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Abstract

Ancient whole-genome duplications (WGDs) leave signatures in comparative genomic data sets that can be harnessed to
detect these events of presumed evolutionary importance. Current statistical approaches for the detection of ancient
WGDs in a phylogenetic context have two main drawbacks. The first is that unwarranted restrictive assumptions on the
“background” gene duplication and loss rates make inferences unreliable in the face of model violations. The second is
that most methods can only be used to examine a limited set of a priori selected WGD hypotheses and cannot be used to
discover WGDs in a phylogeny. In this study, we develop an approach for WGD inference using gene count data that seeks
to overcome both issues. We employ a phylogenetic birth–death model that includes WGD in a flexible hierarchical
Bayesian approach and use reversible-jump Markov chain Monte Carlo to perform Bayesian inference of branch-specific
duplication, loss, and WGD retention rates across the space of WGD configurations. We evaluate the proposed method
using simulations, apply it to data sets from flowering plants, and discuss the statistical intricacies of model-based WGD
inference.
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Introduction
“Every gene from a pre-existing gene,” proclaimed Muller,
echoing Virchow’s famous third dictum (Muller 1936). This
principle, though no longer thought of as a rule without ex-
ception (Long et al. 2013; Ruiz-Orera et al. 2018; Zhang et al.
2019), is still the paradigm for thinking about gene content
evolution, with gene duplication regarded as the primary
driver. A diverse array of molecular processes causes gene
duplication (and loss) (Lynch 2007), and it is generally insight-
ful to distinguish two main classes. Small-scale duplication
and loss (SSDL) events, resulting in duplication or loss of a
single or couple of genes, are thought to originate from pro-
cesses such as nonhomologous recombination and transpo-
sition. These may be contrasted with large-scale duplication
and loss events involving the whole genome or a large fraction
of it, which generally result from chromosome-level processes
such as aneuploidy and rediploidization after polyploidiza-
tion. We refer to the latter process by the colloquial term
whole-genome duplication (WGD). It is nowadays well appre-
ciated that ancestral WGD has been of considerable impor-
tance in the evolution of eukaryotic genomes (Van de Peer
et al. 2017), and especially so in plants, where it would be safe
to state that the genome of every extant plant has been
shaped to some degree by ancient WGD events (1KP initia-
tive 2019). Identifying ancient WGDs through comparative
genomic analyses remains however a nontrivial task, as

exemplified by several recent controversies (Li et al. 2019;
Nakatani and McLysaght 2019; Zwaenepoel et al. 2019), illus-
trating the need for reliable statistical methods to detect
WGDs in a phylogenetic context.

One of the consequences of Muller’s adage is that a par-
ticular class of stochastic models, namely birth–death pro-
cesses (BDPs), has since long been a mainstay for modeling
the evolution of gene family sizes (Novozhilov et al. 2006). In
particular, the linear BDP and its variants have been widely
used because of their tractable transition probabilities, facili-
tating statistical inference in a phylogenetic context (Hahn
et al. 2005; Cs}urös and Mikl�os 2009; Liu et al. 2011; Librado
et al. 2012; Rabier et al. 2014; Tiley et al. 2016; Tasdighian et al.
2017). In these approaches, a series of linear BDPs are assumed
to operate along the branches of a known species tree, pro-
viding an intuitive generative model for gene counts in a set
of taxa for a single gene family. Such a set of gene counts is
often referred to as a phylogenetic profile and can be obtained
from genomic data sets using standard comparative geno-
mics methods, thereby providing an attractive data set for
likelihood-based inference of phylogenetic BDP models. As a
model of gene family evolution, the birth and death rate
parameters of the linear BDP are generally interpreted as
the per-gene rate of duplication and loss per unit of time,
thereby constituting a reasonable model of gene family evo-
lution by SSDL (Novozhilov et al. 2006). Interestingly, large-
scale duplication and loss, and in particular WGD, cause a
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characteristic deviation from the SSDL-driven evolutionary
process. Indeed, posterior predictive simulations (performed
using methods and data discussed below) clearly show that
WGDs that are not accounted for are the main source of lack
of fit of the phylogenetic linear BDP in a plant data set with
several well-known WGD events (supplementary figs. S1–S3,
Supplementary Material online). Furthermore, these unmod-
eled WGDs cause biases in the estimated duplication and loss
rates, compromising their interpretation as rates of the SSDL
process.

Rabier et al. (2014) were the first to propose a model of
gene family evolution including ancestral WGDs, exploiting
the deviation from a linear BDP to infer WGDs in a statistically
founded approach. The same model was adopted in
Zwaenepoel and Van de Peer (2019) in a gene tree reconcil-
iation based inference context. In that study, we showed that
across-lineage variation in gene duplication and loss rates is a
crucial factor that should be taken into account when per-
forming model-based WGD inference, and we developed a
Bayesian approach modeling the variation in duplication and
loss rates using relaxed molecular clock priors. In both Rabier
et al. (2014) and Zwaenepoel and Van de Peer (2019), stan-
dard model selection techniques are used to determine
whether some WGD hypothesis provides a significant better
fit to the observed gene trees or phylogenetic profiles. These
methods are therefore restricted to testing a limited set of a
priori determined WGD hypotheses and are unable to
“automatically” detect WGDs from the data. In this study,
we develop an approach based on reversible-jump Markov
chain Monte Carlo (rjMCMC) to infer WGDs under a prob-
abilistic model of gene family evolution in a phylogenetic
context based on a set of phylogenetic profiles without the
need of specifying a restricted set of a priori WGD hypotheses.
We study the performance of the new approach using sim-
ulations and explore its practical utility by applying the
method to several comparative genomic data sets from
plants.

New Approaches
We implement a Bayesian inference approach based on re-
versible-jump MCMC to perform model-based detection of
ancient WGDs and branch-specific duplication and loss rates

for a given species phylogeny based on a set of phylogenetic
profiles. Our approach does not assume an a priori deter-
mined set of putative WGDs as in Rabier et al. (2014) or
Zwaenepoel and Van de Peer (2019). Our method is based
on the DLWGD model of gene family evolution, combining a
phylogenetic BDP—formulated as in Cs}urös and Mikl�os
(2009)—as a model for the SSDL process, with a model for
WGD as in Rabier et al. (2014). We employ a flexible hierar-
chical model for the gene family evolutionary process, model-
ing the evolution of gene duplication and loss rates using a
bivariate stochastic process operating along the species tree,
in a vein similar to Lartillot and Poujol (2011).

Materials and Methods

Probabilistic Model of Gene Content Evolution
We employ a probabilistic model of gene family evolution
based on the linear BDP to model the evolution of the num-
ber of genes in a gene family along a time-calibrated species
tree S with VðSÞ nodes (Hahn et al. 2005; Cs}urös and Mikl�os
2009; Liu et al. 2011; Librado et al. 2012; Rabier et al. 2014;
Tasdighian et al. 2017). Specifically, we assume an indepen-
dent linear BDP for each branch i of S with duplication and
loss rates ki and li. We adopt the WGD model of Rabier et al.
(2014) to introduce WGDs in the phylogenetic BDP, and call
the resulting model the DLWGD model (for duplication, loss,
and WGD). Under the DLWGD model, we assume a set of k
WGDs are indicated along S, each characterized by a reten-
tion rate qj and age tj, j ¼ 1; . . . ; k. We denote by b(j) the
branch of S along which the WGD with index j is located. A
set of k WGDs with the respective branches of S on which
they are located will be called a “WGD configuration.” At the
time of a WGD, all extant gene lineages are duplicated, and a
duplicated gene is either retained with probability qj or not
retained with probability 1� qj. Under this model, the com-
plex polyploidization–rediploidization process associated
with a WGD is assumed to happen in a time interval that
is short relative to the branch length on which the WGD
occurs, such that rediploidization is effectively instantaneous
compared with the time scale of the phylogeny and, crucially,
has completed before the next speciation event. In other
words, the number of genes retained in duplicate after redi-
ploidization is modeled as a binomial random variable with
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FIG. 1. Comparison of posterior means and 95% uncertainty intervals with simulated values. Results across different simulated data sets are pooled
together in one plot. In orange, the ideal (expected) relation between posterior means and true (simulated) parameter values is shown, whereas in
red, the least squares regression of the posterior means on the true values is shown. We refer the reader to supplementary figure S7, Supplementary
Material online, for plots of the retention rate estimates by replicate.
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“success” probability qj. The resulting probabilistic graphical
model is a straightforward generative model for the evolution
of gene trees (and as a consequence, also gene counts) evolv-
ing by means of duplication, loss, and WGD with respect to
an assumed species tree.

Parameter inference is based on a data set X consisting of N
phylogenetic profiles, that is, observed gene counts at the
leaves ofS. A single phylogenetic profile for family i is denoted
as XðiÞ ¼ fXðiÞj : j 2 leavesðSÞg, where we reserve sub-
scripts for node indices and superscripts for family indices.
We assume all XðiÞ; i ¼ f1; . . . ;Ng are independent and
identically distributed (iid) under the same DLWGD model.
The linear BDP has a countably infinite state space, making
direct computation of the likelihood under the DLWGD
model using the pruning algorithm not possible. In most
previous studies (Hahn et al. 2005; Librado et al. 2012;
Tasdighian et al. 2017), this issue was circumvented by trun-
cating the transition probability matrix to some carefully but
arbitrarily chosen bound, where a tradeoff exists between
computational cost and accuracy. Alternatively, in a
Bayesian approach one could augment the parameter space
by the states at the internal nodes of S for every gene family,
and sample from the augmented probability distribution us-
ing an MCMC algorithm, as was done by Liu et al. (2011).
Following Rabier et al. (2014), we compute the likelihood for
the resulting probabilistic graphical model using the algo-
rithm of Cs}urös and Mikl�os (2009), which uses conditional
survival likelihoods in combination with a discrete prior dis-
tribution on the number of gene lineages at the root of a gene
family to compute the marginal likelihood of a phylogenetic
profile conditional on the assumed prior at the root. We
employ a geometric prior on the number of lineages at the
root with expected value 1=g following Rabier et al. (2014).
For more details on the algorithm to compute the condi-
tional survival likelihood under the DL and DLWGD model,
we refer the reader to Cs}urös and Mikl�os (2009) and Rabier
et al. (2014).

Prior Distributions and Posterior Inference
In previous work, we showed that modeling across-lineage
variation in duplication and loss rates is crucial for the assess-
ment of WGD hypotheses (Zwaenepoel and Van de Peer
2019). In that study, we modeled duplication and loss rates
using a stochastic molecular clock by adopting priors similar
to those used in Bayesian divergence time estimation.
However, there we assumed the evolution of duplication
and loss rates to be two independent processes. This assump-
tion may be innocuous but is not biologically plausible. Given
that the expected value E½Y� of the linear BDP over a time t
for a given initial state Y0 is Y0eðk�lÞt; for a gene family not to
systematically expand or contract, k should be approximately
equal to l for each branch in S under the assumed model. A
strong correlation between k and l is therefore expected a
priori under what can be called a scenario of “neutral” gene
family evolution.

In the present work, we draw inspiration from Lartillot and
Poujol (2011) and propose two bivariate models for across-
lineage rate variation. The first model, faithful to Lartillot and

Poujol (2011), models the evolution of k and l by a bivariate
Brownian motion (BM) with some unknown covariance ma-
trix R. The multivariate BM specifies a conditional probability
density on the state of a random vector hi ¼ ðlog ki; log liÞ
for each node i of S, where we condition on the state of the
parent node j at distance ti. Specifically, we have that

hijhj; ti � Normalðhj;RtiÞ:

To obtain branch-specific duplication and loss rates, we
approximate the sample path of the BM along a branch of the
tree by taking the arithmetic average of the rates at the two
flanking nodes. Alternatively, we consider a second model
where rates across branches of S are independent and iden-
tically distributed, that is

hijh1 � Normalðh1;RÞ;

where we denote the branch leading to node i with the index
i and denote for a branch with index i by hi the vector of the
logarithm of the branch-specific duplication and loss rates. In
contrast to the bivariate BM model, this bivariate IR model
can be specified directly in terms of branch-specific rates,
resulting in considerable improvements in the efficiency of
the MCMC algorithms we develop (see further). For both the
BM and IR model, we assume an inverse Wishart prior on the
covariance matrix R with prior covariance matrix W and
degrees of freedom q¼ 3 (Lartillot and Poujol 2011). For
the state at the root in the BM model, or the mean rates in
the IR model (h1), we assume a multivariate Normal prior
with covariance matrix R0 (which may or may not be chosen
identical to W) and prior mean vector h0.

We denote the total tree length by T and assume a map-
ping from points in the interval ½0; T� to points along S, sim-
ilar to, for instance, Huelsenbeck et al. (2000). We assume a
uniform prior on the interval ½0; T� for the WGD times and a
Beta prior for the associated retention rates q. Note that we
treat the WGD times as random variables, whereas in previous
studies, these were usually assumed fixed, a potentially prob-
lematic assumption given the difficulties associated with dat-
ing uncertain WGD events (Rabier et al. 2014; Tiley et al. 2016;
Zwaenepoel and Van de Peer 2019). Lastly, we consider a Beta
prior on the g parameter that specifies the geometric prior on
the number of lineages at the root. The full hierarchical model
can be summarized as (taking the IR model as an example, see
also supplementary fig. S4, Supplementary Material online)

g � Betaðag; bgÞ
qj � Betaðaq; bqÞ j ¼ 1; . . . ; k

tj � Uniformð0; TÞ j ¼ 1; . . . ; k

R � InverseWishartðW; 3Þ
h1 � Normalðh0;R0Þ

hijh1;R � Normalðh1;RÞ i ¼ 2; . . . ;VðSÞ
Xjh; q; t; g � DLWGDðS; h; q; t; gÞ

:

Unless stated otherwise, we used the following “vague”
prior settings: a Betað3; 1Þ prior for g, a Betað1; 3Þ prior for
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q, h0 ¼ ½logð1:5Þ; logð1:5Þ�, R0 ¼ ½1 0:9 ; 0:9 1�, and
W ¼ I2, that is, the 2� 2 identity matrix. We make the
important remark that any particular choice of prior
parameterization for h0;R0 and W should depend on the
time scale of the phylogeny. We sometimes consider an
additional prior on the expected number of lineages at
node i given one lineage at the parent node j,
E½XijXj ¼ 1� ¼ eðki�liÞti , which serves to constrain the dupli-
cation and loss rate to a regime where they are of similar
magnitude. For this “constraining” prior we consider a
Normal distribution with mean one and standard deviation
d. The advantage of this additional prior, which is not in a
direct relation to the generative model, is that it allows to
constrain duplication and loss rates in a biologically meaning-
ful and insightful way due to its interpretation in terms of
gene family expansion and contraction. Encoding such prior
intuitions on gene family evolutionary dynamics in terms of
the prior covariance matrix W is generally less obvious.

We devised a Metropolis-within-Gibbs MCMC algorithm
to obtain approximate samples from the posterior

distribution for a model with a fixed WGD configuration. A
single iteration of the MCMC algorithm involves a postorder
traversal along the tree updating parameters using the fol-
lowing conditional updates:

gjh; q; t; (1)

hijh�i; g; q; t i ¼ 1; . . . ;VðSÞ; (2)

qj; tjjh; g; q�j; t�j j ¼ 1; . . . ; k; (3)

and

qj; hbðjÞjh�bðjÞ; g; q�j; t j ¼ 1; . . . ; k; (4)

where we use a common notational convenience by denoting
by h�i the vector h with hi excluded. Note that we do not
explicitly update the covariance matrix R but use the fact
that the inverse Wishart distribution is a conjugate prior for
the multivariate Normal to integrate out the covariance ma-
trix R and compute pðhjWÞ ¼

Ð
RpðhjRÞpðRjWÞdR directly,

FIG. 2. Performance of the rjMCMC sampler to detect simulated WGDs in different simulated data sets. The number of true positive (TP) and false
positive (FP) WGDs detected for increasing cutoffs of the Bayes factor ( log 10K) is shown. The top two rows show the simulations from the IR prior,
whereas the bottom two rows show the simulations based on the joint posterior distribution for the dicots data set (see main text). In both series,
we show results for data sets of size N ¼ 100;N ¼ 500, and N ¼ 1000 and a prior covariance matrix of r2I2, with r2 2 f1; 0:2; 0:1g. We include
results for the constant rates prior as well. Results are pooled across ten replicate simulations. The dotted line marks a rule-of-thumb threshold of
0.5 for the base 10 logarithm of the Bayes factor ( log 10K).
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as in Lartillot and Poujol (2011). For multivariate updates (2)
and (4), we use a proposal strategy akin to Lartillot and Poujol
(2011), where we propose a new state by executing one of the
following moves uniformly at random: 1) additively update a
uniformly chosen parameter using a uniform random walk
proposal, 2) update all parameters by the same additive uni-
form random variable, and 3) update all parameters additively
with iid uniform random variables. For update (3), we update
either qj, tj or both each with probability one-third using a
uniform random walk proposal for qj and an independent
proposal for tj, sampled from the time interval between the
parent and child node of WGD j. Lastly, we update g using a
uniform random walk proposal. For both q and g updates, we
reflect proposals that are out of bounds back into the (0, 1)
interval. All proposal parameters were automatically tuned
using diminishing adaptation during burn-in (Roberts and
Rosenthal 2009).

Reversible-Jump MCMC
Previous work on the DLWGD model has considered the
WGD hypotheses fixed and prespecified and resorted to stan-
dard model selection approaches using likelihood ratio tests
or Bayes factors to select among a small set of nested candi-
date models or “WGD configurations” (Rabier et al. 2014;
Zwaenepoel and Van de Peer 2019). Here, we treat the
WGD configuration as unknown and seek to jointly perform
inference of branch-wise duplication and loss rates, the
number of WGDs k, and their locations and retention rates
ftj; qj; j 2 1; . . . ; kg from a set of exchangeable phylogenetic

profiles X ¼ fXðiÞgN

i¼1 from N gene families.
Different configurations of WGD hypotheses along a phy-

logeny constitute different instances of the DLWGD model
with the dimensionality of the parameter space depending on
the number of WGDs on the branches ofS. Denote by /k the
parameters associated with the DLWGD model with branch-

wise duplication and loss rates h and k WGDs. By Bayes’
theorem we have

pð/k; kjXÞ ¼
pðXj/k; kÞpð/kjkÞpðkÞ

pðXÞ ;

where p(k) is a prior distribution on the number of WGDs. This
prior can be any discrete univariate distribution (e.g., below
we consider a discrete uniform distribution with domain
from 0 to 20). The reversible-jump MCMC algorithm
(Green 1995) allows to simulate a Markov chain with pð/k;
kjXÞ as stationary distribution without requiring evaluation of
the marginal likelihood p(X). In the rjMCMC algorithm, we
construct trans-dimensional moves that add and remove
WGDs to the current state. In the formalism of Green
(1995), we denote the current state of dimensionality n as
/, and propose a new state /0 of dimensionality n0 ¼ nþ 2
(i.e., a forward move, adding a WGD) by drawing a vector of
random numbers u ¼ ðu1; u2; u3Þ from a joint density g such
that ð/0; u0Þ ¼ hð/; uÞ, where h is some deterministic func-
tion and u0 are the random numbers from a joint density g0

required for the reverse move from /0 to / with the inverse
function h0 of h. Assume we introduce a WGD j on branch
b(j)¼ i, we write / ¼ ð/�; log kiÞ and construct our forward
move such that ð/0; u0Þ ¼ hð/; uÞ ¼ h½ð/�; log kiÞ; ðu1; u2;
u3Þ� ¼ ½ð/�; log ki � u1; u2; u3Þ; u01� ¼ ½ð/�; log k0i ; qj; tjÞ;
u01�. The acceptance probability for the forward move re-
quired for obtaining detailed balance is (Green 1995)

a½ð/; kÞ; ð/0; k0Þ� ¼

min 1;
pðXj/0; k0Þpð/0jk0Þpðk0Þg0ðu0Þ

pðXj/; kÞpð/jkÞpðkÞgðuÞ j
@ð/0; u0Þ
@ð/; uÞ j

� �
;

(5)

where in our case, the absolute value of the Jacobian deter-
minant is equal to one. We generate u1, u2, and u3 indepen-
dently, so that the proposal density factorizes as
gðuÞ ¼ g1ðu1Þg2ðu2Þg3ðu3Þ. The reverse move requires only

FIG. 3. Posterior probability of the number of WGDs on each branch in the dicot data set for an analysis with d ¼ 0:1 (white) and an analysis with
d ¼ 0:05 (red). Asterisks indicate the magnitude of the associated Bayes factor ð�Þ 0:5 < log 10K < 1, ð��Þ 1 < log 10K < 2, and ð���Þ
log 10K > 2. Three letter codes (see Materials and Methods) in between brackets denote the relevant clade below the particular branch.
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one random variable u01, and we take g1ðu1Þ ¼ g01ðu01Þ. We
further sample u3, that is, the WGD location along S, from
the Uniformð0; TÞ prior. Collecting terms that appear in both
the numerator and denominator and performing the appro-
priate cancellations, we obtain the acceptance probability of
the forward move as

a½ð/; kÞ; ð/0; kþ1Þ� ¼

min 1;K
pðkþ 1Þ

pðkÞ
pðh0ijh�i;WÞ
pðhijh�i;WÞ

pðqjÞ
g2ðqjÞ

� �
;

(6)

where K denotes the likelihood ratio. Since we have a natural
centering point in the sense of Brooks et al. (2003), that is,
K¼ 1 if u ¼ u� ¼ 0, we can see that under so-called weak
nonidentifiability centering, an optimal choice for g2ðu2Þmay
be to take the prior density p(q).

We further implemented two slightly different reversible-
jump kernels, 1) a kernel where not only ki but also li is
updated in a model jump and 2) a kernel where only a
new WGD is proposed, without updating either ki or li.
The acceptance probability is identical to (6), and similar
observations with regard to the choice of the proposal density
of qj hold. By default, we use the former of these two in our
analyses. We verified the implementation of the MCMC al-
gorithm by running the sampler in the absence of data, in
which case the sample should approximately reproduce the
prior (supplementary figs. S5 and S6, Supplementary Material
online). Furthermore, we assessed our ability to recover ac-
curate parameter estimates for data sets simulated under the
DL and DLWGD models (see Results). Lastly, to assess the
efficiency of the rjMCMC sampler for sampling across model
space, we compute the effective sample size (ESS) for the
number of WGDs (i.e., the model indicator k) using the
method recently proposed by Heck et al. (2019).

Posterior Inference of WGD Configurations
In a Bayesian framework, model comparisons are usually per-
formed using Bayes factors. The Bayes factor of a model M1

versus a model M0 is computed as

K10 ¼
PrðXjM1Þ
PrðXjM0Þ

¼ PrðM1jXÞ=PrðM0jXÞ
PrðM1Þ=PrðM0Þ

:

This is straightforward to compute given an approximate
sample of the posterior distribution across model space. Note

however that we have treated WGD configurations with the
same number of WGDs k (and as a result the same dimen-
sionality of parameter space) as a single model Mk, yet model
selection between different k is of limited interest. We are
actually more interested in assessing whether some particular
branch e is likely to be associated with a number ke of WGDs.
The approximate marginal posterior probability pðkejXÞ of ke

WGDs on branch e is again easily obtained from the MCMC
sample. Since the prior probability of a WGD on a particular
branch e is proportional to the length of that branch te, the
marginal prior probability pðkeÞ of ke WGDs on branch e un-
der, for instance, a Geometric(p) prior on the number of
WGDs in S can be obtained as

PrðkeÞ ¼
X1
i¼ke

Prðkejk ¼ iÞPrðk ¼ iÞ

¼
X1
i¼ke

i

ke

 !
te

T

� �ke

1� te

T

� �i�ke

ð1� pÞip

¼ p
te

T
1� pð Þ

� �ke

1� 1� te

T

� �
1� pð Þ

h i�ke�1

For a PoissonðkÞ prior on k, a similar argument shows that
ke � Poissonðk te

TÞ, whereas for any discrete prior with finite
support on k, the first equality gives a means to compute the
relevant prior probabilities. This enables us to compute Bayes
factors for branch-specific WGD configurations by comparing
a WGD configuration with ke WGDs on branch e with a
model with ke � 1 WGDs on that branch. This will be our
main strategy for employing samples acquired using the
rjMCMC algorithm for inference of WGDs along S.

Posterior Predictive Model Checks
After performing inference using the rjMCMC sampler, we
use posterior predictive simulations to assess the fit of our
inferred models to the data (Gelman et al. 2013; see Brown
2014; Höhna et al. 2018 for applications in phylogenetics). By
evaluating whether data sets simulated from the posterior
predictive distribution resemble the empirical data reason-
ably well, posterior predictive simulations serve to signal po-
tential issues at the modeling level. We perform posterior
predictive model checks by drawing 1,000 random models
and associated parameters from the approximated joint-

(a) (b)

FIG. 4. Marginal posterior mean duplication (left tree in each panel) and loss rates (right tree in each panel) on a scale of log 10 (events per lineage
per billion year) for (a) the dicot data set (d ¼ 0:1 analysis) and (b) the monocot data set (d ¼ 0:05 analysis). Estimates correspond to the across-
model geometric average. For species name abbreviations, we refer the reader to the Materials and Methods section.
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posterior distribution. For each such replicate we then simu-
late N phylogenetic profiles (i.e., a matrix with equal dimen-
sions as the original data) from the associated DLWGD
model. For these simulated data sets, we compute a series
of summary statistics (mean, standard deviation, and en-
tropy) for the numbers of genes at each leaf of S and the
overall family size to acquire the posterior predictive distribu-
tions for these summary statistics. We then compare the
observed values for these summary statistics with the relevant
approximate posterior predictive distribution either graphi-
cally (e.g., supplementary figs. S22 and S27, Supplementary
Material online) or numerically by computing posterior pre-
dictive P values (Gelman et al. 2013).

Gene Family Data
We obtained two data sets, one for a set of nine dicot species
(A. thaliana, Carica papaya, M. truncatula, P. trichocarpa, Vitis
vinifera, U. gibba, C. quinoa, Beta vulgaris, and S. lycopersicum)
and another for a set of 12 monocot species (Oryza sativa,
Sorghum bicolor, Z. mays, Brachypodium dystachion, Ananas
comosus, Elaeis guineensis, Musa acuminata, Asparagus offici-
nalis, Phalaenopsis equestris, Apostasia shenzhenica, Spirodela
polyrhiza, and Zostera marina). In this article, in particular in
figures, we refer to these species by three letter codes taking
the first and first two letters from the genus and species
names, respectively (except for Zostera marina, where we
take “zom” to prevent collision with Z. mays [“zma”]). All
sequence data were gathered from PLAZA dicots 4.0 and
PLAZA Monocots 4.5 (Van Bel et al. 2018). The dated species
tree for the dicots was based on a tree with median node ages
from TimeTree (Kumar et al. 2017), whereas for the mono-
cots, divergence times were gathered from Foster et al. (2016).
Gene families were then obtained using OrthoFinder with

default settings. We filtered out families that did not contain
at least one gene in each clade stemming from the root of the
associated species tree, to rule out de novo origination of
gene families in arbitrary clades of the species tree. We con-
dition all our analysis on this filtering procedure as in Rabier
et al. (2014) and Zwaenepoel and Van de Peer (2019). We
further filtered out large families using a Poisson outlier cri-
terion, filtering out families for which 2Y > medianð2YÞ þ 3
where Y is the square root transformed family size. Unless
stated otherwise, we restrict all our analyses to a random
sample of 1,000 gene families from the filtered data sets for
the sake of computational tractability.

Availability and Implementation
All methods were implemented in the Julia programing lan-
guage (v1.3, Bezanson et al. 2017). Important computationally
intensive routines support distributed computing in order to
harness modern parallel computing environments. The asso-
ciated software package is open source, documented, and
freely available at https://github.com/arzwa/Beluga.jl (last
accessed May 6, 2020). The data sets considered in this study
are also available from that repository.

Results

Simulated Data
We conducted simulation studies to evaluate the statistical
performance of the new methods we propose. All simulations
were performed for the nine-dicot species tree. We first ver-
ified our ability to recover true parameter values for data sets
of 500 gene families simulated from the independent rate (IR)
prior under a reasonable yet broad range of parameter values.
For this first set of simulations, we randomly sampled

FIG. 5. Posterior probability of the number of WGDs on each branch in the monocot data set (d ¼ 0:05 analysis). Interpretation is as in figure 3. For
species name abbreviations, we refer the reader to the Materials and Methods section.
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covariance matrices from the inverse Wishart prior with W
¼ ½0:5 0:45; 0:45 0:5� for 20 replicates. We then sampled
branch-wise duplication and loss rates, assuming a multivar-
iate lognormal prior with mean 1.5 and the same prior co-
variance matrix on the mean duplication and loss rates. These
prior settings were based on preliminary analyses of a data set
for the same species tree. For every replicate, we sampled a
random number of WGDs with uniform retention rates, using
a Geometric prior with p ¼ 0:2 on the number of WGDs
in the phylogeny. Values for g were sampled from a Betað5; 1Þ
prior. We then performed posterior inference using fixed-
dimensional MCMC assuming the simulated WGD configu-
ration, with W ¼ ½1 0:5; 0:5 1�, a prior mean duplication and
loss rate of 1.5 and R0 ¼ W. For each replicate, we sampled
for 11,000 iterations, discarding 1,000 iterations as burn-in.
Results for these simulations are shown in figure 1. We find
that overall, even in the presence of considerable across-
lineage rate variation, branch-wise duplication and loss rates
can be estimated with fair accuracy and with no obvious
biases across approximately three orders of magnitude.
Retention rates are similarly well estimated for all but a hand-
ful of WGDs. In cases where multiple WGDs were present on
the same branch, estimated retention rates were sometimes
swapped (e.g., the inferred retention rate for the first simu-
lated WGD corresponded to the retention rate for the second
WGD on the same branch and vice versa), explaining the
handful of seemingly incorrectly estimated retention rates
(supplementary fig. S7, Supplementary Material online). We
further note that in these simulations, an ESS > 200 was
obtained for all but a handful of parameters (supplementary
fig. S8, Supplementary Material online).

Next, we studied the degree to which the assumption of
constant rates across gene families affects our posterior infer-
ences. For these simulations, we simulated for each replicate
genome-wide lineage-specific rates h from a multivariate nor-
mal distribution with a fixed covariance matrix with variance
0.1 and covariance 0.09. This allows for limited, though not
negligible, rate heterogeneity across lineages. For each repli-
cate, we sampled a series of 500 relative rates (r) from a
Gammaða; 1=aÞ distribution with mean 1 and parameter
a, with log 10a 2 f�1; 0:5; 0; 0:5; 1g multiplying for every
gene family i the genome-wide rates by ri. For every replicate,
we thus obtained a set of 500 phylogenetic profiles from these
family-specific BDPs. We then performed posterior inference
under the IR model identical to our approach for the first set
of simulations. These simulations indicated that for strongly
asymmetric distributions of family-wise relative rates (small
values of a), the genome-wide rates were systematically
underestimated (supplementary figs. S9 and S10,
Supplementary Material online). If the distribution of relative
rates is not too extreme however, the genome-wide average
lineage-specific duplication and loss rates were well recovered
even though our inference is ignorant of across-family rate
heterogeneity. It is relatively straightforward to include simple
mixture models for across-family rate variation, such as Yang’s
discrete Gamma model (Yang 1994), however, this entails a
considerable increase in computational time required for
computing the likelihood of the data. As our models

restricted to lineage-specific variation perform well if the dis-
tribution of rates across families is not too asymmetric, we do
not further consider modeling family variation in this study.

To assess the performance of the reversible-jump MCMC
algorithm for the inference of WGDs and branch-wise dupli-
cation and loss rates, we performed two sets of simulations
with different branch-wise duplication and loss rates. For the
first set of simulations, we simulated duplication and loss
rates from the IR prior with a covariance matrix W ¼ R0 ¼
½0:1 0:05; 0:05 0:1� and h0 ¼ ½logð1:5Þ logð1:5Þ�, again
allowing for limited across-lineage rate heterogeneity. For
the second set of simulations, we first obtained a sample
from the posterior distribution for the dicot data set using
a fixed DLWGD model with well-known WGDs marked along
the branches of the species tree (i.e., Populus trichocarpa,
Chenopodium quinoa, Arabidopsis thaliana a and b,
Medicago truncatula, Solanum lycopersicum, and three
Utricularia gibba WGDs) (supplementary fig. S11,
Supplementary Material online). For each simulation repli-
cate, we then obtain a parameterized DLWGD model by
drawing random branch-wise duplication and loss rates
from the joint-posterior distribution acquired from the
fixed-dimension MCMC sampler. Using this strategy, we en-
sure that the simulated duplication and loss rates are in a
realistic range, allowing us to more properly assess the per-
formance of the rjMCMC approach for WGD inference in
reasonable settings, albeit tailored toward the dicot data set.
In both sets of simulations, we randomly add six WGDs uni-
formly along the species tree with retention rates drawn from
a Betað1:5; 2Þ distribution. For each simulation scheme, we
simulated ten data sets of size N¼ 100, N¼ 500, and
N¼ 1,000, respectively, to further assess the impact of using
different amounts of data. We performed posterior inference
using the default priors settings discussed in the Materials and
Methods section, with a discrete uniform prior on the num-
ber of WGDs ranging from 0 to 10 WGDs (note that this will
limit the number of possible false positives). We performed
three sets of inferences with the IR prior using different
parameterizations of the prior covariance matrix with W ¼
r2I2 and r2 2 f1; 0:2; 0:1g. For the second set of simula-
tions, we also consider the effect of applying the constraining
prior on the expected number genes per ancestral gene,
where we assume a Normalð1; 0:1Þ distribution on
E½XijXj ¼ 1�. We additionally perform inference using a
constant-rates model where we assume the tree-wide dupli-
cation and loss rate are distributed as h1 in the IR model. All
results are based on 10,000 iterations of the rjMCMC algo-
rithm after discarding an initial 1,000 samples as burn-in.

We observe fair performance, and as expected, reliability
tends to increase with the number of gene families, although
this effect is not that strong (fig. 2). Similarly, the power to
detect a WGD does not seem to increase when using more
data. Decreasing the variance of the bivariate process from r2

¼ 1 to r2 ¼ 0:2 or r2 ¼ 0:1 does not seem to influence the
number of false positive WGDs much for both sets of simu-
lations, but smaller prior variances (allowing less rate hetero-
geneity) do seem to lead to increased false positive rates at
least in the second simulation set. For the constant-rates
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model however, the number of false positive WGDs quickly
rises to dramatic levels, and we note that here the prior on the
number of WGDs in the species tree (a discrete uniform
distribution from 0 to 10) prevents the number of false pos-
itive WGDs to rise even further. At the same time, we note for
both sets of simulations that the power is not considerably
higher when more restrictive models on the rate evolution
process are assumed, at least for reasonable Bayes factor
thresholds.

For the second set of simulations, a slight increase in the
number of false positive inferences could be observed when
the additional constraint prior was applied (i.e., the prior on
E½XijXj ¼ 1�). We note that this is not unexpected, as the
simulated duplication and loss rates were themselves not
estimated under a model including such a constraint. To
assess whether the constraining prior improves inference
when the data generating process is indeed closer to an equi-
librium BDP (i.e., where E½XijXj ¼ 1� � 1), we performed an
additional set of simulations where we simulated data sets as
in the first set of simulations, but assuming equal duplication
and loss rates for each branch (but still with variable rates
across branches). Here we observe a decreasing power to
detect WGDs for increasing weakness of the constraint (i.e.,
increasing d), in line with expectations supplementary figure
S12, Supplementary Material online. These simulations show
that in case the DL process is in equilibrium, with no net
genome-wide expansion or contraction (which we deem a
reasonable “neutral” expectation), applying this additional
prior on the expected number of gene lineages per ancestral
lineage may aid in WGD inference without having to assume
an overly restrictive model of equal duplication and loss rates.
At the same time, the simulations shown in figure 2 indicate
that assuming such a prior when in fact some branches may
not be in equilibrium does not lead to serious issues.

A main challenge in rjMCMC is to obtain decent mixing
across model space in reasonable computational time
(Rannala and Yang 2013). Besides rendering the likelihood
evaluation computationally more demanding, using more
data may also reduce the efficiency of the rjMCMC algorithm
per se as the probability to jump between different WGD
models becomes lower. We record that for the simulations
from the IR prior it takes about 4 h to obtain 10,000 samples
from the posterior on five CPUs for a data set of size
N¼ 1,000 (supplementary fig. S13, Supplementary Material
online) and the acceptance probability of a between-model
move was about 0.20, 0.09, and 0.06 for the N¼ 100, N¼ 500,
and N¼ 1,000 data sets, respectively, illustrating this phe-
nomenon. This could cause the power not to increase with
increasing data set size (as one would expect) due to a de-
crease in the efficiency of the rjMCMC sampler to explore
model space. This is also clearly indicated by the ESS values
obtained for the model indicator variable k (i.e., number of
WGDs) across the simulated data sets, with the average ESS
per 10,000 iterations decreasing with data set size (supple-
mentary fig. S14, Supplementary Material online). Lastly, we
observe that overall, marginal posterior distributions for du-
plication and loss rates tend to agree with the simulated

values, however, for small data set sizes, branch-wise duplica-
tion rates are considerably “shrinked” toward the mean rate
(supplementary fig. S15, Supplementary Material online).
Investigating some replicates more closely (e.g., supplemen-
tary figs. S16 and S17, Supplementary Material online), we
make two observations: 1) duplication and loss rates for a
branch are generally harder to obtain accurately in the pres-
ence of WGD(s) on that particular branch and 2) duplication
and loss rates for short internal branches tend to be biased
toward the tree-wide mean rates (h0). We note that the latter
observation reflects a feature that is not undesirable, because
for short branches there will generally be less information in
the data to accurately infer duplication and loss rates, and due
to the hierarchical structure of our model these estimates
tend to undergo “shrinkage” toward the tree-wide mean.

Plant Data Sets
We applied our new approach to two data sets from different
plant taxa, focusing on well-sequenced genomes in dicots and
monocots. These regions of the angiosperm phylogeny have
been well-studied in terms of ancient WGDs, and, to some
extent, a scientific consensus has emerged concerning which
clades share particular ancestral WGD events, although con-
siderable uncertainties remain (Jiao et al. 2014; Ming et al.
2015; Soltis and Soltis 2016; Van de Peer et al. 2017; Zhang
et al. 2017). Based on some exploratory pilot runs, we use the
IR prior with a prior covariance matrix W ¼ 0:5I2,
h0 ¼ ½log 1:5; log 1:5�, R0 ¼ ½1:0; 0:9; 0:9; 1:0�; q � Beta
ð1; 3Þ, and g � Betað3; 1Þ, with the additional constraining
prior on the expected number of lineages per ancestral line-
age using d ¼ 0:1 (unless stated otherwise). Throughout, we
use a discrete uniform prior ranging from 0 to 20 for the
number of WGDs. All results are based on at least 50,000
iterations of the rjMCMC algorithm and for all presented
results the ESS associated with the number of WGDs was
>500.

Applying the rjMCMC algorithm to the dicot data set
(supplementary figs. S18 and S19, Supplementary Material
online) revealed, as expected, strong support for WGD in
poplar and quinoa, with in both cases posterior probabilities
>0.9 for the one-WGD model (fig. 3). These WGDs are asso-
ciated with very high retention rates, with a marginal poste-
rior mean and 95% credibility interval �q ¼ 0:49 ð0:45; 0:53Þ
for the poplar WGD event, and �q ¼ 0:90 ð0:85; 0:95Þ for the
quinoa WGD. For Arabidopsis, we likewise find strong sup-
port for a WGD event, with the MAP model (at P � 0:7) the
one-WGD model and a marginal posterior mean retention
rate at �q ¼ 0:14 ð0:05; 0:20Þ. We do not find strong support
for a second WGD on this branch, indicating that gene count
data may not contain sufficient signal to detect multiple
WGDs on a single branch if these are associated with relatively
low retention rates. We observe that for most branches, there
is very strong evidence against WGD with the Bayes factor
strongly favoring the no-WGD model. Interestingly, the two
branches for which the Bayes factor is about one (and thus
indecisive both ways), namely the branches leading to
Solanum and Medicago, are branches associated with WGD.

Zwaenepoel and Van de Peer . doi:10.1093/molbev/msaa111 MBE

2742

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/37/9/2734/5828230 by guest on 21 Septem
ber 2021

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa111#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa111#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa111#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa111#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa111#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa111#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa111#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa111#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa111#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa111#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa111#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa111#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa111#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa111#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa111#supplementary-data


The increased duplication rates for these branches suggest
that the SSDL model is sufficiently flexible to accommodate
the WGD-specific signal for long branches (fig. 4).
Furthermore and perhaps unsurprisingly, we find a strong
bimodal posterior distribution for the duplication rate on
both branches, with the modes associated with the compet-
ing no-WGD and one-WGD models (supplementary fig. S20,
Supplementary Material online). We further note that reten-
tion rates for the Solanum and Medicago events conditional
on the one-WGD model for these branches were both esti-
mated at �q ¼ 0:08 ð0:01; 0:15Þ, which is virtually identical to
the results obtained with a fixed-dimensional MCMC sam-
pler, suggesting that our inability to find decisive support for
these WGDs is not due to issues in the rjMCMC algorithm.

Assuming a stronger constraining prior on the expected
number of lineages at the end of each branch, more specif-
ically by setting d ¼ 0:05, resulted in very strong support for
these two WGDs (fig. 3), with posterior retention rates of
�q ¼ 0:13 ð0:07; 0:17Þ and �q ¼ 0:14 ð0:07; 0:19Þ for the
Solanum and Medicago WGDs, respectively. Posterior infer-
ences for other branches are almost identical to the d ¼ 0:1
analysis (supplementary figs. S18 and S19, Supplementary
Material online), except for A. thaliana, where the posterior
probability for the no-WGD model decreased to about zero
(fig. 3), whereas the retention rate associated with the one-
WGD model did not differ (�q ¼ 0:15 ð0:08; 0:19Þ). This anal-
ysis again clearly illustrates how phylogenetic WGD inferences
are strongly dependent on prior assumptions on the SSDL
process. Lastly, we note that we do not find support for any of
the WGDs in U. gibba in any of our analyses, whereas the
consensus view is that this lineage has undergone three WGD
events since its divergence from other Lamiales (Ibarra-
Laclette et al. 2013); a view that was largely established based
on comparative colinearity analyses. This lineage presents
however a serious challenge to our approach, as its evolution
has been associated with strong genomic reduction, charac-
terized by, among others, extensive gene loss (Ibarra-Laclette
et al. 2013; Carretero-Paulet et al. 2015). Our results suggest, in
accord with this evolutionary history, that the purely quan-
titative signal from these WGDs has eroded considerably, and
that they cannot be inferred from gene count data alone. We
confirm the increased loss rate in this lineage, with an
expected number of genes at the end of the branch per an-
cestral gene of 0:87 ð0:80; 0:92Þ (supplementary fig. S21,
Supplementary Material online). Changing d from 0.1 to
0.05 did not considerably alter this expected value, increasing
it slightly to 0:89 ð0:84; 0:93Þ. Overall, posterior predictive
simulations indicate a fairly good model fit, with 25 out of
30 of the observed summary statistics in the 95% central mass
of the empirical posterior predictive distributions (supple-
mentary fig. S22, Supplementary Material online). In terms
of the posterior predictive distributions, there were no no-
ticeable differences between the chain with d ¼ 0:1 and
d ¼ 0:05. As a point of reference, we note that for this small
data set, we recorded a run time of about 2.2 h per 10,000
iterations for the dicot data set when employing ten CPUs.

We performed the same analyses for the monocot data set
(figs. 4 and 5). We first performed the analysis with d ¼ 0:1

but were unable to recover the well-known WGD in the
maize lineage and observed several branches for which the
expected number of lineages per ancestral lineage under the
SSDL process alone was relatively high due to high estimated
duplication rates (mainly in the banana [Musa] and maize
[Zea] lineages, supplementary fig. S26, Supplementary
Material online). An analysis with d ¼ 0:05 resulted in an
inferred SSDL process that was more or less in equilibrium
and showed very strong support for the WGD in the maize
lineage. We further report results for this second analysis with
d ¼ 0:05. We find strong support for the so-called s WGD
event shared by all monocots in our data set except the
Alismatales (branch 2 in figs. 4 and 5), albeit with a fairly
low retention rate �q ¼ 0:07 ð0:03; 0:10Þ. As in Zhang et al.
(2017), but unlike some other studies (Jiao et al. 2014; Ming
et al. 2015), we find some support for a shared WGD event in
the ancestor of all commelinids (branch 3), which we suggest
to be the event referred to by r, generally thought to be
shared by all Poales (Ming et al. 2015). We note however
that trace plots indicate that mixing across model space
seems to be challenging for this branch (supplementary fig.
S23, Supplementary Material online), resulting in rather un-
certain estimates for the posterior probability of this WGD
(the method of Heck et al. [2019] suggests a 95% posterior
interval of [0.10, 0.54] for the posterior probability of the one-
WGD model for this branch). Again, this putative WGD event
is associated with a relatively low retention rate
�q ¼ 0:05 ð0:02; 0:08Þ. We find no support for the cereal-
specific genome duplication event referred to by q (fig. 5,
branch 6) in our gene count data, and find that the SSDL
process along this branch is more or less in equilibrium, with
the duplication rate (�k ¼ 1:40 ð0:71; 1:75Þ) only slightly
higher than the loss rate (�l ¼ 1:10 ð0:83; 1:36Þ) along this
branch (fig. 4 and supplementary fig. S26, Supplementary
Material online). This is unlike our observations for the
Medicago and Solanum branches in the nine-taxon dicot
data set, where the absence of decisive support for the
WGD events in these lineages was associated with increased
duplication rates. The results for these putative ancestral
WGD events in the monocot data set could indicate that
the power of the gene count based rjMCMC approach for
detection of ancestral WGDs might be affected by taxon-
sampling issues, where WGDs on short branches leading to
a species rich crown group can be detected more easily.

As already indicated, we find very strong support for WGD
in the maize (Zea, �q ¼ 0:15 ð0:09; 0:19Þ) lineage when the
prior with d ¼ 0:05 is used. The difficulty associated with
identifying this WGD has likely to do with the high duplica-
tion rate in this lineage (fig. 4), which is notably higher than
the rate in all other lineages in the monocot phylogeny con-
sidered here. We further find overwhelming support for WGD
in the oil palm (Elaeis, �q ¼ 0:28 ½0:23; 0:33�) lineage, in line
with previous results (Singh et al. 2013; Jiao et al. 2014). We
also recovered the well-known multiple events along the
branch leading to Musa (D’Hont et al. 2012), with strong
support for a two-WGD model in the d ¼ 0:1 analysis and
a three-WGD model in the analysis with d ¼ 0:05. The dif-
ferent WGDs can however not be distinguished, as
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exemplified by the fully overlapping distributions of the re-
tention rates for the WGDs when ordered by the WGD time
(supplementary fig. S25, Supplementary Material online).
Again, we find very strong evidence against WGD for most
other branches, notably the branch leading to the orchids
where a WGD was hypothesized by Zhang et al. (2017).
The only branches that have some posterior probability for
a one-WGD model (apart from the already discussed q
WGD) are those leading to Asparagus, Phalaenopsis,
Zostera, and Spirodela. These lineages are thought to have
underwent ancient WGDs (Wang et al. 2014; Cai et al.
2015; Olsen et al. 2016; Harkess et al. 2017) and are, in our
analyses, suggestively, associated with gene family expansion
(i.e., a nonequilibrium SSDL process supplementary fig. S26,
Supplementary Material online). However, with the taxon
sampling employed here, we find that gene count data alone
do not provide enough signal to distinguish a flexible SSDL
model from a DLWGD model. Posterior predictive model
simulations indicate a similarly fair fit as for the dicots data
set (supplementary fig. S27, Supplementary Material online),
with 32 and 29 out of 39 summary statistics within the 95%
central mass of the marginal posterior predictive distribution
for the analysis with d ¼ 0:05 and d ¼ 0:1, respectively.

Discussion
In this article, we continued our previous work on the statis-
tical inference of ancient WGD events from comparative ge-
nomic data (Zwaenepoel and Van de Peer 2019). Building on
the initial idea of Rabier et al. (2014), we model gene family
evolution by SSDL using a phylogenetic linear BDP and exploit
the statistical deviation from such a process to infer ancient
WGDs. In contrast to the approaches taken in these previous
studies, we here do not assume a particular WGD configura-
tion and infer the number and locations of WGDs in a species
tree from the data using reversible-jump MCMC under a
flexible hierarchical model of gene family evolution. In our
previous work, we showed that using simple birth–death
models for the SSDL process, in particular models assuming
constant rates of duplication and loss across the entire phy-
logeny, seriously compromises reliable inference of ancient
WGDs. Simulations showed that false positive rates for
WGD inference become unacceptably high when the
constant-rates assumption is violated (Zwaenepoel and Van
de Peer 2019), which we deem likely to be the rule rather than
the exception for most phylogenies. On the other hand,
employing more complicated, hierarchical models with
branch-wise duplication and loss rates may compromise
our ability to detect WGDs from gene count or gene tree
information, with the assumed SSDL process sufficiently flex-
ible to capture a WGD signature. In the Bayesian inference
scheme, this tradeoff translates to a certain degree of prior
sensitivity, with assumptions on the rate evolution process
potentially affecting our posterior inferences.

In this work, we are confronted with the very same chal-
lenges. Using a flexible model for the SSDL process is vital to

prevent false positive WGD inferences but concomitantly
results in a statistical approach with limited power to detect
true WGD events for long branches or WGD events with
small associated retention rates. In our multivariate models
of duplication and loss rate evolution, this flexibility is em-
bodied by the covariance matrix of the branch-wise duplica-
tion and loss rates, which affects both the amount of rate
heterogeneity across branches and the difference between
the duplication and loss rate for any particular branch. We
further optionally constrain the latter by using an additional
prior on the expected number of lineages per ancestral line-
age under the SSDL process, which has the advantage of being
more intelligible than the prior covariance parameter, there-
fore allowing easier application of informative priors.
Nevertheless, even when using fairly informative priors in
the latter form, we find that information from gene count
data often does not provide decisive support for putative
WGD events previously described in the literature.

These statistical problems of power and prior sensitivity
are in the first place due to the kind of data employed for
tackling the problem of WGD inference. Indeed, the same
issues are relevant in some form or another whenever infer-
ence is based on phylogenomic data—whether in the form of
gene trees of multicopy gene families (as in Zwaenepoel and
Van de Peer [2019], Li et al. [2018], 1KP initiative [2019], etc.)
or gene counts (as in Rabier et al. [2014] and this study)—and
ignores information from genome structure. By using a rich
model, we seek to explicitly account for the most relevant
sources of variation in this data when assessing the history of
WGDs in a phylogeny, and we are able to assess the effects of
particular assumptions of the SSDL process on our WGD
inferences. We believe the Bayesian approach advocated
here compels us to embrace the inherent uncertainty of
our inferences based on this kind of data, while allowing
WGD inference in a coherent and biologically meaningful
framework. The usage of gene trees instead of gene counts
may further increase the power for WGD detection
(Zwaenepoel and Van de Peer 2019), and the accuracy of
duplication and loss rate estimates. However, this comes at
the expense of a less efficient algorithm for computing the
likelihood and a much more involved and computationally
intensive data preparation phase (which in the Whale ap-
proach of Zwaenepoel and Van de Peer [2019] involves
obtaining a sample from the posterior distribution of gene
tree topologies for every gene family). Using gene counts in-
stead could allow us to employ broader sets of taxa, which
may be beneficial, as improved taxon sampling could result in
a higher power to detect ancient WGDs, although this has to
be studied in more detail. To us, the most fruitful avenue for
future research appears to involve an integration of informa-
tion from genome structure in the probabilistic phyloge-
nomic framework we adopt here; leveraging the obvious
differences between the SSDL and WGD process at the level
of gene synteny or colinearity. Lastly, we note that although
posterior predictive simulations suggest that the DLWGD
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model with branch-wise rates provides a reasonable fit to the
data, there may be room for improvement on the modeling
side as well. However, more complicated models (e.g., involv-
ing nonlinear BDPs [Crawford et al. 2014] or rate heteroge-
neity across families) will generally be associated with even
higher computational demands. Another potentially interest-
ing improvement in terms of modeling would be to account
for incompletely sampled genomes and assembly or annota-
tion errors (as, e.g., in Han et al. [2013] or Rabier et al. [2014])
in the Bayesian approach we adopt here.

Computational problems are however more of an issue
than the statistical intricacies discussed above, which are after
all reflecting the very evolutionary processes of interest.
Whereas we have implemented the likelihood evaluation
routines and rjMCMC algorithm in an (to the best of our
knowledge) efficient manner and exploit distributed comput-
ing architectures to accelerate computation of the likelihood
across families; we nevertheless had to restrict our analyses to
relatively limited sets of taxa and subsets of the full data.
Furthermore, whereas mixing within a particular WGD con-
figuration tends to be very efficient irrespective of the data set
size, larger data sets tend to be associated with poor mixing
across model space in the rjMCMC, with the acceptance
probability for trans-dimensional moves dropping rapidly
with increasing data set size. This confers a risk that for larger
data sets an incomplete view of model uncertainty is
obtained, and it forces us to sample longer chains to ensure
decent mixing of the chain across model space; making the
problem even more computationally intractable. Instead of
investing computer power in the analysis of more gene fam-
ilies, it may be worthwhile to instead focus on adding more
taxa, as this could similarly improve the statistical power for
WGD inference while not affecting mixing efficiency. We note
that as a follow-up analysis, a resulting set of putative WGDs
could further be tested extensively using a fixed-dimension
MCMC sampler in a manner analogous to Rabier et al. (2014)
and Zwaenepoel and Van de Peer (2019), possibly with a
larger data set. This could result in a more accurate approx-
imation of the posterior distribution of the duplication, loss
and retention rates under a particular DLWGD model com-
pared with the approximated distribution from the rjMCMC
sample. Finally, we have in this study only considered WGD,
whereas at least some ancestral polyploidization events are
associated with higher multiplication levels such as the c
triplication in eudicots (Jiao et al. 2012) and the Solanaceae
triplication (Tomato Genome Consortium 2012). It is possible
to extend the DLWGD model to higher multiplication levels
(Rabier et al. 2014), and in the Bayesian approach we adopt
here, the multiplication level could in principle be included as
an additional parameter, or alternatively, reversible-jump
moves for different multiplication levels could be included.
We did not however explore this additional layer of complex-
ity in our current study and defer this to future work.

In summary, we present a fully model-based approach for
WGD detection in a phylogenetic context using a flexible
hierarchical model of gene family evolution. Posterior infer-
ence is based on trans-dimensional MCMC using the
reversible-jump Metropolis–Hastings algorithm. We model

variation of duplication and loss rates using a multivariate
approach, and we note that this in principle would allow to
model correlated evolution with other quantitative traits as in
Lartillot and Poujol (2011), although we did not explore this
in our study and defer this to future research efforts. Through
simulations and analyses of comparative genomic data from
flowering plants, we investigated the reliability and power of
our new approach and provide further insights in the statis-
tical inference problem of detecting ancient WGDs from
phylogenomic data. We find that when a flexible model of
gene family evolution is assumed, the power for WGD infer-
ence is rather limited, with strong support across all analyses
only for those WGDs with a very strong signature (e.g., the
WGDs in the C. quinoa, P. trichocarpa, A. thaliana, Musa
acuminata, and Elaeis guineensis lineages in our analyses).
For some other putative WGDs (M. truncatula,
S. lycopersicum, and Zea mays), we find that our inferences
are sensitive to prior assumptions, indicating that some cau-
tion is warranted when applying the proposed methods. In
general, we believe performing multiple analyses under pro-
gressively more restrictive priors may provide insights in
which WGD hypotheses are supported under which assump-
tions on the background SSDL process. Computationally, our
rjMCMC approach is challenging, especially for large data sets,
and the Bayesian inference machinery underlying this work is
an obvious target for future improvements. Eventually, we
hope that the methods presented here enable statistically
better informed inferences of ancient WGDs and can con-
tribute to an improved understanding of this key and increas-
ingly appreciated process in genome evolution.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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