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Abstract: Reliable estimates of savanna vegetation constituents (i.e., woody and herbaceous vegeta-
tion) are essential as they are both responders and drivers of global change. The savanna is a highly
heterogenous biome with high variability in land cover types while also being very dynamic at both
temporal and spatial scales. To understand the spatial-temporal dynamics of savannas, using Earth
Observation (EO) data for mixed-pixel analysis is crucial. Mixed pixel analysis provides detailed
land cover data at a sub-pixel level which are essential for conservation purposes, understanding
food supply for herbivores, quantifying environmental change, such as bush encroachment, and fuel
availability essential for understanding fire dynamics, and for accurate estimation of savanna biomass.
This review paper consulted 197 studies employing mixed-pixel analysis in savanna ecosystems. The
review indicates that studies have so far attempted to resolve the savanna mixed-pixel issues by
using mainly coarse resolution data, such as Terra-Aqua MODIS and AVHRR and medium resolution
Landsat, to provide fractional cover data. Hence, there is a lack of spatio-temporal mixed-pixel
analysis for savannas at high spatial resolutions. Methods used for mixed-pixel analysis include
parametric and non-parametric methods which range from pixel-unmixing models, such as linear
spectral mixture analysis (SMA), time series decomposition, empirical methods to link the green
vegetation parameters with Vegetation Indices (VIs), and machine learning methods, such as regres-
sion trees (RT) and random forests (RF). Most studies were undertaken at local and regional scale,
highlighting a research gap for savanna mixed pixel studies at national, continental, and global level.
Parametric methods for modeling spatio-temporal mixed pixel analysis were preferred for coarse
to medium resolution remote sensing data, while non-parametric methods were preferred for very
high to high spatial resolution data. The review indicates a gap for long time series spatio-temporal
mixed-pixel analysis of savannas using high resolution data at various scales. There is potential to
harmonize the available low resolution EO data with new high-resolution sensors to provide long
time series of the savanna mixed pixel, which, according to this review, is missing.

Keywords: spatio-temporal; mixed pixel analysis; savanna; fractional cover; Earth Observation (EO)

1. Introduction

Savanna ecosystems are heterogenous landscapes composed of a mixture of discon-
tinuous patches of woody vegetation (i.e., trees and shrubs) and a continuous grass layer,
governed by key local and global drivers (Figure 1) [1]. Globally, savannas cover about one
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fifth of the earth’s surface and over half of the area of Africa [1,2]. About 20% of the world’s
population live in savannas. Savannas are pivotal and play a crucial role in the global
carbon cycle; they store about 15% of the global carbon stock and contribute about 30% to
the global terrestrial net primary productivity [2,3]. At continental level, such as in Africa,
savannas are critical to wildlife biodiversity and contribute immensely to environmental
conservation, economic, and livelihood gains in form of nature-based tourism, food supply,
livestock grazing, and firewood for populations who live within these ecosystems [3–5].
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Figure 1. Global, regional, and local factors influencing the tree-grass co-existence and the dynamics
of savanna transitional zones of cover types over time. MAT, MAP, and CO2 represent Mean Annual
Temperature, Mean Annual Precipitation, and Carbon dioxide, respectively. The savanna map is
based on biome classification according to Hengl et al., 2018. The South American savannas, the
Caatinga, and the Cerrado boundaries were updated using the National Institute for Space Research
(INPE) products developed by Aguiar et al., 2016. Key drivers are derived from Sankaran et al., 2005,
2008; and Scholes and Archer, 1997.

Human population growth increasingly poses a threat to savanna ecosystems due
to land use, land cover changes, and management policies [6] Climate change, such as
prolonged droughts and erratic rainfalls, along with government policies for reforestation
and afforestation, continue to threaten the resilience of savanna ecosystems [7,8]. As such,
savannas have witnessed extended land clearing in the past three centuries which threaten
the ability of savannas to continue serving as a carbon sink [9]. In South American savannas,
about 48% of the Caatinga and 53% of the Cerrado savannas are reported to be impacted by
humans due to agricultural expansion, which leads to the fragmentation of these savanna
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biomes [10]. To keep savanna ecosystems sustainable, and to monitor, manage, and better
understand the spatio-temporal and the ecological variations in the savanna, accurate rep-
resentation and quantification of the savanna ecosystem is essential. Estimation of savanna
vegetation physiognomies is crucial for habitat quality assessment, understanding earth’s
energy exchange, carbon and nutrient fluxes, and for better conservation management of
savanna ecosystems.

Earth Observation (EO) information provide a suitable tool for the monitoring of
savanna ecosystems [11–14]. However, due to the nature of savanna, it is one of the
challenging biome to monitor using EO data [11,15], particularly because of the difficulty to
distinguish between woody and herbaceous components. The savanna landscape is shaped
by complex interactions of top-down and bottom-up processes, resulting in heterogenous
woody and herbaceous layers with plant density, height, and canopy cover varying over
space and time [1,2,15]. Rainfall, fires, herbivory, and human activities are major drivers
of the complex savanna landscape [1,2,16]. At a global level (Figure 1), savannas are
reported to be influenced by climate, specifically mean annual temperature (MAT), mean
annual precipitation (MAP), rainfall seasonality, fire regime and soil type [2,17], and
atmospheric CO2 levels [18–20]. At a local level, fire regime, such as fire reoccurrence, fire
behavior, soil properties, such as fertility, water availability, herbivory, and micro-climate
factors, play a major role in influencing savanna cover types (Figure 1) [1,2,17,21,22].
Fire and herbivory and their interaction serve as disturbance mechanisms that affect the
structure of the savanna and result in a variable and dynamic mixture of tree, shrubs, and
grasses [16,22–24].

The rates of changes in fire regimes in savannas are increasing over time [25]. The
pressure on land clearance and the tampering of fires and grazing regimes, along with
climate change and increasing CO2 and how they contribute to the degradation of sa-
vanna, are not yet fully known at continental scales [26]. However, regional differences
are suggested for those factors in Africa, South America, and the Australian savannas.
Brazilian savanna, for example, which experience the highest rate of land clearing and
fire suppression, are reported to have the highest rates of woody encroachment. This
may suggest that fragmentation and fire suppression can have regional consequences on
the response of spatio-temporal mixed pixel analysis [26]. Land clearance can limit fire
and herbivory by fragmenting the landscapes and reducing their connectivity, which can
potentially lead to increased woody cover in the uncleared areas [26]. Droughts may kill
woody cover directly; however, the effect of drought on fire may also depend on the rainfall
regimen. Fires and browsing are limitations for tree recruitment into the grass layer, which
may lead to escape heights issues [27]. When trees surpass the escape height, they can no
longer be suppressed by fire or browsing, making trees mature, and this possibly may lead
to increased woody cover [27]. Additionally, C4 grasses are intolerant to shading of closed
canopies, and the absence of understory grass can lead to fire suppression [26].

Using EO information for savanna monitoring has advanced in previous decades,
and several approaches have been used to characterize the savanna [15]. Remote sens-
ing approaches for savanna monitoring include utilization of vegetation indices, such as
the Normalized Difference Vegetation Indices (NDVI) based on phenological differences
between trees and grasses, photosynthetic and non-photosynthetic differences of the veg-
etation using low spatial resolution EO data [11,28], time series methods, combinations
of vegetation indices with Spectral Mixture Analysis (SMA) methods, or SMA methods
alone [29–33], to derive fractional cover for spatial temporal dynamics of the savanna. EO
applications in savannas have also applied traditional hard and discrete classifications, as
well as object-oriented methods, for distinguishing between the woody and herbaceous
components of the savanna [34–39].

Hard classification methods, however, assume that pixels are pure, that is to say, they
represent a single homogenous cover of the land cover class (e.g., in the context of savannas,
pixels of homogenous woody vegetation, or homogenous herbaceous vegetation) [36,40,41].
The savanna indeed is a highly heterogeneous landscape which leads to a mixture of more
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than one land component within the pixel, a concept known as mixed pixel. The concept of
mixed pixel is common in ecosystems with high cover dynamics and variability [40,42,43],
and it arises as a result of the spatial, temporal, and spectral variability in the landscape of
the savanna, often compounded by the relationship between a sensors’ spatial resolution
and the cover dynamics, which lead to a pixel being a product of many land cover spectral
responses instead of a single homogenous spectral response in the EO pixel [40].

In addition to the mixed pixel problem in the savanna, studies over the savan-
nas have mainly utilized medium to low spatial resolution (ranging from 15 m–1 km)
EO data, such as MODIS, Advanced Very High-Resolution Radiometer (AVHRR), and
Landsat [44–49]. This, along with hard classifications, lead to the inadequate capturing of sa-
vanna environments and tendency to overestimate or underestimate vegetation cover [50].
Few studies have employed high spatial resolution (<15 m) EO data for separating between
savanna vegetation components and tend to be confined to local and regional scales. A
few studies have sometimes fused between either medium and high resolution or low and
high resolution EO data to improve mixed-pixel classification [28,51,52].

Due to weaknesses in hard categorical and discrete mapping approaches, fractional
vegetation estimates, such as Vegetation Continuous Fields (VCF) methods, have gained
a momentum [53–55]. Vegetation Continuous Fields (VCF) methods are based on quan-
tifying sub-pixel proportions in a single pixel. However, although the VCF concept does
compensate for errors in discrete approaches, the existing VCFs are mainly only available
at global scales and are popularly available for low spatial resolution EO data and focused
mainly to estimate tree cover. Global VCFs products are generated from MODIS [56–62];
AVHRR [44,53,63–66]; Landsat [59,67–69]; Visible Infrared Imaging Radiometer Suite (VI-
IRS) [58,70]; or from a combination of some of these EO data [65]. VCF are widely applied
in environmental change, forestry monitoring and estimation, such as deforestation and
forest degradation [71,72], atmosphere-biosphere models [73], prediction of forests vegeta-
tion biodiversity and species diversity [74], and environmental resources monitoring, such
as estimating stock volume [56]. Although VCF have a wide environmental application,
they have limited local focus and less validation, especially at local scales in savanna
environments. Where VCF products have been validated for savannas, they are reported
to present a challenge in areas with low and sparse tree cover between 20–30% [75,76].
MODIS VCF, for example, are reportedly not well resolved below 20–30% tree cover [77],
especially for African savannas where the mean VCF tree cover is around 20% [5,77–79].
Besides, the MODIS VCF product has defined woody cover as larger than 5 m tall, and
most of the savanna vegetation may fall below that threshold [80].

Accurate fractional cover of savannas is required as they are essential to produce
reliable vegetation parameters for forest assessments, environmental change, monitoring
of bush encroachment, monitoring fuel load for fire dynamics, biomass for wildlife, for
climate models, and modeling of trees-grass interactions [12]. Current sub-pixel data
in savannas have focused primarily on woody fractional cover [5,81–85]. Fewer studies
focused on separating between the woody vegetation cover and the herbaceous vegetation
cover [12,86,87], and very few estimated full vegetation cover fractions, such as to resolve
between trees, shrubs, and the herbaceous cover altogether. Therefore, high spatial reso-
lution fractional cover at localized levels is required to circumvent the weaknesses of the
available data.

For the reasons outlined above, this paper reviews the existing literature on the topic
of spatio-temporal mixed pixel analysis of the savanna ecosystems. The literature review
focused on publications which have investigated the savanna mixed pixel problem to
resolve either single or multiple fractional cover. We focused only on the publications
which have used EO data as input data for modeling mixed pixel. To the best of our
knowledge, there is no existing comprehensive review paper on the use of EO data for
spatio-temporal mixed pixel analysis of the savanna. However, a few reviews that were
not necessarily focused on savanna ecosystems but on fractional cover estimation were
identified. Gao et al. [88] reviewed remote sensing algorithms for estimation of fractional
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vegetation cover using vegetation indices, and Zhang et al. [89] reviewed the progress and
summary of methods for crop residue fractional cover estimation, while Somers et al. [90]
reviewed and summarized the methods for mitigating variability in endmembers. These
three reviews differ from our focus in the sense that they focused on crops, and on pure
index values, and on the mitigation of endmembers variability in the spectral mixture
analysis. All three of the reviews placed no specific emphasis on the savanna biome.

The aim of this review paper is to give a comprehensive overview on the application
of remote sensing data for spatio-temporal mixed pixel analysis with emphasis on the
savanna ecosystems and to identify possible research gaps. We aim to do this by addressing
the following questions:

• What types of savanna land cover dynamics have been estimated?
• In which geographic locations are the studies conducted?
• What is the geographic extend of the study sites?
• Which mixed pixel estimation methods have been applied?
• Are there any emerging trends pertaining to the estimation methods?
• What are the most preferred remote sensing systems, platforms and resolutions?
• What are the characteristics of the temporal data used as input for modeling the

mixed pixel?
• What is the outlook on the validation and accuracy of the reviewed studies?

The approach and methods used in this review is outlined in Section 2. The result
from the review is presented in Section 3. Discussions are presented in in Section 4, and
conclusion is given in Section 5.

2. Review Methodology

For relevant literature to be identified, the Web of Science and Google Scholar were
searched using the following singular or set of combined key words: “savanna mixed
pixel”, ”spectral mixture analysis”, ”pixel mixture analysis”, ”semi-arid mixed pixel”,
”dryland mixed pixel”, ”mixed pixel”, ”sub-pixel”, ”pixel-unmixing”, pixel decomposing”,
”fractional cover”, ”vegetation fractional cover”, ”fractional vegetation”, ”fractional cover
analysis”, ”vegetation continuous fields”, ”VCF”; “continuous fields”, ”spatio temporal
savanna dynamics”, ”remote sensing”, ”multi-spectral”, ”multi-temporal”, ”earth observa-
tion”, using “OR” to combine the terms. A wide range of key words were selected as the
problem of mixed pixel is addressed by different, inconsistent, and interchangeably used
terminologies. The search range time is between 1990 to 2020. This resulted in an initial
total number of 4079 journal articles. The 4079 journal articles were screened further to
form part of the final review according to the following criteria:

• The journal article must be focused on mixed pixel analysis.
• The journal article study area is located in a savanna biome.
• The journal article is fully or in parts using EO as input data to derive single or

multiple fractional land cover.
• A number of global VCF articles and very few articles with focus on semi-arid or

dryland biomes, such as grasslands and savanna desert ecotones, were considered.
Vegetation Continuous Fields methods are fundamental to the development of frac-
tional and sub-pixel mapping, although not entirely focusing on the savanna most of
the time.

After the screening process, 197 publications were retained for the final review process
(Supplementary Materials Table S1). The retained papers were further analyzed and their
pre-defined parameters and attributes extracted to form part of the in-depth analysis. The
parameters extracted and analyzed are the year of publication, journal name, geographic
location of the study area, spatial extent of the study area, type of EO data used (i.e., sensor
mission name, sensor platform type, spatial resolution, temporal resolution), method of
estimation, type of biophysical parameters estimated, characteristics of the input data, EO
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data used for validation data, and the overall accuracy of the EO data used for mixed
pixel analysis.

3. Results

Figure 2 illustrates the list of journals included in the literature review. Majority of the
papers were published across 10 high impact journals, with the journal of Remote Sensing of
Environment having the highest number of published manuscripts. The “Others” category
of journals is made up of journals containing only one publication.
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3.1. Geographic and Spatial Scale

The geographic locations of the reviewed publications study areas are depicted in
Figure 3. About 47% of the papers have a study area located in Africa, followed by
South America with 18%. This is possibly because more than 50% of Africa is covered
by savanna, concentrated in different parts of the continent and made up of varying
savanna ecosystems.

The African savannas range from the Serengeti grassland savannas with scattered trees
in East Africa (Kenya and Tanzania), to humid savannas in West Africa, dryland savannas
of the Sahel region which are savanna desert ecotones, Miombo savanna woodlands, and
semi-arid savannas in Southern Africa. The second highest number of studies focusing
on Southern America can be justified by the fact that the continent is home to the Cerrado
and Caatinga grasslands. The Cerrado, for example, is considered one of the global
biodiversity hot-spots and one of the most diverse tropical savannas in the world [91]. These
two biomes are recognized as biosphere reserves due to high level of species biodiversity,
but, at the same time, they both have a high rate of fragmentation and are reported to
be highly endangered due to high rates of deforestation and habitat fragmentation due
to agriculture [10]. About 55% of the Cerrado’s original vegetation has been estimated
by remote sensing to have been already converted by human actions [10]. The Caatinga
biome, on the other hand, is reported to be one of the most threatened tropical ecosystems,
with a greatest destruction rate [10]. Between 30.4% and 51.7% of the Caatinga is reported
to be altered by human activities, making it as the third most heavily impacted biome in
Brazil [92]. The Chaco and the Caatinga are considered to the most endangered biome in
Brazil, at a risk of disappearing, which highlights an urgent priority for conservation due to
great deforestation there [93]. About 8% of study sites were based in Australia. Only about
1% of the retained papers focus on Central America. The global category includes mainly
the VCF literature, which are widely applied for estimation of global trees fractional cover
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by Hansen et al. [60,66,67,76,94–96]. Vegetation Continuous Fields are crucial in showing
development and progress for fractional cover estimation but are mainly presented at
a global scale and are derived from low spatial resolution remote sensing and are not
necessarily focusing on savanna biomes alone [65,66].
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ecoregions of the world map is modified from Hengl et al., 2018, and incorporated with updated boundary maps of Cerrado
and Caatinga derived from the National Institute for Space Research (INPE) products from Aguiar et al., 2016. Some of the
study locations seem to be outside of the savanna biome because of scale mismatches (the global mapping scale versus
savanna patches occurring at smaller and local scales). This is evident in areas with smaller savanna patches with a high
number of reviewed papers, such as the California oak savannas. Another reason is because of the variable definition in the
biome classification used, as it does not account for the oak savannas in north America, such as the California oak savanna
and the southwestern oak savanna.

The number of published mixed pixel studies in the savannas have increased in recent
years. There is a peak in the number of studies in 2019, representing 11% of the total
number of studies, and 10% of the studies were conducted in 2020 (Figure 3). The trend
of increasing studies is less clear between 1994 and 2010; however, it is more pronounced
between 2010 and 2020. Approximately 63% of the reviewed papers fall in the last 9 years
of the 27 years length of the review period. This may be due to the increased availability
and free accessibility of remote sensing data and the introduction of machine learning
algorithms to successfully process big data reported in the last decade. A review on
machine learning applications to land cover classification based on multispectral earth
observation found more or less the same trend of number of publications doubling between
2015 to 2020 [97]. In addition, Wulder et al. [98] reported the emergence of a new era of
land cover analysis, which is made possible by free access data and ready-to-analyze EO
data along with the availability of high-performance computer processing capabilities to
enable rapid data processing.

The vast majority of the studies (~63%) were conducted at a local scale (Figure 4).
Approximately 24% of the reviewed publications were conducted at a regional scale.
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Regional scale represents studies with a study area located in more than one neighbor-
ing country or where more than one country is included in the study area. Only about 6%
of studies were conducted at a global scale, 5% at a national scale, and 2% at a continental
scale (Figure 4). Data processing and storage power has increased, but it seems that work-
ing with EO data at continental and global scale remain a challenge [99]. Another reason
could also be because savannas are so variable at large scales, and, hence, methods must be
developed and calibrated at smaller scales. Savanna mixed-pixel analysis of vegetation
components often requires multi-temporal images spanning over several seasons to capture
phenological differences in order to increase accuracy [5]. These multi-temporal images are
required to go through pre-processing, which increases the computational demand [99].
At a global scale, generating and collecting reliable and geographically representative
validation data tend to be a challenge. Besides the MODIS VCF studies which offer global
fractional tree cover products [59,100], we identified only one study which conducted
mixed pixel analysis of savannas at a global scale. Hill and Guerschman [11] used MODIS
to characterize vegetation fractional cover with a focus on grasslands and savannas at a
global scale. In addition, Jia et al. [101] used a general regression neural networks algorithm
on MODIS data to estimate land surface fractional vegetation cover on a global scale. There
was no study found at a sub-national regional level to qualify as regional at a single country
level. A few of the regional scale studies were conducted in African savanna mosaics along
the Sahel drylands of West Africa with several countries, such as Mali and Niger, included
in the study area [102–104]. For example, Souverijns et al. [105] estimated fractional land
cover over a period of 30 years at a regional scale in Senegal, Burkina Faso, Nigeria, Niger,
and Sudan. In other regions, Guan et al. [106] estimated vegetation fractional land cover
over tropical savanna regional areas covering Ethiopia, Kenya, Tanzania, Malawi, Zambia,
Zimbabwe, and Botswana.

3.2. Estimated Mixed-Pixel Parameters

The majority of the reviewed studies (62%) estimated multiple fractional covers when
analyzing mixed pixels (Figure 5). Multiple cover estimation means that the authors did
not just focus on estimating one type of cover but estimated multiple fractional covers,
such as grass, trees, shrubs, and bare ground, or various combinations of these. Theseira
et al. [107] estimated multiple fractional covers by applying a spectral mixture model to
derive grassland, areas of low and high savanna trees, grassland, savanna shrub, and bare
ground; Xian et al. [108] used non-parametric regression trees to characterize a shrubland
environment into continuous fields of herbaceous, litter, shrub, and bare ground; and
Bauman et al. mapped continuous fields of tree and shrub cover in the Gran Chaco
savanna ecosystem in South America [109]. Trees were the most estimated single fractional
cover. Approximately 20% of the reviewed studies estimated tree cover (Figure 5). Hansen
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et al. [60,61] estimated global tree VCF. It is possible that there can be overlap between
tree cover and woody cover, since woody cover may include trees and shrubs. This is
further confounded by tree cover and woody cover often being used as interchangeable
terms, as well as the differences between studies in defining the difference between a tree
and a shrub (e.g., criteria of height and multi-stemming). Roughly 13% of the reviewed
papers estimated woody fractional vegetation cover, which typically includes both tree and
shrub cover (Figure 5). Many studies estimated woody cover in African savannas [84,110].
For example, Higginbottom et al. [111] and Naidoo et al. [83] used a fusion of optical
data with SAR to estimate fractional woody cover in African savanna. In other regions,
Yang and Crew [48] used Landsat data to estimate woody cover in the Texas savannas in
North America.
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3.3. Type of Earth Observation Data Used

In many scenarios, there are multiple EO data types employed by a single paper.
For example, Gessner et al. [112] employed a multi-resolution approach that included
four different sources of remote sensing data (Quickbird-2, IKONOS-2, Landsat TM, and
MODIS) to derive fractional cover at a regional scale in an African grassland, savanna, and
shrubland biome.

Additionally, the overview shows the employed EO sensor systems classified accord-
ing to optical, radar, LiDAR, or LiDAR and hyperspectral (Figure 6). Spatial resolution is
classified from very high to low resolution.

A total of 39 EO data types were used in the reviewed studies. This reflects a wide
range of EO applications for savanna mixed pixel analysis [47,105,113–118]. Of these,
26 (89%) were optical, 11 (7%) radar, 2 (3%) LiDAR, and 1 (1%) were a combination of
optical hyperspectral and LiDAR. The most frequently used EO data were optical Landsat
(n = 94), MODIS (n = 83), AVHRR (n = 26), and Google earth (n = 22). These EO systems
have a short return period, long time series, and are freely available. For example, Landsat,
MODIS, and AVHRR have been in operation for more than 20 years, providing freely
available and continuous EO data. Landsat has been providing data for thematic Land
Use and Land Cover (LULC) mapping for more than 30 years now. Google Earth is not
necessarily a sensor fleet but is included in the list of EO data used because, as a very high
spatial resolution data, it has been used in many of the reviewed papers as a reference data
for validation and accuracy assessments. Both MODIS and AVHRR datasets are well suited
for large study area scenarios, as well as for applications where a long time series is most
crucial. The major advantage of AVHRR in the spatio-temporal dynamics of the savanna
mixed pixel analysis is that it offers long time series spanning as far back as 1981. AVHRR,
regardless of it being known for its broad channels and that AVHRR Vegetation Indices
(VIs) products are reported to be less accurate when compared with MODIS VIs, long-term
NDVI time series, AVHRR Global Inventory Modeling and Mapping Studies (GIMMS),
have been found to be suitable for long-term vegetation studies in dry areas [119]. The long
time series and high revisiting times of these low-resolution remote sensing data is effective
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to limit gaps in the time series as a result of cloud cover issues [120]. Creating consistent
time series from very high and high spatial resolution data, however, is often not easy.
This is because of their low revisiting and smaller area coverage. This probably explain
why high and very high spatial resolution images are under-represented in the analysis of
mixed pixel compared to low and medium spatial resolution with high revisiting time.
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High spatial resolution (HR) and very high spatial resolution (VHR) sensors, such as
IKONOS-2, Quickbird, GeoEye, and SPOT 5-6, have been applied less often. This is likely
due to the low revisiting time and high data costs [121]. Historically, VHR and HR tend
to have smaller swath coverage to be considered for large spatial scale studies compared
to coarse and medium resolutions. Low temporal resolution tends to be less suitable for
tracking seasonal dynamics in the vegetation [121]. The aspect of seasonal variation is
often influential in the separability of vegetation components in the mixed pixel analysis of
the savanna [11].

Synthetic Aperture Radar (SAR) played a very minor role in the type of EO sensor data
used. This is despite the fact that SAR data tends to be a better option for multi-temporal
mixed pixel analysis because it is not severely affected by most weather conditions and
is unaffected by cloud cover. Furthermore, the limited application of SAR may also be
due to computational challenges given the spatial and spectral distortions and geometric
distortions as a result of the complex nature of processing SAR [122]. Within the reviewed
publications, there were fewer scenarios of fusion between SAR and optical EO data. This is
despite the fact that studies that combined SAR with the optical reported higher accuracies
compared to when SAR or optical were used alone. For instance, Baumann et al. [109]
developed a novel approach to map continuous fields of tree cover and shrub cover across
the South American Gran Chaco, using Landsat-8 optical and SAR Sentinel-1. The study
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found that the best model for VCF estimation was the one which fused optical and SAR,
performing far better than models using data from only one sensor. Borges et al. [123]
used Sentinel-1 and Sentinel-2 to map savanna land cover, and Naidoo et al. [83] tested the
utility of multi-seasonal and multi-sensor use of Landsat TM/ETM and ALOS PALSAR
to map woody fractional cover over South Africa’s semi-arid savannas. All three studies
reported higher and improved accuracies for models which integrated SAR with optical
data [109,113].

3.4. Methods Used for Estimation of Mixed Pixel Parameters
Categorization of Savanna Mixed Pixel Estimation Methods

Table 1 shows that various methods were used to estimate mixed pixel parameters us-
ing EO data. The identified methods were categorized into parametric and non-parametric
approaches (Table 1). Maximum Likelihood (ML) classification is one of the parametric
methods for categorical classification. Here, a gaussian normal distribution is assumed.
For example, supervised classification is a parametric classification which assumes a
multi-variate gaussian distribution of each class that is extracted from the training data
by estimating the central tendency statistics, such as the mean and covariance matrix,
which are used as the parameters for discrimination between land covers [124]. Parametric
methods for categorical and discrete classifications include Step-wise Discriminant Analy-
sis (DA) and Minimum Distance (MD). However, because these classifications only use
decision boundaries, they tend to be prone to noisy classifications when applied in regions
with high heterogeneity. Parametric classifications are reported to lack robust capabilities
and tend to be unsatisfactory in characterizing land cover in large areas with complex
environments, such as the savannas [124].

However, non-parametric classifiers side-step the parametric issues. Non-parametric
methods use an iterative process. Examples of non-parametric classifiers include Nearest
Neighbor (1-NN and k-NN), kernel methods [125], neural networks, and classification
trees, Random Forest (RF) and Regression Trees (RT) [94]. Non-parametric methods,
however, require more training data and are computationally intensive due to large sets of
training data. Non-parametric methods are postulated to circumvent the issues of arbitrary
boundaries. These issues are common in parametric methods. Non-parametric methods
are reported to offer computational flexibility and are more robust to apply to processing
of large areas data and well suited to areas where the distribution of the land cover is not
well known [53]. Parametric methods, on the other hand, are unsatisfactory in large areas
and, especially, in complex environments with no obvious land cover class gradient. Some
publications employed both parametric and non-parametric methods (indicated as “Both”
in Figures 7–9 and Table 1).
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Table 1. Examples of methods used for spatio-temporal mixed-pixel analysis. The methods are categorized as parametric,
non-parametric, and both (a combination of parametric and non-parametric methods).

Reference Method Name Method Type Estimated Biophysical Parameter

[75] Regression Tree (Non-parametric) Tree Cover

[126] Spectral Mixture Analysis
(Pixel Unmixing) Parametric

Percent vegetation cover per pixel (% woody
vegetation, % herbaceous vegetation, % bare ground),

leaf type (% needleleaf and % broadleaf) and leaf
duration (% evergreen and % deciduous) and % bare

[39]

Object-Based Image Analysis
Nearest neighbor

Maximum Likelihood Random Forest
Regression Tree Support Vector Machines

Parametric and
Non-parametric (Both) Multiple Cover: Trees, Shrubs, Bare Soils, Grass

[105] Random Forest Non-parametric Multiple Cover: Shrubland, Forest, Urban, Cropland,
Seasonal water, Bare Soil, Permanent water

In Figure 7, the literature review shows the percentage of applications for each method
categorization. The review shows that 93 (~47%) of the reviewed publications used non-
parametric methods, while 92 (~47%) used parametric methods, and only 12 (~6%) used a
combination of parametric and non-parametric methods.

From a geographic perspective (Figure 8), non-parametric methods have the highest
percentage of application in Africa, with more than 50% of the studies having used non-
parametric methods located in Africa. When it comes to Australia, studies conducted in
Australia have a slightly higher preference of parametric methods of ca. 11% use compared
to ~2.5% application of non-parametric methods there. Due to Africa having a range of
savanna ecosystems with high cover variability due to variable fire regimes and land uses
(e.g., livestock grazing and wildlife conservation), the high variability in cover may prompt
researchers to opt for methods which are capable of dealing with high spatial heterogeneity
in land cover [15].
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When we observed the type of methods from VHR to low spatial resolution in Figure 9,
we found non-parametric methods to be the most frequently applied to VHR and HR EO
systems with 60% and 77%, respectively. Contrary to that, parametric method were the
most frequently used methods for medium and low resolution EO data with 55% and
51% application there, respectively. Generally, we found that, for EO sensors falling in the
categories of VHR and HR, approximately more than half 11 (57%) of them have more than
50% of non-parametric methods application. Apart from MODIS, sensors of medium and
low resolution tend to have employed parametric methods more frequently.

3.5. Temporal Characteristics of the EO Input Data

Figure 10 represents the type of input EO data attributes for spatio-temporal mixed
pixel analysis of savannas. The two most widely used EO input data attributes are band
statistics (40%) and spectral indices (28%) (Figure 10a). For this review, band statistics
consists of metrics from spectral bands and metrics from indices, such as maximum band
value, mean of NDVI, mean of reflectance, maximum NDVI value, mean band value,
standard deviation NDVI value, and amplitude band value. Vegetation indices are used
as a proxy for vegetation cover in spatio-temporal mixed pixel studies. Many of the
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normalized indices used red reflectance and NIR and applied parametric linear regression
methods, SMA, non-parametric time series decomposition trend methods, such as harmonic
analysis or machine learning methods, for mixed pixel parameters estimation [127–130].
The third most used data input is seasonal metrics (14%). Seasonal metrics correspond to
those input data whose spectral values correspond to phenological cycles and stages in the
spectral or reflectance metrics or indices, for example, NDVI peak greenness, value rate of
green up, total length of growing season, the timing of the onset of green up, and the onset
of the maximum NDVI.
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The majority of the studies used inter-annual (68%) temporal data, which means the
time series enabled the modeling of inter-annual differences of multiple years (Figure 10b).
The majority of the temporal EO data used in the mixed pixel analysis are multi-temporal
time series (77%) (Figure 10c). A larger part of the studies applied shorter time series
(~61.4%) EO data with a length of 1–5 years in (Figure 10d).

The length of investigation for each reviewed paper was examined (Figure 11). The
starting year and the ending year analysis are considered to derive the paper’s study
period (x-axis) and the publication year (y-axis). The results show that many studies have
used multiple years to understand the spatio-temporal dynamics of the mixed pixel. More
than 60% of the reviewed papers used data spanning over multiple years to look into the
spatio-temporal dynamics of the mixed pixel. However, the majority of those studies have
a length of investigation between 1 to 5 years, which indicates a leaning towards use of
shorter time series. The longest study period is 59 years, which analyzed long archives of
optical aerial photographs combined with satellite data to assess woody vegetation spatio-
temporal dynamics in South Africa [131]. Blentlinger and Herrero [132] also characterized
woody cover in a protected area for over 44 years in a neotropical savanna ecosystem in
Belize, Central America.
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3.6. Accuracy and Validation of the Reviewed Publications 

Figure 11. The length of analysis in years for the reviewed publications. Studies’ length of investigation is shown on x-axis
with the publication year shown for every publication on y-axis. Inter-annual studies which represent investigating periods
covering multiple years are illustrated by a line with orange square at the ends, while multiple images spanning over a single
year (intra-annual) are represented by blue diamond shape point, and single images which represent a mono-temporal
single date are indicated by single round green point symbol. The graph was generated with courtesy of a Python code
generated by Sophie Reinnerman of German Aerospace Center (DLR).



Remote Sens. 2021, 13, 3870 16 of 28

3.6. Accuracy and Validation of the Reviewed Publications

In Figure 12, the accuracy of the reviewed studies which reported a clear overall
accuracy is summarized. Overall accuracy considered for the analysis means the study
reported a standard accuracy metric of either confusion matrix overall accuracy, kappa,
or a R2 from a regression model. About 85% of the reviewed studies reported a clear
overall accuracy. For the papers which reported an overall accuracy, the majority (46%)
have an accuracy class between 80–100% (Figure 12a). For the studies which reported an
overall accuracy, EO datasets used as reference data for accuracy assessment are shown
(Figure 12b).
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In order to find out which EO datasets achieved a better accuracy, a comparison
is made between the four accuracy categories (Figure 13) across the spatial resolutions
(very high, high, medium, and low) of those EO datasets utilized by the studies. The EO
dataset types which have the highest percentage of studies achieving a >60% accuracies
are those which have used medium spatial resolution (88%), followed by 84% of studies
which have used the HR spatial resolution EO data. Studies which used VHR EO data
have the lowest (74%) number of studies, which achieved accuracies of >60%, followed
by those studies which have used low spatial resolution EO data (82%). The majority
of studies have used low spatial resolution compared to others, with HR EO datasets
being the least used across those studies which reported an overall accuracy. Although
less frequently used, HR studies achieved better accuracies compared to VHR and low
resolution. Medium resolution studies which have the highest percentages of studies
(88%), with high accuracies (>60%), is the second most used type of EO datasets across the
159 studies that have reported an overall accuracy and the most used EO data type among
all the 197 reviewed studies.
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grouped according to their spatial resolution. The graph analysis only incorporated EO datasets from the 159 studies which
reported an overall accuracy.

For the three method categories used for mixed pixel analysis in Figure 14, 90% of the
studies which have used more than one method type achieved >60% accuracy, followed
by 87% of studies which used only parametric methods, and 79% of studies which used
only non-parametric methods. Although all methods have a high percentage of papers
achieving >60% accuracies, those papers which applied more than one method seem to
have performed the best by a small margin. This is regardless of the fact that fewer papers
have used a combination of methods.
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4. Discussion
4.1. Geographic Patterns of Spatio-Temporal Mixed Pixel Analysis in the Savannas

Because of their large spatial extend and since they are a prime target for conversion
from their natural states to agriculture, the provision of rangelands for livestock and sub-
sistence for native populations, majority of the studies have been conducted in the African
and South American savannas (Figure 3) [3,5,14,28,30,32,36,38,39,46,47,52,86,95,106,112,
114,116–118,129,130,133–166]. The African and Southern American savannas have a signif-
icant role in vegetation trends as a result of interactions by climate change and increasing
carbon dioxide [15]. The Cerrado, along with the Caatinga, is one of the important savanna
or dryland biomes of South America which have very rich flora and high endemism but
only have each roughly 2.2% and 1% of their area protected for conservation, respectively,
by the year 2015 [91]. The Cerrado, due to mechanized agriculture, conversion for human
occupation, invasive grasses, and uncontrolled fires, is going through an intensification of
anthropogenic processes, which is a major threat to biodiversity [10]. The Caatinga biome,
at the same time, is also undergoing human density, replacement of gallery and dry forests
due to desertification, charcoal production, timber, and cattle ranching [10].

The majority of mixed pixel analysis of the savanna have been conducted at the local
and regional level with very few studies at a global and continental scale (Figure 4). Mixed
pixel analysis at larger spatial scales, such as continental and global scale, tend to be a
challenge which lead to more studies focusing at local spatial scales [43]. This is due
to the fact that land cover trends tend to differ in some ecoregions due to climate and
land use [11]. These difference in land cover trends occur in specific ecoregions and will
require more detailed analysis at fine spatial and temporal scales for better understanding.
Studies on mixed pixels found that regions with high heterogeneity are a challenge for
analysis. Accounting for inherent heterogeneity in savannas, areas of transitional zones
between major ecosystems, areas with major anthropogenic activities, boreal forests and
tundra, and mountain range areas is reported to be a major challenge. When classifying
biomes heterogeneity from high to low, the savanna biome is ranked the highest in terms
of heterogeneity [43]. Since 64% of the global vegetated areas are reported to be a mixture
of vegetation cover types, this is an indication that much of the global land surface is
faced with mixed pixel and high heterogeneity. The majority of the mixed pixels are
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also composed of cover types with different vegetation heights especially in transitional
ecological zones [43]. Land surfaces in savanna biomes at a global scale are not uniform
but highly diverse and heterogenous. This means that robust methods to account for site
differences and the mixed nature of covers are required when analyzing savanna at a
global and continental scale to account for the variations in cover. It is possibly because
of the obstacles in analysis of the savanna at continental and global scale which led to
more studies to focus analysis at savanna local spatial scale. At local scales, the complexity
may not be as comparable to large area analysis, as there is less probability of different
ecosystems occurring at a local scale.

4.2. The Use of EO Technology for Spatio-Temporal Mixed Pixel Analysis in Savannas

Optical EO data were utilized more often with medium spatial resolution (30 m)
Landsat being the single majority applied sensor for spatio-temporal mixed-pixel analysis
of the savanna (Figure 6) [83,113,114,166]. Landsat as the most commonly used EO sensor
offers at least three decades of imagery with medium spatial resolution. Landsat provides
consistent measurements of inter-annual variability of vegetation over the entire earth’s
surface and the same will be assumed for the savanna ecosystems [120,167]. However,
Landsat does not capture adequate intra-annual or phenological variability because of the
16-day interval for image acquisition [52,139].

The wide use of optical data comes with an under-representation of other EO tech-
nologies, such as Synthetic Aperture Radar (SAR) and LiDAR, in spatio-temporal mixed
pixel analysis of the savanna. For improved classification, long-time series are required
and integration of SAR and LiDAR with optical time series to improve classifications in the
savanna is highly recommended [15]. SAR offers an added advantage to optical time series
because it is largely weather independent. SAR has been used alone [84,85,166,168,169]
and sometimes together with optical imagery [83,113,114,118]. Improved accuracies are
reported when models use SAR or when SAR and optical are combined in the spatio-
temporal mixed pixel analysis of the savanna [83,109]. Radar remote sensing does not
depend on sun illumination or cloud condition and, therefore, is a good potential to offer
continuous time series of EO data for long term monitoring of the savannas.

Most of the studies used short time series EO data for savanna spatio-temporal mixed
pixel analysis (Figures 10d and 11) [28]. Reliable spatio-temporal trends of the savannas
require long time series [29,119,130,170]. EO sensors with many years of data archives are
already available. This review has highlighted that the most preferred EO systems are
those with a long history of existence. However, it seems the potential of long time series
are not fully exploited so far in understanding the mixed pixel dynamics of the savanna.
The satellite EO systems with long time series tend to be those with medium to low spatial
resolution. The solution may be to fuse and harmonize long time series of low and medium
spatial resolution (MODIS, AVHRR, and Landsat) with very high spatial resolution EO
satellite data, such as the newly launched Sentinel-1 and Sentinel-2, for longer time series
exploits; to fuse radar and optical remote sensing data and explore the recently launched
HR EO datasets, such as the Sentinel-1 and Sentinel-2, for improved estimation of the
savanna mixed pixel. The heterogenous nature of the savanna mixed pixel requires a
consideration of high spatial, spectral, temporal, and radiometric resolution for accurate
separation between savanna components.

4.3. Future Outlook

The rapid increase in the availability of data for land cover characterization offers
great potential for contributing to new land surface cover information. However, this
potential requires improved analysis methods beyond the use of vegetation indices and
transformation of images. Big data is now more prevalent and open source data mining
tools are readily available [171]. The recent launch of sensors with improved spatial and
temporal resolutions, such as the Sentinel-1 and Sentinel-2 [118,143]; application of big
data processing [143]; and the combination of SAR, LiDAR, and optical data [118] signals
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the future direction of remote sensing of savanna environments from space. Multi-sensor,
multi-scale imaging is recommended, especially for three-dimensional characterization of
the savanna [11].

Cloud computing platforms, such as the Google Earth Engine (GEE), are reported
to be a milestone in creating robust reference data to train ML algorithms for analysis in
mixed and highly seasonal ecosystems, especially where reference maps for time series
classifications are inadequate or unavailable [98,143]. GEE is a powerful tool which brings
together multitudes of EO datasets for analysis. The GEE platform offers remarkable
computational power with ready-to-analyze data available. Cloud platforms, such as GEE,
have the potential to process data that requires high computational power since the process
do no take up hard disk space on the computer, thus providing a potential opportunity to
perform analysis at continental or global scale and counter-act the issue of data complexities
and the lack of studies at large scales (i.e., global and continental) in savanna ecosystems.
The GEE platform is especially well suited to large scale analysis in developing countries
where access to advanced computational and data processing facilities is a challenge.

5. Conclusions

Estimating mixed pixel parameters in the savanna is essential for long-term under-
standing of the spatio-temporal dynamics and trends. Mixed pixel vegetation cover is an
important biodiversity parameter in savannas where the estimation of the above ground
biomass in savanna varies according to fraction of the trees, shrubs, and grasses. The
review shows that the spatial focus of the spatio-temporal mixed pixel analysis is on the
African and South America savannas due to the size and the importance of biodiversity
conservation in the two regions. The majority of the studies are conducted at a local and
regional scale which highlights a gap for studies at national, continental, and global scale.
The gap in studies at the larger scales (continental and global), in addition, means that
robust methods which are capable of large data analysis and handling the complex and
highly heterogenous nature of the savanna are required. The preference to use medium
(Landsat) and low (AVHRR and MODIS) spatial resolution optical EO datasets highlights
the gap in use of high spatial resolution and radar remote sensing to estimate the mixed
pixel of the savanna. In addition, the use of short time series of up to 5 years maximum em-
phasizes that long time series data which are essential for understanding spatio-temporal
dynamics of the savannas are required in the estimation of the mixed pixel of savannas.

Although there was no difference in the use of parametric versus non-parametric
methods, the preference to apply non-parametric methods when analyzing high spatial
resolution EO indicates that more robust non-parametric methods are required to deal with
the large scale EO datasets and the required high spatial resolution data to understand
the spatio-temporal dynamics of the savanna mixed pixel. The increase in the use of
non-parametric methods, for example, Random Forest machine learning methods, mainly
used to estimate fractional woody cover in the African savannas, is a good example.
Non-parametric methods, such as regression tree methods, are used mainly by the VCF
studies which estimated global VCF tree cover probably due to their robustness and
ability to handle large volume of data. The most used input data band statistics which
are composed of mainly multi-temporal composites which capture phenology to separate
savanna vegetation components shows that a multitude of temporal data are required
for spatio-temporal dynamics of the savanna. It also indicates that understanding the
spatio-temporal analysis of the savanna requires a large volume of data, along with big
data infrastructures to handle them. The majority of the time series used are of inter-
annual nature, however, consisting of rather short analysis periods. Therefore, the review
highlights a research gap for savanna spatio-temporal mixed pixel analysis using high-
resolution long time series. This gap can be addressed by increasing the incorporation of
active EO, such as SAR. Optical EO data with long time series, such as Landsat, can be
harmonized with the recently launched high resolution Sentinel-1 and Sentinel-2 sensors.
In addition, exploring the fusion of high-resolution SAR and optical to address the gaps
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in time series data due to cloud cover is also a possibility. Satellite data are increasingly
becoming available. This creates opportunities for big data and open-source data mining
tools to be created, especially to provide fitting methods to monitor complex ecosystems,
such as the savanna. The review set out to find out the type of EO datasets and methods
used for mixed pixel analysis of the savanna and found a gap for high-resolution EO
datasets. This indicate that although satellite data is increasingly available, the processing
capabilities of high spatial resolution remote sensing data to monitor long term changes for
savannas may be a challenge, especially at global and continental scales. When it comes
to EO datasets and what type of methods they recruit for mixed pixel analysis and how
accurate they tend to be, it seems that combinations of parametric and non-parametric
methods are recommended, along with medium and high spatial resolution long time
series EO datasets, for a more accurate spatio-temporal mixed pixel analysis of the savanna.
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LULC Land Use Land Cover
MD Minimum Distance
MAP Mean Annual Precipitation
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ML Machine Learning
MODIS Moderate Resolution Imaging Spectroradiometer
NDVI Normalized Difference Vegetation Index
RF Random Forest
RT Regression Tree
SAEON South African Environmental Observation Network
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SMA Spectral Mixture Analysis
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VI Vegetation Indices
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39. Kaszta, Ż.; van de Kerchove, R.; Ramoelo, A.; Cho, M.A.; Madonsela, S.; Mathieu, R.; Wolff, E. Seasonal Separation of African
Savanna Components Using Worldview-2 Imagery: A Comparison of Pixel- and Object-Based Approaches and Selected Classifi-
cation Algorithms. Remote Sens. 2016, 8, 763. [CrossRef]

40. Foody, G.M. Relating the Land-Cover Composition of Mixed Pixels to Artificial Neural Classification Output. Photogramm. Eng.
Remote Sens. 1996, 62, 491–499.

41. Whiteside, T.G.; Boggs, G.S.; Maier, S.W. Comparing Object-Based and Pixel-Based Classifications for Mapping Savannas. Int. J.
Appl. Earth Obs. Geoinf. 2011, 13, 884–893. [CrossRef]

42. Foody, G.M.; Mathur, A. The Use of Small Training Sets Containing Mixed Pixels for Accurate Hard Image Classification: Training
on Mixed Spectral Responses for Classification by a SVM. Remote Sens. Environ. 2006, 103, 179–189. [CrossRef]

43. Yu, W.; Li, J.; Liu, Q.; Zeng, Y.; Zhao, J.; Xu, B.; Yin, G. Global Land Cover Heterogeneity Characteristics at Moderate Resolution
for Mixed Pixel Modeling and Inversion. Remote Sens. 2018, 10, 856. [CrossRef]

44. Asner, G.P.; Wessman, C.A.; Privette, J.L. Unmixing the Directional Reflectances of AVHRR Sub-Pixel Landcovers. IEEE Trans.
Geosci. Remote Sens. 1997, 35, 868–878. [CrossRef]

45. Liu, Y.; Hill, M.J.; Zhang, X.; Wang, Z.; Richardson, A.D.; Hufkens, K.; Filippa, G.; Baldocchi, D.D.; Ma, S.; Verfaillie, J.; et al.
Using Data from Landsat, MODIS, VIIRS and PhenoCams to Monitor the Phenology of California Oak/Grass Savanna and Open
Grassland across Spatial Scales. Agric. For. Meteorol. 2017, 237–238, 311–325. [CrossRef]

46. Hüttich, C.; Herold, M.; Strohbach, B.J.; Dech, S. Integrating In-Situ, Landsat, and MODIS Data for Mapping in Southern African
Savannas: Experiences of LCCS-Based Land-Cover Mapping in the Kalahari in Namibia. Environ. Monit. Assess. 2011, 176,
531–547. [CrossRef]

47. Schwieder, M.; Leitão, P.J.; da Cunha Bustamante, M.M.; Ferreira, L.G.; Rabe, A.; Hostert, P. Mapping Brazilian Savanna Vegetation
Gradients with Landsat Time Series. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 361–370. [CrossRef]

48. Yang, X.; Crews, K.A. Fractional Woody Cover Mapping of Texas Savanna at Landsat Scale. Land 2019, 8, 9. [CrossRef]
49. Chu, D. Fractional Vegetation Cover. In Remote Sensing of Land Use and Land Cover in Mountain Region, 2nd ed.; Liang, S., Wang, J.,

Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 477–510. ISBN 978-0-12-815826-5.
50. Liu, F.-J.; Huang, C.; Pang, Y.; Li, M.; Song, D.-X.; Song, X.-P.; Channan, S.; Sexton, J.O.; Jiang, D.; Zhang, P.; et al. Assessment of

the Three Factors Affecting Myanmar’s Forest Cover Change Using Landsat and MODIS Vegetation Continuous Fields Data. Int.
J. Digit. Earth 2016, 9, 562–585. [CrossRef]

51. Gessner, U.; Machwitz, M.; Conrad, C.; Dech, S. Estimating the Fractional Cover of Growth Forms and Bare Surface in Savannas.
A Multi-Resolution Approach Based on Regression Tree Ensembles. Remote Sens. Environ. 2013, 129, 90–102. [CrossRef]

52. Ferreira, M.E.; Ferreira, L.G.; Sano, E.E.; Shimabukuro, Y.E. Spectral Linear Mixture Modelling Approaches for Land Cover
Mapping of Tropical Savanna Areas in Brazil. Int. J. Remote Sens. 2007, 28, 413–429. [CrossRef]

53. DeFries, R.S.; Townshend, J.R.G.; Hansen, M.C. Continuous Fields of Vegetation Characteristics at the Global Scale at 1-Km
Resolution. J. Geophys. Res. Atmos. 1999, 104, 16911–16923. [CrossRef]

http://doi.org/10.1080/01431161.2013.810352
http://doi.org/10.1016/j.rse.2019.111340
http://doi.org/10.1080/00207233.2012.748491
http://doi.org/10.1016/j.ejrs.2016.12.008
http://doi.org/10.1016/j.rse.2015.05.006
http://doi.org/10.1109/TGRS.2008.2004628
http://doi.org/10.1016/j.foreco.2009.11.018
http://doi.org/10.1016/j.ecolind.2010.01.001
http://doi.org/10.1080/0143116021000024230
http://doi.org/10.2747/1548-1603.46.4.424
http://doi.org/10.3390/rs9050419
http://doi.org/10.3390/rs8090763
http://doi.org/10.1016/j.jag.2011.06.008
http://doi.org/10.1016/j.rse.2006.04.001
http://doi.org/10.3390/rs10060856
http://doi.org/10.1109/36.602529
http://doi.org/10.1016/j.agrformet.2017.02.026
http://doi.org/10.1007/s10661-010-1602-5
http://doi.org/10.1016/j.jag.2016.06.019
http://doi.org/10.3390/land8010009
http://doi.org/10.1080/17538947.2015.1111451
http://doi.org/10.1016/j.rse.2012.10.026
http://doi.org/10.1080/01431160500181507
http://doi.org/10.1029/1999JD900057


Remote Sens. 2021, 13, 3870 24 of 28

54. Jeganathan, C.; Dadhwal, V.K.; Gupta, K.; Raju, P.L.N. Comparison of MODIS Vegetation Continuous Field—Based Forest Density
Maps with IRS-LISS III Derived Maps. J. Indian Soc. Remote Sens. 2009, 37, 539–549. [CrossRef]

55. Sarif, M.O.; Jeganathan, C.; Mondal, S. MODIS-VCF Based Forest Change Analysis in the State of Jharkhand. Proc. Natl. Acad. Sci.
India Sec. A Phys. Sci. 2017, 87, 751–767. [CrossRef]

56. Cartus, O.; Santoro, M.; Schmullius, C.; Li, Z. Large Area Forest Stem Volume Mapping in the Boreal Zone Using Synergy of
ERS-1/2 Tandem Coherence and MODIS Vegetation Continuous Fields. Remote Sens. Environ. 2011, 115, 931–943. [CrossRef]

57. Gao, Y.; Ghilardi, A.; Mas, J.-F.; Quevedo, A.; Paneque-Gálvez, J.; Skutsch, M. Assessing Forest Cover Change in Mexico from
Annual MODIS VCF Data (2000–2010). Int. J. Remote Sens. 2018, 39, 7901–7918. [CrossRef]

58. Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Global Percent Tree Cover at a Spatial
Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm. Earth Interact. 2009, 7, 1–15.
[CrossRef]

59. Sexton, J.O.; Song, X.-P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, D.-H.; Collins, K.M.; Channan, S.; DiMiceli, C.; et al.
Global, 30-m Resolution Continuous Fields of Tree Cover: Landsat-Based Rescaling of MODIS Vegetation Continuous Fields with
Lidar-Based Estimates of Error. Int. J. Digit. Earth 2013, 6, 427–448. [CrossRef]

60. Hansen, M.C.; Townshend, J.R.G.; DeFries, R.S.; Carroll, M. Estimation of Tree Cover Using MODIS Data at Global, Continental
and Regional/Local Scales. Int. J. Remote Sens. 2005, 26, 4359–4380. [CrossRef]

61. Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Marufu, L.; Sohlberg, R. Development of a MODIS Tree Cover Validation Data
Set for Western Province, Zambia. Remote Sens. Environ. 2002, 83, 320–335. [CrossRef]

62. Hansen, M.C.; Roy, D.P.; Lindquist, E.; Adusei, B.; Justice, C.O.; Altstatt, A. A Method for Integrating MODIS and Landsat Data
for Systematic Monitoring of Forest Cover and Change in the Congo Basin. Remote Sens. Environ. 2008, 112, 2495–2513. [CrossRef]

63. Atkinson, P.M.; Cutler, M.E.J.; Lewis, H. Mapping Sub-Pixel Proportional Land Cover with AVHRR Imagery. Int. J. Remote Sens.
1997, 18, 917–935. [CrossRef]

64. Cherchali, S.; Amram, O.; Flouzat, G. Retrieval of Temporal Profiles of Reflectances from Simulated and Real NOAA-AVHRR
Data over Heterogeneous Landscapes. Int. J. Remote Sens. 2000, 21, 753–775. [CrossRef]

65. Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Sohlberg, R.; Dimiceli, C.; Carroll, M. Towards an Operational MODIS Continuous
Field of Percent Tree Cover Algorithm: Examples Using AVHRR and MODIS Data. Remote Sens. Environ. 2002, 83, 303–319.
[CrossRef]

66. Defries, R.S.; Hansen, M.C.; Townshend, J.R.G. Global Continuous Fields of Vegetation Characteristics: A Linear Mixture Model
Applied to Multi-Year 8 Km AVHRR Data. Int. J. Remote Sens. 2000, 21, 1389–1414. [CrossRef]

67. Hansen, M.C.; Egorov, A.; Roy, D.P.; Potapov, P.; Ju, J.; Turubanova, S.; Kommareddy, I.; Loveland, T.R. Continuous Fields of
Land Cover for the Conterminous United States Using Landsat Data: First Results from the Web-Enabled Landsat Data (WELD)
Project. Remote Sens. Lett. 2011, 2, 279–288. [CrossRef]

68. Potapov, P.; Tyukavina, A.; Turubanova, S.; Talero, Y.; Hernandez-Serna, A.; Hansen, M.C.; Saah, D.; Tenneson, K.; Poortinga, A.;
Aekakkararungroj, A.; et al. Annual Continuous Fields of Woody Vegetation Structure in the Lower Mekong Region from
2000–2017 Landsat Time-Series. Remote Sens. Environ. 2019, 232, 111278. [CrossRef]

69. Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.;
Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850. [CrossRef]

70. DiMiceli, C.; Townshend, J.R.; Sohlberg, R.A.; Kim, D.H.; Kelly, M. Vegetation Continuous Fields–Transitioning from MODIS to
VIIRS. In Proceedings of the AGU Fall Meeting Abstracts; Volkamer Research Group: Boulder, CA, USA, December 2015; Volume
2015, p. A21C-0141.

71. Amarnath, G.; Babar, S.; Murthy, M.S.R. Evaluating MODIS-Vegetation Continuous Field Products to Assess Tree Cover Change
and Forest Fragmentation in India—A Multi-Scale Satellite Remote Sensing Approach. Egypt. J. Remote Sens. Space Sci. 2017, 20,
157–168. [CrossRef]

72. Gao, Y.; Ghilardi, A.; Paneque-Galvez, J.; Skutsch, M.; Mas, J.F. Validation of MODIS Vegetation Continuous Fields for Monitoring
Deforestation and Forest Degradation: Two Cases in Mexico. Geocarto Int. 2016, 31, 1019–1031. [CrossRef]

73. Zhan, X.; DeFries, R.S.; Los, S.O.; Yang, Z.-L. Application of Vegetation Continuous Fields Data in Atmosphere-Biosphere
Interaction Models. In Proceedings of the IGARSS IEEE 2000 International Geoscience and Remote Sensing Symposium; Taking the Pulse
of the Planet: The Role of Remote Sensing in Managing the Environment; Proceedings (Cat. No.00CH37120); IEEE: Piscataway,
NJ, USA, 2000; Volume 5, pp. 1948–1950.

74. Feilhauer, H.; Schmidtlein, S. Mapping Continuous Fields of Forest Alpha and Beta Diversity. Appl. Veg. Sci. 2009, 12, 429–439.
[CrossRef]

75. Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Development of 500 Meter Vegetation
Continuous Field Maps Using MODIS Data. In Proceedings of the IGARSS 2003 IEEE International Geoscience and Remote Sensing
Symposium; Proceedings (IEEE Cat. No.03CH37477); IEEE: Piscataway, NJ, USA, 2003; Volume 1, pp. 264–266.

76. Carroll, M.; Townshend, J.; Hansen, M.; DiMiceli, C.; Sohlberg, R.; Wurster, K. MODIS Vegetative Cover Conversion and
Vegetation Continuous Fields. In Land Remote Sens.and Global Environmental Change: NASA’s Earth Observing System and the Science
of ASTER and MODIS; Ramachandran, B., Justice, C.O., Abrams, M.J., Eds.; Springer: New York, NY, USA, 2011; pp. 725–745.
ISBN 978-1-4419-6749-7.

http://doi.org/10.1007/s12524-009-0050-6
http://doi.org/10.1007/s40010-017-0446-6
http://doi.org/10.1016/j.rse.2010.12.003
http://doi.org/10.1080/01431161.2018.1479789
http://doi.org/10.1175/1087-3562(2003)007&lt;0001:GPTCAA&gt;2.0.CO;2
http://doi.org/10.1080/17538947.2013.786146
http://doi.org/10.1080/01431160500113435
http://doi.org/10.1016/S0034-4257(02)00080-9
http://doi.org/10.1016/j.rse.2007.11.012
http://doi.org/10.1080/014311697218836
http://doi.org/10.1080/014311600210551
http://doi.org/10.1016/S0034-4257(02)00079-2
http://doi.org/10.1080/014311600210236
http://doi.org/10.1080/01431161.2010.519002
http://doi.org/10.1016/j.rse.2019.111278
http://doi.org/10.1126/science.1244693
http://doi.org/10.1016/j.ejrs.2017.05.004
http://doi.org/10.1080/10106049.2015.1110205
http://doi.org/10.1111/j.1654-109X.2009.01037.x


Remote Sens. 2021, 13, 3870 25 of 28

77. Staver, A.C.; Hansen, M.C. Analysis of Stable States in Global Savannas: Is the CART Pulling the Horse?—A Comment. Glob.
Ecol. Biogeogr. 2015, 24, 985–987. [CrossRef]

78. Hanan, N.P.; Tredennick, A.T.; Prihodko, L.; Bucini, G.; Dohn, J. Analysis of Stable States in Global Savannas—A Response to
Staver and Hansen. Glob. Ecol. Biogeogr. 2015, 24, 988–989. [CrossRef]

79. Hanan, N.P.; Tredennick, A.T.; Prihodko, L.; Bucini, G.; Dohn, J. Analysis of Stable States in Global Savannas: Is the CART Pulling
the Horse? Glob. Ecol. Biogeogr. 2014, 23, 259–263. [CrossRef] [PubMed]

80. Vaughn, N.R.; Asner, G.P.; Smit, I.P.; Riddel, E.S. Multiple Scales of Control on the Structure and Spatial Distribution of Woody
Vegetation in African Savanna Watersheds. PLoS ONE 2015, 10, 0145192. [CrossRef] [PubMed]

81. Zhang, W.; Brandt, M.; Wang, Q.; Prishchepov, A.V.; Tucker, C.J.; Li, Y.; Lyu, H.; Fensholt, R. From Woody Cover to Woody
Canopies: How Sentinel-1 and Sentinel-2 Data Advance the Mapping of Woody Plants in Savannas. Remote Sens. Environ. 2019,
234, 111465. [CrossRef]

82. Yang, X. Woody Plant Cover Estimation in Texas Savanna from MODIS Products. Earth Interact. 2019, 23, 1–14. [CrossRef]
83. Naidoo, L.; Mathieu, R.; Main, R.; Wessels, K.; Asner, G.P. L-Band Synthetic Aperture Radar Imagery Performs Better than Optical

Datasets at Retrieving Woody Fractional Cover in Deciduous, Dry Savannahs. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 54–64.
[CrossRef]

84. Wessels, K.; Mathieu, R.; Knox, N.; Main, R.; Naidoo, L.; Steenkamp, K. Mapping and Monitoring Fractional Woody Vegetation
Cover in the Arid Savannas of Namibia Using LiDAR Training Data, Machine Learning, and ALOS PALSAR Data. Remote Sens.
2019, 11, 2633. [CrossRef]

85. Urbazaev, M.; Thiel, C.; Mathieu, R.; Naidoo, L.; Levick, S.R.; Smit, I.P.J.; Asner, G.P.; Schmullius, C. Assessment of the Mapping
of Fractional Woody Cover in Southern African Savannas Using Multi-Temporal and Polarimetric ALOS PALSAR L-Band Images.
Remote Sens. Environ. 2015, 166, 138–153. [CrossRef]

86. Anchang, J.Y.; Prihodko, L.; Kaptué, A.T.; Ross, C.W.; Ji, W.; Kumar, S.S.; Lind, B.; Sarr, M.A.; Diouf, A.A.; Hanan, N.P. Trends in
Woody and Herbaceous Vegetation in the Savannas of West Africa. Remote Sens. 2019, 11, 576. [CrossRef]

87. Sow, M.; Mbow, C.; Hély, C.; Fensholt, R.; Sambou, B. Estimation of Herbaceous Fuel Moisture Content Using Vegetation Indices
and Land Surface Temperature from MODIS Data. Remote Sens. 2013, 5, 2617–2638. [CrossRef]

88. Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote Sensing Algorithms for Estimation of
Fractional Vegetation Cover Using Pure Vegetation Index Values: A Review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377.
[CrossRef]

89. Zhang, M.; Li, Q.; Meng, J.; Wu, B. Review of crop residue fractional cover monitoring with remote sensing. Spectrosc. Spectr.
Anal. 2011, 31, 3200–3205.

90. Somers, B.; Asner, G.P.; Tits, L.; Coppin, P. Endmember Variability in Spectral Mixture Analysis: A Review. Remote Sens. Environ.
2011, 115, 1603–1616. [CrossRef]

91. Myers, N. Biodiversity Hotspots Revisited. BioScience 2003, 53, 916–917. [CrossRef]
92. Leal, I.R.; Da Silva, J.M.C.; Tabarelli, M.; Lacher, T.E., Jr. Changing the Course of Biodiversity Conservation in the Caatinga of

Northeastern Brazil. Conserv. Biol. 2005, 19, 701–706. [CrossRef]
93. Espírito-Santo, M.M.; Sevilha, A.C.; Anaya, F.C.; Barbosa, R.; Fernandes, G.W.; Sanchez-Azofeifa, G.A.; Scariot, A.;

de Noronha, S.E.; Sampaio, C.A. Sustainability of Tropical Dry Forests: Two Case Studies in Southeastern and Central Brazil. For.
Ecol. Manag. 2009, 258, 922–930. [CrossRef]

94. Hansen, M.; Dubayah, R.; Defries, R. Classification Trees: An Alternative to Traditional Land Cover Classifiers. Int. J. Remote Sens.
1996, 17, 1075–1081. [CrossRef]

95. DeFries, R.; Hansen, M.; Steininger, M.; Dubayah, R.; Sohlberg, R.; Townshend, J. Subpixel Forest Cover in Central Africa from
Multisensor, Multitemporal Data. Remote Sens. Environ. 1997, 60, 228–246. [CrossRef]

96. Colditz, R.R.; Schmidt, M.; Conrad, C.; Hansen, M.C.; Dech, S. Land Cover Classification with Coarse Spatial Resolution Data to
Derive Continuous and Discrete Maps for Complex Regions. Remote Sens. Environ. 2011, 115, 3264–3275. [CrossRef]

97. Vali, A.; Comai, S.; Matteucci, M. Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and
Multispectral Earth Observation Data: A Review. Remote Sens. 2020, 12, 2495. [CrossRef]

98. Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land Cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284.
[CrossRef]

99. Koehler, J.; Kuenzer, C. Forecasting Spatio-Temporal Dynamics on the Land Surface Using Earth Observation Data—A Review.
Remote Sens. 2020, 12, 3513. [CrossRef]

100. Kobayashi, T.; Tsend-Ayush, J.; Tateishi, R. A New Global Tree-Cover Percentage Map Using MODIS Data. Int. J. Remote Sens.
2016, 37, 969–992. [CrossRef]

101. Jia, K.; Liang, S.; Liu, S.; Li, Y.; Xiao, Z.; Yao, Y.; Jiang, B.; Zhao, X.; Wang, X.; Xu, S.; et al. Global Land Surface Fractional
Vegetation Cover Estimation Using General Regression Neural Networks from MODIS Surface Reflectance. IEEE Trans. Geosci.
Remote Sens. 2015, 53, 4787–4796. [CrossRef]

102. Brandt, M.; Hiernaux, P.; Rasmussen, K.; Mbow, C.; Kergoat, L.; Tagesson, T.; Ibrahim, Y.Z.; Wélé, A.; Tucker, C.J.; Fensholt, R.
Assessing Woody Vegetation Trends in Sahelian Drylands Using MODIS Based Seasonal Metrics. Remote Sens. Environ. 2016, 183,
215–225. [CrossRef]

http://doi.org/10.1111/geb.12285
http://doi.org/10.1111/geb.12321
http://doi.org/10.1111/geb.12122
http://www.ncbi.nlm.nih.gov/pubmed/26430386
http://doi.org/10.1371/journal.pone.0145192
http://www.ncbi.nlm.nih.gov/pubmed/26660502
http://doi.org/10.1016/j.rse.2019.111465
http://doi.org/10.1175/EI-D-19-0005.1
http://doi.org/10.1016/j.jag.2016.05.006
http://doi.org/10.3390/rs11222633
http://doi.org/10.1016/j.rse.2015.06.013
http://doi.org/10.3390/rs11050576
http://doi.org/10.3390/rs5062617
http://doi.org/10.1016/j.isprsjprs.2019.11.018
http://doi.org/10.1016/j.rse.2011.03.003
http://doi.org/10.1641/0006-3568(2003)053[0916:BHR]2.0.CO;2
http://doi.org/10.1111/j.1523-1739.2005.00703.x
http://doi.org/10.1016/j.foreco.2009.01.022
http://doi.org/10.1080/01431169608949069
http://doi.org/10.1016/S0034-4257(96)00119-8
http://doi.org/10.1016/j.rse.2011.07.010
http://doi.org/10.3390/rs12152495
http://doi.org/10.1080/01431161.2018.1452075
http://doi.org/10.3390/rs12213513
http://doi.org/10.1080/01431161.2016.1142684
http://doi.org/10.1109/TGRS.2015.2409563
http://doi.org/10.1016/j.rse.2016.05.027


Remote Sens. 2021, 13, 3870 26 of 28

103. Jamali, S.; Seaquist, J.; Eklundh, L.; Ardö, J. Automated Mapping of Vegetation Trends with Polynomials Using NDVI Imagery
over the Sahel. Remote Sens. Environ. 2014, 141, 79–89. [CrossRef]

104. Bobée, C.; Ottlé, C.; Maignan, F.; de Noblet-Ducoudré, N.; Maugis, P.; Lézine, A.-M.; Ndiaye, M. Analysis of Vegetation Seasonality
in Sahelian Environments Using MODIS LAI, in Association with Land Cover and Rainfall. J. Arid Environ. 2012, 84, 38–50.
[CrossRef]

105. Souverijns, N.; Buchhorn, M.; Horion, S.; Fensholt, R.; Verbeeck, H.; Verbesselt, J.; Herold, M.; Tsendbazar, N.-E.; Bernardino, P.N.;
Somers, B.; et al. Thirty Years of Land Cover and Fraction Cover Changes over the Sudano-Sahel Using Landsat Time Series.
Remote Sens. 2020, 12, 3817. [CrossRef]

106. Guan, K.; Wood, E.F.; Caylor, K.K. Multi-Sensor Derivation of Regional Vegetation Fractional Cover in Africa. Remote Sens.
Environ. 2012, 124, 653–665. [CrossRef]

107. Theseira, M.A.; Thomas, G.; Sannier, C.A.D. An Evaluation of Spectral Mixture Modelling Applied to a Semi-Arid Environment.
Int. J. Remote Sens. 2002, 23, 687–700. [CrossRef]

108. Xian, G.; Homer, C.; Meyer, D.; Granneman, B. An Approach for Characterizing the Distribution of Shrubland Ecosystem
Components as Continuous Fields as Part of NLCD. ISPRS J. Photogramm. Remote Sens. 2013, 86, 136–149. [CrossRef]

109. Baumann, M.; Levers, C.; Macchi, L.; Bluhm, H.; Waske, B.; Gasparri, N.I.; Kuemmerle, T. Mapping Continuous Fields of Tree and
Shrub Cover across the Gran Chaco Using Landsat 8 and Sentinel-1 Data. Remote Sens. Environ. 2018, 216, 201–211. [CrossRef]

110. Spiekermann, R.; Brandt, M.; Samimi, C. Woody Vegetation and Land Cover Changes in the Sahel of Mali (1967–2011). Int. J.
Appl. Earth Obs. Geoinf. 2015, 34, 113–121. [CrossRef]

111. Higginbottom, T.P.; Symeonakis, E.; Meyer, H.; van der Linden, S. Mapping Fractional Woody Cover in Semi-Arid Savannahs
Using Multi-Seasonal Composites from Landsat Data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 88–102. [CrossRef]

112. Gessner, U.; Machwitz, M.; Esch, T.; Tillack, A.; Naeimi, V.; Kuenzer, C.; Dech, S. Multi-Sensor Mapping of West African Land
Cover Using MODIS, ASAR and TanDEM-X/TerraSAR-X Data. Remote Sens. Environ. 2015, 164, 282–297. [CrossRef]

113. Lopes, M.; Frison, P.-L.; Durant, S.M.; Schulte to Bühne, H.; Ipavec, A.; Lapeyre, V.; Pettorelli, N. Combining Optical and Radar
Satellite Image Time Series to Map Natural Vegetation: Savannas as an Example. Remote Sens. Ecol. Conserv. 2020, 6, 316–326.
[CrossRef]

114. Sano, E.E.; Ferreira, L.G.; Huete, A.R. Synthetic Aperture Radar (L Band) and Optical Vegetation Indices for Discriminating the
Brazilian Savanna Physiognomies: A Comparative Analysis. Earth Interact. 2005, 9, 1–15. [CrossRef]

115. Boggs, G.S. Assessment of SPOT 5 and QuickBird Remotely Sensed Imagery for Mapping Tree Cover in Savannas. Int. J. Appl.
Earth Obs. Geoinf. 2010, 12, 217–224. [CrossRef]

116. Morton, D.C.; DeFries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; del Bon Espírito-Santo, F.; Hansen, M.; Carroll, M. Rapid
Assessment of Annual Deforestation in the Brazilian Amazon Using MODIS Data. Earth Interact. 2009, 9, 1–22. [CrossRef]

117. Shimabukuro, Y.E.; Arai, E.; Duarte, V.; Dutra, A.C.; Cassol, H.L.G.; Sano, E.E.; Hoffmann, T.B. Discriminating Land Use and
Land Cover Classes in Brazil Based on the Annual PROBA-V 100 m Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2020, 13, 3409–3420. [CrossRef]

118. de Souza Mendes, F.; Baron, D.; Gerold, G.; Liesenberg, V.; Erasmi, S. Optical and SAR Remote Sensing Synergism for Mapping
Vegetation Types in the Endangered Cerrado/Amazon Ecotone of Nova Mutum—Mato Grosso. Remote Sens. 2019, 11, 1161.
[CrossRef]

119. Brandt, M.; Verger, A.; Diouf, A.A.; Baret, F.; Samimi, C. Local Vegetation Trends in the Sahel of Mali and Senegal Using Long
Time Series FAPAR Satellite Products and Field Measurement (1982–2010). Remote Sens. 2014, 6, 2408–2434. [CrossRef]

120. Gómez, C.; White, J.C.; Wulder, M.A. Optical Remotely Sensed Time Series Data for Land Cover Classification: A Review. ISPRS
J. Photogramm. Remote Sens. 2016, 116, 55–72. [CrossRef]

121. Knauer, K.; Gessner, U.; Dech, S.; Kuenzer, C. Remote Sensing of Vegetation Dynamics in West Africa. Int. J. Remote Sens. 2014, 35,
6357–6396. [CrossRef]

122. Kulkarni, S.C.; Rege, P.P. Pixel Level Fusion Techniques for SAR and Optical Images: A Review. Inf. Fusion 2020, 59, 13–29.
[CrossRef]

123. Borges, J.; Higginbottom, T.P.; Symeonakis, E.; Jones, M. Sentinel-1 and Sentinel-2 Data for Savannah Land Cover Mapping:
Optimising the Combination of Sensors and Seasons. Remote Sens. 2020, 12, 3862. [CrossRef]

124. Hubert-Moy, L.; Cotonnec, A.; le Du, L.; Chardin, A.; Perez, P. A Comparison of Parametric Classification Procedures of Remotely
Sensed Data Applied on Different Landscape Units. Remote Sens. Environ. 2001, 75, 174–187. [CrossRef]

125. Peng, J.; Zhou, Y.; Chen, C.L.P. Region-Kernel-Based Support Vector Machines for Hyperspectral Image Classification. IEEE Trans.
Geosci. Remote Sens. 2015, 53, 4810–4824. [CrossRef]

126. Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global Land Cover Classification at 1 Km Spatial Resolution Using a
Classification Tree Approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [CrossRef]

127. Tong, X.; Brandt, M.; Hiernaux, P.; Herrmann, S.M.; Tian, F.; Prishchepov, A.V.; Fensholt, R. Revisiting the Coupling between
NDVI Trends and Cropland Changes in the Sahel Drylands: A Case Study in Western Niger. Remote Sens. Environ. 2017, 191,
286–296. [CrossRef]

128. Scanlon, T.M.; Albertson, J.D.; Caylor, K.K.; Williams, C.A. Determining Land Surface Fractional Cover from NDVI and Rainfall
Time Series for a Savanna Ecosystem. Remote Sens. Environ. 2002, 82, 376–388. [CrossRef]

http://doi.org/10.1016/j.rse.2013.10.019
http://doi.org/10.1016/j.jaridenv.2012.03.005
http://doi.org/10.3390/rs12223817
http://doi.org/10.1016/j.rse.2012.06.005
http://doi.org/10.1080/01431160010019652
http://doi.org/10.1016/j.isprsjprs.2013.09.009
http://doi.org/10.1016/j.rse.2018.06.044
http://doi.org/10.1016/j.jag.2014.08.007
http://doi.org/10.1016/j.isprsjprs.2018.02.010
http://doi.org/10.1016/j.rse.2015.03.029
http://doi.org/10.1002/rse2.139
http://doi.org/10.1175/EI117.1
http://doi.org/10.1016/j.jag.2009.11.001
http://doi.org/10.1175/EI139.1
http://doi.org/10.1109/JSTARS.2020.2994893
http://doi.org/10.3390/rs11101161
http://doi.org/10.3390/rs6032408
http://doi.org/10.1016/j.isprsjprs.2016.03.008
http://doi.org/10.1080/01431161.2014.954062
http://doi.org/10.1016/j.inffus.2020.01.003
http://doi.org/10.3390/rs12233862
http://doi.org/10.1016/S0034-4257(00)00165-6
http://doi.org/10.1109/TGRS.2015.2410991
http://doi.org/10.1080/014311600210209
http://doi.org/10.1016/j.rse.2017.01.030
http://doi.org/10.1016/S0034-4257(02)00054-8


Remote Sens. 2021, 13, 3870 27 of 28

129. Mbatha, N.; Xulu, S. Time Series Analysis of MODIS-Derived NDVI for the Hluhluwe-Imfolozi Park, South Africa: Impact of
Recent Intense Drought. Climate 2018, 6, 95. [CrossRef]

130. Cho, M.A.; Ramoelo, A. Optimal Dates for Assessing Long-Term Changes in Tree-Cover in the Semi-Arid Biomes of South Africa
Using MODIS NDVI Time Series (2001–2018). Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 27–36. [CrossRef]

131. Levick, S.R.; Rogers, K.H. Context-Dependent Vegetation Dynamics in an African Savanna. Landsc. Ecol. 2011, 26, 515–528.
[CrossRef]

132. Blentlinger, L.; Herrero, H.V. A Tale of Grass and Trees: Characterizing Vegetation Change in Payne’s Creek National Park, Belize
from 1975 to 2019. Appl. Sci. 2020, 10, 4356. [CrossRef]

133. Abade, N.A.; de Carvalho Júnior, O.A.; Fontes Guimaräes, R.; Nunes De Oliveira, S. Comparative Analysis of MODIS Time-Series
Classification Using Support Vector Machines and Methods Based upon Distance and Similarity Measures in the Brazilian
Cerrado-Caatinga Boundary. Remote Sens. 2015, 7, 12160–12191. [CrossRef]

134. Bueno, I.T.; Acerbi Júnior, F.W.; Silveira, E.M.O.; Mello, J.M.; Carvalho, L.M.T.; Gomide, L.R.; Withey, K.; Scolforo, J.R.S.
Object-Based Change Detection in the Cerrado Biome Using Landsat Time Series. Remote Sens. 2019, 11, 570. [CrossRef]

135. Hill, M.J.; Zhou, Q.; Sun, Q.; Schaaf, C.B.; Palace, M. Relationships between Vegetation Indices, Fractional Cover Retrievals and
the Structure and Composition of Brazilian Cerrado Natural Vegetation. Int. J. Remote Sens. 2017, 38, 874–905. [CrossRef]

136. Amaral, C.H.; Roberts, D.A.; Almeida, T.I.R.; Souza Filho, C.R. Mapping Invasive Species and Spectral Mixture Relationships
with Neotropical Woody Formations in Southeastern Brazil. ISPRS J. Photogramm. Remote Sens. 2015, 108, 80–93. [CrossRef]

137. de Carvalho, O.A.; Bloise, C.P.L.; de Carvalho, A.P.F.; Guimaraes, R.F.; de Souza Martins, E. Spectral Mixture Analysis of ASTER
Image in Brazilian Savanna. In Proceedings of the IGARSS 2003 IEEE International Geoscience and Remote Sensing Symposium;
Proceedings (IEEE Cat. No.03CH37477); IEEE: Piscataway, NJ, USA, 2003; Volume 5, pp. 3234–3236.

138. Sano, E.E.; Ferreira, L.G.; Asner, G.P.; Steinke, E.T. Spatial and Temporal Probabilities of Obtaining Cloud-free Landsat Images
over the Brazilian Tropical Savanna. Int. J. Remote Sens. 2007, 28, 2739–2752. [CrossRef]

139. Müller, H.; Rufin, P.; Griffiths, P.; Barros Siqueira, A.J.; Hostert, P. Mining Dense Landsat Time Series for Separating Cropland and
Pasture in a Heterogeneous Brazilian Savanna Landscape. Remote Sens. Environ. 2015, 156, 490–499. [CrossRef]

140. Bendini, H.N.; Fonseca, L.M.G.; Schwieder, M.; Rufin, P.; Korting, T.S.; Koumrouyan, A.; Hostert, P. Combining Environmental
and Landsat Analysis Ready Data for Vegetation Mapping: A Case Study in the Brazilian Savanna Biome. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2020, XLIII-B3-2020, 953–960. [CrossRef]

141. Pereira, A.A.; Pereira, J.M.C.; Libonati, R.; Oom, D.; Setzer, A.W.; Morelli, F.; Machado-Silva, F.; de Carvalho, L.M.T. Burned Area
Mapping in the Brazilian Savanna Using a One-Class Support Vector Machine Trained by Active Fires. Remote Sens. 2017, 9, 1161.
[CrossRef]

142. Adams, J.B.; Sabol, D.E.; Kapos, V.; Almeida Filho, R.; Roberts, D.A.; Smith, M.O.; Gillespie, A.R. Classification of Multispectral
Images Based on Fractions of Endmembers: Application to Land-Cover Change in the Brazilian Amazon. Remote Sens. Environ.
1995, 52, 137–154. [CrossRef]

143. Alencar, A.; Shimbo, Z.J.; Lenti, F.; Balzani Marques, C.; Zimbres, B.; Rosa, M.; Arruda, V.; Castro, I.; Fernandes Márcico Ribeiro,
J.P.; Varela, V.; et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data
Processed in the Google Earth Engine Platform. Remote Sens. 2020, 12, 924. [CrossRef]

144. Borini Alves, D.; Montorio Llovería, R.; Pérez-Cabello, F.; Vlassova, L. Fusing Landsat and MODIS Data to Retrieve Multispectral
Information from Fire-Affected Areas over Tropical Savannah Environments in the Brazilian Amazon. Int. J. Remote Sens. 2018,
39, 7919–7941. [CrossRef]

145. Parente, L.; Ferreira, L. Assessing the Spatial and Occupation Dynamics of the Brazilian Pasturelands Based on the Automated
Classification of MODIS Images from 2000 to 2016. Remote Sens. 2018, 10, 606. [CrossRef]

146. Ferreira, L.G.; Fernandez, L.E.; Sano, E.E.; Field, C.; Sousa, S.B.; Arantes, A.E.; Araújo, F.M. Biophysical Properties of Cultivated
Pastures in the Brazilian Savanna Biome: An Analysis in the Spatial-Temporal Domains Based on Ground and Satellite Data.
Remote Sens. 2013, 5, 307–326. [CrossRef]

147. Traore, S.S.; Landmann, T.; Forkuo, E.K.; Traore, P.S. Assessing Long-Term Trends in Vegetation Productivity Change Over the
Bani River Basin in Mali (West Africa). J. Geogr. Earth Sci. 2014, 2, 21–34. [CrossRef]

148. Hill, M.J.; Zhou, Q.; Sun, Q.; Schaaf, C.B.; Southworth, J.; Mishra, N.B.; Gibbes, C.; Bunting, E.; Christiansen, T.B.; Crews, K.A.
Dynamics of the Relationship between NDVI and SWIR32 Vegetation Indices in Southern Africa: Implications for Retrieval of
Fractional Cover from MODIS Data. Int. J. Remote Sens. 2016, 37, 1476–1503. [CrossRef]

149. Bunting, E.L.; Southworth, J.; Herrero, H.; Ryan, S.J.; Waylen, P. Understanding Long-Term Savanna Vegetation Persistence across
Three Drainage Basins in Southern Africa. Remote Sens. 2018, 10, 1013. [CrossRef]

150. Bucini, G.; Saatchi, S.; Hanan, N.; Boone, R.B.; Smit, I. Woody Cover and Heterogeneity in the Savannas of the Kruger National
Park, South Africa. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town,
South Africa, 12–17 July 2009; Volume 4, pp. IV-334–IV–337.

151. de Lemos, H.; Verstraete, M.M.; Scholes, M. Parametric Models to Characterize the Phenology of the Lowveld Savanna at
Skukuza, South Africa. Remote Sens. 2020, 12, 3927. [CrossRef]

152. Jin, C.; Xiao, X.; Merbold, L.; Arneth, A.; Veenendaal, E.; Kutsch, W.L. Phenology and Gross Primary Production of Two Dominant
Savanna Woodland Ecosystems in Southern Africa. Remote Sens. Environ. 2013, 135, 189–201. [CrossRef]

http://doi.org/10.3390/cli6040095
http://doi.org/10.1016/j.jag.2019.05.014
http://doi.org/10.1007/s10980-011-9578-2
http://doi.org/10.3390/app10124356
http://doi.org/10.3390/rs70912160
http://doi.org/10.3390/rs11050570
http://doi.org/10.1080/01431161.2016.1271959
http://doi.org/10.1016/j.isprsjprs.2015.06.009
http://doi.org/10.1080/01431160600981517
http://doi.org/10.1016/j.rse.2014.10.014
http://doi.org/10.5194/isprs-archives-XLIII-B3-2020-953-2020
http://doi.org/10.3390/rs9111161
http://doi.org/10.1016/0034-4257(94)00098-8
http://doi.org/10.3390/rs12060924
http://doi.org/10.1080/01431161.2018.1479790
http://doi.org/10.3390/rs10040606
http://doi.org/10.3390/rs5010307
http://doi.org/10.15640/jges.v2n2a2
http://doi.org/10.1080/01431161.2016.1154225
http://doi.org/10.3390/rs10071013
http://doi.org/10.3390/rs12233927
http://doi.org/10.1016/j.rse.2013.03.033


Remote Sens. 2021, 13, 3870 28 of 28

153. Higginbottom, T.P.; Symeonakis, E. Identifying Ecosystem Function Shifts in Africa Using Breakpoint Analysis of Long-Term
NDVI and RUE Data. Remote Sens. 2020, 12, 1894. [CrossRef]

154. Ludwig, M.; Morgenthal, T.; Detsch, F.; Higginbottom, T.P.; Lezama Valdes, M.; Nauß, T.; Meyer, H. Machine Learning and
Multi-Sensor Based Modelling of Woody Vegetation in the Molopo Area, South Africa. Remote Sens. Environ. 2019, 222, 195–203.
[CrossRef]

155. Dubovyk, O.; Landmann, T.; Erasmus, B.F.N.; Tewes, A.; Schellberg, J. Monitoring Vegetation Dynamics with Medium Resolution
MODIS-EVI Time Series at Sub-Regional Scale in Southern Africa. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 175–183. [CrossRef]

156. Forkuor, G.; Conrad, C.; Thiel, M.; Zoungrana, B.J.-B.; Tondoh, J.E. Multiscale Remote Sensing to Map the Spatial Distribution
and Extent of Cropland in the Sudanian Savanna of West Africa. Remote Sens. 2017, 9, 839. [CrossRef]

157. Campo-Bescós, M.A.; Muñoz-Carpena, R.; Southworth, J.; Zhu, L.; Waylen, P.R.; Bunting, E. Combined Spatial and Temporal
Effects of Environmental Controls on Long-Term Monthly NDVI in the Southern Africa Savanna. Remote Sens. 2013, 5, 6513–6538.
[CrossRef]

158. Wessels, K.J.; Prince, S.D.; Zambatis, N.; MacFadyen, S.; Frost, P.E.; van Zyl, D. Relationship between Herbaceous Biomass and
1-km2 Advanced Very High Resolution Radiometer (AVHRR) NDVI in Kruger National Park, South Africa. Int. J. Remote Sens.
2006, 27, 951–973. [CrossRef]

159. Murungweni, F.M.; Mutanga, O.; Odiyo, J.O. Rainfall Trend and Its Relationship with Normalized Difference Vegetation Index in
a Restored Semi-Arid Wetland of South Africa. Sustainability 2020, 12, 8919. [CrossRef]

160. Vermeulen, L.M.; Munch, Z.; Palmer, A. Fractional Vegetation Cover Estimation in Southern African Rangelands Using Spectral
Mixture Analysis and Google Earth Engine. Comput. Electron. Agric. 2021, 182, 105980. [CrossRef]

161. Cho, M.A.; Mathieu, R.; Asner, G.P.; Naidoo, L.; van Aardt, J.; Ramoelo, A.; Debba, P.; Wessels, K.; Main, R.; Smit, I.P.J.; et al.
Mapping Tree Species Composition in South African Savannas Using an Integrated Airborne Spectral and LiDAR System. Remote
Sens. Environ. 2012, 125, 214–226. [CrossRef]

162. Shekede, M.D.; Mupandira, I.; Gwitira, I. Spatio-Temporal Clustering of Active Wildfire Pixels over a 19-Year Period in a Southern
African Savanna Ecosystem of Zimbabwe. South Afr. Geogr. J. 2020, 1–20. [CrossRef]

163. Cho, M.A.; Ramoelo, A.; Dziba, L. Response of Land Surface Phenology to Variation in Tree Cover during Green-Up and
Senescence Periods in the Semi-Arid Savanna of Southern Africa. Remote Sens. 2017, 9, 689. [CrossRef]

164. Ibrahim, S.; Balzter, H.; Tansey, K.; Tsutsumida, N.; Mathieu, R. Estimating Fractional Cover of Plant Functional Types in African
Savannah from Harmonic Analysis of MODIS Time-Series Data. Int. J. Remote Sens. 2018, 39, 2718–2745. [CrossRef]

165. Awuah, K.T.; Aplin, P.; Marston, C.G.; Powell, I.; Smit, I.P.J. Probabilistic Mapping and Spatial Pattern Analysis of Grazing Lawns
in Southern African Savannahs Using WorldView-3 Imagery and Machine Learning Techniques. Remote Sens. 2020, 12, 3357.
[CrossRef]

166. Mathieu, R.; Naidoo, L.; Cho, M.A.; Leblon, B.; Main, R.; Wessels, K.; Asner, G.P.; Buckley, J.; van Aardt, J.; Erasmus, B.F.N.; et al.
Toward Structural Assessment of Semi-Arid African Savannahs and Woodlands: The Potential of Multitemporal Polarimetric
RADARSAT-2 Fine Beam Images. Remote Sens. Environ. 2013, 138, 215–231. [CrossRef]

167. Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967.
[CrossRef]

168. Camargo, F.F.; Sano, E.E.; Almeida, C.M.; Mura, J.C.; Almeida, T. A Comparative Assessment of Machine-Learning Techniques
for Land Use and Land Cover Classification of the Brazilian Tropical Savanna Using ALOS-2/PALSAR-2 Polarimetric Images.
Remote Sens. 2019, 11, 1600. [CrossRef]

169. Torres, R.; Davidson, M. Overview of Copernicus SAR Space Component and Its Evolution. In Proceedings of the IGARSS 2019-
2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5381–5384.

170. Schmidt, M.; Udelhoven, T.; Röder, A.; Gill, T.K. Long Term Data Fusion for a Dense Time Series Analysis with MODIS and
Landsat Imagery in an Australian Savanna. J. Appl. Remote Sens. 2012, 6, 1–19. [CrossRef]

171. DiMiceli, C.; Townshend, J.; Carroll, M.; Sohlberg, R. Evolution of the Representation of Global Vegetation by Vegetation
Continuous Fields. Remote Sens. Environ. 2021, 254, 112271. [CrossRef]

http://doi.org/10.3390/rs12111894
http://doi.org/10.1016/j.rse.2018.12.019
http://doi.org/10.1016/j.jag.2015.01.002
http://doi.org/10.3390/rs9080839
http://doi.org/10.3390/rs5126513
http://doi.org/10.1080/01431160500169098
http://doi.org/10.3390/su12218919
http://doi.org/10.1016/j.compag.2020.105980
http://doi.org/10.1016/j.rse.2012.07.010
http://doi.org/10.1080/03736245.2020.1786442
http://doi.org/10.3390/rs9070689
http://doi.org/10.1080/01431161.2018.1430914
http://doi.org/10.3390/rs12203357
http://doi.org/10.1016/j.rse.2013.07.011
http://doi.org/10.3390/rs9090967
http://doi.org/10.3390/rs11131600
http://doi.org/10.1117/1.JRS.6.063512
http://doi.org/10.1016/j.rse.2020.112271

	Introduction 
	Review Methodology 
	Results 
	Geographic and Spatial Scale 
	Estimated Mixed-Pixel Parameters 
	Type of Earth Observation Data Used 
	Methods Used for Estimation of Mixed Pixel Parameters 
	Temporal Characteristics of the EO Input Data 
	Accuracy and Validation of the Reviewed Publications 

	Discussion 
	Geographic Patterns of Spatio-Temporal Mixed Pixel Analysis in the Savannas 
	The Use of EO Technology for Spatio-Temporal Mixed Pixel Analysis in Savannas 
	Future Outlook 

	Conclusions 
	References

