 4.1: Program Data Flow

43
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Input Parser Before passing the input grammar to HYacc we first confirm
that the file format is approximately correct, however we do not check the
grammar yet. We also confirm that different combinations of arguments that
may be passed to the program are compatible.

HYacc HYacc parses the grammar to confirm the grammar contains all
necessary information. It then produces an LR-automaton as text file. We
ignore any warning about conflicts since these will be dealt with in the next
phase. However, we display information regarding conflicts so that the graph
structure that is produced can be understood better.

Graph Constructor We take the LR-automaton produced by HYacc and
extend it into an LR-graph. This step is fairly straightforward. All push
transitions are immediately translated into push edges. Then all reductions,
even those which result in conflicts, are used to calculate all pop edges which
satisfy these reductions. Where duplicate pop edges are created we prune
these to be left with a single pop edge.

We cache the following information in the nodes and edges of the graph
to speed up computation:

1. Reduction paths for pop-edges (see Section 3.1)

2. Shallowest embedding of pop edge into a valid path (see Section 2.2)

3. Inbound edges for a node

Converting LR-graph to PDF In some instances we may want to look
at the LR-graph. For this we first construct an output file from the LR-graph
in the GraphViz [1] graph format. We then use GraphViz to compile a PDF
of the LR-graph.

Generating Test Suites For the breadth-first traversal algorithm the
implementation follows the multi-phase approach of the algorithm, first
generating prefixes in the flooding phase and then completing these paths.
The pop-edge coverage algorithm is implemented slightly differently than the
pseudocode in Algorithm 7. Instead of iterating over all pop edges, calculating
reduction paths and embeddings in one step, we first calculate all reduction
paths and then embed them in a separate phase.

If the flag for generating negative test suites is set, complete paths are
passed to the mutation engine which then generates mutated paths, depending
on the mutation criteria selected.
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Formatting Output Test cases are extracted from the set of paths that
are generated by our algorithm. In order to accommodate multiple SUTs we
also allow writing all test cases to a single file or writing them to individual
files.

Optimizations

We optimized both our proposed algorithms using the methods we describe
below.

Optimizing Breadth-First Traversal One of the largest performance
problems for the breadth-first traversal algorithm stems from the high branch-
ing factor in the traversal when no loop detection can be used (see page 32).
This leads to rapid growth in the length of the queue which in turn leads
to rapid growth in execution time. Specifically, if a node in the loop has n
valid outgoing edges that loop back to it, then it will contribute n2 paths to
the queue. When this happens for many nodes in a loop it can drastically
increase the amount of time to flood the graph and to complete paths.

Even though traversing certain edges multiple times to construct one
valid path is unavoidable, many edges do not require multiple traversals to
be covered by a valid path. Therefore, we can improve performance of the
algorithm by avoiding redundant edges (those edges we have traversed before)
whenever possible. In order to do this we used a priority queue.

For the flooding phase, this means prioritizing edges that have been
covered the least amount of times; in the path completion phase, this means
prioritizing edges that are ”closer” to the accept state. This approach leads
to a less redundant exploration of the graph, in some cases being capable of
covering a LR-graph in linear time (in terms of the number of edges), even
if it contained loops, whereas the unmodified algorithm could only cover a
LR-graph in linear times if the underlying automaton resembled a directed
acyclic graph. However, this optimization could still run into problems where
the structure of the graph results in many edges with the same priority,
essentially reducing the priority queue to the simple queue of the unmodified
algorithm.

Optimizing Pop-Edge Coverage This algorithm is inherently more effi-
cient than the breadth-first traversal algorithm since many of the required
computational steps, such as determining the reduction path, can be done in
constant time since the information required can be encoded in the LR-graph.
This does require storing more information for each pop-edge, specifically
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which paths of length ∣γ∣, for a pop edge u⇢A/∣γ∣ v, lead up to this pop-edge.
This enables determining all reduction paths in linear time in terms of the
number of edges and nodes in the graph.

The embedding step, however, results in a large amount of redundant
computation if no caching data-structure is used and in turn results in
polynomial running time of this step. This is due to the inefficiency of
calculating embeddings of a reduction path into other reduction paths which
are then further embedded until a valid path is formed, only to have to
calculate the embeddings for these reduction paths again individually. We
can optimize this by constructing an “embedding tree”, in linear time, out of
the reduction paths. This enables us to quickly read the order of embeddings
required by simply reading the path from a node in this tree to the root node
to construct a valid path for each reduction path.

The optimized pop-edge coverage algorithm compares favourably in terms
of time taken to generate a test suite when compared with other state of the art
algorithms used during our experimental evaluations. In terms of wall-clock
time, this algorithm always takes less time to produce a test suite than other
algorithms [24,29,47], implemented in Prolog, that produces similar sized test
suites. It also scales much better than the breadth-first traversal algorithm,
computing the entire test suite for SQLite in a few seconds, whereas the
breath-first traversal algorithm could not finish computing test suites for
larger expression grammars (see Figure 3.4) in a reasonable amount of time.
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Evaluation

With our evaluation we specifically answers the following research questions.

R1. How does the coverage achieved by the automaton-based algorithms
and the size of the test suites produced by them compare to the current
state-of-the-art algorithms?

R2. Are there any structural differences in test cases produced by the
automaton-based algorithms compared to similar sized test suites by
the current state-of-the-art algorithms?

R3. How well do the edge and stack mutations reveal errors in a system
under test compared to a positive test suite or test suite produced by
current rule mutation algorithms?

The main goal of our experiments is to quantitatively compare the proposed
automaton-based methods for test case generation with the current state of the
art grammar-based test suite generation algorithms. In our experiments we
specifically use the pop-edge coverage method since the breadth-first traversal
algorithm did not scale to the input grammars considered here. In order to
do this for positive test suites, we look at coverage achieved over systems
under test for three different medium to large input grammars (AMPL [46],
SQLite [6], Go [5]), relative to the size of the test suite. We also investigate
how our proposed algorithm compares to other algorithms in terms of relative
test suite size over a number of different grammars.

For negative test suite generation we investigate the ability of the different
mutations to reveal faults in a SUT, relative to those revealed by positive test
suites as well grammar-based rule mutations [35]. We do this over multiple
systems that have known faults and have been previously used in experiments
by Raselimo et al. [36] to investigate fault localization and grammar repair.

47
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During our initial evaluation we encountered difficulties with making mean-
ingful comparisons between our algorithms and grammar-based algorithms
and being able to accurately answer the first research question. This was due
to slightly different equivalent choices in the implementation of our algorithms
than the implementation of the grammar-based algorithms which led to vastly
different coverage results, which we call bias. We therefore also evaluate the
effect of bias on all the test suites we consider and this leads us to our final
research question.

R4. What is the effect of bias on test suites generated by various different
coverage criteria and algorithms?

5.1 Bias in Grammar-Based Testing

In statistics, a sample statistic (i.e., any quantity that is computed by aggre-
gating values in a sample of an underlying population, such as the sample
mean or variance) is biased if it is systematically different from the corre-
sponding quantity of the entire population [12]. Statistical bias has many
forms, including modeling bias (e.g., using a normal distribution to model a
population with long tails), observer bias (e.g., the Hawthorne-effect [10]),
or sampling bias (e.g., selecting participants with a landline phone number),
although the latter is the most prevalent. It occurs (e.g., as self-selection,
exclusion, or survivorship bias) whenever the sample is collected in a way
such that specific groups of the underlying population are over-represented in
the sample.

We focus on sampling bias here. More specifically, we consider as popu-
lation the set of all test suites satisfying a chosen coverage criterion and as
sample a test suite constructed for a specific algorithm with specific fixed
choices. The biased sample statistic that we are observing is the code coverage
the generated test suite achieves over a SUT. We focus on the two types of
fixed choices described below. Note that we do not consider any bias caused
by different grammar variation and preprocessing steps (e.g., EBNF operator
elimination) because these are under the full control of the user.

Embedding Bias The generic cover algorithm and its variants use minimal
derivations in the embedding (line 3) and completion (line 5) steps, and in
some of the criteria. We compare the effects of shortest yield and shallowest
derivations here. Our algorithms, especially the pop-edge coverage algorithm,
implicitly resemble shallowest derivations due to shorter paths leading to a
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natural decrease in embedding depth of reduction paths. Shortest yield deriva-
tions ⇒∗≤ induce a very strong bias towards ε-productions, leaving optional
elements of the grammar exercised much less often. Shallowest derivations ⇒∗⊑
induce a bias against deeply nested tests, leading to structurally simpler tests.
This often corresponds to the shortest yield derivations, but not necessarily
so; for example, in Gtoy (see Figure 1.1) the shortest yield embedding of num
is through a return-statement, while the shallowest embeddings are through
an if-, while-, or assignment statement. Note that the user can in principle
deliberately choose the minimal embedding, taking these biases into account,
although the choice is often hard-coded in the algorithm’s implementation.

Regardless of the choice of embedding, it will lead to sampling bias since
there will be an increased preference of sentences with the characteristics of
the embedding in the test suite.

Equivalent Choice Bias Regardless of the chosen minimal derivation
method ⇒∗⪯, the algorithms, whether grammar-based or based on the LR-
graph, need at some points to choose between a set of equivalent (wrt. ⇒∗⪯)
options. If these choices are made systematically (e.g., based on textual rule
order or edge order in the LR-graph) rather than randomly, this introduces a
classic sampling bias, and the generated test suite will be biased accordingly.
If the choices are functionally determined by the grammar or LR-graph
structure, the user could in principle control the bias by reformulating the
grammar, but this becomes infeasible in practice.

5.2 Experimental Setup

5.2.1 Design

We are comparing the performance of the automaton-based algorithm to the
current state-of-the-art coverage-based algorithms. We therefore compare
algorithms using the metrics of test suite size, line and branch coverage by
executing the test suites produced by these algorithms over the same systems
under test. We also use line and branch coverage to measure the bias effects
of different grammar-based test suite construction algorithms.

Since we are comparing different algorithms, we carefully consider bias
as described in Section 5.1. In order to avoid equivalent choice bias in the
grammar-based algorithm, we generated a hundred different test suites for
each coverage criteria, resolving equivalent choices in the grammar-based
algorithms with a random seed and shuffling of rule order. For the LR-graph
based algorithms we also generate a hundred different test suites and resolve
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equivalent edge choices using a random seed. We also consider embedding
bias in other algorithms that we are comparing our proposed algorithms to, by
generating 100 variants using shallowest embeddings and another 100 variants
with shortest yield derivations. We then compare coverage for both these sets
of test suites with the coverage achieved by the automaton-based methods
independently. We do not generate two different test suites in this fashion for
the automaton-based method since it is based on paths over the LR-graph
so no such choice exists in this context (although in practice covering these
paths over the LR-graph results in test cases that somewhat resembles those
generated by shallowest embeddings).

5.2.2 AMPL

AMPL is a small programming language (∣N ∣=45, ∣T ∣=48, ∣P ∣=90) used for
teaching a computer architecture course. It has previously been used by van
Heerden et al. [46] in their experiments. We have also obtained and used the
61 student compilers that were used in these experiments. These compilers
are written in C and are about 1300 LoC.

We ran each test case in their respective test suites over the individual
compilers separately. We then used gcov to measure cumulative line and
branch coverage for each test suite and compiler combination. The average
coverage for a test suite is the average coverage it achieves over the 61 student
compilers. The average coverage over each of the 100 test suite variants is then
calculated to determine the average coverage for a coverage criterion. This
is then used as the primary comparative metric between different coverage
criteria and algorithms. We also consider the coverage achieved by merging
all 100 test suite variants (this is the union of all 100 test suites for a coverage
criterion). We also compute the union of this merged test suite with the
merged test suite for the automaton-based method for each coverage criterion.

5.2.3 SQLite

SQLite is an SQL database engine written in C and is widely used as an
on-device datastore for mobile and IOT applications. We used version 3.8.x of
the SQLite grammar (∣N ∣=201, ∣T ∣=155, ∣P ∣=586) from the ANTLR grammar
repo [4] as input grammar and compiled the C executable for SQLite (v3.36.0)
from sources, which comprised 234229 LoC in total.

We executed each SQL statement individually for each test suite. Then
we used gcov to measure the cumulative branch and line coverage of all test
cases in a test suite, to determine the coverage of the test suite as a whole.
We then look at the average coverage over all 100 variants as well as the

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. EVALUATION 51

coverage achieved when merging all 100 variants. Unlike the experiments with
AMPL, we could not measure the coverage achieved by computing the union
of these merged test suites with the merged test suite for the automaton-based
method, since it was not possible to compute these values in a reasonable time
due to the extremely large sizes of the test suites obtained from the union.
However, the size of these unioned test suites still allow us to show important
structural attributes of test cases generated by the automaton-based method
and how it differs from other algorithms it is evaluated against here.

5.2.4 Go

Go is a popular programming language used to build memory safe applications.
In our experiments we use the version of the Go grammar (∣N ∣ = 159, ∣T ∣ =
84, ∣P ∣=324) found in the ANTLR grammar repo [4]. Programs written in Go
can be compiled with GCC by using a frontend for GCC known as GCCGo [5].
We use GCCGo as our system-under-test. Specifically, we focus on the parser
module of GCCGo in order to confirm that the conclusion that we draw from
our results are not only due to semantic actions executed later in the SUT.
We compile the GCC executable with the GCCGo frontend from sources,
with the relevant parsing module being 5972 LoC in length.

We ran GCC with the GCCGo front-end over each test case in a test suite
individually. We then use gcov to measure the cumulative branch and line
coverage for the test suite over the parser module. As before, we also measure
the coverage achieved by the union of all test suites for each coverage criteria
as well as the union of these test suites with the union of the automaton-based
algorithm test suites.

5.2.5 SUTs for Negative Test Suites

To test the ability of our proposed negative coverage criteria we used two
grammars and three student parsers. Both grammars used are small pro-
gramming languages used in a compiler course, similar to AMPL. The first
is known as SIMPL (∣N ∣ = 47, ∣T ∣ = 47, ∣P ∣ = 93) and the second as Niklaas
(∣N ∣=56, ∣T ∣=44, ∣P ∣=111). We used one student parser for SIMPL and two
for Niklaas. The student parsers were constructed using jflex (version 1.8.2)
and Java CUP (version 11b). We use these systems as opposed to the ones
used for comparing positive test suites since we require systems with known
errors in order to compare the error revealing characteristics of negative test
suites.

We produced test cases from a “golden grammar” that we know is correct.
We then ran test cases over the respective parsers individually. For positive

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. EVALUATION 52

test suites a test cases is said to be failing if it is rejected by the system under
tests, a false negative. Conversely, for a negative test suite, a test case is
said to be failing if it is accepted by the system under test, a false positive.
We divide the known errors between positive and negative test suites, since
positive and negative test cases identify different types of errors.

We use spectrum-based fault localization techniques [35] in order to
evaluate the effectiveness of different test suites at revealing errors in a SUT.
Specifically, we use a scoring system by Ochiai [32] to assign a suspiciousness
score to each rule in a SUT, based on whether these rules were exercised
by passing or failing test cases in a test suite. This allows us to rank all
suspicious rules and determine how many rules must be examined before
the true, known errors are revealed. From this we calculate the amount of
wasted effort to find known errors, as the percentage of rules that must be
investigated before the known errors are found.

5.3 Results

5.3.1 Coverage Achieved

Tables 5.1 - 5.3 show coverage data achieved by different algorithms and
coverage criteria for the three SUTs. From this data we can see that the
coverage achieved by the LR algorithm favourably compares to the coverage
achieved by other coverage criteria which results in much larger test suites.
As a baseline, our proposed algorithm always achieved better coverage than
algorithms which produce smaller test suites, like pll and rule. If we consider
Table 5.1, we can see that the automaton-based algorithm, with an average
line coverage of 64.4%, even out performs larger test suites like bfs2 for
both shortest yield and shallowest embedding, which achieves an average line
coverage of 61.6% and 63.8% respectively, and step3 for shallowest embeddings
which achieves line coverage of 62.6%.

A Mann-Whitney U test (ρ < 0.05) confirms that the coverage distribution
of the LR algorithm is significantly different from all the other algorithms
considered in Table 5.1. It is also significantly different from all but shallowest
embedding bfs2 and shortest yield deriv in Table 5.2. This is reflected by
the fact the average line coverage for both these collections of test suites is
approximately equal at 26.1% and 26.0% respectively. Table 5.3 also shows
similar results with the coverage distribution being significantly different
for the LR algorithm for all but deriv and step4. This means that in most
instances, other than those we have highlighted above, if the LR algorithm
achieves higher coverage we can conclusively say that it performed better
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over the SUT than another coverage criterion. In the instances that we have
highlighted, a higher or lower coverage percentage does not conclusively allow
us to state whether the LR algorithm performed better or worse in terms
of coverage, since the difference in coverage distribution is not significant
enough.

For coverage over GCCGo we can see that the automaton-based algorithm
achieves equivalent coverage to both step4 and deriv at between 70.2% and
70.8% on average for these algorithms. However, both of these algorithms
produced significantly larger test suites at 4320.8 and 5773.4 for shallowest
embedding and 4424.3 and 5942.4 for shortest yield respectively, as compared
to the lr algorithm at 3486.3 tests. This confirms that the relative performance
observed over whole systems for both AMPL and SQLite holds true, even
when only the front-end of the system is considered as we did with GCCGo.

5.3.2 Test Suite Sizes

Table 5.4 shows the minimum, maximum and average number of test cases
per test suite for a multitude of algorithms and coverage criteria and many
different grammars. Here we do show some data for the general traversal
algorithm in the lr* column. From this table it becomes immediately apparent
that the pop-edge coverage based algorithm performs considerably better
than the general traversal algorithm in terms of being able deal with larger
grammars where the amount of possible valid paths in the LR-graph rapidly
increase. From the Dyck variants we can see the new algorithm produces test
suites about half the size as the previous algorithm and for the expression
grammar for Figure 3.3 we can see that it is multiple orders of magnitude
smaller. It is also able to produce test suites for much larger grammars where
the general traversal algorithm failed to compute in a reasonable time.

We can also observe that the pop-edge coverage algorithm always results
in larger test suites than both the pll and rule algorithms. For the majority
of grammars considered the lr algorithm produced a test suite that was larger
than bfs1 and bfs2, except in the case of the expression grammar in Figure
3.3 where the test suite produced was even smaller than that produced by
bfs1. However, for larger real-world grammars like Go and CSS3 the size of
the lr test suite was larger than both bfs1 and bfs2. Both step3 and step4

generally produced larger test suites than the lr algorithm. However, for Go
and CSS3 it produced a test suite which size fell in between that of step3

and step4. For some grammars like SQLite the lr algorithm produced a test
suite considerably larger than that produced by deriv. However, in the vast
majority of cases it produced test suites that were multiple times smaller
than that produced by deriv.
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From this data, as well as the data discussed in Section 5.3.1 we can
answer the first research question.

R1. The general traversal algorithm simply did not scale to larger grammars
in a way that the coverage it achieves could be meaningfully evaluated.
From Table 5.4 we have shown how the size of test suites produced by this
algorithm grows much more rapidly than the pop-edge coverage algorithm,
which has the same coverage criterion of coverage over all edges of the LR-
graph. We therefore consider the coverage and the size data of the pop-edge
coverage algorithm when comparing coverage of the LR-graph’s edge with
other, grammar-based, coverage criteria.
The coverage achieved by the LR algorithm was always better than other
coverage criteria that produce smaller test suites, and often produced better
or equivalent coverage than that achieved by coverage criteria that produced
larger test suites. An exception to this is deriv that achieved better coverage
to the LR algorithm in almost all cases, with a very small test suite over
SQLite. However, deriv often produces much larger test suites than the LR
algorithm, as shown in Table 5.4.
We can thus conclude that the LR algorithm in general compares favorably
with state-of-the-art algorithms and coverage criteria that produce similar
sized test suites, often producing slightly smaller test suites for equivalent or
better coverage over the SUT.
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expr → simple relopsimpleoptional
relopsimpleoptional → relop simple ∣ ε
relop → = ∣ >= ∣ > ∣ <= ∣ /=
optionalminus → - ∣ ε
addoptermstar → addop term addoptermstar ∣ ε
simple → optionalminus term addoptermstar
addop → - ∣ or ∣ +
mulopfactorstar →mulop factor mulopfactorstar ∣ ε
term → factor mulopfactorstar
mulop → and ∣ / ∣ * ∣ rem
simpleexprstaroptional → [ simple ]

∣ ( expr exprstar ) ∣ ε
exprstar → , expr exprstar ∣ ε
factor → id simpleexprstaroptional ∣ num ∣ ( expr )

∣ not factor ∣ true ∣ false

Figure 5.1: BNF for AMPL expression sub-grammar
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false * num * num

false * num / num

false * num and num

false * num rem num

false * true * true

false * true / true

false * true and true

false * true rem true

false + num + num

false + num - num

false + num or num

false + true + true

false + true - true

false + true or true

false - num + num

false - num - num

false - num or num

false - true + true

false - true - true

false - true or true

false / num * num

false / num / num

false / num and num

false / num rem num

false / true * true

false / true / true

false / true and true

false / true rem true

false and num * num

false and num / num

false and num and num

false and num rem num

false or num + num

false or num - num

false or num or num

false or true + true

false or true - true

false or true or true

false rem num * num

false rem num / num

false rem num and num

false rem num rem num

false rem true * true

false rem true / true

false rem true and true

false rem true rem true

num * false * false

num * false / false

num * false and false

num * false rem false

num * true * true

num * true / true

num * true and true

num * true rem true

num + false + false

num + false - false

num + false or false

num + true + true

num + true - true

num + true or true

num - false + false

num - false - false

num - false or false

num - true + true

num - true - true

num - true or true

num / false * false

num / false / false

num / false and false

num / false rem false

num / true * true

num / true / true

num / true and true

num / true rem true

num and false * false

num and false / false

num and false and false

num and false rem false

num and true * true

num and true / true

num and true and true

num and true rem true

num or false + false

num or false - false

num or false or false

num or true + true

num or true - true

num or true or true

num rem false * false

num rem false / false

num rem false and false

num rem false rem false

num rem true * true

num rem true / true

num rem true and true

num rem true rem true

true * false * false

true * false / false

true * false and false

true * false rem false

true * num * num

true * num / num

true * num and num

true * num rem num

true + false + false

true + false - false

true + false or false

true - false + false

true - false - false

true - false or false

true - num + num

true - num - num

true - num or num

true / false * false

true / false / false

true / false and false

true / false rem false

true / num * num

true / num / num

true / num and num

true / num rem num

true and false * false

true and false / false

true and false and false

true and false rem false

true and num * num

true and num / num

true and num and num

true and num rem num

true or false + false

true or false - false

true or false or false

true or num + num

true or num - num

true or num or num

true rem false * false

true rem false / false

true rem false and false

true rem false rem false

true rem num * num

true rem num / num

true rem num and num

true rem num rem num

Figure 5.2: Test cases exclusive to LR algorithm for AMPL expression grammar in Figure 5.1
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5.3.3 Structure of Test Cases

If we consider Tables 5.1, 5.2 and 5.3 we can see from the size of the test
suites comprised of the union of merged automaton-based test suites and
other merged suites that a significant amount of the test cases present in the
automaton-based algorithm’s test suites are not found in the other coverage
criteria’s test suites. For example, the largest overlap in Table 5.1 is with
shallowest embedding step4 test suites of 55%. and in Table 5.2 shallowest
yield bfs2 has an overlap of 13%.

From Tables 5.1 and 5.2 we can see that there is generally a larger
overlap between the automaton-based algorithm’s test suite and shallowest
embeddings. This is likely due to the manner in which the structure of the
automaton is covered roughly resembling a shallowest embedding. However,
it is important to note that, even with a larger overlap, a significant amount
of test cases produced by the LR algorithm is not produced by any other
algorithm or coverage criterion that we considered.

To illustrate the structure of the unique test cases that are only produced
by the automaton-based algorithm, we used the expression sub-grammar from
AMPL (see Figure 5.1) and again generated 100 different variants for each
algorithm. From this we then extracted all the test cases that were unique to
the automaton-based algorithm. These test cases can be seen in Figure 5.2.

This set of test cases show that majority of the unique test cases
are ones that cover deeply nested structures in the grammar. This is
shown by at least three embeddings of the simple token chained together,
which requires multiple layers of embeddings to achieve, given the re-
cursive nature of the expression grammar. Some algorithms like bfs will
eventually overlap completely with the test suite generated with the
automaton-based method. We generated bfs3 which resulted in a superset
of the lr suite. However, this came at a rather significant cost of test
suites which on average contained 3605.8 test cases as compared to 53.0
for the lr test suites. This leads to our answer for the second research question.

R2. From the data in Tables 5.1 - 5.3 we can clearly see that the LR algorithm
produces many test cases not found in test suites of similar size produced by
state-of-the-art algorithms. Figure 5.2 shows that this is due to the coverage
of more deeply nested grammar structures by the LR algorithm that are only
covered by state-of-the-art coverage criteria that produce considerably larger
test suites. We can therefore conclude that the LR algorithm produces test
suites that are more effective at covering deeply nested grammar structures
than algorithms that produce test suites of a similar size.
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5.3.4 Fault Detection Capabilities

All test suites, except for those constructed by prefix cutting, revealed all
of the known errors in the SUTs, with the set of known errors differing for
positive and negative test suites. Therefore, in order to evaluate the efficacy
of the edge and stack mutations, we compare the number of suspicious rules,
the wasted effort in identifying the known errors from suspiciousness scores,
the number of false positives or negatives and the size of each test suite with
unmutated, positive test suites as well as grammar-based rule mutation test
suites.

Positive Test Suite From Table 5.5 we can see that both the automaton-
based algorithm and the context-dependent rule coverage algorithm don’t
reveal many suspicious rules and have very few failing tests, as compared
to the negative test suites, especially those produced by edge and stack
mutations. They also have a much lower amount of wasted effort, since
a failing positive test case terminates in a specific location, as opposed to
negative test cases which fail if the whole test case is accepted by the SUT.
It is important to note that the known errors uncovered by these positive
test suites are inherently different from the negative test suites since it occurs
when the parser is too strict, as opposed to the faults uncovered by negative
test suites which occur when the parser does not apply rules strictly enough.
The latter is often more common in practice. The positive test suites are also
considerably smaller in practice.

Rule Mutations Grammar-based rule mutations led to more suspicious
rules than the positive automaton-based test suite, but generally still less than
the majority of the edge and stack mutations, other than edge deletion and
substitution for Niklaas 2 and prefix cutting. Grammar-based rule mutations
generated test suites that were considerably smaller than all stack and edge
mutations other than stack and edge deletion and prefix cutting.

Edge Mutations In terms of test suite size, the insertion and substitution
mutations produced the largest test suites for both Niklaas and SIMPL.
However, these two mutations also led to the most suspicious rules, especially
the insertion mutation. We can observe that, for both Niklaas parsers, edge
substitution led to less failing tests than edge insertion, but the opposite
is true for the SIMPL parser. This is a result of the substitution mutation
effectively being a delete mutation followed by an insertion mutation at the
location of the deletion. Depending on the structure of the LR-graph, this
may result in situations where the substitution acts more like a deletion,
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which generally has less possible mutation locations which in turn results in
smaller test suites, due to lack of possible tokens to insert at the location of
the substitution, which happens with the Niklaas test suites. However, in the
optimal situation it acts as a unique combination of deletion and insertion to
allow for more mutations and more failing tests, as is the case for the SIMPL.

We can see that the deletion mutation reveals less failing tests and sus-
picious rules than the insertion and substitution mutation. It does however
come at a much reduced cost in terms of test suite size. This is due to gram-
mars with a lot of optional token sequences resulting in less locations where a
deletion would cause an error. There are also not multiple mutation options
at a single mutation location, as is the case for substitution or insertion.

Stack Mutations Stack mutations produce very similar sized or smaller
test suites than their corresponding edge mutations. This is because the
increased possible mutation locations are being counteracted by there generally
being less reduction paths in the LR-graph than push edges. We can see
that, although the insertion and substitution stack mutations produce very
similar sized test suites to their edge mutation counterparts, the stack deletion
mutation produces test suites many orders of magnitude smaller than the
edge deletion mutation. This is due to there being less locations in which
reduction paths can be deleted as compared to push edges.

Stack mutations over the three systems generally led to a similar number
of suspicious rules as edge mutations. However, the key difference is the
number of false positives produced by stack mutations. For example, the stack
insertion mutation for Niklaas produced about three times more false positives
than the edge insertion mutation and about five times more for SIMPL. This
increase in false positives produced is observed for the substitution and
deletion mutations as well.

For all three parsers considered in this evaluation the prefix cutting
mutation did not detect any false positives, with test suite sizes comparable
to deletion. This does not mean that it would never detect faults, rather that
the type of fault it attempts to find, invalid termination of input, was not
present in the systems that we considered. For example, prefix cutting would
reveal the Cloudflare bug discussed in Chapter 1.

From this data we may answer our next research question.
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R3. All types of edge and stack mutations, with the exception of prefix
cutting, found the known errors in the SUTs considered, the same as rule
mutations, and found different types of errors to those identified by the
positive test suites, as expected. Edge and stack mutations also revealed
the known errors in a greater number of contexts than rule mutations, as
shown by the number of rules marked as suspicious. However, this did come
at the cost of more wasted effort in identifying the true cause of the known
errors using the suspiciousness scores assigned to the rules. This leads us
to conclude that, although having more examples of contexts in which an
error occurs can be good, in larger systems it may be difficult to identify the
true cause of an error. However, the SUTs considered all contained errors
that could be revealed by fairly simple mutations and do not fully showcase
the ability of the edge and stack mutation methods to use a greater amount
of context information and thereby test for errors in more locations than is
possible using only rule mutations.

5.3.5 Equivalent Choice Bias

Figures 5.3 and 5.4 and Tables 5.1 - 5.3 show a high variance in the code
coverage under the different re-ordered grammar variants, especially for
shallowest embeddings, and even though this generally decreases for larger
test suites such as deriv, step3, or bfs2, it remains significant. We also see
variance in coverage for the different LR variants. For example, if we consider,
for shallowest embeddings, the best line coverage achieved using rule coverage
over SQLite (26.2%), we see that this outperforms the average line coverage of
all other criteria but step3 (26.5%)—which is almost two orders of magnitude
bigger in terms of average test suite size.

Hence, any comparative study of such criteria and algorithms can be
significantly skewed if the effect of bias is not taken properly into consideration;
this is particularly relevant when different implementations are compared,
where not all bias-inducing choices are necessarily known.

Table 5.3 shows similar variance in coverage when compared to Tables
5.1 and 5.2, even though only coverage over the parser was considered for
GCCGo, unlike AMPL and SQLite where coverage was measured over the
whole system. This shows us that the observed variance is not simply due to
semantic actions being exercised later on in a SUT but also affects coverage
observed over purely the recognizer component of a SUT.

Figure 5.3 and 5.4 also shows that the coverage achieved is not generally
normally distributed, with clusters often occurring near the minimum and
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Figure 5.3: Statement coverage distribution for AMPL. Shallowest embedding
results are shown above the line and shortest yield embedding results are
shown below the line. From left to right, top to bottom, for each section,
we have pll, rule, cdrc, step3, deriv, and bfs2 coverage. Each chart shows the
observed statement coverage on the x-axis and the corresponding number of
test suites on the y-axis.

maximum measured coverage. Test suites are thus more likely to achieve
coverage near the extremes than near the average, reinforcing the bias effect.

5.3.6 Embedding Bias

Unlike for equivalent choice bias, the results for the different embeddings
show noticeable coverage differences between AMPL, SQLite and GCCGo.
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Figure 5.4: Statement coverage distribution for SQLite. Shallowest embedding
results are shown above the line and shortest yield embedding results are
shown below the line. From left to right, top to bottom, for each section,
we have pll, rule, cdrc, step3, deriv, and bfs2 coverage. Each chart shows the
observed statement coverage on the x-axis and the corresponding number of
test suites on the y-axis.

For AMPL, we can see in Table 5.1 a large difference in the code coverage
achieved between shallowest embeddings and shortest yield embeddings. The
latter leads to a substantially higher average code coverage for the different
criteria (0.9–2.3%-points for line coverage, with 2.0%-points on average, and
1.6–4.0%-points for branch coverage, with 3.4%-points on average) than the
former, with a substantially smaller variance at the same time. However, the
best variants under both embeddings achieve roughly the same coverage for
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all criteria.
For SQLite, the average code coverage achieved is approximately similar

across all criteria (see Table 5.2), but Figure 5.4 shows that the coverage
distributions for shallowest and shortest yield embeddings are very different
for most criteria, and a two-tailed Mann-Whitney U test (ρ < 0.05) confirms
that the difference in distributions is significant for each coverage criterion,
with the exception of rule-coverage. We observe similar results for GCCGo.
Since shallowest embeddings have a large variance, several variants should
be run to achieve reliable results, while shortest yield embeddings are more
stable and should be preferred if the budget only allows a single run.

In our experiments none of the two embedding algorithm appears to
universally outperform the other. Rather, the relative coverage achieved by
either algorithm depends on the structure of the input grammar as well as the
structure of the SUT. However, generally there are more possible shallowest
embeddings than shortest yields, which is reflected in the greater observed
coverage variance in test suites constructed using shallowest embeddings.
These test suites thus often achieve better maximal coverage.

5.3.7 Randomization

The large variance in coverage is not necessarily only negative, and we can
indeed exploit it to boost overall coverage by merging the various variants into
one overall test suite, i.e., creating the union of the 100 different test suites.
This obviously results in a larger test suite that achieves better coverage than
the individual test suites. However, in certain cases it is even possible to
create a combined test suite that has a smaller size and still achieves better
coverage than some larger test suites for more complex criteria. For example,
for SQLite the combined rule test suite for shallowest embedding, with a line
coverage percentage of 26.5%, achieves equivalent coverage to both bfs2 and
step3, which achieve an average line coverage of 26.1% and 26.5% respectively,
while being only about one fifth and one third of their sizes, respectively.

The data discussed in Sections 5.3.5 to 5.3.7 allow us to answer our final
research question.
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R4. We observed the effects of both embedding bias and equivalent choice
bias in all the systems we considered while evaluating positive test suites
(AMPL, SQLite, GCCGo). Especially equivalent choice bias was found to be
prevalent in both grammar-based test suite construction algorithms and our
LR-graph based algorithms. Embedding bias is less obvious in our LR-graph
based algorithms but still present as shallowest embeddings for paths are
encoded by construction. We have shown that the effects of bias can pose a
significant problem when comparing different implementations of algorithms,
especially different classes of algorithms, if one is not aware of theses biases.
However, we have also shown that it is possible to use these biases to construct
concise test suites that achieve similar coverage to much larger test suites.
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Shallowest Embedding
algorithm lr (144.91) pll (72.3) rule (48.0) cdrc (81.0) step3 (182.0) step4 (429.0) deriv (426.1) bfs2 (150.0)
Coverage Type line branch line branch line branch line branch line branch line branch line branch line branch
max 65.4 51.5 63.8 51.5 63.5 48.0 64.6 50.2 65.6 51.3 66.7 53.0 66.8 55.6 65.2 50.8
min 62.8 48.0 59.7 47.5 57.0 41.2 57.9 42.5 59.1 43.8 62.9 48.5 62.8 47.3 58.3 43.1
avg 64.4 50.2 61.8 49.6 60.2 44.5 61.2 46.2 62.6 47.5 65.1 50.8 65.2 51.8 61.6 46.6
stdev 0.6 0.8 1.4 1.3 2.3 2.2 2.3 2.4 2.1 2.2 1.1 1.2 1.5 3.2 2.3 2.4
collapsed 66.1 52.1 65.2 53.1 65.1 51.6 66.0 54.1 66.8 55.0 67.4 55.8 67.6 57.4 66.8 54.9
collapsed size 1817 615 552 1294 4002 10241 7967 3627
union lr - - 66.5 55.7 66.21 54.27 66.2 54.3 66.8 55 67.5 55.8 67.7 57.7 67 55.2
union size - 2293 2232 2869 5432 11633 9455 5141
lr exclusive - 83% 84% 69% 50% 45% 59% 60%

Shortest yield
algorithm lr (144.91) pll (62.0) rule (48.0) cdrc (81.7) step3 (183.6) step4 (435.2) deriv (439.8) bfs2 (153.0)
Coverage Type line branch line branch line branch line branch line branch line branch line branch line branch
max 65.4 51.5 63.6 52.3 63.2 49.9 64.3 51.4 65.4 52.5 66.6 54.2 66.6 55.6 64.6 51.8
min 62.8 48.0 61.9 49.7 61.4 46.8 62.3 48.2 63.9 49.6 65.3 52.0 65.6 54.2 62.6 48.5
avg 64.4 50.1 63.0 51.2 62.5 48.5 63.5 50.2 64.7 51.4 66.0 53.3 66.2 55.1 63.8 50.5
stdev 0.6 0.8 0.5 0.7 0.5 0.8 0.5 0.8 0.5 0.8 0.3 5.3 0.2 0.3 0.5 0.8
collapsed 66.1 52.1 64.9 54.3 64.9 53.8 65.5 54.7 66.3 55.5 67.3 57.0 67.4 57.6 65.7 54.9
collapsed size 1817 211 198 520 1923 4953 4941 1553
union lr - - 66.5 56.1 66.5 55.8 66.5 55.9 66.7 56.1 67.5 57.3 67.6 58.1 66.6 56
union size - 1978 1970 2277 3581 6548 6512 3310
lr exclusive - 96% 97% 95% 87% 80% 78% 95%

Table 5.1: AMPL code coverage for different embeddings and coverage criteria. Coverage is averaged over all 61
student compilers. The minimum and maximum coverage percentages in each row are shown in italics and bold,
respectively. The average sizes of the test suites for the different criteria are shown in parentheses next to the
respective names.
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Shallowest Embedding
algorithm lr (22383.24) pll (4835.9) rule (366.2) cdrc (1681.2) step3 (31330.6) deriv (2961.2) bfs2 (57173.6)
coverage type line branch line branch line branch line branch line branch line branch line branch
max 26.7 26.3 26.2 25.5 26.2 25.5 26.9 26.4 27.4 27.0 26.9 26.4 27.7 27.1
min 24.8 24.6 22.5 22.1 22.1 21.7 23.8 23.4 25.1 24.7 24.5 24.1 24.6 24.0
avg 26.1 25.7 24.4 23.7 24.0 23.4 25.3 24.8 26.5 26.0 25.9 25.3 26.1 25.4
stdev 0.4 0.4 0.9 0.9 1.0 1.0 0.7 0.6 0.5 0.5 0.5 1.1 0.7 0.7
collapsed 27 26.6 26.7 26.2 26.5 25.9 27.3 26.8 27.7 27.5 27.3 26.8 28.1 27.6
collapsed size 483289 140592 12329 72091 1683000 124401 3374922
union size - 613545 491162 549587 2133066 602343 3796527
lr exclusive - 98% 99% 99% 93% 99% 87%

Shortest yield
algorithm lr (22383.24) pll (4185.0) rule (371.0) cdrc (1681.0) step3 (30896.8) deriv (2992.4) bfs2 (56877.0)
coverage type line branch line branch line branch line branch line branch line branch line branch
max 26.7 26.3 26.0 25.4 25.3 24.7 25.8 25.3 27.6 27.2 26.9 25.4 25.9 25.4
min 24.8 24.6 23.7 23.3 23.3 22.8 24.0 23.7 24.6 24.5 24.4 24.9 25.5 24.9
avg 26.1 25.7 24.4 23.9 24.0 23.5 25.1 24.6 26.7 26.4 26.0 25.2 25.8 25.2
stdev 0.4 0.4 0.7 0.6 0.6 0.5 0.5 0.4 0.8 0.7 0.7 0.1 0.1 0.1
collapsed 27.0 26.6 26.3 25.7 25.5 24.9 26.0 25.6 27.8 27.5 27.4 26.9 27.1 26.7
collapsed size 483289 13373 2381 30900 894470 56691 1746918
union size - 489656 481516 507003 1356470 530734 2215709
lr exclusive - 99% 99% 99% 96% 98% 97%

Table 5.2: SQLite code coverage for different embeddings and coverage criteria. Coverage is obtained over the SQLite
executable (v3.36.0). See Table 5.1 for further explanations.
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Shallowest Embedding
algorithm lr (3486.3) pll (617.8) rule (163.8) cdrc (318.6) step3 (1247.1) step4 (4320.8) deriv (5773.4) bfs2 (462.7)
Coverage Type line branch line branch line branch line branch line branch line branch line branch line branch
max 70.8 76.9 58.3 63.7 61.1 66.1 61.8 67.3 68.4 74.9 71.2 77.6 72.1 78.3 62.3 67.4
min 70.3 76.5 57.0 61.7 59.2 63.6 60.8 65.5 66.9 73.0 69.3 74.6 68.7 74.2 61.0 65.6
avg 70.6 76.7 57.7 62.9 60.3 64.8 61.5 66.6 67.7 74.0 70.2 76.1 70.8 76.6 61.8 66.8
stdev 0.1 0.1 0.3 0.5 0.4 0.6 0.3 0.5 0.3 0.4 0.4 0.7 0.6 0.8 0.4 0.5
collapsed 74.1 79.1 59.2 64.2 62.1 66.5 62.4 67.5 69.5 75.4 72.1 78.1 74.2 80.0 62.5 67.6
collapsed size 86735 400 3352 1705 6656 40412 31327 4117
union lr - - 71.4 77.2 71.7 77.5 71.7 77.5 73.6 79.0 75.2 80.8 76.5 82.0 71.7 77.5
union size - 86925 89699 88104 92867 126448 117275 90508
lr exclusive - 100% 100% 100% 99% 99% 99% 100%

Shortest yield
algorithm lr (3486.3) pll (611.2) rule (163.8) cdrc (81.7) step3 (1265.5) step4 (4424.3) deriv (4942.4) bfs2 (466.7)
Coverage Type line branch line branch line branch line branch line branch line branch line branch line branch
max 70.8 76.9 57.9 63.5 60.5 65.6 61.5 66.8 67.9 74.4 70.9 76.5 70.8 77.0 61.9 67.2
min 70.3 76.5 57.4 62.6 59.5 64.4 60.9 65.5 67.4 73.7 70.0 75.6 69.7 75.7 61.2 65.7
avg 70.6 76.7 57.7 63.0 59.9 64.9 61.2 66.2 67.5 73.9 70.3 75.8 70.2 76.3 61.6 66.4
stdev 0.1 0.1 0.2 0.3 0.2 0.3 0.2 0.4 0.2 0.2 0.2 0.3 0.3 0.4 0.2 0.4
collapsed 74.1 79.1 58.4 63.8 60.8 65.8 62.0 66.9 68.5 74.7 71.1 76.7 70.9 77.0 62.4 67.4
collapsed size 86735 238 1386 1097 4502 28827 12224 4117
union lr - - 71.08 76.89 71.08 76.89 71.35 76.98 72.71 78.19 74.33 79.87 74.4 79.5 71.62 77.26
union size - 86850 87914 87672 90993 115172 98477 89951
lr exclusive - 100% 100% 100% 100% 100% 99% 99%

Table 5.3: GCCGo code coverage for different embeddings and coverage criteria. Coverage is obtained over the
GCCGo parser (included with GCC version 11). See Table 5.1 for further explanations.
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Dyck (a) max 3.0 5.0 1.0 1.0 1.0 1.0 3.0 2.0 4.0 3.0 7.0 6.0 15.0 14.0 1.0 1.0
min 3.0 5.0 1.0 1.0 1.0 1.0 3.0 2.0 4.0 3.0 7.0 6.0 15.0 14.0 1.0 1.0
avg 3.0 5.0 1.0 1.0 1.0 1.0 3.0 2.0 4.0 3.0 7.0 6.0 15.0 14.0 1.0 1.0

Dyck(b) max 4.0 8.0 1.0 1.0 1.0 1.0 3.0 2.0 4.0 3.0 7.0 6.0 15.0 14.0 1.0 1.0
min 4.0 8.0 1.0 1.0 1.0 1.0 3.0 2.0 4.0 3.0 7.0 6.0 15.0 14.0 1.0 1.0
avg 4.0 8.0 1.0 1.0 1.0 1.0 3.0 2.0 4.0 3.0 7.0 6.0 15.0 14.0 1.0 1.0

Dyck (c) max 3.0 - 1.0 1.0 1.0 1.0 2.0 1.0 3.0 2.0 3.0 2.0 4.0 3.0 1.0 1.0
min 3.0 - 1.0 1.0 1.0 1.0 2.0 1.0 3.0 2.0 3.0 2.0 4.0 3.0 1.0 1.0
avg 3.0 - 1.0 1.0 1.0 1.0 2.0 1.0 3.0 2.0 3.0 2.0 4.0 3.0 1.0 1.0

Expr (Figure 3.3) max 17.0 504.0 5.0 4.0 5.0 4.0 21.0 20.0 53.0 52.0 85.0 84.0 341.0 340.0 5.0 4.0
min 17.0 504.0 5.0 4.0 5.0 4.0 21.0 20.0 53.0 52.0 85.0 84.0 341.0 340.0 5.0 4.0
avg 17.0 504.0 5.0 4.0 5.0 4.0 21.0 20.0 53.0 52.0 85.0 84.0 341.0 340.0 5.0 4.0

Expr (Figure 3.4) max 27.0 - 11.0 6.0 7.0 6.0 25.0 24.0 41.0 40.0 99.0 98.0 373.0 372.0 11.0 18.0
min 25.0 - 7.0 6.0 7.0 6.0 25.0 24.0 41.0 40.0 99.0 98.0 373.0 372.0 10.0 10.0
avg 26.2 - 9.7 6.0 7.0 6.0 25.0 24.0 41.0 40.0 99.0 98.0 373.0 372.0 10.4 15.5

Niklaas max 303.0 - 65.0 63.0 55.0 59.0 178.0 184.0 1092.0 1100.0 628.0 652.0 2435.0 2453.0 542.0 590.0
min 295.0 - 62.0 62.0 55.0 55.0 178.0 178.0 1092.0 1092.0 628.0 628.0 2435.0 2435.0 492.0 514.0
avg 299.4 - 63.6 62.1 55.0 56.5 178.0 180.1 1092.0 1095.3 628.0 635.8 2435.0 2441.0 515.0 543.4

SIMPL max 136.0 - 77.0 66.0 46.0 46.0 77.0 79.0 144.0 153.0 171.0 177.0 383.0 407.0 469.0 476.0
min 127.0 - 71.0 66.0 46.0 46.0 77.0 77.0 144.0 144.0 171.0 171.0 383.0 383.0 418.0 438.0
avg 132.4 - 74.3 66.0 46.0 46.0 77.0 77.7 144.0 147.0 171.0 173.1 383.0 392.2 436.56 451.6

AMPL max 149.0 - 76.0 59.0 45.0 45.0 78.0 80.0 147.0 80.0 179.0 185.0 426.0 447.0 461.0 467.0
min 141.0 - 64.0 59.0 45.0 45.0 78.0 78.0 147.0 78.0 179.0 179.0 426.0 426.0 400.0 420.0
avg 144.9 - 69.4 59.0 45.0 45.0 78.0 78.7 147.0 78.7 179.0 180.6 426.0 432.2 423.1 436.8

SQLite max 22526.0 - 5047.0 4289.0 373.0 383.0 1742.0 1743.0 59021.0 58869.0 33027.0 32167.0 - - 3080.0 3157.0
min 22126.0 - 4539.0 4148.0 362.0 363.0 1615.0 1607.0 53225.0 48315.0 28923.0 28142.0 - - 2680.0 2841.0
avg 22364.7 - 4834.9 4184.1 367.7 370.0 1697.3 1680.6 57776.2 56876.0 31865.5 30895.8 - - 2935.5 2991.4

Go max 3521.0 - 638.0 638.0 164.0 164.0 319.0 326.0 462.0 471.0 1248.0 1281.0 4322.0 4511.0 6044.0 6123.0
min 3455.0 - 602.0 588.0 163.0 163.0 318.0 318.0 463.0 462.0 1245.0 1246.0 4319.0 4314.0 4631.0 5813.0
avg 3486.3 - 617.8 611.2 163.6 163.8 318.6 322.1 462.7 466.7 1247.1 1265.5 4320.8 4424.3 5773.4 5942.4

dot max 45.0 - 30.0 28.0 21.0 20.0 26.0 25.0 41.0 40.0 35.0 34.0 55.0 54.0 91.0 90.0
min 45.0 - 26.0 28.0 21.0 20.0 26.0 25.0 41.0 40.0 35.0 34.0 55.0 54.0 78.0 90.0
avg 45.0 - 27.8 28.0 21.0 20.0 26.0 25.0 41.0 40.0 35.0 34.0 55.0 54.0 84.0 90.0

CSS3 max 1796.0 - 463.0 454.0 165.0 163.0 476.0 465.0 732.0 726.0 1128.0 1129.0 2596.0 2584.0 1622.0 1770.0
min 1738.0 - 410.0 403.0 161.0 159.0 458.0 447.0 712.0 698.0 1101.0 1042.0 2541.0 2401.0 1420.0 1514.0
avg 1759.3 - 436.2 428.1 163.6 161.6 466.6 459.2 721.8 715.0 1114.4 1106.2 2568.2 2544.7 1519.7 1612.0

Table 5.4: Size data for different positive coverage criteria over multiple grammars. Where the grammar is not
previously mentioned it was taken from the ANTLR grammar repository [4].
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Niklaas 1
suspicious rules wasted effort failing tests test suite size

positive 18 0.0 2 302
cdrc 18 6.5 2 79

rule mutation 25 0.0 - 5.6 4 10805

edge insertion 99 6.5 - 9.3 338 158003
edge deletion 32 29.9 14 1581
edge substitution 39 0.0 - 36.4 7 153280

stack insertion 97 10.2 - 15.0 1451 144552
stack deletion 89 15.0 - 19.6 217 1679
stack substitution 98 10.3 - 14.0 1911 153280
prefix cutting 0 - 0 1781

Niklaas 2
suspicious rules wasted effort failing tests test suite size

positive 13 0.0 4 302
cdrc 8 0.0 1 79

rule mutation 48 26.4 - 37.3 22 10805

edge insertion 98 6.9 - 84.3 532 158003
edge deletion 32 31.3 16 1581
edge substitution 39 12.7 - 38.2 8 153280

stack insertion 99 34.3 - 44.1 1230 144552
stack deletion 93 67.6 - 87.3 221 1679
stack substitution 99 34.3 - 49.0 1687 153280
prefix cutting 0 - 0 1781

SIMPL
suspicious rules wasted effort failing tests test suite size

positive 15 0.0 3 130
cdrc 15 8.0 2 182

rule mutation 28 4.5 2 8549

edge insertion 85 44.3 - 75.0 270 58746
edge deletion 40 17.0 - 45.5 10 1072
edge substitution 85 51.1 - 93.1 500 57122

stack insertion 85 48.9 - 83.0 1047 50077
stack deletion 80 39.8 - 91.0 122 626
stack substitution 85 47.7 - 95.5 1626 59769
prefix cutting 0 - 0 556

Table 5.5: Suspicious rules revealed in student parsers by a selection of positive
and negative test suites. We consider positive LR and the context-dependent
rule coverage (cdrc) algorithms for positive test suites. For negative test
suites we consider grammar-based rule mutations followed by edge and stack
mutations. Wasted effort is the percentage of suspicious rules, ranked by
suspiciousness, that have to be examined before finding the known errors
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5.4 Conclusion

We can therefore conclude that, by using the LR-graph and indirectly the
LR-automaton, our coverage directed method of test suite construction in
general achieves favorable coverage relative to test suite size over the systems
we have considered, when compared to the current state-of-the-art methods.
We have also shown that negative mutations on paths over the LR-graph can
reveal faults in a SUT in more contexts than rule mutation based methods,
which can assist in intuitive fault location but may lead to more wasted effort
when using automated fault localization techniques. Lastly, we have also
shown how bias in grammar-based testing can have a very severe effect on
the coverage achieved by an algorithm and have performed all comparisons
in this thesis while carefully considering this bias.
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Chapter 6

Related Work

There exists some work which is related to what we have proposed in this
thesis, either in terms of related algorithms or the more foundational concepts
upon which our algorithms are built. We will discuss and compare these
below.

6.1 Grammar-Based Algorithms for Test

Suite Generation

Most current state-of-the-art grammar-based algorithms for test suite gen-
eration follow a very similar structure [24,29]. The generic cover algorithm
(see Algorithm 3) [18] shows the basic structure of these algorithms, which
differ only in coverage criterion. First, it iterates over all symbols X ∈ V and
computes minimal derivations S ⇒∗⪯ αXω. It then completes a set of minimal
derivations C(X) for X according to a coverage criterion C. These minimal
derivations are embedded into the embedding of X and then grounded out
to form a valid sentence, as described by the input grammar. Most of the
state-of-the-art algorithms were not originally phrased in this way but we
may formulate them as a coverage criterion for the generic cover algorithm.
For example, Zelenov’s PLL algorithm [47] is originally phrased in terms of
derivation chains but may also be phrased as a criterion for the generic cover
algorithm (see Section 2.4.1). Even though these coverage criteria make use
of the same algorithm, they can still result in test suites with vastly different
characteristics (as can be seen in Chapter 5 by the different test suite sizes
and coverage achieved by these different criteria). However, there are some
grammar-based algorithms that do not match the structure of the generic
cover algorithm. For example, in Purdom’s seminal paper [34] he proposes a
sentence generator that constructs test suites of minimal size to exercise the

71
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rules of an input grammar. This algorithm is fundamentally different in that
it prioritizes minimizing test suite size over test case size.

These approaches differ greatly from the automaton-based algorithms we
propose, in that they construct test suites directly from the input grammar.
We first construct a LR-graph from the LR-automaton, which was produced
from the input grammar, to more closely model the system-under-test during
the test suite generation process. This means that the key difference between
our algorithm and grammar-based algorithms is that grammar-based algo-
rithms place emphasis on the input grammar whereas we place emphasis on
the recognizer for the input grammar, which acts as a abstract model of the
system-under-test.

In practice, grammar-based fuzzing is another popular method of testing
parsers. This often involves a stochastic context-free grammar, where prob-
abilities are attached to the production rules, and a semi-random process
of sentence generation [21,43,44]. Fuzzing is often very effective at finding
errors, however this comes at a significant cost since the test suites can
become prohibitively large which leads to longer testing times. Fuzzing also
does not generally guarantee coverage over a SUT, with current feedback di-
rected fuzzing methods only showing marginal improvements over traditional
grammar-based fuzzing [8]. Fuzzing is a mostly black-box testing method
when used in grammar-based testing, although some work has been done to
apply these black-box fuzzing techniques in a white-box setting with better
performance than existing white-box methods [19].

The methods we propose produce considerably smaller test suites while
still achieving good coverage over the systems we tested. If there are no
constraints with regards to computational budget or time then fuzzing will
outperform our algorithms, and most other systematic grammar-based test
suited construction algorithms. However, in most real-world applications, like
CI/CD pipelines, fuzzing may not be feasible due to the long testing times.

6.1.1 Negative Test Suite Construction

Mutating valid words to produce negative test cases is a popular method of
negative test suite construction and was first proposed by Harm et al. [22].
Other methods have also been proposed that use an oracle to determine
whether a mutation is indeed valid [28]. In our methods we instead want to
generate guaranteed negative tests by mutations, without the need for an
oracle.

Zelenov et al. [47] propose two methods for producing negative test cases.
The first, NLL, is produced by considering all pairs of top-of-stack symbols A
in a LL-automaton and next input symbols t. Negative test cases are then
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produced by using mutations of all these pairs by replacing t by t′, the terminal
symbols that can not be seen next in a valid word, given a top-of-stack symbol
A. A similar approach, NLR, is proposed over the LR-automaton. However,
in this case all pairs of states si and invalid next input symbols t′ are used.
These methods are different from our methods in that it does not include
mutations of non-terminal symbols, as we do with stack mutations, and do
not consider paths over the automaton in these mutations. They also do not
allow for delete mutations. The algorithms to produce test suites according
to the NLL and NLR test suites are not specified by Zelenov et al. and as
such a deeper, quantitative evaluation was not possible.

The most similar mutation method to the methods in thesis are proposed by
Raselimo et al. [37] and mutate the grammar rules. These mutations include
insertion, substitution and deletion, similar to edge and stack mutations.
Mutating terminal symbols in a rule is similar to edge mutations which affect
terminal push edges, and mutating non-terminal symbols is similar to stack
mutations, since they alter an entire sequence of tokens corresponding to
the non-terminal symbols. The key difference is the context in which these
mutations can be applied. Rule mutations must be valid for all contexts in
which they may be used in a derivation. This can limit possible mutation
locations. The benefit of our mutations over the LR-graph is that different
contexts often result in different paths over the graph. This means that we
may apply a mutation in one context where it is valid and omit it in another,
where rule mutations may need to omit a mutation entirely since it would
not result in a guaranteed negative word in all contexts.

6.2 Automaton-Based Algorithms for Test

Case Generation

One method for producing a test suite from an automaton is by ensuring
that all combinations (p, q), where q is a state reachable from p, are covered,
as proposed by Heam et al. [25]. This coverage criterion is essentially a
superset of our proposed coverage criterion, covering all edges of the LR-
graph associated with the automaton, since our criterion translates to covering
all combinations (p, q), such that q is reachable and adjacent to p. This
will likely result in considerably larger test suites than those produced by
our algorithms. This larger test suite also does not exercise any parts of
the automaton that is not already exercised by our algorithms, since we
cover all relevant stack configurations for all reductions and also cover all
shift transitions. Our approach is therefore more fine-grained and avoids
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unnecessarily covering transitions multiple times.
Another method, the Weak Positive LR coverage algorithm (WPLR),

is proposed by Zelenov et al. [47] and guarantees that all states in the
automaton will be explored. This is done be constructing a test suite such
that all combinations of state symbols si and transitions from this state
labeled with a terminal symbol x are covered. A pair is considered covered if
the test suite contains a sentence S ⇒ αxβ where α is a prefix that leads to
the state si when processed. Zelenov et al. provides no clear steps as to how to
construct such a test suite. This coverage criterion is fundamentally different
from the one we propose in that, although it guarantees some coverage over
the automaton, it only considered shift transitions and states. Our coverage
criterion guarantees coverage of all states and transitions, not just shift
transitions and states. Zelenov also acknowledges that their implementation
does not always end up covering all shift transitions, even for a very small
automaton. In addition, we cover all reductions in combination with their
relevant stack configurations while only covering states and shift transitions
can result in many stack configurations for a reduction going untested.

Esterhuizen [17] also proposes a method of both positive and negative
test suite construction. It explores the automaton with a breadth-first search
algorithm to cover all states and then completes the generated prefixes by using
kernel items. This appears similar to our breadth-first traversal algorithm.
However, it is fundamentally different in that only coverage of states is
considered as a goal (this goal is not guaranteed), resulting in transitions not
necessarily being covered. Negative test suite generation is done by inserting
tokens which are not valid, given a prefix which leads to a specific state in
the automaton when parsed. These methods are greatly different from our
algorithms as it does not consider the stack context in which a transition
may occur or guarantee coverage of all transitions in the automaton. Our
algorithms consider both of these conditions. Esterhuizen’s experimental
results also show that the test suites struggled to reveal errors in the systems
that it was evaluated over, while being fairly sizable. Our algorithms produce
test suites many times smaller than those produced by Esterhuizen, while
revealing errors in many contexts, as shown by our evaluation.

6.3 Reachability in State Machines

Since automaton-based algorithms for test case generation deal with combi-
nations of paths between different states, calculating reachability between
these states becomes a significant problem. Pottier [33] proposes a method for
solving this problem for LR(1) parsers. One of the problems solved by Pottier
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is how to account for reachability when it comes to reduction actions. This is
done by computing a star rooted at every state s from paths whose source is
s and then running a modified version of Dijkstra’s algorithms to determine
which states are reachable by a reduction. Our algorithm contains a similar
construct. The main difference in structure between the LR-automaton and
the LR-graph is that reductions are split into one or more pop edges in
the LR-graph. This essentially solves the reachability problem of reductions
at construction time and encodes the solution to the reduction reachability
problem as pop edges. Since we do this at construction time, we simply do a
layer-by-layer backwards exploration of push edges to solve for the reduction
paths corresponding to a pop edge whenever a reduction is encountered. This
allows us to use caching so that our construction time of the LR-graph stays
linear in the number of shift transitions in the automaton. It also means we
do not need to keep solving the reachability problem at runtime for different
contexts.

6.4 LR-Parsing methods and grammar

ambiguity

There are many different variations of LR parsing. These tend to trade off
time and space complexity against which subset of languages in LR can be
recognized by the parsing method. SLR [14] and LALR [15] are examples of
parsing algorithms that can recognize input for a wider range of grammars
than LR(0) by using lookahead sets. The main difference between these two
algorithms lies in how these lookahead sets are calculated, with LALR being
more precise and resolving a greater amount of ambiguities that may be found
in a grammar. This means that an LALR parser can act as a recognizer
for a greater number of grammars than an SLR parser. However, even an
LR(k) parsers, which recognize more grammars than both SLR and LALR
parsers, can not resolve all possible ambiguities in a grammar. Methods like
GLR [45] have been proposed, which forks the stack whenever a conflict is
encountered and parses using all the duplicate stacks until either the accept
state is reached or an error state is reached from all forked stacks. This means
that all conflicts can be resolved using a GLR parser.

Since we are generating test cases instead of parsing, we do not face the
same problem with regards to ambiguity that deterministic parsers face. We
can simply generate test cases using all conflicting rules and do not need to
choose one at generation time. This allows us to use a simple LR(0) parser,
without lookaheads. We do build on the idea of forking the stack at each point
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where multiple choices can be made during the generation of paths. This can
be seen explicitly in the first breath-first traversal algorithm (see Section 3.2)
and is still used implicitly in the pop edge coverage algorithm (see Section
3.3), since a reduce/reduce conflict results in multiple pop edges and our
algorithm ensures all pop edges are covered. Preliminary investigation also
revealed that using an LR(1)-automaton instead of an LR(0)-automaton leads
to unnecessary deeper nesting in recursive grammar structures and larger test
suites. Therefore, we also use an LR(0)-automaton in our experiments to
achieve our goal of providing concise test suites that provide good coverage
of a SUT.
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Conclusions and Future Work

In this thesis we have introduced a new perspective and methods for generating
test suites from a context-free grammar by using paths over an LR-graph to
define a coverage criterion. We have shown that both positive and negative test
suites generated by our new automaton-based algorithms perform well in terms
of coverage achieved over a system-under-test when compared to the current
state-of-the-art, grammar-based test suite construction algorithms. We have
also defined and quantified bias in grammar-based test suite construction
algorithms as a potentially severe problem that must be addressed when using
these algorithms.

In this final chapter we summarize our main contributions, propose pos-
sible future work and conclude our research on grammar-based test suite
construction using coverage defined over LR-automata.

7.1 Main Contributions

The main contribution of this thesis is the different perspective our proposed
algorithms for generating test suites from an input grammar takes, as com-
pared to the other state-of-the-art algorithms. Our algorithms do not just
use the LR-automaton as part of the coverage criterion as is the case in other
related work [25,47], but instead focus completely on the structure and the
context information contained in the LR-automaton to generate a test suite.
This is our most novel contribution and the problem we have solved in this
thesis. We have made a number of smaller, yet still novel, contributions
in laying the foundation for our algorithms as well as in the comparative
evaluation of our algorithms.

First, we defined the concept of an LR-graph. This is an alternative
representation of the LR-automaton that enables the use of graph-theoretic
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constructs in our algorithms. It also helps to solve the reachability prob-
lem of reductions in the LR-automaton at construction time, providing our
algorithms with an efficient way of extracting reachability information at
runtime.

We also identified and formalized the concept of bias in grammar-based
test suite construction algorithms. Specifically, we identify two different types
of bias. We show that the effect of these biases, either on comparisons of
different algorithms or when used in the real world, can be very severe but
that it can be harnessed to provide efficient test suites.

We also provide methods for negative test suite generation by mutating
positive paths. We show that this allows us a greater number of mutation
locations than is possible with grammar-based rule mutations.

Lastly, we provide a thorough evaluation of the algorithms proposed in this
thesis and compare them to the current state-of-the-art systematic grammar-
based test suite construction algorithms. We also show that our methods
scale to very large, real world systems and grammars in our evaluations over
SQLite and GCCGo.

7.2 Future Work

There are number of possible future extensions to the work proposed in this
thesis.

Formalize relationship to other grammar-based testing algorithms
In this thesis we have proposed algorithms based on the LR-automaton for
a context-free grammar, and not just on the context-free grammar itself, as
is the case for the coverage criteria that use the generic cover algorithm. In
this thesis we compared these methods for test generation quantitatively.
This gives us a good understanding of the performance of these algorithms
and criteria. However, if a formal relationship between these automaton-
based algorithms and the grammar-based algorithms can be established, by
deriving a new coverage criterion over the LR-graph that corresponds to a
coverage criterion over the CFG, it would allow for a detailed comparison
of the structure of the different test suites that they generate. Conversely,
we could investigate phrasing the automaton-based algorithms as a coverage
criterion over a CFG.

Test suite generation over other automaton types In our initial
investigation we found that using a LR(1)-automaton instead of an LR(0)-
automaton led to larger test suites that did not in turn lead to covering
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reductions in more useful contexts. However, it may be possible to extract
more context information from other LR(k)-automatons which could lead to
more fine grained negative mutations.

New coverage criteria over LR-graph We have introduced the foun-
dational concepts for producing grammar-based test suites from an LR-
automaton. The algorithms we propose are to cover all edges in the LR-graph,
thus aiming at increasing coverage over a SUT. However, there are many
other possible coverage criteria that are possible. For example, we could
investigate the generation of test suites that specifically attempt to exercise
reduce/reduce conflicts in a SUT, by covering a subset of pop-edges related
to these conflicts, to determine if it resolved these conflicts correctly, as has
been attempted by grammar-based methods [27].

Oracle for testing systems Test suites are used during the development
of software to ensure that the software acts as expected. Therefore, it is
important that the error messages, when bugs are found, are clear and
accurate. All the negative mutations we propose, should lead to precisely one
failure. Thus it may be possible to construct and oracle to explain the bug in
the underlying system, given a specific failing test case.

More biases in grammar-based test suite construction We have iden-
tified two major biases that are present during the construction of grammar-
based test suites for the algorithms discussed in this thesis. However, there
are likely other biases, not only in grammar-based test suite construction algo-
rithms but also in different classes of test suite construction algorithms. Given
the threat to validity and usability that these biases pose, it is important
that other biases are also quantified in the future.

Exploiting bias to increase coverage In this thesis we have already
shown a simple method for increasing coverage over a SUT by using the
bias in small, simple test suites and merging these test suites to produce,
still compact, but more effective test suites. It should be possible to use
bias in other ways to increase coverage over a SUT. For example, we could
incrementally use randomization to find the asymptotic maximum coverage
achievable by a coverage criterion.
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7.3 Concluding Remarks

Bugs in parsers can have very severe consequences, since parsers act as
gatekeepers, so allowing invalid input to pass can lead to undefined behavior
in the rest of the system. Generally, grammar-based test suite construction
algorithms have focused only on the input grammar when generating test
suites, and not the system-under-test it is intended for. By focusing on the
recognizer for the input grammar, we have an abstract model of the actions a
correct system-under-test would perform and by exercising these actions gain
greater confidence that a SUT is performing as expected.

We have also shown that bias in grammar-based test suite constructions
algorithms can have detrimental effects on the coverage achieved over a SUT.
We have investigated the effects of two types of sampling bias present in
grammar-based testing and shown that they remain prevalent, even in very
large test suites and very large systems. We believe that these results are
significant because context-free grammars are in practice used to test full
systems with context-sensitive constraints, not just parsers.

We developed new algorithms and coverage criteria, for both negative
and positive test suites, that take a very different approach to the current
state-of-the-art algorithms. These test suites achieved good coverage for their
size when compared to the test suites produced by other algorithms. We have
also demonstrated that our algorithms scale to very large systems and can be
used to test real world systems.
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Appendix A

Command-Line Arguments

Our implementation takes the following command-line arguments:

1. -f The file path to the grammar file.

2. -g A boolean flag that determines whether a PDF of the LR-graph
should be produced.

3. -c The coverage type. It can be positive, neg-sub, neg-cut, neg-del and
neg-add.

4. --stack A boolean flag for whether or not to use stack mutations. It is
only applicable when neg-sub, neg-del or neg-add are set as coverage
type.

5. --classic A boolean flag that determines which algorithm to use. By
default the pop-edge coverage algorithm is used, but by setting this flag
to true the breadth-first traversal algorithm is used.

6. --seed A number that is used to seed the random generator that is
used to resolve equivalent choices.

7. -o The path to the output file. If it is not set the test suite is printed
to stdout.
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