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Abstract

Farmers face daily challenges, and there are numerous factors to consider to produce crops
profitably. For example, large amounts of data can be overwhelming and complex if not utilised
correctly. However, tools such as decision support systems can be incorporated to support the

decision-making process. Precision Agriculture presents several opportunities and challenges.

An industry partner, Company A, was approached to identify and test a real-world PA problem. The
manual element of analysing several data layers is time-consuming and require a more user-friendly
way to display data. This research study developed and presented a concept demonstrator of a
decision support tool to illustrate how several components can be used to improve the decision-
making process. Soil- and nutrient classification data were provided by the use case, Farm X, which
produces winter wheat in a summer rainfall area in South Africa. Chlorophyll data from 2017 to 2020
were provided by the Airbus Verde service of Company A. The assumption was made to add
historical and current meteorological data acquired from the South African Weather Services. QGIS
was used to extract soil and nutrients classification and chlorophyll data from 296 GPS-specific
points on the crop circle. The data table consisted of 85 soil and nutrient and weather features.

A major challenge was presented when no GPS-specific yield was available for Farm X. A third (11
088) of the total chlorophyll data were missing, and only 24 849 data points were available for
analysis. Nevertheless, Python was used to clean and analyse the available data to provide one
chlorophyll value per month for every 296 points. After careful consideration, it was decided to use
all features to identify agricultural trends and predict chlorophyll values on a crop circle. A sequential
forward feature selector was used to determine which features influence chlorophyll values. A lazy
regressor was used to determine the best performing algorithms for feature selection and chlorophyli
prediction. The algorithms included the (i) Random Forest regressor, (i) HistGradientBoost
regressor, (iii) XGB regressor and (iv) Extra Trees regressor. The latter outperformed the other
algorithms and achieved an R? value of 0.86 to predict chlorophyll values for August and September.
Operational validation was done using 80% of the data set for training and 20% for testing. The
model was then presented with an unknown years data table used for testing to predict chlorophyll
for August and September. An R? value of 0.273 was achieved. This was to be expected due to the
data quality issues and the absence of yield data. The model was provided with at most two
chlorophyll values to train with and monthly weather values (instead of daily) to predict a time-series

value. The model achieved a positive R? value.

The concept demonstrator was successfully developed and tested on a real-world use case. It
illustrated how different data sets, machine learning algorithms, predictions and visualization tools

could be integrated and used in a decision support tool for agricultural purposes.
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Opsomming

Boere word deur daaglikse uitdagings in die gesig gestaar en daar is talle faktore wat in ag geneem
moet word om gewasse winsgewend te produseer. Groot hoeveelhede data kan oorweldigend en
kompleks wees as dit nie reg aangewend word nie. Hulpmiddels soos besluitondersteuningstelsels
kan egter geinkorporeer word om die besluithemingsproses te ondersteun. Presisielandbou bied

verskeie geleenthede asook uitdagings aan.

'n Bedryfsvennoot, Maatskappy A, is genader om 'n werklike PA-probleem te identifiseer en te toets.
Die handmatige element van die ontleding van verskeie datalae is tydrowend en vereis 'n meer
gebruikersvriendelike manier om data te vertoon. Hierdie navorsingsstudie het 'n
konsepdemonstrator van 'n besluitondersteuningsinstrument ontwikkel en aangebied om te illustreer
hoe verskeie komponente gebruik kan word om die besluithnemingsproses te verbeter. Maatskappy
A het grond- en voedingstofklassifikasiedata van Plaas X verskaf, wat winterkoring in 'n
somerreénvalgebied in Suid-Afrika produseer. Chlorofildata van 2017 tot 2020 is verskaf deur die
Airbus Verde-diens van Maatskappy A. Die aanname is gemaak om historiese en huidige
meteorologiese data by te voeg wat van die Suid-Afrikaanse Weerdienste verkry is. QGIS sagteware
is gebruik om grond- en voedingstofklassifikasie data asook chlorofildata van 296 GPS-spesifieke
punte op die oessirkel te onttrek. Die datatabel het uit 85 grond- en voedingstof- en weerkenmerke

bestaan.

'n Groot uitdaging het na vore gekom toe geen GPS-spesifieke opbrengs data vir Plaas X beskikbaar
was nie. 'n Derde (11 088) van die totale chlorofildata was vermis en slegs 24 849 datapunte vir
ontleding was beskikbaar. Nietemin, is Python gebruik om die data skoon te maak en die beskikbare
data te ontleed om een chlorofilwaarde per maand vir elk van die 296 punte te verskaf. Die besluit
is geneem om die data patrone te ontleed en om chlorofilwaardes vir Augistus en September op 'n
oessirkel te voorspel. 'n “Sequential forward feature selector” metode is gebruik om te bepaal watter
veranderlikes chlorofilwaardes beinvioed. 'n “Lazy regressor” is gebruik om die beste presterende
algoritmes te bepaal om te gebruik vir die keuse van veranderlikes en chlorofilvoorspelling. Die
algoritmes het die (i) Random Forest regressor, (ii) HistGradientBoost regressor, (iii) XGB regressor
en die (iv) Extra trees regressor ingesluit. Laasgenoemde het beter as die ander algoritmes gevaar
en 'n R-kwadraatwaarde van 0.86 behaal om chlorofilwaardes vir Augustus en September te
voorspel. Operasionele validering is gedoen deur 80% van die data vir die leerproses en 20% van
die datastel vir die toetsproses te gebruik. ‘n Onbekende datatabel van ‘n spesifieke jaar is vir die
model gegee wat gebruik is vir die toetsproses om Chlorofil vir Augustus en September te voorspel.
'n R? van 0,273 is behaal. Dit was te verwagte weens die datakwaliteitkwessies en die afwesigheid
van opbrengsdata. Die model is voorsien van hoogstens twee chlorofilwaardes om mee te leer en
maandelikse weerdata (in plaas van daagliks) om 'n tydreekswaarde te voorspel. Steeds het die

model 'n positiewe R? behaal.
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Die konsepdemonstrator is suksesvol ontwikkel en getoets op 'n werklike gebruiksgeval. Daar is

geillustreer  hoe  verskilende  datastelle,  masjienleeralgoritmes,  voorspellings en

visualiseringsinstrumente geintegreer en gebruik kan word in 'n besluitondersteuningsinstrument vir

landbou.
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Chapter 1
Introduction

This chapter provides a contextual background of the current trends and challenges of precision
architecture (PA), followed by the problem statement and research objectives. Next, the scope of
the project is discussed, along with the research approach and strategy. Finally, the thesis outline

and chapter summary are presented.
1.1 Context

Farmers face daily challenges such as finite natural resources, external factors (e.g., exchange rate
and oil price), climate and environmental changes, as well as diseases and pests (Goldblatt, 2013).
There are numerous factors to consider to produce crops profitably, which makes the management
of a farm a formidable task. Fluctuating market demand can also be challenging for farmers.
Agriculture has undergone and continues to experience significant changes to keep up with demand
and remain competitive. Precision agriculture (PA) is regarded by many as the fourth agricultural
revolution. CropOM (2021) describes PA as a data-driven enterprise that aims to improve efficiency
and optimise production processes to increase profitability. Data is collected from several sources,
including the Internet of Things (l0T) sensors, weather stations, geographical positioning systems
(GPS), and remote sensing technologies (Rehman, 2015). The data is stored in a database, typically
located in the cloud, where it can be analysed and transformed into actionable intelligence. Large
amounts of data can be overwhelming and complex if not utilised correctly. However, tools such as
decision support systems (DSSs) can be incorporated to support the decision-making process and

ultimately increase production efficiency.

DSSs support organisational decision-making activities by collecting and analysing data (Power,
2002). It is a prevalent technology used in many sectors, including manufacturing and logistics, to
assist with tasks such as inventory planning and production schedules. Other technologies are also
incorporated into the DSS to improve functionality, including artificial intelligence (Al) and machine
learning (ML). Business intelligence (BI) software enables users to visualise valuable data to assist
in decision-making activities. The software can be used to display real-time dashboards, which can

help to improve the efficiency of a business and contribute to decision support.

PA incorporates several Fourth Industrial Revolution-related emerging technologies, often in
combination. 10T sensors can provide a plethora of data, including air humidity, temperature, soil
moisture, potential of hydrogen (pH) levels and water levels, to name but a few. Remote sensing is
used in several applications such as aerospace, land surveying, military, commercial planning and

agriculture. Unmanned aerial vehicles (UAV) and satellites can assist in detecting diseases and
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pests, predicting yields, estimating harvest timing, and analysing water and nutrient status (Jarman
& Dimmock, 2018). Various papers explore the use of remote sensing in the agricultural sector. A
study conducted by Ballesteros, Intrigliolo, Ortega, Ramirez-Cuesta, Buesa and Moren (2020), for
example, combined remote sensing, computer vision and artificial neural network (ANN) techniques
to estimate vineyard yield in Spain. A UAV was used to gather multispectral imagery, and the data
were analysed to extract valuable information. The experimental research resulted in accurate yield
predictions and has shown that the proposed system supports decision-making. Another study
utilised remote sensing to detect the properties of soil in specific areas in the United States. Soil
property indicators identified by the remote sensing technology included texture, organic and

inorganic carbon content, moisture content, pH and iron (Ge, Thomasson & Sui, 2011).

Meteorological data is one of the most important data sets in the agricultural sector. Weather
collection devices include thermometers, rain gauges, barometers, radars, UAVs and satellites
(Lumen Learning, 2020). The data can help users to identify trends and make predictions to mitigate
future risks. Meteorological data specific to a geographical location is known as “weather data” and
can better help farmers understand their immediate environment. Weather from a specific region
averaged over a long period is known as “climate data”. The University of Minho conducted a study
using meteorological data to predict forest fires (which also present significant threats to farmers)
using data mining techniques (Cortez & Morais, 2007). Another study examined how meteorological
data can be used for efficient irrigation. Weather, irrigation, yield and soil characteristic data were
utilised to predict a weekly irrigation schedule. The predicted schedule was compared to the
company’s agronomists suggested schedule, and the best performing ML algorithm resulted in a
93% accuracy (Goldstein, Fink, Meitin, Bohadana, Lutenberg & Ravid, 2018).

There are various applications of precision agriculture technology (PAT). Still, it is important to note
that PA is continuously being researched and improved to address new and existing agricultural

problems and challenges.

1.2 Problem statement

This research primarily uses remote sensing and related data to inform decision support platforms
for agricultural purposes, including farmers' early warning systems (EWSs). A concept demonstrator

is used as an instrument to explore the research issues.

An industry partner specialises in plant nutrition products and precision farming services offered
locally and globally. They have developed a cloud-based product that collates large volumes of data
from various sources. Data sources include remote sensing, loT devices such as soil moisture
probes and tracking devices, as well as pest traps and laboratory soil samples. Displayed data
include physical and chemical soil maps, pest monitoring, leaf and tissue analysis, yield maps, water

analysis and Airbus Verde biophysical parameters. The client can access multiple layers of
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information and analyse the data to make informed decisions and track progress.

Analysing the various data sets and transforming the information into actionable intelligence and
decision support in a client/user-friendly format can be time-consuming for a user. There is thus an
opportunity/need to enhance the system in this regard. In this research study, the industry partner
will be referred to as “Company A”. Real data collected by Company A from “Farm X” were used to
develop and assess the concept demonstrator. Company A provided access to their system and
data pertaining to Farm X for the purposes of this research subject to a non-disclosure agreement

concluded between themselves and Stellenbosch University.

The study aims to develop and validate a conceptual decision-support tool to address the information
overload that can improve the decision-making process of the current system, inter alia, by reducing
the time and effort of manually analysing and optimising many data layers. The farm data supplied
by Company A were incorporated in the concept demonstrator to demonstrate how a decision-
support tool can be utilised in real-life scenarios and potentially mitigate risks. The data relates to
winter wheat data in a summer rainfall area in South Africa. The literature investigated PA
technologies and applications, whereas the field research provided the context for the use case farm.
The knowledge gained from the research was combined with statistics, data analytics and decision
support principles to develop the concept demonstrator.

The following research questions emerged and were used to guide the development of the concept

demonstrator successfully. The questions are addressed in various chapters of this research study.

1. Are farmers using remote sensing technology on their farms, and if so, which sources are
they using (including data from satellites and UAVs)? What are the pros/cons as well as

restrictions and limitations of remote sensing technology?
2. Which types of data sets and associated sensing technologies are used by farmers?

3. Which diseases/problems are potentially preventable if early detection and forecasting can

be done, and which crops best lend themselves to this application?

4. Which data sets can be added to the tool to improve decision support, such as meteorological

data and loT sensors inputs?
5. What additional information needs to be collected to perform data analysis?

6. How can the conceptual tool improve the current technologies used by the industry partner

in the agriculture sector?

7. How will the decision support be presented to the project partner effectively?
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8. How can all the components be integrated to develop the decision support tool?
9. Can predictive analytics be used to detect patterns in the data?

10. What are the most important features/variables that affect decision-making?
1.3 Research objectives

The primary objective of this research study is to develop a better understanding of the main
components and applications of PA through the study of a real-life PA scenario to develop a DSS
tool. The research objectives have been grouped into (i) a literature study and (ii) field research
objectives, which were researched in parallel.

1.3.1 Literature study

To fully understand PA and its changing environment, a comprehensive literature study was
conducted to gain more knowledge to develop the concept demonstrator. The literature study
researched applications in the entire agriculture sector with the primary focus on wheat. The
following points are addressed:

o Background research on PA, its components and applications
o Adoption of the technology by farmers
e The use of satellites and UAVSs in agriculture
e Research on the Airbus Verde satellite used by the industry partner, including its:
o Specifications
o Advantages/disadvantages
o Prevalent diseases and pests detectable via remote sensing
e Crop management definition, components and applications
e Other data inputs, including laboratory tests of crops and loT sensors
e Software:
o Software to display and manipulate remote sensing data
o Data analytics software
o Visualisation tools and software
o Determine best practices for displaying agricultural data to users
e DSSs:
o Basic principles and components
o Applications
o Features and benefits
o Technology and sources used

o Commercial and/or experimental DSSs currently available
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Other helpful complementary information

O

O

O

Other technology solutions
Additional complementary data sources

Relevant emerging technologies

1.3.2 Field research

The field research was conducted parallel to the literature study to investigate a real-world example

of PA and gain more knowledge regarding winter wheat crop management. Field research aims to

investigate the industry partner's existing product and identify the farmer's specific requirements to

design and implement a decision support tool. Thus, improving the efficiency of the software by

removing the “manual element” of decision-making when analysing the multi-layered data of the

client. The following main points are used to address the field research objectives:

1.4 Scope

Conduct background research on Company A and Farm X to accurately define the project

requirements of this research study. The research includes:

@)

O

O

O

Services and software

Data sources used for data acquisition

Type and quality of the data

Crop health indicators displayed on the platform (features and variables)

Research the crop characteristics of the data provided from the clients

O

O

O

O

Ideal growing conditions are required for successful crop production, for example,
weather, soil, irrigation, etc.

Wheat crop lifecycle, including pre- and post-harvest management

Diseases and pests associated with the crop

Other variables that can potentially influence crop health

Determine how the partner(s) is currently utilising the product.

O

O

O

O

Research the systems/technologies currently used on the farm(s): What remote
sensing, 10T technology is used to collect data?

What IoT devices are used, and what data do they collect?

Pathology/lab testing/horticulture

Which indicators are provided by the platform?

Refine the needs and requirements of the project partner

Determine which diseases are prevalent on the project-partner farm.

The project scope is constrained by the data and information that are available and accessible for

analysis from Farm X. This project did not consider the entire agricultural supply chain (e.g.,
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procurement, import, export) but only focused on the factors influencing the crop lifecycle (e.g., pre-
harvest, crop growth and post-harvest). The literature study includes a broader research approach,
whereas the field research focuses on winter wheat in a specific province in South Africa. The data
analysis and any additional data sets acquired also focused on the specific region. The project scope

was impacted by:
e The size of the farm
e Type of crop
e Annual or perennial crop
e Quantity of available historical remote sensing data from Farm X
e Quality of the data

e The requirements of the stakeholders

The two-year timeframe between 2020 — 2021 to complete the project

Related assumptions are discussed in more detail in Chapter 3 and Chapter 4, where more

information regarding the use case and the available data is explored.
1.5 Research approach and strategy

The research approach followed in this research study is demonstrated in Figure 1.1 (see overleaf).
A brief literature review was conducted to identify the trends and challenges in PA and used to define
the initial research topic. A potential industry partner(s) was approached with the initial research
guestions to determine whether a more detailed real-world problem regarding a specific use case
scenario exists. This step did not have to be repeated as the first industry partner approached was
able to present a viable real-world PA problem. The initial problem statement and research questions
were refined. Thereafter, the user requirements were defined and used to formulate the research
objectives. Brymann and Bell's (2011) quantitative outline was used as a guideline for the research

methodology approach.

A more comprehensive secondary literature review was conducted to gain the necessary knowledge
on existing technologies and data approaches. In contrast, the field research provided information
about the project partner environment and analysed data. The findings from the literature review
were used to analyse the data and develop a concept demonstrator that is applied to a real-world
example. The concept demonstrator aimed to fulfil the research questions and satisfy the research

objectives.
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Figure 1.1: Research methodology mind map

Project

This chapter provided context on how the research topic was formulated by conducting research on
PA and identifying appropriate research questions. The project partner was consulted to provide a
more in-depth use case scenario. The problem statement and research questions were refined to
address the specific use case of Farm X. The research objectives were grouped into a literature

study and field research to gain the necessary knowledge to design a concept demonstrator.

The conceptual model was customised according to the requirements of the project stakeholders
and was designed to be adaptable to more scenarios. The ultimate goal was to design and develop
a conceptual model to improve efficiency and add value to the industry partner involved.
Furthermore, incorporating an innovative industry partner added immense value to the learning of

the researcher.
1.6 Thesis outline

Chapter 2: Literature study
The information gleaned from the literature study provides a better understanding of PA, DSSs and
current and emerging technologies used. The chapter opens with the principles of PA and the

adoption of technology. Various remote sensing technologies and applications are discussed,
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followed by the use of meteorological data in agriculture for decision-making. Next, the importance
of big data, data methodologies and visualisation tools are discussed. Lastly, the chapter focuses

on ML algorithms, agriculture DSSs and crop management application examples.

Chapter 3: Field research
Chapter 3 provides information regarding Company A and Farm X to understand the current services
and data better. In addition, the ideal growing conditions were researched to determine which factors

can potentially influence decision-making.

Chapter 4: Data analysis
The data analytics methods discussed in the literature study and the knowledge gained from the field

research will be used to perform the data analysis.

Chapter 5. Concept development
This chapter discusses the various sections in the document to indicate how they were used to
develop the concept demonstrator tool.

Chapter 6: Next-generation decision support tool

Chapter 6 discusses two prediction scenarios of using known and unknown test data to make
chlorophyll-related predictions. The data sets used in the algorithm and the prediction accuracy are
presented.

Chapter 7: Validation and verification
This chapter discusses how the model incorporated into the concept demonstrator is validated and

includes the questionnaire used to gather input from subject matter experts (SMES) to test validity.

Chapter 8: Summary, recommendations and conclusion
The final chapter provides a summary of the study and discusses the research findings. Finally,

recommendations for future work are made.
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Chapter 2
Literature study

A systematic literature review was conducted to provide a foundation for understanding and
developing a conceptual decision support tool for agriculture. Section 2.1 provides a brief discussion
on PA and the adoption of hew technologies to place the rest of the discussion into context. A review
of remote sensing is presented in Section 2.2, including a discussion on current developments in the
0T, sensors, geographical information systems (GIS), and climate and meteorological data. The
concepts of big data, data analysis and visualisation tools are discussed in Section 2.4, along with a

brief discussion on Al and a more extensive review of ML concepts and algorithms in Section 2.5.

Numerous literature articles were considered to research the components and compile tables that
summarise existing use case applications in crop management (Section 2.6) and DDSs (Section

2.7). A summary is presented in Section 2.8.
2.1 Precision agriculture

The Fourth Industrial Revolution, also sometimes popularly referred to as “Industry 4.0”, is evolving
rapidly and is disrupting many industries. Cyber-Physical Systems (CPSs) play a pivotal role in this
technological transformation and have several applications in the manufacturing, automotive,
healthcare, military, entertainment, and agriculture sectors. Agriculture-related applications of the

Fourth Industrial Revolution are commonly referred to as PA.

The World Economic Forum’s research indicates that Africa’s population growth will triple by 2050.
The United Nations’ (UN) most recent estimation projects that the world population growth could
reach 11 billion by 2100 (Hajjar, 2020; UN, 2019). There is a dire need for more sustainable farming
practices and increased food production to accommodate the rapid population growth and overcome
the challenges farmers face. PA, also known as precision farming or smart farming, is thought to be
the solution. However, farmers generally face many challenges, including scarcity of fresh water,

climate change, pests and diseases and other socio-economic factors.

One of the primary goals of PA is to use advanced technologies to precisely measure the variation
in the field (Verma, Bhatia, Chug & Singh, 2020). Advanced technologies such as remote sensing,
IoT, sensors, big data, Al, UAVs (also called drones) and cloud computing are utilised for farm
management activities. Applications include production scheduling, crop monitoring, livestock
tracking, variable rate application, and pest and disease monitoring. Farm data can be used to
analyse trends and make predictions that can provide valuable insight to the farmer. The farmer can
utilise a data-driven approach by utilising the data collected from various sources to support decision-

making and ultimately increase profitability.
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Despite the interminable possibilities of PA, several challenges and limitations present themselves,
including access to power and Internet connectivity in remote and rural areas and a lack of training

and expertise (Microsoft Research, 2021).

Farmer adoption of PA is another major challenge. As part of this research, the literature was studied
to understand better the factors that influence the adoption of PA. Sheng Tey and Brindal (2012)
conducted a review of ten studies to investigate farmer adoption in developed countries with respect
to PATs, focusing on (i) GPS, (ii) remote sensing, (iii) soil sampling, (iv) yield monitoring and (v)
variable-rate applicators. They concluded that 34 factors explained the adoptive decision-making of
PATs, grouped into seven categories, Vviz. socio-economic, agro-ecological, institutional,

informational, farmer perception, behavioural and technological.

Pierpaoli, Carli, Pignatti and Canavari (2013) conducted a study to determine the factors influencing
farmer adoption with regard to PATs. Their research focused on two main groups, viz. (1) factors
that influenced farmers that have already adopted PATs and (2) factors influencing farmers with the
intention to adopt PATs. The most important factors that influenced the adoption of the first group
can be seen in Figure 2.1 below. Farm size and confidence with computers and technology were the
most frequently cited parameters affecting the use of PATs. Other important factors include farmer
age, farmer education and a high farm income. Figure 2.2 illustrates the factors affecting farmers’
attitudes to adopt PATs. The Technology Acceptance Model (TAM) was used to explain which
drivers could affect a potential user's behaviour to adopt or not adopt PA technologies. The main
themes that influenced the behaviour to adopt were Perceived Ease of Use (PEU) and Perceived
Usefulness (PU). Factors such as farm size, education and cost-benefit analysis can contribute to
these perceptions; however, it was discovered that technology demonstrations and free-trails

encouraged positive behaviour toward PAT adoption (Pierpaoli et al., 2013).

+ Farmsize -, * Size —
* Geography |—— Competitive and * Facilitating factors
+  Soil quality contingent factors +  Trialability/Observability

Competitive and
contingent factors

of use
*  Accesstoinformation —
+  Farmerage Socio-demographic . * odalfactors , ,
+  Education — factors " Adoption * hee Socio-demographic > | Attitude to use
«  Computer confidence : Educ_atlon factors
* Confidence
*  Previous experience
* Confidence
+ Total income
¢ Ownershipand . 5 ¢ Cost ]
Jand tenure Financial resources * Perceived benefit » Financial resources
o e *  Perceived usefulness
Figure 2.1: Factors that influenced PAT adoption Figure 2.2: Factors affecting attitude to adopt
Adapted from Pierpaoli et al. (2013) Adapted from Pierpaoli et al. (2013)
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PAT adoption challenges are often overcome by implementing technologies systematically, with a
phased approach. PrecisionAg Alliance (2020) defines six levels of PA adoption, which are briefly
discussed below. The levels were used in Chapter 5 to determine where Farm X lies in this spectrum

and aid in designing the decision support tool.

Level 0: Equipment efficiency and basic automation
The main focus of this level is efficiency-technologies such as automation steering. There is little to

no data collection, and any available data is used for operations but not for production planning.

Level 1: Basic georeferenced data collection
Spatial data is collected to assist in inter-field and sub-field assessments and year-over-year fertility

plans. The field data is collected and analysed but not necessarily fully utilised in decision-making.

Level 2: Advanced georeferenced data collection
Imagery, weather data and other information sources are used to capture data to support operational
decisions. Outside expertise is often used for data collection and aggregation.

Level 3: In-season decision-making
Level 3 adoption integrates multiple data layers to provide an evidence-based approach to decision-

making.

Level 4: Digital and process mastery
Having operated at level 3 for a few years, the grower has accumulated multiple data layers and can

make yearly comparisons to assist with in-season operational decisions.

Level 5: Continuous improvement and systems mastery
Level 5 includes exploring new technologies and continuous improvement by utilising the integrated
technologies and data sets for effective decision-making. Level 5 adoption typically implements

imagery, weather- and soil moisture sensors, as well as pests- and disease monitoring systems.

The remaining part of the literature focuses on the leading technologies used in PA, with practical
examples. The main focus areas are remote sensing, 10T and sensors, UAVs, GISs, crop health
indicators, meteorological data, big data, Al and DSSs. This research, along with field research, were
used to gain the necessary knowledge to design the concept demonstrator. The remaining literature

discusses the definitions, backgrounds, and components and examines current technologies used.
2.2 Remote sensing

Remote sensing is the science of obtaining information without physical contact with the observed
object. Remote sensing is considered a primary means of acquiring spatial data and measures the

energy or electromagnetic radiation interacting with objects (Zhu, Suomalainen, Liu, et al., 2017).

26



Stellenbosch University https://scholar.sun.ac.za

The sun's energy is reflected, absorbed or transmitted by the material’s surface in certain regions of
the spectrum. The relationship between the reflected, absorbed, and transmitted energy is used to
determine the spectral signatures of objects. Remote sensing uses these unique spectral signatures

to distinguish between vegetation, water, soil and other features (Nowatzki, Andres & Kyllo, 2017).

The term “remote sensing” was first introduced by Fischer in the 1960s when the new technologies
surpassed traditional aerial photography and required a more comprehensive term to define
emerging technologies. The shift from aeroplanes to satellites ensured more regular land space
cover (Baumann, 2009). Remote sensing applications in agriculture include detecting and monitoring

the physical characteristics of soil and plant material (Mulla, 2013).

The type of sensors and imaging systems were researched to better understand the data collection
process and type of agricultural data acquired from Company A. The research was also used to
investigate applications of current technologies and how they can be used in a decision-support tool.

2.2.1 Sensors and resolution

The two types of remote sensing sensors relevant to this research study are active and passive
sensors. Passive remote sensing records reflected electromagnetic radiation (e.g., visible light and
near-infrared (NIR) light) or emitted electromagnetic radiation (e.g., thermal infrared light) from the
surface of an object. Active remote sensing emits radiation and provides its own source of energy to
illuminate the objects observed. The rapid advancement in sensors has led to the integration of
passive and active sensors. Both imaging sensors and non-imaging sensors can be used in remote

sensing instruments.
2.2.1.1 Non-imaging

Non-imaging sensors include radiometers, spectrometers, altimeters and LIDAR (light detection and
ranging). The sensors typically operate in visible light, infrared (IR), and microwave spectral bands
and can determine temperature, height, wind speed and other atmospheric measurements. Red
laser non-imaging is commonly used for vegetation measurements and LIDAR for three-dimensional

(3D) topographic mapping (Zhu et al., 2017).
2.2.1.2 Imaging sensors
Imaging sensors include (i) optical imaging, (ii) thermal imaging and (iii) radar imaging sensors.

(i) Optical remote sensing
Optical imaging sensors operate in the visible and reflective IR range and include panchromatic,
multispectral and hyperspectral imaging systems (Zhu et al., 2017). Optical images in the visible

spectrum cannot be acquired at night (although IR can overcome this limitation) or when obstructed
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platforms and their applications in agriculture.

Table 2.1: Optical remote sensing and satellite applications (Zhu et al., 2017)

Features Panchromatic | Multispectral Hyperspectral

Spatial Submeter 1-2m 2m

resolution

Satellites QuickBird, SPOT, QuickBird, IKONOS, | TRW Lewis, EO-1
SPOT, Landsat, SPOT, RapidEye,

IKONOS Worldview-2 and 3.

Spectral range | 430-720 430-720; 750-950 470-2000

(nm)

Applications Earth Red-green-blue: visual analysis | Agriculture
observation Green-red IR: vegetation and | Food processing
and camouflage detection Mineralogy
reconnaissance | Blue-NIR-MIR: visualising water | Surveillance
applications depth, vegetation coverage, soil | Physics

moisture  content, and the | Astronomy
presence of fires, all in a single | Chemical imaging
image.

Multispectral imaging has a high spectral resolution. Panchromatic images, which have a high spatial
resolution, are often combined or fused for improved visual image interpretation and information
retrieval. This is known as pan-sharpening or intensity substitution. It combines three bands from the
multispectral image with the panchromatic image to produce an output with both image types' spatial
and spectral properties. Pan sharpening is useful for object-based image analysis such as farm
boundaries (STARS project, n.d.). The narrow bands of hyperspectral imagery are more sensitive to
variations in energy wavelengths and, therefore, have a greater potential to detect crop stress than

multi-spectral imagery.

(i) Thermal imaging
Thermal sensors typically operate between the mid-to-far-IR and microwave spectrum ranges. It
does not require illumination from solar radiation and can provide imaging in the day or night-time.

Thermal sensors can be used in livestock tracking and forest fire and threat detection.

(iif) Radar sensors
Radar sensors typically operate in the Imm — 1m spectrum range. Radar can show the difference in
surface roughness and soil moisture and is often used in conjunction with IR, identifying minerals

and vegetation types.
Remote sensing imaging sensors are generated based on four types of resolutions:

1. Spatial resolution - This refers to the size of the smallest object that can be detected in an
image and is usually presented by a value representing the length of one side of a square. A
spatial resolution of 100m means that one pixel represents a 100m x 100m square on the

ground.
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2. Spectral resolution - The sensors’ ability to measure the width of the wavelengths and

number of bands of the electromagnetic spectrum.

3. Radiometric resolution - The sensitivity of the sensor to detect variations in the reflection on
land surfaces, and it is measured in bits. The more bit values an image has, the more grey-

scale values can be stored to differentiate reflectance (FIS, 2020).

4. Temporal resolution - The frequency of images of the same geographical area. Geo-
stationary satellites continuously provide sensing, while orbiting satellites can only provide
images each time they pass over an area. In addition, cloud cover can interfere with the data

from a scheduled remotely sensed data system.
2.2.2 Remote sensing imaging systems

Remote sensing can be grouped into ground-, air- and satellite-based imaging systems. Imaging
applications in agriculture include pest control, crop irrigation, disease monitoring and other

agriculture-related activities.
2.2.2.1 Ground-based imaging systems

Ground-based remote sensing uses a variety of geophysical surveying to scan below the surface
and is useful in field monitoring for detecting biotic and abiotic crop stresses. Ground-based sensors
can be used in handheld devices or can be attached to machinery. They are efficient to evaluate
small areas, whereas airborne and satellite-based remote sensing is preferred when large-area

sensing is required.
2.2.2.2 Air-based imaging systems

UAVSs, also known as drones, are robots that can fly in manual, semi-autonomous and autonomous
modes without a pilot on board. They are categorised into (i) multi-rotor, (ii) fixed-wing, (iii) single
rotor, and (iv) hybrid Vertical Take-Off and Landing (VTOL) systems (Yinka-Banjo & Ajayi, 2019).

The cost of acquiring UAV imagery or purchasing UAV technology is currently a major challenge in
adopting UAVs. UAVs have a limited flight time and are currently not competitive against non-battery-
operated UAVs and satellites when considering large areas of cover in a time-constrained scenario.
On this point, it is important to keep in mind that, as is typically the case with emerging technologies,
the performance of drones will increase, and prices will drop. The solar-powered hybrid fixed-wing

UAV could solve the current problem (Yinka-Banjo & Ajayi, 2019).

Table 2.2 below illustrates several applications of UAVs in agriculture, such as animal mustering,

crop monitoring, pest and herbicide spraying and disease detection.
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Table 2.2: UAV applications in agriculture

Application Country UAV Use Technology Resource
and sensors
Mustering Australia Quadcopter e Reduced labour and reduced risk | Not specified | Bolton (2020)
(cattle) drone of using quadbikes and horses for
animal mustering.
e  Approximate cost of $20 (Aus.) of
drone mustering in a 600-hectare
paddock.
Monitoring Several Not specified | ¢  Monitoring endangered animals. RFID tags, Yinka-Banjo &
and countries e Cameras fitted on drone can scan | QR codes Ajayi (2019)
identification RFID and identify animal.
Monitoring Several Single- and e  Monitoring the impact of feral Radio Wildlife Drones
and risk countries multirotor animals and invasive predators on | sensors, (2020)
detection drones livestock, especially at night. RFID
(livestock) e Tracking stolen and missing
livestock by using radio-tracking
drones.
Crop Colombia | Quadrotor e Biomass estimation in rice by Multispectral | Abdulridha,
monitoring modelling the relationship of NIR Ampatzidis,
selected vegetation indices. Kakarla &
Roberts (2019)
Crop and India VTOL e UAV used to spray pesticides to Multispectral | (Meivel,
spot spraying Quadcopter reduce pesticide contact with camera Gandbhiraj,
humans. QGIS Srinivasan &
e Controlled spraying by utilising software Maguteeswaran
imaging sensors and spraying (2016)
areas not easily accessible to
humans.
Disease Florida, DJI Matrice e Used UAV remote sensing to Resonon Abdulridha et al.
detection USA drone distinguish between target spot Pika-L2.4 (2019)
and bacterial spot infected tomato | hyperspectral
plants at different disease sensor
development stages.
Herbicides Brazil eBeeX fixed- | e« Mapped 500 hectares and detect Xarvio field Pinguet (2021)
wing drone weed infestations areas. manager
e Generated application maps and
reduced herbicides by 52% on
Soybean farm.
Planting USA AeroSeeder- | ¢  Autonomous drone equipped with | Not specified | Coxworth (2020)
Octocopter an 18kg sack and terrain-following

sensors to release seeds.

e Focused on cover crops and
eliminates risk of damaging main
crops with heavy ground
machinery.

e Can cover 40.5 hectares in eight
hours.

2.2.2.3 Satellite-based imaging systems

Satellite sensing is widely used in forestry, oil and gas, agriculture, mining, construction,

oceanography, insurance and finance, and medicine. Geostationary satellites travel at the same rate

as the Earth’s rotation and provide continuous coverage of one specific area on Earth. Geostationary

operational environmental satellites (GOES), otherwise known as weather satellites, are examples

of such satellites. Popular remote sensing satellites, their applications in agriculture and spatial

resolution are discussed in more detail in Appendix Al.
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The data provided by Company A is acquired from the Airbus Verde service that delivers detailed
crop analytics from satellite imagery. Verde can be integrated into any PA portal with any satellite
used as a source. The imagery is cropped to the parameters of the farm and de-clouded, which is
used to detect anomalies, optimise field scouting, irrigation, fertilisation and seeding (Airbus, 2019).
It provides 15 indicators, including leaf area index (LAIl), leaf chlorophyll content, leaf water content,
and normalised difference vegetation index (NDVI). Verde collaborates with a UK agritech company
to combine service and link metrics such as soil chemistry, weather and ecological indicators (African
Farming, 2020). The type of data provided by the Verde service for this use case is discussed further

in the field research (see Section 3.2).

Choosing the best remote sensing technology depends on the type of application and imagery
required by the farmer. Airborne-based and satellite-based remote sensing gather information in
different ways and scales. It is often not an “either-or” but rather an “if-then” decision when it comes
to deciding which technology to choose (Barnes, 2018). Airborne and satellite remote sensing are
often combined to utilise the full potential of both technologies. Aerial photography has a higher
resolution but is currently more expensive per square meter. MicaSense and their South African
partner, Aerobotics, are examples of companies that incorporate both satellite and multispectral data
to provide different levels of information and data analytics solutions to help farmers detect pests
and diseases (MicaSense & Aerobotics, 2021).

2.2.3 GIS and GPS

GIS refers to computer software that visualises information gathered from remote sensing and GPSs.
It captures, stores and displays data related to positions on the Earth’s surface and integrates the
data captured from remote sensing to show data, such as streets, buildings and vegetation, on a
map. Popular GIS software includes ArcGIS, Google Earth Pro, Google Maps API, ArcGIS, QGIS,
PostGIS, Global Mapper and gvSIG (G2, 2021; GISGeography, 2021).

2.2.4 10T and sensors

Agriculture management requires timeous data on several factors such as soil quality, fertilisers,
irrigation and meteorological data. Sensors can be used to collect these, including temperature, soil
moisture, light and pH sensors. The 10T and edge devices consolidate various communication
technologies to create an intelligent system that interacts with the real world and digital world,
connecting (smart) devices with another, computers, and people. Sensors can be combined with
several other technologies to provide a complete integrated monitoring system (Verma et al., 2020).
Kumar, Mishra, Gupta and Dutta (2021) compiled a detailed figure (see Figure 2.3 below) to show
applications of 0T sensors in PA, including soil health monitoring, irrigation, disease identification

and crop yield monitoring.
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Figure 2.3: Applications of smart sensors in precision agriculture (Kumar et al., 2021)
2.3 Climate and meteorological data

Climate and meteorological data is critical to the success of agriculture production and profits.
Climate data provide valuable insight to assist the farmer in decision-making regarding factors such
as crop selection, pesticides and harvesting. It is also important to compare historical, current and
forecasted weather data to ensure more accurate decision-making. Historical weather data can
provide valuable insight into past weather patterns and seasonal data, whilst current weather data
can help plan day-to-day and short-term operational strategies. Using both historical and present
data can help to predict future trends by utilising appropriate weather forecasting techniques.

Meteorological data also play an important role in managing pest and disease control, thereby
helping to mitigate these risks. Copious amounts of literature explore the effects of climate change
and weather data on the agricultural sector across the globe. One study, for example, aimed to
develop an adaptive model for forecasting seasonal rainfall using predictive analytics. A framework
called the “Enhanced Multiple Linear Regression Model” (EMLRM) was proposed, including a rainfall
prediction model (Reddy & Sureshbabu, 2019).

Han, Baethgen, Ines, Mer, Souza, Berterretche, Atunez and Barreira (2019) developed a decision
support tool that compares several input variables to climate conditions. It allows, for example, the
user to input planting dates, crop variety and fertiliser application and then choose a historical,
forecasted or hindcasted climate option. The results of the input variables are simulated against the
climate option selected, and the output results are used to aid in the decision-making process. The
tool, named SIMAGRI, was customised for maize, soybean and wheat crop production in Uruguay
but can be modified to be applicable in other countries. The weather data used in the tool include
long-term data of minimum and maximum air temperature, solar radiation and precipitation data of

Uruguay.
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Frisvold and Murugesan (2013) conducted a study that used a subsample of 284 farms in Arizona
to assess the use of weather data for agricultural decision-making. Two of the main research
guestions explored the (i) importance and (ii) use of different types of weather data for production
and marketing decisions. Part of the study asked farmers to indicate the importance of weather data
on their decision-making. The farmers’ responses were recorded on a Likert scale and analysed.
Table 2.3 below summarises the type of management decisions made from specific weather

information.

Table 2.3: Types of weather data used for agricultural decision-making (Frisvold & Murugesan, 2013)

Type of weather data Agricultural decisions

Temperature Planting, harvesting, defoliation, crop modelling, disease
risk, pest control

Precipitation Planting, harvesting, fertiliser applications, cultivation,
spraying, irrigation, disease risk

Soil moisture Planting, harvesting, fertilising, transplants, spraying,

irrigation, monitoring growing conditions, measuring
plant stress

Soil temperature Planting, pest overwintering conditions, transplanting,
fertilising

Relative humidity Planting, irrigation, pest control, harvesting, pollination,
spraying, drying conditions, crop stress potential

Wind speed Defoliation, harvesting, freeze potential/ protection, pest

control, pruning, spraying or dusting, pollination, dust
drift, pesticide drift

Wind direction Freeze potential/protection, cold or warm air advection
over crop areas, pesticide drift, dust drift

WeatherPlot is a site-specific precision weather and soil analytics mobile application built on Iteris’
ClearAg platform. It can provide hourly and daily weather information and 30 years of historical and
forecasted data with soil-related information. The application also provides advisory services

assisting in pests and diseases, crop nutrition, irrigation and planting and harvest timing.

Climate and meteorological data is discussed in Section 2.6.3 concerning yield prediction and

Decision support in agriculture (see Section 2.7.1).
2.4 Big data, analytics and visualisation

Big data, data analytics and visualisation can be integrated to collect and extract value from data
and present it in a useful and user-friendly format. Large amounts of data is often complex, and
visualisation tools are required to provide easily interpretable visualisations and dashboard displays.
The information in this section was used in the design and development of the concept demonstrator

discussed in Chapter 5.
2.4.1 The nature of big data

Big data can be described as data that are too large, fast and complex for traditional methods to be
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used to process (SAS, 2021). The term “big data” gained momentum in the early 2000s. The
definition of the 3Vs was first introduced by the analyst Dough Laney (Marbella International

University Centre (MIUC), 2020) viz. volume, velocity and variety, which he described as:

“Big data is high-volume, high-velocity and/or high-variety information assets that
demand cost-effective, innovative forms of information processing that enable

enhanced insight, decision-making, and process automation.”

Although the concept of big data is not new, the tools and techniques used to analyse large data
sets are becoming increasingly powerful and sophisticated. Laney’s definition is widely accepted,
although some authors have attempted to expand the definition by adding additional Vs such as
variability, veracity and value (MIUC, 2020; Oracle, 2021; SAS, 2021).

2.4.1.1 Why big data?

With the advent of the digital revolution and fusion of big data, cloud computing and loT devices,
sensor-based technologies are becoming more affordable and accessible. As a result, a plethora of
data is generated, collected, and used for various industries, including automotive, healthcare,
military, manufacturing, and PA sectors. According to Kumari, Tanwar, Tyagi, Kumar, Maasberg and
Choo (2018), the primary challenge of big data is dealing with and utilising the vast amounts of
Multimedia Big Data (MMBD). The data acquired from multiple sources are often unstructured and
requires data pre-processing and complex algorithms to extract valuable data. This adds to the
complexity of data storage, processing capabilities and analysis techniques. Therefore, conventional
data processing tools are not sufficient. Instead, big data mining technigues can be used to uncover
patterns and enhance decision-making by providing knowledgeable insight to the stakeholders.
Figure 2.4 below shows the basic framework of MMBD computing and its essential processes
(Verma et al., 2020).

Data Prediction,
Visualization and Reporting

Stage3: Knowledge Generation

Data Assessment Data A"?MiCS &
Statistics

Stage2: Data Processing

Data Collection Data Compression Data Storage

Stage1: Data Acquistion

Figure 2.4: The basic framework of MMBD computing and its processes (Verma et al., 2020)
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The framework consists of four stages: data acquisition, data processing, knowledge generation,
and decision support. Data acquisition (stage 1) includes collecting raw and unstructured data, which
are processed and then stored. In the data processing stage (stage 2), the data is analysed using
data analytics tools. The analysed data is then used in the knowledge generation stage (stage 3) to
make predictions and visualisations. Finally, the knowledge gathered from the data can be used to

derive conclusions and improve decision support (stage 4).
2.4.1.2 The challenges of big data

Two of the major challenges in implementing big data in agriculture are the initial investment cost of
the infrastructure and the proper training of farmers (Verma et al., 2020). According to Wolfert, Ge,
Verdouw and Bogaardt (2017), these can be considered technical challenges and are regarded as
the first type of challenges encountered with big data in agriculture. They relate to installing the
technological devices, information technology infrastructure and maintaining the power supply and
intranet. On the other hand, organisational challenges are challenges related to infrastructure, lack
of expertise, and the overall management of information technology (IT) systems. The accuracy and
privacy of the data being captured are additional issues. Validation and verification methods can be
used to authenticate the data, and strict policies should be in place to ensure data security and user
anonymity (Carbonell, 2016; Verma et al., 2020). The challenges in big data relate to the factors that
influence PA adoption of farmers (Section 2.1). Mindful of these challenges, it is thus helpful to
research the challenges related to agriculture and technology adoption before designing a

demonstrator tool, such as the one proposed in this research study.
2.4.2 Data analytics

Data analytics is the process of analysing raw data by using various techniques to uncover patterns

in the data. There are four main types of data analytics, viz.:

1. Descriptive Analytics - Uses data to describe the performance of an entity. It includes data
collection, processing, analysis and data visualisation (Schaap, 2020). Charts, graphs, maps,
and diagrams can visually represent the data and enable the user to gain insight into past
events (Du Preez, 2020).

2. Diagnostic Analytics — Also known as “exploratory analytics”, uses the findings from the
descriptive stage to determine why something has happened (2U, 2021; Frankenfield, 2021).
It attempts to discover unexpected relationships, patterns and trends and detect anomalies
in the data (Du Preez, 2020).

3. Predictive Analytics - Uses known data by utilising statistical and ML techniques to determine
what will most likely happen in the future (2U, 2021). Historical data is used to detect patterns

and the relationship between the input and output variables and can perform forecasting,
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prediction and estimation to infer what is most likely to happen (Du Preez, 2020; Schaap,
2020).

4. Prescriptive Analytics - Seen as the most challenging but most valuable form of analytics. It
aims to answer the questions about what should be done (2U, 2021; Schaap, 2020).
Prescriptive analytics uses ML techniques to analyse and find patterns to estimate the

various outcomes and support data-driven decision-making.

How can we
make it happen?

What will Prescriptive
happen? Analytics
Why did it Predictive
happen? Analytics
=
What Diagnostic
happened? Analytics
Descriptive :
Analytics

Value

Difficulty

Figure 2.5: Gartner’s analytics ascendency model (Schaap, 2020)

The field research was used to explore the use case's nature further and determine where it lies
within Gartner’'s ascendency model. This was used in the data analysis and development of the
concept demonstrator.

2.4.2.1 Data analytics methodologies and processes

A few industry-standard methodologies exist for data analytics, but the main methodology remains
the CRoss-Industry Standard for Data Mining (CRISP-DM). Other methodologies include Microsoft’s
Team Data Science Process (TDSP), Knowledge Discovery in Database (KDD) and Sample,
Explore, Modify and Access (SEMMA). Several methodologies are discussed for comparative

purposes below, emphasising the CRISP-DM methodology used in Chapter 4.

Knowledge discovery in database (KDD)

The term “knowledge discovery in database” was coined in 1989 to refer to the broad process of
using data mining (DM) methods to find knowledge in data according to the specification of measures
and thresholds (Azevedo & Santos, 2008). KDD is an interactive and iterative process involving
using a database along with any pre-processing, sub-sampling and transformation of the data
(Shafigue & Qaiser, 2014).
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Team data science process (TDSP)

Microsoft built the agile and iterative methodology in 2016 to facilitate the successful implementation
of data science projects. It includes best practices and structures from industry leaders and
comprises six main components (Deeper Insights, n.d.; Microsoft, n.d.). The last stage differentiates
the TDSP methodology from the CRISP-DM method. It includes system validation to confirm that

the client requirements have been met and ensures smooth roll-out within a company.

Sample, Explore, Modify and Access (SEMMA)
The SAS Institute developed the SEMMA process to describe the process of conducting a data
analysis project. It comprises five main stages (Azevedo & Santos, 2008; Shafique & Qaiser, 2014).

CRISP-DM

The CRISP-DM methodology is a hierarchical process model comprising four major phases, generic
tasks, specialised tasks and process instances. The CRISP-DM methodology distinguishes between
the reference model and the user guide (see Figure 2.6). The reference model provides a quick
overview of phases, tasks and outputs, whereas the user guide provides more detailed descriptions
of each phase and depicts how to do a data mining project. For the purpose of this study, only the
user guide will be discussed below. The CRISP-DM phases discussed below are adapted from
Chapman, Clinton, Kerber, Khabaza, Reinartz, Shearer and Wirth (1999), Nisbet, Elder and Miner
(2009), and Wirth and Hipp (2000):

1. Business understanding
This phase aims to assess the requirements, resources, and constraints to understand the
problem at hand and determine the business goals and objectives. It also involves compiling
a list of risks and potential actions taken and determining the data mining goals in technical
terms. Moreover, a detailed project plan can be used to specify the intended duration,
resources and iterations of the project, and an assessment of the initial selection of tools and

techniques can also be included.

2. Data understanding
In the data understanding phase, the data is collected, described, and examined to better
understand the data. After the data have been explored and the type of data has been
identified, any data quality problems and potential solutions are listed. The business
understanding and data understanding phases are iterative processes, and after collecting

the initial data, some of the business objectives and approach strategies could change.

3. Data preparation

Data preparation includes all the activities required to construct the final data set used in the
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model. Preparation activities include data cleaning, transformation, data imputation, data
reduction and data derivation. Data can also be integrated by merging tables and aggregating

new data records.

Modelling

The first step in the modelling phase involves choosing the actual modelling technique(s)
used and listing the specific models' data assumptions and parameter settings. A procedure
is then generated to describe the testing that will be done to validate the model performance.
For example, planning is required when using a classification algorithm to divide the data set
into training, test and validation data sets. The results of the model outcomes should be
evaluated, and parameters or data sets can be revised to improve the model results
(Chapman et al., 1999; Smatrt vision, 2021).

Evaluation

The results are summarised and assessed during this stage to determine whether the model
has achieved the desired business objectives. Any important risk factors discovered in
previous phases should be highlighted, and recommendations for improvement and future
work can be reported in this phase.

Deployment

In the final stage, the evaluation results are used to determine a strategy for the deployment
and the necessary steps on how to perform them. A monitoring and maintenance plan should
also be compiled and included in the final report that will be presented to the concerned

stakeholders.

Business Data
Understanding 1 Understanding

Data

Preparation
Deployment e
r

Modelling

Evaluation

Figure 2.6: The CRISP-DM methodology (Wirth & Hipp, 2000)
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2.5 Artificial intelligence (Al) and machine learning (ML)

Al and ML can provide farmers with real-time insight into the farm and are used to better understand
the data-intensive processes and environments of agriculture. With the advancement of high-
performance computing, Al and ML became popular tools to assist in complex analysis and decision-
making, which are often time-consuming for the farmer. Automating some manual elements and
simplifying the data analysis and decision processes allow the farmer to prioritise specific farming
activities and make data-driven decisions. The definition and few applications of Al are discussed
below, followed by the definition, types of ML and popular programming languages available. This
research and data analysis methodologies in Section 2.4.2 are used in Chapter 4 for the data

analysis.
2.5.1 Artificial intelligence (Al)

The term “artificial intelligence” had appeared in literature as early as the 1950s when Alan Turing
published his work “Computing machinery and intelligence” (cited in McCarthy, 2004). McCarthy
(2004) defines Al as the science and engineering of making intelligent machines that do not have to
confine themselves to the biological methods of a human. ML and deep learning are frequently
mentioned in conjunction with Al and are combined with knowledge from computer science,
engineering and statistics to try and simulate human intelligence to solve problems (IBM Cloud
Education, 2020; Master’s in data analytics, 2020).

Al requires a colossal amount of data to train the machine and can be used in complex speech and
facial recognition, weather prediction and medical diagnostics. Al applications in agriculture include
irrigation, pest management, livestock tracking, disease detection and yield prediction. Several
factors can influence production. A major challenge in agriculture is that it can be a timely process
to construct a robust model. For example, crop-specific data is collected on an annual basis.
Production performance of each year can vary vastly due to a combination of factors, such as
climate, pesticides, fungicides, crop type and soil type. Therefore, a substantial number of years’
worth of data collection may be necessary to provide sufficient data to train the Al models (Dharmaraj
& Vijayanand, 2018).

2.5.2 Machine learning (ML)

Liakos, Busato, Moshou, Pearson and Bochtis (2018) define ML as processes that learn from training
data to perform specified tasks. A more detailed definition by Du Preez (2020) (cited in Al Sonosy,
Rady, Badr and Hashem, 2016) claims that ML is defined as a set of rules that uses mathematical
and statistical techniques to assist in identifying patterns and trends and learn from existing data to
make predictions and decisions, without explicitly being programmed to do so. Choosing the

appropriate type of ML algorithm will depend on the data availability, data quality and desired
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outcome of the user.

2.5.2.1 Types of machine learning

There are four types of ML algorithms, viz. supervised, semi-supervised, unsupervised, and
reinforcement learning, that can be used. Data within this project scope can be categorised as
labelled or unlabelled data. Labelled data contain informative labels to provide context to learn from
an ML model (AWS, 2021). On the other hand, unlabelled data do not contain tagged labels to

classify and identify characteristics.
2.5.2.2 Supervised learning

Supervised learning uses labelled data as input and maps it to the desired known output. The data
sets include the correct outputs to allow the model to learn and make predictions. The model’s
accuracy is measured through a loss function and will adjust until the error is minimised and an
acceptable level of performance is achieved (Du Preez, 2020). The two main types are grouped into
classification and regression problems, and popular algorithms such as linear regression, random
forest and Support Vector Machine (SVM) can be used to address these problems (Brownlee,
2020a).

2.5.2.3 Unsupervised learning

Unlabelled data is given as input without any output (target) data. The algorithm tries to find
associations between the given inputs and groups them to predict the desired output. Unsupervised
learning problems can be grouped into clustering and association problems, and popular algorithms
include k-means for clustering and the Apriori algorithm for association rule learning problems
(Brownlee, 2020a).

2.5.2.4 Semi-supervised learning

Semi-supervised learning is seen as a hybrid between supervised and unsupervised learning as the
learning model receives both labelled and unlabelled data (Pykes, n.d.). It is often costly and difficult
to obtain labelled data, and semi-supervised learning is particularly useful in scenarios where
labelled data is scarce (van Engelen & Hoos, 2019). The model is trained on the labelled data, and

pseudo-labelling can be used to label the unlabelled data based on the predicted outcomes.
2.5.2.5 Reinforcement learning

Reinforcement learning is a unique type of learning because it does not receive data to solve a
problem. An agent needs to navigate an environment and try to achieve a goal or set of goals to
achieve the greatest reward (Grokking, 2019; Singh, 2018). The environment reveals itself to the

agent as states (s) while the agent influences the environment and takes actions (a) through a trial-
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and-error basis. Reinforcement learning is applied in fields such as games, robotics and self-driving
cars. (SPIME Analytics, 2020).

2.5.3 Machine learning languages

There are numerous ML languages available. This raises the question of what program language is
best for ML? To answer this question, one must consider the problem that needs to be solved. The
type of learning problem, data quality, computational power, compatibility, support, and available
language libraries all play a role when choosing the right programming language. Five of the main
ML languages are discussed below.

2.5.3.1 Python

Python (www.python.org) is one of the preferred programming languages due to its simplicity,

consistency and excellent community support and documentation. It is easy to learn, and once you
know the basics of Python programming, you can start using the libraries. It boasts a vast number
of libraries and tools to support various ML tasks. Python can run on multiple platforms, such as
Linux, Windows and macOS (CFl, 2018). Popular ML libraries include Pandas, TensorFlow, Pytorch,
Scikit-learn and Matplotlib (ActiveState, 2020). Python is easily integrable with Microsoft PowerBl,
Excel spreadsheets, Orange and databases like MySQL and PostgreSQL.

2532R

R (www.r-project.orq) is one of the most popular open-source programming languages for statistical

modelling and analysis. Various packages are available for data analysis, data sampling, data
visualisation, model evaluation, supervised and unsupervised ML applications. R is also a cross-
platform language that can easily run on Linux, Windows and Mac and is highly compatible with
other languages like Python, Java, C and C++ (DataFlair, 2021; Springboard, 2020).

R supports the natural implementation of matric arithmetic and other data structures like vectors and
is often preferred over its Python competitors, NumPy. Where R dominates in some areas, there are
also some limitations and disadvantages of the language. R lacks basic security and, therefore, has
several restrictions and cannot be embedded into a web application. The language has a steep
learning curve compared to Python, and first-time users may find it difficult to learn. It is also much
slower than Python, Java and Julia. R utilizes more memory because the physical memory stores
the objects and can pose problems in working with large data sets (DataFlair, 2021; Krill, 2015). A
few ML libraries for R include dplyr, tidyr, ggplot2, lubridate, mice, lattice and caret (Springboard,
2020).
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2.5.3.3 Java and JavaScript

Java (www.java.com) is an older open-source programming language that provides a powerful base

for application development with efficient coding and debugging. It is characterised by its static-
typing syntax, which is much faster than a language like Python, which has a dynamic-typed syntax.
Java codes are often described as overly complex and long. Some Al libraries include:
TensorFlow.js, Keras.js, RapidMiner, JGAP, Watchmaker, Apache Jena, Jenetics and

Deeplearning4j.
2.5.3.4 Julia

Whilst many programming languages were developed between the 1960 - 1980s, Julia

(www.julialang.org) was only introduced in 2012. The developers wanted to address the

disadvantages of other programming languages and create a language that incorporates the same
computational capabilities as MATLAB, be comparably fast as C and be as simple as Python. Julia
was created for complex linear algebra, data science and ML (Medina, 2020). Julia is object-
orientated, and the syntax is easy to understand and is effective in computational statistics and
numerical calculations (SPEC INDIA, 2021).

2.5.3.5 Scala

Scala (www.scala-lang.orq) is a well-known language that combines object-orientated and functional

programming. Its static types help avoid bugs and are also highly compatible with Java frameworks
and libraries. In addition, it has a strong backend and can manage enormous amounts of data and
dataflows (SPEC INDIA, 2021). Popular libraries include Breeze, Spire, Saddle and
DeeplLearning.scala (Krykowski, 2021).

2.5.3.6 Summary

The main advantages and disadvantages of each programming language are summarised in Table
2.4 below. Previously, R was the preferred ML programming language, but other languages have
gained momentum in the ML domain in recent years. R and Python are still considered the top

competitors and are very similar in ability and performance.

Table 2.4: Advantages and disadvantages of ML programming languages.

Programming | Advantages Disadvantages
Language
Python e Easytolearn e  Slower than most languages
e  Powerful libraries e  Struggles to support multithreading

e Cross-platform compatibility and integration
(SQL, PowerBl)

e Free and open source

e  Community support

R e Large variety of libraries e  Steep learning curve
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Programming | Advantages Disadvantages
Language
e Free and open source Poor memory management
e  Cross-platform compatibility Slow speed
e Excellent community support Poor security
e Does not require a compiler
Java e  Object-orientated Moderate learning curve with high entry
e Robust, secure and platform-independent point
e  Community support Requires more memory
e Uses multi-threaded environment to run More costly due to higher processing and
various threads separately memory requirements
Julia e  Object-orientated and functional Less resources and community support
e Easy syntax than other languages
e Free and open source Libraries are not well-maintained
e Less libraries and scientific tools than Python
and R
Scala e  Compatible with Java e  Slow compiling
e High performance Steep learning curve
Limited commercial support and
documentation

2.5.4 Visualisation

It is often difficult for the human eye to detect patterns and relationships when exploring large data
sets without statistics and visualisation tools. Different data types can be visualised by using heat
maps, bar charts, radar charts, pie charts, histograms and clustering, to name but a few. Moreover,
dashboards can be used to integrate the visualisations to assist with the interpretation of data and

decision support.
2.5.4.1 Orange

Orange (www.orangedatamining.com) offers many data visualisation options and helps users gain

insight into the data rather than the programming. It is interactive software that allows the user to
select data subsets from graphs, plots and tables. Some visualisation widgets include scatter plots,
box plots, histograms, heat maps, classification trees and even silhouette plots, mosaic and sieve
diagrams, which much other software do not include. These widgets are easily customisable. Orange
also offers a clever reporting option that compiles a summary of the desired data and visualisations.
The widgets are used to build the base layer upon which data sets can be connected to the
infrastructure to be visualised. Orange is compatible with Microsoft Excel and Python, and it has

excellent user support on its website.

Figure 2.7 displays the drag-and-drop widgets that can be selected on the user interface to make
predictions with classification trees and logistic regression. Figure 2.8 displays a simple box plot

based on the popular Iris data set.
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data analysis in Orange data mining analysis in Orange data mining (Orange,2021)

(Orange, 2021)

2.5.4.2 Microsoft PowerBl

Power Bl (www.powerbi.microsoft.com) is a Microsoft-based real-time Bl software program that
offers on-premises and cloud access to data. The software has built-in visuals, allows for customised
visualisation, and the user can even publish the desktop dashboard online. Users can collaborate
and share the visualisations and data, and there is also large support and an assisting community if
the user requires help. The software is free, and additional features can be purchased if needed.
PowerBlI's powerful Excel integration allows the user to select, filter or slice data in a PowerBI report
or dashboard and transfer it back into Microsoft Excel. More useful features include the mobile
application and easy integration with the Structured Query Language (SQL) server.

One of the limitations of the software is that the free version’s data storage is limited to 2 GB and
requires a purchase upgrade if larger volumes of data processing are required. This can be solved
by accessing data directly from the server. In addition, PowerBl is not ideal for visualising complex
relationships between tables on the dashboard (Van Rooyen, 2019). Figure 2.9 shows a conceptual
management dashboard that was designed and developed for the Stellenbosch Learning Factory to

enable a user to view critical KPI’s.
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Figure 2.9: Management dashboard designed in PowerBI
2.5.4.3 Tableau

Tableau Public (www.tableau.com) is a popular free Bl software program that includes a drag-and-

drop interface to customise user dashboards. The user can publish the dashboards and share them
live on the web or smart mobile devices. Tableau does not require any programming knowledge and
provides real-time data visualisation. Tableau also provides a collaborative working environment
where dashboards can be shared with chosen users (Tableau, 2003). An example of a graph from

Tableau’s website can be seen in Figure 2.10 (see overleaf).
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Figure 2.10: Tableau concept visualisation indicating profit versus sale data

2.5.4.4 Looker

Looker (www.looker.com) is an entirely web-based platform that provides a free educational version

(Looker, 2021). It has its own proprietary modelling language called LookML, which is seen as an
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improved version of SQL and defining queries (Nine Boards, 2020).
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Figure 2.11: Looker concept dashboard

All of the software mentioned above presents powerful features for data insight and visualisation.
However, the chosen visualisation tool will depend on the client requirements and objectives of the
study to ensure that the desired outcomes are met.

2.6 Crop and production management

Crop management refers to all the agricultural processes involved to ensure optimal productivity in
the field. Processes such as soil preparation, planting, fertiliser, irrigation, pest and disease
management, harvesting and post-harvesting activities can help to provide accurate and up-to-date
field crop records. Vegetation indices, pests- and disease management, as well as yield prediction

are discussed below.
2.6.1 Vegetation indices

Soil quality (SQ) assessments are fundamental for increasing agricultural productivity and designing
more sustainable land management practices. SQ depends on factors such as climate, soil and the
type of crop planted. Soil health indicators (SHI) can be used to monitor the SQ and play a vital role
in the communications between the land managers and other stakeholders involved (Eze, Dougill,
Banwart, Sallu, Smith, Tripathi, Mgohele & Senkoro, 2021; Viana, Farhate, de Souza, Cherubin &

Carneiro, 2020). Remote sensing can be used to monitor biotic and abiotic stresses in plants.
2.6.1.1 Biotic health indicators

Soil samples can be taken and used to collect information about the condition of the soil. Data such

as magnesium (Mg), potassium (K), calcium (Ca), phosphorus (P) and pH can be used. Remote
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sensing, however, can tell us more about the state of the land and crops. A few of the major crop
health indicators are discussed with their formulas below. Multispectral sensors are used to capture
indices such as NDVI, Modified Chlorophyll Absorption in Reflective Index (MCARI), Normalised

Difference RedEdge Index (NDRE) and soil moisture levels.

Normalised difference vegetation index (NDVI)

NDVI is one of the most common indicators in agriculture and is used to assess whether an area
contains live green vegetation by capturing how much more infrared (IR) light is reflected compared
to visible red light. NDVI can be used to differentiate between crops and crop stages, differentiate
bare soil from grass or forest, and detect plants under stress (Nuno, 2014). The value varies between
-1.0 and +1.0, with zero indicating no green vegetation and values close to +1 showing high-density
green leaves (NASA EO, 2000). Vegetation properties such as LAI, biomass and chlorophyll can be
derived from the index.

Soil adjusted vegetation index (SAVI)

The soil adjusted vegetation index (SAVI) accounts for the variation in soil type and soil properties.
Areas of low vegetative cover influence light reflectance in the visible red and NIR spectra (< 40%).
This can be problematic when different soil types and crops are being evaluated due to the difference
in reflectance of red and IR wavelengths. The accuracy of the NDVI decreases with variables such
as soil colour, soil moisture and saturation from high-density vegetation. SAVI was developed to
improve the shortcomings of NDVI and minimise the influence of soil brightness in the red and NIR
wavelengths (Olukayode, Blesing, Rotimi & Oguntola, 2018; The landscape toolbox, 2012). SAVI
ranges between -1 and +1, and a lower value indicates the amount of green vegetation (Olukayode
et al., 2018).

Modified soil-adjusted vegetation index (MSAVI, MSAVI2)

MSAVI, later revised as MSAVI2, was developed by (Qi, Chehbouni, Huete, Kerr & Sorooshian,
1994) to address some of the limitations of NDVI for areas with high exposed bare soil due to minimal
vegetation or a lack of chlorophyll. SAVI requires specifying the soil-brightness correction factor(L)
for the vegetation. The problem with this is that it is based on a trial-and-error specific to the amount
of vegetation in the study area. Still, most use the standard L value of 0.5, leading to inaccurate

calculations (The landscape toolbox, 2012).

Leaf Area Index (LAI)

LAl is the total leaf area per unit ground surface area. It tells us how many layers of leaves would be
on the ground if it were to fall and be arranged exactly side-by-side. The leaves in the canopy are
arranged randomly, and, therefore, light can still often reach the ground surface with an LAI value
greater than one (1) (Gabron, n.d.). LAl is dimensionless and measured as a ratio of leaf area per
ground surface area [m?/m?]. An LAI value of three (3) means that the study area has a leaf area to

ground surface area ratio of 3:1. Some desert ecosystems would have an LAl value of less than one
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(1), while shrublands typically have values between three (3) and six (6). Tracking the LAI of a maize

farm from seeding to maturity could range from zero (0) to six (6) (Campbell, n.d.).

Chlorophyll index (CI)

The index incorporates the Clgreen and Clred-edge spectrum bands to calculate the total chlorophyll
in plants and provide meaningful insight into plant health. The two bands respond to variations in
chlorophyll content and are consistent for most plants (EOS, 2021). Common uses of Cl include
yield prediction, improving crop distribution uniformity, identifying nutrient deficiencies and assisting
in target tissue sampling. Patterns detected in Cl were found to be highly correlated with final crop

yield in the fall (Ceres, 2021). Other relevant vegetation indices are shown in Table 2.5 below.

Table 2.5: Other relevant vegetation indices (Kulbacki, Segen, Knie¢, Klempous, Kluwak, Nikodem,
Kulbacka & Serester, 2018)

Index Formula Spectral Sensor Application | Source
bands
Leaf rust LRDSI. 1=6.9REPL_ 15 BLUE: 455 | Ground-based | Detection of | Ashourloo,
disease - B ED2 RED: 605 FieldSpec - wheat leaf Mobasheri
severity LRDSI 2 =42 ———0.38 RED: 695 spectrometer rust & Huete
index 1 BLUE (2014)
(LRDSI_1)
and 2
(LRDSI_2)
Normalised NPCI = RED1 — BLUE1 BLUE: 460 | Ground-based | Estimation of | Hatfield &
Pigment " RED2 + BLUE? RED: 660 radiometers leaf Prueger
Chlorophyll chlorophyll (2010)
Ratio Index content
(NPCI)
Normalised NIR1 — NIR2 NIR1: 841 - | Satellite Estimation of | Zarco-
Difference NDWT = S NIRZ 876 (MODIS) plantwater | Tejada,
Water Index NIR2: content Rueda &
(NDWI) 1230-1250 Ustin
(2003)
Structure SIPI = NIR — BLUE BLUE: 445 | Handheld Determine Genc,
Insensitive ~ NIR - RED RED: 680 Spectroradio- | the sunn Genc,
Pigment NIR: 800 meter pest damage | Turhan,
Index (SIPI) on wheat Smith &
Nation
(2010)
Damage DSSI BLUE: 509 Handheld Determine Genc et
Sensitive _ RED — NIR — BLUE — GREEN GREEN: Spectroradio- | the sunn al. (2010)
Spectral " (RED — NIR) + (BLUE — GREEN) 537 meter pest damage
Index (DSSI) RED: 719 on wheat
NIR: 873

There are numerous vegetation indices available that serve different purposes. Figure 2.12 (see
overleaf) visually illustrates how PA components such as remote sensing, 10T, GIS and vegetation
indices can be integrated to capture and display different layers that can be used in farm
management. Indicators such as NDVI, weather and crop moisture layers can be utilised to gain

more insight and assist the farmer in the decision-making process.
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Figure 2.12: Multiple layers for precision farming applications (Loizos, 2017)

2.6.1.2 Abiotic health indicators

Abiotic health indicators are physical, non-infectious factors contributing to plant health. Moisture
and temperature extremes, soil properties, fertility imbalance, physical injuries and chemical toxicity
are common examples of abiotic disorders. The soil structure determines the ability to hold water,
oxygen, and nutrients and its availability to plants. Compaction is a common issue in soil structure,
which accounts for the pore space for root growth. Compaction can occur from heavy farming
equipment traffic, impact from rain and minimal crop rotation. Clay soils are especially known to have
smaller pore space and can easily become compacted, which can cause low oxygen levels for the
root respiration system (Kennelly, O’Mara, Rivard, Miller & Smith, 2012).

2.6.2 Disease and pest management

Plant pathology refers to managing plant disease by studying the interaction between the organisms
and the varying environmental conditions and the effects on plant growth, yield, and quality
(University of Stellenbosch, 2013). Pest and disease management is essential to effective crop
production. Quantifying the impact of pests and disease on crop performance is still a challenge for
the scientific community (Donatelli, Magarey, Bregaglio, Willocquet, Whish & Savary, 2017). Farmers
should regularly inspect their lands to identify insects and disease problems and to stop potential
problems. Certain pests and diseases may be treated curatively, while others should be treated
preventatively. Farmers can counter these problems by using a combination of farming practices
such as crop rotation, pest tolerant cultivars, certified seed, pesticides and proper soil preparation

and management.

Referring to Section 2.6.1, soil quality plays a vital role in plant health. Organisms planted in good
soils can withstand more environmental stress and diseases than those planted in poor soils. Climate

change can also influence insect populations and disease outbreaks, thus creating the need for
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farmers to constantly assess their crops and make timely decisions (South Africa, 2021). The South
African Agricultural Research Centre identifies the diseases and pests shown in Table 2.6 as the

most important in wheat disease and pest management.

Table 2.6: Typical pests and diseases found in South African wheat (Agriculture Research Council, 2014).

Disease Pests
Russian wheat

Powdery mildew aphid
Rust Other aphids
Tan spot Brown wheat mite
Bacterial streak False wireworm
Black chaff Bollworm
Ergot disease False armyworm
Basal glume rot Leaf miner
Eyespot Black maize beetle

Several studies regarding pest and disease management have been published. Yang, Rao, Elliott,
Kindler & Popham (2009) conducted a study to determine the feasibility of remote sensing
techniques to detect two different stresses in wheat caused by Russian aphid and greenbug
infestation. Ratio-based vegetation indices were used to differentiate the two stresses in wheat, and
researched the use of deep-learning architectures to classify soybean pest images achieved
accuracies of up to 93.82% (Tetila, Machado, Astolfi, de Souza Belete, Amorim, Roel & Pistori,
2020). Ali Al-windi, Abbas and Mahmood (2021) developed a new method for detecting wheat stem
rest disease. Image processing was used to convert Red Green Blue (RGB) to hue saturation value

and performed feature selection to improve the accuracy of the chosen neural network.
2.6.3 Yield prediction

Yield prediction is an essential component in PA and can help farmers decide which crops to grow
and when to grow them. Yield prediction can be used in yield mapping in conjunction with demand
requirements and expected profitability. Many studies have used growth status and trend monitoring,
but most are based on a single agronomic parameter. A few studies have combined multiple

parameters into a more comprehensive yield estimation system.

Jégo, Pattey and Liu (2012) conducted a study in Canada to evaluate the conditions regarding the
application of re-initialisation (e.g., number of image acquisitions and spatial resolution). Remote
sensing was used to provide LAI data to re-initialise STICS, a crop prediction model, to evaluate the
performance of biomass and yield prediction. Green LAl was estimated with the modified
transformative vegetation index using airborne hyperspectral sensors and multispectral satellite
sensors. Re-initialisation of seeding data, seeding density and field capacity greatly improved the

prediction with a root mean squared error (RMSE) of 13% for yield and 23% for biomass. Another
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study by Brown, Hochman, Holzworth and Horan (2018) explored the benefits of using the Predictive
Ocean Atmosphere Model for Australia (POAMA) climate model over historical climate to predict
wheat yield in Australia. POAMA consists of daily temperature, radiation and rainfall and was used
as inputs for the agriculture production systems simulator (APSIM) crop model to help predict yield.
The climate model forecasts have a narrower prediction range but at the expense of a higher number
of misleading forecasts. The study concluded that the climate model and historical climate are both

useful but provide different advantages and should be combined in future research.

Several papers use a combination of vegetation indices and climate data to conduct crop yield
predictions. Some indicate the use of existing crop simulation models and add variables to test the
performance of the yield predictions. Hao, Ryu, Western, Perry, Bogena and Franssen (2021) used
the APSIM classic-wheat model and conducted a meta-analysis on 30 simulations containing
observed yield. APSIM simulates soil water, nutrients and crop growth processes under varying
environmental and management conditions. APSIM’s ‘WHEAT’ model also includes water stress,
nitrogen stress and heat stress to investigate the factors influencing the yield prediction performance.
Heat- and frost stress were found to cause large discrepancies in grain yield prediction. Grain is
particularly sensitive to short-term heat stress in the anthesis and grain-filling stages. The study
hypothesised that the discrepancies could be due to the use of mean daily temperatures. Site-
specific calibration of the model resulted in an RMSE of smaller than 1t/ha and normalised RMSE
(NRMSE) of 28%. Hassanijalilian, Igathinathane, Doetkott, Bajwa, Nowatzki and Haji Esmaeili
(2020) developed a low-cost infield method to measure chlorophyll using smartphone digital imaging
and ML models. The chlorophyll content is indicative of plant growth and health issues. The
researchers claim that the method can easily be extended to other crop types and large-scale aerial
imaging platforms. Additional research regarding variables and technologies, which influence yield

prediction are summarised in Table 2.7 below.

Table 2.7: Examples of yield prediction research in literature

Application Summary Source
Benefit of satellite- | ¢  The performance of using SIF data for yield prediction was compared to | Peng, Guan,
based solar- satellite-based vegetation indices performance - NDVI, NIRv, and land | Zhou, Jiang,
induced chlorophyll surface temperature (LST). Frankenberg,
fluorescence Five ML algorithms were used to evaluate the performance of remote- | Sun, He &
(SIF) in crop yield sensing and climate-remote-sensing predictions — LASSO, Ridge, SVM, | Kohler (2020)
prediction ANN and RF.

(USA)

Yield evaluation Development of a new comprehensive yield evaluation indicator (CYEI) | Xu, Nie, Jin,
indicator based on that monitors crop growth and yield estimation. Li, Zhu, Xu,
hyperspectral Used winter-wheat data between 2012 - 2018 with different soil moisture | Wang & Zhao
improved fuzzy and nitrogen fertiliser treatments. LAI, biomass, leaf nitrogen and leaf | (2021)
method water content was used with the CYEI indicator to monitor crop growth

(China) and estimate yield.
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Application Summary Source

NDVI, rainfall and e  Used regression models and 10-daily NDVI, rainfall sums and average | Balaghi,
temperature data to monthly temperatures to predict provincial and national wheat yields. Tychon,
predict wheat grain | «  NDVI was the most important predictor influencing yield prediction and | Eerens &
yield explained 40% of yield variation in the provincial study. Rainfall and | Jlibene (2008)
(Morocco) temperature gained more significance in arid areas.

Stemming from the above, it is evident that a combination of high-resolution remote sensing
information, soil properties, climate- and yield data, and ML can contribute to improved performance
of yield prediction models. Chlorophyll, NDVI and LAl indices are featured in yield prediction studies,
especially wheat yield prediction.

2.7 Decision support systems (DSS) and early warning systems (EWS)

DSSs have been investigated and implemented for almost 40 years since the widespread use of
computers. Holsapple and Burstein (2008:22) define a DSS as a “computer-based system that
represents and processes knowledge” that assists in more agile and innovative decision-making.
Marin (2008) describes it as an information system that collects and analyses data supporting
business and organisational decision-making activities by providing access to information and the
appropriate analysis tools. The accuracy of the decisions is based on the quality of the data and the

analysis process to discover trends to create solutions and strategies.

A typical DSS consists of a knowledge base data management system, model management system
and user interface (CFI, 2015). The knowledge base includes data collected from several sources,
whereas the model management system holds the models used for decision-making. The user
interface is the output data after the data have been processed and the decisions have been made.
A DSS assists users in evaluating historical and present data, forecasting future trends, considering
alternative decisions and potentially helping an organisation to make optimal decisions. Decision
support applications that only collect and organise data and do not suggest specific decisions are
called passive models. Active DSSs collect, analyse and then incorporate human input to revise the
model (Marin, 2008). The types of decision-making can be grouped into strategic, tactical, and
operational decisions and continuous monitoring. According to Power (2002), there are five types of
DSSs: communication, data, knowledge, model and document-driven, as shown in Figure 2.13
below. These DSSs are used to provide group, knowledge-based or organisational support. Marin
(2008) also defines three DSS levels: technology, human and computer inputs, and the

developmental approach to designing the DSS.
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Levels
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Software and hardware
1. Communication )
2. Data Knowledge- Stakeholders Computer systems
3. Document based support * Enduser « Database
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4. Know\edge « DSS developer = Model
5. Model . . | « Technical support management
Organizational - Systems expert
support
- I — Developmental approach ‘
Figure 2.13: Types of DSSs and the support they Iterative

provide (adapted from Marin, 2008; Power, 2002) Figure 2.14: The three levels of a DSS (Marin,

2008)

Decision support and EWS often work hand-in-hand to identify and mitigate potential risks. EWSs is
often used in disasters risk management applications, which mostly involve natural disasters such
as landslides, earthquakes, floods and tsunamis. EWSs use forecasting and prediction strategies to
alert the user or affected parties.

2.7.1 Decision support in agriculture

With the recent advancements in technology and overwhelming amounts of data, farmers are faced
with difficult decision-making choices. DSSs can help by suggesting evidence-based and precise
decisions to address the challenge of transforming data into knowledge and actionable intelligence
(Zhai, Martinez, Beltran and Martinez, 2020). Agricultural decision support systems (ADSS) are used
for decision support in various agricultural applications. The IBM Watson decision support platform
for agriculture, for example, is a popular Al-driven ADSS. It provides accurate weather data (historic,
near real-time and forecasted), soil data (soil type and moisture, nutrient content and fertility),
equipment data (IoT sensors) and imagery (satellites and UAVS). The platform utilises Al, ML, and
advanced analytics to extract valuable insight and generate guidance in decision support (IBM,
2018). Microsoft’'s Azure FarmBeats (www.microsoft.com) was developed in 2014 and provides the
farmer with data-driven insights. The system creates digital maps from data collected from various
remote sensing devices. Al and ML models are used to make predictions and provide the farmer
with actionable insight (Agrawal, 2020). Other popular agriculture decision support software includes

AgVend, Bayer-ClimateFieldView, Taranis and FluroSat.

Tyrychtr and Vostrovsky (2017) researched ADSSs and used the Software Quality Requirements
and Evaluation (SQuaRe) standard as evaluation criteria. This standard examines the accessibility,
scalability, interoperability, functionality and completeness of an ADSS. The graphical user interface
(GUI) should be easy to understand (accessible), while scalability refers to adding new sensors to
improve the system's functionality. ADSSs can easily integrate with external sources, for example,

external weather stations, and have high interoperability. There are several benefits of implementing
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ADSSs, but it is important also to examine its challenges and limitations.

DSSs are designed to eliminate bias when making decisions. However, this can also have the
opposite effect, and the user can become too dependent on the system to make proper decisions.
This is because certain assumptions are made when the DSS is designed, and it can sometimes be
difficult to quantify certain data in the system. Thus, a DSS may, for example, lead to information
overload for the user, as it considers a vast amount of data and alternatives that are not always
necessary for certain decisions to be made. This is exactly why it is referred to as “decision support”,
i.e., the users should use the system to guide them with the decision process (CFl, 2015; Juneja,
n.d.).

Zhai et al. (2020) mention additional obstacles regarding DSSs:

e Not all farmers are confident in using new technology, and complex DSSs often require training
and expert experience.

e Several factors can influence decision-making, and hence, there is a need to develop
customisable ADSSs that are scalable and can adapt to various crop types.

e Many ADSSs are limited or task-specific, and the farmer often has to combine several ADSSs

to manage agricultural activities.

¢ Fundamental factors such as climate change, drought and pests can lead to irregular patterns

and trends that can cause the decision tool to suggest inaccurate decisions.
¢ ADSSs require mass data to improve decision-making and accuracy.

e Current ADSSs have not yet reached fully autonomous intelligence, and hence it is necessary

to incorporate human expert knowledge.

Ways in which ADSSs are currently being implemented were researched, including comparisons of
the components that are utilised in practice. The description, applications, and components of the
examined ADSSs are summarised in Table 2.8 (overleaf) and are grouped by application: (i) Water
resource management and irrigation; (ii) pests and disease, (iii) management zones;(iv) climate and
GIS and (v) livestock.
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Table 2.8: Applications of DSSs in agriculture

Application | DSS name Crop or | What it does Components and | Al, ML Resource
animal sources
Water and Smart Citrus trees Estimates weekly irrigation needs of a plantation using Soil sensors Partial least Navarro-Hellin,
irrigation irrigation (Spain) meteorological data, crop characteristics and soil measurements. Weather stations squares Martinez-del-
decision Provides an irrigation report with water usage and irrigation time. SIDSS regression, Rincon,
support Uses ML algorithms to remove redundant variables and minimise Adaptive neuro- Domingo-
system estimated errors. fuzzy inference Miguel, Soto-
(SIDSS) systems (ANFIS) | Valles & Torres-
Sanchez (2016)
Water and Fuzzy Corn Determines the irrigation amount based on the growing degree days, | IRRINET agro- Inference system | Giusti & Marsili-
irrigation decision Kiwi total water applied to the crop, and crop evapotranspiration. meteorological developed in Libelli (2015)
support Potato A fuzzy soil moisture model was applied to IRRINET and calibrated database MATLAB (fuzzy
system with data from IRRINET crop database. C-means
(FDSS) Consists of three main parts: Predictive soil moisture model, algorithm
irrigation inference system deciding timing and amount. Irrigation
performance index (IPI) consists of the sum of past irrigations.
Pests, Integrated Vineyard Strategic, tactical, and operational levels decision support for UAV and satellite Not specified Rossi, Caffi &
disease and | Pest pesticide application. sensing Salinari (2012)
weed management Reduce risk to human health and environment.
management | system Reduce labour and pesticide cost as well as increase crop quality
(IPM) and guantity.
Livestock Not specified | Cattle, Paper introducing data-driven DSS and challenges for ADSS animal | UAV, RFID, other Bagging Niloofar,
pigs, health and greenhouse gas emissions. sensors ensemble with Francis,
sheep, Incorporates ML, statistical analysis and simulation tools. tree learning, Lazarova-
chickens Research articles include applications in cattle behaviour, growth Gaussian Molnar, Vulpe,
trajectories of chickens and pig waste disease detection. Mixture Vochin, Suciu,
Modelling Balanescu,
(GMM), SVM Anestis &
and other Bartzana (2021)
algorithms.
Management | Fast Wheat Interactive web application that automatically cleans raw spatial data, | R language Not specified Paccioretti,
Mapping (Argentina) generates and creates field maps to identify management zones Cérdoba &
using multivariate classification. Balzarini (2020)
Climate ‘Simulador Maize An agro-climate DSS that supports strategic and tactical decisions in | *DSSAT models, Not specified Han et al.
de Soybean crop production by utilising historical climate and probabilistic GUI developed in (2019)
Agricultura’ Wheat seasonal forecast data. Python
(SIMAGRI) (Uruguay) Comparisons of management practices (planting dates, crops,

fertilisers etc.) and environmental conditions.

1 DSSAT — Decision Support Systems for Agrotechnology Transfer. A modular based application package of various models that can simulate crop growth for 42 different crops under specific management
practices (www.dssat.net).
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Application | DSS name Crop or | What it does Components and | Al, ML Resource
animal sources
Climate and | CROPGRO- | Groundnuts | ¢« Response to climate change scenarios. GIS, GPS, crop Prediction Kadiyala,
GIS Peanut (India) e Simulated crop yield and crop maps models, weather models and Nedumaran,
model stations, DSSAT simulation Singh, Irshad &

Bantilan (2015)
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2.8 Summary

A global need for more sustainable and efficient agricultural output to meet the world’s food demand
is evident. PA is seen as an answer to this problem. PA consolidates various technologies to help
the farmer improve farm management activities by providing data-driven and evidence-based
decision support. Various remote sensing platforms and loT sensors can be employed to collect
different types of farm data. Several studies highlight the value of real-time, historical and forecasted
climatic data in PA. Big data, data analysis, and ML can be used to process and analyse the data to
extract information and transform it into actionable intelligence. Section 2.4.2 discussed the different
types of data analytics and presented four data analytic methodologies for processing data used in
Chapter 4. A brief explanation of Al was followed by a review of various types of ML algorithms and

a comparison of the maost popular programming languages used for ML.

Important factors influencing crop management and yield prediction, supported by several practical
examples discussed in the literature, were expanded upon in Section 2.6. Sections 2.2 to 2.6
explored how these can be used in DSSs. The types of decisions that can be made and the
components of a DSS were discussed in Section 2.7. A more extensive review was conducted on
the use of DSSs for ADSSs. It was found that due to the numerous factors influencing farming
production, most ADSSs only focus on singular applications such as irrigation, pests, disease,
climate, crop production, and livestock management. Thus, there exists a demand for more

integrated and customizable ADSSs.
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Chapter 3
Field research

The object of the field research was to examine the product of Company A and the data it provides
to clients, as well as the client farm, referred to as ‘Farm X’. The knowledge gathered from the
literature study and field research was applied in the data analysis section and used in the design of
the concept demonstrator. The field research shows what is currently being done and used to

improve the ‘manual element’ of the decision-making process.

The rest of the chapter discusses the process of acquiring sufficient and accurate weather data and
explores wheat and soybean conditions in summer rainfall areas. The grain research was used in
the data analysis phase (see Chapter 4). This contributes towards a better understanding of the data

and aid in decision support development.
3.1 Company A background

Company A specialises in agronomy, horticulture, soil science, microbiology, geographic information
systems (GIS), chemistry and process and production engineering. Company A provides its clients
with an interactive, cloud-based platform that collates large volumes of data captured from various
sources, including remote sensing from satellites, soil moisture probes, tracking devices, pest traps
and laboratory soil samples. The sources are used to collect and display data such as soil physical
and chemical maps, pest monitoring, leaf and tissue analysis, yield maps, water analysis and Airbus
Verde biophysical parameters. After consulting the data on the platform, clients can request advisors
to assist them with the interpretation and decision-making. One of the research goals of this study
was to investigate how and to what extent the latter actions can be automated and/or accelerated.

As indicated before, the concept demonstrator was used for this purpose.

Company A’s web-based platform provides the client with an aerial view of the farm. The client can
then use the platform to overlay soil physical and chemical maps, pest monitoring data, leaf and
tissue analysis, yield maps, water analysis and remote sensing biophysical parameters. The client
can also select s number of desired features to superimpose on the aerial view. However, as
indicated above, inspecting the overlays with several features can be a timely and complex process,

and finding optimised solutions is not a trivial exercise.

The literature study indicated clearly that agricultural decisions strongly rely on meteorological data.
Company A provides the user with a daily weather update from OpenWeatherMap. This provides
the user with current temperature, pressure, humidity, windspeed, sunrise time, sunset time, and
weekly minimum and maximum temperatures. However, historical weather data is crucial for

forecasting and pattern prediction. As part of this research, the South African Weather Services
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(SAWS) was approached to provide the historical weather data specifically relevant for Farm X.
3.2 Farm X

Farm X was chosen by Company A as the subject farm, as significant data for this farm are available
on their cloud platform. Farm X is located in the Limpopo province of South Africa and has a summer
rainfall climate. From 2016 to 2020, soybeans were planted in summer, while wheat was planted

during the winter season.

The data and data sources available on Company A’s platform for this farm are briefly discussed
below:

Soil classification — Soil samples and probes were used in 2015 to determine the soil physical
elements. Full soil classification can be costly, and according to Company A, the modus operandi is

to complete a full analysis every three years. These values are considered to be “static” variables.

Pest and diseases — A worm infestation broke out during 2019 and 2020, but no coordinate specific

data is available.

Remote sensing — The client can select an Airbus Verde subscription, which provides soil health
indicator data, such as chlorophyll, as a time series. The satellite provides images when passing
over the farm, but they are affected when obstructed by cloud cover. The Verde service can provide
de-clouded images, but this results in missing values and a random spread of time-series data. Only

chlorophyll data is provided for Farm X, with no other crop indicators or yield data.
3.3 Acquiring meteorological data

The SAWS (www.weathersa.co.za) provides a Google Earth file (kmz file) on their website under

their “climate services”, which indicates all the weather stations found in South Africa (see Figure
3.1). The station code in the vicinity of Farm X was chosen, and after completing the contract
formalities, the SAWS provided the data. However, after close inspection of the data, it was
discovered that the main area station incurred technical difficulties during 2018 and 2019.
Regrettably, no data were available during this time from the specific station. The next nearest station
was then chosen as an alternative data source. The distance between the weather stations are
approximately 100km. For the purpose of this research, the assumption was made that the

alternative station data closely approximates that of the main station data.
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Figure 3.1: KMZ file displaying the available weather stations in South Africa
3.4 Winter wheat conditions in South Africa

The production guidelines for wheat compiled by the Department of Agriculture, Forestry and
Fisheries (DAFF) of South Africa were consulted to better understand the crop conditions of Farm
X. It is important to note that the choice of the cultivar can significantly impact the yield and be
affected by factors such as soil type and geographical location (DAFF, 2010).

3.4.1 Planting and harvesting timeframe

Winter wheat is planted from mid-April to mid-June and is usually harvested from August to
November. It can only be harvested when the grain moisture is about 16% and fully ripened. The
planting date is important since early planting can stimulate excessive vegetative growth, later
leading to lodging, whereas late planting can lead to insufficient vegetative growth and ultimately
lower yield.

3.4.2 Temperature and rainfall requirements

The ideal climate for growing wheat is a cool temperature with plenty of rain followed by a dry period
for harvesting. Most parts of South Africa have a summer rainfall climate, and wheat grown in these
areas depends on sufficient rain in the previous season to ensure adequate residual soil moisture
(this is essential when incorporating weather data in the wheat data analysis). Winter wheat requires
temperatures between 5°C to 25°C and an annual rainfall of about 600mm per annum. Frost and
hail can result in serious damage and low yield. (DAFF, 2010).
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3.4.3 Soil requirements

Well-drained fertile loam to sandy loam with a pH of 6,0 to 7,5 is preferred for wheat production.
Wheat is adversely affected by acidic soil, particularly during the early development stages and can
cause the soil nutrients to be fixed or unavailable. Cu, Mn, Zn, and Boron (B) are essential for wheat's
normal development and growth (DAFF, 2010).

3.4.4 Irrigation and fertilisation

It is important to continue irrigation until the plant is almost discoloured. Wheat requires sufficient
soil moisture during planting and germination, lowered moisture during flowering and increased
moisture during pod filling. Irrigation should be ceased during ripening, and wet weather during
harvesting can contribute to diseases and quality deterioration of the grains. Proper irrigation
scheduling can also minimise lodging and disease occurrence (DAFF, 2010).

3.4.5 Diseases and pests

Several weeds, diseases and pests can affect wheat production. Some weeds can limit yields by a
staggering 20% annually. Cultivars, weather, irrigation, and soil conditions can play a major role in
the prevalence of diseases and pests. Crop rotation and herbicides can be used to manage potential
problems (DAFF, 2010).

3.5 Data research

It is difficult to define “normal” or “ideal” growing conditions when several variables can impact crop
production. Instead, it is helpful to consider the entire life cycle of the crop at specific instances in

time.

Company A’s platform provides more than 85 soil features available to the client to choose from.
The database pertaining to Farm X does not have sufficient NDVI data but has Fraction of Vegetation
Cover (FCover), LAl and chlorophyll data from 2016 to 2020. Company A advised using the
chlorophyll time-series data and six main soil features to start the analysis. The six main soil features

that were identified are:
e Soil type
e Depth of potential root development
¢ Plant available water content (PAWC) effective depth

e Magnesium percentage (Mg %)
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e Sodium-Potassium (Na:K)
e Phosphorus (PBray 1)

After consulting the DAFF guidelines, it was decided to add Cu, K, Zn, Mn, S and pH to the data

analysis to investigate if they could add further value to the analysis.
3.6 Summary

In this chapter, Company A and Farm X were discussed to understand better the purpose and
application of the concept demonstrator tool to be developed. Field research was done to show how
meteorological data can be obtained for research purposes, and the DAFF guidelines were studied
to gain more knowledge regarding winter wheat growing conditions. The data and features identified

in this chapter were used as a starting point for the following chapter.
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Chapter 4
Data analysis

Chapter 2 and Chapter 3 were used to gain the necessary knowledge regarding PA and the data
provided for this research study. Several research papers explore factors such as NDVI, LAI and
yield data for crop yield estimation. Since there is no yield data available for Farm X, this chapter
focuses on the chlorophyll data available for the initial analysis. The various data analysis

methodologies and processes were discussed in Chapter 2, Section 2.4.2.

The CRISP-DM methodology is still the most popular method and was deemed suitable for the
purpose of this study. It was used as a guideline to conduct the data analysis and forms the basis of
the concept demonstrator discussed in Chapters 5 and 6. The CRISP-DM methodology was adapted
slightly to fit the requirements of this study, as illustrated in Figure 4.1. Each section is discussed
separately in this chapter. The process starts with a business understanding and data collection,
followed by data understanding, data preparation, and modelling. The final stage (deployment) does

not fall within the scope of this research study.

User requirements
(Research objectives)

SAWS |

\ _— |
of data
i ! Dat
Understanding y Quf;"aw ‘ Chlorophylldata
)-

M Data Preparation Data
K \ cleaning

Business
Understanding and
Data Collection

Modelling daFtlzaslet

i

eature
importance
and selection

Figure 4.1: An illustration of the CRISP-DM method used in this study
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4.1 Business understanding and data collection

Business understanding involves understanding the objectives and requirements from a business
perspective. The research objectives discussed in Chapter 1 (see Section 1.3) and the information
gained from the literature study and field research served as the first part in understanding the
problem. The next step was the data collection process.

Company A supplied a folder with TIFF files containing chlorophyll data from Farm X, collected from
2016 to 2020, as shown in Figure 4.2 (see overleaf). The shapes indicated in this figure map onto

specific geographical areas on Farm X where crops are planted.

To process the data, all the files were imported into the QGIS? software to view the chlorophyll data
shown in Figure 4.3. QGIS was chosen from the list of software mentioned in Chapter 2, Section
2.2.3, as it is a popular open-source software that is easy to learn for basic applications. A single file
containing the nutrient and soil classification data was also imported and superimposed on the TIFF
files shown in Figure 4.4. Figure 4.5 displays a point shape file with 296 points (later referred to as
‘instances’) created in QGIS to extract and present all the available data per point on the crop circle

in one image.

2QGIS: A free and open-source cross-platform desktop GIS application that supports viewing, editing, and analysis of geospatial data
(www.qgis.org).
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Figure 4.2 Example of a TIFF file Figure 4.3: TIFF file imported into QGIS

°
0 000 o

© o5 o ©

Figure 4.4: Soil classification .dbf file Figure 4.5: Point shape file superimposed onto a
TIFF file

4.2 Data understanding and data exploration

Data exploration is used to understand the characteristics of the data and determine if any data

guality issues might affect the model.

The data extracted from QGIS was copied into a Microsoft Excel workbook, which was used to
examine the data. An extract of the data can be seen in Table 4.1 (see overleaf) and consists of 296
GPS point coordinates relating to nutrient and soil classification feature values. A total of 26 features

were extracted. These features were discussed in Chapter 3, Section 3.5.

The second data set consists of the data supplied by the SAWS in the form of a 1997 - 2003 Excel-
format workbook. The sheet data consisted of poorly structured vertical tables, which had to be
transformed into a more user-friendly horizontal time-series data table. Table 4.2 (overleaf) illustrates

a sample of data converted to a table format.
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Table 4.1: Extract of raw data from QGIS

52.3622055 52.7559051
05371094 5136719

4731445

05/01/2017 06/12/2016 26/11/2016 ca

54.7244071 60.2362213 65.3543319 2183.196
7021484

9604492

60.6299209 64.1732254 62.5984268 2028.059
59472656 0283203

62.2047233 61.8110237 59.4488220 2582.717
21484375 39

581543

18847656 84

ca_mg ca_perc

1.49695 55.79784

1.52414 56.01792 7

1.43453 55.53022 6

Table 4.2: Minimum daily temperature for the year 2010 in °C

Day January2010 February 2010 March 2010 April 2010 May 2010 June 2010

1 18,2 18,3
2 17,9 18,9
3 18,6 19,4
4 19,1 17,5
5 18,3 17,8
6 18,1 16,6
7 16,1 17,2
8 18,2 17,8
9 16,8 15,2
10 15,8 11,5
11 14,4 14,9
12 17,1 18,2
13 16,8 18,4
14 17,4 20,4
i 17,8 18,8
16 18,7 18,5
17 18,6 18,7
18 17,9 18,2
19 19,6 17,5
20 19 18,1
21 19,6 16,3
22 18,4 13,1
23 18 16,7
24 20,8 17,8
25 20,2 16,7
26 18,6 15,9
27 18,8 17,5
28 19,3 16,9
29 19,6
30 18,7
Sill 16,8

13
12,2
18,6
15,7
15,6

15
12,9
12,7
11,7
14,2
15,4
15,4
17,1
18,2
17,4
17,1
16,3
15,6
17,3
14,7
16,4
150
14,5
18,5
18,9
18,9
20,2
20,4
18,1

16

18

4.2.1 Types of data

Knowing the data types is crucial to understanding the data and using the correct methods to
approach data quality issues and process the data correctly. The nutrient and soil classification data
did not change during the analysed period and can be considered “static” or stationary data. Most of
the stationary data is numeric in nature, with five categorical feature columns. The chlorophyll and

meteorological data is numeric and non-stationary data and change over time. Table 4.3 (overleaf)

17,4
17.4
15,4
16,5
17,5
16,5
16,4
16,1
16,7
16,5
15,7
15,2
13,8
12,1
12,8
11,9
11,7
13,9

15
13,9
i35
13,4

12
13,3
12,9
11,9

12
13,3
11,3
11,3

12,9
1515
13,6
12,7
10,1
9,7
13,7
13,8
13,7
14,1
89
6,8
10,9
89
11,2
10,4
9,2
8
6,8
6,5
=]
6,7
8,2
4,6
6,4
5,8
25
5,2
6,2
8,2
5,4

4,3
37
2,5
2l
37
4,1
3,4
4,6
4,6
8,2

8
55
6,4
Sl
0,2

-0,2

31

4,2
9,3
9,2

47
83
6,9
32

11,3
6,6
6,5
59
49
4,4
37
05

2

11,6
4,7
6,3
6,6
8,5

4,8
56
s
6,8

52
43
2,9
4,8
Sl
56
4,1
2]
Sl
2,4
09
0,3
0,6
4,3
54
43
6,4
6,4

Eits
56

74
6,1
8,1
79
7,8
12,3
11,1
11,2
=

6,8
8,9
9
8,6
2,8
8,3
9,3
11,7
9,5
13,9
12,6
2,9
10,6
9,9
7,6
10,7
12,2
85
10,6
12,9
17,4
6,9
73
14,4
12,9
10
13,2
12,2
9,1
9,1

12
13,2
175
173
14,2
13,8
15,5
14,2
16,3
209
19,2
16,9
16,3

17
11,1

82
10,9
11,7
14,7
14,1
14,9
17,4
16,9
17,6
15,2

99
12,6
15,6
15,9
15,6
15,5

k mg mg_k

239.6069 894.4573 13.4331
7 9

233.1922 814.9969 12.3648
1 7

199.5021 1105.680 19.1403
44 8

14,4
17,9
15,3
18,2

18

18
17,9
17,7

17
14,4
21,1

16
15,8
18,8
16,4
14,6
16,9
15,2
15,2
14,6
16,6
19,9
16,7
171
15,6
14,6
15,4
18,9
18,5
17,3

is populated with artificial data to illustrate the various data types of the original data table.
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Table 4.3: Conceptual table illustrating data types

Numeric Numeric N
Numeric i
X, Y coordinates Chlorophyll Nutri Categx?rlcal
¢ utrient Soil
per pomton values from 2016 values dlassification
crop circle to 2020
A ) A A
I V[ V[ Y |
Paint X Y 08/06/18 22/06/18 Na Mg Soil Type
1 x1 yl 30.456 32.933 151.55495 814.99691 sand
2 X2 y2 40.235 40.256 180.21138 1105.68044 clay
3 x3 y3 36.287 37.982 172.63949 1045.68345 clay

4.2.2 Data quality issues

After the initial inspection of the data in QGIS, it was discovered that several of the TIFF files provided
did not contain complete data. One of the reasons is that the Airbus Verde satellite is highly sensitive
towards cloud cover and only takes photographs when it passes a requested area. The photographs
do not occur at equally spaced time intervals and are randomly dispersed. Some months might, for
example, have six photographs per month for a given area and other months might have two. Given
the infrequency of these photographs, more TIFF files do not necessarily equate to good quality
data, and the TIFF files are not always useable. Figure 4.6 below shows a photograph taken on a
clear day with complete data. In contrast, Figure 4.7 (see overleaf) shows an example of a photo
with cloud cover and very little useable data.

Data quality issues can be addressed by compiling data quality reports to analyse continuous and
categorical data. The three main data groups, viz. nutrient and soil classification, chlorophyll and
meteorological data, are analysed separately.

,p
K

Figure 4.6: TIFF file displayed in QGIS with no cloud cover
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Figure 4.7: TIFF file in QGIS with substantial cloud cover
4.2.2.1 Data quality — Nutrient and soil classification data

The nutrient and soil classification data quality report is shown in Table 4.4 below. Note that it does
not contain any missing values, and the ranges of the features differ dramatically and should be
considered during the data preparation phase. Feature scaling can be applied to eliminate potential

bias to affect the outcome of the model.

The five categorical features and their classes can be seen in Table 4.5 (see overleaf). The feature
names have been translated to English to eliminate any confusion. Table 4.6 contains the data
guality report for the categorical features and indicates no missing values. The mode, mode

frequency, and mode percentage are also displayed to understand the prominent classes better.

Table 4.4: Data quality report for continuous features

Nutrients  count mean std min 25% 50% 75% max Missing
Ca 297 2596,06934 605,6313399 1288,79376 2185,04645 2718,7099 3065,82128 4043,12534 0
Ca:Mg 297 1,359012189 0,175255343 0,93163 1,24746 1,37423 1,47739 1,85034 0
Ca:Mg:K 297 50,74908852 15,14137595 16,79314 40,2906 52,24185 61,47784 78,56533 0
Ca% 297 53,8610362 3,156794357 44,86027 52,2429 54,43226 55,79784 61,8612 0
Density 297 1,098657003 0,081105559 0,9439 1,01919 1,11699 1,17328 1,26282 0
K 297 191,377356 49,10249085 86,18798 152,0333  190,28896 220,69697 333,48136 0
K % 297 2,191109764 0,895995373 1,11513 1,58369 1,8738 2,49259 5,42984 0
Kuk 297 24,14213892 5,52732648 11,33572 19,74031 25,99261 28,44472 33,92173 0
Mg 297 1191,497884 309,4488161 479,81044 923,87948 1285,75189 1417,51147 1780,29655 0
Mg:K 297 21,71766428 6,61887391 6,57079 17,06719 22,59919 26,33552 33,53773 0
Mg % 297 40,17999519 3,07/7481039 33,98902 38,04791 39,79209 42,05996 48,31607 0
Na 297 208,3665155 57,47676191 103,66924 172,63949 20797232 232,48127 382,94998 0
Na:k 297 2,002158519 0,554609467 0,69969 1,60768 2,04392 2,45934 3,07381 0
Na % 297 3,769769899 0,593519966 2,75734 3,35372 3,68081 4,05914 6,09031 0
Phosphorous 297 8,788155185 5,217997221 2,39771 5,52175 7,12224 10,30686 30,56913 0
pH 297 6,810796498 0,32689249 5,95036 6,58904 6,83676 7,08001 7,50095 0
Svalue 297 24,14213892 5,52732648 11,33572 19,74031 25,99261 28,44472 33,92173 0
Sulphur 297 40,65432633 21,99962821 16,08673 26,31371 34,35612 46,0943 149,97447 0
Cu 297 3,490035522 0,553048/01 2,80354 3,02906 3,3518 3,87576 4,86261 0
Mn 297 1,05519404 0,142533929 0,81771 0,93274 1,05632 1,17263 1,28817 0
Fe 297 4,316390539 0,649345505 3,29063 3,75694 4,305 4,89108 5,46792 0
n 297 1,328980101 0,089809891 1,21214 1,25331 1,30878 1,38264 1,56212 0
Root depth 297 781,8181818 211,0288358 400 800 800 1000 1000 0
PAWC effective 297 103,7710438 10,96314942 20 100 100 120 120 0
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Table 4.5: Categorical classes

Original class

Features- Soil form Class (translated) Data type
nomenclature
Sludge Slikleem Nominal
Texture class sand Sand
(“Tekstuurklas”) :
Clay Klei
Drainage None Geen Nominal
(Dreinering) Herringbone Visgraat
Risk of root disease  Low Laag Ordinal
(“Risiko vir Medium Medium
wortelsiektes”) Very High Baie-Hoog
irripati Low Laag Ordinal
“ rrlgatlor?" Medium Medium
(“Besproei”)
None Ontrek/Weerhou
Bloemdal Bloemdal Nominal
SoilT Kroonstad Kroonstad
. ot form " QOakleaf Oakleaf
(“Grondvorm1”)
Tukulu Tukulu
Westleigh Westleigh

Table 4.6: Data quality report for categorical features

Features Count Cardinality Mode Mode freq Mode % Missing
Texture class 297 3 Slikleem 147 49,49 0
Drainage 297 2 None 224 75,42 0
Risk for root disease 297 3 Medium 191 64,31 0
Irrigation 297 3 Medium 224 75,42 0
Soil form 297 5 Tukulu 92 3098 O

4.2.2.2 Data quality — Chlorophyll data

The chlorophyll time-series data contains data for the period 2016 to 2020. Out of the 120 TIFF files
provided and 296 instances (crop circle points), there are 11 088 missing values and 24 849 usable
values. The wheat data were divided into yearly seasons to investigate each year separately. An
example of the 2018 wheat season chlorophyll data can be seen in Table 4.7. An empty TIFF file
was supplied for “24/06/2018” and thus contained no data. This is most likely due to a significant
amount of cloud cover during the imaging process. Similarly, only 5 data points on the entire crop
circle (5 out of a total of 296 points) were available to supply data on “29/06/2018” and “07/10/2018”.
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Dates
24/06/2018
29/06/2018
04/07/2018
14/07/2018
19/07/2018
24/07/2018
29/07/2018
08/08/2018
13/08/2018
18/08/2018
23/08/2018
28/08/2018
02/09/2018
07/09/2018
12/09/2018
22/09/2018
27/09/2018
02/10/2018
07/10/2018

All the crop circle points were used to plot a graph to better understand the behaviour of the wheat

count
0
5
105
294
294
295
296
297
297
297
297
296
297
284
297
280
251
233

chlorophyll values.

Figure 4.8 and Figure 4.9 represent the chlorophyll values for the wheat season during 2017 and
2018. For better visualisation, only three crop circle points were used as points on the line graphs
below. All the points on the crop circle follow a similar pattern. The wheat is planted in May, starts to

show chlorophyll values in June and July as the plant grows, peaks in September and starts to

Stellenbosch University https://scholar.sun.ac.za

Table 4.7: Data quality report of 2018 chlorophyll values

mean std min 25% 50% 75% max Missing
= = = = = = = 297
46,29921188 1,099545663 44,4881897 46,0629921 46,85039139 46,85039139 47,24409485 292
54,81439808 2,352252157 46,0629921 53,93700409 55,11810684 56,29921722 59,05511856 192

54,25437773 1,835983185 47,63779449 53,54330444 54,52755737 55,5118103 61,02362442 3
55,16631799 1,46942603 50 54,33070755 55,11810684 56,29921722 59,05511856 3
58,33711615 1,814774853 50,78739929 57,87401962 58,66141891 59,44882202 62,20472336 2
57,54682027 1,95303681 49,21260071 57,08661652 57,87401962 58,66141891 60,62992096 1
64,02608716 2,04720195 55,90550995 63,38582611 64,56692505 65,35433197 66,92913055 0
61,81632633 1,700767593 53,93700409 61,41732407 61,81102371 62,99212646 65,35433197 0
62,39428376 2,214391294 51,96850204 62,20472336 62,99212646 63,77952576 66,14173126 0
64,72865082 1,915912825 56,69291687 64,1732254 64,96063232 65,74803162 68,11023712 0
62,45477747 2,318718424 52,36220551 61,81102371 62,99212646 63,77952576 66,14173126 1
63,63901416 2,568263473 53,1496048 63,38582611 64,1732254 64,96063232 67,71652985 0
63,9029047 1,626658268 57,48031616 62,99212646 63,77952576 64,56692505 68,89764404 13
62,41019092 2,85667804 49,60630035 61,81102371 62,99212646 64,1732254 67,3228302 0
56,34420797 1,722459776 48,4251976 55,5118103 56,29921722 57,48031616 62,59842682 17
51,25325406 2,317900305 41,3385849 50,39369965 51,5748024 52,75590515 57,48031616 46
37,90510604 2,413527507 30,70866203 36,22047424 37,79527664 39,37007904 45,27558899 64

31,18110237 1,679584183 28,34645844 31,10236168 31,88976288 31,88976288 32,67/716599 292

decline in October as the plant dies and the wheat is harvested.

CHLOROPHYLL

70
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35
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25
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/2017 /2017 /2017 /2017 /2017 /2017 /2017 /2017 /2017 /2017 /2017 /2017 /2017 /2017 /2017 /2017 /2017

59,44960,236 62,598 62,992 64,961 63,386 65,354 64,961 64,173 62,598 63,386 65,354 64,173 59,055 53,15 39,37
54,33155,906 59,449 58,268 62,205/61,417/62,598 63,78 62,992 61,024 64,567 64,961 62,992 59,055 55,906 41,732
54,724 55,512 60,236 61,024 62,992 62,992 64,961 64,961 63,386 64,567 63,78 66,14264,173 61,417 56,29941,732

DATES

Figure 4.8: 2017 Wheat season — Chlorophyll
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Point 3 55,91 54,72 57,87 58,66 59,84 63,39 60,63 60,63 62,99 60,24 62,2 63,78 63,39 56,3 53,94 40,94 28,35
DATES

Figure 4.9: 2018 Wheat season — Chlorophyll
4.2.2.3 Data quality - Meteorological data

The data supplied by the SAWS contained data from January 1939 to May 2021 and included the

following:
e The daily minimum temperature in degrees Celsius (°C)
e The daily maximum temperature in degrees Celsius (°C)
e The daily rainfall in millimetre (mm)
e The daily humidity (%)
e The daily windspeed in meter per second (m/s)
e The daily pressure in hectopascal (hPa)

It was decided to isolate the period 2010 to May 2021 for analysis purposes. The data have no
missing values. The minimum and maximum temperature trends can be seen in Figure 4.10 below.
The years follow a similar trend throughout, varying slightly for each month. Figure 4.11 shows a bar
chart of the mean rainfall per month, colour-coded per year of a typical summer rainfall climate trend
in South Africa. As discussed in Chapter 3, Section 3.4.2, wheat production heavily relies on the
previous rain season. The rain season is approximately from October until April, followed by very

little to no rain from May to September.
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Figure 4.10: Minimum and maximum temperature from 2016 to 2020 for the approximate location of Farm X
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Figure 4.11: Mean rainfall per month grouped by years from 2010 to 2021

4.3 Data preparation

Data preparation includes data cleaning and constructing the final data tables to prepare the data
for the model. The data quality issues for the sets were identified and were dealt with in the cleaning

phase to ensure the model runs as efficiently as possible.

4.3.1 Data cleaning

Data cleaning was done to mitigate the data quality issues that were identified in the quality reports
and initial data exploration graphs. The categorical data were converted into artificial variables to
prepare the data for the ML algorithms. The missing values for the chlorophyll were dealt with in the

following ways:
= Column dates with no values were removed.

= Missing values were replaced with date averages and not point (instance) averages as the

72



Stellenbosch University https://scholar.sun.ac.za

seasonal chlorophyll values vary between 30 and 65. The given crop circle points have a

chlorophyll standard deviation between 1 to 2.5 on any specific date.

= Months with more than one observation per month were grouped together, and the mean per
month was determined per point. By standardising the chlorophyll observations to one value

per month simplified the analysis and graphing.
4.3.2 Constructing final datasets from the initial raw data

No GPS-specific yield was available to add to the final dataset. The chlorophyll data was compared
to the average tonnage per hectare to explore the relationship between these values. The average
yield per hectare for each year is shown in a bar chart in Figure 4.12. Note that there is no clear
correlation between the average chlorophyll of 296 points per month and the overall crop circle yield
presented in Table 4.8. It is important to note that more accurate yield along with other features
should be considered to determine the correlation between chlorophyll. The total yield for the season
was supplied, but simply dividing the total yield with the area of the crop circle will only provide an
average Yield value for each varying chlorophyll point and will not be accurate to include in the final
data table. Results show that 2017 had the highest chlorophyll average but the second-lowest yield
of 6.7 ton/ha. The year 2020 had a much lower average chlorophyll of 56.34 but had the highest
yield of 7.77 ton/ha. Ideally, more accurate yield data, such as GPS-specific yield, would be more
useful to test the predictions and confirm the correlation between chlorophyll and yield. However,
considering the real-world scenario and utilising the available data, a detailed analysis can be
performed to test the predictions of monthly average chlorophyll values instead.

Table 4.8: Ton/ha and average chlorophyll per year

Year tonfha  Chllul  Aug Sep Average
2017 6,70 5849 6354 61,02 61,02
2018 6,67 56,18 63,08 59,70 59,65
2019 6,74 51,55 5914 5449 5506
2000 7,77 5245 6029 5629 56,34

Yearly yield
2020 | 777

& RX

Year

o |

00 | 670

6,00 6,50 7,00 7,50 8,00
Ton/ha

Figure 4.12: Bar chart of yearly average ton/ha
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The decision was made to set the September chlorophyll values as the target feature values, as
most points reached their peak chlorophyll in September. This decision was based on the research
done in Chapter 2, Section 2.6.3, regarding the correlation between chlorophyll and yield values.
Furthermore, it was assumed that if the “peak” chlorophyll value can be predicted in September, it
can be used as a reasonable indication of the crop yield in October. The final table consists of
useable chlorophyll data, nutrient and soil classification, and meteorological data. The
meteorological data consist of the seasonal monthly means and the previous rain season total in
millimetres from October to May. The previous season total is included because of wheat’s
dependency on the residual moisture in the soil from the previous rain season. A sample of the final
table constructed from the raw data can be seen in Table 4.9 and Table 4.10. The aforesaid tables

were split into part 1 and part 2 due to the width of the table.
Table 4.9: Sample of the final wheat table - part 1

K. Jul K.Aug K.Sep ca mg% nack p_brayl ph cu mn zn RootDepth PAWC Clay Sand Slikl G_Bloem G_Kroon G_Oakleaf G_Tukulu G_West

62,047 64,094 61,024 2183,2 37,15 1,21 1501 6,82 3,25 1,07 1,29 800 % 0 0 1 0 0 0 1 0
58,031 62,362 61,496 2028,06 36,63 1,21 14,37 69 3,28 1,1 1,28 800 % 0 0 1 0 0 0 1 0
58,398 64,173 62,362 2582,72 38,64 1,64 9,61 6,51 3,37 1,07 1,3 800 % 0 0 1 0 0 0 1 0
57,638 62,283 61,260 2521,08 37,89 1,34 11,87 6,75 3,25 1,03 1,3 1000 00 0 1 0 1 0 0 0 0
58,583 61,496 60,630 1921,56 36,43 0,99 19,36 6,98 3,18 1,06 1,28 1000 00 0 1 0 1 0 0 0 0
57,638 63,071 61,811 1924,93 36,03 1,22 13,03 7,03 3,28 1,13 1,27 800 % 0 0 1 0 0 0 1 0

Table 4.10: Sample of the final wheat table - part 2

Min Jun MinJul Min Aug Max Jun Max Jul Max Aug Rain prev RainJun RainJul Rain Aug Rain Sep HumidJun Humid Jul Humid Aug
4,557 4,926 6,519 24,660 24,858 25,842 737 0 0,026 0 0 23,767 22,645 18,871

4,557 4,926 6,519 24,660 24,858 25,842 737 0 0,026 0 0 23,767 22,645 18,871
4,557 4,926 6,519 24,660 24,858 25,842 737 0 0,026 0 0 23,767 22,645 18,871
4,557 4,926 6,519 24,660 24,858 25,842 737 0 0,026 0 0 23,767 22,645 18,871
4,557 4,926 6,519 24,660 24,858 25,842 737 0 0,026 0 0 23,767 22,645 18,871
4,557 4,926 6,519 24,660 24,858 25,842 737 0 0,026 0 0 23,767 22,645 18,871

4.4 Modelling

The modelling stage includes the steps to analyse the data by the use of data science methods.
Firstly, correlation matrices were used to inspect the correlation between the chlorophyll values in
September and all the nutrient and soil classification features. Figure 4.13 shows an example of a
correlation matrix of the chlorophyll values of September 2017. It can be seen that there are no
strong correlations between any features and the target feature, September chlorophyll. There are,
however, strong positive correlations between features such as (i) Ca and Zn - with a correlation of
0.76 and (ii) Oakleaf soil-form and PAWC - with a strong positive correlation of 0.73. Root depth and
“clay texture class” presented a strong negative correlation of -0.93. The correlation matrices were

a reasonable starting point to get to know the data, but further analysis was required.

At this stage, it was unclear which features were best suited for accurate predictions. Hence, it was
decided that the features could not be analysed linearly but should rather be considered in subsets.

Features such as pH do not follow a linear relationship and cannot be analysed using linear
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regression to determine the relationship with the target values. Feature importance and selection

can be used to analyse the features with various methods to determine the relationship

contribution of features.
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Figure 4.13: Correlation matrix for September chlorophyll 2017 and
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“Feature importance and selection” is the method of evaluating the importance of features and

choosing a subset of the most relevant features that perform the best. Feature selection can be

approached by using filter, wrapper or embedded methods. The selection depends on the type of

data set and the required predictions.

Initially, a lazy regressor was run on the wheat table to analyse the performance of several algorithms

on all of the features. The built-in lazy regressor performance metrics are shown in Figure 4.14 below
and are adjusted-R?, R? and Root-Mean Squared Error (RMSE), and the time taken by the algorithm
to be completed. The equation for R? is shown in (4.1), with yi being the actual y value, yi the

predicted y value and y the mean of all the y values. Adjusted R? is shown in (4.2) with N being the

number of observations and K the number of independent variables in the model. Lastly RMSE can
be seen in (4.3). Let yt be the observed value and ¥t the predicted value, with T fitted points in the

time series.

sum squared regression (SSR)

total sum of squares (SST)
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_ XiQyi - p)?
Yi(yi—y)?
. (1-R>)(N-1)
2 — 1 _ 4.2
R%adj =1 N—p—1 (4.2)
T (yt —§t)2 (4.3)

RMSE =
T

The most common interpretation of a R? value indicates how well the regression model fits the
observed data. Adjusted-R? also indicates how well the regression model fits the observed data, but
adjusts for the number of terms in a model. RMSE is the standard deviation of the residuals or
prediction errors and are a measure of how far the data points are from the regression line. The top-
performing algorithms from the lazy regressor with their respective R? scores were (i) ETR with 0.87,
(i) XGBoost regressor with 0.87, (iii) HistGradientBoost regressor with 0.86, (iv) Light Gradient
Boosting Machine (LGBM) regressor with 0.85 and the (v) Random Forest regressor with 0.85.

Adjusted R-Squared R-Squared RMSE Time Taken
Model
ExtralreesRegressor 0.85
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RandomForestRegressor
GradientBoostingRegressor
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TransformedTargetRegressor
LinearRegression
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RidgeCv
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HuberRegressor
LinearSvR
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Figure 4.14: Lazy regressor model performance on all features

Some of the features might be dependent on others. In such cases, simply analysing the relationship
between each feature and the target feature (September chlorophyll) would not be sufficient. Thus,
wrapper methods were used to detect the interaction between features and analyse the best

performing feature subset. This means that the lowest-scoring features are not necessarily
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disregarded because they might increase the performance when used in a subset with other
features. Wrapper search methods included forward selection, backward elimination, exhaustive

selection and stepwise or bidirectional selection (Charfaoui, 2020; Verma, 2020).

While wrapper methods have many advantages, one of the main disadvantages is a high chance of
over-fitting. The final wheat data set provides a good candidate for using scaler transforms as the
variables have different minimum and maximum values and different data distributions and ranges.
Some algorithms might not be as effective when the data is not scaled, as variables that are
measured at different scales do not contribute equally to the model fitting & model learned function
and might end up creating a bias as they might consider ranges such as pH (ranging between 1 and
14) to contribute a smaller weight than Ca that ranges within the thousands. Thus, scaling or
normalising the data can help to deal with this problem. Standardisation is usually preferred when
the data follow a Gaussian distribution, which was not the case for this data set (Brownlee, 2020b).
Thus, the MinMaxScaler function in Python was used to normalise the data to values between 0 and

1, as seen in Figure 4.15. The MinMax equation can be seen in (4.4). Let Xmin be the minimum in

the range and Xmax the maximum in the range.

Figure 4.15: Wheat table normalised

X — Xmin
Xscaled = —— (4.4)
Xmax — Xmin
A sequential forward selector was used to determine the optimal number of features to include in the
subset. Figure 4.16 indicates that the intersection occurs at nine features. Choosing more than nine
features will not necessarily increase the model performance but require more computing power and

increase the computing time. Thus, it is a point of diminishing return.
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Sequential Forward Selection
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Figure 4.16: Graph for analysing the optimal number of features

The scoring argument specifies the evaluation criterion to be used. For regression problems, there
is only an R? score in default implementation. Similarly, for classification, it can be accuracy,
precision, recall, f1-score, etc. (Verma, 2020).

After choosing the optimal number of features, the four wrapper methods were run on the top-
performing algorithms. The LGBM regressor was not used due to the similarity to the other chosen
algorithms. The three most commonly used error metrics for evaluating performance of regression
models are Mean Absolute Error (MAE), Mean Squared Error (MSE) and RMSE. MAE measures
the average magnitude of the errors in a set of predictions without considering their direction and is
less biased for higher values. The equation can be seen in (4.5), with yi being the i" expected value
in the dataset, yi the i"" predicted value and n the total number of data points. MSE tells you how
close a regression line is to a set of points and is preferred to MAE when accounting for outliers. The
equation is seen in (4.6), with yi is the i" expected value in the dataset, yi is the i predicted value.
The results are shown in Table 4.11. A smaller MAE and MSE indicate a better model, whereas a
value close to one (1) for R? is desired. It is clear that the ETR outperforms the other algorithms in
each method. Gradient boosting and decision tree-based algorithms are usually robust against
scaling and normalisation problems. The algorithms were also tested with and without normalisation
to compare the performance. Normalising the data did not improve the boosting regressor accuracy,
but minor changes were observed with the Random Forest and ETRs because of the random nature
of the algorithm. The sequential forward selection wrapper method with the Extra Trees algorithm
was chosen. The R? value of 0.86 indicates that the variance of the independent variable explains
86% of the variance of the dependent variable being studied.

i1 lyi = Ji|

MAE = 2222 2 (4.5)
n
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1c, .
MSE = = (vi = ji)?
i=1

Table 4.11: Wrapper method and algorithm results table

Method MAE |Normalised [MSE [Normalised (r2 Normalised
Sequantial forward selection:

Randomforest Regressor 0,9364 |0,9432 1,8441 (1,7841 0,8410 |0,8462
HistgradientBoost Regressor 0,9450 10,9450 1,8098 (1,8098 0,8440 10,8440
XGB Regressor 0,9725 |0,9725 1,9672 (1,9672 0,8304 |0,8304
Extra Trees Regressor 0,9128 |0,8832 1,7415 (1,5897 0,8499 |0,8629
Sequantial backward selection:

Randomforest Regressor 0,9442 10,9553 1,7900 (1,8867 0,8457 10,8373
HistgradientBoost Regressor 0,9381 10,9381 1,7234 (1,7234 0,8514 |0,8514
XGB Regressor 0,9318 |0,9318 1,7310 (1,7310 0,8508 |0,8508
Extra Trees Regressor 0,9007 10,9220 1,6463 (1,7062 0,8581 10,8529
Sequantial float forward selection:

Randomforest Regressor 0,9611 |0,9366 1,9547 (1,7467 0,8315 |0,8494
HistgradientBoost Regressor 0,9450 10,9450 1,8098 (1,8098 0,8440 10,8440
XGB Regressor 0,9371 |0,9371 1,7559 (1,7559 0,8486 |0,8486
Extra Trees Regressor 0,8925 10,8949 1,6607 (1,6368 0,8568 10,8589
Sequantial float backward selection:

Randomforest Regressor 0,9318 10,9363 1,7830 (1,7919 0,8463 |0,8455
HistgradientBoost Regressor 0,9222 (10,9222 1,7262 (1,7262 0,8512 |0,8512
XGB Regressor 0,9569 |0,9569 1,8587 [1,8587 0,8398 |0,8398
Extra Trees Regressor 0,8912 |0,8887 1,6390 (1,6036 0,8587 |0,8617

4.4.2 Predictions

After the best performing method and algorithm were chosen, the wheat data for the year 2020 were
fed into the ETR algorithm. Only data from June, July and August were available, but the data for
September 2020 are missing from the original TIFF files. This presented an interesting opportunity
to ‘test’ the prediction model in an unconventional way. The previous data from 2017, 2018 and 2019
were used as the entire training set, and the new 2020 data were used as the “x_test” data to predict
chlorophyll values for September in 2020 (y_predict). As referred to above, no data were available
for September 2020 (y_test). Consequently, the accuracy of the model cannot be calculated. The
predicted values were stored in a column along with the original 2020 data and were used in the

visualisations to compare the predicted values to previous years’ September chlorophyll by using

statistical methods such as the mean and standard deviation (see Figure 4.17).
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Figure 4.17: September 2020 predicted chlorophyll added to the original wheat table

The train and test X and Y sizes can be seen in Table 4.12 below. Combining data for years 2017,
2018 and 2019 provides a data set of almost 900 training points. This was split into a 712-point rows
and 27 feature columns (X_train) data table. The test set, X_test, consisted of 179 rows and 27
feature columns (20% of the original data table values). The model predicted 179 chlorophyll values
and compared them to the X_test data table. By adding 2020 data, the set increased by another 296
points. Still, due to the unavailability of September satellite data in 2020, no y_test could be used to

compare the predicted values and measure the model's prediction accuracy.

Table 4.12: Train and test sets

Old New
X_train  |712;27 |891;27
X_test 179; 27 |297;27
y_train  |712; 891;
y_test 179;

4.5 Summary

The CRISP-DM method was discussed and used as a guideline to analyse the data. Four wrapper
methods were used for feature importance and selection to determine the final feature subset in the
prediction model (see Chapter 6). The feature subset was used as input to determine chlorophyll
values for September. The ETR algorithms were given a data table of 2017, 2018 and 2019 split into
80% training and 20% testing data. The sequential forward selector chose the best feature subset,
used the chosen features to make chlorophyll predictions, and achieved an accuracy of 86%. The
model was also given a test set from 2020 to predict September chlorophyll values, which was then

saved in a table used in Chapter 6 for visualisation and validation of the model.
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Chapter 5
Concept demonstrator development

This chapter incorporates all the previous chapters’ research that was used to develop the concept
demonstrator for the use case. In addition, the level of technology adoption of Farm X and the data

used in the visualisation are discussed below.
5.1 Level of precision agriculture adoption

Recall the discussion of the six levels of PA adoption in Chapter 2, Section 2.1 and note the relevant
snippet shown in Figure 5.1 (see overleaf). Farm X lies between level 3 and level 4.

The chlorophyll data layers have been collected over four years (2016 - 2020). The imagery is
affected by cloud cover and only provides approximately one to two useable images per month from
June to October. However, in-season operational decision-making requires more frequent imagery
to assist with near real-time decisions. Level 5 PA adoption typically implements imagery, weather-
and soil moisture sensors, and pests- and disease monitoring systems. Farm X data include a

nutrient and soil characteristic data layer, but it is not updated annually.

The sixth level of PA adoption should be considered along with the type of data analytic systems
discussed in Chapter 2, Section 2.4.2. Descriptive and diagnostic analytics lies within levels 1 to
level 3 of PA adoption. Predictive analytics can be used in level 4 adoption, and prescriptive analytics

can be used in level 5 adoption for more automated decision support.

Company A uses the collected data to provide agronomic advice to the client but does not include a
predictive- or prescriptive analytics service. The concept demonstrator thus aimed to utilise
predictive analytics and demonstrated how the collected data layers could be used for in-season
yearly comparisons to form the basis for a prescriptive decision support tool. This can be achieved
in future work when more data have been collected, and more data layers (pest, disease and other
vegetation indices) have been integrated into the system. Ideally, yield data would be preferred to
test the relationship between chlorophyll predictions and yield data, but the study included a real-

world example.
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Level 3
Multiple data layers
Evidence-based decision making

Level 4
Accumulated multiple years of data layers.
In-season operational decisions

Level5
Continuous improvement and new technologies
Typically includes several integrated
technologies for decision making

Figure 5.1: The six levels of PA adoption (levels 3 to 5)
5.2 Visualising agriculture data and concepts

As indicated in previous sections, a major goal of this research study is to improve the efficiency of

analysing the layers, ideally by automating the process and yielding decision support intelligence.

After cleaning the farm data and constructing the final data table in Chapter 4, it was discovered that
too many features complicate the decision-making process. Therefore, a feature importance and
selection algorithm was used to select a subset of features for the ML prediction algorithm. It was

found that nine features were an optimal number and that using more led to diminishing returns.

Decision-support systems were discussed in Chapter 2, Section 2.7. The concept demonstrator can
include crop management zones, weather, and water management decision-support by utilising the
available data. However, the current system used by Farm X does not compare yearly data. The
farmer might thus surmise that the crops are performing well, but in reality, the current conditions of

the crops might be performing below average compared to the crops a year ago on the same day.

Providing and analysing historical data can provide the farmer with valuable comparison data to
calibrate the farm’s performance. August 2017 and August 2018 were used as an example to
illustrate this, as they had the most available data with four satellite image observations per month.
Missing data points were replaced with the average of the total crop circle points of the same day
and were not interpolated. Interpolating the data would not accurately represent the chlorophyll as it
differs significantly within weekly timeframes. Figure 5.2 and Figure 5.3 display the chlorophyll for 8
August 2017 and 2018, respectively. They are plotted within the same colour range. Comparing the
two images, the farmer can now visually see how the farm performed in 2018, compared to August
of the previous year (2017). Python was used to compare each point value with the previous year’s
point value on the same day. The point colour is displayed according to the performance of 2018
compared to 2017 (see Figure 5.4). Figure 5.5 displays the chlorophyll values of 2019 compared to
the performance of 2017 and 2018. The chlorophyll values on 8 August 2019 is performing poorly

compared to the previous year’s chlorophyll values on 8 August.
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Wheat Chlorophyl - 08/08/2017

Wheat Chlorophyl - 08/08/2018
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Figure 5.2: Chlorophyll per point for 8 August 2017
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Figure 5.3: Chlorophyll per point for 8 August 2018
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Figure 5.4: 2018 chlorophyll values compared to 2017 chlorophyll values per point



5.3 Summary
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Figure 5.5: 2019 chlorophyll values compared to 2018 and 2017 chlorophyll values per point

This chapter explained how all the previous sections are combined to develop the concept

demonstrator decision support tool. In particular, new comparison and prediction functions were

included. The next chapter discusses the components of the decision support tool and illustrates

how it can be used in a dashboard to improve decision-making.
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Chapter 6
A next-generation decision support tool

Chapter 4 described the CRISP-DM methodology that was used as a guideline to clean and
manipulate the data used in the prediction algorithm. The feature selector algorithm was used to
choose a subset of nine features used in chlorophyll predictions when given known data for training
and testing. This chapter discusses predictions made with known and unknown data. In Chapter 5,
it was shown that Farm X lies between levels 3 and 4 of PA adoption and that it does not currently

utilise predictive analytics.

This chapter examines how predictive analytics can be added and used in a decision support tool
and how data can be displayed in a dashboard. Conceptual dashboards were developed to present
information in a user-friendly way, particularly the “current status of the farm” and predictions for the

following months derived from the algorithms and comparisons with previous years’ performance.
6.1 Data for predictions

The real monthly chlorophyll averages for each year are shown in Figure 6.1, including the predicted
September 2020 average presented in Chapter 4. All four years follow a similar chlorophyll trend,
except for the chlorophyll values in October 2019, probably because the wheat was most likely only
harvested in November. The data of each year were also examined separately to investigate the
values in more detail. The average chlorophyll per month (blue line) and the standard deviation (red
shading) for each month were calculated and graphed in Figure 6.2, Figure 6.3 and Figure 6.4. It
was decided to isolate the data from 2018 for the predictions since it has the most “complete” data

set.

Wheat seasons - chlorophyll

Chlorophyll

Jun Jul sep

Aug
Months

Figure 6.1: Monthly chlorophyll averages for the years 2017, 2018, 2019 and 2020
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Figure 6.2: 2017 Chlorophyll monthly averages and Figure 6.3: 2018 Chlorophyll monthly averages and
standard deviation standard deviation

Figure 6.4: 2019 Chlorophyll monthly averages and standard deviation
6.2 Test scenarios

The chlorophyll predictions were divided into two subsections using known and unknown test data.
The data used for training and testing are discussed as well as the results and prediction accuracy.

The regressors accuracy was measured by the coefficient of determination (R?), MAE and MSE.
6.2.1 Known test data

A significant part of the work described in Chapter 4 was spent on data cleaning and data
manipulation to prepare the data for the chosen prediction algorithm. The available data from 2016
to 2020 were used to run the feature selectors. After analysing all the wrapper methods, the ETR
algorithm was chosen for the chlorophyll predictions. Despite the algorithms random nature, it
produced the best R? value with every iteration. The train, test, split function was used in Python to
split the data into 80% for training and 20% for testing with a random state of 42. It was discovered
that with various scenarios, the model could make accurate chlorophyll predictions given a variety

of nutrient, soil, chlorophyll and weather features.

An example of September predictions for the year combination 2017, 2018 and 2019 can be seen
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in the snippet in Figure 6.5. The training set consisted of 712 rows and 29 feature columns, and the
X_test data table consisted of 179 rows and 29 feature columns. With X being the entire data set

without the September chlorophyll column and Y being the September chlorophyll column.

Original y: .58, Predicted y:
Original y: 68.24, Predicted y:
Original y: 62.91, Predicted y:
Original y: 68.39, Predicted y:

Mean Asolute Error : ©.8582793206889383
Mean Squared Error : 1.5484985827932967
R2 score: 8.8671661774412251

Figure 6.5: Example of September prediction accuracy for the year combination 2017, 2018 and 2019

The various year combinations produced different feature subsets (see Table 6.1). Still, in most
cases, the top five features were almost always the same nutrient and soil features, with variation in
the last three features, including meteorological and soil type features. The assumptions from
Chapter 3, Section 3.5 to include the extra features such as pH, Mn and Zn in the feature selection

model proved successful.

For example, it was noted that Mn appeared in all of the feature selection subsets and pH in 6/9 of
the feature subsets. Since the chlorophyll is presented in monthly instances, instead of, for example,
weekly instances, the average monthly meteorological is too generalised for time-series data to have
a substantial impact on the model. Only the minimum temperature, maximum temperature and rain

seemed to influence the model’'s feature subset selection.

Table 6.1: Selected features and cross-validation (CV) score for various year combination data

August 17,18,19,20 17,18,19 17, 18,20 17,19,20 18,19,20 September 17,18,19 17,18 17,19 18,19
1 K.Jul K.Jul K.Jul K.Jul K.Jul 1 K.Jul K.Aug K.Jul K.Jul

2 na:k na:k ca mg% na:k 2 K.Aug mg% K.Aug K.Aug

3 pH p_bray na:k p_bray cu 3 ca na:k na:k mg%

4 cu pH p_bray ph mn 4 p_bray cu pH p_bray
5 mn cu pH cu Oakleaf 5 ph mn cu cu

6 Tukulu mn cu mn Min Aug 6 cu n mn mn

7 Min Jun MinJun  mn MaxJun RainlJun 7 mn Min Aug PBWK effek Root Depth
8 Min Jul Min Jul Rain prevsum Max Aug RainJul 8 zn Max Jul  Sand PAWC
9 Max Jun Max Aug Rain Aug Rain Aug Rain Aug 9 Rain Jun Max Aug  Oakleaf Min Jun
cv 0.859 0.876 0.835 0.854 0.850 v 0.886 0.685 0.903 0.8562

6.2.2 Unknown test data

After exploring the model performance on known data, the ETR algorithm used various yearly
scenario combinations to train the model with “unknown data”. The unknown data refers to a chosen
year that was not used in the training of the model. The various scenarios consisted of combinations
of various years’ 296 chlorophyll data points and features as training data (X_train). A separate year
(X_test) was presented as unknown data. The X_train set was normalised using the MinMaxScaler

as shown in Figure 6.6, and the X_test was transformed based on the normalisation of the X_train
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table (see Figure 6.7). After the features were selected, the X_train and X_test tables were
transformed to include only the selected features from the selector. X_test was given to the model
to make chlorophyll predictions, and the original chlorophyll values (y_test) was used to calculate

the prediction accuracy.

There were three prediction options, where the first and second used July to make predictions for
August and September (in the absence of August chlorophyll data). The third type of prediction was
made with July and August chlorophyll data included in the X_train table to predict chlorophyll values

for September.
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Figure 6.6: Normalised X_train table (2017, Figure 6.7: Normalised X_test table (2020)
2018, 2019)

The various scenarios were fed into the feature selector algorithm described in Section 4.4. It was
found that the chosen features did not produce the same accuracy when presented with a data table
from an unknown year, compared to the initial predictions with known data discussed in Section
6.2.1. These discrepancies illustrate the sensitivity of the model with regard to the completeness of
the data set, in this case (i) the absence and quality of chlorophyll data captured as well as the (ii)
nutrient and soil classification values that were not updated for each growing season. The unknown
test year data table values are seen as “out of sample”, and after normalising the data, any “out of
sample features” significantly influenced the accuracy of the prediction model. Figure 6.8 and Figure
6.9 show the minimum and maximum of each feature for X_train and X_test after it was transformed
with the selected features. Transforming a data table entail removing the unwanted feature columns

and only keeping the selected feature column chosen by the feature selector.
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Figure 6.8: Minimum and maximum of Figure 6.9: Minimum and maximum of
normalised and feature-transformed normalised and feature-transformed
X_train X_test based on X_train normalisation

6.3 Monthly chlorophyll predictions for 2018

After examining all the prediction outcomes of the various year combination scenarios, 2018 was
used to plot the three prediction options. The blue line in Figure 6.10 represents the real average
chlorophyll value, and the red shading represents the true standard deviation for 2018. The dashed
line and dotted lines represent the average of the predicted values for August and September

independently.
6.3.1 Using July data to predict August and September values

Figure 6.10 shows a potential user view for July. The average crop circle chlorophyll for June and
July are displayed together with the standard deviation of the crop circle points. The average
prediction points for August and September are shown by the dashed and dotted lines. In an ideal
scenario, as time progresses, the model will update the blue line as true values and adjust the August

and September predictions.
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Wheat season 2018 - chlorophyll
—&— Mean Chiorophyll 2018

Chlorophyll

46
Jun Jul Aug Sep oct

Months

Figure 6.10: August and September chlorophyll prediction from July
6.3.2 Using August data to predict September values

The average August prediction of chlorophyll value of 62.66 can be compared to the actual average
of 63.08. This seems close until one examines the R? value of -0.001, which provides a worse
alternative to simply using the average to make a prediction. The model updated the table with the
actual chlorophyll values for 2018 and then adjusted the chlorophyll predictions for September, with
a mean of 59.37 compared to the July prediction average of 59.52.

Wheat season 2018 - chlorophyll

—e— Mean Chlarophyll 2018
= = August 2018 Prediction
++. September 2018 Prediction
Standard deviation 2018

63.08

e R

Chlorophyll

Jun Jul Aug Sep Oct
Months

Figure 6.11: September chlorophyll prediction from July and August
6.3.3 September — compare predictions to true values

The model coped well with the August predictions for September and the mean of 59. The value of

37 was close to the true mean of 59.70. The R? value also improved to 0.15.
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Wheat season 2018 - chlorophyll
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Figure 6.12: True and predicted monthly chlorophyll for August and September

Similarly, the other year combinations were tested and produced the results displayed in Table 6.2
below. One may be tempted to assume that the model is accurate because the predicted average is
very close to the true average. However, by examining the R? values, it is evident that some
predictions performed much better than others. This is due to the previously mentioned out of sample
meteorological and chlorophyll data. The year 2019 performed the worst compared to the other
years. Referring back to Figure 6.1: Monthly chlorophyll averages for the years 2017, 2018, 2019
and 2020, 2019 have the lowest average chlorophyll per month and an abnormal harvesting season

for October.

Table 6.2: True and predicted values for August and September for each year combination

2017 True average Min Max Pred average Min Max %error MAE MSAE r2
Uuly 58,49 51,89 62,05 Na Na Na Na

IAugust 63,54 53,15 68,11 64,01 57,07 67,51 0,73 1,699 4,275 0,281
Sep_no Aug 61,02 Na Na 60,50 53,09 63,80 0,85 1,459 3,334 0,245
September 61,02 51,73 66,14 59,63 53,33 61,97 2,28 1.4495 3,209 0,273
2018 True average Min Max Pred average Min Max %error MAE MSAE r2
uly 56,18 50,00 59,35 Na Na Na Na

August 63,08 54,96 65,75 62,66 56,92 66,24 0,68 0,100 0,015 -0,001
Sep_no Aug 59,70 Na Na 59,52 51,92 63,04 0,30 1,126 2,391 0,149
September 59,70 51,57 64,17 59,37 51,46 61,12 0,55 1,034 2,037 0,275
2019 True average Min Max Pred average Min Max %error MAE MSAE r2
uly 51,55 44,59 57,17 Na Na Na Na

August 59,14 54,27 62,60 59,60 55,43 62,75 0,79 1,242 2,348 -0,346
Sep_no Aug 54,49 Na Na 56,89 51,86 60,81 4,42 2,561 9,009 -2,345
September 54,49 48,03 63,86 57,48 53,74 61,71 5,50 3,126 12,982 -3,820
2020 True average Min Max Pred average Min Max %error MAE MSAE r2
Uuly 52,45 46,85 58,86 Na Na Na Na

August 60,29 54,17 67,56 61,98 53,19 66,88 2,80 0,115 0,017 -0,949

6.3.4 Exploring model parameter and performance

Algorithms related to the decision tree family rarely require normalisation, as the algorithm often
handles the differing features ranges well. The prediction accuracy was tested by feeding the
algorithm only normalised X table data (Figure 6.13) and normalised X and Y data (Figure 6.14). In

every scenario, normalising both X and Y values improved the accuracy significantly.
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Original y: 60.24, Predicted y: 58.1 Original y: ©.47, Predicted y: .33
Original y: 68.87, Predicted y: 58.68 Original y: ©.52, Predicted y

Original y: 61.58, Predicted y: 57. Original y: 8.56, Predicted y 3
Original y: 59.84, Predicted y: 57.5 Original y: ©.45, Predicted y: 8.32

Mean Asolute Error : 2.832 3 Mean Asolute Error : @.11464646464646464
Mean Squared Error : 4.975 Mean Squared Error 0B95723908572392
R2 score: -1.6311831666719034 R2 score: -8.949486219318919

Figure 6.13: 17,18,19 Pred Aug20 - Only X Figure 6.14: 17,18,19 Pred Aug20 - X and Y

normalised normalised

6.4 Conceptual user dashboards

The research proposal discussed in Chapter 1, Section 1.2 highlighted the plethora of information
presented to the user as one of the main issues to be addressed. To do so, the dashboard concept
visualisations were designed to show how the analysed data and predictions could be incorporated
to be useful to the user. The dashboards provide a summary of the features and calendar timeframe
chosen by the user. The dashboard consists of two main views, viz. the “overview” and “weather”
dashboards, displaying the current status and historical data. In some instances, the dashboard will
show a warning related to a current or potential problem. Although the current status of the farm
could look acceptable, it is important to compare the current farm status to previous years’
performances to “calibrate” the performance. Viable month and year dates were chosen for
visualisation purposes and will be discussed below. Orange circle markers were added to the

dashboards to simplify the explanations.
6.4.1 Overview of the dashboard

In the overview view of the dashboard, the user can choose to display the current status of the farm,
view the historical performance and trends, or compare the current status performance (of

chlorophyll) to historic chlorophyll data simultaneously.
Note: In the discussion below, numbers between brackets refer to the orange circle markers.
6.4.1.1 Current year performance — August 2018

The current status overview (1) was selected to display August 2018 (2) as an example for the
current status dashboard. The dashboard is used to identify how the farm is currently performing in
the specific month (in this case, August 2018) compared to previous monthly and yearly chlorophyll
data. The timeframe to compare the current performance can be selected at (3), and in this example,
the data is compared to 2017’s and 2019’s combined chlorophyll performance. Then, (4) visually
shows the 298 individual geographical points’ performance compared to the chosen timeframe point
performances. In other words, 2018’s point 3 chlorophyll value is compared to the average of both

point 3’s chlorophyll from 2017 and 2019. This is an added feature to address the original research

92



Stellenbosch University https://scholar.sun.ac.za

problem and aims to help the user identify the true performance of the crops. Suppose there is no
individual historical point to compare the point data with. In that case, it will compare it with the
standard deviation of the current date to investigate how it is performing compared to the rest of the
crop circle. Ideally, this will not be necessary (as it would be preferred to have no missing data), but
variables such as cloud cover affect the data quality in the real world. The model will also calculate
when an area on the crop circle is severely underperforming based on the historical patterns and
trends (4), (5). A monthly view of the average and predicted average monthly chlorophyll could be
viewed in (6), accompanied by the tabulated values in (7), indicating the historical monthly average

for all the previous years.

Overview
August
2 - "

Weather

Financial

@August @ Chlorophyll

sl 0 [ Choropiyt | sy | August_| september | Octaber |
Mean 54.258
Averagemean 52954 Possible performance Predicted - 62.66 59.37
Averagestd 1598 warning: average
25ty 19758 True 56.18 63.08 59.70
-15tdev. 51356 Area2 average
1stdev 34532 Historic 54.67 61.51 58.4 39.58

25tdev 56.151 averages

Figure 6.15: Current overview dashboard for August 2018
6.4.1.2 Historic performance

Figure 6.16 displays what a user will typically see on the dashboard when selecting the historical (1)
option for August 2018. There are three satellite data files (in tiff format) for August 2018 that were
manipulated and visualised in Python and displayed in (2b). In this case, the user compared the
2018’s to 2017’s (2a) performance seen at (2c). Lastly, the user also chose to see a graph (3a)
displaying the average performance during August 2018, compared to the monthly averages of 2017

and previous years’ monthly averages.
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Figure 6.16: Concept dashboard: Current and historical overview for August 2018
6.4.2 Weather/Meteorological data

After exploring the importance of meteorological data in the literature discussed in Section 2.3 and
the growing conditions in Chapter 3, Section 3.4, it was also decided to include this data in the
dashboard design. The two dashboards below conceptually show the potential value of

meteorological data to support decision-making.
6.4.2.1 Weather example A — 8 June 2018

The weather (1) dashboard for 8 June 2018 (2) displays a combination of current and historical
weather data. The timeframes for each weather feature can be chosen next to the “Historic” button
as seen next to (3), (4) and (5). As previously mentioned in Chapter 3, the South African grain
guidelines suggest that the ideal growing temperature for winter wheat is between 5 - 25°C. The
daily minimum and maximum temperature for May 2018 is shown in the line graph at (3b) and
compared to the daily average of 2010 to 2017. It can be observed that on 14 May 2018, the
maximum temperature was below 15°C, which is considered an outlier for May. The table at (3a)
shows the current temperatures as well as the forecasted temperature. The red blocks are
forecasted temperature values from the SAWS and indicate possible frost from 11 June 2018. This
could be important since the wheat seedlings are extremely sensitive to hail and frost. When wheat
is planted during May, it is also important to examine the windspeed for potential seed loss or lodging
(5a).
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Figure 6.17: Concept dashboard: 8 June 2018 current and historical weather

6.4.2.2 Weather example B — 21 May 2018

An examination of the South African Grain Guidelines indicates that winter wheat relies heavily on
the residual soil moisture of the previous rain season. Thus, this dashboard supports the user in
related decision-making such as irrigation scheduling. The bar chart (3a-left) and table (3a-right)
show the daily rain in May 2018 and the daily averages from 2010 to 2017. Another bar chart at (3b)
displays the total monthly rainfall for the previous six months and the historical monthly averages,
selected at the button and calendar icon next to (3). Finally, the text box at (3c) is displayed in yellow
since a previous season rainfall of 600 mm is preferred when planting wheat in May, but 2018 only

produced a total rainfall of 489 mm from November 2017 to April 2018.
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Figure 6.18: Concept dashboard: 21 May 2018 current and historic rain

6.5 Summary

This chapter discussed the testing scenarios for predicting chlorophyll values given known and

unknown data tables. This predictor function will be able to provide the farmer with “early warning”

estimates of the future performance of the crops.

The ETR algorithm produced an R? value of 0.85 when the algorithm was given known data for

training and testing. When the algorithm was used to train on known data but test on unknown data,

the R? values dropped significantly due to the model regarding small changes in the data as “out of
sample”. The ETR algorithm performed well for predicting August and September chlorophyll for
2017 with R? values of 0.281 and 0.273, respectively. The models produced negative R? values for

the August and September predictions for 2019 and 2020. By referring back to the monthly

chlorophyll displayed in Figure 6.1, it can be observed that the monthly chlorophyll was lower than
2017 and 2018 for each month.
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Chapter 7
Validation and verification

This chapter discusses the validation process of the concept demonstrator decision support tool.
Model validation refers to the process of determining whether the model accurately represents a
real-world system. Three popular types of simulation validation are mentioned by Law (2015), which
are also applicable within the context of this concept demonstrator: conceptual validity, operational

validity and credibility.
7.1 Operational validity

Operational validity determines whether the model's output represents that of a real-world system
and is typically confirmed by means of results validation. The testing data set is a separate portion
of the same data set from which the training set is derived. The main purpose of using the testing

data set is to test the generalisation ability of a trained model.

The project differs slightly since it is only tested on real-world data to confirm operational validity.
The operational validity was done in Chapter 4 and Chapter 6, which discussed the use of known
and unknown data to test the model. The various feature subsets from each of the four algorithms
each produced different results for the predictions of chlorophyll. The performance of the algorithms
was measured by comparing the actual data with the predicted chlorophyll data. MAE, MSE and R?

were used to measure the accuracy of the regressor algorithm performances.
7.2 Conceptual validity and credibility

Conceptual validity is used to determine whether a model is a valid representation of the real world.
Face validation is the most popular technique, which involves asking knowledgeable individuals if
the model is comparable to the real world. Three SMEs were consulted to evaluate the approach
and technical aspects of the decision support tool. The researcher presented an online presentation,
and the SMEs were provided with the (i) thesis outline, (ii) problem statement, research objectives,
project scope and limitations, (iii) data analysis approach, (iv) ML algorithms and test scenario
predictions, (v) concept dashboards and (vi) recommendations for future work. They were supplied
with a short questionnaire and asked to provide their professional opinions regarding the research
approach and development of the concept demonstrator. The names of the SMEs are disclosed, as
agreed in the NDA contract, and will be referred to as SME1, SME2 and SME3. However, they do
have several combined years of experience in data analytics, Al, and digital solutions in agriculture.

The questions were divided into categories and will be discussed below.
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7.2.1 Approach, data collection and data analysis

The SMEs were asked to comment on the following points regarding the research approach and
data analysis:

1. The use of QGIS to superimpose and extract the data into an Excel workbook.
The experts agreed that consolidating the tiff files containing the chlorophyll and the soil and
nutrient data layer is useful for further analysis. SMEZ2 felt that the Python plug-in in QGIS
should be utilised to import the data table directly into Python. SME3 agreed with SME2 that
exporting the data into an Excel workbook might not be optimal for future work since adding
additional data, such as vyield data, might contain millions of ‘pixels’ yield points. SME1
preferred the tabular data in Excel to better visualise the data and an easier method of initial

data inspection and cleaning for this use case containing a third missing value for chlorophyll.

2. The use of the CRISP-DM method as the basis for the data analysis and the method of
dealing with missing values and the decision to consider feature subsets instead of linear
relationships for between features.

All three SMEs believe that an appropriate systematic approach to the data analysis was
followed and that analysing the relationship between features when choosing the best

performing subset is important.

3. The approach to determine the best ML algorithm for the feature subset selection and
the chlorophyll predictions.
The SMEs were interested in seeing the top-performing algorithms for the feature subset
selection and chlorophyll predictions for the known and unknown data. SME1 suggested
further exploration into the use of minimum, maximum and average values of the weather

data for when more chlorophyll data and yield data is available for analysis and predictions.
7.2.2 Concept demonstrator

The SMEs were presented with the four concept dashboards to illustrate how the given components
(chlorophyll data, weather data, ML algorithms, visualisation tools) can be used in a decision support
tool. They were asked whether they agreed with the use of visualisation tools such as graphs, tables
and point-specific heatmaps to illustrate the features, predictions, weather trends and derived values.
They were also asked whether they think that the proposed concept demonstrator could be useful
to a potential end user and improve the decision-making process. The comments are summarised

below.

SMEL1 feels that a decision-making tool, such as this one, can assist the user in identifying problem

areas and whether crops are performing as expected. Farmers are provided with better insights into
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existing data, which would otherwise be hard to interpret. SME2 felt that it can also be extremely

useful for subject experts, such as agronomists, who have intrinsic knowledge about the data and

know what to look out for. SME3 stated that a high number of variables with geospatial and temporal

variability requires tools to analyse, simplify, and visualise the data for farmers and their expert

advisors.

“The power of visualisation is under-estimated”- SME3

7.2.3 Recommendations

The researcher’'s recommendations for future work were presented to the SMEs, and they were

asked to rate it according to a Likert scale and provide additional comments. The recommendations

are presented in questions and statements.

99

Updating soil and nutrient classification data yearly can assist in the analysis and
prediction of chlorophyll and yield.

Soil classification data is a static data set (except in the case of major earthworks). SME1
agreed with the research suggestion to update the nutrient and soil chemistry data sets
seasonally. SME2 and SME3 believe that updating it annually will not add obvious value to

the analysis and that it should be conducted every 2-3 years.

Implementing GPS specific yield (e.g., GPS systems in tractors) can improve the
prediction model.

All three SMEs strongly agreed with this recommendation. SMEL1 believes that adding GPS-
specific yield can relate the model more closely to the variable of interest from a business

point of view.

More frequent imagery can add value by improving predictions and early warning.
All of the SMEs agreed that increasing the number of images will add value and improve the
model's predictability but did comment that the optimal number of images is unknown. SME2
believes six times a month is financially sensible, but daily imagery could add more value to

real-time decision support and early warning tools.

Literature suggests that adding crop indicators such as FCover, MSAVI, and LAl can improve
yield prediction. Do you agree that adding more indicators can improve yield prediction?
The SMEs all expressed their curiosity about the potential benefit of adding more crop
indicators to a prediction model (such as the one discussed in this document). SME2
commented that more vigour and growth might not always be correlated with yield, as in

some cases, the plant pushes more energy into the leaf and not into the fruit.

Adding pest and disease data can add value to a decision support system?



Stellenbosch University https://scholar.sun.ac.za

SMEL1 suggests that adding pest and disease data can improve the tool's performance and
offer a better explanation of the chlorophyll trend (potentially yield too). SMES3 states that it
could be more useful for some crops than others but agrees with the recommendation to add

the pest and disease data.

Adding meteorological data sets (historical, current and forecasted) can improve
decision support?

The SMEs all agreed that adding more detailed weather data can add considerable value to
a decision support tool. It can assist the users in detecting anomalies, taking preventative
actions, and increasing the accuracy of expert advice to the farmer. SME3 states that it is

well-known that micro-climate has a significant impact on crop production.

Integrating market-related data (demand, price etc.) can provide estimations of predicted
profits and assist the farmers with crop selection.

SME1 and SME3 agreed that it could be useful to add in the presence of yield data and more
specific yield predictions. However, not all farmers can switch crops on short notice, and
SMEZ2 stated that the recommended feature might not be useful in all situations.

7.2.4 Additional research

The SMEs were also asked to provide their expert opinions on the adoption of PA technologies.

100

1. What are the challenges and limitations that influence the adoption of advanced technologies

in agriculture? (Global or South African perspective)

The most important factors influencing the adoption of PA according to SMEL1 is the lack of
high-quality data, high implementation costs and the understanding and familiarity with data-
driven decision-making. SME2 explained that the average age of farmers is increasing and
that very few young people are taking up farming as a career, which often leads to another
challenge - resistance to change and adoption of new technologies. Both SME2 and SME3
mention the challenge of Internet connectivity in rural areas, critical for some PA
technologies. SMES states that hardware in a laboratory or factory often does not last in
actual farming environments due to a farm's “rugged” environment. Many advanced
technologies have become affordable (i.e., have a high financial return), but SME3 feels that
some technologies are still far too expensive for commercial adoption. Another challenge is
the disparate data formats from various sources such as satellites, yield monitoring devices,

0T devices and lab results that require manipulation and integration into a single tool.
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2. Please provide your view on the following statement: “It is not financially viable for small and
medium-scale farmers in developing countries to adopt smart farming technologies and
decision support tools.”

All three SMEs disagreed with this statement. It is not a binary question of “adoption” or “no
adoption”, but rather a situation investigating which technologies would make most financial
sense for small- and medium-scale farmers. The key business decisions and requirements

should be used to prioritise and determine which technologies should be implemented.
7.3 Summary

This chapter discussed operational validation and focussed on the conceptual validation of the
concept demonstrator tool. The general feedback regarding the research study was overwhelmingly
positive. The final comments suggested testing the dashboards and early warning components with
farmers to get further input from a different user perspective. This was not part of the project scope
due to the anonymity of the farmer agreed to in the NDA contract, but it will be useful for the next
stage. The major points derived from the SME feedback refer to the importance of adding
meteorological data and yield data to a decision support tool. The factors influencing PA adoption
mentioned in the feedback related to the literature study's research (Section 2.1). The challenges of
PA adoption should be considered when developing a decision-support tool such as the one
described in this thesis. Some aspects of the tool still require improvement and further study to make

it a tool that can be commercially rolled out in the future.
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Chapter 8
Summary, recommendations and
conclusion

This chapter provides a summary of the research study. The three main recommendations for future
work regarding soil and nutrient data, yield data and GIS work are discussed. Finally, the chapter
ends with the conclusion and fulfilment of research questions discussed in the problem statement in
Chapter 1 (Section 1.2).

8.1 Summary

The research described in this study followed a systematic approach to develop a concept
demonstrator for a decision support tool that can be used in agriculture. The initial literature study
and research questions were refined and adapted to be applicable to a real-world problem related
to Farm X, producing winter wheat in South Africa. Thereafter, a comprehensive literature review
was conducted in parallel with the necessary field research to understand the nature of the real-
world problem and develop a concept demonstrator. The use of weather and climate data in current
PA applications were researched. The assumption was made that weather data should be added to
a decision support tool to improve decision-making activities, and in this case, chlorophyll
predictions. The weather data from the specific region of Farm X were acquired from the SAWS. The
SMEs later validated the assumptions, which suggested that weather data can add enormous value

to a decision-support tool.

The CRISP-DM methodology served as a guideline for the data analysis. QGIS software was used
to extract the data into a table in Excel, which was then imported into Python for further analysis.
The weather data were also cleaned and combined with the soil and nutrient and chlorophyll data
table. After constructing the final data table, a sequential forward feature selector was used to select
the subset features utilised in the prediction algorithm. The top-performing algorithms were (i)
Random Forest regressor, (ii) HistgradientBoost regressor, (iii) XGB regressor and the (iv) ETR. The
algorithms were compared and delivered R? values of 0.846, 0.844, 0.830 and 0.863, respectively.
The main features selected by the four algorithms were July chlorophyll, August chlorophyll, Mn and
pH. The weather features chosen by the feature selector were minimum temperature, maximum
temperature and rainfall. The ETR produced the best results in each prediction iteration and was
chosen for further data analysis described in Chapter 6. Thereafter, the model was presented with a
data table from an unknown year to predict the chlorophyll values for August and September. The
model’s accuracy decreased from 0.86 to 0.273, which was expected due to a third of the chlorophyll

time-series data missing and the soil and nutrient layer not being updated within the standard two-
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to three-year period. The model's prediction accuracy completed in Chapter 4 and Chapter 6 served
as the operational validation of the tool. It shows how a model reacts to the real world and which
factors potentially influence decision-making when available through chlorophyll, soil and nutrient
data. Three SMEs were approached to explore the conceptual validity of the model, and the general
feedback was positive. The SMEs agreed that adding yield data will improve the decision-support

tool and assist in exploring predictions and the relationship between variables.
8.2 Recommendations

The study was modelled on a real-world use case. Though the objective was to develop a concept
demonstrator, there is ample opportunity for improvement for future work. Suggestions for possible
future work that transpired during the concept model research and development are discussed

below.
8.2.1 Soil and nutrient classification layer

The field research conducted in Chapter 3 indicated that it is common practice to update the soil and
nutrient classification layer once every three years. The data from Farm X is only updated every five
years, and the soil and nutrient features were considered static features. The research done in the
literature study indicated how biophysical parameters such as soil moisture and pH could be used
for better crop management. The model struggled to find strong correlations between chlorophyll
and the soil and nutrient layer features, as the chlorophyll changed over time, whilst the soil layer
remained static. It is thus suggested to update the layer annually. The farm can even implement soil
sensors and utilise Airbus Verde’s soil analysis service to decrease manual in-field data collection

time and cost.
8.2.2 Yield

It is evident from the literature (Section 2.6.3) that yield is a valuable factor contributing to a farm's
success. Yield prediction is an essential component in PA and can help farmers decide which crops
to grow and when to grow them. Yield prediction can be used in yield mapping and conjunction with
demand requirements and expected profitability. A recommendation for future work would be
implementing a GPS yield monitoring device to collect more specific yield data. This can be used to
determine factors that directly influence the yield and potentially warn the farmer if a problem is
identified in the field.

8.2.3 Data issues

Several problems arose during the data analysis described in Chapter 4. A third of the extracted data

had to be discarded as no data points were available on the crop circle. The cloud cover often
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completely obstructed the farm, and no chlorophyll data could be supplied. The average chlorophyll
per month was used to ensure at least one value per point per month of chlorophyll. It is thus
recommended to explore the potential use of a drone to increase the frequency of the remote sensing
imagery. It would be helpful to collect imagery one to two times a week and test the model on the
improved data to explore if it could improve the prediction accuracy. It is also recommended to
explore other indicators such as NDVI, FCover and LAI in a model such as the concept demonstrator

presented in the thesis.

8.3 Conclusion

The concept demonstrator was successfully developed in this research study. It illustrated how
different data sets, ML algorithms, predictions and visualisation tools could be integrated and used
in a decision support tool (RQ4, RQ5, RQ6, RQ8). The decision support tool was presented in the
form of conceptual dashboards that displayed chlorophyll predictions and weather data effectively
(RQ7). The chlorophyll data analysis and predictions provided better insight into the existing data by
analysing specific GPS points on the crop circle and comparing them to previous years. Users can
identify the exact location of problem areas and determine whether the crops are performing as
expected. In addition, the study showed how predictive analytics can be used to detect patterns in
agricultural data and that ML algorithms can determine which features/variables are important in
prediction and decision-making (RQ9, RQ10).
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Appendix A

Table A 1: Satellites used in agriculture

Satellite Launch Year | Sensors Height Swath Revisit | Channels Spatial resolution
of orbit | (km) (days)
Landsat 1972, 1975, Panchromatic and 705 185, 183 16 7-11 120 m, 100 m, 60 m, 30
1978, 1992, multispectral sensor m,
1984, 1993, 15m
1999, 2013,
2020
Spot 1986, 1990, Imaging spectroradiometer 694 60 1-3 Panchromatic, B, G, R, NIR 25m,5m,10m, 20 m
1993,
1998, 2002,
2012
ERS 1991, 1995 IR radiometer, microwave 782-785 | 5-100 km | 3, 35, SAR 26 m across track and
sounder, Radiometer, SAR (AMI) - 336 6—-30 m along track
500 km
(ATSR)
RADARSAT | 1995, 2007, SAR 793- 45-100, 1 SAR 8-100 m, 3—100 m,
2018 821, 18-500, 3-100 m
798, 5-500
592.7
MODIS 1999, 2002 Imaging spectroradiometer 705 1 36 1000 m, 500 m, 250 m
IKONOS 1999 Imaging spectroradiometer 681 3 Panchromatic, B, G, R, NIR Panchromatic:80 cm
B, G, R,NIR:3.2m
QuickBird 2000, 2001 Imaging spectroradiometer 482, 450 2.4— Panchromatic, B, G, R, NIR Panchromatic:65 cm/61
5.9 cm
B, G, R, NIR:2.62
m/2.44 m
Envisat 2002 ASAR, MERIS, AATSR, RA-2, 790 35 15 bands (VIS, NIR), 300 m, 30-150 m
MWR, GOMOS, MIPAS, C-band
SCIAMACHY, DORIS, LRR
GeoEye 2008 Imaging spectroradiometer 681 8.3 Panchromatic, B, G, R, Panchromatic:41 cm
NIR B,G,R,NIR:1.65m
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Satellite Launch Year | Sensors Height Swath Revisit | Channels Spatial resolution
of orbit | (km) (days)
WorldView 1-3 | 2007, 2009, Imaging spectroradiometer, 496, 17.6 km 1.7 Panchromatic; Panchromatic 0.5 m.
2014, 2016 Laser altimeter 770, 16.4 km 1.1 Panchromatic and eight Panchromatic and
617, 13.1 km <1 multispectral. stereo
681 14.5 km 3 Panchromatic and eight images: 0.46 m
multispectral. multispectral: 1.84 m.
Panchromatic, B, G, R, NIR Panchromatic 0.34 m
and
multispectral 1.36 m
Sentinel 1-6 2014, 2015, Radar and super-spectral 693, 250 km 12,10, | C-SAR, 12 bands (VIS, NIR, 5-20 m, 5-40 m,
2016, 2017, imaging 786, 290 km, 27 SWIR), 10m&20m & 60 m
2021 814 250 km 21 bands (VIS, NIR), S-band &

X-band
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Tekstuurklas_Slikleem Min Aug Tekstuurklas_Slikleem Tekstuurklas_Slikleem  Grondvorm1_Oakleaf Grtondvorm1_Oakleaf Grtondvorm1_Oakleaf Grondvorm1_Oakleaf
Min Aug Max Aug Max Jul Max Jul Min Jul Min Jul Max Jul Min Aug
K. Jul K. Jul K. Jul K. Jul K. Jul K. Jul K. Jul K. Jul
K.Aug K.Aug K.Aug K.Aug K.Aug K.Aug K.Aug K.Aug
na:k p_brayl p_brayl p_brayl mg% mg% na:k na:k
mn ph ph ph p_brayl p_brayl cu p_brayl

SFFS |zn cu mn mn mn mn mn cu
WortelDiepte mn zn zn zn zn zn mn
Grondvorm1_Oakleaf zn WortelDiepte WortelDiepte Tekstuurklas_Slikleem Tekstuurklas_Slikleem Tekstuurklas_Klei zn
Min Aug WortelDiepte Tekstuurklas_Slikleem Tekstuurklas_Slikleem  Grondvorm1_Oakleaf Grondvorm1_Oakleaf Grondvorm1_Oakleaf  Grondvorm1_Oakleaf
Max Jul Humid Jul Min Aug Min Aug Min Aug Min Aug Max Jul Min Aug
K. Jul K. Jul K. Jul K. Jul K. Jul K. Jul K. Jul K. Jul
K.Aug K.Aug K.Aug K.Aug K.Aug K.Aug K.Aug K.Aug
p_brayl p_brayl p_brayl p_brayl p_brayl p_brayl mg% na:k
ph ph cu cu ph ph na:k p_brayl

SBFS |mn mn mn mn mn mn p_brayl cu
zn n Tekstuurklas_Sand Tekstuurklas_Sand zn zn zn mn
WortelDiepte Tekstuurklas_Klei Grondvorm1_Tukulu Grondvorm1_Tukulu WortelDiepte WortelDiepte Tekstuurklas_Klei zn

Grondvorm1_Kroonstad
Max Jul

Max Aug
Humid Jul

Max Jul
Rain prev sum

Max Jul
Rain prev sum

Grondvorm1_Oakleaf
Max Jul

Grondvorm1_Oakleaf
Max Jul

Grondvorm1_Oakleaf
Min Aug

Grondvorm1_Oakleaf
Max Jul
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Figure A 1: Summary of features selected from the various wrapper selection methods
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Appendix B — Python Code

## IMPORTS

from os import stat

from matplotlib.colors import Normalize

from numpy.core.function_base import linspace
import pandas as pd

import numpy as np

from pandas.core.reshape.concat import concat
from scipy.stats import kurtosis, skew

from scipy.interpolate import interpld

import statistics

import matplotlib as mpl

import matplotlib.pyplot as plt

from scipy.stats.stats import hmean, mode
import seaborn as sns

from sklearn import feature_selection

from sklearn.metrics import roc_auc_score, r2_score,mean_squared_error

from statsmodels.tsa.seasonal import seasonal_decompose #decompose time-series data CHL
from sklearn.utils._testing import all_estimators

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import StandardScaler,MinMaxScaler,RobustScaler,Normalizer
#before running algorithms and feature selection

#LAZY PREDICT

import lazypredict

from lazypredict.Supervised import LazyRegressor #from lazypredict.Supervised import
LazyClassifier

from sklearn.model_selection import train_test_split

# plot feature importance manually

import xgboost as xgb

from xgboost import plot_importance

from sklearn.metrics import accuracy_score

#Decision Tree
from sklearn.tree import DecisionTreeRegressor

#EXxtra Trees
from sklearn.ensemble import ExtraTreesRegressor

#Random Forest
#from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestRegressor

#Boruta

#import xgboost as xgb
from boruta import BorutaPy
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#permutation with sklearn

from sklearn.model_selection import train_test_split
from sklearn.inspection import permutation_importance
#from sklearn.ensemble import RandomForestClassifier

#RFE

from numpy import floating, mean

#from numpy import st

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.tree import DecisionTreeClassifier

from sklearn.feature_selection import RFE

from sklearn.pipeline import Pipeline

#Exhaustive feature selection
from mixtend.feature_selection import ExhaustiveFeatureSelector,SequentialFeatureSelector

#HistGradBoostReg

from sklearn.ensemble import HistGradientBoostingRegressor
from xgboost.sklearn import XGBRegressor

from sklearn.metrics import mean_absolute_error

##DATASETS FROM EXCEL AND QGIS

rawdata = pd.read_excel(r'C:\Users\jclau\Documents\Documents\AMasters-2020\Masters
Project\Data\Excel\07_21 FinalTable_Python.xlIsx',sheet_name='Final')

dfdailyMin = pd.read_excel(r'C:\Users\jclau\Documents\Documents\AMasters-2020\Masters
Project\Data\Weather data\Daily Warmbad Reworked_Final.xIsx',sheet_name="'DailyMin")
dfdailyMin = dfdailyMin.round(2)

dfdailyMax = pd.read_excel(r'C:\Users\jclau\Documents\Documents\AMasters-2020\Masters
Project\Data\Weather data\Daily Warmbad Reworked_Final.xIsx',sheet_name="'DailyMax")
dfdailyMax = dfdailyMax.round(2)

dfdailyRf = pd.read_excel(r'C:\Users\jclau\Documents\Documents\AMasters-2020\Masters
Project\Data\Weather data\Daily Warmbad Reworked_Final.xIsx',sheet _name='DailyRainfall")
dfdailyRf = dfdailyRf.round(2)

dfhumidity = pd.read_excel(r'C:\Users\jclau\Documents\Documents\AMasters-2020\Masters
Project\Data\Weather data\Daily Warmbad_Reworked_Final.xIsx',sheet_name="Humidity")
dfPressure = pd.read_excel(r'C:\Users\jclau\Documents\Documents\AMasters-2020\Masters
Project\Data\Weather data\Daily Warmbad_Reworked_Final.xIsx',sheet_name="Pressure’)
dfWindSpeed = pd.read_excel(r'C:\Users\jclau\Documents\Documents\AMasters-2020\Masters
Project\Data\Weather data\Daily
Warmbad_Reworked_Final.xIsx',sheet_name='"WindSpeed',converters={'Date": str})
dfdailyRainfall = dfdailyRf.fillna(0)

#dfWindSpeed.columns = dfWindSpeed.columns.datetime.strptime()

nutrients = rawdata.loc[:,'ca":'Grondvorm1’]

#Continious features for data quality report

nutrients1 = rawdata.loc[:,'ca":'"PBWK _effek’]

nutrients_con = nutrientsl.drop(["Tekstuurklas"],axis=1)

nutrients_con_Desc = nutrients_con.describe().T

#Categorical features for data quality report

121



Stellenbosch University https://scholar.sun.ac.za

nutrients_cat = rawdata.loc[:,' Tekstuurklas':'Grondvorm1']

nutrients_cat = nutrients_cat.drop([PBWK _effek'],axis=1)

#

mainNutrients =
pd.concat([nutrients.loc[:,['ca’,'mg%','na:k','p_brayl','ph’,'cu’,)'mn','zn','WortelDiepte','PBWK _effek]],
axis=1)

mainNutrients = mainNutrients.round(2)

dummies = pd.get_dummies(nutrients[[' Tekstuurklas','Grondvorm11])

#dummies =

pd.get_dummies(nutrients[[ Tekstuurklas','Dreinering’,'Risiko_vir','Besproei_1','Grondvorm11])
dataDummies = pd.concat([mainNutrients,dummies],axis=1)

df = pd.DataFrame()

dfl = pd.DataFrame()

FFATITTLILEALL LA LRV
#AAAAHHA\WWWW ISOLATE MONTHS FOR MEAN - KORING \\WWW\\\#####
FFAILLTLTLLELL LA

A\ 20 L7\t

koring17Jun = rawdata.loc[:,'24/06/2017']

koring17Jul = rawdata.loc|[:,'04/07/2017":'29/07/2017']
koring17Aug = rawdata.loc[:,'08/08/2017":'28/08/2017']
koringl7Sep = rawdata.loc[:,'02/09/2017":'22/09/2017']
koring170ct = rawdata.loc[:,'02/10/2017']

koringl7JunMean = pd.Series(koring17Jun,name="K. Jun")  #only 1 column, thus no mean
calculation
koringl7JunMean.fillna(koringl7JunMean.mean(),inplace=True)
koringl7JulMean = pd.Series(koring17Jul.mean(axis=1),name="K. Jul")
koring17JulMean.filina(koring17JulMean.mean(),inplace=True)
koringl7AugMean = pd.Series(koring17Aug.mean(axis=1),name="K. Aug")
koringl7AugMean fillna(koringl7AugMean.mean(),inplace=True)
koringl7SepMean = pd.Series(koring17Sep.mean(axis=1),name="K. Sep")
koringl7SepMean.fillna(koringl7SepMean.mean(),inplace=True)
koring170ctMean = pd.Series(koring170ct,name="K. Oct")
koring170ctMean.fillna(koringl70OctMean.mean(),inplace=True)

koringl7PerMonthChl =
pd.concat([koring1l7JunMean,koring17JulMean,koringl7AugMean,koringl7SepMean,koring170ct
Mean],axis=1)

#2018\

koring18Jun = rawdata.loc[:,'24/06/2018":'29/06/2018']
koring18Jul = rawdata.loc[:,'04/07/2018":'29/07/2018"]
koring18Aug = rawdata.loc[:,'08/08/2018":'28/08/2018']
koring18Sep = rawdata.loc[:,'02/09/2018":'27/09/2018']
koring180ct = rawdata.loc[:,'02/10/2018":'07/10/2018"]

122



Stellenbosch University https://scholar.sun.ac.za

koring1l8JunMean = pd.Series(koring18Jun.mean(axis=1),name="K. Jun")
koring18JunMean.fillna(koring18JunMean.mean(),inplace=True)
koring18JulMean = pd.Series(koring18Jul.mean(axis=1),name="K. Jul")
koring18JulMean.fillna(koring18JulMean.mean(),inplace=True)
koringl8AugMean = pd.Series(koringl8Aug.mean(axis=1),name="K. Aug")
koringl8AugMean .fillna(koringl8AugMean.mean(),inplace=True)
koringl8SepMean = pd.Series(koring18Sep.mean(axis=1),name="K. Sep")
koring18SepMean.fillna(koringl8SepMean.mean(),inplace=True)
koring180ctMean = pd.Series(koring180ct.mean(axis=1),name="K. Oct")

koring18 MonthChl =
pd.concat([koring18JunMean,koring18JulMean,koringl8AugMean,koring18SepMean,koring180ct
Mean],axis=1)

#2019 W\t
Etc....

22111 TN
HHHBHHH R Y WEATHER DATA #i##HHHHHHHHHH
FATITTLILLELLTEALL AL LA

df['meanMin’] = round((dfdailyMin.iloc[:,1:]).mean(),2)  # Mean from 2016-2020
df['meanMax’] = round((dfdailyMax.iloc[:,1:]).mean(),2) # Mean from 2016-2020
dffmeanRainfall'] = round(dfdailyRainfall. mean(),2)

df['meanHumidity'] = round((dfhumidity.iloc[:,1:]).mean(),2)

dfmeanWindSpeed'] = round((dfhumidity.iloc[:,1:]).mean(),2)

koringSeason =
pd.Series(['Dec0','Jan’','Feb','Mar’,'Apr','May',"Jun’,'Jul’,'Aug’,'Sep’,'Oct’],name="Koring Season")
#df['columndates'] = df.index.to_series(index=None)

soyaSeason = pd.Series(['Oct0','NoV','Dec','Jan’,'Feb','Mar'],name="Soya Season")

22 I
#HH#HHAH\\\\WW MIN PER YEAR W\t
2 I

#2016 \WW\\i###

t0 = dfdailyMin.loc[:,"December 2015":"October 2016"]
tMean = t0.mean()

t0.columns = range(t0.shape[1])

meanMin16 = pd.Series(t0.mean(),name="meanMin16")
meanMinl6Jan = dfdailyMin.loc[:,'"January 2016'].mean()
meanMinl16Feb = dfdailyMin.loc[:,'February 2016'].mean()
meanMinl6Mar = dfdailyMin.loc[:,'March 2016'.mean()
meanMin16Apr = dfdailyMin.loc[:,'April 2016'].mean()
meanMin16May = dfdailyMin.loc[:,'May 2016'].mean()
meanMin16Jun = dfdailyMin.loc[:,"June 2016'.mean()
meanMin16Jul = dfdailyMin.loc[:,'July 2016'].mean()
meanMin16Aug = dfdailyMin.loc[:,'’August 2016'].mean()
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meanMin16Sep = dfdailyMin.loc[:,'September 2016'].mean()
meanMin160ct = dfdailyMin.loc[:,'October 2016'].mean()

meanMin16Nov = dfdailyMin.loc[:,'November 2016'].mean()
meanMin16Dec = dfdailyMin.loc[:,'December 2016'].mean()

AW 2017 \WW\\i##

t = dfdailyMin.loc[:,"December 2016":"October 2017"]
tMean = t.mean()

t.columns = range(t.shape[1])

meanMinl7 = pd.Series(t. mean(),name="meanMin17")
meanMinl7Jan = dfdailyMin.loc[:,'January 2017'].mean()
meanMinl7Feb = dfdailyMin.loc[:,'February 2017'].mean()
meanMinl7Mar = dfdailyMin.loc[:,'March 2017'].mean()
meanMin17Apr = dfdailyMin.loc[:,'April 2017'].mean()
meanMinl7May = dfdailyMin.loc[:,'May 2017'].mean()
meanMin17Jun = dfdailyMin.loc[:,"June 2017'].mean()
meanMin17Jul = dfdailyMin.loc[:,'July 2017'].mean()
meanMin17Aug = dfdailyMin.loc[:,'August 2017'].mean()
meanMin17Sep = dfdailyMin.loc[:,'September 2017'].mean()
meanMin170ct = dfdailyMin.loc[:,'October 2017'].mean()
meanMinl17Nov = dfdailyMin.loc[:,'November 2017'].mean()
meanMin17Dec = dfdailyMin.loc[:,'December 2017'].mean()

AW 2018 W\

t1 = dfdailyMin.loc[:,"December 2017":"October 2018"]
tl.columns = range(tl.shape[1])

meanMinl18 = pd.Series(t1l.mean(),name="meanMin18")
meanMinl18Jan = dfdailyMin.loc[:,'January 2018'].mean()
meanMin18Feb = dfdailyMin.loc[:,'February 2018'].mean()
meanMin18Mar = dfdailyMin.loc[:,'March 2018'.mean()
meanMin18Apr = dfdailyMin.loc[:,'April 2018'].mean()
meanMin18May = dfdailyMin.loc[:,'May 2018'].mean()
meanMin18Jun = dfdailyMin.loc[:,'"June 2018'].mean()
meanMin18Jul = dfdailyMin.loc[:,'July 2018].mean()
meanMin18Aug = dfdailyMin.loc[:,'’August 2018].mean()
meanMin18Sep = dfdailyMin.loc[:,'September 2018'].mean()
meanMin180ct = dfdailyMin.loc[:,'October 2018'].mean()
meanMin18Nov = dfdailyMin.loc[:,'November 2018].mean()
meanMin18Dec = dfdailyMin.loc[:,'December 2018'].mean()

#2019 WW\\H###

t2 = dfdailyMin.loc[:,"December 2018":"October 2019"]
t2.columns = range(t2.shape[1])

meanMinl19 = pd.Series(t2.mean(),name="meanMin19")
meanMin19Jan = dfdailyMin.loc[:,'January 2019'].mean()
meanMin19Feb = dfdailyMin.loc[:,'February 2019'].mean()
meanMin19Mar = dfdailyMin.loc[:,'March 2019'].mean()
meanMin19Apr = dfdailyMin.loc[:,'April 2019'].mean()
meanMin19May = dfdailyMin.loc[:,'May 2019'].mean()
meanMin19Jun = dfdailyMin.loc[:,"June 2019'].mean()
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meanMin19Jul = dfdailyMin.loc[:,'July 2019].mean()
meanMin19Aug = dfdailyMin.loc[:,'’August 2019'].mean()
meanMin19Sep = dfdailyMin.loc[:,'September 2019'].mean()
meanMin190ct = dfdailyMin.loc[:,'October 2019'].mean()
meanMin19Nov = dfdailyMin.loc[:,'November 2019'].mean()
meanMin19Dec = dfdailyMin.loc[:,'December 2019'].mean()

#2020 W\

t3 = dfdailyMin.loc[:,"December 2019":"October 2020"]
t3.columns = range(t3.shape[1])

meanMin20 = pd.Series(t3.mean(),name="meanMin20")
meanMin20Jan = dfdailyMin.loc[:,'"January 2020'].mean()
meanMin20Feb = dfdailyMin.loc[:,'February 2020'].mean()
meanMin20Mar = dfdailyMin.loc[:,'March 2020'].mean()
meanMin20Apr = dfdailyMin.loc[:,'April 2020'].mean()
meanMin20May = dfdailyMin.loc[:,'May 2020'].mean()
meanMin20Jun = dfdailyMin.loc[:,'"June 2020'].mean()
meanMin20Jul = dfdailyMin.loc[:,'July 2020".mean()
meanMin20Aug = dfdailyMin.loc[:,'’August 2020].mean()
meanMin20Sep = dfdailyMin.loc[:,'September 2020'].mean()
meanMin200ct = dfdailyMin.loc[:,'October 2020'].mean()
meanMin20Nov = dfdailyMin.loc[:,'November 2020'].mean()
meanMin20Dec = dfdailyMin.loc[:,'December 2020'].mean()

2 I
#HHAHFHA\NWW MAX PER YEAR \W\\\######HEH#
A I

#2016 WW\\H###

r0 = dfdailyMax.loc[:,"December 2015":"October 2016"]
rOMean = r0.mean()

r0.columns = range(r0.shape[1])

meanMax16 = pd.Series(r0.mean(),name="meanMax16")
meanMax16Jan = dfdailyMin.loc[:,'January 2016'].mean()
meanMax16Feb = dfdailyMin.loc[:,'February 2016'].mean()
meanMax16Mar = dfdailyMin.loc[:,'March 2016'].mean()
meanMax16Apr = dfdailyMin.loc[:,'April 2016'].mean()
meanMax16May = dfdailyMax.loc[:,'May 2016'].mean()
meanMax16Jun = dfdailyMax.loc[:,"June 2016'].mean()
meanMax16Jul = dfdailyMax.loc[:,"July 2016'].mean()
meanMax16Aug = dfdailyMax.loc[:,'August 2016'].mean()
meanMax16Sep = dfdailyMin.loc[:,'September 2016'].mean()
meanMax160ct = dfdailyMin.loc[:,'October 2016'].mean()
meanMax16Nov = dfdailyMin.loc[:,'November 2016'].mean()
meanMax16Dec = dfdailyMin.loc[:,'December 2016'].mean()

AW 2017 W\

r = dfdailyMax.loc[:,"December 2016":"October 2017"]  #t3 = dfdailyMax.loc[:,"October
2016":"October 2017"]

rMean = r.mean()
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r.columns = range(r.shape[1])

meanMax17 = pd.Series(r.mean(),name="meanMax17")
meanMax17Jan = dfdailyMin.loc[:,'January 2017'].mean()
meanMax17Feb = dfdailyMin.loc[:,'February 2017'].mean()
meanMax17Mar = dfdailyMin.loc[:,'March 2017'].mean()
meanMax17Apr = dfdailyMin.loc[:,'April 2017'].mean()
meanMax17May = dfdailyMax.loc[:,'May 2017'].mean()
meanMax17Jun = dfdailyMax.loc[:,"June 2017'].mean()
meanMax17Jul = dfdailyMax.loc[:,'July 2017'].mean()
meanMax17Aug = dfdailyMax.loc[:,'August 2017'].mean()
meanMax17Sep = dfdailyMin.loc[:,'September 2017'].mean()
meanMax170ct = dfdailyMin.loc[:,'October 2017'].mean()
meanMax17Nov = dfdailyMin.loc[:,'November 2017'].mean()
meanMax17Dec = dfdailyMin.loc[:,'December 2017'].mean()

AW 2018 \WW\\i##

rl = dfdailyMax.loc[:,"December 2017":"October 2018"]
riMean = rl.mean()

rl.columns = range(rl.shape[1])

meanMax18 = pd.Series(rl.mean(),name="meanMax18")
meanMax18Jan = dfdailyMin.loc[:,'January 2018'].mean()
meanMax18Feb = dfdailyMin.loc[:,'February 2018'].mean()
meanMax18Mar = dfdailyMin.loc[:,'March 2018'].mean()
meanMax18Apr = dfdailyMin.loc[:,'April 2018'].mean()
meanMax18May = dfdailyMax.loc[:,'May 2018].mean()
meanMax18Jun = dfdailyMax.loc[:,"June 2018'].mean()
meanMax18Jul = dfdailyMax.loc[:,'July 2018'].mean()
meanMax18Aug = dfdailyMax.loc[:,'August 2018'].mean()
meanMax18Sep = dfdailyMin.loc[:,'September 2018'].mean()
meanMax180ct = dfdailyMin.loc[:,'October 2018'].mean()
meanMax18Nov = dfdailyMin.loc[:,'November 2018'].mean()
meanMax18Dec = dfdailyMin.loc[:,'December 2018].mean()

#2019 W\

r2 = dfdailyMax.loc[:,"December 2018":"October 2019"]
r2Mean = r2.mean()

r2.columns = range(r2.shape[1])

meanMax19 = pd.Series(r2.mean(),name="meanMax19")
meanMax19Jan = dfdailyMin.loc[:,"January 2019'].mean()
meanMax19Feb = dfdailyMin.loc[:,'February 2019'].mean()
meanMax19Mar = dfdailyMin.loc[:,'March 2019'].mean()
meanMax19Apr = dfdailyMin.loc[:,'April 2019'].mean()
meanMax19May = dfdailyMax.loc[:,'May 2019].mean()
meanMax19Jun = dfdailyMax.loc[:,"June 2019'].mean()
meanMax19Jul = dfdailyMax.loc[:,"July 2019'].mean()
meanMax19Aug = dfdailyMax.loc[:,'August 2019'].mean()
meanMax19Sep = dfdailyMin.loc[:,'September 2019'].mean()
meanMax190ct = dfdailyMin.loc[:,'October 2019].mean()
meanMax19Nov = dfdailyMin.loc[:,'November 2019'].mean()
meanMax19Dec = dfdailyMin.loc[:,'December 2019'].mean()
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AW 2020 W\

r3 = dfdailyMax.loc[:,"December 2019":"October 2020"]
r3Mean = r3.mean()

r3.columns = range(r3.shape[1])

meanMax20 = pd.Series(r3.mean(),name="meanMax20")
meanMax20Jan = dfdailyMin.loc[:,'"January 2020'].mean()
meanMax20Feb = dfdailyMin.loc[:,'February 2020'].mean()
meanMax20Mar = dfdailyMin.loc[:,'March 2020'.mean()
meanMax20Apr = dfdailyMin.loc[:,'April 2020"].mean()
meanMax20May = dfdailyMax.loc[:,'May 2020'].mean()
meanMax20Jun = dfdailyMax.loc[:,'"June 2020'].mean()
meanMax20Jul = dfdailyMax.loc[:,'July 2020".mean()
meanMax20Aug = dfdailyMax.loc[:,'’August 2020'].mean()
meanMax20Sep = dfdailyMin.loc[:,'September 2020'].mean()
meanMax200ct = dfdailyMin.loc[:,'October 2020'].mean()
meanMax20Nov = dfdailyMin.loc[:,'November 2020'].mean()
meanMax20Dec = dfdailyMin.loc[:,'December 2020'].mean()

2T
#HHHHHF W RAINFALL W\
2T

#2016 WW\H###

#previous rain season for Wheat

s0 = dfdailyRainfall.loc[:,"November 2015":"May 2016"]

sOSum = s0.sum()

sumRainfalll6 = sOSum.sum()

#s0.columns = range(s0.shape[1])

#sumRainfall16 = pd.Series(sOSum.sum(),name="sumRainfall 16")
#Koring_tablesJoin

meanRainl6Jan = dfdailyRainfall.loc[:,'"January 2016'].mean()
meanRain16Feb = dfdailyRainfall.loc[:,'February 2016'].mean()
meanRainl16Mar = dfdailyRainfall.loc[:,'March 2016'].mean()
meanRain16Apr = dfdailyRainfall.loc[:,'April 2016'].mean()
meanRain16May = dfdailyRainfall.loc[:,'May 2016].mean()
meanRain16Jun = dfdailyRainfall.loc[:,'"June 2016'].mean()
meanRain16Jul = dfdailyRainfall.loc[:,'July 2016'].mean()
meanRain16Aug = dfdailyRainfall.loc[:,'’August 2016'].mean()
meanRain16Sep = dfdailyRainfall.loc[:,'September 2016'].mean()
meanRain160ct = dfdailyRainfall.loc[:,'October 2016'].mean()
meanRain16Nov = dfdailyRainfall.loc[:,'November 2016'].mean()
meanRain16Dec = dfdailyRainfall.loc[:,'December 2016'].mean()

AW 2017 W\

#previous rain season for Wheat

s = dfdailyRainfall.loc[:,"November 2016":"May 2017"]
sSum = s.sum()

sumRainfalll7 = sSum.sum()
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#s.columns = range(s.shape[1])

#sumRainfalll7 = pd.Series(sSum.sum(),name="sumRainfall 17")
#Koring_tablesJoin

meanRainl7Jan = dfdailyRainfall.loc[:,'"January 2017'].mean()
meanRainl7Feb = dfdailyRainfall.loc[:,'February 2017'].mean()
meanRainl7Mar = dfdailyRainfall.loc[:,'March 2017'].mean()
meanRain17Apr = dfdailyRainfall.loc[:,'April 2017'].mean()
meanRainl17May = dfdailyRainfall.loc[:,'May 2017].mean()
meanRain17Jun = dfdailyRainfall.loc[:,'"June 2017'].mean()
meanRain17Jul = dfdailyRainfall.loc[:,'July 2017'].mean()
meanRainl17Aug = dfdailyRainfall.loc[:,'’August 2017'].mean()
meanRain17Sep = dfdailyRainfall.loc[:,'September 2017'].mean()
meanRain170ct = dfdailyRainfall.loc[:,'October 2017'].mean()
meanRain17Nov = dfdailyRainfall.loc[:,'November 2017'].mean()
meanRain17Dec = dfdailyRainfall.loc[:,'December 2017'].mean()

AW 2018 W\

#previous rain season for Wheat

sl = dfdailyRainfall.loc[:,"November 2017":"May 2018"]

s1Sum = sl.sum()

sumRainfall1l8 = s1Sum.sum()

#Koring_tablesJoin

meanRain18Jan = dfdailyRainfall.loc[:,'January 2018'].mean()
meanRain18Feb = dfdailyRainfall.loc[:,'February 2018'].mean()
meanRain18Mar = dfdailyRainfall.loc[:,'March 2018].mean()
meanRain18Apr = dfdailyRainfall.loc[:,'April 2018'].mean()
meanRain18May = dfdailyRainfall.loc[:,'May 20187.mean()
meanRain18Jun = dfdailyRainfall.loc[:,'June 2018].mean()
meanRain18Jul = dfdailyRainfall.loc[:,'July 2018'].mean()
meanRain18Aug = dfdailyRainfall.loc[:,'"August 2018'].mean()
meanRain18Sep = dfdailyRainfall.loc[:,'September 2018'].mean()
meanRain180ct = dfdailyRainfall.loc[:,'October 2018'].mean()
meanRain18Nov = dfdailyRainfall.loc[:,'November 2018].mean()
meanRain18Dec = dfdailyRainfall.loc[:,'December 2018'].mean()

#2019 W\

s2 = dfdailyRainfall.loc[:,"November 2018":"May 2019"]

s2Sum = s2.sum()

sumRainfall1l9 = s2Sum.sum()

#Koring_tablesJoin

meanRain19Jan = dfdailyRainfall.loc[:,'January 2019'].mean()
meanRain19Feb = dfdailyRainfall.loc[:,'February 2019'].mean()
meanRain19Mar = dfdailyRainfall.loc[:,'March 2019'].mean()
meanRain19Apr = dfdailyRainfall.loc[:,'April 2019'].mean()
meanRain19May = dfdailyRainfall.loc[:,'May 20197.mean()
meanRain19Jun = dfdailyRainfall.loc[:,'June 2019].mean()
meanRain19Jul = dfdailyRainfall.loc[:,'July 2019].mean()
meanRain19Aug = dfdailyRainfall.loc[:,'’August 2019].mean()
meanRain19Sep = dfdailyRainfall.loc[:,'September 2019].mean()
meanRain190ct = dfdailyRainfall.loc[:,'October 2019'].mean()
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meanRain19Nov = dfdailyRainfall.loc[:,'November 2019'].mean()
meanRain19Dec = dfdailyRainfall.loc[:,'December 2019.mean()

AW 2020 W\

s3 = dfdailyRainfall.loc[:,"November 2019":"May 2020"]

s3Sum = s3.sum()

sumRainfall20 = s3Sum.sum()

#Koring_tablesJoin

meanRain20Jan = dfdailyRainfall.loc[:,'"January 2020'].mean()
meanRain20Feb = dfdailyRainfall.loc[:,'February 2020".mean()
meanRain20Mar = dfdailyRainfall.loc[:,'March 2020"].mean()
meanRain20Apr = dfdailyRainfall.loc[:,'April 2020'].mean()
meanRain20May = dfdailyRainfall.loc[:,'May 20207.mean()
meanRain20Jun = dfdailyRainfall.loc[:,'"June 2020].mean()
meanRain20Jul = dfdailyRainfall.loc[:,'July 2020].mean()
meanRain20Aug = dfdailyRainfall.loc[:,'August 2020'.mean()
meanRain20Sep = dfdailyRainfall.loc[:,'September 2020].mean()
meanRain200ct = dfdailyRainfall.loc[:,'October 2020'].mean()
meanRain20Nov = dfdailyRainfall.loc[:,'November 2020.mean()
meanRain20Dec = dfdailyRainfall.loc[:,'December 2020'.mean()

2T
#HAAHAHHHF N\ HUMIDITY W\
EE2 LTI

#2016 WW\\H###

hO = dfhumidity.loc[:,"December 2015":"October 2016"]
h0.columns = range(h0.shape[1])

meanHumidity16 = pd.Series(h0.mean(),name="meanHumidity 16")
meanHumid16Jan = dfhumidity.loc[:,'"January 2016'].mean()
meanHumid16Feb = dfhumidity.loc[:,'February 2016'].mean()
meanHumid16Mar = dfhumidity.loc[:,'March 2016'].mean()
meanHumid16Apr = dfhumidity.loc[:,'April 2016'].mean()
meanHumidl6May = dfhumidity.loc[:,'May 2016'].mean()
meanHumid16Jun = dfhumidity.loc[:,'"June 2016'].mean()
meanHumid16Jul = dfhumidity.loc[:,'July 2016'].mean()
meanHumid16Aug = dfhumidity.loc[:,'’August 2016'T.mean()
meanHumid16Sep = dfhumidity.loc[:,'September 2016'].mean()
meanHumid160ct = dfhumidity.loc[:,'October 2016'].mean()
meanHumid16Nov = dfhumidity.loc[:,'November 2016'].mean()
meanHumid16Dec = dfhumidity.loc[:,'December 2016'].mean()

AW 2017 \WW\\i###

h = dfhumidity.loc[:,"December 2016":"October 2017"]

h.columns = range(h.shape[1])

meanHumidityl7 = pd.Series(h.mean(),name="meanHumidity 17")
meanHumid17Jan = dfhumidity.loc[:,'January 2017'].mean()
meanHumid1l7Feb = dfhumidity.loc[:,'February 2017'].mean()
meanHumidl7Mar = dfhumidity.loc[:,'March 2017'].mean()
meanHumid17Apr = dfhumidity.loc[:,'April 2017'].mean()

129



Stellenbosch University https://scholar.sun.ac.za

meanHumid1l7May = dfhumidity.loc[:,'May 2017'].mean()
meanHumid17Jun = dfhumidity.loc[:,'"June 2017'].mean()
meanHumid17Jul = dfhumidity.loc[:,'July 2017'.mean()
meanHumid1l7Aug = dfhumidity.loc[:,’August 2017'].mean()
meanHumid17Sep = dfhumidity.loc[:,'September 2017'].mean()
meanHumid170ct = dfhumidity.loc[:,'October 2017'].mean()
meanHumid17Nov = dfhumidity.loc[:,'November 2017'].mean()
meanHumid1l7Dec = dfhumidity.loc[:,'December 2017'].mean()

#2018 W\

h1l = dfhumidity.loc[:,"December 2017":"October 2018"]
hl.columns = range(hl.shape[1])

meanHumidityl8 = pd.Series(hl.mean(),name="meanHumidity 18")
meanHumid18Jan = dfhumidity.loc[:,'"January 2018'].mean()
meanHumid18Feb = dfhumidity.loc[:,'February 2018'].mean()
meanHumidl8Mar = dfhumidity.loc[:,'March 2018'].mean()
meanHumid18Apr = dfhumidity.loc[:,'April 2018'].mean()
meanHumid18May = dfhumidity.loc[:,'May 2018'].mean()
meanHumid18Jun = dfhumidity.loc[:,'"June 2018'].mean()
meanHumid18Jul = dfhumidity.loc[:,'July 2018].mean()
meanHumid18Aug = dfhumidity.loc[:,'’August 2018'].mean()
meanHumid18Sep = dfhumidity.loc[:,'September 2018'].mean()
meanHumid180ct = dfhumidity.loc[:,'October 2018'].mean()
meanHumid18Nov = dfhumidity.loc[:,'November 2018'].mean()
meanHumid18Dec = dfhumidity.loc[:,'December 2018'].mean()

#2019 \WW\\i##

h2 = dfhumidity.loc[:,"December 2018":"October 2019"]
h2.columns = range(h2.shape[1])

meanHumidity19 = pd.Series(h2.mean(),name="meanHumidity 19")
meanHumid19Jan = dfhumidity.loc[:,"January 2019'].mean()
meanHumid19Feb = dfhumidity.loc[:,'February 2019'].mean()
meanHumid19Mar = dfhumidity.loc[:,'March 2019'].mean()
meanHumid19Apr = dfhumidity.loc[:,'April 2019'].mean()
meanHumid19May = dfhumidity.loc[:,'May 2019'].mean()
meanHumid19Jun = dfhumidity.loc[:,"June 2019'].mean()
meanHumid19Jul = dfhumidity.loc[:,"July 2019].mean()
meanHumid19Aug = dfhumidity.loc[:,'August 2019'].mean()
meanHumid19Sep = dfhumidity.loc[:,'September 2019'].mean()
meanHumid190ct = dfhumidity.loc[:,'October 2019'].mean()
meanHumid19Nov = dfhumidity.loc[:,'November 2019'].mean()
meanHumid19Dec = dfhumidity.loc[:,'December 2019'].mean()

AW 2020 W\

h3 = dfhumidity.loc[:,"December 2019":"October 2020"]

h3.columns = range(h3.shape[1])

meanHumidity20 = pd.Series(h3.mean(),name="meanHumidity 20")
meanHumid20Jan = dfhumidity.loc[:,'January 2020'].mean()
meanHumid20Feb = dfhumidity.loc[:,'February 2020'].mean()
meanHumid20Mar = dfhumidity.loc[:,'March 2020'].mean()
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meanHumid20Apr = dfhumidity.loc[:,'April 2020'].mean()
meanHumid20May = dfhumidity.loc[:,'May 2020'].mean()
meanHumid20Jun = dfhumidity.loc[:,'"June 2020'].mean()
meanHumid20Jul = dfhumidity.loc[:,'July 2020'.mean()
meanHumid20Aug = dfhumidity.loc[:,'’August 2020'].mean()
meanHumid20Sep = dfhumidity.loc[:,'September 2020'].mean()
meanHumid200ct = dfhumidity.loc[:,'October 2020'].mean()
meanHumid20Nov = dfhumidity.loc[:,'November 2020'].mean()
meanHumid20Dec = dfhumidity.loc[:,'December 2020'].mean()

22 11T TN
#HHAHHHHF\\\\\W\ PRESSURE \\WW\\HHHE
E22 1 1L

#2016 W\

p0 = dfPressure.loc[:,'December 2015""October 2016"]
p0.columns = range(p0.shape[1])

meanPressurel6 = pd.Series(p0.mean(),name="Pressure 16")
meanPressurel6Jan = dfPressure.loc[:,'January 2016'].mean()
meanPressurel6Feb = dfPressure.loc[:,'February 2016'].mean()
meanPressurel6Mar = dfPressure.loc[:,'March 2016'].mean()
meanPressurel6Apr = dfPressure.locl:,'April 2016'].mean()
meanPressurel6May = dfPressure.loc[:,'May 2016'].mean()
meanPressurel6Jun = dfPressure.loc[:,'"June 2016'].mean()
meanPressurel16Jul = dfPressure.locl:,'July 2016'].mean()
meanPressure16Aug = dfPressure.loc[:,'’August 2016'].mean()
meanPressurel16Sep = dfPressure.loc[:,'September 2016'].mean()
meanPressurel160ct = dfPressure.loc(:,'October 2016'].mean()
meanPressurel6Nov = dfPressure.loc[:,'November 2016'].mean()
meanPressurel6Dec = dfPressure.loc[:,'December 2016'].mean()

ETC.... for all the weather features

AT 111 LA L ELEL LR
### YEARLY TABLES FOR LAZY REGRESSOR CALCS, MEAN CHL, KPI & WEATHER ##
F£AATTILTATTALA ALV

#table2017 =
pd.concat([koring17JulMean,koringl7AugMean,koringl7SepMean,dataDummies],axis=1)
#dataDummies or mainNutrients

table2017 = pd.concat([koringl7JulMean,koringl7AugMean,mainNutrients],axis=1) ## For 2019
Aug prediction

#table2017.loc[:,'Min Jun'] = meanMin17Jun

table2017.loc[:,'Min Jul'] = meanMin17Jul

table2017.loc[:,'Min Aug'] = meanMin17Aug

#table2017.loc[:,'Max Jun'] = meanMax17Jun

table2017.loc[:,'Max Jul'] = meanMax17Jul

table2017.loc[:,'Max Aug'l = meanMax17Aug
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table2017.loc[:,'Rain prev sum'] = sumRainfall17
#table2017.loc[:,'Rain Jun'] = meanRain17Jun

# table2017.loc[:,'Rain Jul']l = meanRain17Jul

# table2017.loc[:,'Rain Aug'] = meanRain17Aug

# table2017.loc[:,'Rain Sep'] = meanRain17Sep
#table2017.loc[:,'Humid Jun'] = meanHumid17Jun
table2017.loc[:,"Humid Jul'] = meanHumid17Jul
table2017.loc[:,'Humid Aug'l = meanHumid17Aug
#table2017.loc[:,'Wind Aug'] = meanWindSpeedl17Aug

#table2018 = pd.concat([koring18JulMean,koringl8AugMean,
koringl8SepMean,dataDummies],axis=1)

table2018 = pd.concat([koring18JulMean,koring18AugMean,mainNutrients],axis=1) ## For 2019
Aug prediction

#table2018.loc[:,'Min Jun'] = meanMin18Jun
table2018.loc[:,'Min Jul'] = meanMin18Jul

table2018.loc[:,'Min Aug'] = meanMin18Aug
#table2018.loc[:,'Max Jun'] = meanMax18Jun
table2018.loc[:,'Max Jul'] = meanMax18Jul
table2018.loc[:,'Max Aug'] = meanMax18Aug
table2018.loc[:,'Rain prev sum'] = sumRainfall18

# table2018.loc[:,'Rain Jun'] = meanRain18Jun

# table2018.loc[:,'Rain Jul'] = meanRain18Jul

# table2018.loc[:,'Rain Aug'] = meanRain18Aug

# table2018.loc[:,'Rain Sep'] = meanRain18Sep
#table2018.loc[:,'Humid Jun'] = meanHumid18Jun
table2018.loc[:,'Humid Jul'] = meanHumid18Jul
table2018.loc[:,'Humid Aug'] = meanHumid18Aug
#table2018.loc[:,'Wind Aug'] = meanWindSpeed18Aug

#table2019 =
pd.concat([koring19JulMean,koring19AugMean,koring19SepMean,dataDummies],axis=1)
table2019 = pd.concat([koring19JulMean,koring19AugMean,mainNutrients],axis=1) ## For 2019
Aug prediction

#table2019.loc[:,'Min Jun'] = meanMin19Jun

table2019.loc[:,'Min Jul'] = meanMin19Jul

table2019.loc[:,'Min Aug'] = meanMin19Aug

#table2019.loc[:,'Max Jun'] = meanMax19Jun

table2019.loc[:,'Max Jul'] = meanMax19Jul

table2019.loc[:,'Max Aug'] = meanMax19Aug

table2019.loc[:,'Rain prev sum'] = sumRainfall19

# table2019.loc[:,'Rain Jun'] = meanRain19Jun

# table2019.loc[:,'Rain Jul'l = meanRain19Jul

# table2019.loc[:,'Rain Aug'] = meanRain19Aug

# table2019.loc[:,'Rain Sep'] = meanRain19Sep

#table2019.loc[:,'Humid Jun’] = meanHumid19Jun

table2019.loc[:,'Humid Jul'] = meanHumid19Jul

table2019.loc[:,'Humid Aug'] = meanHumid19Aug

#table2019.loc[:,'Wind Aug'] = meanWindSpeed19Aug

132



Stellenbosch University https://scholar.sun.ac.za

table2020 = pd.concat([koring20JulMean,koring20AugMean,mainNutrients],axis=1) #los
koring20SepMean uit want X TEST (with filtered)
#table2020.loc[:,'Min Jun'] = meanMin20Jun
table2020.loc[:,'Min Jul'l = meanMin20Jul
table2020.loc[:,'Min Aug'l = meanMin20Aug
#table2020.loc[:,'Max Jun'] = meanMax20Jun
table2020.loc[:,'Max Jul'] = meanMax20Jul
table2020.loc[:,'Max Aug'] = meanMax20Aug
table2020.loc[:,'Rain prev sum'] = sumRainfall20

# table2020.1oc[:,'Rain Jun'] = meanRain20Jun

# table2020.loc[:,'Rain Jul'] = meanRain20Jul

# table2020.loc[:,'Rain Aug'] = meanRain20Aug

# table2020.loc[:,'Rain Sep'l = meanRain20Sep
#table2020.loc[:,'Humid Jun'] = meanHumid20Jun
table2020.loc[:,'Humid Jul'] = meanHumid20Jul
table2020.loc[:,'Humid Aug'l = meanHumid20Aug
#table2020.loc[:,'Wind Aug'] = meanWindSpeed20Aug
print(table2020)

# # FOR 2019 Aug PREDICTIONS

koring_tablesJoin =
pd.concat([table2017,table2018,table2019],keys=["2017","2018","2019"],ignore_index=True) #for
predictions and 2020
#koring_tablesJoin.to_excel(r'C:\Users\jclau\Documents\Documents\AMasters-2020\Masters
Project\Data\Excel\KoringTableAUG19.xIsx', index = False)

# ALTLILEALTTIRRALAL LA
HHHBHHH R HEATMAP  SHH
Z2 1T

table2017_cor = pd.concat([koringl7SepMean,dataDummies],axis=1) #dataDummies or
mainNutrients

# table2017_cor.loc[:,'Min Sep'] = meanMin17Sep

# table2017_cor.loc[:,'Max Sep'] = meanMax17Sep

# table2017_cor.loc[:,'Rain prev sum'] = sumRainfall17

fig, ax = plt.subplots(figsize=(10,10))

dataCorr = table2017_cor.corr()

corrMatrix = sns.heatmap(dataCorr, annot = True, linewidths=.8, ax=ax) #plot correlation matrix
plt.xticks(fontsize=10)

plt.yticks(fontsize=10)

plt.title("Correlation Matrix - Sep 2017 & features™)

plt.tight_layout()

plt.show()

FEATAL 11T LA LEL LA LELELLELLLEELERLLLLALLLLERRLLLLLLLLARLLLRR

HHHBHHH A LAZY PREDICT #####H#HTHHHHHHH
AL 11T LA ALV

133



Stellenbosch University https://scholar.sun.ac.za

#y = koring_tablesJoin['K. Sep’]

# X = koring_tablesJoin.drop(["K. Sep"],axis=1)
# scaler_norm = MinMaxScaler()

# X = scaler_norm.fit_transform(X)

#y = scaler_norm.fit_transform(y)

# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=42)
# # #fit all models

# reg = LazyRegressor(predictions=True)

# models, predictions = reg.fit(X_train, X_test, y_train, y_test)

# print(models)

FEAIILTLTLEALLTLELL AL LA
#HHHHAHH SEQUENCIAL FEATURE SELECTION #H##HHHHHHHHHIHHHE
FEATITTLILEALL TR LR

from mixtend.plotting import plot_sequential_feature_selection as plot_sfs

TR ERTIA
# OPTIMAL NUMBER OF FEATURES:

A T

# hgbr = HistGradientBoostingRegressor()

# rfr = RandomForestRegressor()

# xgbr = XGBRegressor()

#y = koring_tablesJoin['K. Sep']

# X = koring_tablesJoin.drop(["K. Sep"],axis=1)
# #scaler_norm = MinMaxScaler()

# #X = scaler_norm.fit_transform(X)

# sfs = SequentialFeatureSelector(hgbr,
# k_features=15,

# forward=True,

# floating=False,

# scoring="r2',

# cv=b5)

# # fit the object to the training data
# sfs.fit(X,y)

# figl = plot_sfs(sfs.get_metric_dict(),kind="std_deVv")
# plt.title('Sequential Forward Selection std_err')

# plt.grid()

# plt.show()

e e e e e
B

#y = koring_tablesJoin['K. Sep']

# X = koring_tablesJoin.drop(["K. Sep"],axis=1)

# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
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#print('X_train: ', X_train.shape,\nX_test: ', X_test.shape,\ny_train: '\y_train.shape,'\ny_test:
'y_test.shape) #y_test type = Series

#scaler_std = StandardScaler() #doesnt work for continous values
#scaler_rob = RobustScaler()

#X = scaler_std.fit_transform(X)

#scaler_norm = MinMaxScaler()

#X = scaler_norm.fit_transform(X)

#scaled_X = pd.DataFrame(X)

#X = scaler_rob.fit_transform(X)

hgbr = HistGradientBoostingRegressor()

rfr = RandomForestRegressor()

xgbr = XGBRegressor()

etr = ExtraTreesRegressor()

TR

# # #Sequential Forward Selection

# sfs = SequentialFeatureSelector(etr,
# k features=12,

forward=True,

floating=False,

verbose = 1,

scoring = 'r2’,

cv=b)

H OH HHH

# # fit the object to the training data. It calculates the parameters or weights on the training data
# sfs.fit(X_train,y_train)

# print('Forward sequential feauture selection index:',sfs.k_feature_idx_,' Feature name:
',sfs.k_feature_names )

# print(\nForward sequential feature selector with Extra Trees Regressor (Normalised):")
# feature_ranks = list(zip(sfs.k_feature_idx_,sfs.k_feature_names_))

# for feat in feature_ranks:

# print('Feature Index: {}, Names: {}.format(feat[0], feat[1]))

# print(\nCV Score:',sfs.k_score )

# # Now use the subset of selected features to fit model on training data
# X_train_sfs = sfs.transform(X_train)
# x_test_sfs = sfs.transform(X_test)

# # Fit the estimator using the new feature subset

# # and make a prediction on the test data

# newModel = etr.fit(X_train_sfs,y_train) # MODELS !t
#y_predict = etr.predict(x_test_sfs)

# ypredict = list(zip(y_test,y_predict))

# for preds in ypredict:
# print('Original y: {:.0f}, Predicted y: {:.0f}.format(preds[0], preds[1]))
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# accmae = mean_absolute_error(y_test,y_predict)

# accmse = mean_squared_error(y_test,y_predict)

# accr2 = r2_score(y_test,y_predict)

# print(\n Mean Asolute Error :',accmae,\n Mean Squared Error :',accmse,\n R2 score:',accr2)

# Compute the accuracy of the prediction

#acc = float((y_test ==y _pred).sum()) / y_pred.shape[0]

#print('Test set accuracy: %.2f %%' % (acc * 100))

# #Confusion Matrix - verify accuracy of each class

# from sklearn.metrics import confusion_matrix

# cm = confusion_matrix(y_test, prediction_hist)

# print(cm)

# sns.heatmap(cm, annot=True)

#acc = accuracy_score(y_test,y_predict) #normalise=False return nr of correct predictions,
otherwise fraction(TRUE) -for classification

Gl AR AR

# Sequential Backward Selection

# sbs = SequentialFeatureSelector(etr,
# k_features=9,

forward=False,

floating=False,

verbose =1,

scoring = 'r2',

cv=b)

H H HHH

# sbs.fit(X_train,y_train)

# print(\nBackward sequential feature selector with ETR ;') #RANDOM FOREST REGRESSOR
# feature_ranksl = list(zip(sbs.k_feature_idx_,sbs.k_feature_names_))

# for feat in feature_ranks1:

# print('Feature Index: {}, Names: {}.format(feat[0], feat[1]))

# print(\nCV Score:',sbs.k_score_)

# # Now use the subset of selected features to fit model on training data
# X_train_sbs = sbs.transform(X_train)
# x_test_sbs = sbs.transform(X_test)

# # Fit the estimator using the new feature subset
# # and make a prediction on the test data

# newModel = etr.fit(X_train_sbs,y_train)
#y_predict = etr.predict(x_test_sbs)

# ypredict = list(zip(y_test,y_predict))
# for preds in ypredict:
# print('Original y: {:.0f}, Predicted y: {:.0f}.format(preds[0], preds[1]))

# accmae = mean_absolute_error(y_test,y _predict)

# accmse = mean_squared_error(y_test,y_predict)
# accr2 = r2_score(y_test,y_predict)
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# print(\n Mean Asolute Error :',accmae,\n Mean Squared Error :',accmse,\n R2 :',accr2)

kTR AR
# # ## Sequential Forward floating Selection

# sffs = SequentialFeatureSelector(etr,
# k features=9,

forward=True,

floating=True,

verbose =1,

scoring = 'r2',

cv=b)

HOH O HH

# sffs.fit(X_train,y_train)

# print(\nForward floating sequential feature selector with ETR:") #RANDOM FOREST
REGRESSOR

# feature_ranks2 = list(zip(sffs.k_feature_idx_,sffs.k_feature_names ))

# for feat in feature_ranks2:

# print('Feature Index: {}, Names: {}.format(feat[0], feat[1]))

# print(\nCV Score:',sffs.k_score_)

# # #Now use the subset of selected features to fit model on training data
# X_train_sffs = sffs.transform(X_train)
# x_test_sffs = sffs.transform(X_test)

# # #Fit the estimator using the new feature subset
# # #and make a prediction on the test data

# newModel = etr.fit(X_train_sffs,y_train)
#y_predict = etr.predict(x_test_sffs)

# ypredict = list(zip(y_test,y_predict))
# for preds in ypredict:
# print('Original y: {:.0f}, Predicted y: {:.0f}.format(preds[0], preds[1]))

# accmae = mean_absolute_error(y_test,y_predict)

# accmse = mean_squared_error(y_test,y predict)

# accr2 = r2_score(y_test,y_predict)

# print(\n Mean Asolute Error :',accmae,\n Mean Squared Error :',accmse,\n R2 :',accr2)

g AT ATEAARAR

# # Sequential Backward floating Selection
# sbfs = SequentialFeatureSelector(etr,

# k_features=9,

forward=False,

floating=True,

verbose = 1,

scoring = 'r2',

cv=bh)

H H O HH

# sbfs.fit(X_train,y_train)
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# print(\nBackward floating sequential feature selector with ETR(norm):") # HistgradboostRegr
Extra Trees Regr (Normalised

# feature_ranks3 = list(zip(sbfs.k_feature_idx_,sbfs.k_feature_names ))

# for feat in feature_ranks3:

# print('Feature Index: {}, Names: {}.format(feat[0], feat[1]))

# print(\nCV Score:',sbfs.k_score )

# # #Now use the subset of selected features to fit model on training data
# X_train_sbfs = sbfs.transform(X_train)
# x_test_sbfs = sbfs.transform(X_test)

# # #Fit the estimator using the new feature subset
# # #and make a prediction on the test data

# newModel = etr.fit(X_train_sbfs,y_train)
#y_predict = etr.predict(x_test_sbfs)

# ypredict = list(zip(y_test,y_predict))
# for preds in ypredict:
#  print('Original y: {:.0f}, Predicted y: {:.0f}.format(preds[0], preds[1]))

# accmae = mean_absolute_error(y_test,y predict)

# accmse = mean_squared_error(y_test,y_predict)

# accr2 = r2_score(y_test,y_predict)

# print(\n Mean Asolute Error :',accmae,\n Mean Squared Error :',accmse,\n R2 :',accr2)

A NTTITTTTETEOTEOTE R
AT PREDICTION - 2020 [[[{[[HNINIIIIIIT USE SFFS and ETR not normalised

AT

#y = koring_tablesJoin['K. Sep']

# X = koring_tablesJoin.drop(["K. Sep"],axis=1)

# X20_test = table2020

# scaler_norm = MinMaxScaler()

# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# print("X_train: ',X_train.shape,\nX_test: ', X_test.shape,\ny_train: 'y _train.shape,\ny_test:
'y_test.shape) #y_test type = Series

# X = scaler_norm.fit_transform(X)

# X20 _test = scaler_norm.fit_transform(X20_test)

# ## Sequential Forward Selection

# sfs = SequentialFeatureSelector(etr,
# k_features=9,

forward=True,

floating=False,

verbose = 1,

scoring = 'r2',

cv=bh)

H H O HH

# ## fit the object to the training data. It calculates the parameters or weights on the training data
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# sfs.fit(X_train,y_train)

# print('Forward sequential feauture selection index:',sfs.k_feature_idx_,' Feature name:
',sfs.k_feature_names )

# print(\nForward sequential feature selector with Extra Trees Regressor (Normalised):")
# feature_ranks = list(zip(sfs.k_feature_idx_,sfs.k_feature_names_))

# for feat in feature_ranks:

# print('Feature Index: {}, Names: {}.format(feat[0], feat[1]))

# print(\nCV Score:',sfs.k_score_)

# ## Now use the subset of selected features to fit model on training data
# #X becomes the new X_train. we want to train 2017,18 & 19

# # ***xx EFEOR 2020 PREDICTION ****

# X_train_sfs = sfs.transform(X)

# x20_test_sfs = sfs.transform(X20_test)

# # Fit the estimator using the new feature subset
# # and make a prediction on the test data

# # ***x EFOR 2020 PREDICTION ****

# Model_2020 = etr.fit(X_train_sfs,y)

#y_ predict2020 = etr.predict(x20_test_sfs)

# print('X_train: ',X.shape,\nX_test: ',X20_test.shape,\ny_train: 'y.shape)
# print("\nPredictions for September 2020:\n",y_predict2020)

# koring20SepMean = pd.Series(y_predict2020,name="K. Sep")
# print(koring20SepMean)
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augmean = koringl7Aug_1.mean() #koringl7Aug_1l.mean() (koringl7Aug_1.mean() +
koring18Aug_1.mean())/2

auglstdev = koring17Aug_1.std() #koringl7Aug_1.std() (koringl7Aug_1.std() +
koring18Aug_1.std())/2

std_low = augmean- auglstdev

std_low2 = (augmean-(2*auglstdev))

std_high = augmean+auglstdev

std_high2 = (augmean+(2*auglstdev))

x = round(rawdata["X"],5)

y = round(rawdata["Y"],5)

z = koring18Aug_1 # e koring18Aug_1
Xx_ax = np.arange(x.min(),x.max(),0.0005)
figl, ax1 = plt.subplots()

# ###Htloop through every item in the series
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col =]
for a in range(0,len(z),1):
if z[a] < std_low2:
col.append('red’)
elif (z[a] >= std_low2) and (z[a] < std_low) :
col.append('lightcoral’)
elif (z[a] >= std_low) and (z[a] < augmean): #-----
col.append('pink")
elif (z[a] >= augmean) and (z[a] < std_high): #-----
col.append('khaki')
elif (z[a] >= std_high) and (z[a] < std_high2):
col.append('lime’)
elif (z[a] >= std_high2):
col.append('darkgreen")
else:
col.append('gray’)

red_patch = mpatches.Patch(color="red', label='Z <-2stdeVv")

coral_patch = mpatches.Patch(color="lightcoral’, label="-2stdev <= Z < -1stdeV’)
pink_patch = mpatches.Patch(color="pink’, label="-1stdev <= Z <mean’)
khaki_patch = mpatches.Patch(color='khaki', label="mean <= Z <1stdev")
lime_patch = mpatches.Patch(color='lime’, label="1stdev <= Z <2stdeV')
dgreen_patch = mpatches.Patch(color='darkgreen’, label='Z >= 2stdeVv")
gray_patch = mpatches.Patch(color='gray’, label="nan’)

foriin range(0,len(2),1):
axl.scatter(x[i],y[i],c=colli])
plt.xlabel('X axis',fontsize=15)
plt.ylabel('Y axis',fontsize=15)
plt.title('08/08/2018 VS 08/08/2017',fontsize=20) # ------
#plt.xticks(x_ax)
#plt.legend(handles=[red_patch,coral_patch,pink_patch,khaki_patch,lime_patch,dgreen_patch,gra
y_patch])
plt.tight_layout()
plt.grid()
plt.show()
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