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Abstract 

Farmers face daily challenges, and there are numerous factors to consider to produce crops 

profitably. For example, large amounts of data can be overwhelming and complex if not utilised 

correctly. However, tools such as decision support systems can be incorporated to support the 

decision-making process. Precision Agriculture presents several opportunities and challenges. 

An industry partner, Company A, was approached to identify and test a real-world PA problem. The 

manual element of analysing several data layers is time-consuming and require a more user-friendly 

way to display data. This research study developed and presented a concept demonstrator of a 

decision support tool to illustrate how several components can be used to improve the decision-

making process. Soil- and nutrient classification data were provided by the use case, Farm X, which 

produces winter wheat in a summer rainfall area in South Africa. Chlorophyll data from 2017 to 2020 

were provided by the Airbus Verde service of Company A. The assumption was made to add 

historical and current meteorological data acquired from the South African Weather Services. QGIS 

was used to extract soil and nutrients classification and chlorophyll data from 296 GPS-specific 

points on the crop circle. The data table consisted of 85 soil and nutrient and weather features. 

A major challenge was presented when no GPS-specific yield was available for Farm X. A third (11 

088) of the total chlorophyll data were missing, and only 24 849 data points were available for

analysis. Nevertheless, Python was used to clean and analyse the available data to provide one 

chlorophyll value per month for every 296 points. After careful consideration, it was decided to use 

all features to identify agricultural trends and predict chlorophyll values on a crop circle. A sequential 

forward feature selector was used to determine which features influence chlorophyll values. A lazy 

regressor was used to determine the best performing algorithms for feature selection and chlorophyll 

prediction. The algorithms included the (i) Random Forest regressor, (ii) HistGradientBoost 

regressor, (iii) XGB regressor and (iv) Extra Trees regressor. The latter outperformed the other 

algorithms and achieved an R2 value of 0.86 to predict chlorophyll values for August and September. 

Operational validation was done using 80% of the data set for training and 20% for testing. The 

model was then presented with an unknown years data table used for testing to predict chlorophyll 

for August and September. An R2 value of 0.273 was achieved. This was to be expected due to the 

data quality issues and the absence of yield data. The model was provided with at most two 

chlorophyll values to train with and monthly weather values (instead of daily) to predict a time-series 

value. The model achieved a positive R2 value. 

The concept demonstrator was successfully developed and tested on a real-world use case. It 

illustrated how different data sets, machine learning algorithms, predictions and visualization tools 

could be integrated and used in a decision support tool for agricultural purposes. 

Stellenbosch University https://scholar.sun.ac.za



iv 

Opsomming 

Boere word deur daaglikse uitdagings in die gesig gestaar en daar is talle faktore wat in ag geneem 

moet word om gewasse winsgewend te produseer. Groot hoeveelhede data kan oorweldigend en 

kompleks wees as dit nie reg aangewend word nie. Hulpmiddels soos besluitondersteuningstelsels 

kan egter geïnkorporeer word om die besluitnemingsproses te ondersteun. Presisielandbou bied 

verskeie geleenthede asook uitdagings aan. 

'n Bedryfsvennoot, Maatskappy A, is genader om 'n werklike PA-probleem te identifiseer en te toets. 

Die handmatige element van die ontleding van verskeie datalae is tydrowend en vereis 'n meer 

gebruikersvriendelike manier om data te vertoon. Hierdie navorsingsstudie het 'n 

konsepdemonstrator van 'n besluitondersteuningsinstrument ontwikkel en aangebied om te illustreer 

hoe verskeie komponente gebruik kan word om die besluitnemingsproses te verbeter. Maatskappy 

A het grond- en voedingstofklassifikasiedata van Plaas X verskaf, wat winterkoring in 'n 

somerreënvalgebied in Suid-Afrika produseer. Chlorofildata van 2017 tot 2020 is verskaf deur die 

Airbus Verde-diens van Maatskappy A. Die aanname is gemaak om historiese en huidige 

meteorologiese data by te voeg wat van die Suid-Afrikaanse Weerdienste verkry is. QGIS sagteware 

is gebruik om grond- en voedingstofklassifikasie data asook chlorofildata van 296 GPS-spesifieke 

punte op die oessirkel te onttrek. Die datatabel het uit 85 grond- en voedingstof- en weerkenmerke 

bestaan. 

’n Groot uitdaging het na vore gekom toe geen GPS-spesifieke opbrengs data vir Plaas X beskikbaar  

was nie. ’n Derde (11 088) van die totale chlorofildata was vermis en slegs 24 849 datapunte vir 

ontleding was beskikbaar. Nietemin, is Python gebruik om die data skoon te maak en die beskikbare 

data te ontleed om een chlorofilwaarde per maand vir elk van die 296 punte te verskaf. Die besluit 

is geneem om die data patrone te ontleed en om chlorofilwaardes vir Augistus en September op 'n 

oessirkel te voorspel. 'n “Sequential forward feature selector” metode is gebruik om te bepaal watter 

veranderlikes chlorofilwaardes beïnvloed. 'n “Lazy regressor” is gebruik om die beste presterende 

algoritmes te bepaal om te gebruik vir die keuse van veranderlikes en chlorofilvoorspelling. Die 

algoritmes het die (i) Random Forest regressor, (ii) HistGradientBoost regressor, (iii) XGB regressor 

en die (iv) Extra trees regressor ingesluit. Laasgenoemde het beter as die ander algoritmes gevaar 

en 'n R-kwadraatwaarde van 0.86 behaal om chlorofilwaardes vir Augustus en September te 

voorspel. Operasionele validering is gedoen deur 80% van die data vir die leerproses en 20% van 

die datastel vir die toetsproses te gebruik. ‘n Onbekende datatabel van ‘n spesifieke jaar is vir die 

model gegee wat gebruik is vir die toetsproses om Chlorofil vir Augustus en September te voorspel. 

'n R2 van 0,273 is behaal. Dit was te verwagte weens die datakwaliteitkwessies en die afwesigheid 

van opbrengsdata. Die model is voorsien van hoogstens twee chlorofilwaardes om mee te leer en 

maandelikse weerdata (in plaas van daagliks) om 'n tydreekswaarde te voorspel. Steeds het die 

model 'n positiewe R2 behaal. 
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Die konsepdemonstrator is suksesvol ontwikkel en getoets op 'n werklike gebruiksgeval. Daar is 

geïllustreer hoe verskillende datastelle, masjienleeralgoritmes, voorspellings en 

visualiseringsinstrumente geïntegreer en gebruik kan word in 'n besluitondersteuningsinstrument vir 

landbou. 
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Chapter 1  
Introduction  

This chapter provides a contextual background of the current trends and challenges of precision 

architecture (PA), followed by the problem statement and research objectives. Next, the scope of 

the project is discussed, along with the research approach and strategy. Finally, the thesis outline 

and chapter summary are presented. 

1.1 Context  

Farmers face daily challenges such as finite natural resources, external factors (e.g., exchange rate 

and oil price), climate and environmental changes, as well as diseases and pests (Goldblatt, 2013). 

There are numerous factors to consider to produce crops profitably, which makes the management 

of a farm a formidable task. Fluctuating market demand can also be challenging for farmers. 

Agriculture has undergone and continues to experience significant changes to keep up with demand 

and remain competitive. Precision agriculture (PA) is regarded by many as the fourth agricultural 

revolution. CropOM (2021) describes PA as a data-driven enterprise that aims to improve efficiency 

and optimise production processes to increase profitability. Data is collected from several sources, 

including the Internet of Things (IoT) sensors, weather stations, geographical positioning systems 

(GPS), and remote sensing technologies (Rehman, 2015). The data is stored in a database, typically 

located in the cloud, where it can be analysed and transformed into actionable intelligence. Large 

amounts of data can be overwhelming and complex if not utilised correctly. However, tools such as 

decision support systems (DSSs) can be incorporated to support the decision-making process and 

ultimately increase production efficiency.  

DSSs support organisational decision-making activities by collecting and analysing data (Power, 

2002). It is a prevalent technology used in many sectors, including manufacturing and logistics, to 

assist with tasks such as inventory planning and production schedules. Other technologies are also 

incorporated into the DSS to improve functionality, including artificial intelligence (AI) and machine 

learning (ML). Business intelligence (BI) software enables users to visualise valuable data to assist 

in decision-making activities. The software can be used to display real-time dashboards, which can 

help to improve the efficiency of a business and contribute to decision support.   

PA incorporates several Fourth Industrial Revolution-related emerging technologies, often in 

combination. IoT sensors can provide a plethora of data, including air humidity, temperature, soil 

moisture, potential of hydrogen (pH) levels and water levels, to name but a few. Remote sensing is 

used in several applications such as aerospace, land surveying, military, commercial planning and 

agriculture. Unmanned aerial vehicles (UAV) and satellites can assist in detecting diseases and 
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pests, predicting yields, estimating harvest timing, and analysing water and nutrient status (Jarman 

& Dimmock, 2018). Various papers explore the use of remote sensing in the agricultural sector. A 

study conducted by Ballesteros, Intrigliolo, Ortega, Ramírez-Cuesta, Buesa and Moren (2020), for 

example, combined remote sensing, computer vision and artificial neural network (ANN) techniques 

to estimate vineyard yield in Spain. A UAV was used to gather multispectral imagery, and the data 

were analysed to extract valuable information. The experimental research resulted in accurate yield 

predictions and has shown that the proposed system supports decision-making. Another study 

utilised remote sensing to detect the properties of soil in specific areas in the United States. Soil 

property indicators identified by the remote sensing technology included texture, organic and 

inorganic carbon content, moisture content, pH and iron (Ge, Thomasson & Sui, 2011). 

Meteorological data is one of the most important data sets in the agricultural sector. Weather 

collection devices include thermometers, rain gauges, barometers, radars, UAVs and satellites 

(Lumen Learning, 2020). The data can help users to identify trends and make predictions to mitigate 

future risks. Meteorological data specific to a geographical location is known as “weather data” and 

can better help farmers understand their immediate environment. Weather from a specific region 

averaged over a long period is known as “climate data”. The University of Minho conducted a study 

using meteorological data to predict forest fires (which also present significant threats to farmers) 

using data mining techniques (Cortez & Morais, 2007). Another study examined how meteorological 

data can be used for efficient irrigation. Weather, irrigation, yield and soil characteristic data were 

utilised to predict a weekly irrigation schedule. The predicted schedule was compared to the 

company’s agronomists suggested schedule, and the best performing ML algorithm resulted in a 

93% accuracy (Goldstein, Fink, Meitin, Bohadana, Lutenberg & Ravid, 2018). 

There are various applications of precision agriculture technology (PAT). Still, it is important to note 

that PA is continuously being researched and improved to address new and existing agricultural 

problems and challenges.  

1.2 Problem statement 

This research primarily uses remote sensing and related data to inform decision support platforms 

for agricultural purposes, including farmers' early warning systems (EWSs). A concept demonstrator 

is used as an instrument to explore the research issues. 

An industry partner specialises in plant nutrition products and precision farming services offered 

locally and globally. They have developed a cloud-based product that collates large volumes of data 

from various sources. Data sources include remote sensing, IoT devices such as soil moisture 

probes and tracking devices, as well as pest traps and laboratory soil samples. Displayed data 

include physical and chemical soil maps, pest monitoring, leaf and tissue analysis, yield maps, water 

analysis and Airbus Verde biophysical parameters. The client can access multiple layers of 
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information and analyse the data to make informed decisions and track progress.  

Analysing the various data sets and transforming the information into actionable intelligence and 

decision support in a client/user-friendly format can be time-consuming for a user. There is thus an 

opportunity/need to enhance the system in this regard. In this research study, the industry partner 

will be referred to as “Company A”. Real data collected by Company A from “Farm X” were used to 

develop and assess the concept demonstrator. Company A provided access to their system and 

data pertaining to Farm X for the purposes of this research subject to a non-disclosure agreement 

concluded between themselves and Stellenbosch University. 

The study aims to develop and validate a conceptual decision-support tool to address the information 

overload that can improve the decision-making process of the current system, inter alia, by reducing 

the time and effort of manually analysing and optimising many data layers. The farm data supplied 

by Company A were incorporated in the concept demonstrator to demonstrate how a decision-

support tool can be utilised in real-life scenarios and potentially mitigate risks. The data relates to 

winter wheat data in a summer rainfall area in South Africa. The literature investigated PA 

technologies and applications, whereas the field research provided the context for the use case farm. 

The knowledge gained from the research was combined with statistics, data analytics and decision 

support principles to develop the concept demonstrator. 

The following research questions emerged and were used to guide the development of the concept 

demonstrator successfully. The questions are addressed in various chapters of this research study. 

1. Are farmers using remote sensing technology on their farms, and if so, which sources are 

they using (including data from satellites and UAVs)? What are the pros/cons as well as 

restrictions and limitations of remote sensing technology? 

2. Which types of data sets and associated sensing technologies are used by farmers? 

3. Which diseases/problems are potentially preventable if early detection and forecasting can 

be done, and which crops best lend themselves to this application? 

4. Which data sets can be added to the tool to improve decision support, such as meteorological 

data and IoT sensors inputs? 

5. What additional information needs to be collected to perform data analysis? 

6. How can the conceptual tool improve the current technologies used by the industry partner 

in the agriculture sector? 

7. How will the decision support be presented to the project partner effectively? 
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8. How can all the components be integrated to develop the decision support tool? 

9. Can predictive analytics be used to detect patterns in the data? 

10. What are the most important features/variables that affect decision-making? 

1.3 Research objectives 

The primary objective of this research study is to develop a better understanding of the main 

components and applications of PA through the study of a real-life PA scenario to develop a DSS 

tool. The research objectives have been grouped into (i) a literature study and (ii) field research 

objectives, which were researched in parallel. 

1.3.1 Literature study 

To fully understand PA and its changing environment, a comprehensive literature study was 

conducted to gain more knowledge to develop the concept demonstrator. The literature study 

researched applications in the entire agriculture sector with the primary focus on wheat. The 

following points are addressed: 

• Background research on PA, its components and applications 

• Adoption of the technology by farmers  

• The use of satellites and UAVs in agriculture 

• Research on the Airbus Verde satellite used by the industry partner, including its: 

o Specifications 

o Advantages/disadvantages 

• Prevalent diseases and pests detectable via remote sensing 

• Crop management definition, components and applications 

• Other data inputs, including laboratory tests of crops and IoT sensors 

• Software: 

o Software to display and manipulate remote sensing data 

o Data analytics software  

o Visualisation tools and software 

• Determine best practices for displaying agricultural data to users 

• DSSs: 

o Basic principles and components 

o Applications 

o Features and benefits  

o Technology and sources used 

o Commercial and/or experimental DSSs currently available 
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• Other helpful complementary information 

o Other technology solutions 

o Additional complementary data sources  

o Relevant emerging technologies 

1.3.2 Field research 

The field research was conducted parallel to the literature study to investigate a real-world example 

of PA and gain more knowledge regarding winter wheat crop management. Field research aims to 

investigate the industry partner's existing product and identify the farmer's specific requirements to 

design and implement a decision support tool. Thus, improving the efficiency of the software by 

removing the “manual element” of decision-making when analysing the multi-layered data of the 

client. The following main points are used to address the field research objectives: 

• Conduct background research on Company A and Farm X to accurately define the project 

requirements of this research study. The research includes: 

o Services and software 

o Data sources used for data acquisition  

o Type and quality of the data 

o Crop health indicators displayed on the platform (features and variables) 

• Research the crop characteristics of the data provided from the clients 

o Ideal growing conditions are required for successful crop production, for example, 

weather, soil, irrigation, etc. 

o Wheat crop lifecycle, including pre- and post-harvest management 

o Diseases and pests associated with the crop 

o Other variables that can potentially influence crop health 

• Determine how the partner(s) is currently utilising the product. 

o Research the systems/technologies currently used on the farm(s): What remote 

sensing, IoT technology is used to collect data? 

o What IoT devices are used, and what data do they collect? 

o Pathology/lab testing/horticulture 

o Which indicators are provided by the platform? 

• Refine the needs and requirements of the project partner 

• Determine which diseases are prevalent on the project-partner farm.  

1.4 Scope  

The project scope is constrained by the data and information that are available and accessible for 

analysis from Farm X. This project did not consider the entire agricultural supply chain (e.g., 
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procurement, import, export) but only focused on the factors influencing the crop lifecycle (e.g., pre-

harvest, crop growth and post-harvest). The literature study includes a broader research approach, 

whereas the field research focuses on winter wheat in a specific province in South Africa. The data 

analysis and any additional data sets acquired also focused on the specific region. The project scope 

was impacted by: 

• The size of the farm  

• Type of crop  

• Annual or perennial crop 

• Quantity of available historical remote sensing data from Farm X 

• Quality of the data 

• The requirements of the stakeholders 

• The two-year timeframe between 2020 – 2021 to complete the project 

Related assumptions are discussed in more detail in Chapter 3 and Chapter 4, where more 

information regarding the use case and the available data is explored. 

1.5 Research approach and strategy  

The research approach followed in this research study is demonstrated in Figure 1.1 (see overleaf). 

A brief literature review was conducted to identify the trends and challenges in PA and used to define 

the initial research topic. A potential industry partner(s) was approached with the initial research 

questions to determine whether a more detailed real-world problem regarding a specific use case 

scenario exists. This step did not have to be repeated as the first industry partner approached was 

able to present a viable real-world PA problem. The initial problem statement and research questions 

were refined. Thereafter, the user requirements were defined and used to formulate the research 

objectives. Brymann and Bell's (2011) quantitative outline was used as a guideline for the research 

methodology approach.  

A more comprehensive secondary literature review was conducted to gain the necessary knowledge 

on existing technologies and data approaches. In contrast, the field research provided information 

about the project partner environment and analysed data. The findings from the literature review 

were used to analyse the data and develop a concept demonstrator that is applied to a real-world 

example. The concept demonstrator aimed to fulfil the research questions and satisfy the research 

objectives. 
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Figure 1.1: Research methodology mind map 

This chapter provided context on how the research topic was formulated by conducting research on 

PA and identifying appropriate research questions. The project partner was consulted to provide a 

more in-depth use case scenario. The problem statement and research questions were refined to 

address the specific use case of Farm X. The research objectives were grouped into a literature 

study and field research to gain the necessary knowledge to design a concept demonstrator.  

The conceptual model was customised according to the requirements of the project stakeholders 

and was designed to be adaptable to more scenarios. The ultimate goal was to design and develop 

a conceptual model to improve efficiency and add value to the industry partner involved. 

Furthermore, incorporating an innovative industry partner added immense value to the learning of 

the researcher. 

1.6 Thesis outline 

Chapter 2: Literature study  

The information gleaned from the literature study provides a better understanding of PA, DSSs and 

current and emerging technologies used. The chapter opens with the principles of PA and the 

adoption of technology. Various remote sensing technologies and applications are discussed, 
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followed by the use of meteorological data in agriculture for decision-making. Next, the importance 

of big data, data methodologies and visualisation tools are discussed. Lastly, the chapter focuses 

on ML algorithms, agriculture DSSs and crop management application examples.  

Chapter 3: Field research  

Chapter 3 provides information regarding Company A and Farm X to understand the current services 

and data better. In addition, the ideal growing conditions were researched to determine which factors 

can potentially influence decision-making. 

Chapter 4: Data analysis  

The data analytics methods discussed in the literature study and the knowledge gained from the field 

research will be used to perform the data analysis.  

Chapter 5: Concept development   

This chapter discusses the various sections in the document to indicate how they were used to 

develop the concept demonstrator tool.  

Chapter 6: Next-generation decision support tool  

Chapter 6 discusses two prediction scenarios of using known and unknown test data to make 

chlorophyll-related predictions. The data sets used in the algorithm and the prediction accuracy are 

presented.  

Chapter 7: Validation and verification  

This chapter discusses how the model incorporated into the concept demonstrator is validated and 

includes the questionnaire used to gather input from subject matter experts (SMEs) to test validity. 

 

Chapter 8: Summary, recommendations and conclusion  

The final chapter provides a summary of the study and discusses the research findings. Finally, 

recommendations for future work are made. 
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Chapter 2  
Literature study 

A systematic literature review was conducted to provide a foundation for understanding and 

developing a conceptual decision support tool for agriculture. Section 2.1 provides a brief discussion 

on PA and the adoption of new technologies to place the rest of the discussion into context. A review 

of remote sensing is presented in Section 2.2, including a discussion on current developments in the 

IoT, sensors, geographical information systems (GIS), and climate and meteorological data. The 

concepts of big data, data analysis and visualisation tools are discussed in Section 2.4, along with a 

brief discussion on AI and a more extensive review of ML concepts and algorithms in Section 2.5. 

Numerous literature articles were considered to research the components and compile tables that 

summarise existing use case applications in crop management (Section 2.6) and DDSs (Section 

2.7). A summary is presented in Section 2.8. 

2.1 Precision agriculture 

The Fourth Industrial Revolution, also sometimes popularly referred to as “Industry 4.0”, is evolving 

rapidly and is disrupting many industries. Cyber-Physical Systems (CPSs) play a pivotal role in this 

technological transformation and have several applications in the manufacturing, automotive, 

healthcare, military, entertainment, and agriculture sectors. Agriculture-related applications of the 

Fourth Industrial Revolution are commonly referred to as PA.  

The World Economic Forum’s research indicates that Africa’s population growth will triple by 2050. 

The United Nations’ (UN) most recent estimation projects that the world population growth could 

reach 11 billion by 2100 (Hajjar, 2020; UN, 2019). There is a dire need for more sustainable farming 

practices and increased food production to accommodate the rapid population growth and overcome 

the challenges farmers face. PA, also known as precision farming or smart farming, is thought to be 

the solution. However, farmers generally face many challenges, including scarcity of fresh water, 

climate change, pests and diseases and other socio-economic factors. 

One of the primary goals of PA is to use advanced technologies to precisely measure the variation 

in the field (Verma, Bhatia, Chug & Singh, 2020). Advanced technologies such as remote sensing, 

IoT, sensors, big data, AI, UAVs (also called drones) and cloud computing are utilised for farm 

management activities. Applications include production scheduling, crop monitoring, livestock 

tracking, variable rate application, and pest and disease monitoring. Farm data can be used to 

analyse trends and make predictions that can provide valuable insight to the farmer. The farmer can 

utilise a data-driven approach by utilising the data collected from various sources to support decision-

making and ultimately increase profitability.  
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Despite the interminable possibilities of PA, several challenges and limitations present themselves, 

including access to power and Internet connectivity in remote and rural areas and a lack of training 

and expertise (Microsoft Research, 2021).  

Farmer adoption of PA is another major challenge. As part of this research, the literature was studied 

to understand better the factors that influence the adoption of PA. Sheng Tey and Brindal (2012) 

conducted a review of ten studies to investigate farmer adoption in developed countries with respect 

to PATs, focusing on (i) GPS, (ii) remote sensing, (iii) soil sampling, (iv) yield monitoring and (v) 

variable-rate applicators. They concluded that 34 factors explained the adoptive decision-making of 

PATs, grouped into seven categories, viz. socio-economic, agro-ecological, institutional, 

informational, farmer perception, behavioural and technological. 

Pierpaoli, Carli, Pignatti and Canavari (2013) conducted a study to determine the factors influencing 

farmer adoption with regard to PATs. Their research focused on two main groups, viz. (1) factors 

that influenced farmers that have already adopted PATs and (2) factors influencing farmers with the 

intention to adopt PATs. The most important factors that influenced the adoption of the first group 

can be seen in Figure 2.1 below. Farm size and confidence with computers and technology were the 

most frequently cited parameters affecting the use of PATs. Other important factors include farmer 

age, farmer education and a high farm income. Figure 2.2 illustrates the factors affecting farmers’ 

attitudes to adopt PATs. The Technology Acceptance Model (TAM) was used to explain which 

drivers could affect a potential user’s behaviour to adopt or not adopt PA technologies. The main 

themes that influenced the behaviour to adopt were Perceived Ease of Use (PEU) and Perceived 

Usefulness (PU). Factors such as farm size, education and cost-benefit analysis can contribute to 

these perceptions; however, it was discovered that technology demonstrations and free-trails 

encouraged positive behaviour toward PAT adoption (Pierpaoli et al., 2013).  

 

 

Figure 2.1: Factors that influenced PAT adoption 

Adapted from Pierpaoli et al. (2013) 

 

Figure 2.2: Factors affecting attitude to adopt 

Adapted from Pierpaoli et al. (2013) 
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PAT adoption challenges are often overcome by implementing technologies systematically, with a 

phased approach. PrecisionAg Alliance (2020) defines six levels of PA adoption, which are briefly 

discussed below. The levels were used in Chapter 5 to determine where Farm X lies in this spectrum 

and aid in designing the decision support tool. 

Level 0: Equipment efficiency and basic automation   

The main focus of this level is efficiency-technologies such as automation steering. There is little to 

no data collection, and any available data is used for operations but not for production planning.  

Level 1: Basic georeferenced data collection  

Spatial data is collected to assist in inter-field and sub-field assessments and year-over-year fertility 

plans. The field data is collected and analysed but not necessarily fully utilised in decision-making.  

Level 2: Advanced georeferenced data collection  

Imagery, weather data and other information sources are used to capture data to support operational 

decisions. Outside expertise is often used for data collection and aggregation. 

Level 3: In-season decision-making  

Level 3 adoption integrates multiple data layers to provide an evidence-based approach to decision-

making.  

Level 4: Digital and process mastery  

Having operated at level 3 for a few years, the grower has accumulated multiple data layers and can 

make yearly comparisons to assist with in-season operational decisions.  

Level 5: Continuous improvement and systems mastery  

Level 5 includes exploring new technologies and continuous improvement by utilising the integrated 

technologies and data sets for effective decision-making. Level 5 adoption typically implements 

imagery, weather- and soil moisture sensors, as well as pests- and disease monitoring systems.  

The remaining part of the literature focuses on the leading technologies used in PA, with practical 

examples. The main focus areas are remote sensing, IoT and sensors, UAVs, GISs, crop health 

indicators, meteorological data, big data, AI and DSSs. This research, along with field research, were 

used to gain the necessary knowledge to design the concept demonstrator. The remaining literature 

discusses the definitions, backgrounds, and components and examines current technologies used. 

2.2 Remote sensing  

Remote sensing is the science of obtaining information without physical contact with the observed 

object. Remote sensing is considered a primary means of acquiring spatial data and measures the 

energy or electromagnetic radiation interacting with objects (Zhu, Suomalainen, Liu, et al., 2017). 
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The sun's energy is reflected, absorbed or transmitted by the material’s surface in certain regions of 

the spectrum. The relationship between the reflected, absorbed, and transmitted energy is used to 

determine the spectral signatures of objects. Remote sensing uses these unique spectral signatures 

to distinguish between vegetation, water, soil and other features (Nowatzki, Andres & Kyllo, 2017).  

The term “remote sensing” was first introduced by Fischer in the 1960s when the new technologies 

surpassed traditional aerial photography and required a more comprehensive term to define 

emerging technologies. The shift from aeroplanes to satellites ensured more regular land space 

cover (Baumann, 2009). Remote sensing applications in agriculture include detecting and monitoring 

the physical characteristics of soil and plant material (Mulla, 2013).  

The type of sensors and imaging systems were researched to better understand the data collection 

process and type of agricultural data acquired from Company A. The research was also used to 

investigate applications of current technologies and how they can be used in a decision-support tool. 

2.2.1 Sensors and resolution 

The two types of remote sensing sensors relevant to this research study are active and passive 

sensors. Passive remote sensing records reflected electromagnetic radiation (e.g., visible light and 

near-infrared (NIR) light) or emitted electromagnetic radiation (e.g., thermal infrared light) from the 

surface of an object. Active remote sensing emits radiation and provides its own source of energy to 

illuminate the objects observed. The rapid advancement in sensors has led to the integration of 

passive and active sensors. Both imaging sensors and non-imaging sensors can be used in remote 

sensing instruments.  

2.2.1.1 Non-imaging 

Non-imaging sensors include radiometers, spectrometers, altimeters and LIDAR (light detection and 

ranging). The sensors typically operate in visible light, infrared (IR), and microwave spectral bands 

and can determine temperature, height, wind speed and other atmospheric measurements. Red 

laser non-imaging is commonly used for vegetation measurements and LIDAR for three-dimensional 

(3D) topographic mapping (Zhu et al., 2017). 

2.2.1.2 Imaging sensors 

Imaging sensors include (i) optical imaging, (ii) thermal imaging and (iii) radar imaging sensors. 

(i) Optical remote sensing  

Optical imaging sensors operate in the visible and reflective IR range and include panchromatic, 

multispectral and hyperspectral imaging systems (Zhu et al., 2017). Optical images in the visible 

spectrum cannot be acquired at night (although IR can overcome this limitation) or when obstructed 
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by cloud cover. Table 2.1 below summarises the difference between optical remote sensing 

platforms and their applications in agriculture. 

Table 2.1: Optical remote sensing and satellite applications (Zhu et al., 2017) 

Features Panchromatic Multispectral Hyperspectral 

Spatial 
resolution 

Submeter 1-2m 2m 

Satellites QuickBird, 
SPOT, 
IKONOS 

SPOT, QuickBird, IKONOS, 
Landsat, SPOT, RapidEye, 
Worldview-2 and 3. 

TRW Lewis, EO-1 

Spectral range 
(nm) 

430-720 430-720; 750-950 470-2000 

Applications Earth 
observation 
and 
reconnaissance 
applications 

Red-green-blue: visual analysis 
Green-red IR: vegetation and 
camouflage detection 
Blue-NIR-MIR: visualising water 
depth, vegetation coverage, soil 
moisture content, and the 
presence of fires, all in a single 
image. 

Agriculture 
Food processing 
Mineralogy 
Surveillance 
Physics  
Astronomy 
Chemical imaging 

Multispectral imaging has a high spectral resolution. Panchromatic images, which have a high spatial 

resolution, are often combined or fused for improved visual image interpretation and information 

retrieval. This is known as pan-sharpening or intensity substitution. It combines three bands from the 

multispectral image with the panchromatic image to produce an output with both image types' spatial 

and spectral properties. Pan sharpening is useful for object-based image analysis such as farm 

boundaries (STARS project, n.d.). The narrow bands of hyperspectral imagery are more sensitive to 

variations in energy wavelengths and, therefore, have a greater potential to detect crop stress than 

multi-spectral imagery. 

(ii) Thermal imaging  

Thermal sensors typically operate between the mid-to-far-IR and microwave spectrum ranges. It 

does not require illumination from solar radiation and can provide imaging in the day or night-time. 

Thermal sensors can be used in livestock tracking and forest fire and threat detection. 

(iii) Radar sensors  

Radar sensors typically operate in the 1mm – 1m spectrum range. Radar can show the difference in 

surface roughness and soil moisture and is often used in conjunction with IR, identifying minerals 

and vegetation types. 

Remote sensing imaging sensors are generated based on four types of resolutions: 

1. Spatial resolution - This refers to the size of the smallest object that can be detected in an 

image and is usually presented by a value representing the length of one side of a square. A 

spatial resolution of 100m means that one pixel represents a 100m x 100m square on the 

ground. 
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2. Spectral resolution - The sensors’ ability to measure the width of the wavelengths and 

number of bands of the electromagnetic spectrum.  

3. Radiometric resolution - The sensitivity of the sensor to detect variations in the reflection on 

land surfaces, and it is measured in bits. The more bit values an image has, the more grey-

scale values can be stored to differentiate reflectance (FIS, 2020). 

4. Temporal resolution - The frequency of images of the same geographical area. Geo-

stationary satellites continuously provide sensing, while orbiting satellites can only provide 

images each time they pass over an area. In addition, cloud cover can interfere with the data 

from a scheduled remotely sensed data system. 

2.2.2 Remote sensing imaging systems 

Remote sensing can be grouped into ground-, air- and satellite-based imaging systems. Imaging 

applications in agriculture include pest control, crop irrigation, disease monitoring and other 

agriculture-related activities. 

2.2.2.1 Ground-based imaging systems 

Ground-based remote sensing uses a variety of geophysical surveying to scan below the surface 

and is useful in field monitoring for detecting biotic and abiotic crop stresses. Ground-based sensors 

can be used in handheld devices or can be attached to machinery. They are efficient to evaluate 

small areas, whereas airborne and satellite-based remote sensing is preferred when large-area 

sensing is required. 

2.2.2.2 Air-based imaging systems  

UAVs, also known as drones, are robots that can fly in manual, semi-autonomous and autonomous 

modes without a pilot on board. They are categorised into (i) multi-rotor, (ii) fixed-wing, (iii) single 

rotor, and (iv) hybrid Vertical Take-Off and Landing (VTOL) systems (Yinka-Banjo & Ajayi, 2019). 

The cost of acquiring UAV imagery or purchasing UAV technology is currently a major challenge in 

adopting UAVs. UAVs have a limited flight time and are currently not competitive against non-battery-

operated UAVs and satellites when considering large areas of cover in a time-constrained scenario.  

On this point, it is important to keep in mind that, as is typically the case with emerging technologies, 

the performance of drones will increase, and prices will drop. The solar-powered hybrid fixed-wing 

UAV could solve the current problem (Yinka-Banjo & Ajayi, 2019).  

Table 2.2 below illustrates several applications of UAVs in agriculture, such as animal mustering, 

crop monitoring, pest and herbicide spraying and disease detection. 
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Table 2.2: UAV applications in agriculture 

Application Country UAV Use Technology 
and sensors 

Resource 

Mustering 
(cattle) 

Australia Quadcopter 
drone 

• Reduced labour and reduced risk 
of using quadbikes and horses for 
animal mustering.  

• Approximate cost of $20 (Aus.) of 
drone mustering in a 600-hectare 
paddock. 

Not specified Bolton (2020) 

Monitoring 
and 
identification 

Several 
countries 

Not specified • Monitoring endangered animals. 

• Cameras fitted on drone can scan 
RFID and identify animal. 

RFID tags, 
QR codes 

Yinka-Banjo & 
Ajayi (2019) 

Monitoring 
and risk 
detection 
(livestock) 

Several 
countries 

Single- and 
multirotor 
drones 

• Monitoring the impact of feral 
animals and invasive predators on 
livestock, especially at night. 

• Tracking stolen and missing 
livestock by using radio-tracking 
drones. 

Radio 
sensors, 
RFID 

Wildlife Drones 
(2020) 

Crop 
monitoring 

Colombia Quadrotor • Biomass estimation in rice by 
modelling the relationship of 
selected vegetation indices. 

Multispectral 
NIR 

Abdulridha, 
Ampatzidis, 
Kakarla & 
Roberts (2019) 

Crop and 
spot spraying 

India VTOL 
Quadcopter 

• UAV used to spray pesticides to 
reduce pesticide contact with 
humans. 

• Controlled spraying by utilising 
imaging sensors and spraying 
areas not easily accessible to 
humans. 

Multispectral 
camera 
QGIS 
software 

(Meivel, 
Gandhiraj, 
Srinivasan & 
Maguteeswaran 
(2016) 

Disease 
detection 

Florida, 
USA 

DJI Matrice 
drone 

• Used UAV remote sensing to 
distinguish between target spot 
and bacterial spot infected tomato 
plants at different disease 
development stages. 

Resonon  
Pika-L2.4 
hyperspectral 
sensor 

Abdulridha et al. 
(2019) 

Herbicides Brazil eBeeX fixed-
wing drone 

• Mapped 500 hectares and detect 
weed infestations areas. 

• Generated application maps and 
reduced herbicides by 52% on 
Soybean farm. 

Xarvio field 
manager 

Pinguet (2021) 

Planting USA AeroSeeder-
Octocopter 

• Autonomous drone equipped with 
an 18kg sack and terrain-following 
sensors to release seeds.  

• Focused on cover crops and 
eliminates risk of damaging main 
crops with heavy ground 
machinery. 

• Can cover 40.5 hectares in eight 
hours. 

Not specified Coxworth (2020) 

 

2.2.2.3 Satellite-based imaging systems 

Satellite sensing is widely used in forestry, oil and gas, agriculture, mining, construction, 

oceanography, insurance and finance, and medicine. Geostationary satellites travel at the same rate 

as the Earth’s rotation and provide continuous coverage of one specific area on Earth. Geostationary 

operational environmental satellites (GOES), otherwise known as weather satellites, are examples 

of such satellites. Popular remote sensing satellites, their applications in agriculture and spatial 

resolution are discussed in more detail in Appendix A1. 
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The data provided by Company A is acquired from the Airbus Verde service that delivers detailed 

crop analytics from satellite imagery. Verde can be integrated into any PA portal with any satellite 

used as a source. The imagery is cropped to the parameters of the farm and de-clouded, which is 

used to detect anomalies, optimise field scouting, irrigation, fertilisation and seeding (Airbus, 2019). 

It provides 15 indicators, including leaf area index (LAI), leaf chlorophyll content, leaf water content, 

and normalised difference vegetation index (NDVI). Verde collaborates with a UK agritech company 

to combine service and link metrics such as soil chemistry, weather and ecological indicators (African 

Farming, 2020). The type of data provided by the Verde service for this use case is discussed further 

in the field research (see Section 3.2).  

Choosing the best remote sensing technology depends on the type of application and imagery 

required by the farmer. Airborne-based and satellite-based remote sensing gather information in 

different ways and scales. It is often not an “either-or” but rather an “if-then” decision when it comes 

to deciding which technology to choose (Barnes, 2018). Airborne and satellite remote sensing are 

often combined to utilise the full potential of both technologies. Aerial photography has a higher 

resolution but is currently more expensive per square meter. MicaSense and their South African 

partner, Aerobotics, are examples of companies that incorporate both satellite and multispectral data 

to provide different levels of information and data analytics solutions to help farmers detect pests 

and diseases (MicaSense & Aerobotics, 2021). 

2.2.3 GIS and GPS 

GIS refers to computer software that visualises information gathered from remote sensing and GPSs. 

It captures, stores and displays data related to positions on the Earth’s surface and integrates the 

data captured from remote sensing to show data, such as streets, buildings and vegetation, on a 

map. Popular GIS software includes ArcGIS, Google Earth Pro, Google Maps API, ArcGIS, QGIS, 

PostGIS, Global Mapper and gvSIG (G2, 2021; GISGeography, 2021). 

2.2.4 IoT and sensors 

Agriculture management requires timeous data on several factors such as soil quality, fertilisers, 

irrigation and meteorological data. Sensors can be used to collect these, including temperature, soil 

moisture, light and pH sensors. The IoT and edge devices consolidate various communication 

technologies to create an intelligent system that interacts with the real world and digital world, 

connecting (smart) devices with another, computers, and people. Sensors can be combined with 

several other technologies to provide a complete integrated monitoring system (Verma et al., 2020). 

Kumar, Mishra, Gupta and Dutta (2021) compiled a detailed figure (see Figure 2.3 below) to show 

applications of IoT sensors in PA, including soil health monitoring, irrigation, disease identification 

and crop yield monitoring. 
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Figure 2.3: Applications of smart sensors in precision agriculture (Kumar et al., 2021) 

2.3 Climate and meteorological data 

Climate and meteorological data is critical to the success of agriculture production and profits. 

Climate data provide valuable insight to assist the farmer in decision-making regarding factors such 

as crop selection, pesticides and harvesting. It is also important to compare historical, current and 

forecasted weather data to ensure more accurate decision-making. Historical weather data can 

provide valuable insight into past weather patterns and seasonal data, whilst current weather data 

can help plan day-to-day and short-term operational strategies. Using both historical and present 

data can help to predict future trends by utilising appropriate weather forecasting techniques.  

Meteorological data also play an important role in managing pest and disease control, thereby 

helping to mitigate these risks. Copious amounts of literature explore the effects of climate change 

and weather data on the agricultural sector across the globe. One study, for example, aimed to 

develop an adaptive model for forecasting seasonal rainfall using predictive analytics. A framework 

called the “Enhanced Multiple Linear Regression Model” (EMLRM) was proposed, including a rainfall 

prediction model (Reddy & Sureshbabu, 2019).  

Han, Baethgen, Ines, Mer, Souza, Berterretche, Atunez and Barreira (2019) developed a decision 

support tool that compares several input variables to climate conditions. It allows, for example, the 

user to input planting dates, crop variety and fertiliser application and then choose a historical, 

forecasted or hindcasted climate option. The results of the input variables are simulated against the 

climate option selected, and the output results are used to aid in the decision-making process. The 

tool, named SIMAGRI, was customised for maize, soybean and wheat crop production in Uruguay 

but can be modified to be applicable in other countries. The weather data used in the tool include 

long-term data of minimum and maximum air temperature, solar radiation and precipitation data of 

Uruguay. 
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Frisvold and Murugesan (2013) conducted a study that used a subsample of 284 farms in Arizona 

to assess the use of weather data for agricultural decision-making. Two of the main research 

questions explored the (i) importance and (ii) use of different types of weather data for production 

and marketing decisions. Part of the study asked farmers to indicate the importance of weather data 

on their decision-making. The farmers’ responses were recorded on a Likert scale and analysed. 

Table 2.3 below summarises the type of management decisions made from specific weather 

information. 

Table 2.3: Types of weather data used for agricultural decision-making (Frisvold & Murugesan, 2013) 

Type of weather data Agricultural decisions 

Temperature Planting, harvesting, defoliation, crop modelling, disease 
risk, pest control 

Precipitation Planting, harvesting, fertiliser applications, cultivation, 
spraying, irrigation, disease risk 

Soil moisture Planting, harvesting, fertilising, transplants, spraying, 
irrigation, monitoring growing conditions, measuring 
plant stress 

Soil temperature Planting, pest overwintering conditions, transplanting, 
fertilising 

Relative humidity Planting, irrigation, pest control, harvesting, pollination, 
spraying, drying conditions, crop stress potential 

Wind speed Defoliation, harvesting, freeze potential/ protection, pest 
control, pruning, spraying or dusting, pollination, dust 
drift, pesticide drift 

Wind direction Freeze potential/protection, cold or warm air advection 
over crop areas, pesticide drift, dust drift 

WeatherPlot is a site-specific precision weather and soil analytics mobile application built on Iteris’ 

ClearAg platform. It can provide hourly and daily weather information and 30 years of historical and 

forecasted data with soil-related information. The application also provides advisory services 

assisting in pests and diseases, crop nutrition, irrigation and planting and harvest timing. 

Climate and meteorological data is discussed in Section 2.6.3 concerning yield prediction and  

Decision support in agriculture (see Section 2.7.1). 

2.4 Big data, analytics and visualisation 

Big data, data analytics and visualisation can be integrated to collect and extract value from data 

and present it in a useful and user-friendly format. Large amounts of data is often complex, and 

visualisation tools are required to provide easily interpretable visualisations and dashboard displays. 

The information in this section was used in the design and development of the concept demonstrator 

discussed in Chapter 5. 

2.4.1 The nature of big data 

Big data can be described as data that are too large, fast and complex for traditional methods to be 
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used to process (SAS, 2021). The term “big data” gained momentum in the early 2000s. The 

definition of the 3Vs was first introduced by the analyst Dough Laney (Marbella International 

University Centre (MIUC), 2020) viz. volume, velocity and variety, which he described as:  

“Big data is high-volume, high-velocity and/or high-variety information assets that 

demand cost-effective, innovative forms of information processing that enable 

enhanced insight, decision-making, and process automation.” 

Although the concept of big data is not new, the tools and techniques used to analyse large data 

sets are becoming increasingly powerful and sophisticated. Laney’s definition is widely accepted, 

although some authors have attempted to expand the definition by adding additional Vs such as 

variability, veracity and value (MIUC, 2020; Oracle, 2021; SAS, 2021).  

2.4.1.1 Why big data? 

With the advent of the digital revolution and fusion of big data, cloud computing and IoT devices, 

sensor-based technologies are becoming more affordable and accessible. As a result, a plethora of 

data is generated, collected, and used for various industries, including automotive, healthcare, 

military, manufacturing, and PA sectors. According to Kumari, Tanwar, Tyagi, Kumar, Maasberg and 

Choo (2018), the primary challenge of big data is dealing with and utilising the vast amounts of 

Multimedia Big Data (MMBD). The data acquired from multiple sources are often unstructured and 

requires data pre-processing and complex algorithms to extract valuable data. This adds to the 

complexity of data storage, processing capabilities and analysis techniques. Therefore, conventional 

data processing tools are not sufficient. Instead, big data mining techniques can be used to uncover 

patterns and enhance decision-making by providing knowledgeable insight to the stakeholders. 

Figure 2.4 below shows the basic framework of MMBD computing and its essential processes 

(Verma et al., 2020).  

 

Figure 2.4: The basic framework of MMBD computing and its processes (Verma et al., 2020) 
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The framework consists of four stages: data acquisition, data processing, knowledge generation, 

and decision support. Data acquisition (stage 1) includes collecting raw and unstructured data, which 

are processed and then stored. In the data processing stage (stage 2), the data is analysed using 

data analytics tools. The analysed data is then used in the knowledge generation stage (stage 3) to 

make predictions and visualisations. Finally, the knowledge gathered from the data can be used to 

derive conclusions and improve decision support (stage 4).  

2.4.1.2 The challenges of big data     

Two of the major challenges in implementing big data in agriculture are the initial investment cost of 

the infrastructure and the proper training of farmers (Verma et al., 2020). According to Wolfert, Ge, 

Verdouw and Bogaardt (2017), these can be considered technical challenges and are regarded as 

the first type of challenges encountered with big data in agriculture. They relate to installing the 

technological devices, information technology infrastructure and maintaining the power supply and 

intranet. On the other hand, organisational challenges are challenges related to infrastructure, lack 

of expertise, and the overall management of information technology (IT) systems. The accuracy and 

privacy of the data being captured are additional issues. Validation and verification methods can be 

used to authenticate the data, and strict policies should be in place to ensure data security and user 

anonymity (Carbonell, 2016; Verma et al., 2020). The challenges in big data relate to the factors that 

influence PA adoption of farmers (Section 2.1). Mindful of these challenges, it is thus helpful to 

research the challenges related to agriculture and technology adoption before designing a 

demonstrator tool, such as the one proposed in this research study. 

2.4.2 Data analytics  

Data analytics is the process of analysing raw data by using various techniques to uncover patterns 

in the data. There are four main types of data analytics, viz.: 

1. Descriptive Analytics - Uses data to describe the performance of an entity. It includes data 

collection, processing, analysis and data visualisation (Schaap, 2020). Charts, graphs, maps, 

and diagrams can visually represent the data and enable the user to gain insight into past 

events (Du Preez, 2020). 

2. Diagnostic Analytics – Also known as “exploratory analytics”, uses the findings from the 

descriptive stage to determine why something has happened (2U, 2021; Frankenfield, 2021). 

It attempts to discover unexpected relationships, patterns and trends and detect anomalies 

in the data (Du Preez, 2020).   

3. Predictive Analytics - Uses known data by utilising statistical and ML techniques to determine 

what will most likely happen in the future (2U, 2021). Historical data is used to detect patterns 

and the relationship between the input and output variables and can perform forecasting, 
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prediction and estimation to infer what is most likely to happen (Du Preez, 2020; Schaap, 

2020).  

4. Prescriptive Analytics - Seen as the most challenging but most valuable form of analytics. It 

aims to answer the questions about what should be done (2U, 2021; Schaap, 2020). 

Prescriptive analytics uses ML techniques to analyse and find patterns to estimate the 

various outcomes and support data-driven decision-making.  

 

Figure 2.5: Gartner’s analytics ascendency model (Schaap, 2020) 

 

The field research was used to explore the use case's nature further and determine where it lies 

within Gartner’s ascendency model. This was used in the data analysis and development of the 

concept demonstrator. 

2.4.2.1 Data analytics methodologies and processes 

A few industry-standard methodologies exist for data analytics, but the main methodology remains 

the CRoss-Industry Standard for Data Mining (CRISP-DM). Other methodologies include Microsoft’s 

Team Data Science Process (TDSP), Knowledge Discovery in Database (KDD) and Sample, 

Explore, Modify and Access (SEMMA). Several methodologies are discussed for comparative 

purposes below, emphasising the CRISP-DM methodology used in Chapter 4. 

Knowledge discovery in database (KDD)   

The term “knowledge discovery in database” was coined in 1989 to refer to the broad process of 

using data mining (DM) methods to find knowledge in data according to the specification of measures 

and thresholds (Azevedo & Santos, 2008). KDD is an interactive and iterative process involving 

using a database along with any pre-processing, sub-sampling and transformation of the data 

(Shafique & Qaiser, 2014). 
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Team data science process (TDSP)  

Microsoft built the agile and iterative methodology in 2016 to facilitate the successful implementation 

of data science projects. It includes best practices and structures from industry leaders and 

comprises six main components (Deeper Insights, n.d.; Microsoft, n.d.). The last stage differentiates 

the TDSP methodology from the CRISP-DM method. It includes system validation to confirm that 

the client requirements have been met and ensures smooth roll-out within a company. 

Sample, Explore, Modify and Access (SEMMA)  

The SAS Institute developed the SEMMA process to describe the process of conducting a data 

analysis project. It comprises five main stages (Azevedo & Santos, 2008; Shafique & Qaiser, 2014). 

CRISP-DM 

The CRISP-DM methodology is a hierarchical process model comprising four major phases, generic 

tasks, specialised tasks and process instances. The CRISP-DM methodology distinguishes between 

the reference model and the user guide (see Figure 2.6). The reference model provides a quick 

overview of phases, tasks and outputs, whereas the user guide provides more detailed descriptions 

of each phase and depicts how to do a data mining project. For the purpose of this study, only the 

user guide will be discussed below. The CRISP-DM phases discussed below are adapted from 

Chapman, Clinton, Kerber, Khabaza, Reinartz, Shearer and Wirth (1999), Nisbet, Elder and Miner 

(2009), and Wirth and Hipp (2000): 

1. Business understanding   

This phase aims to assess the requirements, resources, and constraints to understand the 

problem at hand and determine the business goals and objectives. It also involves compiling 

a list of risks and potential actions taken and determining the data mining goals in technical 

terms. Moreover, a detailed project plan can be used to specify the intended duration, 

resources and iterations of the project, and an assessment of the initial selection of tools and 

techniques can also be included.  

2. Data understanding  

In the data understanding phase, the data is collected, described, and examined to better 

understand the data. After the data have been explored and the type of data has been 

identified, any data quality problems and potential solutions are listed. The business 

understanding and data understanding phases are iterative processes, and after collecting 

the initial data, some of the business objectives and approach strategies could change.  

3. Data preparation  

Data preparation includes all the activities required to construct the final data set used in the 
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model. Preparation activities include data cleaning, transformation, data imputation, data 

reduction and data derivation. Data can also be integrated by merging tables and aggregating 

new data records. 

4. Modelling 

The first step in the modelling phase involves choosing the actual modelling technique(s) 

used and listing the specific models' data assumptions and parameter settings. A procedure 

is then generated to describe the testing that will be done to validate the model performance. 

For example, planning is required when using a classification algorithm to divide the data set 

into training, test and validation data sets. The results of the model outcomes should be 

evaluated, and parameters or data sets can be revised to improve the model results 

(Chapman et al., 1999; Smart vision, 2021). 

5. Evaluation 

The results are summarised and assessed during this stage to determine whether the model 

has achieved the desired business objectives. Any important risk factors discovered in 

previous phases should be highlighted, and recommendations for improvement and future 

work can be reported in this phase.  

6. Deployment 

In the final stage, the evaluation results are used to determine a strategy for the deployment 

and the necessary steps on how to perform them. A monitoring and maintenance plan should 

also be compiled and included in the final report that will be presented to the concerned 

stakeholders.  

 

Figure 2.6: The CRISP-DM methodology (Wirth & Hipp, 2000) 
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2.5 Artificial intelligence (AI) and machine learning (ML) 

AI and ML can provide farmers with real-time insight into the farm and are used to better understand 

the data-intensive processes and environments of agriculture. With the advancement of high-

performance computing, AI and ML became popular tools to assist in complex analysis and decision-

making, which are often time-consuming for the farmer. Automating some manual elements and 

simplifying the data analysis and decision processes allow the farmer to prioritise specific farming 

activities and make data-driven decisions. The definition and few applications of AI are discussed 

below, followed by the definition, types of ML and popular programming languages available. This 

research and data analysis methodologies in Section 2.4.2 are used in Chapter 4 for the data 

analysis. 

2.5.1 Artificial intelligence (AI) 

The term “artificial intelligence” had appeared in literature as early as the 1950s when Alan Turing 

published his work “Computing machinery and intelligence” (cited in McCarthy, 2004). McCarthy 

(2004) defines AI as the science and engineering of making intelligent machines that do not have to 

confine themselves to the biological methods of a human. ML and deep learning are frequently 

mentioned in conjunction with AI and are combined with knowledge from computer science, 

engineering and statistics to try and simulate human intelligence to solve problems (IBM Cloud 

Education, 2020; Master’s in data analytics, 2020).  

AI requires a colossal amount of data to train the machine and can be used in complex speech and 

facial recognition, weather prediction and medical diagnostics. AI applications in agriculture include 

irrigation, pest management, livestock tracking, disease detection and yield prediction. Several 

factors can influence production. A major challenge in agriculture is that it can be a timely process 

to construct a robust model. For example, crop-specific data is collected on an annual basis. 

Production performance of each year can vary vastly due to a combination of factors, such as 

climate, pesticides, fungicides, crop type and soil type. Therefore, a substantial number of years’ 

worth of data collection may be necessary to provide sufficient data to train the AI models (Dharmaraj 

& Vijayanand, 2018). 

2.5.2 Machine learning (ML) 

Liakos, Busato, Moshou, Pearson and Bochtis (2018) define ML as processes that learn from training 

data to perform specified tasks. A more detailed definition by Du Preez (2020) (cited in Al Sonosy, 

Rady, Badr and Hashem, 2016) claims that ML is defined as a set of rules that uses mathematical 

and statistical techniques to assist in identifying patterns and trends and learn from existing data to 

make predictions and decisions, without explicitly being programmed to do so. Choosing the 

appropriate type of ML algorithm will depend on the data availability, data quality and desired 
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outcome of the user.  

2.5.2.1 Types of machine learning 

There are four types of ML algorithms, viz. supervised, semi-supervised, unsupervised, and 

reinforcement learning, that can be used. Data within this project scope can be categorised as 

labelled or unlabelled data. Labelled data contain informative labels to provide context to learn from 

an ML model (AWS, 2021). On the other hand, unlabelled data do not contain tagged labels to 

classify and identify characteristics. 

2.5.2.2 Supervised learning 

Supervised learning uses labelled data as input and maps it to the desired known output. The data 

sets include the correct outputs to allow the model to learn and make predictions. The model’s 

accuracy is measured through a loss function and will adjust until the error is minimised and an 

acceptable level of performance is achieved (Du Preez, 2020). The two main types are grouped into 

classification and regression problems, and popular algorithms such as linear regression, random 

forest and Support Vector Machine (SVM) can be used to address these problems (Brownlee, 

2020a). 

2.5.2.3 Unsupervised learning 

Unlabelled data is given as input without any output (target) data. The algorithm tries to find 

associations between the given inputs and groups them to predict the desired output. Unsupervised 

learning problems can be grouped into clustering and association problems, and popular algorithms 

include k-means for clustering and the Apriori algorithm for association rule learning problems 

(Brownlee, 2020a).  

2.5.2.4 Semi-supervised learning 

Semi-supervised learning is seen as a hybrid between supervised and unsupervised learning as the 

learning model receives both labelled and unlabelled data (Pykes, n.d.). It is often costly and difficult 

to obtain labelled data, and semi-supervised learning is particularly useful in scenarios where 

labelled data is scarce (van Engelen & Hoos, 2019). The model is trained on the labelled data, and 

pseudo-labelling can be used to label the unlabelled data based on the predicted outcomes. 

2.5.2.5 Reinforcement learning 

Reinforcement learning is a unique type of learning because it does not receive data to solve a 

problem. An agent needs to navigate an environment and try to achieve a goal or set of goals to 

achieve the greatest reward (Grokking, 2019; Singh, 2018). The environment reveals itself to the 

agent as states (s) while the agent influences the environment and takes actions (a) through a trial-
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and-error basis. Reinforcement learning is applied in fields such as games, robotics and self-driving 

cars. (SPIME Analytics, 2020). 

2.5.3 Machine learning languages 

There are numerous ML languages available. This raises the question of what program language is 

best for ML? To answer this question, one must consider the problem that needs to be solved. The 

type of learning problem, data quality, computational power, compatibility, support, and available 

language libraries all play a role when choosing the right programming language. Five of the main 

ML languages are discussed below. 

2.5.3.1 Python 

Python (www.python.org) is one of the preferred programming languages due to its simplicity, 

consistency and excellent community support and documentation. It is easy to learn, and once you 

know the basics of Python programming, you can start using the libraries. It boasts a vast number 

of libraries and tools to support various ML tasks. Python can run on multiple platforms, such as 

Linux, Windows and macOS (CFI, 2018). Popular ML libraries include Pandas, TensorFlow, Pytorch, 

Scikit-learn and Matplotlib (ActiveState, 2020). Python is easily integrable with Microsoft PowerBI, 

Excel spreadsheets, Orange and databases like MySQL and PostgreSQL. 

2.5.3.2 R 

R (www.r-project.org) is one of the most popular open-source programming languages for statistical 

modelling and analysis. Various packages are available for data analysis, data sampling, data 

visualisation, model evaluation, supervised and unsupervised ML applications. R is also a cross-

platform language that can easily run on Linux, Windows and Mac and is highly compatible with 

other languages like Python, Java, C and C++ (DataFlair, 2021; Springboard, 2020).  

R supports the natural implementation of matric arithmetic and other data structures like vectors and 

is often preferred over its Python competitors, NumPy. Where R dominates in some areas, there are 

also some limitations and disadvantages of the language. R lacks basic security and, therefore, has 

several restrictions and cannot be embedded into a web application. The language has a steep 

learning curve compared to Python, and first-time users may find it difficult to learn. It is also much 

slower than Python, Java and Julia. R utilizes more memory because the physical memory stores 

the objects and can pose problems in working with large data sets (DataFlair, 2021; Krill, 2015). A 

few ML libraries for R include dplyr, tidyr, ggplot2, lubridate, mice, lattice and caret (Springboard, 

2020).  
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2.5.3.3 Java and JavaScript 

Java (www.java.com) is an older open-source programming language that provides a powerful base 

for application development with efficient coding and debugging. It is characterised by its static-

typing syntax, which is much faster than a language like Python, which has a dynamic-typed syntax. 

Java codes are often described as overly complex and long. Some AI libraries include: 

TensorFlow.js, Keras.js, RapidMiner, JGAP, Watchmaker, Apache Jena, Jenetics and 

Deeplearning4j. 

2.5.3.4 Julia 

Whilst many programming languages were developed between the 1960 - 1980s, Julia 

(www.julialang.org) was only introduced in 2012. The developers wanted to address the 

disadvantages of other programming languages and create a language that incorporates the same 

computational capabilities as MATLAB, be comparably fast as C and be as simple as Python. Julia 

was created for complex linear algebra, data science and ML (Medina, 2020). Julia is object-

orientated, and the syntax is easy to understand and is effective in computational statistics and 

numerical calculations (SPEC INDIA, 2021). 

2.5.3.5 Scala 

Scala (www.scala-lang.org) is a well-known language that combines object-orientated and functional 

programming. Its static types help avoid bugs and are also highly compatible with Java frameworks 

and libraries. In addition, it has a strong backend and can manage enormous amounts of data and 

dataflows (SPEC INDIA, 2021). Popular libraries include Breeze, Spire, Saddle and 

DeepLearning.scala (Krykowski, 2021). 

2.5.3.6 Summary 

The main advantages and disadvantages of each programming language are summarised in Table 

2.4 below. Previously, R was the preferred ML programming language, but other languages have 

gained momentum in the ML domain in recent years. R and Python are still considered the top 

competitors and are very similar in ability and performance. 

Table 2.4: Advantages and disadvantages of ML programming languages. 

Programming 
Language 

Advantages Disadvantages 

Python • Easy to learn 

• Powerful libraries 

• Cross-platform compatibility and integration 
(SQL, PowerBI) 

• Free and open source 

• Community support 

• Slower than most languages 

• Struggles to support multithreading 

R • Large variety of libraries • Steep learning curve 

Stellenbosch University https://scholar.sun.ac.za

http://www.java.com/
http://www.julialang.org/
http://www.scala-lang.org/


43 

Programming 
Language 

Advantages Disadvantages 

• Free and open source 

• Cross-platform compatibility  

• Excellent community support 

• Does not require a compiler 

• Poor memory management 

• Slow speed 

• Poor security 

Java  • Object-orientated 

• Robust, secure and platform-independent 

• Community support 

• Uses multi-threaded environment to run 
various threads separately 

• Moderate learning curve with high entry 
point 

• Requires more memory 

• More costly due to higher processing and 
memory requirements 

Julia • Object-orientated and functional 

• Easy syntax 

• Free and open source 

• Less libraries and scientific tools than Python 
and R 

• Less resources and community support 
than other languages 

• Libraries are not well-maintained 

Scala • Compatible with Java 

• High performance 

• Slow compiling 

• Steep learning curve 

• Limited commercial support and 
documentation 

2.5.4 Visualisation 

It is often difficult for the human eye to detect patterns and relationships when exploring large data 

sets without statistics and visualisation tools. Different data types can be visualised by using heat 

maps, bar charts, radar charts, pie charts, histograms and clustering, to name but a few. Moreover, 

dashboards can be used to integrate the visualisations to assist with the interpretation of data and 

decision support.  

2.5.4.1 Orange 

Orange (www.orangedatamining.com) offers many data visualisation options and helps users gain 

insight into the data rather than the programming. It is interactive software that allows the user to 

select data subsets from graphs, plots and tables. Some visualisation widgets include scatter plots, 

box plots, histograms, heat maps, classification trees and even silhouette plots, mosaic and sieve 

diagrams, which much other software do not include. These widgets are easily customisable. Orange 

also offers a clever reporting option that compiles a summary of the desired data and visualisations. 

The widgets are used to build the base layer upon which data sets can be connected to the 

infrastructure to be visualised. Orange is compatible with Microsoft Excel and Python, and it has 

excellent user support on its website.  

Figure 2.7 displays the drag-and-drop widgets that can be selected on the user interface to make 

predictions with classification trees and logistic regression. Figure 2.8 displays a simple box plot 

based on the popular Iris data set.  
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Figure 2.7: An example of widgets used for 

data analysis in Orange data mining 

(Orange, 2021) 

 

Figure 2.8: Box plot - An example of widgets used for data 

analysis in Orange data mining (Orange,2021) 

2.5.4.2 Microsoft PowerBI 

Power BI (www.powerbi.microsoft.com) is a Microsoft-based real-time BI software program that 

offers on-premises and cloud access to data. The software has built-in visuals, allows for customised 

visualisation, and the user can even publish the desktop dashboard online. Users can collaborate 

and share the visualisations and data, and there is also large support and an assisting community if 

the user requires help. The software is free, and additional features can be purchased if needed. 

PowerBI’s powerful Excel integration allows the user to select, filter or slice data in a PowerBI report 

or dashboard and transfer it back into Microsoft Excel. More useful features include the mobile 

application and easy integration with the Structured Query Language (SQL) server. 

One of the limitations of the software is that the free version’s data storage is limited to 2 GB and 

requires a purchase upgrade if larger volumes of data processing are required. This can be solved 

by accessing data directly from the server. In addition, PowerBI is not ideal for visualising complex 

relationships between tables on the dashboard (Van Rooyen, 2019). Figure 2.9 shows a conceptual 

management dashboard that was designed and developed for the Stellenbosch Learning Factory to 

enable a user to view critical KPI’s.  
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Figure 2.9: Management dashboard designed in PowerBI 

2.5.4.3 Tableau 

Tableau Public (www.tableau.com) is a popular free BI software program that includes a drag-and-

drop interface to customise user dashboards. The user can publish the dashboards and share them 

live on the web or smart mobile devices. Tableau does not require any programming knowledge and 

provides real-time data visualisation. Tableau also provides a collaborative working environment 

where dashboards can be shared with chosen users (Tableau, 2003). An example of a graph from 

Tableau’s website can be seen in Figure 2.10 (see overleaf). 

 

Figure 2.10: Tableau concept visualisation indicating profit versus sale data 

2.5.4.4 Looker 

Looker (www.looker.com) is an entirely web-based platform that provides a free educational version 

(Looker, 2021). It has its own proprietary modelling language called LookML, which is seen as an 
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improved version of SQL and defining queries (Nine Boards, 2020).  

 

Figure 2.11: Looker concept dashboard 

All of the software mentioned above presents powerful features for data insight and visualisation. 

However, the chosen visualisation tool will depend on the client requirements and objectives of the 

study to ensure that the desired outcomes are met. 

2.6 Crop and production management 

Crop management refers to all the agricultural processes involved to ensure optimal productivity in 

the field. Processes such as soil preparation, planting, fertiliser, irrigation, pest and disease 

management, harvesting and post-harvesting activities can help to provide accurate and up-to-date 

field crop records. Vegetation indices, pests- and disease management, as well as yield prediction 

are discussed below. 

2.6.1 Vegetation indices 

Soil quality (SQ) assessments are fundamental for increasing agricultural productivity and designing 

more sustainable land management practices. SQ depends on factors such as climate, soil and the 

type of crop planted. Soil health indicators (SHI) can be used to monitor the SQ and play a vital role 

in the communications between the land managers and other stakeholders involved (Eze, Dougill, 

Banwart, Sallu, Smith, Tripathi, Mgohele & Senkoro, 2021; Viana, Farhate, de Souza, Cherubin & 

Carneiro, 2020). Remote sensing can be used to monitor biotic and abiotic stresses in plants.  

2.6.1.1 Biotic health indicators  

Soil samples can be taken and used to collect information about the condition of the soil. Data such 

as magnesium (Mg), potassium (K), calcium (Ca), phosphorus (P) and pH can be used. Remote 
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sensing, however, can tell us more about the state of the land and crops. A few of the major crop 

health indicators are discussed with their formulas below. Multispectral sensors are used to capture 

indices such as NDVI, Modified Chlorophyll Absorption in Reflective Index (MCARI), Normalised 

Difference RedEdge Index (NDRE) and soil moisture levels.  

Normalised difference vegetation index (NDVI)   

NDVI is one of the most common indicators in agriculture and is used to assess whether an area 

contains live green vegetation by capturing how much more infrared (IR) light is reflected compared 

to visible red light. NDVI can be used to differentiate between crops and crop stages, differentiate 

bare soil from grass or forest, and detect plants under stress (Nuno, 2014). The value varies between 

-1.0 and +1.0, with zero indicating no green vegetation and values close to +1 showing high-density 

green leaves (NASA EO, 2000). Vegetation properties such as LAI, biomass and chlorophyll can be 

derived from the index.  

Soil adjusted vegetation index (SAVI)  

The soil adjusted vegetation index (SAVI) accounts for the variation in soil type and soil properties. 

Areas of low vegetative cover influence light reflectance in the visible red and NIR spectra (< 40%). 

This can be problematic when different soil types and crops are being evaluated due to the difference 

in reflectance of red and IR wavelengths. The accuracy of the NDVI decreases with variables such 

as soil colour, soil moisture and saturation from high-density vegetation. SAVI was developed to 

improve the shortcomings of NDVI and minimise the influence of soil brightness in the red and NIR 

wavelengths (Olukayode, Blesing, Rotimi & Oguntola, 2018; The landscape toolbox, 2012). SAVI 

ranges between -1 and +1, and a lower value indicates the amount of green vegetation (Olukayode 

et al., 2018). 

Modified soil-adjusted vegetation index (MSAVI, MSAVI2)  

MSAVI, later revised as MSAVI2, was developed by (Qi, Chehbouni, Huete, Kerr & Sorooshian, 

1994) to address some of the limitations of NDVI for areas with high exposed bare soil due to minimal 

vegetation or a lack of chlorophyll. SAVI requires specifying the soil-brightness correction factor(L) 

for the vegetation. The problem with this is that it is based on a trial-and-error specific to the amount 

of vegetation in the study area. Still, most use the standard L value of 0.5, leading to inaccurate 

calculations (The landscape toolbox, 2012). 

Leaf Area Index (LAI)  

LAI is the total leaf area per unit ground surface area. It tells us how many layers of leaves would be 

on the ground if it were to fall and be arranged exactly side-by-side. The leaves in the canopy are 

arranged randomly, and, therefore, light can still often reach the ground surface with an LAI value 

greater than one (1) (Gabron, n.d.). LAI is dimensionless and measured as a ratio of leaf area per 

ground surface area [m2/m2]. An LAI value of three (3) means that the study area has a leaf area to 

ground surface area ratio of 3:1. Some desert ecosystems would have an LAI value of less than one 
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(1), while shrublands typically have values between three (3) and six (6). Tracking the LAI of a maize 

farm from seeding to maturity could range from zero (0) to six (6) (Campbell, n.d.). 

Chlorophyll index (CI)  

The index incorporates the CIgreen and CIred-edge spectrum bands to calculate the total chlorophyll 

in plants and provide meaningful insight into plant health. The two bands respond to variations in 

chlorophyll content and are consistent for most plants (EOS, 2021). Common uses of CI include 

yield prediction, improving crop distribution uniformity, identifying nutrient deficiencies and assisting 

in target tissue sampling. Patterns detected in CI were found to be highly correlated with final crop 

yield in the fall (Ceres, 2021). Other relevant vegetation indices are shown in Table 2.5 below. 

Table 2.5: Other relevant vegetation indices (Kulbacki, Segen, Knieć, Klempous, Kluwak, Nikodem, 

Kulbacka & Serester, 2018) 

Index Formula Spectral 
bands 

Sensor Application Source 

Leaf rust 
disease 
severity 
index 1 
(LRDSI_1) 
and 2 
(LRDSI_2) 

     LRDSI_1 = 6.9 
𝑅𝐸𝐷1

𝐵𝐿𝑈𝐸
− 1.2 

𝐿𝑅𝐷𝑆𝐼_2 = 4.2 
𝑅𝐸𝐷2

𝐵𝐿𝑈𝐸
− 0.38 

BLUE: 455 
RED: 605 
RED: 695 

Ground-based 
FieldSpec -
spectrometer 

Detection of 
wheat leaf 
rust 

Ashourloo, 
Mobasheri 
& Huete 
(2014) 

Normalised 
Pigment 
Chlorophyll 
Ratio Index 
(NPCI) 

𝑁𝑃𝐶𝐼 =  
𝑅𝐸𝐷1 − 𝐵𝐿𝑈𝐸1

𝑅𝐸𝐷2 + 𝐵𝐿𝑈𝐸2
 

BLUE: 460 
RED: 660 

Ground-based 
radiometers 

Estimation of 
leaf 
chlorophyll 
content 

Hatfield & 
Prueger 
(2010) 

Normalised 
Difference 
Water Index 
(NDWI) 

𝑁𝐷𝑊𝐼 =  
𝑁𝐼𝑅1 − 𝑁𝐼𝑅2

𝑁𝐼𝑅1 + 𝑁𝐼𝑅2
 

NIR1: 841 - 
876 
NIR2: 
1230–1250 

Satellite 
(MODIS) 

Estimation of 
plant water 
content 

Zarco-
Tejada, 
Rueda & 
Ustin 
(2003) 

Structure 
Insensitive 
Pigment 
Index (SIPI) 

𝑆𝐼𝑃𝐼 =  
𝑁𝐼𝑅 − 𝐵𝐿𝑈𝐸

𝑁𝐼𝑅 − 𝑅𝐸𝐷
 

BLUE: 445 
RED: 680 
NIR: 800 

Handheld 
Spectroradio-
meter 

Determine 
the sunn 
pest damage 
on wheat 

Genc, 
Genc, 
Turhan, 
Smith & 
Nation 
(2010) 

Damage 
Sensitive 
Spectral 
Index (DSSI) 

𝐷𝑆𝑆𝐼

=  
𝑅𝐸𝐷 − 𝑁𝐼𝑅 − 𝐵𝐿𝑈𝐸 − 𝐺𝑅𝐸𝐸𝑁

(𝑅𝐸𝐷 − 𝑁𝐼𝑅) + (𝐵𝐿𝑈𝐸 − 𝐺𝑅𝐸𝐸𝑁)
 

BLUE: 509 
GREEN: 
537 
RED: 719 
NIR: 873 

Handheld 
Spectroradio-
meter 

Determine 
the sunn 
pest damage 
on wheat 

Genc et 
al. (2010) 

There are numerous vegetation indices available that serve different purposes. Figure 2.12 (see 

overleaf) visually illustrates how PA components such as remote sensing, IoT, GIS and vegetation 

indices can be integrated to capture and display different layers that can be used in farm 

management. Indicators such as NDVI, weather and crop moisture layers can be utilised to gain 

more insight and assist the farmer in the decision-making process. 
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Figure 2.12: Multiple layers for precision farming applications (Loizos, 2017) 

 

2.6.1.2 Abiotic health indicators 

Abiotic health indicators are physical, non-infectious factors contributing to plant health. Moisture 

and temperature extremes, soil properties, fertility imbalance, physical injuries and chemical toxicity 

are common examples of abiotic disorders. The soil structure determines the ability to hold water, 

oxygen, and nutrients and its availability to plants. Compaction is a common issue in soil structure, 

which accounts for the pore space for root growth. Compaction can occur from heavy farming 

equipment traffic, impact from rain and minimal crop rotation. Clay soils are especially known to have 

smaller pore space and can easily become compacted, which can cause low oxygen levels for the 

root respiration system (Kennelly, O’Mara, Rivard, Miller & Smith, 2012).  

2.6.2 Disease and pest management 

Plant pathology refers to managing plant disease by studying the interaction between the organisms 

and the varying environmental conditions and the effects on plant growth, yield, and quality 

(University of Stellenbosch, 2013). Pest and disease management is essential to effective crop 

production. Quantifying the impact of pests and disease on crop performance is still a challenge for 

the scientific community (Donatelli, Magarey, Bregaglio, Willocquet, Whish & Savary, 2017). Farmers 

should regularly inspect their lands to identify insects and disease problems and to stop potential 

problems. Certain pests and diseases may be treated curatively, while others should be treated 

preventatively. Farmers can counter these problems by using a combination of farming practices 

such as crop rotation, pest tolerant cultivars, certified seed, pesticides and proper soil preparation 

and management. 

Referring to Section 2.6.1, soil quality plays a vital role in plant health. Organisms planted in good 

soils can withstand more environmental stress and diseases than those planted in poor soils. Climate 

change can also influence insect populations and disease outbreaks, thus creating the need for 

Stellenbosch University https://scholar.sun.ac.za



50 

farmers to constantly assess their crops and make timely decisions (South Africa, 2021). The South 

African Agricultural Research Centre identifies the diseases and pests shown in Table 2.6 as the 

most important in wheat disease and pest management. 

Table 2.6: Typical pests and diseases found in South African wheat (Agriculture Research Council, 2014). 

Disease Pests 

Powdery mildew 
Russian wheat 
aphid 

Rust Other aphids 

Tan spot Brown wheat mite 

Bacterial streak False wireworm 

Black chaff Bollworm 

Ergot disease False armyworm 

Basal glume rot Leaf miner 

Eyespot Black maize beetle 

Several studies regarding pest and disease management have been published. Yang, Rao, Elliott, 

Kindler & Popham (2009) conducted a study to determine the feasibility of remote sensing 

techniques to detect two different stresses in wheat caused by Russian aphid and greenbug 

infestation. Ratio-based vegetation indices were used to differentiate the two stresses in wheat, and 

researched the use of deep-learning architectures to classify soybean pest images achieved 

accuracies of up to 93.82% (Tetila, Machado, Astolfi, de Souza Belete, Amorim, Roel & Pistori, 

2020). Ali Al-windi, Abbas and Mahmood (2021) developed a new method for detecting wheat stem 

rest disease. Image processing was used to convert Red Green Blue (RGB) to hue saturation value 

and performed feature selection to improve the accuracy of the chosen neural network. 

2.6.3 Yield prediction 

Yield prediction is an essential component in PA and can help farmers decide which crops to grow 

and when to grow them. Yield prediction can be used in yield mapping in conjunction with demand 

requirements and expected profitability. Many studies have used growth status and trend monitoring, 

but most are based on a single agronomic parameter. A few studies have combined multiple 

parameters into a more comprehensive yield estimation system. 

Jégo, Pattey and Liu (2012) conducted a study in Canada to evaluate the conditions regarding the 

application of re-initialisation (e.g., number of image acquisitions and spatial resolution). Remote 

sensing was used to provide LAI data to re-initialise STICS, a crop prediction model, to evaluate the 

performance of biomass and yield prediction. Green LAI was estimated with the modified 

transformative vegetation index using airborne hyperspectral sensors and multispectral satellite 

sensors. Re-initialisation of seeding data, seeding density and field capacity greatly improved the 

prediction with a root mean squared error (RMSE) of 13% for yield and 23% for biomass. Another 
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study by Brown, Hochman, Holzworth and Horan (2018) explored the benefits of using the Predictive 

Ocean Atmosphere Model for Australia (POAMA) climate model over historical climate to predict 

wheat yield in Australia. POAMA consists of daily temperature, radiation and rainfall and was used 

as inputs for the agriculture production systems simulator (APSIM) crop model to help predict yield. 

The climate model forecasts have a narrower prediction range but at the expense of a higher number 

of misleading forecasts. The study concluded that the climate model and historical climate are both 

useful but provide different advantages and should be combined in future research.  

Several papers use a combination of vegetation indices and climate data to conduct crop yield 

predictions. Some indicate the use of existing crop simulation models and add variables to test the 

performance of the yield predictions. Hao, Ryu, Western, Perry, Bogena and Franssen (2021) used 

the APSIM classic-wheat model and conducted a meta-analysis on 30 simulations containing 

observed yield. APSIM simulates soil water, nutrients and crop growth processes under varying 

environmental and management conditions. APSIM’s ‘WHEAT’ model also includes water stress, 

nitrogen stress and heat stress to investigate the factors influencing the yield prediction performance. 

Heat- and frost stress were found to cause large discrepancies in grain yield prediction. Grain is 

particularly sensitive to short-term heat stress in the anthesis and grain-filling stages. The study 

hypothesised that the discrepancies could be due to the use of mean daily temperatures. Site-

specific calibration of the model resulted in an RMSE of smaller than 1t/ha and normalised RMSE 

(NRMSE) of 28%. Hassanijalilian, Igathinathane, Doetkott, Bajwa, Nowatzki and Haji Esmaeili 

(2020) developed a low-cost infield method to measure chlorophyll using smartphone digital imaging 

and ML models. The chlorophyll content is indicative of plant growth and health issues. The 

researchers claim that the method can easily be extended to other crop types and large-scale aerial 

imaging platforms. Additional research regarding variables and technologies, which influence yield 

prediction are summarised in Table 2.7 below. 

Table 2.7: Examples of yield prediction research in literature 

Application Summary Source 

Benefit of satellite-
based solar-
induced chlorophyll 
fluorescence 
(SIF) in crop yield 
prediction 
(USA) 

• The performance of using SIF data for yield prediction was compared to 
satellite-based vegetation indices performance - NDVI, NIRv, and land 
surface temperature (LST).  

• Five ML algorithms were used to evaluate the performance of remote-
sensing and climate-remote-sensing predictions – LASSO, Ridge, SVM, 
ANN and RF. 

Peng, Guan, 
Zhou, Jiang, 
Frankenberg, 
Sun, He & 
Köhler (2020) 

Yield evaluation 
indicator based on 
hyperspectral 
improved fuzzy 
method 
(China) 

• Development of a new comprehensive yield evaluation indicator (CYEI) 
that monitors crop growth and yield estimation.  

• Used winter-wheat data between 2012 - 2018 with different soil moisture 
and nitrogen fertiliser treatments. LAI, biomass, leaf nitrogen and leaf 
water content was used with the CYEI indicator to monitor crop growth 
and estimate yield. 

Xu, Nie, Jin, 
Li, Zhu, Xu,  
Wang & Zhao 
(2021) 
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Application Summary Source 

NDVI, rainfall and 
temperature data to 
predict wheat grain 
yield 
(Morocco) 

• Used regression models and 10-daily NDVI, rainfall sums and average 
monthly temperatures to predict provincial and national wheat yields.  

• NDVI was the most important predictor influencing yield prediction and 
explained 40% of yield variation in the provincial study. Rainfall and 
temperature gained more significance in arid areas. 

Balaghi, 
Tychon, 
Eerens & 
Jlibene (2008) 

 

Stemming from the above, it is evident that a combination of high-resolution remote sensing 

information, soil properties, climate- and yield data, and ML can contribute to improved performance 

of yield prediction models. Chlorophyll, NDVI and LAI indices are featured in yield prediction studies, 

especially wheat yield prediction.  

2.7 Decision support systems (DSS) and early warning systems (EWS) 

DSSs have been investigated and implemented for almost 40 years since the widespread use of 

computers. Holsapple and Burstein (2008:22) define a DSS as a “computer-based system that 

represents and processes knowledge” that assists in more agile and innovative decision-making. 

Marin (2008) describes it as an information system that collects and analyses data supporting 

business and organisational decision-making activities by providing access to information and the 

appropriate analysis tools. The accuracy of the decisions is based on the quality of the data and the 

analysis process to discover trends to create solutions and strategies.  

A typical DSS consists of a knowledge base data management system, model management system 

and user interface (CFI, 2015). The knowledge base includes data collected from several sources, 

whereas the model management system holds the models used for decision-making. The user 

interface is the output data after the data have been processed and the decisions have been made. 

A DSS assists users in evaluating historical and present data, forecasting future trends, considering 

alternative decisions and potentially helping an organisation to make optimal decisions. Decision 

support applications that only collect and organise data and do not suggest specific decisions are 

called passive models. Active DSSs collect, analyse and then incorporate human input to revise the 

model (Marin, 2008). The types of decision-making can be grouped into strategic, tactical, and 

operational decisions and continuous monitoring. According to Power (2002), there are five types of 

DSSs: communication, data, knowledge, model and document-driven, as shown in Figure 2.13 

below. These DSSs are used to provide group, knowledge-based or organisational support. Marin 

(2008) also defines three DSS levels: technology, human and computer inputs, and the 

developmental approach to designing the DSS.  
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Figure 2.13: Types of DSSs and the support they 

provide (adapted from Marin, 2008; Power, 2002) 
            

Figure 2.14: The three levels of a DSS (Marin, 

2008) 

Decision support and EWS often work hand-in-hand to identify and mitigate potential risks. EWSs is 

often used in disasters risk management applications, which mostly involve natural disasters such 

as landslides, earthquakes, floods and tsunamis. EWSs use forecasting and prediction strategies to 

alert the user or affected parties. 

2.7.1 Decision support in agriculture 

With the recent advancements in technology and overwhelming amounts of data, farmers are faced 

with difficult decision-making choices. DSSs can help by suggesting evidence-based and precise 

decisions to address the challenge of transforming data into knowledge and actionable intelligence 

(Zhai, Martínez, Beltran and Martínez, 2020). Agricultural decision support systems (ADSS) are used 

for decision support in various agricultural applications. The IBM Watson decision support platform 

for agriculture, for example, is a popular AI-driven ADSS. It provides accurate weather data (historic, 

near real-time and forecasted), soil data (soil type and moisture, nutrient content and fertility), 

equipment data (IoT sensors) and imagery (satellites and UAVs). The platform utilises AI, ML, and 

advanced analytics to extract valuable insight and generate guidance in decision support (IBM, 

2018). Microsoft’s Azure FarmBeats (www.microsoft.com) was developed in 2014 and provides the 

farmer with data-driven insights. The system creates digital maps from data collected from various 

remote sensing devices. AI and ML models are used to make predictions and provide the farmer 

with actionable insight (Agrawal, 2020). Other popular agriculture decision support software includes 

AgVend, Bayer-ClimateFieldView, Taranis and FluroSat. 

Tyrychtr and Vostrovsky (2017) researched ADSSs and used the Software Quality Requirements 

and Evaluation (SQuaRe) standard as evaluation criteria. This standard examines the accessibility, 

scalability, interoperability, functionality and completeness of an ADSS. The graphical user interface 

(GUI) should be easy to understand (accessible), while scalability refers to adding new sensors to 

improve the system's functionality. ADSSs can easily integrate with external sources, for example, 

external weather stations, and have high interoperability. There are several benefits of implementing 
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ADSSs, but it is important also to examine its challenges and limitations. 

DSSs are designed to eliminate bias when making decisions. However, this can also have the 

opposite effect, and the user can become too dependent on the system to make proper decisions. 

This is because certain assumptions are made when the DSS is designed, and it can sometimes be 

difficult to quantify certain data in the system. Thus, a DSS may, for example, lead to information 

overload for the user, as it considers a vast amount of data and alternatives that are not always 

necessary for certain decisions to be made. This is exactly why it is referred to as “decision support”, 

i.e., the users should use the system to guide them with the decision process (CFI, 2015; Juneja, 

n.d.).  

Zhai et al. (2020) mention additional obstacles regarding DSSs: 

• Not all farmers are confident in using new technology, and complex DSSs often require training 

and expert experience. 

• Several factors can influence decision-making, and hence, there is a need to develop 

customisable ADSSs that are scalable and can adapt to various crop types.  

• Many ADSSs are limited or task-specific, and the farmer often has to combine several ADSSs 

to manage agricultural activities. 

• Fundamental factors such as climate change, drought and pests can lead to irregular patterns 

and trends that can cause the decision tool to suggest inaccurate decisions. 

• ADSSs require mass data to improve decision-making and accuracy. 

• Current ADSSs have not yet reached fully autonomous intelligence, and hence it is necessary 

to incorporate human expert knowledge. 

Ways in which ADSSs are currently being implemented were researched, including comparisons of 

the components that are utilised in practice. The description, applications, and components of the 

examined ADSSs are summarised in Table 2.8 (overleaf) and are grouped by application: (i) Water 

resource management and irrigation; (ii) pests and disease, (iii) management zones;(iv) climate and 

GIS and (v) livestock.  
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Table 2.8: Applications of DSSs in agriculture 

Application DSS name Crop or 
animal 

What it does Components and 
sources 

AI, ML Resource 

Water and 
irrigation 

Smart 
irrigation 
decision 
support 
system 
(SIDSS) 

Citrus trees 
(Spain) 

• Estimates weekly irrigation needs of a plantation using 
meteorological data, crop characteristics and soil measurements. 

• Provides an irrigation report with water usage and irrigation time. 
• Uses ML algorithms to remove redundant variables and minimise 

estimated errors. 

Soil sensors 
Weather stations 
SIDSS 

Partial least 
squares 
regression,  
Adaptive neuro-
fuzzy inference 
systems (ANFIS) 

Navarro-Hellín, 
Martínez-del-
Rincon, 
Domingo-
Miguel, Soto-
Valles & Torres-
Sánchez (2016) 

Water and 
irrigation 

Fuzzy 
decision 
support 
system 
(FDSS) 

Corn 
Kiwi 
Potato 

• Determines the irrigation amount based on the growing degree days, 
total water applied to the crop, and crop evapotranspiration.  

• A fuzzy soil moisture model was applied to IRRINET and calibrated 
with data from IRRINET crop database. 

• Consists of three main parts: Predictive soil moisture model, 
irrigation inference system deciding timing and amount. Irrigation 
performance index (IPI) consists of the sum of past irrigations. 

IRRINET agro-
meteorological 
database 

Inference system 
developed in 
MATLAB (fuzzy 
C-means 
algorithm 

Giusti & Marsili-
Libelli (2015) 

Pests, 
disease and 
weed 
management 

Integrated 
Pest 
management 
system 
(IPM) 

Vineyard • Strategic, tactical, and operational levels decision support for 
pesticide application. 

• Reduce risk to human health and environment. 
• Reduce labour and pesticide cost as well as increase crop quality 

and quantity. 

UAV and satellite 
sensing  

Not specified Rossi, Caffi & 
Salinari (2012) 

Livestock Not specified Cattle, 
pigs, 
sheep, 
chickens 

• Paper introducing data-driven DSS and challenges for ADSS animal 
health and greenhouse gas emissions. 

• Incorporates ML, statistical analysis and simulation tools. 
• Research articles include applications in cattle behaviour, growth 

trajectories of chickens and pig waste disease detection. 

UAV, RFID, other 
sensors 

Bagging 
ensemble with 
tree learning, 
Gaussian 
Mixture 
Modelling 
(GMM), SVM 
and other 
algorithms. 

Niloofar, 
Francis, 
Lazarova-
Molnar, Vulpe, 
Vochin, Suciu, 
Balanescu, 
Anestis & 
Bartzana (2021) 

Management Fast 
Mapping 

Wheat 
(Argentina) 

• Interactive web application that automatically cleans raw spatial data, 
generates and creates field maps to identify management zones 
using multivariate classification. 

R language Not specified Paccioretti, 
Córdoba & 
Balzarini (2020) 

Climate ‘Simulador 
de 
Agricultura’ 
(SIMAGRI) 

Maize 
Soybean  
Wheat 
(Uruguay) 

• An agro-climate DSS that supports strategic and tactical decisions in 
crop production by utilising historical climate and probabilistic 
seasonal forecast data. 

• Comparisons of management practices (planting dates, crops, 
fertilisers etc.) and environmental conditions. 

1DSSAT models,  
GUI developed in 
Python 

Not specified Han et al. 
(2019) 

 
1 DSSAT – Decision Support Systems for Agrotechnology Transfer. A modular based application package of various models that can simulate crop growth for 42 different crops under specific management 

practices (www.dssat.net). 
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Application DSS name Crop or 
animal 

What it does Components and 
sources 

AI, ML Resource 

Climate and 
GIS 

CROPGRO-
Peanut 
model 

Groundnuts 
(India) 

• Response to climate change scenarios.  
• Simulated crop yield and crop maps 

GIS, GPS, crop 
models, weather 
stations, DSSAT 

Prediction 
models and 
simulation 

Kadiyala, 
Nedumaran, 
Singh, Irshad & 
Bantilan (2015) 
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2.8 Summary 

A global need for more sustainable and efficient agricultural output to meet the world’s food demand 

is evident. PA is seen as an answer to this problem. PA consolidates various technologies to help 

the farmer improve farm management activities by providing data-driven and evidence-based 

decision support. Various remote sensing platforms and IoT sensors can be employed to collect 

different types of farm data. Several studies highlight the value of real-time, historical and forecasted 

climatic data in PA. Big data, data analysis, and ML can be used to process and analyse the data to 

extract information and transform it into actionable intelligence. Section 2.4.2 discussed the different 

types of data analytics and presented four data analytic methodologies for processing data used in 

Chapter 4. A brief explanation of AI was followed by a review of various types of ML algorithms and 

a comparison of the most popular programming languages used for ML.  

Important factors influencing crop management and yield prediction, supported by several practical 

examples discussed in the literature, were expanded upon in Section 2.6. Sections 2.2 to 2.6 

explored how these can be used in DSSs. The types of decisions that can be made and the 

components of a DSS were discussed in Section 2.7. A more extensive review was conducted on 

the use of DSSs for ADSSs. It was found that due to the numerous factors influencing farming 

production, most ADSSs only focus on singular applications such as irrigation, pests, disease, 

climate, crop production, and livestock management. Thus, there exists a demand for more 

integrated and customizable ADSSs.  
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Chapter 3  
Field research 

The object of the field research was to examine the product of Company A and the data it provides 

to clients, as well as the client farm, referred to as ‘Farm X’. The knowledge gathered from the 

literature study and field research was applied in the data analysis section and used in the design of 

the concept demonstrator. The field research shows what is currently being done and used to 

improve the ‘manual element’ of the decision-making process.  

The rest of the chapter discusses the process of acquiring sufficient and accurate weather data and 

explores wheat and soybean conditions in summer rainfall areas. The grain research was used in 

the data analysis phase (see Chapter 4). This contributes towards a better understanding of the data 

and aid in decision support development. 

3.1 Company A background 

Company A specialises in agronomy, horticulture, soil science, microbiology, geographic information 

systems (GIS), chemistry and process and production engineering. Company A provides its clients 

with an interactive, cloud-based platform that collates large volumes of data captured from various 

sources, including remote sensing from satellites, soil moisture probes, tracking devices, pest traps 

and laboratory soil samples. The sources are used to collect and display data such as soil physical 

and chemical maps, pest monitoring, leaf and tissue analysis, yield maps, water analysis and Airbus 

Verde biophysical parameters. After consulting the data on the platform, clients can request advisors 

to assist them with the interpretation and decision-making. One of the research goals of this study 

was to investigate how and to what extent the latter actions can be automated and/or accelerated. 

As indicated before, the concept demonstrator was used for this purpose. 

Company A’s web-based platform provides the client with an aerial view of the farm. The client can 

then use the platform to overlay soil physical and chemical maps, pest monitoring data, leaf and 

tissue analysis, yield maps, water analysis and remote sensing biophysical parameters. The client 

can also select s number of desired features to superimpose on the aerial view. However, as 

indicated above, inspecting the overlays with several features can be a timely and complex process, 

and finding optimised solutions is not a trivial exercise. 

The literature study indicated clearly that agricultural decisions strongly rely on meteorological data. 

Company A provides the user with a daily weather update from OpenWeatherMap. This provides 

the user with current temperature, pressure, humidity, windspeed, sunrise time, sunset time, and 

weekly minimum and maximum temperatures. However, historical weather data is crucial for 

forecasting and pattern prediction. As part of this research, the South African Weather Services 
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(SAWS) was approached to provide the historical weather data specifically relevant for Farm X.  

3.2 Farm X 

Farm X was chosen by Company A as the subject farm, as significant data for this farm are available 

on their cloud platform. Farm X is located in the Limpopo province of South Africa and has a summer 

rainfall climate. From 2016 to 2020, soybeans were planted in summer, while wheat was planted 

during the winter season.  

The data and data sources available on Company A’s platform for this farm are briefly discussed 

below: 

Soil classification – Soil samples and probes were used in 2015 to determine the soil physical 

elements. Full soil classification can be costly, and according to Company A, the modus operandi is 

to complete a full analysis every three years. These values are considered to be “static” variables.  

Pest and diseases – A worm infestation broke out during 2019 and 2020, but no coordinate specific 

data is available.  

Remote sensing – The client can select an Airbus Verde subscription, which provides soil health 

indicator data, such as chlorophyll, as a time series. The satellite provides images when passing 

over the farm, but they are affected when obstructed by cloud cover. The Verde service can provide 

de-clouded images, but this results in missing values and a random spread of time-series data. Only 

chlorophyll data is provided for Farm X, with no other crop indicators or yield data. 

3.3 Acquiring meteorological data 

The SAWS (www.weathersa.co.za) provides a Google Earth file (kmz file) on their website under 

their “climate services”, which indicates all the weather stations found in South Africa (see Figure 

3.1). The station code in the vicinity of Farm X was chosen, and after completing the contract 

formalities, the SAWS provided the data. However, after close inspection of the data, it was 

discovered that the main area station incurred technical difficulties during 2018 and 2019. 

Regrettably, no data were available during this time from the specific station. The next nearest station 

was then chosen as an alternative data source. The distance between the weather stations are 

approximately 100km. For the purpose of this research, the assumption was made that the 

alternative station data closely approximates that of the main station data.  
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Figure 3.1: KMZ file displaying the available weather stations in South Africa 

3.4 Winter wheat conditions in South Africa 

The production guidelines for wheat compiled by the Department of Agriculture, Forestry and 

Fisheries (DAFF) of South Africa were consulted to better understand the crop conditions of Farm 

X. It is important to note that the choice of the cultivar can significantly impact the yield and be 

affected by factors such as soil type and geographical location (DAFF, 2010). 

3.4.1 Planting and harvesting timeframe 

Winter wheat is planted from mid-April to mid-June and is usually harvested from August to 

November. It can only be harvested when the grain moisture is about 16% and fully ripened. The 

planting date is important since early planting can stimulate excessive vegetative growth, later 

leading to lodging, whereas late planting can lead to insufficient vegetative growth and ultimately 

lower yield. 

3.4.2 Temperature and rainfall requirements 

The ideal climate for growing wheat is a cool temperature with plenty of rain followed by a dry period 

for harvesting. Most parts of South Africa have a summer rainfall climate, and wheat grown in these 

areas depends on sufficient rain in the previous season to ensure adequate residual soil moisture 

(this is essential when incorporating weather data in the wheat data analysis). Winter wheat requires 

temperatures between 5°C to 25°C and an annual rainfall of about 600mm per annum. Frost and 

hail can result in serious damage and low yield. (DAFF, 2010). 
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3.4.3 Soil requirements 

Well-drained fertile loam to sandy loam with a pH of 6,0 to 7,5 is preferred for wheat production. 

Wheat is adversely affected by acidic soil, particularly during the early development stages and can 

cause the soil nutrients to be fixed or unavailable. Cu, Mn, Zn, and Boron (B) are essential for wheat's 

normal development and growth (DAFF, 2010). 

3.4.4 Irrigation and fertilisation 

It is important to continue irrigation until the plant is almost discoloured. Wheat requires sufficient 

soil moisture during planting and germination, lowered moisture during flowering and increased 

moisture during pod filling. Irrigation should be ceased during ripening, and wet weather during 

harvesting can contribute to diseases and quality deterioration of the grains. Proper irrigation 

scheduling can also minimise lodging and disease occurrence (DAFF, 2010). 

3.4.5 Diseases and pests 

Several weeds, diseases and pests can affect wheat production. Some weeds can limit yields by a 

staggering 20% annually. Cultivars, weather, irrigation, and soil conditions can play a major role in 

the prevalence of diseases and pests. Crop rotation and herbicides can be used to manage potential 

problems (DAFF, 2010). 

3.5 Data research 

It is difficult to define “normal” or “ideal” growing conditions when several variables can impact crop 

production. Instead, it is helpful to consider the entire life cycle of the crop at specific instances in 

time. 

Company A’s platform provides more than 85 soil features available to the client to choose from. 

The database pertaining to Farm X does not have sufficient NDVI data but has Fraction of Vegetation 

Cover (FCover), LAI and chlorophyll data from 2016 to 2020. Company A advised using the 

chlorophyll time-series data and six main soil features to start the analysis. The six main soil features 

that were identified are:  

• Soil type  

• Depth of potential root development 

• Plant available water content (PAWC) effective depth 

• Magnesium percentage (Mg %)  
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• Sodium-Potassium (Na:K)  

• Phosphorus (PBray 1) 

After consulting the DAFF guidelines, it was decided to add Cu, K, Zn, Mn, S and pH to the data 

analysis to investigate if they could add further value to the analysis. 

3.6 Summary 

In this chapter, Company A and Farm X were discussed to understand better the purpose and 

application of the concept demonstrator tool to be developed. Field research was done to show how 

meteorological data can be obtained for research purposes, and the DAFF guidelines were studied 

to gain more knowledge regarding winter wheat growing conditions. The data and features identified 

in this chapter were used as a starting point for the following chapter. 
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Chapter 4  
Data analysis 

Chapter 2 and Chapter 3 were used to gain the necessary knowledge regarding PA and the data 

provided for this research study. Several research papers explore factors such as NDVI, LAI and 

yield data for crop yield estimation. Since there is no yield data available for Farm X, this chapter 

focuses on the chlorophyll data available for the initial analysis. The various data analysis 

methodologies and processes were discussed in Chapter 2, Section 2.4.2.  

The CRISP-DM methodology is still the most popular method and was deemed suitable for the 

purpose of this study. It was used as a guideline to conduct the data analysis and forms the basis of 

the concept demonstrator discussed in Chapters 5 and 6. The CRISP-DM methodology was adapted 

slightly to fit the requirements of this study, as illustrated in Figure 4.1. Each section is discussed 

separately in this chapter. The process starts with a business understanding and data collection, 

followed by data understanding, data preparation, and modelling. The final stage (deployment) does 

not fall within the scope of this research study.  

 

Figure 4.1: An illustration of the CRISP-DM method used in this study  
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4.1 Business understanding and data collection 

Business understanding involves understanding the objectives and requirements from a business 

perspective. The research objectives discussed in Chapter 1 (see Section 1.3) and the information 

gained from the literature study and field research served as the first part in understanding the 

problem. The next step was the data collection process. 

Company A supplied a folder with TIFF files containing chlorophyll data from Farm X, collected from 

2016 to 2020, as shown in Figure 4.2 (see overleaf). The shapes indicated in this figure map onto 

specific geographical areas on Farm X where crops are planted. 

To process the data, all the files were imported into the QGIS2 software to view the chlorophyll data 

shown in Figure 4.3. QGIS was chosen from the list of software mentioned in Chapter 2, Section 

2.2.3, as it is a popular open-source software that is easy to learn for basic applications. A single file 

containing the nutrient and soil classification data was also imported and superimposed on the TIFF 

files shown in Figure 4.4. Figure 4.5 displays a point shape file with 296 points (later referred to as 

‘instances’) created in QGIS to extract and present all the available data per point on the crop circle 

in one image.  

 
2QGIS: A free and open-source cross-platform desktop GIS application that supports viewing, editing, and analysis of geospatial data 

(www.qgis.org). 
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Figure 4.2: Example of a TIFF file 

 

Figure 4.3: TIFF file imported into QGIS 

 

Figure 4.4: Soil classification .dbf file 

 

Figure 4.5: Point shape file superimposed onto a 

TIFF file 

4.2 Data understanding and data exploration 

Data exploration is used to understand the characteristics of the data and determine if any data 

quality issues might affect the model. 

The data extracted from QGIS was copied into a Microsoft Excel workbook, which was used to 

examine the data. An extract of the data can be seen in Table 4.1 (see overleaf) and consists of 296 

GPS point coordinates relating to nutrient and soil classification feature values. A total of 26 features 

were extracted. These features were discussed in Chapter 3, Section 3.5.  

The second data set consists of the data supplied by the SAWS in the form of a 1997 - 2003 Excel-

format workbook. The sheet data consisted of poorly structured vertical tables, which had to be 

transformed into a more user-friendly horizontal time-series data table. Table 4.2 (overleaf) illustrates 

a sample of data converted to a table format. 
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Table 4.1: Extract of raw data from QGIS 

 
 

Table 4.2: Minimum daily temperature for the year 2010 in ˚C 

 

4.2.1 Types of data 

Knowing the data types is crucial to understanding the data and using the correct methods to 

approach data quality issues and process the data correctly. The nutrient and soil classification data 

did not change during the analysed period and can be considered “static” or stationary data. Most of 

the stationary data is numeric in nature, with five categorical feature columns. The chlorophyll and 

meteorological data is numeric and non-stationary data and change over time. Table 4.3 (overleaf) 

is populated with artificial data to illustrate the various data types of the original data table.  
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Table 4.3: Conceptual table illustrating data types 

 

4.2.2 Data quality issues 

After the initial inspection of the data in QGIS, it was discovered that several of the TIFF files provided 

did not contain complete data. One of the reasons is that the Airbus Verde satellite is highly sensitive 

towards cloud cover and only takes photographs when it passes a requested area. The photographs 

do not occur at equally spaced time intervals and are randomly dispersed. Some months might, for 

example, have six photographs per month for a given area and other months might have two. Given 

the infrequency of these photographs, more TIFF files do not necessarily equate to good quality 

data, and the TIFF files are not always useable. Figure 4.6 below shows a photograph taken on a 

clear day with complete data. In contrast, Figure 4.7 (see overleaf) shows an example of a photo 

with cloud cover and very little useable data. 

Data quality issues can be addressed by compiling data quality reports to analyse continuous and 

categorical data. The three main data groups, viz. nutrient and soil classification, chlorophyll and 

meteorological data, are analysed separately. 

 

Figure 4.6: TIFF file displayed in QGIS with no cloud cover 
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Figure 4.7: TIFF file in QGIS with substantial cloud cover 

4.2.2.1 Data quality – Nutrient and soil classification data 

The nutrient and soil classification data quality report is shown in Table 4.4 below. Note that it does 

not contain any missing values, and the ranges of the features differ dramatically and should be 

considered during the data preparation phase. Feature scaling can be applied to eliminate potential 

bias to affect the outcome of the model.  

The five categorical features and their classes can be seen in Table 4.5 (see overleaf). The feature 

names have been translated to English to eliminate any confusion. Table 4.6 contains the data 

quality report for the categorical features and indicates no missing values. The mode, mode 

frequency, and mode percentage are also displayed to understand the prominent classes better. 

Table 4.4: Data quality report for continuous features 
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Table 4.5: Categorical classes 

 

 

Table 4.6: Data quality report for categorical features 

 

4.2.2.2 Data quality – Chlorophyll data 

The chlorophyll time-series data contains data for the period 2016 to 2020. Out of the 120 TIFF files 

provided and 296 instances (crop circle points), there are 11 088 missing values and 24 849 usable 

values. The wheat data were divided into yearly seasons to investigate each year separately. An 

example of the 2018 wheat season chlorophyll data can be seen in Table 4.7. An empty TIFF file 

was supplied for “24/06/2018” and thus contained no data. This is most likely due to a significant 

amount of cloud cover during the imaging process. Similarly, only 5 data points on the entire crop 

circle (5 out of a total of 296 points) were available to supply data on “29/06/2018” and “07/10/2018”.   
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Table 4.7: Data quality report of 2018 chlorophyll values 

 

All the crop circle points were used to plot a graph to better understand the behaviour of the wheat 

chlorophyll values.  

Figure 4.8 and Figure 4.9 represent the chlorophyll values for the wheat season during 2017 and 

2018. For better visualisation, only three crop circle points were used as points on the line graphs 

below. All the points on the crop circle follow a similar pattern. The wheat is planted in May, starts to 

show chlorophyll values in June and July as the plant grows, peaks in September and starts to 

decline in October as the plant dies and the wheat is harvested.  

 

Figure 4.8: 2017 Wheat season – Chlorophyll 
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Figure 4.9: 2018 Wheat season – Chlorophyll 

4.2.2.3 Data quality - Meteorological data 

The data supplied by the SAWS contained data from January 1939 to May 2021 and included the 

following: 

• The daily minimum temperature in degrees Celsius (˚C) 

• The daily maximum temperature in degrees Celsius (˚C) 

• The daily rainfall in millimetre (mm) 

• The daily humidity (%) 

• The daily windspeed in meter per second (m/s) 

• The daily pressure in hectopascal (hPa) 

It was decided to isolate the period 2010 to May 2021 for analysis purposes. The data have no 

missing values. The minimum and maximum temperature trends can be seen in Figure 4.10 below. 

The years follow a similar trend throughout, varying slightly for each month. Figure 4.11 shows a bar 

chart of the mean rainfall per month, colour-coded per year of a typical summer rainfall climate trend 

in South Africa. As discussed in Chapter 3, Section 3.4.2, wheat production heavily relies on the 

previous rain season. The rain season is approximately from October until April, followed by very 

little to no rain from May to September. 
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Figure 4.10: Minimum and maximum temperature from 2016 to 2020 for the approximate location of Farm X 

 

Figure 4.11: Mean rainfall per month grouped by years from 2010 to 2021 

4.3 Data preparation 

Data preparation includes data cleaning and constructing the final data tables to prepare the data 

for the model. The data quality issues for the sets were identified and were dealt with in the cleaning 

phase to ensure the model runs as efficiently as possible. 

4.3.1 Data cleaning 

Data cleaning was done to mitigate the data quality issues that were identified in the quality reports 

and initial data exploration graphs. The categorical data were converted into artificial variables to 

prepare the data for the ML algorithms. The missing values for the chlorophyll were dealt with in the 

following ways: 

▪ Column dates with no values were removed. 

▪ Missing values were replaced with date averages and not point (instance) averages as the 
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seasonal chlorophyll values vary between 30 and 65. The given crop circle points have a 

chlorophyll standard deviation between 1 to 2.5 on any specific date.  

▪ Months with more than one observation per month were grouped together, and the mean per 

month was determined per point. By standardising the chlorophyll observations to one value 

per month simplified the analysis and graphing. 

4.3.2 Constructing final datasets from the initial raw data 

No GPS-specific yield was available to add to the final dataset. The chlorophyll data was compared 

to the average tonnage per hectare to explore the relationship between these values. The average 

yield per hectare for each year is shown in a bar chart in Figure 4.12. Note that there is no clear 

correlation between the average chlorophyll of 296 points per month and the overall crop circle yield 

presented in Table 4.8. It is important to note that more accurate yield along with other features 

should be considered to determine the correlation between chlorophyll. The total yield for the season 

was supplied, but simply dividing the total yield with the area of the crop circle will only provide an 

average yield value for each varying chlorophyll point and will not be accurate to include in the final 

data table. Results show that 2017 had the highest chlorophyll average but the second-lowest yield 

of 6.7 ton/ha. The year 2020 had a much lower average chlorophyll of 56.34 but had the highest 

yield of 7.77 ton/ha. Ideally, more accurate yield data, such as GPS-specific yield, would be more 

useful to test the predictions and confirm the correlation between chlorophyll and yield. However, 

considering the real-world scenario and utilising the available data, a detailed analysis can be 

performed to test the predictions of monthly average chlorophyll values instead.  

Table 4.8: Ton/ha and average chlorophyll per year 

 
 

 

Figure 4.12: Bar chart of yearly average ton/ha 
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The decision was made to set the September chlorophyll values as the target feature values, as 

most points reached their peak chlorophyll in September. This decision was based on the research 

done in Chapter 2, Section 2.6.3, regarding the correlation between chlorophyll and yield values. 

Furthermore, it was assumed that if the “peak” chlorophyll value can be predicted in September, it 

can be used as a reasonable indication of the crop yield in October. The final table consists of 

useable chlorophyll data, nutrient and soil classification, and meteorological data. The 

meteorological data consist of the seasonal monthly means and the previous rain season total in 

millimetres from October to May. The previous season total is included because of wheat’s 

dependency on the residual moisture in the soil from the previous rain season. A sample of the final 

table constructed from the raw data can be seen in Table 4.9 and Table 4.10. The aforesaid tables 

were split into part 1 and part 2 due to the width of the table. 

Table 4.9: Sample of the final wheat table - part 1 

 

Table 4.10: Sample of the final wheat table - part 2 

 

4.4 Modelling 

The modelling stage includes the steps to analyse the data by the use of data science methods. 

Firstly, correlation matrices were used to inspect the correlation between the chlorophyll values in 

September and all the nutrient and soil classification features. Figure 4.13 shows an example of a 

correlation matrix of the chlorophyll values of September 2017. It can be seen that there are no 

strong correlations between any features and the target feature, September chlorophyll. There are, 

however, strong positive correlations between features such as (i) Ca and Zn - with a correlation of 

0.76 and (ii) Oakleaf soil-form and PAWC - with a strong positive correlation of 0.73. Root depth and 

“clay texture class” presented a strong negative correlation of -0.93. The correlation matrices were 

a reasonable starting point to get to know the data, but further analysis was required. 

At this stage, it was unclear which features were best suited for accurate predictions. Hence, it was 

decided that the features could not be analysed linearly but should rather be considered in subsets. 

Features such as pH do not follow a linear relationship and cannot be analysed using linear 
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regression to determine the relationship with the target values. Feature importance and selection 

can be used to analyse the features with various methods to determine the relationship and 

contribution of features. 

 

Figure 4.13: Correlation matrix for September chlorophyll 2017 and nutrient and soil features 

4.4.1 Feature importance and selection 

“Feature importance and selection” is the method of evaluating the importance of features and 

choosing a subset of the most relevant features that perform the best. Feature selection can be 

approached by using filter, wrapper or embedded methods. The selection depends on the type of 

data set and the required predictions.  

Initially, a lazy regressor was run on the wheat table to analyse the performance of several algorithms 

on all of the features. The built-in lazy regressor performance metrics are shown in Figure 4.14 below 

and are adjusted-R2, R2 and Root-Mean Squared Error (RMSE), and the time taken by the algorithm 

to be completed. The equation for R2 is shown in (4.1), with yi being the actual y value, ŷ𝑖 the 

predicted y value and ȳ the mean of all the y values. Adjusted R2 is shown in (4.2) with N being the 

number of observations and K the number of independent variables in the model. Lastly RMSE can 

be seen in (4.3). Let yt be the observed value and ỹt the predicted value, with T fitted points in the 

time series. 

𝑅2 = 1 − 
𝑠𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝑆𝑆𝑅)

𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 (𝑆𝑆𝑇)
 (4.1) 
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= 1 −  
∑ 𝑖(𝑦𝑖 − ŷ𝑖)2

∑ 𝑖(𝑦𝑖 − ȳ )2
 

𝑅2𝑎𝑑𝑗 = 1 −
(1 − 𝑅2)(𝑁 − 1)

𝑁 − 𝑝 − 1
 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑡 − ỹt)2𝑇

𝑡=1

𝑇
 

The most common interpretation of a R2 value indicates how well the regression model fits the 

observed data. Adjusted-R2 also indicates how well the regression model fits the observed data, but 

adjusts for the number of terms in a model. RMSE is the standard deviation of the residuals or 

prediction errors and are a measure of how far the data points are from the regression line. The top-

performing algorithms from the lazy regressor with their respective R2 scores were (i) ETR with 0.87, 

(ii) XGBoost regressor with 0.87, (iii) HistGradientBoost regressor with 0.86, (iv) Light Gradient 

Boosting Machine (LGBM) regressor with 0.85 and the (v) Random Forest regressor with 0.85. 

 

Figure 4.14: Lazy regressor model performance on all features 

Some of the features might be dependent on others. In such cases, simply analysing the relationship 

between each feature and the target feature (September chlorophyll) would not be sufficient. Thus, 

wrapper methods were used to detect the interaction between features and analyse the best 

performing feature subset. This means that the lowest-scoring features are not necessarily 

(4.2) 

 

 

(4.3) 
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disregarded because they might increase the performance when used in a subset with other 

features. Wrapper search methods included forward selection, backward elimination, exhaustive 

selection and stepwise or bidirectional selection (Charfaoui, 2020; Verma, 2020). 

While wrapper methods have many advantages, one of the main disadvantages is a high chance of 

over-fitting. The final wheat data set provides a good candidate for using scaler transforms as the 

variables have different minimum and maximum values and different data distributions and ranges. 

Some algorithms might not be as effective when the data is not scaled, as variables that are 

measured at different scales do not contribute equally to the model fitting & model learned function 

and might end up creating a bias as they might consider ranges such as pH (ranging between 1 and 

14) to contribute a smaller weight than Ca that ranges within the thousands. Thus, scaling or 

normalising the data can help to deal with this problem. Standardisation is usually preferred when 

the data follow a Gaussian distribution, which was not the case for this data set (Brownlee, 2020b). 

Thus, the MinMaxScaler function in Python was used to normalise the data to values between 0 and 

1, as seen in Figure 4.15. The MinMax equation can be seen in (4.4). Let Xmin be the minimum in 

the range and Xmax the maximum in the range. 

 

Figure 4.15: Wheat table normalised 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

A sequential forward selector was used to determine the optimal number of features to include in the 

subset. Figure 4.16 indicates that the intersection occurs at nine features. Choosing more than nine 

features will not necessarily increase the model performance but require more computing power and 

increase the computing time. Thus, it is a point of diminishing return. 

(4.4) 
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Figure 4.16: Graph for analysing the optimal number of features 

The scoring argument specifies the evaluation criterion to be used. For regression problems, there 

is only an R2 score in default implementation. Similarly, for classification, it can be accuracy, 

precision, recall, f1-score, etc. (Verma, 2020). 

After choosing the optimal number of features, the four wrapper methods were run on the top-

performing algorithms. The LGBM regressor was not used due to the similarity to the other chosen 

algorithms. The three most commonly used error metrics for evaluating performance of regression 

models are Mean Absolute Error (MAE), Mean Squared Error (MSE) and RMSE. MAE measures 

the average magnitude of the errors in a set of predictions without considering their direction and is 

less biased for higher values. The equation can be seen in (4.5), with yi being the ith expected value 

in the dataset, ŷi the ith predicted value and n the total number of data points. MSE tells you how 

close a regression line is to a set of points and is preferred to MAE when accounting for outliers. The 

equation is seen in (4.6), with yi is the ith expected value in the dataset, ŷi is the ith predicted value. 

The results are shown in Table 4.11. A smaller MAE and MSE indicate a better model, whereas a 

value close to one (1) for R2 is desired. It is clear that the ETR outperforms the other algorithms in 

each method. Gradient boosting and decision tree-based algorithms are usually robust against 

scaling and normalisation problems. The algorithms were also tested with and without normalisation 

to compare the performance. Normalising the data did not improve the boosting regressor accuracy, 

but minor changes were observed with the Random Forest and ETRs because of the random nature 

of the algorithm. The sequential forward selection wrapper method with the Extra Trees algorithm 

was chosen. The R2 value of 0.86 indicates that the variance of the independent variable explains 

86% of the variance of the dependent variable being studied.  

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − ŷ𝑖|𝑛

𝑖=1

𝑛
 (4.5) 
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𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − ŷ𝑖)2

𝑛

𝑖=1

 

Table 4.11: Wrapper method and algorithm results table 

 

4.4.2 Predictions 

After the best performing method and algorithm were chosen, the wheat data for the year 2020 were 

fed into the ETR algorithm. Only data from June, July and August were available, but the data for 

September 2020 are missing from the original TIFF files. This presented an interesting opportunity 

to ‘test’ the prediction model in an unconventional way. The previous data from 2017, 2018 and 2019 

were used as the entire training set, and the new 2020 data were used as the “x_test” data to predict 

chlorophyll values for September in 2020 (y_predict). As referred to above, no data were available 

for September 2020 (y_test). Consequently, the accuracy of the model cannot be calculated. The 

predicted values were stored in a column along with the original 2020 data and were used in the 

visualisations to compare the predicted values to previous years’ September chlorophyll by using 

statistical methods such as the mean and standard deviation (see Figure 4.17). 

 

Method  MAE Normalised MSE Normalised r2 Normalised

Sequantial forward selection:

Randomforest Regressor 0,9364 0,9432 1,8441 1,7841 0,8410 0,8462

HistgradientBoost Regressor 0,9450 0,9450 1,8098 1,8098 0,8440 0,8440

XGB Regressor 0,9725 0,9725 1,9672 1,9672 0,8304 0,8304

Extra Trees Regressor 0,9128 0,8832 1,7415 1,5897 0,8499 0,8629

Sequantial backward selection:

Randomforest Regressor 0,9442 0,9553 1,7900 1,8867 0,8457 0,8373

HistgradientBoost Regressor 0,9381 0,9381 1,7234 1,7234 0,8514 0,8514

XGB Regressor 0,9318 0,9318 1,7310 1,7310 0,8508 0,8508

Extra Trees Regressor 0,9007 0,9220 1,6463 1,7062 0,8581 0,8529

Sequantial float forward selection:

Randomforest Regressor 0,9611 0,9366 1,9547 1,7467 0,8315 0,8494

HistgradientBoost Regressor 0,9450 0,9450 1,8098 1,8098 0,8440 0,8440

XGB Regressor 0,9371 0,9371 1,7559 1,7559 0,8486 0,8486

Extra Trees Regressor 0,8925 0,8949 1,6607 1,6368 0,8568 0,8589

Sequantial float backward selection:

Randomforest Regressor 0,9318 0,9363 1,7830 1,7919 0,8463 0,8455

HistgradientBoost Regressor 0,9222 0,9222 1,7262 1,7262 0,8512 0,8512

XGB Regressor 0,9569 0,9569 1,8587 1,8587 0,8398 0,8398

Extra Trees Regressor 0,8912 0,8887 1,6390 1,6036 0,8587 0,8617

(4.6) 
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Figure 4.17: September 2020 predicted chlorophyll added to the original wheat table 

The train and test X and Y sizes can be seen in Table 4.12 below. Combining data for years 2017, 

2018 and 2019 provides a data set of almost 900 training points. This was split into a 712-point rows 

and 27 feature columns (X_train) data table. The test set, X_test, consisted of 179 rows and 27 

feature columns (20% of the original data table values). The model predicted 179 chlorophyll values 

and compared them to the X_test data table. By adding 2020 data, the set increased by another 296 

points. Still, due to the unavailability of September satellite data in 2020, no y_test could be used to 

compare the predicted values and measure the model's prediction accuracy. 

Table 4.12: Train and test sets 

 

4.5 Summary  

The CRISP-DM method was discussed and used as a guideline to analyse the data. Four wrapper 

methods were used for feature importance and selection to determine the final feature subset in the 

prediction model (see Chapter 6). The feature subset was used as input to determine chlorophyll 

values for September. The ETR algorithms were given a data table of 2017, 2018 and 2019 split into 

80% training and 20% testing data. The sequential forward selector chose the best feature subset, 

used the chosen features to make chlorophyll predictions, and achieved an accuracy of 86%. The 

model was also given a test set from 2020 to predict September chlorophyll values, which was then 

saved in a table used in Chapter 6 for visualisation and validation of the model.  

Old New

X_train 712; 27 891;27

X_test 179; 27 297;27

y_train 712; 891;

y_test 179; 
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Chapter 5  
Concept demonstrator development 

This chapter incorporates all the previous chapters’ research that was used to develop the concept 

demonstrator for the use case. In addition, the level of technology adoption of Farm X and the data 

used in the visualisation are discussed below. 

5.1 Level of precision agriculture adoption 

Recall the discussion of the six levels of PA adoption in Chapter 2, Section 2.1 and note the relevant 

snippet shown in Figure 5.1 (see overleaf). Farm X lies between level 3 and level 4.  

The chlorophyll data layers have been collected over four years (2016 - 2020). The imagery is 

affected by cloud cover and only provides approximately one to two useable images per month from 

June to October. However, in-season operational decision-making requires more frequent imagery 

to assist with near real-time decisions. Level 5 PA adoption typically implements imagery, weather- 

and soil moisture sensors, and pests- and disease monitoring systems. Farm X data include a 

nutrient and soil characteristic data layer, but it is not updated annually.  

The sixth level of PA adoption should be considered along with the type of data analytic systems 

discussed in Chapter 2, Section 2.4.2. Descriptive and diagnostic analytics lies within levels 1 to 

level 3 of PA adoption. Predictive analytics can be used in level 4 adoption, and prescriptive analytics 

can be used in level 5 adoption for more automated decision support.  

Company A uses the collected data to provide agronomic advice to the client but does not include a 

predictive- or prescriptive analytics service. The concept demonstrator thus aimed to utilise 

predictive analytics and demonstrated how the collected data layers could be used for in-season 

yearly comparisons to form the basis for a prescriptive decision support tool. This can be achieved 

in future work when more data have been collected, and more data layers (pest, disease and other 

vegetation indices) have been integrated into the system. Ideally, yield data would be preferred to 

test the relationship between chlorophyll predictions and yield data, but the study included a real-

world example.  
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Figure 5.1: The six levels of PA adoption (levels 3 to 5) 

5.2  Visualising agriculture data and concepts 

As indicated in previous sections, a major goal of this research study is to improve the efficiency of 

analysing the layers, ideally by automating the process and yielding decision support intelligence.  

After cleaning the farm data and constructing the final data table in Chapter 4, it was discovered that 

too many features complicate the decision-making process. Therefore, a feature importance and 

selection algorithm was used to select a subset of features for the ML prediction algorithm. It was 

found that nine features were an optimal number and that using more led to diminishing returns. 

Decision-support systems were discussed in Chapter 2, Section 2.7. The concept demonstrator can 

include crop management zones, weather, and water management decision-support by utilising the 

available data. However, the current system used by Farm X does not compare yearly data. The 

farmer might thus surmise that the crops are performing well, but in reality, the current conditions of 

the crops might be performing below average compared to the crops a year ago on the same day.  

Providing and analysing historical data can provide the farmer with valuable comparison data to 

calibrate the farm’s performance. August 2017 and August 2018 were used as an example to 

illustrate this, as they had the most available data with four satellite image observations per month. 

Missing data points were replaced with the average of the total crop circle points of the same day 

and were not interpolated. Interpolating the data would not accurately represent the chlorophyll as it 

differs significantly within weekly timeframes. Figure 5.2 and Figure 5.3 display the chlorophyll for 8 

August 2017 and 2018, respectively. They are plotted within the same colour range. Comparing the 

two images, the farmer can now visually see how the farm performed in 2018, compared to August 

of the previous year (2017). Python was used to compare each point value with the previous year’s 

point value on the same day. The point colour is displayed according to the performance of 2018 

compared to 2017 (see Figure 5.4). Figure 5.5 displays the chlorophyll values of 2019 compared to 

the performance of 2017 and 2018. The chlorophyll values on 8 August 2019 is performing poorly 

compared to the previous year’s chlorophyll values on 8 August.  
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Figure 5.2: Chlorophyll per point for 8 August 2017 
 

Figure 5.3: Chlorophyll per point for 8 August 2018 

 

 

Figure 5.4: 2018 chlorophyll values compared to 2017 chlorophyll values per point 
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Figure 5.5: 2019 chlorophyll values compared to 2018 and 2017 chlorophyll values per point 

5.3 Summary 

This chapter explained how all the previous sections are combined to develop the concept 

demonstrator decision support tool. In particular, new comparison and prediction functions were 

included. The next chapter discusses the components of the decision support tool and illustrates 

how it can be used in a dashboard to improve decision-making.  
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Chapter 6  
A next-generation decision support tool 

Chapter 4 described the CRISP-DM methodology that was used as a guideline to clean and 

manipulate the data used in the prediction algorithm. The feature selector algorithm was used to 

choose a subset of nine features used in chlorophyll predictions when given known data for training 

and testing. This chapter discusses predictions made with known and unknown data. In Chapter 5, 

it was shown that Farm X lies between levels 3 and 4 of PA adoption and that it does not currently 

utilise predictive analytics. 

This chapter examines how predictive analytics can be added and used in a decision support tool 

and how data can be displayed in a dashboard. Conceptual dashboards were developed to present 

information in a user-friendly way, particularly the “current status of the farm” and predictions for the 

following months derived from the algorithms and comparisons with previous years’ performance.  

6.1 Data for predictions 

The real monthly chlorophyll averages for each year are shown in Figure 6.1, including the predicted 

September 2020 average presented in Chapter 4. All four years follow a similar chlorophyll trend, 

except for the chlorophyll values in October 2019, probably because the wheat was most likely only 

harvested in November. The data of each year were also examined separately to investigate the 

values in more detail. The average chlorophyll per month (blue line) and the standard deviation (red 

shading) for each month were calculated and graphed in Figure 6.2, Figure 6.3 and Figure 6.4. It 

was decided to isolate the data from 2018 for the predictions since it has the most “complete” data 

set.  

 

Figure 6.1: Monthly chlorophyll averages for the years 2017, 2018, 2019 and 2020 

 

Stellenbosch University https://scholar.sun.ac.za



86 

 

Figure 6.2: 2017 Chlorophyll monthly averages and 

standard deviation 

 

Figure 6.3: 2018 Chlorophyll monthly averages and 

standard deviation 

 

Figure 6.4: 2019 Chlorophyll monthly averages and standard deviation 

6.2 Test scenarios 

The chlorophyll predictions were divided into two subsections using known and unknown test data. 

The data used for training and testing are discussed as well as the results and prediction accuracy. 

The regressors accuracy was measured by the coefficient of determination (R2), MAE and MSE.  

6.2.1 Known test data 

A significant part of the work described in Chapter 4 was spent on data cleaning and data 

manipulation to prepare the data for the chosen prediction algorithm. The available data from 2016 

to 2020 were used to run the feature selectors. After analysing all the wrapper methods, the ETR 

algorithm was chosen for the chlorophyll predictions. Despite the algorithms random nature, it 

produced the best R2 value with every iteration. The train, test, split function was used in Python to 

split the data into 80% for training and 20% for testing with a random state of 42. It was discovered 

that with various scenarios, the model could make accurate chlorophyll predictions given a variety 

of nutrient, soil, chlorophyll and weather features.  

An example of September predictions for the year combination 2017, 2018 and 2019 can be seen 
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in the snippet in Figure 6.5. The training set consisted of 712 rows and 29 feature columns, and the 

X_test data table consisted of 179 rows and 29 feature columns. With X being the entire data set 

without the September chlorophyll column and Y being the September chlorophyll column.  

 

Figure 6.5: Example of September prediction accuracy for the year combination 2017, 2018 and 2019 

The various year combinations produced different feature subsets (see Table 6.1). Still, in most 

cases, the top five features were almost always the same nutrient and soil features, with variation in 

the last three features, including meteorological and soil type features. The assumptions from 

Chapter 3, Section 3.5 to include the extra features such as pH, Mn and Zn in the feature selection 

model proved successful.  

For example, it was noted that Mn appeared in all of the feature selection subsets and pH in 6/9 of 

the feature subsets. Since the chlorophyll is presented in monthly instances, instead of, for example, 

weekly instances, the average monthly meteorological is too generalised for time-series data to have 

a substantial impact on the model. Only the minimum temperature, maximum temperature and rain 

seemed to influence the model’s feature subset selection. 

Table 6.1: Selected features and cross-validation (CV) score for various year combination data 

 

6.2.2 Unknown test data 

After exploring the model performance on known data, the ETR algorithm used various yearly 

scenario combinations to train the model with “unknown data”. The unknown data refers to a chosen 

year that was not used in the training of the model. The various scenarios consisted of combinations 

of various years’ 296 chlorophyll data points and features as training data (X_train). A separate year 

(X_test) was presented as unknown data. The X_train set was normalised using the MinMaxScaler 

as shown in Figure 6.6, and the X_test was transformed based on the normalisation of the X_train 
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table (see Figure 6.7). After the features were selected, the X_train and X_test tables were 

transformed to include only the selected features from the selector. X_test was given to the model 

to make chlorophyll predictions, and the original chlorophyll values (y_test) was used to calculate 

the prediction accuracy.  

There were three prediction options, where the first and second used July to make predictions for 

August and September (in the absence of August chlorophyll data). The third type of prediction was 

made with July and August chlorophyll data included in the X_train table to predict chlorophyll values 

for September.  

 

Figure 6.6: Normalised X_train table (2017, 

2018, 2019) 

 

Figure 6.7: Normalised X_test table (2020) 

The various scenarios were fed into the feature selector algorithm described in Section 4.4. It was 

found that the chosen features did not produce the same accuracy when presented with a data table 

from an unknown year, compared to the initial predictions with known data discussed in Section 

6.2.1. These discrepancies illustrate the sensitivity of the model with regard to the completeness of 

the data set, in this case (i) the absence and quality of chlorophyll data captured as well as the (ii) 

nutrient and soil classification values that were not updated for each growing season. The unknown 

test year data table values are seen as “out of sample”, and after normalising the data, any “out of 

sample features” significantly influenced the accuracy of the prediction model. Figure 6.8 and Figure 

6.9 show the minimum and maximum of each feature for X_train and X_test after it was transformed 

with the selected features. Transforming a data table entail removing the unwanted feature columns 

and only keeping the selected feature column chosen by the feature selector. 
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Figure 6.8: Minimum and maximum of 

normalised and feature-transformed 

X_train 

 

Figure 6.9: Minimum and maximum of 

normalised and feature-transformed 

X_test based on X_train normalisation 

6.3 Monthly chlorophyll predictions for 2018 

After examining all the prediction outcomes of the various year combination scenarios, 2018 was 

used to plot the three prediction options. The blue line in Figure 6.10 represents the real average 

chlorophyll value, and the red shading represents the true standard deviation for 2018. The dashed 

line and dotted lines represent the average of the predicted values for August and September 

independently. 

6.3.1 Using July data to predict August and September values 

Figure 6.10 shows a potential user view for July. The average crop circle chlorophyll for June and 

July are displayed together with the standard deviation of the crop circle points. The average 

prediction points for August and September are shown by the dashed and dotted lines. In an ideal 

scenario, as time progresses, the model will update the blue line as true values and adjust the August 

and September predictions. 
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Figure 6.10: August and September chlorophyll prediction from July 

6.3.2 Using August data to predict September values 

The average August prediction of chlorophyll value of 62.66 can be compared to the actual average 

of 63.08. This seems close until one examines the R2 value of -0.001, which provides a worse 

alternative to simply using the average to make a prediction. The model updated the table with the 

actual chlorophyll values for 2018 and then adjusted the chlorophyll predictions for September, with 

a mean of 59.37 compared to the July prediction average of 59.52. 

 

Figure 6.11: September chlorophyll prediction from July and August 

6.3.3 September – compare predictions to true values 

The model coped well with the August predictions for September and the mean of 59. The value of 

37 was close to the true mean of 59.70. The R2 value also improved to 0.15.  
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Figure 6.12: True and predicted monthly chlorophyll for August and September 

Similarly, the other year combinations were tested and produced the results displayed in Table 6.2 

below. One may be tempted to assume that the model is accurate because the predicted average is 

very close to the true average. However, by examining the R2 values, it is evident that some 

predictions performed much better than others. This is due to the previously mentioned out of sample 

meteorological and chlorophyll data. The year 2019 performed the worst compared to the other 

years. Referring back to  Figure 6.1: Monthly chlorophyll averages for the years 2017, 2018, 2019 

and 2020, 2019 have the lowest average chlorophyll per month and an abnormal harvesting season 

for October.   

Table 6.2: True and predicted values for August and September for each year combination 

 

6.3.4 Exploring model parameter and performance 

Algorithms related to the decision tree family rarely require normalisation, as the algorithm often 

handles the differing features ranges well. The prediction accuracy was tested by feeding the 

algorithm only normalised X table data (Figure 6.13) and normalised X and Y data (Figure 6.14). In 

every scenario, normalising both X and Y values improved the accuracy significantly.  
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Figure 6.13: 17,18,19 Pred Aug20 - Only X 

normalised 

 

Figure 6.14: 17,18,19 Pred Aug20 - X and Y 

normalised 

6.4 Conceptual user dashboards 

The research proposal discussed in Chapter 1, Section 1.2 highlighted the plethora of information 

presented to the user as one of the main issues to be addressed. To do so, the dashboard concept 

visualisations were designed to show how the analysed data and predictions could be incorporated 

to be useful to the user. The dashboards provide a summary of the features and calendar timeframe 

chosen by the user. The dashboard consists of two main views, viz. the “overview” and “weather” 

dashboards, displaying the current status and historical data. In some instances, the dashboard will 

show a warning related to a current or potential problem. Although the current status of the farm 

could look acceptable, it is important to compare the current farm status to previous years’ 

performances to “calibrate” the performance. Viable month and year dates were chosen for 

visualisation purposes and will be discussed below. Orange circle markers were added to the 

dashboards to simplify the explanations.  

6.4.1 Overview of the dashboard 

In the overview view of the dashboard, the user can choose to display the current status of the farm, 

view the historical performance and trends, or compare the current status performance (of 

chlorophyll) to historic chlorophyll data simultaneously. 

Note: In the discussion below, numbers between brackets refer to the orange circle markers. 

6.4.1.1 Current year performance – August 2018 

The current status overview (1) was selected to display August 2018 (2) as an example for the 

current status dashboard. The dashboard is used to identify how the farm is currently performing in 

the specific month (in this case, August 2018) compared to previous monthly and yearly chlorophyll 

data. The timeframe to compare the current performance can be selected at (3), and in this example, 

the data is compared to 2017’s and 2019’s combined chlorophyll performance. Then, (4) visually 

shows the 298 individual geographical points’ performance compared to the chosen timeframe point 

performances. In other words, 2018’s point 3 chlorophyll value is compared to the average of both 

point 3’s chlorophyll from 2017 and 2019. This is an added feature to address the original research 
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problem and aims to help the user identify the true performance of the crops. Suppose there is no 

individual historical point to compare the point data with. In that case, it will compare it with the 

standard deviation of the current date to investigate how it is performing compared to the rest of the 

crop circle. Ideally, this will not be necessary (as it would be preferred to have no missing data), but 

variables such as cloud cover affect the data quality in the real world. The model will also calculate 

when an area on the crop circle is severely underperforming based on the historical patterns and 

trends (4), (5). A monthly view of the average and predicted average monthly chlorophyll could be 

viewed in (6), accompanied by the tabulated values in (7), indicating the historical monthly average 

for all the previous years. 

 

Figure 6.15: Current overview dashboard for August 2018 

6.4.1.2 Historic performance 

Figure 6.16 displays what a user will typically see on the dashboard when selecting the historical (1) 

option for August 2018. There are three satellite data files (in tiff format) for August 2018 that were 

manipulated and visualised in Python and displayed in (2b). In this case, the user compared the 

2018’s to 2017’s (2a) performance seen at (2c). Lastly, the user also chose to see a graph (3a) 

displaying the average performance during August 2018, compared to the monthly averages of 2017 

and previous years’ monthly averages. 
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Figure 6.16: Concept dashboard: Current and historical overview for August 2018 

6.4.2 Weather/Meteorological data 

After exploring the importance of meteorological data in the literature discussed in Section 2.3 and 

the growing conditions in Chapter 3, Section 3.4, it was also decided to include this data in the 

dashboard design. The two dashboards below conceptually show the potential value of 

meteorological data to support decision-making. 

6.4.2.1 Weather example A – 8 June 2018 

The weather (1) dashboard for 8 June 2018 (2) displays a combination of current and historical 

weather data. The timeframes for each weather feature can be chosen next to the “Historic” button 

as seen next to (3), (4) and (5). As previously mentioned in Chapter 3, the South African grain 

guidelines suggest that the ideal growing temperature for winter wheat is between 5 - 25˚C. The 

daily minimum and maximum temperature for May 2018 is shown in the line graph at (3b) and 

compared to the daily average of 2010 to 2017. It can be observed that on 14 May 2018, the 

maximum temperature was below 15˚C, which is considered an outlier for May. The table at (3a) 

shows the current temperatures as well as the forecasted temperature. The red blocks are 

forecasted temperature values from the SAWS and indicate possible frost from 11 June 2018. This 

could be important since the wheat seedlings are extremely sensitive to hail and frost. When wheat 

is planted during May, it is also important to examine the windspeed for potential seed loss or lodging 

(5a). 
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Figure 6.17: Concept dashboard: 8 June 2018 current and historical weather 

6.4.2.2 Weather example B – 21 May 2018 

An examination of the South African Grain Guidelines indicates that winter wheat relies heavily on 

the residual soil moisture of the previous rain season. Thus, this dashboard supports the user in 

related decision-making such as irrigation scheduling. The bar chart (3a-left) and table (3a-right) 

show the daily rain in May 2018 and the daily averages from 2010 to 2017. Another bar chart at (3b) 

displays the total monthly rainfall for the previous six months and the historical monthly averages, 

selected at the button and calendar icon next to (3). Finally, the text box at (3c) is displayed in yellow 

since a previous season rainfall of 600 mm is preferred when planting wheat in May, but 2018 only 

produced a total rainfall of 489 mm from November 2017 to April 2018.  
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Figure 6.18: Concept dashboard: 21 May 2018 current and historic rain 

6.5 Summary 

This chapter discussed the testing scenarios for predicting chlorophyll values given known and 

unknown data tables. This predictor function will be able to provide the farmer with “early warning” 

estimates of the future performance of the crops. 

The ETR algorithm produced an R2 value of 0.85 when the algorithm was given known data for 

training and testing. When the algorithm was used to train on known data but test on unknown data, 

the R2 values dropped significantly due to the model regarding small changes in the data as “out of 

sample”. The ETR algorithm performed well for predicting August and September chlorophyll for 

2017 with R2 values of 0.281 and 0.273, respectively. The models produced negative R2 values for 

the August and September predictions for 2019 and 2020. By referring back to the monthly 

chlorophyll displayed in Figure 6.1, it can be observed that the monthly chlorophyll was lower than 

2017 and 2018 for each month. 
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Chapter 7  
Validation and verification  

This chapter discusses the validation process of the concept demonstrator decision support tool. 

Model validation refers to the process of determining whether the model accurately represents a 

real-world system. Three popular types of simulation validation are mentioned by Law (2015), which 

are also applicable within the context of this concept demonstrator: conceptual validity, operational 

validity and credibility. 

7.1 Operational validity 

Operational validity determines whether the model's output represents that of a real-world system 

and is typically confirmed by means of results validation. The testing data set is a separate portion 

of the same data set from which the training set is derived. The main purpose of using the testing 

data set is to test the generalisation ability of a trained model. 

The project differs slightly since it is only tested on real-world data to confirm operational validity. 

The operational validity was done in Chapter 4 and Chapter 6, which discussed the use of known 

and unknown data to test the model. The various feature subsets from each of the four algorithms 

each produced different results for the predictions of chlorophyll. The performance of the algorithms 

was measured by comparing the actual data with the predicted chlorophyll data. MAE, MSE and R2 

were used to measure the accuracy of the regressor algorithm performances.  

7.2 Conceptual validity and credibility 

Conceptual validity is used to determine whether a model is a valid representation of the real world. 

Face validation is the most popular technique, which involves asking knowledgeable individuals if 

the model is comparable to the real world. Three SMEs were consulted to evaluate the approach 

and technical aspects of the decision support tool. The researcher presented an online presentation, 

and the SMEs were provided with the (i) thesis outline, (ii) problem statement, research objectives, 

project scope and limitations, (iii) data analysis approach, (iv) ML algorithms and test scenario 

predictions, (v) concept dashboards and (vi) recommendations for future work. They were supplied 

with a short questionnaire and asked to provide their professional opinions regarding the research 

approach and development of the concept demonstrator. The names of the SMEs are disclosed, as 

agreed in the NDA contract, and will be referred to as SME1, SME2 and SME3. However, they do 

have several combined years of experience in data analytics, AI, and digital solutions in agriculture. 

The questions were divided into categories and will be discussed below.  
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7.2.1 Approach, data collection and data analysis 

The SMEs were asked to comment on the following points regarding the research approach and 

data analysis: 

1. The use of QGIS to superimpose and extract the data into an Excel workbook. 

The experts agreed that consolidating the tiff files containing the chlorophyll and the soil and 

nutrient data layer is useful for further analysis. SME2 felt that the Python plug-in in QGIS 

should be utilised to import the data table directly into Python. SME3 agreed with SME2 that 

exporting the data into an Excel workbook might not be optimal for future work since adding 

additional data, such as yield data, might contain millions of ‘pixels’ yield points. SME1 

preferred the tabular data in Excel to better visualise the data and an easier method of initial 

data inspection and cleaning for this use case containing a third missing value for chlorophyll. 

2. The use of the CRISP-DM method as the basis for the data analysis and the method of 

dealing with missing values and the decision to consider feature subsets instead of linear 

relationships for between features.   

All three SMEs believe that an appropriate systematic approach to the data analysis was 

followed and that analysing the relationship between features when choosing the best 

performing subset is important. 

3. The approach to determine the best ML algorithm for the feature subset selection and 

the chlorophyll predictions.  

The SMEs were interested in seeing the top-performing algorithms for the feature subset 

selection and chlorophyll predictions for the known and unknown data. SME1 suggested 

further exploration into the use of minimum, maximum and average values of the weather 

data for when more chlorophyll data and yield data is available for analysis and predictions. 

7.2.2 Concept demonstrator 

The SMEs were presented with the four concept dashboards to illustrate how the given components 

(chlorophyll data, weather data, ML algorithms, visualisation tools) can be used in a decision support 

tool. They were asked whether they agreed with the use of visualisation tools such as graphs, tables 

and point-specific heatmaps to illustrate the features, predictions, weather trends and derived values. 

They were also asked whether they think that the proposed concept demonstrator could be useful 

to a potential end user and improve the decision-making process. The comments are summarised 

below. 

SME1 feels that a decision-making tool, such as this one, can assist the user in identifying problem 

areas and whether crops are performing as expected. Farmers are provided with better insights into 
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existing data, which would otherwise be hard to interpret. SME2 felt that it can also be extremely 

useful for subject experts, such as agronomists, who have intrinsic knowledge about the data and 

know what to look out for. SME3 stated that a high number of variables with geospatial and temporal 

variability requires tools to analyse, simplify, and visualise the data for farmers and their expert 

advisors.  

“The power of visualisation is under-estimated”- SME3 

7.2.3 Recommendations 

The researcher’s recommendations for future work were presented to the SMEs, and they were 

asked to rate it according to a Likert scale and provide additional comments. The recommendations 

are presented in questions and statements. 

1. Updating soil and nutrient classification data yearly can assist in the analysis and 

prediction of chlorophyll and yield.  

Soil classification data is a static data set (except in the case of major earthworks). SME1 

agreed with the research suggestion to update the nutrient and soil chemistry data sets 

seasonally. SME2 and SME3 believe that updating it annually will not add obvious value to 

the analysis and that it should be conducted every 2-3 years.  

2. Implementing GPS specific yield (e.g., GPS systems in tractors) can improve the 

prediction model.  

All three SMEs strongly agreed with this recommendation. SME1 believes that adding GPS-

specific yield can relate the model more closely to the variable of interest from a business 

point of view. 

3. More frequent imagery can add value by improving predictions and early warning.  

All of the SMEs agreed that increasing the number of images will add value and improve the 

model's predictability but did comment that the optimal number of images is unknown. SME2 

believes six times a month is financially sensible, but daily imagery could add more value to 

real-time decision support and early warning tools. 

4. Literature suggests that adding crop indicators such as FCover, MSAVI, and LAI can improve 

yield prediction. Do you agree that adding more indicators can improve yield prediction? 

The SMEs all expressed their curiosity about the potential benefit of adding more crop 

indicators to a prediction model (such as the one discussed in this document). SME2 

commented that more vigour and growth might not always be correlated with yield, as in 

some cases, the plant pushes more energy into the leaf and not into the fruit. 

5. Adding pest and disease data can add value to a decision support system?  
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SME1 suggests that adding pest and disease data can improve the tool's performance and 

offer a better explanation of the chlorophyll trend (potentially yield too). SME3 states that it 

could be more useful for some crops than others but agrees with the recommendation to add 

the pest and disease data. 

6. Adding meteorological data sets (historical, current and forecasted) can improve 

decision support?   

The SMEs all agreed that adding more detailed weather data can add considerable value to 

a decision support tool. It can assist the users in detecting anomalies, taking preventative 

actions, and increasing the accuracy of expert advice to the farmer. SME3 states that it is 

well-known that micro-climate has a significant impact on crop production. 

7. Integrating market-related data (demand, price etc.) can provide estimations of predicted 

profits and assist the farmers with crop selection.  

SME1 and SME3 agreed that it could be useful to add in the presence of yield data and more 

specific yield predictions. However, not all farmers can switch crops on short notice, and 

SME2 stated that the recommended feature might not be useful in all situations. 

7.2.4 Additional research 

The SMEs were also asked to provide their expert opinions on the adoption of PA technologies. 

1. What are the challenges and limitations that influence the adoption of advanced technologies 

in agriculture? (Global or South African perspective)  

The most important factors influencing the adoption of PA according to SME1 is the lack of 

high-quality data, high implementation costs and the understanding and familiarity with data-

driven decision-making. SME2 explained that the average age of farmers is increasing and 

that very few young people are taking up farming as a career, which often leads to another 

challenge - resistance to change and adoption of new technologies. Both SME2 and SME3 

mention the challenge of Internet connectivity in rural areas, critical for some PA 

technologies. SME3 states that hardware in a laboratory or factory often does not last in 

actual farming environments due to a farm's “rugged” environment. Many advanced 

technologies have become affordable (i.e., have a high financial return), but SME3 feels that 

some technologies are still far too expensive for commercial adoption. Another challenge is 

the disparate data formats from various sources such as satellites, yield monitoring devices, 

IoT devices and lab results that require manipulation and integration into a single tool. 
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2. Please provide your view on the following statement: “It is not financially viable for small and 

medium-scale farmers in developing countries to adopt smart farming technologies and 

decision support tools.”   

All three SMEs disagreed with this statement. It is not a binary question of “adoption” or “no 

adoption”, but rather a situation investigating which technologies would make most financial 

sense for small- and medium-scale farmers. The key business decisions and requirements 

should be used to prioritise and determine which technologies should be implemented.  

7.3 Summary 

This chapter discussed operational validation and focussed on the conceptual validation of the 

concept demonstrator tool. The general feedback regarding the research study was overwhelmingly 

positive. The final comments suggested testing the dashboards and early warning components with 

farmers to get further input from a different user perspective. This was not part of the project scope 

due to the anonymity of the farmer agreed to in the NDA contract, but it will be useful for the next 

stage. The major points derived from the SME feedback refer to the importance of adding 

meteorological data and yield data to a decision support tool. The factors influencing PA adoption 

mentioned in the feedback related to the literature study's research (Section 2.1). The challenges of 

PA adoption should be considered when developing a decision-support tool such as the one 

described in this thesis. Some aspects of the tool still require improvement and further study to make 

it a tool that can be commercially rolled out in the future. 
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Chapter 8  
Summary, recommendations and 

conclusion 

This chapter provides a summary of the research study. The three main recommendations for future 

work regarding soil and nutrient data, yield data and GIS work are discussed. Finally, the chapter 

ends with the conclusion and fulfilment of research questions discussed in the problem statement in 

Chapter 1 (Section 1.2). 

8.1 Summary 

The research described in this study followed a systematic approach to develop a concept 

demonstrator for a decision support tool that can be used in agriculture. The initial literature study 

and research questions were refined and adapted to be applicable to a real-world problem related 

to Farm X, producing winter wheat in South Africa. Thereafter, a comprehensive literature review 

was conducted in parallel with the necessary field research to understand the nature of the real-

world problem and develop a concept demonstrator. The use of weather and climate data in current 

PA applications were researched. The assumption was made that weather data should be added to 

a decision support tool to improve decision-making activities, and in this case, chlorophyll 

predictions. The weather data from the specific region of Farm X were acquired from the SAWS. The 

SMEs later validated the assumptions, which suggested that weather data can add enormous value 

to a decision-support tool. 

The CRISP-DM methodology served as a guideline for the data analysis. QGIS software was used 

to extract the data into a table in Excel, which was then imported into Python for further analysis. 

The weather data were also cleaned and combined with the soil and nutrient and chlorophyll data 

table. After constructing the final data table, a sequential forward feature selector was used to select 

the subset features utilised in the prediction algorithm. The top-performing algorithms were (i) 

Random Forest regressor, (ii) HistgradientBoost regressor, (iii) XGB regressor and the (iv) ETR. The 

algorithms were compared and delivered R2 values of 0.846, 0.844, 0.830 and 0.863, respectively. 

The main features selected by the four algorithms were July chlorophyll, August chlorophyll, Mn and 

pH. The weather features chosen by the feature selector were minimum temperature, maximum 

temperature and rainfall. The ETR produced the best results in each prediction iteration and was 

chosen for further data analysis described in Chapter 6. Thereafter, the model was presented with a 

data table from an unknown year to predict the chlorophyll values for August and September. The 

model’s accuracy decreased from 0.86 to 0.273, which was expected due to a third of the chlorophyll 

time-series data missing and the soil and nutrient layer not being updated within the standard two- 
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to three-year period. The model's prediction accuracy completed in Chapter 4 and Chapter 6 served 

as the operational validation of the tool. It shows how a model reacts to the real world and which 

factors potentially influence decision-making when available through chlorophyll, soil and nutrient 

data. Three SMEs were approached to explore the conceptual validity of the model, and the general 

feedback was positive. The SMEs agreed that adding yield data will improve the decision-support 

tool and assist in exploring predictions and the relationship between variables.  

8.2 Recommendations 

The study was modelled on a real-world use case. Though the objective was to develop a concept 

demonstrator, there is ample opportunity for improvement for future work. Suggestions for possible 

future work that transpired during the concept model research and development are discussed 

below.  

8.2.1 Soil and nutrient classification layer 

The field research conducted in Chapter 3 indicated that it is common practice to update the soil and 

nutrient classification layer once every three years. The data from Farm X is only updated every five 

years, and the soil and nutrient features were considered static features. The research done in the 

literature study indicated how biophysical parameters such as soil moisture and pH could be used 

for better crop management. The model struggled to find strong correlations between chlorophyll 

and the soil and nutrient layer features, as the chlorophyll changed over time, whilst the soil layer 

remained static. It is thus suggested to update the layer annually. The farm can even implement soil 

sensors and utilise Airbus Verde’s soil analysis service to decrease manual in-field data collection 

time and cost. 

8.2.2 Yield 

It is evident from the literature (Section 2.6.3) that yield is a valuable factor contributing to a farm's 

success. Yield prediction is an essential component in PA and can help farmers decide which crops 

to grow and when to grow them. Yield prediction can be used in yield mapping and conjunction with 

demand requirements and expected profitability. A recommendation for future work would be 

implementing a GPS yield monitoring device to collect more specific yield data. This can be used to 

determine factors that directly influence the yield and potentially warn the farmer if a problem is 

identified in the field.  

8.2.3 Data issues 

Several problems arose during the data analysis described in Chapter 4. A third of the extracted data 

had to be discarded as no data points were available on the crop circle. The cloud cover often 
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completely obstructed the farm, and no chlorophyll data could be supplied. The average chlorophyll 

per month was used to ensure at least one value per point per month of chlorophyll. It is thus 

recommended to explore the potential use of a drone to increase the frequency of the remote sensing 

imagery. It would be helpful to collect imagery one to two times a week and test the model on the 

improved data to explore if it could improve the prediction accuracy. It is also recommended to 

explore other indicators such as NDVI, FCover and LAI in a model such as the concept demonstrator 

presented in the thesis.  

8.3 Conclusion 

The concept demonstrator was successfully developed in this research study. It illustrated how 

different data sets, ML algorithms, predictions and visualisation tools could be integrated and used 

in a decision support tool (RQ4, RQ5, RQ6, RQ8). The decision support tool was presented in the 

form of conceptual dashboards that displayed chlorophyll predictions and weather data effectively 

(RQ7). The chlorophyll data analysis and predictions provided better insight into the existing data by 

analysing specific GPS points on the crop circle and comparing them to previous years. Users can 

identify the exact location of problem areas and determine whether the crops are performing as 

expected. In addition, the study showed how predictive analytics can be used to detect patterns in 

agricultural data and that ML algorithms can determine which features/variables are important in 

prediction and decision-making (RQ9, RQ10).  
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Appendix A 

Table A 1: Satellites used in agriculture 

Satellite Launch Year Sensors Height 
of orbit 

Swath 
(km) 

Revisit 
(days) 

Channels Spatial resolution 

Landsat 1972, 1975, 
1978, 1992, 
1984, 1993, 
1999, 2013, 
2020 

Panchromatic and 
multispectral sensor 

705 185, 183 16 7–11 120 m, 100 m, 60 m, 30 
m, 
15 m 

Spot 1986, 1990, 
1993, 
1998, 2002, 
2012 

Imaging spectroradiometer 694 60 1-3 Panchromatic, B, G, R, NIR 2.5 m, 5 m, 10 m, 20 m 

ERS 1991, 1995 IR radiometer, microwave 
sounder, Radiometer, SAR 

782–785 5–100 km 
(AMI) - 
500 km 
(ATSR) 

3, 35, 
336 

SAR 26 m across track and 
6–30 m along track 

RADARSAT 1995, 2007, 
2018 

SAR 793–
821, 
798, 
592.7 

45–100, 
18–500, 
5–500 

1 SAR 8–100 m, 3–100 m, 
3–100 m 

MODIS 1999, 2002 Imaging spectroradiometer 705  1 36 1000 m, 500 m, 250 m 

IKONOS 1999 Imaging spectroradiometer 681  3 Panchromatic, B, G, R, NIR Panchromatic:80 cm 
B, G, R, NIR:3.2 m 

QuickBird 2000, 2001 Imaging spectroradiometer 482, 450  2.4–
5.9 

Panchromatic, B, G, R, NIR Panchromatic:65 cm/61 
cm 
B, G, R, NIR:2.62 
m/2.44 m 

Envisat 2002 ASAR, MERIS, AATSR, RA-2, 
MWR, GOMOS, MIPAS, 
SCIAMACHY, DORIS, LRR 

790  35 15 bands (VIS, NIR), 
C-band 

300 m, 30–150 m 

GeoEye 2008 Imaging spectroradiometer 681  8.3 Panchromatic, B, G, R, 
NIR 

Panchromatic:41 cm 
B, G, R, NIR: 1.65 m 
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Satellite Launch Year Sensors Height 
of orbit 

Swath 
(km) 

Revisit 
(days) 

Channels Spatial resolution 

WorldView 1-3 2007, 2009, 
2014, 2016 

Imaging spectroradiometer, 
Laser altimeter 

496, 
770, 
617, 
681 

17.6 km 
16.4 km 
13.1 km 
14.5 km 

1.7 
1.1 
<1 
3 

Panchromatic; 
Panchromatic and eight 
multispectral. 
Panchromatic and eight 
multispectral. 
Panchromatic, B, G, R, NIR 

Panchromatic 0.5 m. 
Panchromatic and 
stereo 
images: 0.46 m 
multispectral: 1.84 m. 
Panchromatic 0.34 m 
and 
multispectral 1.36 m 

Sentinel 1-6 2014, 2015, 
2016, 2017, 
2021 

Radar and super-spectral 
imaging 

693, 
786, 
814 

250 km 
290 km, 
250 km 

12, 10, 
27 

C-SAR, 12 bands (VIS, NIR, 
SWIR),  
21 bands (VIS, NIR), S-band & 
X-band 

5–20 m, 5–40 m, 
10 m & 20 m & 60 m 
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Figure A 1: Summary of features selected from the various wrapper selection methods 

  

Methods Random Forest Regressor RFR (normalised) HistGradientBoost Regressor HGBR (Normalised) XGB Regressor XGBR (Normalised) Extra Trees Regressor ETR (Normalised)
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Appendix B – Python Code 

## IMPORTS 

from os import stat 

from matplotlib.colors import Normalize 

from numpy.core.function_base import linspace 

import pandas as pd 

import numpy as np 

from pandas.core.reshape.concat import concat 

from scipy.stats import kurtosis, skew 

from scipy.interpolate import interp1d 

import statistics 

import matplotlib as mpl 

import matplotlib.pyplot as plt 

from scipy.stats.stats import hmean, mode 

import seaborn as sns 

from sklearn import feature_selection 

from sklearn.metrics import roc_auc_score, r2_score,mean_squared_error 

 

from statsmodels.tsa.seasonal import seasonal_decompose   #decompose time-series data CHL 

from sklearn.utils._testing import all_estimators 

from sklearn.linear_model import LinearRegression 

from sklearn.preprocessing import StandardScaler,MinMaxScaler,RobustScaler,Normalizer  

#before running algorithms and feature selection 

 

#LAZY PREDICT 

import lazypredict 

from lazypredict.Supervised import LazyRegressor    #from lazypredict.Supervised import 

LazyClassifier 

from sklearn.model_selection import train_test_split  

 

# plot feature importance manually 

import xgboost as xgb 

from xgboost import plot_importance 

from sklearn.metrics import accuracy_score 

 

#Decision Tree 

from sklearn.tree import DecisionTreeRegressor 

 

#Extra Trees  

from sklearn.ensemble import ExtraTreesRegressor 

 

#Random Forest 

#from sklearn.ensemble import RandomForestClassifier 

from sklearn.ensemble import RandomForestRegressor 

 

#Boruta 

#import xgboost as xgb 

from boruta import BorutaPy 
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#permutation with sklearn 

from sklearn.model_selection import train_test_split 

from sklearn.inspection import permutation_importance 

#from sklearn.ensemble import RandomForestClassifier 

 

#RFE 

from numpy import floating, mean 

#from numpy import st 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import RepeatedStratifiedKFold 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.feature_selection import RFE 

from sklearn.pipeline import Pipeline 

 

#Exhaustive feature selection 

from mlxtend.feature_selection import ExhaustiveFeatureSelector,SequentialFeatureSelector 

 

#HistGradBoostReg 

from sklearn.ensemble import HistGradientBoostingRegressor 

from xgboost.sklearn import XGBRegressor 

from sklearn.metrics import mean_absolute_error 

 

##DATASETS FROM EXCEL AND QGIS 

rawdata = pd.read_excel(r'C:\Users\jclau\Documents\Documents\AMasters-2020\Masters 

Project\Data\Excel\07_21_FinalTable_Python.xlsx',sheet_name='Final') 

dfdailyMin = pd.read_excel(r'C:\Users\jclau\Documents\Documents\AMasters-2020\Masters 

Project\Data\Weather data\Daily Warmbad_Reworked_Final.xlsx',sheet_name='DailyMin') 

dfdailyMin = dfdailyMin.round(2) 

dfdailyMax = pd.read_excel(r'C:\Users\jclau\Documents\Documents\AMasters-2020\Masters 

Project\Data\Weather data\Daily Warmbad_Reworked_Final.xlsx',sheet_name='DailyMax') 

dfdailyMax = dfdailyMax.round(2) 

dfdailyRf = pd.read_excel(r'C:\Users\jclau\Documents\Documents\AMasters-2020\Masters 

Project\Data\Weather data\Daily Warmbad_Reworked_Final.xlsx',sheet_name='DailyRainfall') 

dfdailyRf = dfdailyRf.round(2) 

dfhumidity = pd.read_excel(r'C:\Users\jclau\Documents\Documents\AMasters-2020\Masters 

Project\Data\Weather data\Daily Warmbad_Reworked_Final.xlsx',sheet_name='Humidity')   

dfPressure = pd.read_excel(r'C:\Users\jclau\Documents\Documents\AMasters-2020\Masters 

Project\Data\Weather data\Daily Warmbad_Reworked_Final.xlsx',sheet_name='Pressure')   

dfWindSpeed = pd.read_excel(r'C:\Users\jclau\Documents\Documents\AMasters-2020\Masters 

Project\Data\Weather data\Daily 

Warmbad_Reworked_Final.xlsx',sheet_name='WindSpeed',converters={'Date': str})   

dfdailyRainfall = dfdailyRf.fillna(0) 

#dfWindSpeed.columns = dfWindSpeed.columns.datetime.strptime() 

nutrients = rawdata.loc[:,'ca':'Grondvorm1'] 

#Continious features for data quality report 

nutrients1 = rawdata.loc[:,'ca':'PBWK_effek'] 

nutrients_con = nutrients1.drop(["Tekstuurklas"],axis=1) 

nutrients_con_Desc = nutrients_con.describe().T 

#Categorical features for data quality report 
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nutrients_cat = rawdata.loc[:,'Tekstuurklas':'Grondvorm1'] 

nutrients_cat = nutrients_cat.drop(['PBWK_effek'],axis=1) 

# 

mainNutrients = 

pd.concat([nutrients.loc[:,['ca','mg%','na:k','p_bray1','ph','cu','mn','zn','WortelDiepte','PBWK_effek']]],

axis=1) 

mainNutrients = mainNutrients.round(2) 

dummies = pd.get_dummies(nutrients[['Tekstuurklas','Grondvorm1']])                                                      

#dummies = 

pd.get_dummies(nutrients[['Tekstuurklas','Dreinering','Risiko_vir','Besproei_1','Grondvorm1']]) 

dataDummies = pd.concat([mainNutrients,dummies],axis=1) 

df = pd.DataFrame() 

df1 = pd.DataFrame() 

 

 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

######\\\\\\\\\\\\\\\ ISOLATE MONTHS FOR MEAN - KORING \\\\\\\\\\\\\\\##### 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

 

#####\\\\\2017\\\\\\##### 

koring17Jun = rawdata.loc[:,'24/06/2017'] 

koring17Jul = rawdata.loc[:,'04/07/2017':'29/07/2017'] 

koring17Aug = rawdata.loc[:,'08/08/2017':'28/08/2017'] 

koring17Sep = rawdata.loc[:,'02/09/2017':'22/09/2017'] 

koring17Oct = rawdata.loc[:,'02/10/2017'] 

 

 

koring17JunMean = pd.Series(koring17Jun,name="K. Jun")      #only 1 column, thus no mean 

calculation 

koring17JunMean.fillna(koring17JunMean.mean(),inplace=True) 

koring17JulMean = pd.Series(koring17Jul.mean(axis=1),name="K. Jul") 

koring17JulMean.fillna(koring17JulMean.mean(),inplace=True) 

koring17AugMean = pd.Series(koring17Aug.mean(axis=1),name="K. Aug") 

koring17AugMean.fillna(koring17AugMean.mean(),inplace=True) 

koring17SepMean = pd.Series(koring17Sep.mean(axis=1),name="K. Sep") 

koring17SepMean.fillna(koring17SepMean.mean(),inplace=True) 

koring17OctMean = pd.Series(koring17Oct,name="K. Oct") 

koring17OctMean.fillna(koring17OctMean.mean(),inplace=True) 

 

koring17PerMonthChl =  

pd.concat([koring17JunMean,koring17JulMean,koring17AugMean,koring17SepMean,koring17Oct

Mean],axis=1) 

 

#####\\\\\\\\ 2018\\\\\\\\\\##### 

koring18Jun = rawdata.loc[:,'24/06/2018':'29/06/2018'] 

koring18Jul = rawdata.loc[:,'04/07/2018':'29/07/2018'] 

koring18Aug = rawdata.loc[:,'08/08/2018':'28/08/2018'] 

koring18Sep = rawdata.loc[:,'02/09/2018':'27/09/2018'] 

koring18Oct = rawdata.loc[:,'02/10/2018':'07/10/2018'] 
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koring18JunMean = pd.Series(koring18Jun.mean(axis=1),name="K. Jun") 

koring18JunMean.fillna(koring18JunMean.mean(),inplace=True) 

koring18JulMean = pd.Series(koring18Jul.mean(axis=1),name="K. Jul") 

koring18JulMean.fillna(koring18JulMean.mean(),inplace=True) 

koring18AugMean = pd.Series(koring18Aug.mean(axis=1),name="K. Aug") 

koring18AugMean.fillna(koring18AugMean.mean(),inplace=True) 

koring18SepMean = pd.Series(koring18Sep.mean(axis=1),name="K. Sep") 

koring18SepMean.fillna(koring18SepMean.mean(),inplace=True) 

koring18OctMean = pd.Series(koring18Oct.mean(axis=1),name="K. Oct") 

 

koring18_MonthChl =  

pd.concat([koring18JunMean,koring18JulMean,koring18AugMean,koring18SepMean,koring18Oct

Mean],axis=1) 

 

#####\\\\\\\\ 2019 \\\\\\\\\\##### 

Etc…. 

 

 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

######################### WEATHER DATA ######################## 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

 

df['meanMin'] = round((dfdailyMin.iloc[:,1:]).mean(),2)      # Mean from 2016-2020 

df['meanMax'] = round((dfdailyMax.iloc[:,1:]).mean(),2)        # Mean from 2016-2020 

df['meanRainfall'] = round(dfdailyRainfall.mean(),2)   

df['meanHumidity'] = round((dfhumidity.iloc[:,1:]).mean(),2)  

df['meanWindSpeed'] = round((dfhumidity.iloc[:,1:]).mean(),2)  

koringSeason = 

pd.Series(['Dec0','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct'],name="Koring Season")    

#df['columndates'] = df.index.to_series(index=None) 

soyaSeason = pd.Series(['Oct0','Nov','Dec','Jan','Feb','Mar'],name="Soya Season")  

 

 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

#######\\\\\\\\\\ MIN PER YEAR \\\\\\\\\\\\######### 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

 

#####\\\\\\\\ 2016 \\\\\\\\\\##### 

t0 = dfdailyMin.loc[:,"December 2015":"October 2016"] 

tMean = t0.mean() 

t0.columns = range(t0.shape[1]) 

meanMin16 = pd.Series(t0.mean(),name="meanMin16")  

meanMin16Jan = dfdailyMin.loc[:,'January 2016'].mean() 

meanMin16Feb = dfdailyMin.loc[:,'February 2016'].mean() 

meanMin16Mar = dfdailyMin.loc[:,'March 2016'].mean() 

meanMin16Apr = dfdailyMin.loc[:,'April 2016'].mean()  

meanMin16May = dfdailyMin.loc[:,'May 2016'].mean() 

meanMin16Jun = dfdailyMin.loc[:,'June 2016'].mean()  

meanMin16Jul = dfdailyMin.loc[:,'July 2016'].mean()  

meanMin16Aug = dfdailyMin.loc[:,'August 2016'].mean() 
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meanMin16Sep = dfdailyMin.loc[:,'September 2016'].mean() 

meanMin16Oct = dfdailyMin.loc[:,'October 2016'].mean() 

meanMin16Nov = dfdailyMin.loc[:,'November 2016'].mean() 

meanMin16Dec = dfdailyMin.loc[:,'December 2016'].mean() 

 

#####\\\\\\\\ 2017 \\\\\\\\\\##### 

t = dfdailyMin.loc[:,"December 2016":"October 2017"] 

tMean = t.mean() 

t.columns = range(t.shape[1]) 

meanMin17 = pd.Series(t.mean(),name="meanMin17")  

meanMin17Jan = dfdailyMin.loc[:,'January 2017'].mean() 

meanMin17Feb = dfdailyMin.loc[:,'February 2017'].mean() 

meanMin17Mar = dfdailyMin.loc[:,'March 2017'].mean() 

meanMin17Apr = dfdailyMin.loc[:,'April 2017'].mean() 

meanMin17May = dfdailyMin.loc[:,'May 2017'].mean() 

meanMin17Jun = dfdailyMin.loc[:,'June 2017'].mean()  

meanMin17Jul = dfdailyMin.loc[:,'July 2017'].mean()  

meanMin17Aug = dfdailyMin.loc[:,'August 2017'].mean() 

meanMin17Sep = dfdailyMin.loc[:,'September 2017'].mean() 

meanMin17Oct = dfdailyMin.loc[:,'October 2017'].mean() 

meanMin17Nov = dfdailyMin.loc[:,'November 2017'].mean() 

meanMin17Dec = dfdailyMin.loc[:,'December 2017'].mean() 

 

#####\\\\\\\\ 2018 \\\\\\\\\\##### 

t1 = dfdailyMin.loc[:,"December 2017":"October 2018"]  

t1.columns = range(t1.shape[1]) 

meanMin18 = pd.Series(t1.mean(),name="meanMin18") 

meanMin18Jan = dfdailyMin.loc[:,'January 2018'].mean() 

meanMin18Feb = dfdailyMin.loc[:,'February 2018'].mean() 

meanMin18Mar = dfdailyMin.loc[:,'March 2018'].mean() 

meanMin18Apr = dfdailyMin.loc[:,'April 2018'].mean() 

meanMin18May = dfdailyMin.loc[:,'May 2018'].mean() 

meanMin18Jun = dfdailyMin.loc[:,'June 2018'].mean()  

meanMin18Jul = dfdailyMin.loc[:,'July 2018'].mean()  

meanMin18Aug = dfdailyMin.loc[:,'August 2018'].mean() 

meanMin18Sep = dfdailyMin.loc[:,'September 2018'].mean() 

meanMin18Oct = dfdailyMin.loc[:,'October 2018'].mean() 

meanMin18Nov = dfdailyMin.loc[:,'November 2018'].mean() 

meanMin18Dec = dfdailyMin.loc[:,'December 2018'].mean() 

 

#####\\\\\\\\ 2019 \\\\\\\\\\##### 

t2 = dfdailyMin.loc[:,"December 2018":"October 2019"] 

t2.columns = range(t2.shape[1]) 

meanMin19 = pd.Series(t2.mean(),name="meanMin19")  

meanMin19Jan = dfdailyMin.loc[:,'January 2019'].mean() 

meanMin19Feb = dfdailyMin.loc[:,'February 2019'].mean() 

meanMin19Mar = dfdailyMin.loc[:,'March 2019'].mean() 

meanMin19Apr = dfdailyMin.loc[:,'April 2019'].mean() 

meanMin19May = dfdailyMin.loc[:,'May 2019'].mean() 

meanMin19Jun = dfdailyMin.loc[:,'June 2019'].mean()  
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meanMin19Jul = dfdailyMin.loc[:,'July 2019'].mean()  

meanMin19Aug = dfdailyMin.loc[:,'August 2019'].mean() 

meanMin19Sep = dfdailyMin.loc[:,'September 2019'].mean() 

meanMin19Oct = dfdailyMin.loc[:,'October 2019'].mean() 

meanMin19Nov = dfdailyMin.loc[:,'November 2019'].mean() 

meanMin19Dec = dfdailyMin.loc[:,'December 2019'].mean() 

 

#####\\\\\\\\ 2020 \\\\\\\\\\##### 

t3 = dfdailyMin.loc[:,"December 2019":"October 2020"] 

t3.columns = range(t3.shape[1]) 

meanMin20 = pd.Series(t3.mean(),name="meanMin20")  

meanMin20Jan = dfdailyMin.loc[:,'January 2020'].mean() 

meanMin20Feb = dfdailyMin.loc[:,'February 2020'].mean() 

meanMin20Mar = dfdailyMin.loc[:,'March 2020'].mean() 

meanMin20Apr = dfdailyMin.loc[:,'April 2020'].mean() 

meanMin20May = dfdailyMin.loc[:,'May 2020'].mean() 

meanMin20Jun = dfdailyMin.loc[:,'June 2020'].mean()  

meanMin20Jul = dfdailyMin.loc[:,'July 2020'].mean()  

meanMin20Aug = dfdailyMin.loc[:,'August 2020'].mean() 

meanMin20Sep = dfdailyMin.loc[:,'September 2020'].mean() 

meanMin20Oct = dfdailyMin.loc[:,'October 2020'].mean() 

meanMin20Nov = dfdailyMin.loc[:,'November 2020'].mean() 

meanMin20Dec = dfdailyMin.loc[:,'December 2020'].mean() 

 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

#######\\\\\\\\\\ MAX PER YEAR \\\\\\\\\\\\######### 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

 

#####\\\\\\\\ 2016 \\\\\\\\\\##### 

r0 = dfdailyMax.loc[:,"December 2015":"October 2016"]     

r0Mean = r0.mean() 

r0.columns = range(r0.shape[1]) 

meanMax16 = pd.Series(r0.mean(),name="meanMax16")  

meanMax16Jan = dfdailyMin.loc[:,'January 2016'].mean() 

meanMax16Feb = dfdailyMin.loc[:,'February 2016'].mean() 

meanMax16Mar = dfdailyMin.loc[:,'March 2016'].mean() 

meanMax16Apr = dfdailyMin.loc[:,'April 2016'].mean() 

meanMax16May = dfdailyMax.loc[:,'May 2016'].mean() 

meanMax16Jun = dfdailyMax.loc[:,'June 2016'].mean()  

meanMax16Jul = dfdailyMax.loc[:,'July 2016'].mean()  

meanMax16Aug = dfdailyMax.loc[:,'August 2016'].mean() 

meanMax16Sep = dfdailyMin.loc[:,'September 2016'].mean() 

meanMax16Oct = dfdailyMin.loc[:,'October 2016'].mean() 

meanMax16Nov = dfdailyMin.loc[:,'November 2016'].mean() 

meanMax16Dec = dfdailyMin.loc[:,'December 2016'].mean() 

 

#####\\\\\\\\ 2017 \\\\\\\\\\##### 

r = dfdailyMax.loc[:,"December 2016":"October 2017"]     #t3 = dfdailyMax.loc[:,"October 

2016":"October 2017"] 

rMean = r.mean() 
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r.columns = range(r.shape[1]) 

meanMax17 = pd.Series(r.mean(),name="meanMax17")  

meanMax17Jan = dfdailyMin.loc[:,'January 2017'].mean() 

meanMax17Feb = dfdailyMin.loc[:,'February 2017'].mean() 

meanMax17Mar = dfdailyMin.loc[:,'March 2017'].mean() 

meanMax17Apr = dfdailyMin.loc[:,'April 2017'].mean() 

meanMax17May = dfdailyMax.loc[:,'May 2017'].mean() 

meanMax17Jun = dfdailyMax.loc[:,'June 2017'].mean()  

meanMax17Jul = dfdailyMax.loc[:,'July 2017'].mean()  

meanMax17Aug = dfdailyMax.loc[:,'August 2017'].mean() 

meanMax17Sep = dfdailyMin.loc[:,'September 2017'].mean() 

meanMax17Oct = dfdailyMin.loc[:,'October 2017'].mean() 

meanMax17Nov = dfdailyMin.loc[:,'November 2017'].mean() 

meanMax17Dec = dfdailyMin.loc[:,'December 2017'].mean() 

 

#####\\\\\\\\ 2018 \\\\\\\\\\##### 

r1 = dfdailyMax.loc[:,"December 2017":"October 2018"]    

r1Mean = r1.mean() 

r1.columns = range(r1.shape[1]) 

meanMax18 = pd.Series(r1.mean(),name="meanMax18")  

meanMax18Jan = dfdailyMin.loc[:,'January 2018'].mean() 

meanMax18Feb = dfdailyMin.loc[:,'February 2018'].mean() 

meanMax18Mar = dfdailyMin.loc[:,'March 2018'].mean() 

meanMax18Apr = dfdailyMin.loc[:,'April 2018'].mean() 

meanMax18May = dfdailyMax.loc[:,'May 2018'].mean() 

meanMax18Jun = dfdailyMax.loc[:,'June 2018'].mean()  

meanMax18Jul = dfdailyMax.loc[:,'July 2018'].mean()  

meanMax18Aug = dfdailyMax.loc[:,'August 2018'].mean() 

meanMax18Sep = dfdailyMin.loc[:,'September 2018'].mean() 

meanMax18Oct = dfdailyMin.loc[:,'October 2018'].mean() 

meanMax18Nov = dfdailyMin.loc[:,'November 2018'].mean() 

meanMax18Dec = dfdailyMin.loc[:,'December 2018'].mean() 

 

#####\\\\\\\\ 2019 \\\\\\\\\\##### 

r2 = dfdailyMax.loc[:,"December 2018":"October 2019"]      

r2Mean = r2.mean() 

r2.columns = range(r2.shape[1]) 

meanMax19 = pd.Series(r2.mean(),name="meanMax19")  

meanMax19Jan = dfdailyMin.loc[:,'January 2019'].mean() 

meanMax19Feb = dfdailyMin.loc[:,'February 2019'].mean() 

meanMax19Mar = dfdailyMin.loc[:,'March 2019'].mean() 

meanMax19Apr = dfdailyMin.loc[:,'April 2019'].mean() 

meanMax19May = dfdailyMax.loc[:,'May 2019'].mean() 

meanMax19Jun = dfdailyMax.loc[:,'June 2019'].mean()  

meanMax19Jul = dfdailyMax.loc[:,'July 2019'].mean()  

meanMax19Aug = dfdailyMax.loc[:,'August 2019'].mean() 

meanMax19Sep = dfdailyMin.loc[:,'September 2019'].mean() 

meanMax19Oct = dfdailyMin.loc[:,'October 2019'].mean() 

meanMax19Nov = dfdailyMin.loc[:,'November 2019'].mean() 

meanMax19Dec = dfdailyMin.loc[:,'December 2019'].mean() 
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#####\\\\\\\\ 2020 \\\\\\\\\\##### 

r3 = dfdailyMax.loc[:,"December 2019":"October 2020"]     

r3Mean = r3.mean() 

r3.columns = range(r3.shape[1]) 

meanMax20 = pd.Series(r3.mean(),name="meanMax20")  

meanMax20Jan = dfdailyMin.loc[:,'January 2020'].mean() 

meanMax20Feb = dfdailyMin.loc[:,'February 2020'].mean() 

meanMax20Mar = dfdailyMin.loc[:,'March 2020'].mean() 

meanMax20Apr = dfdailyMin.loc[:,'April 2020'].mean() 

meanMax20May = dfdailyMax.loc[:,'May 2020'].mean() 

meanMax20Jun = dfdailyMax.loc[:,'June 2020'].mean()  

meanMax20Jul = dfdailyMax.loc[:,'July 2020'].mean()  

meanMax20Aug = dfdailyMax.loc[:,'August 2020'].mean() 

meanMax20Sep = dfdailyMin.loc[:,'September 2020'].mean() 

meanMax20Oct = dfdailyMin.loc[:,'October 2020'].mean() 

meanMax20Nov = dfdailyMin.loc[:,'November 2020'].mean() 

meanMax20Dec = dfdailyMin.loc[:,'December 2020'].mean() 

 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

#######\\\\\\\\\\\\ RAINFALL \\\\\\\\\\########## 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

 

#####\\\\\\\\ 2016 \\\\\\\\\\##### 

#previous rain season for Wheat 

s0 = dfdailyRainfall.loc[:,"November 2015":"May 2016"]     

s0Sum = s0.sum() 

sumRainfall16 = s0Sum.sum() 

#s0.columns = range(s0.shape[1]) 

#sumRainfall16 = pd.Series(s0Sum.sum(),name="sumRainfall 16")  

#Koring_tablesJoin 

meanRain16Jan = dfdailyRainfall.loc[:,'January 2016'].mean() 

meanRain16Feb = dfdailyRainfall.loc[:,'February 2016'].mean() 

meanRain16Mar = dfdailyRainfall.loc[:,'March 2016'].mean() 

meanRain16Apr = dfdailyRainfall.loc[:,'April 2016'].mean() 

meanRain16May = dfdailyRainfall.loc[:,'May 2016'].mean() 

meanRain16Jun = dfdailyRainfall.loc[:,'June 2016'].mean()  

meanRain16Jul = dfdailyRainfall.loc[:,'July 2016'].mean()  

meanRain16Aug = dfdailyRainfall.loc[:,'August 2016'].mean() 

meanRain16Sep = dfdailyRainfall.loc[:,'September 2016'].mean() 

meanRain16Oct = dfdailyRainfall.loc[:,'October 2016'].mean() 

meanRain16Nov = dfdailyRainfall.loc[:,'November 2016'].mean() 

meanRain16Dec = dfdailyRainfall.loc[:,'December 2016'].mean() 

 

 

#####\\\\\\\\ 2017 \\\\\\\\\\##### 

#previous rain season for Wheat 

s = dfdailyRainfall.loc[:,"November 2016":"May 2017"]     

sSum = s.sum() 

sumRainfall17 = sSum.sum() 
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#s.columns = range(s.shape[1]) 

#sumRainfall17 = pd.Series(sSum.sum(),name="sumRainfall 17")  

#Koring_tablesJoin 

meanRain17Jan = dfdailyRainfall.loc[:,'January 2017'].mean() 

meanRain17Feb = dfdailyRainfall.loc[:,'February 2017'].mean() 

meanRain17Mar = dfdailyRainfall.loc[:,'March 2017'].mean() 

meanRain17Apr = dfdailyRainfall.loc[:,'April 2017'].mean() 

meanRain17May = dfdailyRainfall.loc[:,'May 2017'].mean() 

meanRain17Jun = dfdailyRainfall.loc[:,'June 2017'].mean()  

meanRain17Jul = dfdailyRainfall.loc[:,'July 2017'].mean()  

meanRain17Aug = dfdailyRainfall.loc[:,'August 2017'].mean() 

meanRain17Sep = dfdailyRainfall.loc[:,'September 2017'].mean() 

meanRain17Oct = dfdailyRainfall.loc[:,'October 2017'].mean() 

meanRain17Nov = dfdailyRainfall.loc[:,'November 2017'].mean() 

meanRain17Dec = dfdailyRainfall.loc[:,'December 2017'].mean() 

 

#####\\\\\\\\ 2018 \\\\\\\\\\##### 

#previous rain season for Wheat 

s1 = dfdailyRainfall.loc[:,"November 2017":"May 2018"]     

s1Sum = s1.sum() 

sumRainfall18 = s1Sum.sum() 

#Koring_tablesJoin 

meanRain18Jan = dfdailyRainfall.loc[:,'January 2018'].mean() 

meanRain18Feb = dfdailyRainfall.loc[:,'February 2018'].mean() 

meanRain18Mar = dfdailyRainfall.loc[:,'March 2018'].mean() 

meanRain18Apr = dfdailyRainfall.loc[:,'April 2018'].mean() 

meanRain18May = dfdailyRainfall.loc[:,'May 2018'].mean() 

meanRain18Jun = dfdailyRainfall.loc[:,'June 2018'].mean()  

meanRain18Jul = dfdailyRainfall.loc[:,'July 2018'].mean()  

meanRain18Aug = dfdailyRainfall.loc[:,'August 2018'].mean() 

meanRain18Sep = dfdailyRainfall.loc[:,'September 2018'].mean() 

meanRain18Oct = dfdailyRainfall.loc[:,'October 2018'].mean() 

meanRain18Nov = dfdailyRainfall.loc[:,'November 2018'].mean() 

meanRain18Dec = dfdailyRainfall.loc[:,'December 2018'].mean() 

 

#####\\\\\\\\ 2019 \\\\\\\\\\##### 

s2 = dfdailyRainfall.loc[:,"November 2018":"May 2019"]     

s2Sum = s2.sum() 

sumRainfall19 = s2Sum.sum() 

#Koring_tablesJoin 

meanRain19Jan = dfdailyRainfall.loc[:,'January 2019'].mean() 

meanRain19Feb = dfdailyRainfall.loc[:,'February 2019'].mean() 

meanRain19Mar = dfdailyRainfall.loc[:,'March 2019'].mean() 

meanRain19Apr = dfdailyRainfall.loc[:,'April 2019'].mean() 

meanRain19May = dfdailyRainfall.loc[:,'May 2019'].mean() 

meanRain19Jun = dfdailyRainfall.loc[:,'June 2019'].mean()  

meanRain19Jul = dfdailyRainfall.loc[:,'July 2019'].mean()  

meanRain19Aug = dfdailyRainfall.loc[:,'August 2019'].mean() 

meanRain19Sep = dfdailyRainfall.loc[:,'September 2019'].mean() 

meanRain19Oct = dfdailyRainfall.loc[:,'October 2019'].mean() 
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meanRain19Nov = dfdailyRainfall.loc[:,'November 2019'].mean() 

meanRain19Dec = dfdailyRainfall.loc[:,'December 2019'].mean() 

 

#####\\\\\\\\ 2020 \\\\\\\\\\##### 

s3 = dfdailyRainfall.loc[:,"November 2019":"May 2020"]     

s3Sum = s3.sum() 

sumRainfall20 = s3Sum.sum() 

#Koring_tablesJoin 

meanRain20Jan = dfdailyRainfall.loc[:,'January 2020'].mean() 

meanRain20Feb = dfdailyRainfall.loc[:,'February 2020'].mean() 

meanRain20Mar = dfdailyRainfall.loc[:,'March 2020'].mean() 

meanRain20Apr = dfdailyRainfall.loc[:,'April 2020'].mean() 

meanRain20May = dfdailyRainfall.loc[:,'May 2020'].mean() 

meanRain20Jun = dfdailyRainfall.loc[:,'June 2020'].mean()  

meanRain20Jul = dfdailyRainfall.loc[:,'July 2020'].mean()  

meanRain20Aug = dfdailyRainfall.loc[:,'August 2020'].mean() 

meanRain20Sep = dfdailyRainfall.loc[:,'September 2020'].mean() 

meanRain20Oct = dfdailyRainfall.loc[:,'October 2020'].mean() 

meanRain20Nov = dfdailyRainfall.loc[:,'November 2020'].mean() 

meanRain20Dec = dfdailyRainfall.loc[:,'December 2020'].mean() 

 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

#######\\\\\\\\\\\\ HUMIDITY \\\\\\\\\\########## 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

 

#####\\\\\\\\ 2016 \\\\\\\\\\##### 

h0 = dfhumidity.loc[:,"December 2015":"October 2016"]     

h0.columns = range(h0.shape[1]) 

meanHumidity16 = pd.Series(h0.mean(),name="meanHumidity 16")  

meanHumid16Jan = dfhumidity.loc[:,'January 2016'].mean() 

meanHumid16Feb = dfhumidity.loc[:,'February 2016'].mean() 

meanHumid16Mar = dfhumidity.loc[:,'March 2016'].mean() 

meanHumid16Apr = dfhumidity.loc[:,'April 2016'].mean() 

meanHumid16May = dfhumidity.loc[:,'May 2016'].mean() 

meanHumid16Jun = dfhumidity.loc[:,'June 2016'].mean()  

meanHumid16Jul = dfhumidity.loc[:,'July 2016'].mean()  

meanHumid16Aug = dfhumidity.loc[:,'August 2016'].mean() 

meanHumid16Sep = dfhumidity.loc[:,'September 2016'].mean() 

meanHumid16Oct = dfhumidity.loc[:,'October 2016'].mean() 

meanHumid16Nov = dfhumidity.loc[:,'November 2016'].mean() 

meanHumid16Dec = dfhumidity.loc[:,'December 2016'].mean() 

 

#####\\\\\\\\ 2017 \\\\\\\\\\##### 

h = dfhumidity.loc[:,"December 2016":"October 2017"]     

h.columns = range(h.shape[1]) 

meanHumidity17 = pd.Series(h.mean(),name="meanHumidity 17")  

meanHumid17Jan = dfhumidity.loc[:,'January 2017'].mean() 

meanHumid17Feb = dfhumidity.loc[:,'February 2017'].mean() 

meanHumid17Mar = dfhumidity.loc[:,'March 2017'].mean() 

meanHumid17Apr = dfhumidity.loc[:,'April 2017'].mean() 
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meanHumid17May = dfhumidity.loc[:,'May 2017'].mean() 

meanHumid17Jun = dfhumidity.loc[:,'June 2017'].mean()  

meanHumid17Jul = dfhumidity.loc[:,'July 2017'].mean()  

meanHumid17Aug = dfhumidity.loc[:,'August 2017'].mean() 

meanHumid17Sep = dfhumidity.loc[:,'September 2017'].mean() 

meanHumid17Oct = dfhumidity.loc[:,'October 2017'].mean() 

meanHumid17Nov = dfhumidity.loc[:,'November 2017'].mean() 

meanHumid17Dec = dfhumidity.loc[:,'December 2017'].mean() 

 

#####\\\\\\\\ 2018 \\\\\\\\\\##### 

h1 = dfhumidity.loc[:,"December 2017":"October 2018"]     

h1.columns = range(h1.shape[1]) 

meanHumidity18 = pd.Series(h1.mean(),name="meanHumidity 18")  

meanHumid18Jan = dfhumidity.loc[:,'January 2018'].mean() 

meanHumid18Feb = dfhumidity.loc[:,'February 2018'].mean() 

meanHumid18Mar = dfhumidity.loc[:,'March 2018'].mean() 

meanHumid18Apr = dfhumidity.loc[:,'April 2018'].mean() 

meanHumid18May = dfhumidity.loc[:,'May 2018'].mean() 

meanHumid18Jun = dfhumidity.loc[:,'June 2018'].mean()  

meanHumid18Jul = dfhumidity.loc[:,'July 2018'].mean()  

meanHumid18Aug = dfhumidity.loc[:,'August 2018'].mean() 

meanHumid18Sep = dfhumidity.loc[:,'September 2018'].mean() 

meanHumid18Oct = dfhumidity.loc[:,'October 2018'].mean() 

meanHumid18Nov = dfhumidity.loc[:,'November 2018'].mean() 

meanHumid18Dec = dfhumidity.loc[:,'December 2018'].mean() 

 

#####\\\\\\\\ 2019 \\\\\\\\\\##### 

h2 = dfhumidity.loc[:,"December 2018":"October 2019"]     

h2.columns = range(h2.shape[1]) 

meanHumidity19 = pd.Series(h2.mean(),name="meanHumidity 19")  

meanHumid19Jan = dfhumidity.loc[:,'January 2019'].mean() 

meanHumid19Feb = dfhumidity.loc[:,'February 2019'].mean() 

meanHumid19Mar = dfhumidity.loc[:,'March 2019'].mean() 

meanHumid19Apr = dfhumidity.loc[:,'April 2019'].mean() 

meanHumid19May = dfhumidity.loc[:,'May 2019'].mean() 

meanHumid19Jun = dfhumidity.loc[:,'June 2019'].mean()  

meanHumid19Jul = dfhumidity.loc[:,'July 2019'].mean()  

meanHumid19Aug = dfhumidity.loc[:,'August 2019'].mean() 

meanHumid19Sep = dfhumidity.loc[:,'September 2019'].mean() 

meanHumid19Oct = dfhumidity.loc[:,'October 2019'].mean() 

meanHumid19Nov = dfhumidity.loc[:,'November 2019'].mean() 

meanHumid19Dec = dfhumidity.loc[:,'December 2019'].mean() 

 

#####\\\\\\\\ 2020 \\\\\\\\\\##### 

h3 = dfhumidity.loc[:,"December 2019":"October 2020"]     

h3.columns = range(h3.shape[1]) 

meanHumidity20 = pd.Series(h3.mean(),name="meanHumidity 20")  

meanHumid20Jan = dfhumidity.loc[:,'January 2020'].mean() 

meanHumid20Feb = dfhumidity.loc[:,'February 2020'].mean() 

meanHumid20Mar = dfhumidity.loc[:,'March 2020'].mean() 
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meanHumid20Apr = dfhumidity.loc[:,'April 2020'].mean() 

meanHumid20May = dfhumidity.loc[:,'May 2020'].mean() 

meanHumid20Jun = dfhumidity.loc[:,'June 2020'].mean()  

meanHumid20Jul = dfhumidity.loc[:,'July 2020'].mean()  

meanHumid20Aug = dfhumidity.loc[:,'August 2020'].mean() 

meanHumid20Sep = dfhumidity.loc[:,'September 2020'].mean() 

meanHumid20Oct = dfhumidity.loc[:,'October 2020'].mean() 

meanHumid20Nov = dfhumidity.loc[:,'November 2020'].mean() 

meanHumid20Dec = dfhumidity.loc[:,'December 2020'].mean() 

 

 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

#######\\\\\\\\\\\\ PRESSURE \\\\\\\\\\########## 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

 

#####\\\\\\\\ 2016 \\\\\\\\\\##### 

p0 = dfPressure.loc[:,'December 2015':"October 2016"]         

p0.columns = range(p0.shape[1]) 

meanPressure16 = pd.Series(p0.mean(),name="Pressure 16")  

meanPressure16Jan = dfPressure.loc[:,'January 2016'].mean() 

meanPressure16Feb = dfPressure.loc[:,'February 2016'].mean() 

meanPressure16Mar = dfPressure.loc[:,'March 2016'].mean() 

meanPressure16Apr = dfPressure.loc[:,'April 2016'].mean() 

meanPressure16May = dfPressure.loc[:,'May 2016'].mean() 

meanPressure16Jun = dfPressure.loc[:,'June 2016'].mean()  

meanPressure16Jul = dfPressure.loc[:,'July 2016'].mean()  

meanPressure16Aug = dfPressure.loc[:,'August 2016'].mean() 

meanPressure16Sep = dfPressure.loc[:,'September 2016'].mean() 

meanPressure16Oct = dfPressure.loc[:,'October 2016'].mean() 

meanPressure16Nov = dfPressure.loc[:,'November 2016'].mean() 

meanPressure16Dec = dfPressure.loc[:,'December 2016'].mean() 

 

ETC…. for all the weather features 

 

 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

### YEARLY TABLES FOR LAZY REGRESSOR CALCS, MEAN CHL, KPI & WEATHER ## 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

 

#table2017 = 

pd.concat([koring17JulMean,koring17AugMean,koring17SepMean,dataDummies],axis=1)    

#dataDummies or mainNutrients 

table2017 = pd.concat([koring17JulMean,koring17AugMean,mainNutrients],axis=1)  ## For 2019 

Aug prediction 

#table2017.loc[:,'Min Jun'] = meanMin17Jun 

table2017.loc[:,'Min Jul'] = meanMin17Jul 

table2017.loc[:,'Min Aug'] = meanMin17Aug 

#table2017.loc[:,'Max Jun'] = meanMax17Jun 

table2017.loc[:,'Max Jul'] = meanMax17Jul 

table2017.loc[:,'Max Aug'] = meanMax17Aug 
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table2017.loc[:,'Rain prev sum'] = sumRainfall17 

#table2017.loc[:,'Rain Jun'] = meanRain17Jun 

# table2017.loc[:,'Rain Jul'] = meanRain17Jul 

# table2017.loc[:,'Rain Aug'] = meanRain17Aug 

# table2017.loc[:,'Rain Sep'] = meanRain17Sep 

#table2017.loc[:,'Humid Jun'] = meanHumid17Jun 

table2017.loc[:,'Humid Jul'] = meanHumid17Jul 

table2017.loc[:,'Humid Aug'] = meanHumid17Aug 

#table2017.loc[:,'Wind Aug'] = meanWindSpeed17Aug 

 

 

#table2018 = pd.concat([koring18JulMean,koring18AugMean, 

koring18SepMean,dataDummies],axis=1)    

table2018 = pd.concat([koring18JulMean,koring18AugMean,mainNutrients],axis=1)   ## For 2019 

Aug prediction 

#table2018.loc[:,'Min Jun'] = meanMin18Jun 

table2018.loc[:,'Min Jul'] = meanMin18Jul 

table2018.loc[:,'Min Aug'] = meanMin18Aug 

#table2018.loc[:,'Max Jun'] = meanMax18Jun 

table2018.loc[:,'Max Jul'] = meanMax18Jul 

table2018.loc[:,'Max Aug'] = meanMax18Aug 

table2018.loc[:,'Rain prev sum'] = sumRainfall18 

# table2018.loc[:,'Rain Jun'] = meanRain18Jun 

# table2018.loc[:,'Rain Jul'] = meanRain18Jul 

# table2018.loc[:,'Rain Aug'] = meanRain18Aug 

# table2018.loc[:,'Rain Sep'] = meanRain18Sep 

#table2018.loc[:,'Humid Jun'] = meanHumid18Jun 

table2018.loc[:,'Humid Jul'] = meanHumid18Jul 

table2018.loc[:,'Humid Aug'] = meanHumid18Aug 

#table2018.loc[:,'Wind Aug'] = meanWindSpeed18Aug 

 

#table2019 = 

pd.concat([koring19JulMean,koring19AugMean,koring19SepMean,dataDummies],axis=1) 

table2019 = pd.concat([koring19JulMean,koring19AugMean,mainNutrients],axis=1)   ## For 2019 

Aug prediction 

#table2019.loc[:,'Min Jun'] = meanMin19Jun 

table2019.loc[:,'Min Jul'] = meanMin19Jul 

table2019.loc[:,'Min Aug'] = meanMin19Aug 

#table2019.loc[:,'Max Jun'] = meanMax19Jun 

table2019.loc[:,'Max Jul'] = meanMax19Jul 

table2019.loc[:,'Max Aug'] = meanMax19Aug 

table2019.loc[:,'Rain prev sum'] = sumRainfall19 

# table2019.loc[:,'Rain Jun'] = meanRain19Jun 

# table2019.loc[:,'Rain Jul'] = meanRain19Jul 

# table2019.loc[:,'Rain Aug'] = meanRain19Aug 

# table2019.loc[:,'Rain Sep'] = meanRain19Sep 

#table2019.loc[:,'Humid Jun'] = meanHumid19Jun 

table2019.loc[:,'Humid Jul'] = meanHumid19Jul 

table2019.loc[:,'Humid Aug'] = meanHumid19Aug 

#table2019.loc[:,'Wind Aug'] = meanWindSpeed19Aug 

Stellenbosch University https://scholar.sun.ac.za



133 

 

table2020 = pd.concat([koring20JulMean,koring20AugMean,mainNutrients],axis=1)   #los 

koring20SepMean uit want X TEST (with filtered) 

#table2020.loc[:,'Min Jun'] = meanMin20Jun 

table2020.loc[:,'Min Jul'] = meanMin20Jul 

table2020.loc[:,'Min Aug'] = meanMin20Aug 

#table2020.loc[:,'Max Jun'] = meanMax20Jun 

table2020.loc[:,'Max Jul'] = meanMax20Jul 

table2020.loc[:,'Max Aug'] = meanMax20Aug 

table2020.loc[:,'Rain prev sum'] = sumRainfall20 

# table2020.loc[:,'Rain Jun'] = meanRain20Jun 

# table2020.loc[:,'Rain Jul'] = meanRain20Jul 

# table2020.loc[:,'Rain Aug'] = meanRain20Aug 

# table2020.loc[:,'Rain Sep'] = meanRain20Sep 

#table2020.loc[:,'Humid Jun'] = meanHumid20Jun 

table2020.loc[:,'Humid Jul'] = meanHumid20Jul 

table2020.loc[:,'Humid Aug'] = meanHumid20Aug 

#table2020.loc[:,'Wind Aug'] = meanWindSpeed20Aug 

print(table2020) 

 

# # FOR 2019 Aug PREDICTIONS 

koring_tablesJoin = 

pd.concat([table2017,table2018,table2019],keys=["2017","2018","2019"],ignore_index=True)  #for 

predictions and 2020 

#koring_tablesJoin.to_excel(r'C:\Users\jclau\Documents\Documents\AMasters-2020\Masters 

Project\Data\Excel\KoringTableAUG19.xlsx', index = False) 

 

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

##################### HEATMAP  ######################## 

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

 

table2017_cor = pd.concat([koring17SepMean,dataDummies],axis=1)    #dataDummies or 

mainNutrients 

# table2017_cor.loc[:,'Min Sep'] = meanMin17Sep 

# table2017_cor.loc[:,'Max Sep'] = meanMax17Sep 

# table2017_cor.loc[:,'Rain prev sum'] = sumRainfall17 

 

fig, ax = plt.subplots(figsize=(10,10))  

dataCorr = table2017_cor.corr() 

corrMatrix = sns.heatmap(dataCorr, annot = True, linewidths=.8, ax=ax)       #plot correlation matrix  

plt.xticks(fontsize=10) 

plt.yticks(fontsize=10) 

plt.title("Correlation Matrix - Sep 2017 & features") 

plt.tight_layout() 

plt.show() 

 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

############################# LAZY PREDICT ################# 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
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# y = koring_tablesJoin['K. Sep'] 

# X = koring_tablesJoin.drop(["K. Sep"],axis=1) 

# scaler_norm = MinMaxScaler() 

# X = scaler_norm.fit_transform(X) 

# y = scaler_norm.fit_transform(y) 

 

# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=42) 

# # #fit all models 

# reg = LazyRegressor(predictions=True) 

# models, predictions = reg.fit(X_train, X_test, y_train, y_test) 

 

# print(models) 

 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

############ SEQUENCIAL FEATURE SELECTION ################# 

#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

 

from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs 

#|||||||||||||||||||||||||||||||||||||||||||||||||||||| 

# OPTIMAL NUMBER OF FEATURES: 

# |||||||||||||||||||||||||||||||||||||||||||||||||||||| 

# hgbr = HistGradientBoostingRegressor() 

# rfr = RandomForestRegressor() 

# xgbr = XGBRegressor() 

# y = koring_tablesJoin['K. Sep'] 

# X = koring_tablesJoin.drop(["K. Sep"],axis=1) 

# #scaler_norm = MinMaxScaler() 

# #X = scaler_norm.fit_transform(X) 

 

 

# sfs = SequentialFeatureSelector(hgbr, 

#         k_features=15, 

#         forward=True, 

#         floating=False, 

#         scoring='r2', 

#         cv=5)  

 

# # fit the object to the training data 

# sfs.fit(X,y) 

 

# fig1 = plot_sfs(sfs.get_metric_dict(),kind='std_dev') 

# plt.title('Sequential Forward Selection std_err') 

# plt.grid() 

# plt.show() 

 

##############################################################################

################## 

# y = koring_tablesJoin['K. Sep'] 

# X = koring_tablesJoin.drop(["K. Sep"],axis=1) 

# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 
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#print('X_train: ',X_train.shape,'\nX_test: ',X_test.shape,'\ny_train: ',y_train.shape,'\ny_test: 

',y_test.shape)  #y_test type = Series 

#scaler_std = StandardScaler() #doesnt work for continous values 

#scaler_rob = RobustScaler() 

#X = scaler_std.fit_transform(X) 

#scaler_norm = MinMaxScaler() 

#X = scaler_norm.fit_transform(X) 

#scaled_X = pd.DataFrame(X) 

#X = scaler_rob.fit_transform(X) 

hgbr = HistGradientBoostingRegressor() 

rfr = RandomForestRegressor() 

xgbr = XGBRegressor() 

etr = ExtraTreesRegressor() 

 

 

# # #|||||||||||||||||||||||||||||||||||||||||||||||||||||| 

# # #Sequential Forward Selection 

# sfs = SequentialFeatureSelector(etr, 

#         k_features=12, 

#         forward=True, 

#         floating=False, 

#         verbose = 1, 

#         scoring = 'r2', 

#         cv=5)  

 

# # fit the object to the training data. It calculates the parameters or weights on the training data 

# sfs.fit(X_train,y_train)  

 

# print('Forward sequential feauture selection index:',sfs.k_feature_idx_,' Feature name: 

',sfs.k_feature_names_) 

# print('\nForward sequential feature selector with Extra Trees Regressor (Normalised):')       

# feature_ranks = list(zip(sfs.k_feature_idx_,sfs.k_feature_names_)) 

# for feat in feature_ranks: 

#     print('Feature Index: {},  Names: {}'.format(feat[0], feat[1])) 

# print('\nCV Score:',sfs.k_score_) 

 

# # Now use the subset of selected features to fit model on training data 

# X_train_sfs = sfs.transform(X_train) 

# x_test_sfs = sfs.transform(X_test) 

 

# # Fit the estimator using the new feature subset 

# # and make a prediction on the test data 

# newModel = etr.fit(X_train_sfs,y_train)        # MODELS !!!!!!! 

# y_predict = etr.predict(x_test_sfs) 

 

# ypredict = list(zip(y_test,y_predict)) 

# for preds in ypredict: 

#     print('Original y: {:.0f},  Predicted y: {:.0f}'.format(preds[0], preds[1])) 

 

 

Stellenbosch University https://scholar.sun.ac.za



136 

# accmae = mean_absolute_error(y_test,y_predict) 

# accmse = mean_squared_error(y_test,y_predict) 

# accr2 = r2_score(y_test,y_predict) 

# print('\n Mean Asolute Error :',accmae,'\n Mean Squared Error :',accmse,'\n R2 score:',accr2) 

 

 

# Compute the accuracy of the prediction 

#acc = float((y_test == y_pred).sum()) / y_pred.shape[0] 

#print('Test set accuracy: %.2f %%' % (acc * 100)) 

# #Confusion Matrix - verify accuracy of each class 

# from sklearn.metrics import confusion_matrix 

# cm = confusion_matrix(y_test, prediction_hist) 

# print(cm) 

# sns.heatmap(cm, annot=True) 

#acc = accuracy_score(y_test,y_predict)    #normalise=False return nr of correct predictions, 

otherwise fraction(TRUE) -for classification 

 

#|||||||||||||||||||||||||||||||||||||||||||||||||||||| 

# Sequential Backward Selection 

# sbs = SequentialFeatureSelector(etr, 

#         k_features=9, 

#         forward=False, 

#         floating=False, 

#         verbose = 1, 

#         scoring = 'r2', 

#         cv=5)  

 

# sbs.fit(X_train,y_train) 

# print('\nBackward sequential feature selector with ETR :')      #RANDOM FOREST REGRESSOR 

# feature_ranks1 = list(zip(sbs.k_feature_idx_,sbs.k_feature_names_)) 

# for feat in feature_ranks1: 

#     print('Feature Index: {},  Names: {}'.format(feat[0], feat[1])) 

# print('\nCV Score:',sbs.k_score_) 

 

# # Now use the subset of selected features to fit model on training data 

# X_train_sbs = sbs.transform(X_train) 

# x_test_sbs = sbs.transform(X_test) 

 

# # Fit the estimator using the new feature subset 

# # and make a prediction on the test data 

# newModel = etr.fit(X_train_sbs,y_train) 

# y_predict = etr.predict(x_test_sbs) 

 

# ypredict = list(zip(y_test,y_predict)) 

# for preds in ypredict: 

#     print('Original y: {:.0f},  Predicted y: {:.0f}'.format(preds[0], preds[1])) 

 

# accmae = mean_absolute_error(y_test,y_predict) 

# accmse = mean_squared_error(y_test,y_predict) 

# accr2 = r2_score(y_test,y_predict) 
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# print('\n Mean Asolute Error :',accmae,'\n Mean Squared Error :',accmse,'\n R2 :',accr2) 

 

# #|||||||||||||||||||||||||||||||||||||||||||||||||||||| 

# # ## Sequential Forward floating Selection 

# sffs = SequentialFeatureSelector(etr, 

#         k_features=9, 

#         forward=True, 

#         floating=True, 

#         verbose = 1, 

#         scoring = 'r2', 

#         cv=5)  

 

# sffs.fit(X_train,y_train) 

# print('\nForward floating sequential feature selector with ETR:')      #RANDOM FOREST 

REGRESSOR 

# feature_ranks2 = list(zip(sffs.k_feature_idx_,sffs.k_feature_names_)) 

# for feat in feature_ranks2: 

#     print('Feature Index: {},  Names: {}'.format(feat[0], feat[1])) 

# print('\nCV Score:',sffs.k_score_) 

 

# # #Now use the subset of selected features to fit model on training data 

# X_train_sffs = sffs.transform(X_train) 

# x_test_sffs = sffs.transform(X_test) 

 

# # #Fit the estimator using the new feature subset 

# # #and make a prediction on the test data 

# newModel = etr.fit(X_train_sffs,y_train) 

# y_predict = etr.predict(x_test_sffs) 

 

# ypredict = list(zip(y_test,y_predict)) 

# for preds in ypredict: 

#     print('Original y: {:.0f},  Predicted y: {:.0f}'.format(preds[0], preds[1])) 

 

# accmae = mean_absolute_error(y_test,y_predict) 

# accmse = mean_squared_error(y_test,y_predict) 

# accr2 = r2_score(y_test,y_predict) 

# print('\n Mean Asolute Error :',accmae,'\n Mean Squared Error :',accmse,'\n R2 :',accr2) 

 

 

# #|||||||||||||||||||||||||||||||||||||||||||||||||||||| 

# # Sequential Backward floating Selection 

# sbfs = SequentialFeatureSelector(etr, 

#         k_features=9, 

#         forward=False, 

#         floating=True, 

#         verbose = 1, 

#         scoring = 'r2', 

#         cv=5)  

 

# sbfs.fit(X_train,y_train) 
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# print('\nBackward floating sequential feature selector with ETR(norm):')    # HistgradboostRegr  

Extra Trees Regr (Normalised 

# feature_ranks3 = list(zip(sbfs.k_feature_idx_,sbfs.k_feature_names_)) 

# for feat in feature_ranks3: 

#     print('Feature Index: {},  Names: {}'.format(feat[0], feat[1])) 

# print('\nCV Score:',sbfs.k_score_) 

 

# # #Now use the subset of selected features to fit model on training data 

# X_train_sbfs = sbfs.transform(X_train) 

# x_test_sbfs = sbfs.transform(X_test) 

 

# # #Fit the estimator using the new feature subset 

# # #and make a prediction on the test data 

# newModel = etr.fit(X_train_sbfs,y_train) 

# y_predict = etr.predict(x_test_sbfs) 

 

# ypredict = list(zip(y_test,y_predict)) 

# for preds in ypredict: 

#     print('Original y: {:.0f},  Predicted y: {:.0f}'.format(preds[0], preds[1])) 

 

# accmae = mean_absolute_error(y_test,y_predict) 

# accmse = mean_squared_error(y_test,y_predict) 

# accr2 = r2_score(y_test,y_predict) 

# print('\n Mean Asolute Error :',accmae,'\n Mean Squared Error :',accmse,'\n R2 :',accr2) 

 

 

#||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

#||||||||||||||||||||| PREDICTION - 2020 ||||||||||||||||||||||||||  USE SFFS and ETR not normalised 

#||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

# y = koring_tablesJoin['K. Sep'] 

# X = koring_tablesJoin.drop(["K. Sep"],axis=1) 

# X20_test = table2020 

# scaler_norm = MinMaxScaler() 

# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

# print('X_train: ',X_train.shape,'\nX_test: ',X_test.shape,'\ny_train: ',y_train.shape,'\ny_test: 

',y_test.shape)  #y_test type = Series 

# X = scaler_norm.fit_transform(X) 

# X20_test = scaler_norm.fit_transform(X20_test) 

 

 

# ## Sequential Forward Selection 

# sfs = SequentialFeatureSelector(etr, 

#         k_features=9, 

#         forward=True, 

#         floating=False, 

#         verbose = 1, 

#         scoring = 'r2', 

#         cv=5)  

 

# ## fit the object to the training data. It calculates the parameters or weights on the training data 
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# sfs.fit(X_train,y_train)  

 

# print('Forward sequential feauture selection index:',sfs.k_feature_idx_,' Feature name: 

',sfs.k_feature_names_) 

# print('\nForward sequential feature selector with Extra Trees Regressor (Normalised):')      

# feature_ranks = list(zip(sfs.k_feature_idx_,sfs.k_feature_names_)) 

# for feat in feature_ranks: 

#     print('Feature Index: {},  Names: {}'.format(feat[0], feat[1])) 

# print('\nCV Score:',sfs.k_score_) 

 

# ## Now use the subset of selected features to fit model on training data 

# #X becomes the new X_train. we want to train 2017,18 & 19 

# # ***** FOR 2020 PREDICTION **** 

# X_train_sfs = sfs.transform(X)    

# x20_test_sfs = sfs.transform(X20_test) 

 

# # Fit the estimator using the new feature subset 

# # and make a prediction on the test data 

# # ***** FOR 2020 PREDICTION **** 

# Model_2020 = etr.fit(X_train_sfs,y) 

# y_predict2020 = etr.predict(x20_test_sfs) 

 

# print('X_train: ',X.shape,'\nX_test: ',X20_test.shape,'\ny_train: ',y.shape) 

# print('\nPredictions for September 2020:\n',y_predict2020) 

 

# koring20SepMean = pd.Series(y_predict2020,name="K. Sep") 

# print(koring20SepMean) 

 

 

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

###### \\\\\\\\\\\\\ CHLOROPHYLL PREDICTIONS – GRAPHING  \\\\\\\\\\\\\\ ##### 

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

 

#///// CHL  

augmean = koring17Aug_1.mean()  #koring17Aug_1.mean()  (koring17Aug_1.mean() + 

koring18Aug_1.mean())/2  

aug1stdev = koring17Aug_1.std()   #koring17Aug_1.std()  (koring17Aug_1.std() + 

koring18Aug_1.std())/2  

std_low = augmean- aug1stdev 

std_low2 = (augmean-(2*aug1stdev))   

std_high = augmean+aug1stdev 

std_high2 = (augmean+(2*aug1stdev)) 

 

x = round(rawdata["X"],5) 

y = round(rawdata["Y"],5) 

z = koring18Aug_1       # ----- koring18Aug_1  

x_ax = np.arange(x.min(),x.max(),0.0005) 

fig1, ax1 = plt.subplots() 

 

# ####loop through every item in the series 
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col = [] 

for a in range(0,len(z),1): 

    if z[a] < std_low2: 

        col.append('red') 

    elif (z[a] >= std_low2) and (z[a] < std_low) : 

        col.append('lightcoral') 

    elif (z[a] >= std_low) and (z[a] < augmean):   #----- 

        col.append('pink') 

    elif (z[a] >= augmean) and (z[a] < std_high):  #-----  

        col.append('khaki') 

    elif (z[a] >= std_high) and (z[a] < std_high2):    

        col.append('lime') 

    elif (z[a] >= std_high2): 

        col.append('darkgreen') 

    else: 

        col.append('gray') 

 

red_patch = mpatches.Patch(color='red', label='Z <-2stdev') 

coral_patch = mpatches.Patch(color='lightcoral', label='-2stdev <= Z < -1stdev')  

pink_patch = mpatches.Patch(color='pink', label='-1stdev <= Z <mean')  

khaki_patch = mpatches.Patch(color='khaki', label='mean <= Z <1stdev')  

lime_patch = mpatches.Patch(color='lime', label='1stdev <= Z <2stdev')  

dgreen_patch = mpatches.Patch(color='darkgreen', label='Z >= 2stdev')  

gray_patch = mpatches.Patch(color='gray', label='nan')  

 

for i in range(0,len(z),1): 

    ax1.scatter(x[i],y[i],c=col[i]) 

plt.xlabel('X axis',fontsize=15) 

plt.ylabel('Y axis',fontsize=15) 

plt.title('08/08/2018 VS 08/08/2017',fontsize=20)  # ------ 

#plt.xticks(x_ax)   

#plt.legend(handles=[red_patch,coral_patch,pink_patch,khaki_patch,lime_patch,dgreen_patch,gra

y_patch])          

plt.tight_layout() 

plt.grid() 

plt.show() 
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