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SUMMARY 

Urban expansion is the most pervasive form of land cover change in South Africa. A method that 

can effectively detect and indicate areas that have a higher probability of displaying urban change 

will therefore be a valuable asset to analysts. That is why it is critical to derive a rapid framework 

that can accurately map urban change. An alternative remote sensing approach that uses multi-

temporal time series data and deep learning techniques has been proposed as a potential method 

for performing a successful urban change detection. The interdisciplinary scientific field of 

computer vision holds a framework for encoding time-series data as two-dimensional (2D) images 

for input to a convolution neural network (CNN). 

Traditional image classifications techniques and more recent studies that have deployed machine 

learning and deep learning classifiers (namely support vector machine (SVM), random forest 

(RF), k-nearest neighbour (kNN), long short-term memory (LSTM) and CNN) have been used for 

urban land cover classification. In this study, a unique framework proposed within computer vision 

that exploits Gramian angular fields (GAF) and Markov transition fields (MTF) as the 

transformations for encoding time series data as 2D imagery prior to deep learning classification 

is investigated for urban change detection. 

Two main experiments were carried out, both of which utilised the proposed framework for 

performing an effective urban change detection. The first experiment used coarse resolution data 

derived from Pretoria using MODIS 500m and 250m normalised difference vegetation index 

(NDVI). The proposed framework was then deployed, and Gramian angular summation field 

(GASF), Gramian angular difference field (GADF), and MTF transformations used to encode the 

time series data. A concatenated encoded image containing the information from all three 

transformations was formed and was run alongside the three individual transformations. Multiple 

pre-trained CNN architectures (namely ResNet, DenseNet, InceptionV3, InceptionResNetV2, 

VGG and MobileNet) were used, from which an urban change detection was derived. It was 

established that the concatenated images yielded the highest accuracy at 91% and 93% for the 

500m and 250m resolution datasets, respectively. The proposed framework was compared to a 

current state-of-the-art time series classifier (LSTM) to illustrate the effectiveness of encoding and 

processing deep learning classifiers. The results also outperformed that of other urban change 

detections studies conducted in South Africa.  

The second experiment made use of higher resolution Sentinel-2 data derived from a resampled 

30m resolution NDVI product of Pretoria. Several investigations were made into the influencing 

elements that affect the performance of the urban change detection. These were the spatial and 

temporal resolutions, training data size and different classification schemes. Using the proposed 
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framework from the first experiment, the spatial and temporal resolutions were tested. The results 

showed that an increase in spatial or temporal resolution will have a positive effect on the 

performance. The 30m resolution dataset yielded a 4% increase over the 250m resolution data 

tested in the first experiment. Altering the time-series length (TSL) from 32 to 82, the accuracy 

increased from 96% to 98%, respectively. It was also illustrated that by increasing the amount of 

training data, one could improve the performance of the change detection. Multiple classifications 

were performed, and the accuracy assessed using a confusion matrix. It was established that a 

70%+ minimum pixel probability and the majority ensemble classifier performed the best. The 

frameworks generalisability was tested at three different locations (Durban, Gqeberha, and 

Khayelitsha), and was able to generalise using the Durban dataset. However, the models were 

unable to generalise using the Gqeberha, and Khayelitsha datasets due to the diverse ecological 

and climatic properties.  

The experiments showed that deploying a computer vision framework of encoding multi-temporal 

time series data as two-dimensional images for an urban change detection using CNN 

classifications is, in fact possible, and proved to be one of the most effective urban change 

detection methods performed in South Africa. However, it is recommended that further research 

deploys a signature extension approach for training the models in order to improve the 

generalisability. Additional research into using Landsat8 and increased TSL datasets is also 

recommended. 
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OPSOMMING 

Stedelike uitbreiding is die heersende vorm van grondbedekkingsverandering in Suid-Afrika. 'n 

Metode om gebiede met 'n groter waarskynlikheid van stedelike veranderinge te toon of effektief 

te kan kan opspoor en aandui, sal 'n waardevolle bate vir ontleders wees. Daarom is dit van kritieke 

belang om 'n minder tydrowende raamwerk op te stel wat stedelike verandering akkuraat kan 

karteer. 'n Alternatiewe afstandswaarnemingsbenadering wat multi-temporale tydreeksdata en 

diepleertegnieke gebruik, word voorgestel as 'n moontlike metode vir suksesvolle opsporing van 

stedelike veranderinge. Die interdissiplinêre wetenskaplike veld van rekenaarvisie bevat 'n 

raamwerk vir die kodering van tydreeksdata as tweedimensionele beelde wat as invoer dien vir 'n 

konvolusionele neurale netwerk (CNN). 

Tradisionele beeldklassifikasietegnieke en meer onlangse studies wat masjienleer- en 

diepleerklassifiseerders (naamlik ondersteuningsvektormasjien (SVM), ewekansige woud (RF), k-

naaste buurtklassifiseerder (kNN), lang-kort-termyn-geheue (LSTM) en CNN) word dikwels 

gebruik vir klassifikasie van stedelike grondbedekkings.  In hierdie studie word 'n unieke 

raamwerk voorgestel wat binne rekenaarvisie ontwikkel is wat Gramian-hoekvelde (GAF) en 

Markov-oorgangsvelde (MTF) benut as ‘n transformasie in die kodering van tydreeksdata as 

tweedimensionele beelde voordat diepleerklassifikasie ondersoek word vir die opsporing van 

stedelike veranderinge . 

Twee eksperimente is uitgevoer, wat beide die voorgestelde raamwerk gebruik het vir opsporing 

van stedelike veranderinge. Die eerste eksperiment het gegewens gebruik van growwe resolusie 

wat uit Pretoria verkry is, met behulp van MODIS 500m en 250m genormaliseerde verskil 

plantegroei-indeks (NDVI) data. Die voorgestelde raamwerk is daarna ontplooi deur Gramian 

hoeksomvelde (GASF), Gramian hoekverskilvelde (GADF) en MTF transformasies te gebruik om 

die tydreeksdata te kodeer. 'n Saamgevoegde gekodeerde beeld wat al drie transformasies bevat, 

is gemaak en saam met die drie individuele transformasies analiseer. Veelvuldige vooraf-opgeleide 

CNN-argitekture (naamlik ResNet, DenseNet, InceptionV3, InceptionResNetV2, VGG en 

MobileNet) is gebruik, waaruit die stedelike verandering afgelei is. Daar is vasgestel dat die 

saamgevoegde beelde die hoogste akkuraatheid gelewer het met 91% en 93% vir die datastelle van 

onderskeidelik 500m en 250m. Die voorgestelde raamwerk is vergelyk met 'n huidige moderne 

tydreeksklassifiseerder (LSTM) om die doeltreffendheid van kodering en verwerking van 'n 

diepleerklassifiseerder te illustreer. Die resultate was ook beter as dié van ander stedelike 

veranderingstudies in Suid-Afrika. 

Die tweede eksperiment het gebruik gemaak van Sentinel-2-data met 'n hoër resolusie, ook afgelei 

van 'n NDVI-produk vir Pretoria, verwerk na 30m. Verskeie ondersoeke is gedoen om vas te stel 
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wat die faktore is wat die akkuraatheid van die opsporing van stedelike verandering beïnvloed, 

byvoorbeeld, die ruimtelike en temporale resolusies, die grootte van die opleidingsdata en 

verskillende klassifikasie skemas. Met behulp van die voorgestelde raamwerk van die eerste 

eksperiment, is die effek van ruimtelike en temporale resolusies getoets. Die resultate het getoon 

dat 'n toename in ruimtelike of temporale resolusie 'n positiewe uitwerking op die akkuraatheid sal 

hê. Die datastel met 'n resolusie van 30m het 'n toename van 4% opgelewer in vergelyking met die 

resolusiedata van 250m wat in die eerste eksperiment getoets is. Deur die tydreekslengte (TSL) 

van 32 na 82 te verander, het die akkuraatheid toegeneem van 96% tot 98%. Die studie het ook 

aangedui dat die akkuraatheid van veranderingopsporing sou verbeter kon word deur die 

hoeveelheid opleidingsdata te vermeerder. Veelvuldige klassifikasie skemas is uitgevoer en die 

akkuraatheid met behulp van 'n verwarringsmatriks getoets. Daar is vasgestel dat 'n 70%+ 

minimum pixelwaarskynlikheid en die meerderheidsensemble-klassifiseerder die beste gevaar het. 

Die veralgemeenbaarheid van die raamwerke is op drie verskillende plekke (Durban, Gqeberha en 

Khayelitsha) getoets, maar kon slegs in Durban veralgemeen word. Die modelle kon nie stedelike 

verandering met Gqeberha- en Khayelitsha -datastelle optel nie weens die uiteenlopende 

ekologiese en klimaatseienskappe. 

Die eksperimente het getoon dat die implementering van 'n rekenaarvisie raamwerk vir die 

kodering van multi-temporale tydreeksdata as tweedimensionele beelde vir die opsporing van 

stedelike veranderinge met behulp van CNN-klassifikasies in werklikheid moontlik is en een van 

die mees doeltreffende opsporingstegnieke vir stedelike veranderinge in Suid-Afrika kan wees. 

Dit word egter aanbeveel dat verdere navorsing 'n uitbreidingsbenadering gebruik vir die 

opleidingsdata vir die modelle om die veralgemenbaarheid te verbeter. Bykomende navorsing oor 

die gebruik van Landsat8 en verhoogde TSL-datastelle word ook aanbeveel. 
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CHAPTER 1:  INTRODUCTION 

1.1 BACKGROUND 

Informal settlements are growing at alarming rates as people move closer to cities for potential 

employment opportunities due to economic or environmental factors. The complex socio-

economic process of urbanisation has altered the global distribution of population in urban and 

rural areas (UN 2018). Urbanisation has increased at a rapid rate over the past 50 years. Between 

1950 and 2018, movement from rural to urban areas has risen by 25% and a predicted further 13% 

increase reaching a global urban total population of 68% by 2050 (UN 2018). Over 90% of the 

economic growth and activity occur in urban areas (Li, Gong & Liang 2015). It is then 

understandable that rural-urban migration is widely spread (Lopez, Shimoni & Grippa 2017). 

Despite all the economic benefits of urbanisation and the increase in urban activity, significant air 

pollution, congestion, and food security arise (Zhou, Li & Pan 2018). The change in land cover 

and land use caused by urbanisation has amplified the heat island effect. It is causing irreversible 

changes to ecosystems (Sinha, Santra & Mitra 2018), increasing surface temperature and affecting 

net ecosystem carbon exchange, compounding the effects of climate change. The climate change 

worsens the current vulnerabilities such as vector-borne diseases (dengue fever and malaria) as 

well as water-borne diseases (dysentery and cholera) and, in addition, adds to the pressure on the 

environment (Bryan et al. 2009). South Africa is a developing country and has increased carbon 

emissions (Bryan et al. 2009). Continuous research into climate change and the carbon cycle in 

South Africa and urban planning will require timely land cover data (Gong, Li & Zhang 2019; Liu 

et al. 2018). 

In Third World countries like South Africa, human settlement expansion is one of the most 

pervasive forms of land cover change (Kleynhans et al. 2012; Kleynhans, Salmon & Wessels 

2017). The expansion of human settlements is more often unplanned and informal. Settlements 

categorised as “informal” are frequently expanding and encroaching on land previously covered 

by natural vegetation (Kleynhans et al. 2013). These newly developed informal settlements occur 

in random unplanned locations and do not provide essential services such as electricity, refuse 

removal, water-based sewage or running water (Kleynhans et al. 2015). The informal manner in 

which these settlements are developed primarily results in unplanned layouts (Palframan 2005). 

According to the United Nations (UN 2018) study, South Africa needs to be empowered to plan, 

develop, implement, and maintain human settlements. 

Therefore, the ability to detect informal settlements is critical for the detailed mapping of these 

areas to provide local municipalities and regional governments with the correct data. A regular 
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update on land cover change is precious for urban planning. This data can accommodate newly 

expanded areas during the planning and help to get essential services into recently developed 

informal settlements. Remote sensing and, in particular, a time series of satellite data have proven 

to be an effective way to monitor and track land cover changes (De Beurs & Henebry 2005; Lu et 

al. 2004; Verbesselt, Hyndman, Newnham, et al. 2010). 

Change detection, using remote sensing (RS) and geographical information systems (GIS), is a 

well-established method for understanding the alteration of an area over some time. The process 

of digital change detection assists in determining alterations associated with applications such as 

land cover change and settlement expansion. In remote sensing, multiple techniques are used to 

perform change detection (Lu et al. 2004), including the algebra method, transformation, 

classification, advanced models and visual interpretation (Lu et al. 2004). The post-classification 

approach for change detection has been used for many years and is an effective method 

(Tewkesbury et al. 2015). Researchers have used this method to investigate change detection for 

human settlement expansion around the world. In South Africa, both temporal and spatiotemporal 

autocorrelation analysis have been used with great success for human settlement detection and 

change analysis (Kleynhans et al. 2013; Kleynhans et al. 2012; Kleynhans, Salmon & Wessels 

2017).  

1.2 REMOTE SENSING 

Image classification is when pixels are assigned to a specific class using various methods 

(Campbell & Wynne 2011). Pixel-based classification identifies the pixels as individual units and 

proceeds with classification using each pixel’s spectral value (Campbell & Wynne 2011). In recent 

findings, machine learning (ML) algorithms have proven more effective than the traditional 

methods of image classification (Maxwell, Warner & Fang 2018). These algorithms can learn and 

improve automatically through experience (Maxwell, Warner & Fang 2018). One type of ML 

focuses on using a supervised learning approach for classification (Michalski, Carbonell & 

Mitchell 2013; Zhang 2020). The computer program and algorithm learn from the input training 

data to make new classified observations of unseen testing data (Camps-Valls 2009). A few ML 

classifiers that are currently being used are support vector machine (SVM), decision tree (DT), 

random forest (RF), nearest neighbour and neural network (NN) (Michalski, Carbonell & Mitchell 

2013; Zhang 2020). 

Li, Gong & Liang (2015) successfully built a classification framework to determine annual urban 

dynamics. They incorporated the normalised difference vegetation index (NDVI) in the 

classification scheme and applied a spatiotemporal filter to check for consistency. Using the RF as 

their primary classifier, they achieved high accuracies of 90%, 87%, 85% and 88.5% for the initial 
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classifications and increased these accuracies after temporal filtering. Zhou, Li & Pan (2018) 

demonstrated how RF can be used to accurately classify urban land cover in downtown Suzhou, 

China using multi-sensor data from both Landsat-8 OLI and Hyperion along with Sentinel-1A 

data. This is supported by Celik (2018), who showed that the RF classification technique could be 

used for an urban change detection. 

In addition to the classification approach, autocorrelation analysis has also proven to be an 

effective technique used for change detection. Autocorrelation analysis is the degree of correlation 

of the values with a delayed copy; this is seen as a delay function (Kleynhans, Salmon & Wessels 

2017). Using the observation, it is the similarity between the time lag (Kleynhans, Salmon & 

Wessels 2017). First piloted by Kleynhans et al. (2012) in Gauteng, South Africa, new human 

settlements were detected from 500 m moderate resolution imaging spectroradiometer (MODIS) 

time-series data through the use of a temporal autocorrelation function (ACF) and optimised 

thresholding. By adapting the thresholds based on the change properties of neighbouring pixels, 

Kleynhans et al. (2013) increased the accuracy of the change detection from 88% to 91% and 

decreased the false alarm rate (FAR) from 15% to 5%. The performance of this new spatio-

temporal ACF change detection (STACD) method was further improved by modifying the change 

index (Kleynhans et al. 2015) to yield a 17% increase in accuracy and a 1% FAR (Kleynhans et 

al. 2015). Kleynhans, Salmon and Wessels (2017) developed a novel framework for parameter 

selection for the STACD method. They compared the results using different sampling frequencies 

such as daily, eight-daily, monthly, two-monthly, quarterly and semi-annually. They concluded 

that both the FAR for the daily and two-monthly data sets were nearly identical at 1% and that 

there was little performance difference between the two datasets (Kleynhans, Salmon & Wessels 

2017). 

1.3 DEEP LEARNING 

Within the field of deep learning (DL), which is a broader part of ML premised on the methods 

using artificial neural networks (ANN), we find the concept of the convolutional neural network 

(CNN) (Stoian et al. 2019). Although DL has shown to be effective, it requires large amounts of 

training data to achieve high accuracy. When using time-series datasets, building a predictive 

model can prove challenging. Neural networks are challenging to train, which is why pre-trained 

models exist (Stoian et al. 2019). 

Mboga et al. (2017) classified informal settlements using CNN, they built the CNN using a 

combination of spatial feature learning hyperparameters and training hyperparameters. They built 

the CNNs with eight convolutional layers and made layers 2, 3, and 4 fully connected. The SVM 

set the baseline classification at 68.84%, and all the CNNs (1-6) outperformed the SVM with 

Stellenbosch University https://scholar.sun.ac.za



4 

accuracies ranging from 86.32% to 91.53%. They proved that DL algorithms such as CNN can be 

used for practical classifications of informal human settlements.  

Stoian et al. (2019) investigated the replacement of RF classifiers with fully CNN architectures in 

an operational context to identify which techniques are the most effective for operational purposes. 

They concluded that their model FG-Unet yielded improved results than pixel-based RF 

classifiers. However, this approach shows high variability in quality over the different landscapes. 

Hatami, Gavet & Debayle (2018) showed that CNN was successfully used for image recognition 

using a time-series dataset. They concluded that CNNs have a high performance on image 

classification time-series. Another comparison between RF and CNN was conducted to classify 

satellite images (Pelletier, Webb & Petitjean 2019). It was concluded that CNN could create a 

higher quality classification map than RF base methods and outperformed the RF accuracy score 

by 2%-5% (Pelletier, Webb & Petitjean 2019). 

The success of these studies show that DL classifications (CNN) are becoming the next generation 

of state-of-the-art classification approach (Chen et al. 2019; Hatami, Gavet & Debayle 2018; 

Mboga et al. 2017; Pelletier, Webb & Petitjean 2019; Stoian et al. 2019). Whereas ML is still 

effective, DL is more accurate when trained with large volumes of data. The advantage of using a 

DL classifier is that the feature engineering process aspect is simplified. The process of using 

domain knowledge to gather features from the raw data is simplified. 

1.4 COMPUTER VISION 

Research has shown the success of encoding time-series data as images for classifications through 

the use of CNN. Wang and Oates (2015) demonstrated a novel framework for encoding time-series 

data as different types of images for visual inspection followed by a classification using tiled 

CNNs. Using Gramian angular fields (GAF) and Markov transition fields (MTF) enabled 

techniques from computer vision (CV) for classification (Wang & Oates 2015), high-level features 

could be extracted from the GAF, MTF and GAF-MTF images when using a DL feature extractor 

such as a CNN (Wang & Oates 2015). Wang and Oates (2015) concluded that their approach 

yielded competitive results when compared to other state-of-the-art methods. In addition to MTF, 

Yang, Chen and Yang (2020) employed Gramian angular difference fields (GADF) and Gramian 

angular summation fields (GASF) as the transformation methods for encoding time-series data. 

These encoded images were used to evaluate the performance as well as the complexity of CNN 

architectures (Yang, Chen & Yang 2020). The encoding methodology has had limited exposure to 

RS applications. However, Dias et al. (2020) deployed GASF, GADF and MTF transformations 

of pixelwise time-series data for a Eucalyptus region classification. Ten pre-trained CNNs were 

run using the encoded images and the results were evaluated and compared. It was concluded that 
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this novel framework of encoding time-series data as two-dimensional (2D) images for multiple 

CNN classification shows great potential for other RS applications.  

A gap in the literature was identified and shows that no research has been conducted using the 

computer vision technique of encoding time-series data as 2D images for a CNN classification to 

detect human settlement expansion.  

1.5 PROBLEM STATEMENT 

Rapidly detecting informal settlements is critical for developing detailed maps of the expanding 

areas. Due to the rapid growth of urbanisation, accurate maps and regularly updated land cover 

data provide valuable information to local municipalities and regional governments for urban 

decision making and planning. Remote sensing and time-series data from satellites have proven to 

be an effective in monitoring and tracking land cover changes (De Beurs & Henebry 2005; Lu et 

al. 2004; Lunetta et al. 2006; Verbesselt, Hyndman, Newnham, et al. 2010). Human settlement 

expansion in the Gauteng province of South Africa has successfully been detected from 250 m 

resolution MODIS data (Kleynhans et al. 2013; Kleynhans et al. 2012) using a spatiotemporal 

autocorrelation change detection method. Classification of land cover data using standard ML 

algorithms such as random forest as well as more advanced DL methods (CNN) have also been 

implemented (Mboga et al. 2017; Stoian et al. 2019). DL is more accurate when trained with large 

amounts of data. The recently developed computer vision techniques allow the encoding of time-

series data through different transformation techniques before classification. Wang and Oates 

(2015) concluded that the CNN classification using their encoded images through the GAF and 

MTF transformation could yield competitive results when compared to other state-of-the-art 

methods. Dias et al. (2020) and Yang, Chen and Yang (2020) conducted studies that provided the 

findings of Wang and Oates (2015) and showed the potential of utilising the novel framework 

within an RS application.  

Despite the literature found, no apparent research has investigated the use of the computer vision 

method of encoding time-series data with a CNN classification for an urban settlement detection. 

A further gap in the literature is that there is no comparison between MODIS and Sentinel-2 data 

used for performing an urban change detection. From these apparent research gaps, the following 

research questions were formulated: 

a) How effective is encoding time-series data as 2D images for CNN classification 

within the field of RS?  

b) How valuable is the novel framework for performing an accurate urban change 

detection?  
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c) How beneficial is it to use higher resolution imagery such as Sentinel-2 over MODIS 

imagery for urban change detection?  

1.6 AIM AND OBJECTIVES 

This research aims to evaluate the potential of encoding time-series data as 2D images from 

MODIS and Sentinel-2 for an urban change detection through classification with convoluted 

neural networks.  

To achieve the research aim, the following objectives have been set: 

1) Review literature, specifically looking at urban change detections, deep learning CNN 

classifications and the novel framework of encoding time-series data. 

2) Experiment 1:  

a. Evaluate and assess the effectiveness of encoding time-series data as 2D images for 

a CNN classification. 

b. Compare the performance of the novel framework to a baseline classification 

approach using the long short-term memory (LSTM) algorithm.  

3) Experiment 2:  

a. Evaluate the effectiveness of increasing the spatial resolution of the data for the 

novel framework of encoding time-series data as 2D images. 

b. Assess the consequence of altering the temporal nature of the input time-series data.  

c. Evaluate the generalisability of the novel framework when testing with data 

gathered from three different geographical locations.  

4) Synthesise the results of the two experiments to make further recommendations for 

performing an urban change detection using computer vision techniques and the DL 

classification apparatus. 

1.7 SIGNIFICANCE AND RATIONALE 

The transition from rural to urban has economic, social and political implications, exerting pressure 

on the capacities for urban management and planning. In South Africa, informal settlement 

expansion is rapid, requiring frequently updated land cover information to prevent problems with 

service delivery from local municipalities. By achieving the aim of the study, this research will 

yield an effective and novel framework for rapidly processing time-series images for urban change 

detection through encoding time-series image data and CNN classification. Should this research 
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prove successful, it will provide planners from local municipalities and regional governments with 

timeous information of nearby developing settlements and further assist with providing basic 

services. This research can also provide recommendations regarding which resolution satellite 

imagery would be more appropriate for human settlement detection.  

1.8 RESEARCH METHODOLOGY AND AGENDA 

This research is quantitative and deductive. By using experimental and evaluative techniques, an 

urban settlement detection will be performed by encoding image time-series data for input to a 

CNN classification. Secondary data extracted from the Google Earth engine (GEE) platform will 

be used as the input imagery for this research. The study will utilise both MODIS and Sentinel-2 

imagery from a specified period. Classification will be conducted using a DL classifier, CNN. 

Statistical evaluation will ensure that the results yielded are successful (90%+) and comparable to 

current state-of-the-art techniques used for change detection.  

The research agenda shown in Figure 1 illustrates the workflow of this thesis and the content of 

each chapter. Chapter 1 is the planning (proposal) phase of the research, followed by Chapter 2, 

the literature review, which will continue throughout the research. Chapters 3 and 4 describe the 

two experimental sections of the thesis. Chapter 3 investigates the use of computer vision 

techniques to encode the time-series data as 2D images for multiple CNN classifications. Chapter 

4 focuses on the comparison of two different datasets while using the novel framework for an 

urban change detection. The final chapter will provide conclusions and make recommendations 

for future research.  
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Figure 1.1: A workflow diagram illustrating an overview for each of the five chapters within this research thesis 

 

 

 

 

 

 

 

   

Literature Review (Chapter 2) 

Overview of RS and change-detection classifications  

Review DL (CNN) classifiers that are used for change detection and other RS applications  

Review computer vision techniques of encoding time-series data as an image.  

Chapter 3:  

Acquire MODIS time-series data that coincides with the 
Kleynhans et al. (2012) research. 

Execute the novel framework for encoding MODIS time-
series data as 2D images. 

Then perform multiple pre-trained CNN classifications 
using the encoded images for an urban change 
detection. 

Validate the classifications using a validation dataset and 
compare the novel framework techniques to an LSTM 
baseline classification. 

Using statistical measures (confusing matrix) as an 
accuracy assessment of the classifications. 

 

 

Chapter 4: 

Using the novel framework from Chapter 3, make a 
comparison of two difference datasets (MODIS and 
Sentinel-2).  

Evaluate the effect that increasing the spatial resolution 
has on the performance.  

Evaluate the effect of altering the temporal aspect of 
the time series.  

Evaluate the generalisability of the novel framework 
when testing with data gathered from three different 
geographical locations. 

Using statistical measures, conducti an accuracy 
assessment of the classifications and discuss the 
results.  

 

Discussion and conclusion (Chapter 5) 

Using the accuracy assessment and the results from Chapter 3, a conclusion will be made on whether using encoded 
time-series images and CNN classifications for an urban change detection is effective or not.  

The results from Chapter 4 will provide valuable information about the effect of the input data used for an urban change 
detection using the proposed novel framework. 

The limitations stumbled upon during the duration of the research will be highlighted in this section. 

Future recommendations will be made to improve the novel framework and so that any aspects left out can be revisited.  

 

 

Planning and Rationale (Chapter 1) 

Land cover change detection for human settlement in South Africa using RS and computer vision techniques.  

Research problem: Encoding time-series data for an urban change detection using a CNN classification. 

Aims and objectives: Evaluate the technique of encoding time-series data for a change-detection classification of human 
settlements using CNN classifications.  
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CHAPTER 2:  LITERATURE REVIEW 

This chapter provides an overview of RS, artificial intelligence (AI) and computer vision. First 

discussed are some concepts of the electromagnetic spectrum (ES), reflectance properties and the 

importance of data pre-processing. Concentrating on RS and the study’s objectives, the focus is 

placed on image classification and change detection. The fundamental concepts of AI, ML and DL 

with their respective linkages to the field of RS are addressed. This chapter concludes with a 

discussion of an interdisciplinary scientific field known as computer vision. This discussion 

includes a novel methodology of encoding time-series data as 2D images. 

2.1 REMOTE SENSING 

RS is the acquisition and process of gathering information about a phenomenon or object without 

making direct contact (Cracknell 2007; Lillesand, Kiefer & Chipman 2015; Mather & Koch 2011). 

Detecting and monitoring the physical characteristics of and object is done by analysing the 

electromagnetic radiation (EMR) reflected or emitted from the target (Campbell & Wynne 2011). 

This broad definition includes countless activities and applications across multiple scientific fields 

(Campbell & Wynne 2011; Chen & Campagna 2009; Crews & Walsh 2009; Dimitrios et al. 2012; 

Ng & Acharya 2009; Suzuki & Matsui 2012; Viana et al. 2017). Earth observation (EO) although 

RS interprets and analyses EMR emitted or reflected from objects located on the Earth surface 

(Lillesand, Kiefer & Chipman 2015). The data is recorded using airborne or space-borne 

instruments such as aeroplanes, unmanned aerial vehicles (UAV) and satellites (Mather & Koch 

2011). These principles of RS for EO will be used as such throughout this thesis. 

2.1.1 Electromagnetic radiation 

Electromagnetic energy is a product of several mechanisms, including the change in electron 

energy levels, the electrical charges acceleration and the thermal movement of molecules and 

atoms (Lillesand, Kiefer & Chipman 2015). Electromagnetic energy has five characteristic 

properties; wavelength, frequency, amplitude, phase and speed (Campbell & Wynne 2011).  

Reflected radiation from the surface is captured by sensors and used for analysis in RS. The RS 

field focuses on utilising visible light (blue, green and red, between 0.38 and 0.72 μm), infrared 

(IR, 0.72 to 1000 μm) and microwaves (1 mm to 30 cm) (Campbell & Wynne 2011; Chuvieco 

2020). 

 

 

Stellenbosch University https://scholar.sun.ac.za



10 

 

 

 

 

Figure 2.1: Electromagnetic radiation spectrum ranging from Gamma rays to Radio with their respective 

wavelengths 

The EMR reflected by objects contains valuable information about the target’s biological, 

chemical, and physical properties (Chuvieco 2020). An airborne or space-borne sensor captures 

the reflected radiation at different regions of the ES, otherwise known as bands (Patra 2010). Each 

band represents a specific portion of the ES and is limited by the designated wavelength cut-offs. 

The selection of a sensor and the bands collected depend on the intended target or RS application. 

The number of bands that an image adopts is referred to as spectral resolution, and is determined 

by the sensor (Patra 2010).  

Spatial resolution refers to the area on the ground captured by the sensor at a specific altitude and 

point in time (Mather & Koch 2011). The spatial resolution ties into the number of pixels that can 

be found in the image. Sensors that can capture images at a higher spatial resolution will have 

significantly more pixels of a smaller size (Hsieh, Lee & Chen 2001). This will help to minimise 

mixed pixels and reduces the loss of information caused by the radiance averaging process (Jones 

& Sirault 2014).  

Radiometric resolution refers to the recorded sensitivity levels caused by minor variations in the 

radiance (Campbell & Wynne 2011). Sensors with high radiometric resolutions have the 

pronounced ability to pick up slight variations in the object’s radiance (Chuvieco 2020). The 

temporal resolution of imagery (De Beurs & Henebry 2005; Chuvieco 2020; Pelletier, Webb & 

Petitjean 2019) refers to the revisit period of a sensor for a particular location. Temporal 

resolutions often vary depending on the intention and objectives of the sensor (Campbell & Wynne 

2011). 

When opting for a particular sensor, it is crucial to consider the spectral, spatial, temporal and 

radiometric characteristics of the image. The objectives of the problem at hand determine the 

selection of the sensor as it will affect the classification and the respective results (Mather & Koch 

2011). Although low spatial, spectral and radiometric resolutions will allow for faster processing 

of larger areas, they will not capture the finer details of the indented targets (Chuvieco 2020). To 

select a sensor for an assignment, one needs to understand the properties of surface reflectance and 
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how EMR interacts with the ground (Campbell & Wynne 2011). Section 2.1.2 will focus on the 

surface reflectance properties and interaction of EMR with water, soil and vegetation.  

2.1.2 Surface reflectance 

The EMR that can pass through the Earth’s atmosphere and reach the surface will either be 

absorbed, transmitted, or reflected. Absorption of EMR results from an object consuming the light 

energy. In contrast, transmission occurs when the energy can pass through the object without major 

devitalisation (Campbell & Wynne 2011). Reflection is the process of redirecting light energy as 

it interacts with an object (Campbell & Wynne 2011). The extent to which absorption, transmission 

or reflection occurs depends on the wavelength of the light energy, angle of illumination, and the 

nature of the object’s surface (Lillesand, Kiefer & Chipman 2015).  

The two types of instruments used for gathering imagery in RS are either an optical-based sensor 

or a synthetic aperture radar (SAR) sensor (Chuvieco 2020). Optical-based sensors are passive 

sensors that utilise the sun’s radiation to record the reflectance of the Earth’s surface (Campbell & 

Wynne 2011). The drawbacks of optical sensors are that images cannot be collected during 

inclement weather or at night (Sahu 2006). Clouds and smoke present significant obstacles for 

collecting consistent imagery of the Earth’s surface (Campbell & Wynne 2011). SAR sensors 

provide an alternative solution for the drawbacks that optical sensors present. However, the 

research in this thesis focuses on utilising optical imagery collected by the MODIS and Sentinel-

2 instruments. 

There are several optical sensors available today with varying spectral, spatial, radiometric and 

temporal resolutions. Multispectral RS systems have been commonly used for many EO 

applications such as land cover classification, change detections, vegetation and crop analysis, 

urban planning and fire tracking (Gong, Li & Zhang 2019; Hu, Dong & Batunacun 2018; Q Li et 

al. 2020; Liu et al. 2018; Ma et al. 2018; Phalke & Özdoğan 2018; Salmon et al. 2013; Usman et 

al. 2015). The sensors selected are dependent on the individual applications; some may opt for 

higher spatial resolution systems, where others may focus on the temporal resolution aspect of the 

data. The primary characteristics from several space-borne multispectral RS systems are shown in 

Table 2.1. The spatial resolution of the panchromatic (Pan) and multispectral bands are given 

alongside the total number of bands. The revisit time, also known as the temporal resolution, is 

provided with the launch year and the references for each sensor. There were two Sentinel-2 

sensors launched; each sensor had a revisit time of 10 days. However, when both are used in 

conjunctions, the temporal resolution decreases from 10 days to five days.  
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Table 2.1: Eight spaceborne sensors with their respective properties 

Sensors  Total 
bands 

Spatial resolution 
(Pan) 

Spatial resolution 
(MS) 

Revisit time  Launch 
year 

Reference  

GeoEye-1 5 0.41m 1.65m 1.7 – 4.6 Days 2008 (GeoEye 2008) 

IKONOS 5 0.82m 4m ± 3 Days 1999 (ESA 2020a) 

Landsat 7 8 15m 30m, 60m 16 Days 1999 (Masek 2017) 

Landsat 8 11 15m 30m, 100m 16 Days 2013 (Masek 2013) 

MODIS 36 -  250 m, 500 m, 100m 1 – 2 Days  1999 & 2002 (USGS 2018) 

Sentinel-2 13 -  10m, 20, 60m 5 Days 2015 & 2016 (ESA 2015) 

SPOT-7 5 15m 6m 1 Day 2014 (ESA 2020c) 

WorldView-3 9 0.3m 1.24m 1 Day 2014 (DigitalGloble 2014) 

Quickbird 5 0.65m 2.62m 3 Days 2001 (DigitalGloble 2001) 

RS data can be expensive, and alternative open-source platforms have easily accessible high-

resolution imagery. The United States geological survey (USGS) Global Visualization Viewer 

(Glovis), USGS Earth Explorer, the Copernicus Open Access Hub and GEE are all open-source 

platforms that allow easy access to imagery from several sensors (Giuliani et al. 2018; Gong, Li 

& Zhang 2019; Hu, Dong & Batunacun 2018; Sundarakumar et al. 2016). 

MODIS-derived imagery has a high temporal resolution with a one-day revisit time; however, it 

lacks spatial resolution (Table 2.1). MODIS 500 m resolution data has been used in many RS 

applications and has shown great success (Duong 2004; Grobler et al. 2013; Kleynhans et al. 2012; 

Wong et al. 2008). The MODIS sensor offers a higher resolution image with a 250 m x 250 m 

pixel size (Kleynhans, Salmon & Wessels 2017). However, spectral products derived from the 250 

m resolution data compromise the revisit time, resulting in a temporal resolution change from 8 to 

16 days (Lunetta et al. 2006). Low-resolution imagery such as MODIS allows processing over a 

large area (Broxton et al., 2014; Ryu et al., 2018). Landsat 7 and 8 and Sentinel-2 imagery have 

been implemented in countless RS studies as the higher resolution data are freely available (Daudt 

et al. 2018; Q Li et al. 2020; Stoian et al. 2019). However, before processing any RS imagery, the 

data requires pre-processing to remove any imperfections. 

2.1.3 Pre-processing of imagery 

Pre-processing is the removal and correction of the flaws and imperfections present in the RS 

imagery (Campbell & Wynne 2011; Mather & Koch 2011). These flaws and errors must be 

addressed before any processing or analysis (Chuvieco 2020).  
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Receiving stations can correct a few of the errors that occur when gathering RS imagery; however, 

the remaining errors may need to be addressed by the analyst before any processing. The necessary 

pre-processing steps include radiometric (atmospheric correction) and geometric 

(orthorectification) correction (Campbell & Wynne 2011). 

Orthorectification corrects the geometric distortions caused by the variations in sensor velocity 

and altitude (Campbell & Wynne 2011; Lillesand, Kiefer & Chipman 2015). These variations are 

related to the curvature of the Earth’s surface, relief displacement, atmospheric refraction, and 

panoramic distortions (Lillesand, Kiefer & Chipman 2015). The resulting product is a 

geometrically correct image. Ground control points are gathered and used to link geographic 

coordinate systems to the image coordinate system (Mather & Koch 2011). Once an image has 

been geometrically corrected and has a geographic coordinate system, resampling can be executed 

(Chuvieco 2020).  

Atmospheric correction accounts for the downward solar irradiance and the upward radiance 

leaving the Earth’s surface (Chuvieco 2020). The absorption and scattering of EMR within the 

atmosphere alter the magnitude of the radiance leaving the ground (Chuvieco 2020; Mather & 

Koch 2011). Atmospheric correction is when the true reflection is simulated by accounting for 

several factors (Lillesand, Kiefer & Chipman 2015). These include satellite geometries (zenith 

angle), the solar zenith angle, azimuth angles, the slope of the ground surface, topographic features, 

atmospheric gas parameters, as well as the atmospheric conditions such as aerosol optical thickness 

(AOT) (Lillesand, Kiefer & Chipman 2015; Mather & Koch 2011). Atmospheric correction is a 

critical pre-processing step and needs to be accounted for by the analysts. A platform such as GEE 

is beneficial as it provides a final pre-processed product that can immediately be used (Celik 2018). 

GEE has become a popular platform for performing RS tasks alongside open-source software as it 

provides users with pre-processed ready-to-go imagery (Celik 2018). 

2.1.4 Image classification 

Digital image classification is used to assign pixels to informational classes (e.g. land cover) from 

RS imagery (Campbell & Wynne 2011; Lillesand, Kiefer & Chipman 2015). There are several 

different approaches to perform image classification, namely unsupervised, supervised, pixel-

based, object-based and rule-based classifications. This section will also provide commonly used 

ML classifiers and their success within the field of RS.  

The unsupervised classification approach focuses on utilising a clustering method to identify 

natural groups or structures in a multispectral image(Campbell & Wynne 2011; Liu & Mason 

2016). This classification approach is beneficial when classifying data without prior knowledge of 
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the area or region (Liu & Mason 2016). However, the spectral classes formed still require a 

verification process by the analyst (Mather & Koch 2011).  

A supervised classification approach is based on the idea that there is prior knowledge of the study 

area, either through fieldwork or secondary sources (Campbell & Wynne 2011). The underlying 

principle of supervised classification is that unknown pixels are classified using samples of pixels 

with known identify (Campbell & Wynne 2011; Chuvieco 2020). These samples are commonly 

referred to as training samples and are collected by the analyst (Chuvieco 2020). The critical aspect 

of supervised classifications is collecting adequate training samples (Campbell & Wynne 2011; 

Mather & Koch 2011). The main objective here is to obtain a significant number of samples to 

compensate and accurately represent the variation in spectral information for each class or 

category. The drawbacks of a supervised classification approach are that the output tends to be 

biased because analysts usually assign training samples before considering the spectral 

characteristics (Campbell & Wynne 2011). Another limitation is the time for which adequate 

training data is collected (Mather & Koch 2011). However, if the training data is collected 

correctly, supervised classifications are often more effective than unsupervised classification 

(Enderle & Weih 2005; Mohd Hasmadi, Pakhriazad & Shahrin 2009; Nijhawan, Srivastava & 

Shukla 2017). 

The idea behind a pixel-based classification is that the classifier will apply decision logic to each 

pixel (Castillejo-González et al. 2009; Lillesand, Kiefer & Chipman 2015). This type of 

classification works on a per-pixel basis, where each pixel is isolated (Lillesand, Kiefer & 

Chipman 2015). Pixel-based approaches are usually practical for datasets that show a relationship 

between the information classes (e.g. land cover types) and the spatial resolution (Castillejo-

González et al. 2009; Duro, Franklin & Dubé 2012; Gao & Mas 2008). However, a decrease in the 

effectiveness will begin to show when the target features are more significant in size than the pixels 

in the dataset (Castillejo-González et al. 2009). This leads us to the alternative approach known as 

an object-based classification. 

Unlike the pixel-based approach, object-based classifiers use a segmentation algorithm that 

aggregates image pixels into homogeneous objects that do not intersect (Castillejo-González et al. 

2009; Liu & Xia 2010; Myint et al. 2011). The resulting product is a multi-resolution segmentation 

image from which the objects are classified (Comer & Delp 1995; Comer & Delp 1999; Liu & Xia 

2010). Benefits of an object-based approach include additional information such as the spatial 

relationships between neighbouring objects, shape, texture and other spatial-related data (Hussain 

et al. 2013; Liu & Xia 2010). Additionally, this approach helps reduce the spectral variations 

within classes and severity of the “salt-and-pepper” effect (Liu & Xia 2010).  
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Although object-based classifiers have been shown to outperform pixel-based classifiers and 

achieve a higher overall accuracy (OA) (Araya & Hergarten 2008; Cleve et al. 2008; Myint et al. 

2011; Riggan & Weih 2009), both have limitations associated with mixed pixels. The 

understanding behind mixed pixels is that they present themselves when a pixel cannot ideally 

occupy one homogenous class (Campbell & Wynne 2011; Jones & Sirault 2014). They display the 

average brightness value from several classes rather than just one (Campbell & Wynne 2011). 

Mixed pixels have an indirectly proportional relationship to the spatial resolution and will increase 

as the resolution decreases (Campbell & Wynne 2011; Jones & Sirault 2014). 

The interface between wildland and urban was classified using object-based and pixel-based 

classifiers (Cleve et al. 2008). Cleve et al. (2008) deducted that the object-based approach 

performed better when representing built areas. However, the pixel-based classifier could yield 

similar accuracies for the shrub/tree and shadow classes (Cleve et al. 2008). 

2.1.4.1 Rule-based classification 

The rule-based classification approach uses a set of rules applied sequentially to discriminate 

between the different categories (Mendel 2017). These targeted categories are classified based on 

whether they meet the thresholds of the ruleset (Chuvieco 2020). Fuzzy rule-based classification 

systems and classification and regression trees (CART) are both well known for this classification 

approach (Ishibuchi & Nakashima 2001; Lawrence & Wright 2001; Mendel 2017). The CART 

algorithm is commonly used to build DT, which continuously divide features until reaching a 

desired level of homogeneity at the terminal nodes (Lawrence & Wright 2001; Mendel 2017). To 

validate and improve the results, a cross-validation method is applied using unfamiliar samples 

that were not used in the construction of the DT (Chuvieco 2020).  

2.1.4.2 Parametric classifiers 

Parametric classifiers greatly simplify the learning process by assuming that the training data 

follow a Gaussian or normal distribution (Hubert-Moy et al. 2001; Jain, Duin & Mao 2000). This 

allows the classifiers to learn and summarise data through calculated parameters (Jain, Duin & 

Mao 2000). These classifiers present a limitation as they assume classes in a multispectral space 

are symmetric (Hubert-Moy et al. 2001). Parametric classifiers also assume that the boundaries for 

the classes use a fixed-form decision (Hubert-Moy et al. 2001). The maximum likelihood (MaxL) 

is a commonly used and well-known parametric classifier (Myburgh & Niekerk 2013; Strahler 

1980; Wei & Mendel 2000). Araya & Hergarten (2008) performed a comparative study to 

distinguish a land cover classifying using a pixel- or object-based classification. The maximum 
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likelihood classifier is known to be too sensitive and can be affected by the quality of training data 

and shows a decrease in accuracy when more input features are used (Myburgh & Niekerk 2013). 

2.1.4.3 Machine learning classifiers 

RS data typically does not have a normal distribution and requires a classifier that can deal with 

the versatility of the data (Jain, Duin & Mao 2000). Non-parametric classifiers are an ideal solution 

as they do not make any assumptions regarding the training data distributions, nor do they estimate 

the parameters (Jain, Duin & Mao 2000). Several ML classification algorithms have been 

implemented for RS and have shown great success (Brovelli, Sun & Yordanov 2020; Camps-Valls 

2009; Celik 2018; Maxwell, Warner & Fang 2018; Shang & Chisholm 2014). These classifiers 

include DTs, SVM, k-nearest neighbours (k-NN), RF and ANN (Maxwell, Warner & Fang 2018; 

Pal & Mather 2005).  

DT classifiers can identify relationships between dependent and independent variables by learning 

simple decision rules deduced from the data features (Priyam et al. 2013; Quinlan 1996; Swain & 

Hauska 1977). The architecture of a DT classifier consists of one or more branches, where each 

branch contains a set of rules. The rules are used to process and assign the most probable class to 

the unknown instance (Lawrence & Wright 2001).  

A simple non-parametric classifier, such as k-NN, uses distance-based labelling unknown 

instances (Cover & Hart 1967; Cunningham & Delany 2020; Islam et al. 2008). K-NN utilises 

known neighbouring instances to assign classes to the unknown instances (Cover & Hart 1967; 

Cunningham & Delany 2020). k represents the number of nearest neighbours, which is the core 

factor in determining the final class (Cunningham & Delany 2020). This simple non-parametric 

classifier is effective for data that does not have a normal distribution. In RS and particularly the 

process of high-resolution imagery, k-NN is effective (Li & Cheng 2009). Li and Cheng (2009) 

illustrated the success of the k-NN classifications as they achieved a minimum accuracy of 84% 

for their five class classification (bare land, green-land, road, settlement and water). However, a 

comparative study showed that the k-NN classifier was outperformed by other ML classifiers such 

as DTs and SVM (Qian et al. 2015) 

SVM classifiers focus primarily on the training samples located near the edge of class descriptors 

(Amarappa & Sathyanarayana 2014; Tzotsos & Argialas 2008). This allows the SVM classifier to 

determine the most optimal separating hyperplane amongst the classes (Novack et al. 2011; Shao, 

Chen & Deng 2014). SVM classifiers have shown their efficiency within RS for numerous 

applications including urban mapping (Bazi & Melgani 2006; Cao et al. 2009; Pal 2008; 

Petropoulos, Kalaitzidis & Prasad Vadrevu 2012). Myburgh and Niekerk (2013) performed an 
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object-based land cover classification for five features using three different classifiers; an SVM, 

k-NN and ML classifier. The SVM achieved the highest OA at 90.5%, 20.6% higher than the k-

NN and 0.8% higher than the ML classifier (Myburgh & Niekerk 2013). The SVM classifier 

mapped the more complex bare ground and build-up class more accurately than the other 

classifiers (Myburgh & Niekerk 2013). Cao et al. (2009) also expressed that the SVM based 

approach does not only present comparable results to the local threshold method, but helps remove 

the trial-and-error procedure, concluding that this new approach is a simple alternative for 

detecting urban extents.    

The RF classifier has shown to be effective for performing image classifications of RS data (Celik 

2018; Lawrence & Wright 2001; Novack et al. 2011; Poona & Ismail 2014; Rodriguez-Galiano et 

al. 2012). The RF algorithm is based on using multiple DTs (Maxwell, Warner & Fang 2018). 

Each DT is generated using random features sampled separately from the input vectors (Breiman 

1996; Breiman 2001; Pal 2005). An uncorrelated forest of DTs is formulated (Maxwell, Warner 

& Fang 2018), and a vote is cast at the individual trees (Breiman 2001; Pal 2005). Each DT 

contributes to a vote that will determine the assignment of the input variables (Rodriguez-Galiano 

et al. 2012). Training sets are generated for feature selection, which helps with reducing RF 

classifier sensitivity to training set sizes (Rodriguez-Galiano et al. 2012). RF has been successfully 

implemented for a sematic classification of urban buildings, it was also concluded that this 

approach was effective and accurate (Du, Zhang & Zhang 2015). Ghosh, Sharma & Joshi (2014) 

also illustrated the success of the RF classifier for an urban landscape.  Akar & Güngör (2012) 

conducted a land-cover classification of the urban and rural features, it was illustrated that the RF 

classification outperformed the SVM algorithm by 10% with respect to the urban data. The RF 

classification showed to be more effective with the urban data producing a OA of 85.63% (Akar 

& Güngör 2012).  

DL classifiers fall under a subsection within ML where the models start to introduce a sophisticated 

approach to ML (Ongsulee 2018; Zhang et al. 2017). These complex multi-layer neural networks 

(NN) allow data to pass between nodes in a highly connected manner (Ongsulee 2018). DL 

classifiers are developing and have shown to be extremely powerful when trained correctly 

(Ongsulee 2018; Zhang et al. 2017). RS has recently started to adopt several DL classifiers for 

many applications including urban detection (De et al. 2018; W Li et al. 2019; Ma et al. 2019; Pan 

et al. 2020; Zhang et al. 2016; Zhang, Zhang & Kumar 2016; Zhu et al. 2017). Further details 

regarding the architectural structure of the classifiers and the application and the success of these 

DL classifiers are provided in the AI section (2.2) below. 
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2.1.4.4 Feature selection 

Feature selection is a core aspect of ML and impacts the model’s performance (Brownlee 2020; 

Kuhn 2018; Tang, Alelyani & Liu 2014). It reduces the input variables for a predictive model 

(Kuhn 2018; Kuhn & Johnson 2019). Reducing the number of input variables reduces the 

computation cost and potentially increases the model’s performance (Tang, Alelyani & Liu 2014). 

Data cleaning and feature selection are essential steps and should be taken to achieve the best 

possible results (Kuhn & Johnson 2019). The three main feature selection techniques include the 

embedded, wrapper and filter feature selection methods (Kuhn 2018; Kuhn & Johnson 2019). 

Three top-performing feature selection wrappers include the area under the receiver operating 

characteristic curve of the RF (AUC-RF), recursive feature elimination (RFE) and Boruta (Poona 

et al. 2016). Feature selection has shown to play a significant role in optimising the performance 

of classifications for urban applications in RS (Georganos et al. 2018). 

Dimensionality reduction does not form part of the feature selection process and is an alternative 

method (Kuhn 2018; Tang, Alelyani & Liu 2014). Different ideologies project the model’s input 

data into a lower-dimensional feature space (Kuhn 2018; Kuhn & Johnson 2019). However, feature 

selection and dimensionality reduction techniques are related in that they both seek fewer input 

variables for predictive models (Kuhn 2018). The difference is that dimensionality reduction 

techniques form entirely new input features by creating a data projection, whereas feature selection 

merely selects features to remove or keep in the dataset (Kuhn 2018; Kuhn & Johnson 2019).  

Dimensionality reduction has been a popular option for reducing and removing noisy and 

redundant features (Tang, Alelyani & Liu 2014). Three popular techniques include linear 

discriminant analysis (LDA), canonical correlation analysis (CCA) and principle component 

Analysis (PCA) (Tang, Alelyani & Liu 2014). PCA has successfully been deployed in several 

cover change detection applications (Deng et al. 2008; Dharani & Sreenivasulu 2021; Qin et al. 

2013). 

2.1.4.5 Accuracy assessment 

Accuracy assessment and validation are essential processes in classifying RS data (Lewis & Brown 

2001). Validating the results with ground truth data allows one to determine the success of the 

classification and detect any errors (Ariza-López, Rodríguez-Avi & Alba-Fernández 2018). The 

standard accuracy assessment for evaluating the success of image classification is usually 

conducted using a confusion matrix (Ariza-López, Rodríguez-Avi & Alba-Fernández 2018; Lewis 

& Brown 2001). Standard error metrics or confusion matrices contain the OA, Kappa, errors of 

commission and omission, and the user and producer accuracies (Ariza-López, Rodríguez-Avi & 
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Alba-Fernández 2018; Lewis & Brown 2001). To formulate a confusion matrix, ground truth 

samples (points) need to be generated and must be representative of the classes (Ariza-López, 

Rodríguez-Avi & Alba-Fernández 2018). Several different sampling schemes can be deployed, 

such as random sampling, systematic, stratified-random and stratified systematic unaligned. The 

OA is a widely used and simple measurement of the overall proportion of correctly classified 

samples (Salmon et al. 2015). However, OA must not be used alone as big classes or big number 

of samples may skew the results (Salmon et al. 2015). The Kappa (KHAT or k) is a statistical 

estimate of the classification performance when compared to a random classification (Salmon et 

al. 2015). The Kappa value is an indication of the reliability of the classification (Equation 2.2): 

Equation 2.2 

𝐾̂ =  
𝑁 ∑ 𝑥𝑖𝑖 −  ∑ (𝑥𝑖= ∙  𝑥+𝑖)

𝑟
𝑖=1

𝑟
𝑖=1

𝑁2 − ∑ (𝑥𝑖+ ∙  𝑥+𝑖)
𝑟
𝑖=1

 

Where   𝑟   is the number of rows in the error matrix; 

  𝑥𝑖𝑖   is the number of observations in row column i; 

  𝑥𝑖+   is the total observations in row i;  

  𝑥+𝑖  is the total observations in column i; and 

  𝑁  is the total number of observations in the matrix.  

 

The user and producer accuracies provide the estimated accuracy per class (Salmon et al. 2015). 

The user accuracy refers to the number of samples correctly assigned to the class that they belonged 

to (Lewis & Brown 2001; Salmon et al. 2015), whereas the producer’s accuracy indicates how 

many samples belong to a class and are assigned to that respective class (Salmon et al. 2015). 

Errors of commission and omission are the invert of the user and producer accuracies, respectively. 

A confusion matrix is an effective tool for performing an accurate assessment of a classification. 

Supervised classifications have an additional validation measure. It has become second nature in 

a supervised classifications approach to split the data and utilise a portion for training, followed 

by testing (Tan et al. 2021). The ratio for which the data is spilt into training and test depends on 

the analyst, however, it has become common practice to use a 70/30 or 80/20 split for training and 

test, respectively. GIS software and Python packages offer an evaluation function that utilises the 

testing data from the train-test split (TensorFlow 2021). The evaluation function, in most instances, 

represents the OA of the classification, however (TensorFlow 2021), it is still important to 

investigate the other elements of the confusion matrix. 
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K-fold cross-validation is a standard model evaluation procedure that uses the train-test split aspect 

of ML. The split of the input dataset can occur at random and as a result, the model is trained with 

a specific portion of the data (Figure 2.2) (Dias et al. 2020; Rodríguez, Pérez & Lozano 2010). It 

is suggested that by running and retraining the algorithms multiple times, each time on a different 

portion of the dataset, one is validating the model (Fushiki 2011; Wong & Yeh 2020). Analysts 

set out several folds, represented by the term k (Rodríguez, Pérez & Lozano 2010). As shown in 

Figure 2.2, different portions of the datasets are used to train and test the models. Each fold is run 

through the classifier, and results are recorded (Rodríguez, Pérez & Lozano 2010). 

 

Figure 2.2: K-fold cross-validation diagram illustrating the evaluation procedure of running multiple models using 

different portions of the dataset 

2.1.5 Land cover change detection  

Conducting a change detection requires two or more images from separate dates (Kleynhans et al. 

2012). Each image is then classified and compared to the previous, either at the pixel or object-

based scale (Moser, Serpico & Vernazza 2007; Radke et al. 2005). A binary change detection 

infers that the result consists of two classes: change and no change (Moser, Serpico & Vernazza 

2007; Radke et al. 2005). Multi-class change detection will classify the two images and compare 

the land cover classes. However, a comparison with only two images can often prove unreliable, 

as the land cover of a similar nature may appear different at various stages in their seasonal growth 

cycle (Lunetta et al. 2006). Time-series data can be introduced to the process to improve results 

(Section 2.1.6.1). 

There are several ways for performing change detection, either by altering the source of the data 

(SAR or optical) or selecting a preferred method. This section will focus on studies that have 

utilised optical data to perform change detection. However, it is essential to recognise SAR 

imagery’s success with land cover classifications and change detections that are focused around 

urban areas (Hu & Ban 2014; Lopez, Shimoni & Grippa 2017; Sinha, Santra & Mitra 2018). In 

addition to the classification methodology whereby ML and DL algorithms are used to classify 

images (Daudt et al. 2018; Yin et al. 2017), an ACF can be used for monitoring the surface 

Dataset 
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reflectance over time (Kleynhans et al. 2013; Kleynhans et al. 2012). It is essential to understand 

all methods and data sources used in performing accurate change detections. 

2.1.5.1 Time series analysis 

An increase in the temporal frequency could help distinguish change events from natural 

phenological cycles (Lunetta et al. 2006). Time-series data is currently being deployed as an 

effective and reliable dataset for distinguishing changes (Grobler et al. 2013; Kleynhans, Salmon 

& Wessels 2017; Lunetta et al. 2006; Salmon et al. 2013). Gathering a high temporal dataset is 

critical for accurate change detection, although it is not the only aspect to consider. When working 

with passive optical sensors, spectral resolution is an essential factor to consider. 

2.1.5.2 Spectral analysis 

The spectral response is constructive in detecting changes in land cover types (Espinoza-molina et 

al. 2017; Tran et al. 2018; Xue & Su 2017) as each part of the ES has a unique interaction with 

each different land cover type (Campbell & Wynne 2011; Lillesand, Kiefer & Chipman 2015). 

Band selection is essential for gathering the correct data for performing a change detection 

(Polykretis, Grillakis & Alexakis 2020; Sinha, Sharma & Nathawat 2015). To track changes in 

land cover, different land cover types must be effectively classified (Gašparović, Zrinjski & Gudelj 

2019). Each band or combination of bands, known as indices, can detect a specific land cover type 

(Espinoza-molina et al. 2017; Polykretis, Grillakis & Alexakis 2020; Xue & Su 2017). Indices 

have effectively been deployed for several applications regarding land cover classifications and 

change detections, most of which involve vegetation, soil and urban monitoring (Abbas et al. 2013; 

Alexander 2020; Espinoza-molina et al. 2017; Li 2020; Qian et al. 2015; Tran et al. 2018). 

Vegetation and stress monitoring utilise several indices such as the NDVI, simple ratio index (SRI) 

and the soil-adjusted vegetation index (SAVI). Healthy vegetation has a high reflectance in the 

green region of ES and a lower reflectance in the blue and red regions. The same applies to non-

stressed and stress vegetation, respectively. The near-infrared (NIR) regions of the ES can detect 

the stress levels, where high NIR reflectance illustrates healthy vegetation.  

NDVI (with a dynamic range of -1 to1) has been one of the more effective indices in RS and has 

been used in many applications, not just the monitoring of vegetation stress (Baluja et al. 2012; 

Hu, Dong & Batunacun 2018; Kim et al. 2011; Kleynhans et al. 2012; Lunetta et al. 2006). NDVI 

is defined as follows (Rouse et al. 1974): 
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Equation 2.4 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

Where   𝑁𝐷𝑉𝐼  is the vegetation index; 

  𝑁𝐼𝑅  is the NIR band; and 

  𝑅𝑒𝑑  is the red band. 

Several other vegetation indices have been developed and deployed for RS applications. These 

include the ratio vegetation index (RVI), difference vegetation index (DVI), perpendicular 

vegetation index (PVI), atmospherically resistant vegetation index (ARVI), soil line atmospheric 

resistance index (SLRA), type soil atmospheric impedance vegetation index (TSARVI) and 

several others (Xue & Su 2017). Indices have also been developed and deployed for urban 

monitoring (Li 2020). The normalised difference built-up index (NDBI) is used for mapping built-

up or urban areas (Zha, Gao & Ni 2003). Zha, Gao and Ni (2003) concluded that NDBI contributed 

to the 92.6% accuracy of mapping urban areas. The ratio normalised difference soil index (RNDSI) 

is an urban mapping index usually used alongside the NDBI and NDVI (Deng et al. 2015; Li 2020).  

Several studies have successfully implemented spectral vegetation indices for urban mapping by 

monitoring the change in vegetations (Grobler et al. 2012; Grobler et al. 2013; Kleynhans et al. 

2011; Kleynhans et al. 2012). Grobler et al. (2013) and Kleynhans et al. (2012) illustrated that 

NDVI and the individual bands from MODIS could be used to perform urban change detection. 

2.1.5.3 Urban change detection 

Developing countries such as South Africa have an increasing rate of urbanisation as people are 

migrating to major cities in search of employment (UN 2018). Urban expansion is the largest and 

most pervasive land cover change in South Africa (Kleynhans et al. 2013). Several studies have 

investigated the best way to perform urban change detection within South Africa using freely 

available imagery. Grobler et al. (2012) performed a land cover separability analysis that uses a 

harmonic oscillator and combines it with a mean-reverting stochastic process. Deploying these 

two mathematical processes could produce urban change detection; however, with lower than 

acceptable accuracies.  Salmon et al. (2013) illustrated a successful urban change detection method 

using internal covariance matrices from an Extended Kalman Filter. The urban change detection 

yielded accuracies over 90% for processing MODIS time-series data in Gauteng province of South 

Africa (Salmon et al. 2013).  

Kleynhans et al. (2012) provided an alternative approach for performing an urban change detection 

in South Africa, which used an ACF applied to 500 m MODIS NDVI imagery. The temporal ACF 

method comprised two stages: the off-line optimisation phase and the operational phase 
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(Kleynhans et al. 2012). The offline optimisation phase used the simulated change data with the 

no-change data to determine the parameters appropriate for the applications (Kleynhans et al. 

2012). These parameters consisted of the band, lag, and threshold selection (Kleynhans et al. 

2012). The temporal ACF yielded a high OA of 88.46% for detecting urban change in Gauteng, 

South Africa. Kleynhans et al. (2013) improved on the temporal ACF method using a 

spatiotemporal ACF approach. The spatiotemporal ACF considered the neighbouring N pixels 

around the located pixel (Kleynhans et al. 2013). Using several mathematical equations and the 

Euclidean distance between pixel centres and their mean values, a spatiotemporal ACF was 

constructed (Kleynhans et al. 2013). Kleynhans et al. (2013) concluded that the spatiotemporal 

ACF improved the previous method (Kleynhans et al. 2012) and achieved a 90.98% OA using the 

same dataset. Kleynhans, Salmon & Wessels (2017) then performed a temporal ACF using a 

higher resolution dataset (MODIS 250 m), increasing the change detection accuracy (CDA) by 

0.41%. Kleynhans, Salmon & Wessels (2017) conducted further investigations into the dataset’s 

temporal aspect and sampling frequency. It was concluded that over the six-year observation 

period, the daily, eight-daily, monthly, and two-monthly sampling frequency had no significant 

effect on the CDA (Kleynhans, Salmon & Wessels 2017). However, when the sampling frequency 

was reduced beyond two-monthly, there was a noticeable decrease in the change detection 

performance  (Kleynhans, Salmon & Wessels 2017). 

DL algorithms have recently been implemented for RS applications such as change detections 

(Seydi, Hasanlou & Amani 2020; Shi et al. 2021; Stoian et al. 2019; Zhang et al. 2018). However, 

to understand why there is an uptake in the use of DL algorithms and how they can perform the 

given tasks effectively, one needs to comprehend the complexity of the architecture of the 

algorithm. The following section will provide an in-depth discussion of AI and, more importantly, 

DL algorithms.  

2.2 ARTIFICIAL INTELLIGENCE  

AI falls under a wider branch within the computer science field, which focuses on building 

intelligent machines and algorithms capable of executing tasks that would typically require a 

human (Leslie 2019; McCarthy. 2007). It is the intelligence displayed and demonstrated by 

machines or models (Jackson 2019). Al can be any system that takes action and perceives the 

environment to maximise the system’s ability to achieve the goals set out at the beginning (Jackson 

2019; Leslie 2019). AI has previously been divided up depending on the application, however, 

applications have become so extensive that this is no longer applicable (Nilsson 1982). In this 

section, one aspect of AI (i.e. ML) will be broken down and discussed.  
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2.2.1 Machine learning  

AI and ML are both a part of the computer science field, however, AI is the broader concept where 

intelligent machines are created to simulate human thinking (Michalski, Carbonell & Mitchell 

2013; Ongsulee 2018). ML is a subfield of AI that allows machines to learn from the data and 

perform tasks without being explicitly programmed to do so (Michalski, Carbonell & Mitchell 

2013; Ongsulee 2018). ML consists of several algorithms to learn and improve data predictions 

and outcomes (Jordan & Mitchell 2015; Zhang 2020). The algorithms are designed to spot patterns 

using statistical techniques and then perform tasks based on these patterns (Jordan & Mitchell 

2015). One of the sophisticated tasks ML algorithms are capable of is the classification of data or 

imagery. Several of these classifiers and the applications for which they were deployed have been 

mentioned in Section 2.1.5.6. RS has adopted the use of ML and AI for the processing and 

classification of imagery. Land cover monitoring and change detection have also implemented ML 

algorithms to improve performance and accuracy (Section 2.1.6). The following section will focus 

on DL fundamentals, different algorithm architectures and the applications where they have been 

deployed within RS. 

2.2.2 Deep learning  

DL is a subfield of ML with next-generation algorithms (Goodfellow, Bengio & Courville 2016). 

DL models are designed to analyse data and make relative predictions independently without 

human input (Goodfellow, Bengio & Courville 2016; Lecun, Bengio & Hinton 2015). This can be 

achieved using a layered algorithm structure known as ANN. The ANN structure and design are 

inspired by a human brain and the biological neural networks present (Goodfellow, Bengio & 

Courville 2016; Lecun, Bengio & Hinton 2015). As a field itself, DL is consistently growing and 

being used for countless applications across academic fields (Deng & Yu 2014; Najafabadi et al. 

2015). As a result, several DL algorithms are currently being deployed (Shrestha & Mahmood 

2019). Each has a unique architectural structure and can process different types of input data 

effectively. 

A few commonly used DL algorithms include CNNs, LSTMs, recurrent neural network (RNN), 

generative adversarial network (GAN), radial basis function networks (RBF), and multilayer 

perceptron’s (MLPs) (Goodfellow, Bengio & Courville 2016; Lecun, Bengio & Hinton 2015; 

Shrestha & Mahmood 2019). The sections following this will discuss CNNs, RNNs and LSTMs, 

and the details regarding their respective architectural structures. 
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2.2.3 Convolutional neural network (CNN) 

CNNs are powerful and compelling image-processing algorithms that can perform descriptive and 

generative tasks (Albawi, Mohammed & Al-Zawi 2018; Kim 2017). These algorithms can 

recognise and classify features within an image and are widely used for analysing images (Albawi, 

Mohammed & Al-Zawi 2018; Kim 2017). The idea of the term convolution denotes the 

mathematical function of convolution, which refers to the linear operation whereby the 

multiplication of two functions produces a third function (Albawi, Mohammed & Al-Zawi 2018; 

Kim 2017). CNNs consist primarily of three layers: a convolutional layer, a pooling layer, and a 

fully connected layer (Albawi, Mohammed & Al-Zawi 2018) (Figure 2.3).  

 

 

  

 

 

 

 

 

Figure 2.3: A basic CNN architecture showing the convolutional layer, pooling layer, and fully connected layer  

The convolution layer extracts features from the input image (Albawi, Mohammed & Al-Zawi 

2018; Song et al. 2019). This is the layer where the mathematical function of convolution occurs 

between the image and a specified filter with a particular size (Albawi, Mohammed & Al-Zawi 

2018; Kim 2017). The filter slides over the image and records the dot product between the filter 

and the image with respect to its size (Kim 2017). The result is a feature map that provides 

information regarding the corners and edges of the image. The feature map is then fed through 

other layers to extract additional features (Albawi, Mohammed & Al-Zawi 2018; Kim 2017; Song 

et al. 2019). A convolutional layer is typically followed by pooling layers (Song et al. 2019). The 

objective of a pooling layer is to reduce the size of the feature map, which helps with decreasing 

computational costs (Albawi, Mohammed & Al-Zawi 2018; Pelletier, Webb & Petitjean 2019). 

This is done by reducing the connections between layers and independently operating for each 

feature map (Albawi, Mohammed & Al-Zawi 2018; Song et al. 2019). Several pooling operations 

are available and are dependent on the method of choice. These operations include max pooling, 

which selects the most prominent element from the feature map, average pooling, which 

formulates the average of the elements within the predefined size, and sum pooling, which 

Input Layer  Output Layer 

Fully Connected  

Pooling  

Convolution  

Classification  Feature Extraction  
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calculates the total value from all elements within that predefined size (Albawi, Mohammed & Al-

Zawi 2018; Song et al. 2019). The fully connected layers form the last few layers before the output 

layer (Song et al. 2019). These fully connected layers contain weights and biases and neurons used 

to connect two different layers (Song et al. 2019). The output images from the previous layers are 

flattened and passed through the fully connected layers, whereby the flattened vector undergoes 

several mathematical function operations (Song et al. 2019). It is at this stage where the 

classification process takes place. 

A critical parameter of the CNN architecture is the activation function. These functions 

approximate and learn from the continuous and highly complex relationships between the network 

and its variables (Song et al. 2019). The activation function will decide which information shell 

continues through the network. These activation functions include ReLU, Softmax, Sigmoid and 

tanH (Sharma, Sharma & Anidhya 2020; Song et al. 2019). Depending on the specific usage and 

the intention of the algorithm, an activation function is selected (Sharma, Sharma & Anidhya 2020; 

Song et al. 2019). Softmax is generally the preferred choice for multi-classifications, where the 

Sigmoid is used for binary classification. 

Although it has been stated that there are three layers, CNN commonly to contain several 

convolutional and pooling layers. The operations mentioned above are therefore repeated multiple 

times within the model before reaching the fully connected layers. As a result, there are numerous 

variations of well-known algorithms that have been developed for particular applications. 

However, an increase in layers does not necessarily increase performance. 

2.2.3.1 Pre-trained CNNs 

CNN models require substantial training data to produce accurate and effective classifications 

(Kim 2017). However, one often does not have the time to collect or even possess the available 

data for such extensive training datasets. As a result, several CNN architectures have been pre-

trained on large-scale image databases such as ImageNet (Dias et al. 2020; Fei-fei et al. 2021; 

Zhang et al. 2021). These large-scale image databases contain over 14.1 million images and 

provide an adequate training base for the models. Commonly used pre-trained CNN architectures 

include residual network (ResNet) (He et al. 2016; Kaiming et al. 2015; Zhang et al. 2021), 

Densely connected convolutional networks (DenseNet) (Huang, Liu & Van Der Maaten 2017; 

Ruiz 2018b; Zhang et al. 2021), visual geometry group (VGG) (He et al. 2016), Inception network 

(Szegedy et al. 2016), and MobileNet (Howard et al. 2017). Each of these pre-trained CNNs has a 

different architectural structure. 
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Keras provides an open-source NN library that contains ResNet V1 with 50, 101 and 152 layers; 

DenseNet with 121, 169 and 201 layers; VGG16 and VGG19; InceptionV3; InceptionResNetV2; 

and MobileNetV. Keras enables fast experimentations with several deep neural networks (DNNs) 

(Keras 2020a). The inception architecture is a micro-architectural design that allows for deeper 

convolutional layers (Szegedy et al. 2016). The inception module performs a multi-level feature 

extraction by calculating the 1x1, 3x3 and 5x5 convolutions (Längkvist, Karlsson & Loutfi 2017; 

Szegedy et al. 2016). These outputs are stacked alongside the channel dimension before passing 

through the next network layer. The VGG network was introduced by Simonyan & Zisserman 

(2015) and is characterised as a simplistic CNN. The VGG algorithms only use 3x3 convolutional 

layers and the max-pooling to account for the volume size (He et al. 2016). The two fully connected 

layers contain 4096 nodes each, with the Softmax activation function. The values 16 and 19 from 

the VGG16 and VGG19 algorithms refer to the number of weighted layers for the respective CNNs 

(He et al. 2016). Figure 2.4 shows the architectural breakdown of the VGG19 algorithm in 

comparison to the 34-layer ResNet (He et al. 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: He et al. 2016 

Figure 2.4: The architectural structure and breakdown of the VGG19, 34-layer plain network and the 34-layer 

ResNet 
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The ResNet architecture uses multiple residual blocks in a forward direction. Unlike other 

architectures, the ResNet relies upon micro-architecture modules (residual blocks) to construct the 

CNN (He et al. 2016). The ResNet is also commonly referred to as a network-in-network 

architecture. ResNet uses a plain 34-layer network inspired by the VGG19 shown in Figure 2.4 

(He et al. 2016). Shortcut connections are added to form the residual network (ResNet) with 34 

layers. Additional layers may be added to the ResNet architecture, causing an increase in the 

number of parameters and the depth of the algorithm (He et al. 2016; Ruiz 2018b).  

DenseNet was proposed by Huang et al. (2017) as a novel architecture that exploits the shortcut 

connections of the ResNet. The algorithm directly connects all layers and passes the resulting 

feature maps through each subsequent layer (Ruiz 2018a; Zhang et al. 2021). DenseNets has 

multiple deeply connected layers that concatenate the output feature maps with the feature maps 

of the respective incoming layer (Huang, Liu & Van Der Maaten 2017; Ruiz 2018a; Zhang et al. 

2021) (Figure 2.5).  

Source: (Huang, Liu & Van Der Maaten 2017) 

Figure 2.5: Five dense layer blocks with shortcut connections between each feature map and a growth rate of k=4 

2.2.3.2 Applications of CNNs 

When trained and applied correctly, DL algorithms such as CNN are compelling image-classifiers. 

CNNs have been implemented across academic fields for numerous applications such as facial 

recognition, medical image classification and the evaluation of computer vision techniques 

(Coskun et al. 2017; Feng, Geng & Qin 2020; Hatami, Gavet & Debayle 2018; Wang & Oates 

2015). CNNs are considered one of the most effective image classifiers currently deployed, and as 

a result, RS applications have utilised these algorithms. Chen et al. (2019) illustrated the fast 

unsupervised DNN’s success when performing a change detection using multitemporal SAR 
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imagery. Land cover maps have effectively been produced using a temporal CNN classification 

(Pelletier, Webb & Petitjean 2019). Pelletier, Webb and Petitjean (2019) concluded that the 

temporal CNN could yield an OA of 93% and outperformed the state-of-the-art methods at the 

time. The findings from Stoian et al. (2019) confirmed those of Pelletier, Webb & Petitjean (2019), 

where the CNN was the top-performing classifier for land cover mapping using high-resolution 

imagery (Stoian et al. 2019). Informal settlements have also successfully been detected using 

CNNs and high-resolution imagery (Mboga et al. 2017). Mboga et al. (2017) illustrated that the 

DL classifier (CNN) achieved a 91.71% OA and outperformed the SVM ML classifier.  

Pre-trained architectures such as ResNet and VGG Networks have been deployed to classify and 

evaluate 2D encoded coloured images (Yang, Chen & Yang 2020). It was concluded that the 

simple ResNet could yield satisfactory results for the experiment (Yang, Chen & Yang 2020). A 

comparative study by Dias et al. (2020) deployed multiple pre-trained CNN algorithms for a pixel-

wise Eucalyptus classification. The DenseNet121, DenseNet169, DenseNet201, InceptionV3, 

InceptionResNetV2, ResNet50, VGG16, VGG19, MobileNetV1 and the XceptionV1 were all 

processed and evaluated using encoded time-series images (Dias et al. 2020). All pre-trained CNNs 

yielded high accuracies, with the RenNet50 and DenseNet201 producing the highest result at 

97.8% (when using 250 points) and 96.4% (when using 500 points), respectively (Dias et al. 2020). 

These pre-trained CNN algorithms provide a fast, powerful, and effective classification without 

extensive training data.  

2.2.4 Recurrent neural network (RNN) 

RNN is a subclass of neural networks that effectively models sequence data (Pang et al. 2019). 

The concept of being a neural network implies that RNNs exhibit behaviour similar to that of a 

human brain. RNNs can produce predictive results within a sequential dataset that most other 

algorithms cannot (Pang et al. 2019; Wang & Tax 2016; Yin et al. 2017) - forward feeding network 

process the information by passing it through in one direction. This process starts from the input, 

continues through the hidden layers and ends at the output layer (Pascanu et al. 2014). The nodes 

are never touched twice, and information only moves through the architecture in one motion. 

However, RNNs work differently by processing information through a loop in the architecture 

(Colah 2015; Zaremba, Sutskever & Vinyals 2014). Decisions are made by considering the current 

input and what was learnt from the input received previously (Colah 2015). Figure 2.6 displays 

the RNNs loop and how it equates to the chain structure of repeating modules.  
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Source: Colah 2015 

Figure 2.6: An unrolled RNN that displays the loop as a chain structure 

RNN is typically deployed when using sequential data for either speech recognition, visual 

sequential applications and solving computer vision problems (Karita et al. 2019; Pang et al. 2019; 

Wang & Tax 2016). RNN algorithms have shown issues regarding the gradients of the model 

(Donges 2021). Exploding gradients is when the model assigns a high importance weight for a 

reason (Donges 2021). This can be overcome by squashing or truncating the gradients. Vanishing 

gradients has also been an issue with RNN, where the loop stops learning because of the low 

gradient value (Donges 2021; Karim et al. 2017; Zaremba, Sutskever & Vinyals 2014). The issue 

of vanishing gradients has been solved through the proposed LSTM architecture. 

2.2.5 Long short-term memory (LSTM)  

The LSTM architecture is a type of RNN that can learn the memorising long-term dependencies 

(Colah 2015; Donges 2021; Karim, Majumdar & Darabi 2019). What differentiates RNNs and 

LSTMs is that LSTM is about recalling past information for more extended periods than that of 

RNN architecture (Colah 2015; Karim et al. 2017). LSTMs are adequate as they can retain 

information over time and apply it when ended. LSTMs have a similar chain-like structure to an 

RNN, however, contain four interacting layers that have unique wat of communicating (Breuel 

2015; Colah 2015). Figure 2.7 shows the chain structure of the repeating modules within an RNN. 

 

Source: Colah 2015 

Figure 2.7: The chain-like structure of an RNN with the repeating modules 
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Whereas Figure 2.8 displays the same chain-like structure with repeating modules, however, 

illustrates the interacting layers found within the LSTM (Colah 2015). LSTMs also avoid the long-

term dependency issues that come about from remembering information for too long (Breuel 2015; 

Colah 2015; Karim et al. 2017). The four interacting layers are the reason for the success of the 

LSTM over the traditional RNN. The LSTM’s ability to remember information over extended 

periods allows for the effective time-series data process (Breuel 2015; Donges 2021). LSTMs have 

been known for their high performance and classification of time-series data. The LSTM 

architecture is the preferred choice for processing time-series data for speed recognition, financial 

forecasting and weather forecasting(Cao, Li & Li 2019; Karevan & Suykens 2020; Sagheer & 

Kotb 2019; Soltau, Liao & Sak 2017). 

 

Source: Colah 2015 

Figure 2.8: The chain-like structure of repeating modules of the LSTM architecture that contains four unique 

interacting layers 

2.2.6 Computer vision  

Computer vision (CV) is a field of AI that deals with how computers gain a high-level 

understanding from digital videos and images (Szeliski 2011). It seeks to comprehend and 

automate the tasks that the visual system of humans can do. These tasks include processing, 

acquiring, analysing, understanding and extracting high-dimensional data to produce symbolic or 

numerical information. Image classification is a large part of a CV, and DL algorithms have 

actively been trying to increase the accuracy and effectiveness of the classifications (Szeliski 

2011). In CV, there are currently different methods being deployed for processing large image 

datasets. Initially, each image from a temporal dataset was passed through the algorithm for 

classification (Hatami, Gavet & Debayle 2018; Pelletier, Webb & Petitjean 2019; Stoian et al. 

2019). Change detection would then utilise these classified images and determine where the 

change has accrued. However, large datasets would result in high computation costs and will 

require an extensive amount of time. Using a pixel-wise approach, individual time series can be 

used to represent temporal datasets. The recent developments in the field of CV have shown ways 

to encode time-series data as 2D images. The reconstructed encoded images can then be passed 
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through classification algorithms. The idea of combining CV technology with DL classifiers is 

inspired by the rapid development of these two respective fields. Although LSTM algorithms have 

shown to be a practical approach for classifying time-series data (Section 2.2.5), CNNs have 

gained analysts’ interest for their exceptional image classification performance. Experimental 

studies have been deployed to investigate the methodology of encoding time-series data as 2D 

images for CNN classifications (Dias et al. 2020; Wang & Oates 2015; Yang, Chen & Yang 2020). 

2.2.6.1 Encoding time-series data 

Various transformations have been proposed in CV for encoding time-series data as 2D images 

(Yang, Chen & Yang 2020). This is in the hope that the resulting encoding 2D images can reveal 

additional features and patterns than the original one-dimensional (1D) (Yang, Chen & Yang 

2020). The two popular encoding transformations include the GAF and the MTF (Wang & Oates 

2015). Each of these transformations follow a unique procedure to compute a matrix that represents 

the encoded images. 

The first step of the GAF is to rescale (normalise) the original input time series to a [-1, 1] scale 

factor. The time series 𝑋 = {𝑥1𝑥2, 𝑥3,∙∙∙, 𝑥𝑛 } with 𝑛 real observations will be passed through 

Equation 2.7 to normalise the data (Wang & Oates 2015). 

 

Equation 2.7: 

𝑥̃𝑖 =  
(𝑥𝑖 − 𝑚𝑎𝑥(𝑋) + (𝑥𝑖 − 𝑚𝑖𝑛 (𝑋))

𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛 (𝑋)
 

 

Following on from this, the rescaled time series 𝑋̃ can now be represented in polar coordinates. 

This is done by encoding the rescaled time series values as the angular cosine and the time stamp 

as the respective radius (Wang & Oates 2015). Equation 2.8 illustrates the polar encoding process 

of the time-series data. 

 Equation 2.8: 

{
∅ =  arccos(𝑥̃𝑖) , −1 ≤  𝑥̃𝑖  ≤ 1, 𝑥̃𝑖  ∈  𝑋̃

𝑟 =  
𝑡𝑖

𝑁
,  𝑡𝑖 ∈ ℕ

 

 

The time stamps are represented by 𝑡𝑖in the equation. The constant factor N helps to regularise the 

span aspect of the polar coordinate system (Wang & Oates 2015). This polar encoding process is 

a novel way to view and understand the time series (Wang & Oates 2015). Figure 2.9 visually 
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represents the rescaled time series and the respective polar encoded data shown on a polar 

coordinate system.  

 

Source: Wang & Oates 2015 

Figure 2.9: Rescaled time series and the respective polar-encoded dataset displayed on a polar coordinate system 

Using the transformed polar-encoded time-series data, the angular perspectives are exploited by 

considering trigonometric difference/sum between each point to identify and capture the temporal 

correlation between different time intervals (Dias et al. 2020; Wang & Oates 2015). The GAF 

matrix formed (from top-left to bottom-right) corresponds to the original time-series data and is 

symmetrical along the main diagonal (Yang, Chen & Yang 2020). The GAF can generate two 

different images using the separate equations (2.9 and 2.11) and the unit row vector. Equations 2.9 

and 2.10 illustrate the GASF where Equations 2.11 and 2.12 illustrate GADF (Dias et al. 2020; 

Wang & Oates 2015; Yang, Chen & Yang 2020).  

Equation 2.9: 

𝐺𝐴𝑆𝐹 =  (

cos(∅1 + ∅1)

cos(∅2 + ∅1)
⋯

cos(∅1 + ∅n)

cos(∅2 + ∅n)
⋮ ⋱ ⋮

cos(∅𝑛 + ∅1) ⋯ cos(∅𝑛 + ∅𝑛)

) 

Equation 2.10: 

𝐺𝐴𝑆𝐹 =  𝑥̃′ ∙ 𝑥̃ −  √𝐼 − 𝑥̃2
′ 

∙  √𝐼 − 𝑥̃2 

Equation 2.11: 

𝐺𝐴𝐷𝐹 =  (

sin(∅1 + ∅1)

sin(∅2 + ∅1)
⋯

sin(∅1 + ∅n)

sin(∅2 + ∅n)
⋮ ⋱ ⋮

sin(∅𝑛 + ∅1) ⋯ sin(∅𝑛 + ∅𝑛)

) 

Equation 2.12: 

𝐺𝐴𝐷𝐹 =  √𝐼 −  𝑥̃2
′ 

∙ 𝑥̃ − 𝑥̃′ ∙ √𝐼 − 𝑥̃2 

 

Polar encoded time series  Rescaled time series  

Stellenbosch University https://scholar.sun.ac.za



34 

The MTF transformations use transitional probability statistics to preserve detail within the time 

domain (Yang, Chen & Yang 2020). The original time series are discretised by being split into 

quantile bins and are followed by the construction of the Markov transition matrix. The Markov 

transition probabilities 𝑀𝑧𝑥 of the quantile bin 𝑞𝑧 moves the 𝑞𝑥, for the time stamps at z and x, 

respectively (Dias et al. 2020; Wang & Oates 2015; Yang, Chen & Yang 2020). When time series 

𝑋 = {𝑥1𝑥2, 𝑥3,∙∙∙, 𝑥𝑛 } and 𝑄 = {𝑞1𝑞2, 𝑞3,∙∙∙, 𝑞𝑛 }, the size of Q will have an effect on the Markov 

transition matrix (w) size (Wang & Oates 2015; Yang, Chen & Yang 2020). The MTF is illustrated 

in Equation 2.13  

Equation 2.13: 

𝑀𝑧𝑥  =  (

𝑤𝑧𝑥|𝑥(1) ∈ 𝑞𝑧 , 𝑥(1) ∈  𝑞𝑥

𝑤𝑧𝑥|𝑥(2) ∈ 𝑞𝑧 , 𝑥(1) ∈  𝑞𝑥
⋯

𝑤𝑧𝑥|𝑥(1) ∈ 𝑞𝑧 , 𝑥(𝑛) ∈  𝑞𝑥

𝑤𝑧𝑥|𝑥(2) ∈ 𝑞𝑧 , 𝑥(𝑛) ∈  𝑞𝑥

⋮ ⋱ ⋮
𝑤𝑧𝑥|𝑥(𝑛) ∈ 𝑞𝑧 , 𝑥(1) ∈  𝑞𝑥 ⋯ 𝑤𝑧𝑥|𝑥(𝑛) ∈ 𝑞𝑧 , 𝑥(𝑛) ∈  𝑞𝑥

) 

 

The three different encoded transformations (GASF, GADF and MTF) are used to generate 2D 

images from 1D time-series data (Wang & Oates 2015). An example of each of the encoded 

images can be seen in Figure 2.10. The resulting 2D images are then classified using any image 

classifying algorithms desired by the analyst.  

 

 
 
Figure 2.10: Rescaled time series and its respective GASF, GADF and MTF encoded images  

The methodology of encoding time-series data through the GAF and MTF for image classification 

was proposed by Wang and Oates (2015). After this, only a handful of applications have adopted 

this novel framework (Dias et al. 2020; Yang, Chen & Yang 2020; Yuan et al. 2021). It has only 

recently gathered traction and has started being implemented. However, RS and specifically 

change detection applications have not had significant exposure to this unique methodology. The 

study by Dias et al. (2020) is one of the few studies that have implemented encoding of time-series 

data using GADF, GASF and MTF for a CNN classification. Dias et al. (2020) utilised the novel 

framework for a pixel-wise Eucalyptus region classification and achieved high accuracies using 

pre-trained CNN architecture. 

GASF                GADF                          MTF 
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2.3 LITERATURE SUMMARY 

The literature reviewed shows that combining RS, DL, and computer vision holds great potential 

for urban change detection. Traditional RS techniques and methodologies have been used to 

effectively process imagery and perform land cover classification, and in particular urban land 

cover classification and change detection. Non-parametric classifiers, such as ML algorithms, 

DTs, SVM, k-nearest neighbours (k-NN), RF and ANN have become popular RS methods for 

classification. An essential attribute in deriving a change detection is the use of multi-temporal 

data. Time-series data can therefore provide additional information required for performing a 

successful change detection.  

Recent DL developments have shown that CNN algorithms are extremely powerful image 

classifiers when trained correctly. As a result, a novel framework was proposed to combine 

methods from computer vision in RS classification and change detection. Input derived by first 

encoding temporal data as 2D images are processed through a CNN classification. This 

demonstrates how the advancement of scientific knowledge often requires collaboration between 

fields. Although several other time-series methodologies have been implemented in South Africa 

to perform urban change detection, the novel framework of encoding time series data as a 2D 

image processed through multiple CNN architectures has not been applied for urban change 

detection.  
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CHAPTER 3:  THE VALUE OF A NOVEL COMPUTER VISION BASED 

CHANGE DETECTION TECHNIQUE FOR URBAN AREAS 

USING COARSE RESOLUTION IMAGERY 

3.1 INTRODUCTION 

Human settlement expansion is one of the most pervasive forms of land cover change worldwide, 

as in South Africa (Kleynhans, Salmon & Wessels 2017). Due to population growth, economic 

and employment opportunities, urban areas are rapidly expanding (Kleynhans et al. 2013), 

encroaching on the natural environment (Kleynhans et al. 2015). Informal expansion coupled with 

unplanned developmental activities are treated reactively and place a burden on infrastructure 

services (Nassar & Elsayed 2018). Timely and accurate change information in the urban 

environment is therefore essential for successful planning and management (Jensen & Im 2007). 

Consequently, change detection is a crucial step for analysing temporal EO sequences. Time-series 

satellite remote sensing has provided a consistent source for change detection over space and time 

(De Beurs & Henebry 2005; Chen et al. 2019; Hu & Ban 2014; Liu et al. 2018; Lunetta et al. 2006; 

Verbesselt, Hyndman, Newnham, et al. 2010). Furthermore, the use of hyper-temporal satellite 

data alongside time-series analyses has successfully been applied in South Africa for land cover 

change detection (Grobler et al. 2012; Grobler et al. 2013; Kleynhans et al. 2013; Kleynhans et al. 

2012; Kleynhans et al. 2015; Kleynhans, Salmon & Wessels 2017; Salmon et al. 2013). To exploit 

time-series data available through EO, a temporal autocorrelation change detection (TACD) 

method was used to detect new settlements in areas typically covered by natural vegetation in 

South Africa (Kleynhans et al. 2012). An advancement of this method was then found in 

Kleynhans et al. (2013), where a spatio-temporal autocorrelation change detection (STACD) was 

performed. The proposed STACD method is based on the premise of a TACD, however uses a 

per-pixel autocorrelation change index with that of the neighbouring pixel index to increase 

performance. The pixel-based temporal function could be improved by 17% when considering 

spatial autocorrelation (Kleynhans et al. 2015). The stability of the time-series means variance 

over time, when compared to a threshold value, is used as a measure of per-pixel land cover change 

(Kleynhans et al. 2015). The pixel-based TACD and STACD method uses an autocorrelation 

Function (ACF) applied to a normalised difference vegetation index (NDVI) time series derived 

from moderate resolution imaging spectroradiometer (MODIS) 250 m and 500 m imagery. NDVI 

has proved successful in change detection studies (Hu, Dong & Batunacun 2018; Kleynhans et al. 

2011; Lunetta et al. 2006; Usman et al. 2015).  

Due to the requirement of large amounts of training data, ML algorithms for image analysis have 

not been used extensively for change detection (Daudt et al. 2018) and have mostly been designed 
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to generate a different image to which a manual threshold is applied (Zhan et al. 2017). Leveraging 

techniques and insights brought by developments in computer vision, Wang and Oates (2015) 

developed a novel framework to encode time-series data as an image to enable ML to recognise 

and classify the time series. Each time series is encoded as an individual image using a gramian 

angular field (GAF) and a Markov transition field (MTF) before classification using a tiled 

convolutional neural network (CNN) (Wang & Oates 2015). Captured into an image, GAF 

represents a time series of observations in a matrix containing the temporal correlation between 

observations in different time intervals, while MTF represents transition probabilities (Dias et al. 

2019). CNN is a leading ML classifier in image recognition that uses 2D image data as input 

(Abdel-Hamid, Mohamed & Jiang 2014; Szegedy et al. 2015). This image-based framework 

considers image transformation using Gramian angular summation field (GASF), Gramian angular 

difference field (GADF), and MTF encoding as a feature engineering technique for DL approaches 

(Yang, Chen & Yang 2020). Dias et al. (2019) showed that GASF/GADF encoding preserved 

temporal relationships, while MTF captured transition probabilities among different time-series 

states. They successfully transformed time-series data to encoded images before the classification, 

which made use of 11 different pre-trained deep-learning-based feature extractors to identify 

Eucalyptus (Dias et al. 2019). Dias et al. (2019) established that the best-performing 

transformation (GASF, GADF, or MTF) was a combination of the three. A concatenated image 

was formed by combining the encoded images from each of the transformations before the deep-

learning-based classifications (Dias et al 2019). Similarly, Yang, Chen and Yang (2020) evaluated 

the impact of using GASF/GADF and MTF transformation methods on multivariate time-series as 

well as the sequences of concatenating images on classification accuracy using a CNN. With the 

advancement of DL and CNNs dominating the field as a state-of-the-art classifier, it has 

successfully been applied to various applications (Barra et al. 2020; Hatami, Gavet & Debayle 

2018; C Li et al. 2020; Mboga et al. 2017; Stoian et al. 2019; Yang et al. 2019). There are currently 

several different architectures that all perform at a high level using a residual learning framework 

(He et al. 2016; Huang et al. 2017). With the development of the ImageNet database, 1.2 million 

images are used to pre-train different CNN architectures (He et al. 2016). A dense convolutional 

network was proposed by Huang et al (2017), where each layer is a connected layer in a feed-

forward fashion. These DenseNets are also contained with a shorter connection between layers at 

the output and inputs of the network (Huang et al. 2017). The residual learning framework has 

shown promising results (Dias et al. 2020; Yang, Chen & Yang 2020).  

This paper presents a novel supervised DL method applied to the change detection problem of 

human settlement expansion in South Africa. MODIS NDVI time-series data are encoded as 2D 

images using GASF, GADF, and MTF transformations. State-of-the-art CNN architectures are 
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then trained using this data after which classification is performed. To assess the influence of 

resolution, a comparison is made between two MODIS resolution datasets (250 m and 500 m). 

This research will illustrate the use of a DL apparatus for pixel-based change detection using 

encoding techniques alongside feature extraction from time-series data. 

3.2 DATA DESCRIPTION 

3.2.1 MODIS data 

Pixel-based time series were derived from the MODIS instrument. NDVI was computed to obtain 

the time-series values. Two datasets were collected for the period ranging from 2001/01/01 to 

2009/02/28 (2979 days) over the Gauteng Province, South Africa (Kleynhans, Salmon & Wessels, 

2017). The first dataset was obtained from the MCD43A4 Daily 500 m product (USGS 2018). The 

near-infrared (NIR) (867-876 nm) and red (620-670 nm) bands were used to calculate the NDVI 

values for each image as (NIR - Red) / (NIR + Red) (Lunetta et al. 2006). Due to hardware 

restrictions, the temporal resolution was reduced to six-daily to decrease the dataset size from 

2 976 to 501 images (Table 3.1). The second dataset was obtained from the MOD13Q1 16-day 

250 m NDVI product (USGS 2018). It has a lower temporal resolution (16-daily) and a higher 

spatial resolution of 250 m (Table 3.1). Both the 250 m and 500 m MODIS datasets contained 

training samples from all three classes. The 250 m dataset consisted of 866 no-change and 433 

changed pixels, whereas the 500 m dataset contained 244 no-change and 122 changed pixels (Table 

3.1). Both these datasets were split into training and validation samples using a 70:30 ratio. The 

testing pixels were used to perform an image classification and change detection.  

Table 3.1: Dataset properties for the two datasets, MODIS 500 m and 250 m 

 

 

 

 

 

 

 

 

 

 

 

 MODIS 500 m  MODIS 250 m 

Resolution 500 m 250 m 

Band NDVI NDVI 

Temporal resolution 6-daily  16-daily 

Time-series length 501 images 206 images 

No-change pixels 244 866 

Change pixels 122 433 

Model training pixels [70%] 255 909 

Model validation pixels [30%] 110 390 

Model testing pixels 1050 5712 
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A representation of a single NDVI pixel from the two datasets can be seen in Figure 3.1. All data 

were collected and extracted using the Google earth engine (GEE) platform as it is freely available 

(Gorelick et al. 2017). Due to cloud cover, the missing values in the time-series were filled using 

Slinear interpolation. It should be noted that the study area does not have prolonged periods where 

there is extensive cloud cover.  

 

 

 

 

 

Figure 3.1: Single-pixel representation for 250 m and 500 m NDVI time-series datasets 

3.2.2 Study area 

In the northern part of South Africa, the Gauteng province has seen high levels of urbanisation. 

During the period from 2001 to 2009, there was significant human settlement expansion. Illustrated 

in Figure 3.2 is the location of the Gauteng province, and the ground truth samples (GTS). The 

GTS data is used for training and validating the CNN models. The area represented by the red 

square, known as the testing site, is the location where an image classification and change detection 

will be conducted. 

 

 

 

 

 

 

 

 

 

Figure 3.2: Provincial map showing the location of the Gauteng province in South Africa. Zoomed in map showing 

the location of the Study area where MODIS data was collected and used to train the models 
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Focusing on the area around Pretoria with the black square in Figure 3.2, the GTS were established. 

This was done using Landsat 7 ETM+ data from 2001 to 2008 in GEE. Three classes of data were 

digitised. The first two classes consisted of “no-change” pixels for the urban and vegetation areas. 

The urban class represented urban pixels that did not change from 2001 to 2009, where the 

vegetation class represented any vegetation type that remained vegetation for that duration. The 

third class represented changed pixels corresponding to pixels that change from vegetation to urban 

in the period from 2001 and 2008.  

Two high-resolution Quickbird images from Google Earth clearly show the urban settlement 

encroaching on natural vegetation from 2001 to 2009 (Figure 3.3). The MODIS 500 m dataset is 

illustrated by images 1 and 2 overlaid by a 500 m MODIS pixel grid, while images 3 and 4 display 

the same high-resolution images overlaid with the 250 m pixel grid. 

 

Figure 3.3: Google Earth Quickbird imagery showing urban expansion overlaid with 250 m and 500 m resolution 

MODIS grids. Images (1) and (2) correspond with 500 m pixels and images (3) and (4) illustrate the 

250 m pixels 

Each pixel has a corresponding time series that is made up of NDVI values. Figure 3.4 illustrates 

a “changed” and “no-change” pixel-based time series from 2001 and 2009. The NDVI values range 

from -1 to 1. The time series that represents “change” in Figure 3.4 corresponds to a pixel that 

underwent change between 2005 and 2006. An example of this can be seen by pixel X in Figure 

3.3. However, the second time series of “no-change” demonstrates a pixel that remained constant 

throughout the duration. The abrupt change that occurs in a pixel will be represented by that 
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respective pixel’s time series. Through the use of encoding techniques and state-of-the-art feature 

extractors, these time series will be used to perform a change detection.  

 

 

 

 

 

Figure 3.4: MODIS NDVI time series of the changed and no-change pixels over nine years 

3.3 METHODS 

In this study, pixel-based time series derived by 500 m and 250 m MODIS imagery were used. 

The long short-term memory (LSTM) classification algorithm was applied to the original time 

series as a baseline to compare the effect of the encoding framework. Encoding of the original time 

series was performed using GADF, GASF, and MTF transformations. Additionally, a 

concatenated image was created using all three encoding techniques. These datasets were used as 

the inputs to 11 feature extractors. A validation process was implemented and the results were 

compared. The top-performing feature extractor was selected and an image classification was 

conducted. An accuracy assessment was used to verify the classification and change detection.  

 

 

 

 

 

 

 

 

 

Figure 3.5: Workflow diagram illustrating the process of performing a change detection using encoding 

transformations with feature extractors 
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3.3.1 Baseline LSTM classification  

The LSTM was used as the baseline recurrent neural network (RNN) classification and was 

conducted on the original time series. RNN algorithms perform well on sequential data such as 

time series due to their architecture (Karim, Majumdar & Darabi 2019; Tan et al. 2019). An RNN 

contains layers that are connected with a recurring feed that allow it to remember information as 

it moves through the layers (Yin et al. 2017). For the baseline classification with the LSTM 

algorithm, 365 time series extracted from 500 m resolution MODIS NDVI data were selected. 

Model parameters were set up in Python and connected to the Keras application programming 

interface (API) to allow an LSTM architecture to run (Keras 2020b). The model was trained on 

70% of the data and validated on the remaining 30%. The LSTM model used a Softmax activation 

function and contained three dense layers. Categorical cross-entropy was used as a loss function, 

with a batch size of 1, and an epoch of 15. LSTM has proven to be an effective and state-of-the-

art time-series classifier (Graves & Schmidhuber 2005; Karim et al. 2017; Karim, Majumdar & 

Darabi 2019; Tan et al. 2019; Yildirim et al. 2019). As a result, the LSTM was chosen as a baseline 

classifier for the original time series before encoding.  

3.3.2 Encoding time series as images 

Gramian Angular Field (GAF) and Markov Transition Field (MTF) pixel-wise transformations 

were executed for each time series in both datasets (250 m and 500 m). GAF uses a polar 

coordinates-based matrix to represent the temporal correlation between observations in different 

time intervals (Dias et al. 2019; Wang & Oates 2015; Yang, Chen & Yang 2020). The original 

time-series per pixel, consisting of NDVI values scaled between [-1, 1] was converted to polar 

coordinates. Two quantities were considered in the encoding to GAF, the scaled NDVI (x) and its 

corresponding timestamp (i). Variable x was expressed as an angle, computed by arccos(x), 

whereas the radius represents the relative position in the time series with length N (Dias et al. 

2019). 

Using the polar encoded results, GASF and GASD matrices were created. The GASF is based on 

cosine functions and GADF is based on sine functions (Yang, Chen & Yang 2020) as can be seen 

in equations 3.1: (A) and (B).  
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Equation 3.1 

𝐴)        𝐺𝐴𝑆𝐹 = (

cos(∅1 + ∅1)

cos(∅2 + ∅1)
⋯

cos(∅1 + ∅n)

cos(∅2 + ∅n)
⋮ ⋱ ⋮

cos(∅𝑛 + ∅1) ⋯ cos(∅𝑛 + ∅𝑛)

) 

𝐵)        𝐺𝐴𝐷𝐹 = (

sin(∅1 + ∅1)

sin(∅2 + ∅1)
⋯

sin(∅1 + ∅n)

sin(∅2 + ∅n)
⋮ ⋱ ⋮

sin(∅𝑛 + ∅1) ⋯ sin(∅𝑛 + ∅𝑛)

) 

 

GASF and GADF matrices used trigonometric summation and difference of ∅𝑖 for each point in 

the time series. The matrices were then converted into colour images for display purposes, as 

shown in Figure 3.6 (Dias et al. 2019; Yang, Chen & Yang 2020).  

 

Figure 3.6: The respective GASF, GADF, and MTF encoded colour image for each of the time-series classes 

(Change, Urban, and Other) 

MTF captures transitional probabilities sequentially to preserve information in the time domain. 

(Dias et al. 2019; Wang & Oates 2015). The time series was discretised by splitting into quantile 

bins, after which a Markov transition matrix was built, from which transition probabilities were 

computed and W represented the transitions between quantile bins. The final MTF represents 

Markov transition probabilities sequentially in an N x N matrix, where N represents the total 

number of elements in the time series. The encoded Markov transition statistics were then also 

represented as colour images, illustrated in Figure 3.6.  

To increase the extraction of discriminative features through CNNs, a set of concatenated images 

were formed by combining the GASF, GADF, and MTF before feeding the CNNs (Yang et al. 

2019). The CNNs deployed have three input data channels, red green blue (RGB) each require 

information. Each transformation (GASF, GADF, and MTF) was assigned to the respective RGB 
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input channel from the concatenated image. The three transformations were constructed in such a 

way to match the input requirements of the CNNs. The concatenated images were called 

COMBO500 and COMBO250 for the MODIS 500 m and 250 m resolution datasets respectively.  

3.3.3 Deep-learning feature extractors  

Data-driven feature extractors find effective representations without specific knowledge of the 

application (Dias et al. 2019). Designers of the CNNs exploit the properties that initial layers have 

for computing simple patterns like edge gradient or other simple patterns, however, this is done 

without the need for specific knowledge (Dias et al. 2020; Wang & Oates 2015). Eleven CNN 

architectures pre-trained on ImageNet were used as feature extractors (Fei-fei et al. 2021; Keras 

2020a). There are over 1.4 million images in the ImageNet database that are used to pre-train the 

feature extractors responsible for performing the image classifiers (Fei-fei et al. 2021). These 

feature extractors consist of several max-pooling and convolutional layers. The training process 

allows the feature extractor to assign weights to layers that can be later implemented for a second 

task, such as a classification. The architectural structure of these pre-trained CNNs can be found 

in Section 2.2.3.1. There are six main architectures (DenseNet, InceptionV3, InceptionResNetV2, 

MobileNet, ResNet, VGG) that all have a unique structure and process the flow of information 

differently. Each one of these architectures has several variations that use different amounts of 

convolutional and pooling layers. The top-performing architecture was then used to conduct a 

classification. The 11 architectures considered were DenseNet121, DenseNet169, DenseNet201 

(Huang et al. 2017), InceptionV3 (Szegedy et al. 2016), InceptionResNetV2 (Längkvist, Karlsson 

& Loutfi 2017), MobileNetV1 (Howard et al. 2017), ResNet50 (Kaiming et al. 2015), ResNet101, 

ResNet152 (Keras 2020a), VGG16, VGG19 (Simonyan & Zisserman 2015).  

All CNNs were trained and validated with a 70:30 split for each encoder (GASF, GADF and MTF) 

using both 250 m and 500 m resolution datasets. These three transformations datasets were then 

used as the input data for each feature extractor using the 500 m resolution MODIS data. 

Additionally, the COMBO500 concatenated dataset was processed through all feature extractors. 

However, only the COMBO250 concatenated images were used as the input dataset for the 250 m 

resolution MODIS data due to the high performance of the COMBO500. 

3.3.4 Model evaluation protocol 

The same evaluation protocol was applied for all experiments at both 250 m and 500 m resolution 

datasets: all input data were split into training (70%) and validation sets (30%) (Table 3.1). A 

three-fold cross-validation was run for all feature extractors, as well as the baseline RNN model.  
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3.3.5 Image classification 

The best-performing feature extractor was selected to classify the testing site to perform a change 

detection (Figure 3.2). The COMBO250 dataset was used to train the top-performing feature 

extractor. The time-series extracted from 5 712 pixels of 250 m resolution MODIS pixels were 

encoded using the encoding framework (Section 3.3.2). Using the trained feature extractor 

Densenet121, each pixel was classified based on the probability of being assigned to a class. The 

prediction function produced three confidence values per pixel. Each value represents the 

probability of that respective pixel being assigned to each of the three classes (urban, vegetation, 

change). The pixel was then assigned to the class with the highest probability, resulting in a three-

class classified image. A simplified binary classification image was created to show change and 

no-change pixels from 2001 to 2009. The result of the classification was a change detection map 

that illustrated that pixel change occurred.  

3.3.6 Classification evaluation protocol 

To verify the success of the classification, an accuracy assessment was implemented (Dervisoglu, 

Bilgilioglu & Yagmur 2020). The first step was to create stratified random points over the binary 

classification. The stratified random sampling strategy creates points that are randomly distributed 

over each class (Stehman 1996). However, the number of points created was proportional to the 

relative area of the class. Seventy randomly distributed points were created within the “no-change” 

class and 51 within the “change” class. Each point was verified using a 2001 and 2009 Landsat 7 

image to determine whether change occurred at that location. Using the predicted and actual 

classes a confusion matrix was created. Overall accuracy (OA), user’s accuracy (UA) and 

producer’s accuracy (PA), Kappa, and positive predictive power were formulated (Dervisoglu, 

Bilgilioglu & Yagmur 2020). The OA represents the percentage of cases correctly allocated to 

their respective classes while the family of kappa indices have traditionally been used to 

accommodate for the effects of chance agreement (Pontius & Millones 2011). The positive 

predictive power, also called precision, is a metric that quantifies the number of correct positive 

predictions made and was computed by dividing true positives by the sum of true positives and 

false positives. True positives are data points classified as “change” by the model that are actual 

“change”, while false positives are data points classified as “no-change” that belong to the 

“change” class (Juba & Le 2019). Precision can be thought of as a measure of a classifier’s 

exactness. A low precision can also indicate many false positives. 
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3.3.7 Robustness 

To test the robustness and generalisability of the model, new unseen data from a different location 

was introduced. The highest-performing feature extractor (DenseNet121) was selected and trained 

with the COMBO250 dataset from Pretoria. Assessing the generalisability of the model, unseen 

data from Maputo was introduced. This data consisted of a 250 m resolution MODIS NDVI pixel-

based time series that was then encoded using the same technique applied in Section 3.2. The 

concatenated images from Maputo formed a dataset that was used to evaluate the robustness of the 

model.  

3.4 RESULTS 

3.4.1 Training the classifiers 

The performance of all 11 CNN classifiers trained on each of the input transformations of the 

MODIS 500 m resolution dataset (GASF, GADF and MTF) as well as the combined concatenated 

image was evaluated on overall accuracy and prediction error (loss function). Table 3.2 shows the 

average balanced accuracy and loss for the classifiers with corresponding results for the four 

different input datasets (GASF, GADF, MTF, and COMBO).  

Table 3.2: Accuracy and loss assessment for CNNs with highest-performing classifier per input dataset highlighted 

(MODIS 500 m) 

 GASF GADF MTF COMBO500 

MODIS 500 m Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss 

ResNet50 0.9061 0.2353 0.9242 0.2546 0.8970 0.3706 0.9242 0.2371 

ResNet101 0.8909 0.3524 0.9061 0.2223 0.9152 0.2610 0.9364 0.1847 

ResNet152 0.9000 0.2742 0.9045 0.2729 0.9091 0.2715 0.9333 0.1770 

DenseNet121 0.9000 0.3086 0.9212 0.2475 0.8364 0.3675 0.9394 0.1720 

DenseNet169 0.9091 0.2075 0.9091 0.2682 0.8606 0.4064 0.9282 0.1547 

DenseNet201 0.9182 0.2325 0.9212 0.2596 0.9061 0.3145 0.9333 0.1728 

InceptionV3 0.8879 0.3733 0.9061 0.2858 0.8818 0.4029 0.8697 0.4552 

InceptionResNetV2 0.8727 0.3202 0.8939 0.2835 0.8273 0.4930 0.9091 0.2371 

VGG16 0.8455 0.4243 0.8939 0.3830 0.8091 0.4090 0.9000 0.3132 

VGG19 0.8727 0.4100 0.9000 0.3077 0.8667 0.3525 0.9152 0.2650 

MobileNetV1 0.8455 0.6421 0.8970 0.2719 0.8515 0.4860 0.8636 0.3016 

Mean 0.8862 0.3436 0.9070 0.2779 0.8692 0.3759 0.9139 0.2428 
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When using the GADF encoded images as input data, ResNet50 had the highest effective accuracy 

(92.42%), whereas GASF and MTF encoders performed lower at 91.82% and 91.52% respectively 

using the DenseNet201 and ResNet101 models. The concatenated input images (COMBO) trained 

on the DensesNet121 classifier was the highest-performing model with an accuracy of 93.94%, 

making it the single most effective classifier. The highest mean accuracy over the 11 CNN 

classifiers of 91.39% was also achieved for the concatenated (COMBO) input dataset.  

Similarly, Table 3.3 shows the effective performance of the 11 CNN classifiers applied to the best-

performing input dataset from Table 3.2, the COMBO concatenated dataset, using MODIS 250 m 

resolution. The COMBO concatenated input dataset consists of GASF, GADF and MTF 

transformed images from the 250 m resolution dataset. The mean and standard deviation scores 

for the accuracy and loss for each classifier are illustrated in Table 3.3  

Table 3.3: Accuracy and loss assessment for all CNNs using the COMBO250 concatenated input images for the 

MODIS 250 m resolution dataset 

 Accuracy   Loss 

MODIS 250 m Mean ± Stdev   Mean ± Stdev 

ResNet50 0.9427 ± 0.0090   0.1666 ± 0.0139 

ResNet101 0.9419 ± 0.0090   0.1883 ± 0.0358 

ResNet152 0.9273 ± 0.0259   0.2181 ± 0.0682 

DenseNet121 0.9444 ± 0.0053   0.1897 ± 0.0252 

DenseNet169 0.9308 ± 0.0089   0.2008 ± 0.0472 

DenseNet201 0.9350 ± 0.0097   0.2387 ± 0.0212 

InceptionV3 0.9419 ± 0.0039   0.1635 ± 0.0244 

InceptionResNetV2 0.9273 ± 0.0131   0.2091 ± 0.0722 

VGG16 0.9410 ± 0.0044   0.2081 ± 0.0168 

VGG19 0.9333 ± 0.0092   0.2464 ± 0.0212 

MobileNetV1 0.9256 ± 0.0068   0.2304 ± 0.0224 

Mean 0.9356 ± 0.0096   0.2054 ± 0.0335 

As with the 500 m resolution input data (Table 3.2), the DenseNet121 model applied to the higher 

resolution 250 m MODIS imagery had the highest mean effective performance accuracy of 94.44± 

0.53%. Figure 3.7 presents the comparison of the effective performances of the CNN classifiers 

using the COMBO concatenated images as input for both the MODIS 250 m and 500 m resolution 

datasets. 
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Figure 3.7: Comparison of classifiers based on resolution 

As shown in Table 3.2 and 3.3, DenseNet121 is the highest-performing classifier when using 

COMBO images as the input data. DenseNet121 had an increase in effective performance from 

93.94% to 94.44% when the MODIS resolution was increased from 500 m to 250 m. Table 3.3 

also shows the mean accuracy of the classifiers for each dataset. The increased resolution resulted 

in a 2% increase in the performance accuracy of the CNN models. 

3.4.2 Baseline classifier 

The LSTM baseline classification of the original time series was compared to the four top-

performing CNN classifiers trained on the encoded time-series data for each raster resolution 

(Figure 3.8). Performance was measured on training accuracy and loss. 

 

 

 

 

 

 

 

 

Figure 3.8: Performance of baseline LSTM classifier on original time series vs the four top-performing CNN models 

using encoded images for both 250 m and 500 m MODIS datasets. Error bars show standard deviation 
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The DenseNet121 model outperformed the baseline classification by ±5%. The trained and 

validated DenseNet121 was therefore the CNN classifier selected (Figure 3.7) to perform binary 

image classification on MODIS 250 m NDVI encoded time series to identify change and no-

change pixels between 2001 and 2009 for the study area marked in red in Figure 3.2.  

3.4.3 Image classification 

The binary classification image (Figure 3.9) was produced by the best-performing CNN classifier 

in Table 3.3. The black pixels in Figure 3.9 represent areas of no change, whereas the transparent 

pixels illustrate areas of change, allowing visualisation of the result from the highest-performing 

CNN model. When compared with a high-resolution Google Earth image, it is qualitatively clear 

that the model was able to accurately identify changed areas.  

 

 

 

Figure 3.9: Binary image classification with DenseNet121 classifier to illustrate change and no-change pixels 

between 2001 and 2009 using MODIS NDVI 250 m resolution data 

To assess the accuracy of the binary classification, a confusion matrix was constructed using the 

121 stratified random points, where 51 points represent the “change” class and 70 the “no-change” 

class. Table 3.4 shows the results for the overall accuracy (OA), Kappa, PA, UA, error of omission 

and commission.  

 

 

 

Transparent pixels    = Change 

Black pixels                = No Change  

2001
c 

2009
c 
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Table 3.4: Confusion matrix showing overall accuracy (OA), Kappa, and positive predictive power 

 

An OA of 95% (Kappa 0.8972) was achieved. The image classification resulted in high producer’s 

(PA>0.93) and user’s accuracies (UA>0.90) for both classes. Precision or positive predictive 

power was computed as 90.2%.  

 Figure 3.10: Graphically presents the prediction probability percentage for the “change” class, representing model 

confidence  

Three colours are used to illustrate the different levels of confidence for the changed pixels: white 

represents model confidence above 60%; light grey illustrates model confidence ranging from 50% 

to 59% and; dark grey pixels represent a confidence level of below 50%, generally bordering the 

“no-change” class (black) (Figure 3.10). 
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Producer’s 
Accuracy  

Omission 
Error   

No Change 69 5 74 0.9324 0.0676   

Change 1 46 47 0.9787 0.0213   

 Total 70 51 121   

 

 User’s Accuracy 0.9857 0.9020      

 Commission Error 0.0143 0.0980 

    

       

 Overall Accuracy 0.9500    
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Positive Predictive 
Power  

0.9020    

 

         

 

 

 

 

60% - 100% Change 

50% - 59%  Change 
 
35% - 49%  Change  
 
 
0% - 34%   No Change  
 
 

Stellenbosch University https://scholar.sun.ac.za



51 

3.4.4 Generalisability  

The DenseNet121 CNN model was used to test the generalisability of the CNN classifiers. The 

graph (Figure 3.11) shows the accuracy for both training and testing data over 100 epochs, with 

training data from Pretoria in blue, and validation data from Maputo in orange.  

 

 

 

 

 

 

Figure 3.11: DenseNet121 generalisability results using training and validation data from Pretoria and Maputo 

respectively 

Although high model accuracies were accomplished using the training data from Pretoria (blue 

line), this was not the case for the model validation accuracy undertaken on the Maputo data 

(orange line). A validation accuracy of 59% was achieved, which is significantly lower than the 

94% model training accuracy. 

3.5 DISCUSSION 

This study presented a novel approach to change detection through data engineering by encoding 

MODIS 500 m and 250 m NDVI time-series data as 2D images using GASF, GADF, and MTF 

transformations. Eleven CNN models were trained and validated. In this section, the efficacy of 

GAF and MTF encoded images with CNNs as a method for urban change detection will be 

discussed. After classification using the best-performing classifier and resolution, an accuracy 

assessment was performed to draw a comparison between this framework and other change 

detection methods. Furthermore, the generalisability and robustness of the selected model will be 

discussed before concluding the discussion with a look at the limitations of the research.  

The pre-trained CNNs achieved consistently high mean accuracies ranging from 87 - 91% (Table 

3.2). The DenseNet and ResNet architectures achieved the best results which is in line with the 

literature (He et al. 2016; Huang, Liu & Van Der Maaten 2017). DenseNet201, ResNet50 and 

ResNet101 obtained the highest accuracies when using GASF, GADF, and MTF input datasets 

respectively (Table 3.2). This is in agreement with the findings by Dias et al. (2019) that both these 

architectures were top-performing feature extractors. However, DenseNet was more beneficial 

when applied to larger datasets (Dias et al. 2019). In this study, the DenseNet121 feature extractor 
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achieved the highest accuracy of ~94% when using the COMBO500 and COMBO250 datasets. As 

expected, the GASF, GADF, MTF concatenated input images produced a higher mean accuracy 

when evaluating the model performance (Table 3.2), outperforming the three individual 

transformations (Dias et al. 2019; Yang, Chen & Yang 2020).  

The combination of the DenseNet121 feature extractor and the concatenated input images was 

found to be the most successful when using MODIS imagery (Figure 3.7). Moreover, Kleynhans, 

Salmon & Wessels (2017) found that an increase in the MODIS resolution would positively affect 

the accuracy of an urban change detection. Evidence of this can be seen in the higher mean 

accuracy for the higher resolution MODIS COMBO250 (Table 3.3) and the comparison in Figure 

3.7. DenseNet121 remains the most favourable feature extractor for this application and was 

therefore chosen to perform the change detection on the study area (Figure 3.2) 

The LSTM algorithm, a state-of-the-art time-series classification approach used for urban change 

detection (Karim et al. 2017; Yildirim et al. 2019), when applied to the original time-series, only 

achieved an accuracy of 89.32±5.37% (Figure 3.8) in training and validation. The mean accuracy 

for the LSTM was much lower than achieved using an encoded time-series and CNNs with a much 

higher standard deviation.  

The DenseNet121 CNN applied to the 2001-2009 time series, encoded as GADF, GASF and MTF 

concatenated images, produced a three-class change detection map with classes “urban”, 

“vegetation” and “change”. The model predicted the probability of belonging to each class. The 

binary change map (Figure 3.9) only illustrates the class of highest probability with “urban” and 

“vegetation” collapsed to “no-change”. The accuracy assessment substantiated the results (Table 

3.4). The confusion matrix illustrates an OA of 95% which is close to the model’s evaluation 

accuracy of 94.44%. However, the lower positive predictive power of 0.9020 could indicate that 

the model may produce false positives. This is illustrated by the fact that the model classified five 

pixels as “change” when in fact no change had occurred at that exact location (Table 3.4). The 

misclassification could be due to the low resolution, which results in mixed pixels. An area of pixel 

size 62500 m2 would require extensive land cover change to register a pixel change from 

vegetation to urban. If only a portion of the pixel changed, the signature would differ from that of 

a pure vegetation pixel. The model may identify this change in the spectral response and classify 

it accordingly. An increase in spatial resolution would reduce the number of false positives and 

increase the performance of the model. Nevertheless, the model presents a high true negative rate 

(also called specificity) of 93%. This indicates that the model does not often misclassify “no-

change” pixels. As seen in Table 3.4, only one pixel of 70 was misclassified as “no change” when 
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in fact change occurred. This is a noteworthy when looking at the accuracy assessment, as it shows 

that the model will seldomly fail to detect areas of change.   

The confidence with which the model could detect changed pixels is illustrated in Figure 3.10, 

which illustrates the probability of a pixel belonging to the “change” class. The majority of pixels 

were classified with 60% or more confidence. However, lower confidence was noted for pixels 

that are located on the outskirts of urban areas. These pixels fell within the 35%-49% confidence 

category, which is related to the concept of mixed pixels. The model was still able to distinguish 

the correct class just at a lower confidence level but would benefit from higher resolution imagery.  

On the other hand, the novel framework of encoding the time series for a CNN classification 

produced significantly higher accuracies using both 500 m and 250 m resolution datasets when 

comparing at the model performance level before the image classification. A comparison at this 

level can only be done as the DesneNet121was the only architecture used to produce an image 

classification. The framework of encoding time series and performing a CNN classification can 

outperform the state-of-the-art LSTM classifier. Extensive research has shown that there is a lack 

of literature concerning the framework of encoding time-series data for an urban change detection. 

This novel framework developed by Wang and Oates (2015) has been implemented in several 

studies with various applications except for an urban change detection (Barra et al. 2020; Dias et 

al. 2020; Huang, Chakraborty & Sharma 2020; C Li et al. 2020; Yang, Chen & Yang 2020).  

By comparison with a temporal autocorrelation time-series based change detection method 

deployed in South Africa (Kleynhans et al. 2013; Kleynhans et al. 2012; Kleynhans et al. 2015; 

Kleynhans, Salmon & Wessels 2017), the OA of 94% achieved in this study using a similar dataset 

outperformed the TACD and STACD methods, which achieved OAs of 88% and 76% 

respectively. This implies that applying the framework of encoding time-series imagery as features 

for input to a CNN classification, derived by Wang and Oates (2015), can successfully be 

implemented for an urban change detection.  

The success of this framework originates from the combination of encoding time-series input data 

using GAF and MTF transformations, as well as state-of-the-art feature extractors. The encoding 

is the critical step that transforms the per-pixel time series into an image format that matches the 

input requirements for the feature extractors.  

Despite the successful change detection, there are still several aspects that need to be noted for 

future research. The generalisability of the model is poor Figure 3.11. The model could not be 

trained and tested in two different locations. The input time series are specific to a location and 

would need to be generalised to allow a more robust model. A key aspect would be to remove the 

seasonality of the time series and perform a line smoothing. If a general trend time series for urban 
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change was to be found, the model would potentially be transferable. Other aspects that would 

help increase the performance of the model are increasing the resolution further to reduce the 

number of mixed pixels on the boundaries of land cover types, as well as establishing the effect 

that the temporal aspect has on the model performance.  

3.6 CONCLUSION 

This study evaluated the effectiveness of encoding pixel-wise time series derived from MODIS 

data for a CNN classification. GASF, GADF and MTF encoding transformations were performed 

on time series generated from 500 m and 250 m resolution MODIS NDVI imagery. COMBO500 

and COMBO250 concatenated datasets were created by combining the three transformation outputs. 

Eleven pre-trained feature extractors were used to process the encoded time series. The different 

CNN architectures performed at various levels depending on the specific transformation applied 

to the relevant input data. The concatenated COMBO500 was the top-performing dataset when 

compared to the individual GASF, GADF and MTF transformations, achieving an average 

accuracy of 91.39%. This is primarily because of its ability to combine the information from all 

three encoding transformations. The increase in the resolution of the input data (COMBO250) 

yielded a high average accuracy of 93.56%. It is concluded that an increase in spatial resolution 

will indeed help increase the performance of the feature extractors. However, the extractors are 

slightly overfitted as their loss values do not decrease. It was concluded that at the end of this 

research, the novel framework of encoding time-series data as 2D images for an urban change 

detection with the use of multiple CNN classifications was effective concerning the current state-

of-the-art method deployed. Further research regarding a drastic increase in the spatial resolution 

is recommended, as well as to investigate the temporal aspect of the input data.  
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CHAPTER 4:  FACTORS INFLUENCING THE PERORMANCE OF 

URBAN CHANGE DETECTION USING HIGH-

RESOLUTION IMAGERY AND TIME-SERIES 

ENCODING  

4.1 INTRODUCTION 

Urbanisation continues due to economic and employment opportunities (Asongu et al. 2020; 

Gunter 2021) causing the expansion of human settlements to be one of the most pervasive forms 

of land cover change in South Africa (Kleynhans et al. 2012). A practical framework for urban 

change detection that processes data in a timely and accurate manner is therefore essential for 

urban planning and management (Jensen & Im 2007). Kleynhans, Salmon and Wessels (2017) 

demonstrated an effective way of monitoring urbanisation using a spatiotemporal ACF. Spatial 

analysis of earth observation (EO) data from satellites and sensors can help stakeholders track and 

understand urban development over a wide range of spatial and temporal scales (Al-Bilbisi 2019). 

Time-series RS data have proven to be a trustworthy source in performing change detection (De 

Beurs & Henebry 2005; Chen et al. 2019; Liu et al. 2018). At pixel level, a remotely sensed time 

series usually contains trend and seasonal components or intra-annual fluctuations (Xu et al. 2019). 

Changes that occur in the trend component can be ascribed to disturbances such as fire, 

deforestation or urbanisation (Verbesselt, Hyndman, Newnham, et al. 2010; Verbesselt, Hyndman, 

Zeileis, et al. 2010). New developments in the field of computer vision have introduced a novel 

framework of encoding a time series of data as an image (Liu & Wang 2016; Wang & Oates 2015) 

using Gramian angular summation field (GASF), Gramian angular difference field (GADF) and 

Markov transition field (MTF) transformations. The resulting encoded images are suitable for use 

in a convoluted neural network (CNN) classification (Liu & Wang 2016; Wang & Oates 2015). 

The novel framework of processing encoded time-series images for DL classifications has only 

recently gathered traction in fields such as weather and financial forecasting, fault diagnosis, 

human activity recognition, and sensor classifications (Barra et al. 2020; Huang, Chakraborty & 

Sharma 2020; C Li et al. 2020; Qin et al. 2020; Yang, Chen & Yang 2020). However, the 

methodology has not yet had significant exposure in the field of spatial sciences. A study 

conducted by Dias et al. (2020) utilised the framework for a pixel-wise Eucalyptus region 

classification using MODIS imagery, while Chapter 3 proposed a methodology of implementing 

this novel framework within a spatial science context in South Africa. Pixel-wise MODIS time-

series data were collected and encoded before CNN classification testing of multiple classifiers for 

urban change detection. Accuracies of higher than 90% were achieved, proving the novel 
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framework superior to current state-of-the-art methods (Chapter 3). To improve accuracy, further 

investigation into the data and classification schemes were recommended (Chapter 3). 

Chapter 3 demonstrated a correlation between spatial resolution and the accuracy of the 

classifications. The increased resolution from MODIS 500 m to 250 m resulted in a one per cent 

increase in the change detection accuracy (CDA) in agreement with the literature (Kleynhans, 

Salmon & Wessels 2017). The increased accuracy contradicts findings by Chen, Stow & Gong 

(2004), who stated that high-resolution imagery would more likely result in a decrease in 

classification accuracy for an urban environment. However, Chen, Stow and Gong (2004) 

concluded that the land cover characteristics would play a role in the performance. Therefore, the 

relationship between resolution and classification accuracy will vary depending on the study site 

and the resolution level of data (Chen, Stow & Gong 2004). 

In addition to resolution, other elements may affect the performance of the classifier. One such 

aspect to consider is the length of the time series. Rispens et al. (2014) investigated the impact of 

time-series length (TSL) on the accuracy and precision of algorithms and concluded that an 

increase in TSL could positively affect accuracy (Hills et al. 2014; Rispens et al. 2014). A second 

element to consider is the quantity of available training data. Previous studies (Cho et al. 2015; 

Dunnmon et al. 2019)have shown the importance of training dataset size and its correlation to the 

accuracy of the class assignment. A consensus across the literature is that a more extensive training 

dataset is more beneficial to the success of the classification (Cho et al. 2015; Dunnmon et al. 

2019; Zhong et al. 2018). Zhong et al. (2018) found that CNN classifications performed better 

with larger training datasets. The biproduct of a CNN prediction is a value that illustrates the 

probability of an object (pixel) being assigned to a class (Segal-Rozenhaimer et al. 2020). 

Classification is a result of applying the stipulated minimum pixel probability (MPP) value. 

Altering the MPP value will ultimately affect the final classification. In addition to applying a 

single classifier, recent studies have utilised an ensemble of CNN classifications (Chen et al. 2017; 

W Li et al. 2019; Vasan et al. 2020). An ensemble of CNN classifications uses information from 

multiple architectures, providing an advantage over a single classification (Vasan et al. 2020)and 

has proven more effective than the individual CNN classifications (Chen et al. 2017).  

Despite the success of DL classifications, their generalisation ability remains unclear (Jakubovitz, 

Giryes & Rodrigues 2019). Although removal of the seasonal trend of the time series may improve 

the performance of the classification (Zhang & Qi 2005), DL algorithms can accommodate 

seasonal trends in the data if these trends are well presented (Hamzaçebi 2008). 

This chapter describes various factors that can affect change detection using CNNs with input from 

encoded pixel-wise time-series NDVI data gathered from Sentinel-2 imagery. GAF and MTF are 
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applied to transform the time series before classification. Firstly, the relationship between spatial 

resolution and the performance of the CNN-based change detection algorithm is investigated, with 

a comparison to results from Chapter 3. Secondly, due to the varying periods for which spatial 

data can be gathered, an experiment is conducted using different training set sizes and TSL 

datasets. The top-performing framework for change detection is determined by varying the MPP 

for image classifications and testing an ensemble of CNN classifications. After the generalisability 

of the change detection algorithm is tested using standard and seasonally detrended datasets, image 

classification is performed. The accuracy of the classifications is measured using a confusion 

matrix. The workflow for this chapter can be seen in Figure 4.1. 

  

Figure 4.1: Workflow diagram illustrating the process for implementing a change detection through DL feature 

extractors and encoding transformation for multiple locations 

4.2 MATERIALS AND METHODS 

4.2.1 Study area 

Illustrated in Figure 4.2: is a national map of South Africa that indicates the locations of the four 

testing sites (Pretoria, Durban, Gqeberha, and Khayelitsha), each located in a different province: 

Gauteng, KwaZulu-Natal (KZN), Eastern Cape, and Western Cape, respectively. The Pretoria site 

was used for model development, training (ground truth data), testing as well as prediction 

(Chapter 3). High levels of urbanisation with encroachment on natural vegetation continues in this 
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study area. The other study sites, Durban, Gqeberha, and Khayelitsha testing sites, have been 

included to illustrate the ability of the DL model to generalise.  

 

Figure 4.2: Provincial map showing testing locations in their respective provinces, training points and classification 

site for accuracy assessment 

The location of the ground truth data can be seen as grey dots in Figure 4.2:. The red square shows 

the Pretoria site used to test model accuracy for change detection and accuracy assessment. 

4.2.2 Data collection 

A per-pixel time series of spatially aligned NDVI pixels was calculated using Equation 2.4 and 

was derived from the Sentinel-2 MSI: Multispectral instrument, Level-2A (USGS 2018) using the 

GEE platform (Evans & Malcom 2021; Gorelick et al. 2017; Chapter 3). NDVI was computed 

using the equation (NIR - Red)/(NIR + Red) (Lunetta et al. 2006) where red represents band 4 and 

NIR represents band 8, the NIR band. Sentinel-2 was chosen over Landsat 8 for its higher temporal 

resolution to account for high cloud cover over the respective locations. However, the 10 m 

resolution Sentinel-2 data was resampled to 30 m to correspond with Landsat 8. This was done so 

that if one does not have access to Sentinel-2 data or if one would like to perform the methodology 

during a period for which Sentinel-2 had not been established, one could do so. With no 

atmospherically corrected imagery available before December 2018, GEE access to Sentinel-2 

Level-2A limited the study period from 2019 to 2021. Training and test datasets for change 
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detection were collected for the period ranging from 2019/01/01 to 2021/06/30 (911 days). The 

presence of cloud cover and the seven-day temporal resolution resulted in a maximum time-series 

length (TSL) of 82. All models were trained using encoded data (Section 4.2.3) collected from 

Pretoria, located in the Gauteng Province, for comparison with other time series-based studies (e.g. 

Kleynhans, Salmon & Wessels 2017; Chapter 3). Testing took place at four locations across South 

Africa (Figure 4.2:). 

Multiple datasets (Table 4.1) were collected and encoded to conduct the experiments (Section 

4.2.5) to test model performance. The sensor, resolution, size of the training dataset represented 

by the number of changed pixels (CP) and TSL for each training and testing site along with their 

respective dataset names can be found in Table 4.1.  

Table 4.1: Datasets for training and testing with sensor, resolution, CP and TSL per dataset 

 Dataset names Satellite Resolution CP  TSL 

 

 

Training  

 

 

 

 

 

 

Testing 

 

 

 

 

Pretoria1 

Pretoria2 

Pretoria3 

Pretoria4 

Pretoria5 

 

Pretoria6 

Pretoria7 

Durban1 

Gqeberha1 

Khayelitsha1 

Durban2  
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Khayelitsha2 

Sentinel-2 

Sentinel-2 

Sentinel-2 

Sentinel-2 

MODIS  

 

Sentinel-2 

MODIS  

Sentinel-2 

Sentinel-2 

Sentinel-2 

Sentinel-2 

Sentinel-2 

Sentinel-2 

30m 

30m 

30m 

30m 

250 m 

 

30m 

250 m 

30m 

30m 

30m 

30m 

30m 

30m 

433 

547 

547 

547 

122 

 

Unknown 

Unknown 

20 

115 

234 

20 

115 

234 

82 

82 

57 

32 

82 

 

82 

82 

65 

50 

50 

32 

32 

32 

 

To capture change between 2019 and 2021, three classes of training and testing data were digitised 

from 10 m resolution Sentinel-2 Level-2A data (ESA 2015). Two classes (vegetation and urban) 

of pixels without change (no-change) and one class of CP were saved in the Pretoria1 dataset (Table 

4.1). A total of 433 CPs was collected for comparison with the number of MODIS CPs used in 

Chapter 3. A MODIS NDVI dataset (MOD13Q1 resolution 250 m) (USGS 2018) labelled Pretoria5 

was collected over the exact location and time frame (TSL 82) as Pretoria1, however, the number 

of comparative CPs was only 122, decreasing the training sample size. In Pretoria2, 547 CPs were 

collected to further test the effect of increasing the training sample size. Based on Pretoria2 with 

547 CPs, in Pretoria3 and Pretoria4 the TSL was decreased to 57 and 32 respectively. Test datasets 

Pretoria6 (Sentinel-2) and Pretoria7 (MODIS) were used for image classification, to test the effect 

of resolution, MPP and ensemble modelling. 
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A comparison between the MODIS 250 m, Sentinel-2 10m and Sentinel-2 30m pixel grids is 

illustrated in Figure 4.3. The yellow grid represents the MODIS 250 m pixels, while (1) and (2) 

display the grid of 10 m and 30 m resolution pixels respectively (Figure 4.3).  

 

Figure 4.3: Quickbird imagery overlaid with MODIS 250 m resolution yellow grid pattern. Pixel (1) and (2) 

correspond with Sentinel-2 10 m resolution and Landsat8 30 m resolution grid patterns respectively 

(Source: Google Earth). 

A per-pixel time series is represented in Figure 4.4. The blue line shows pixels where a change 

from vegetation to urban has occurred, while the orange line in Figure 4.4 shows a strong seasonal 

vegetation response.  

 

Figure 4.4: Sentinel-2 NDVI time series for a changed and unchanged pixel 2019-2021 

In the changed pixel (blue line), the NDVI is initially high, but decreases due to urbanisation and 

shows a consistently low NDVI for the remaining period. The consistent low is an indication of 

no change for the urban class. The time-series data collected at the Gqeberha and Khayelitsha 

testing sites showed a different phenological curve without strong seasonal patterns, related to 

climatic conditions and rainfall regimes at the sites. 

Removing seasonality from the training and testing data may potentially increase model 

performance (Yan 2012). For the datasets Pretoria4, Durban2, Gqeberha2 and Khayelitsha2 (Table 
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4.1), seasonality was removed to establish the effect of the seasonal patterns on model performance 

(Martínez et al. 2018; Nelson et al. 1999; Yan 2012)and generalisability. This reduced the TSL to 

32, the minimum input size required by neural networks (Keras 2020a). Figure 4.5 shows the time 

series for the pixels in Figure 4.4, while Figure 4.6 illustrates the changed pixels at the testing sites 

with the seasonal pattern removed. 

  

Figure 4.5: Seasonality removed from the Sentinel-2 NDVI time series for a change and no-change pixel 

  

Figure 4.6: Seasonality removed from Sentinel-2 NDVI time series for a changed pixel at each of the four test sites 

(Pretoria, Durban, Gqeberha, Khayelitsha) 

Although removing the seasonality should increase the similarity between the time series, there is 

still a difference between the training and testing data. 

4.2.3 Encoding time series as image 

GAM and MTF pixel-wise transformations were executed for each time series in all datasets 

(Table 4.1). A polar coordinate-based matrix can display the temporal correlation between 

observations in different time intervals (Dias et al. 2020; Wang & Oates 2015; Yang, Chen & Yang 

2020; Yang et al. 2019). Polar coordinates are formulated from Equation 1 (Chapter 3). Cosine 

and sine functions are then used with the angles formulated from the polar coordinates to produce 

the GASF and GADF matrices (Yang, Chen & Yang 2020; Yang et al. 2019). Equation 2 (Chapter 

3) formulae are used to generate the MTF, which preserves information in the time domain by 

capturing transitional probability statistics. The time series is discretised by splitting it into quantile 

bins, after which a Markov transition matrix is built (Dias et al. 2020; Wang & Oates 2015). Colour 
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images are created to visually display the matrices for the GASF, GADF and MTF encoded images 

for each of the three classes (Figure 4.7:). The original input time series for the encoding used a 

TSL of 82 and is illustrated in Figure 4.7:a, while Figure 4.7:b shows the time series with 

seasonality removed.  

 

Figure 4.7: GASF, GADF, and MTF encoded colour images generated from the Sentinel-2 NDVI time series for the 

three classes (urban, vegetation, change) 

Seasonality was removed from the TSL82 datasets to form the Pretoria4, Durban2, Gqeberha2, and 

Khayelitsha2 test datasets. These datasets have a TSL of 32, which affects the size of encoded 

matrices (Figure 4.7:b). The GASF, GADF and MTF encoded images were concatenated to 

increase the extraction of discriminative features (Yang et al. 2019; Chapter 3) before input to the 

CNN feature extractors. 

4.2.4 Deep-learning feature extractors 

Eleven CNN architectures, pre-trained on ImageNet, were used as feature extractors to classify the 

per-pixel encoded time series (Fei-fei et al. 2021; Keras 2020a). Each feature extractor contains 

several convolutional and max-pooling levels. By training the feature extractors and assigning 

weights to the layers, a secondary task, such as classification, can be implemented. The 11 

architectures that were considered include DenseNet121 DenseNet169, DenseNet201, 

InceptionV3, InceptionResNetV2, MobileNetV1, ResNet50, ResNet10, ResNet152, VGG16, and 

VGG19 (Dias et al. 2020; Chapter 3).  

 

 

 

GASF                         GADF             MTF GASF                         GADF             MTF 
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4.2.5 Experiments 

Using datasets Pretoria1, Pretoria2, Pretoria3, and Pretoria4 (Table 4.1), three experiments were 

set out to test the effect of resolution (4.2.5.1), varying training set size (4.2.5.2) and time-series 

length (4.2.5.3) on model performance. In each of the three experiments, the input dataset was split 

70:30 for training and validation purposes. A three-fold validation process gathered an average 

accuracy for comparison. Experiment 4 (0) involved testing the generalisability of the models to 

unseen data at the different testing sites. In experiment 5 (4.2.5.5), several classifications were 

conducted using the classification site in Figure 4.2: (red square) using the Pretoria2, Pretoria5, 

Pretoria6 and Pretoria7 input datasets (Table 4.1).  

4.2.5.1 Experiment 1: resolution 

The first experiment tested the effect of an increase in resolution from 250 m MODIS to 30 m 

Sentinel-2. Eleven feature extractors were used to process the Pretoria1 dataset. A three-fold 

validation process gathered an average accuracy for comparison between the use of MODIS and 

Sentinel-2 imagery. 

4.2.5.2 Experiment 2: training set size 

The second experiment tested the effect of increasing CP when training the feature extractors while 

keeping the TSL constant while experiment 3 examined the effect of varying TSL. Figure 4.8 

shows the testing workflow for model evaluation using different CP and TSL. In experiment 2, a 

comparison was made between the Pretoria1 dataset with CP 433 and TSL of 82, and the Pretoria2 

dataset with an additional 114 CPs was introduced to the training process when the Pretoria2 

dataset was utilised.  

 

 

 

 

 

 

 

Figure 4.8: Data-testing workflow showing the split of data for the model evaluation using different CP and TSL 
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4.2.5.3 Experiment 3: time-series length 

The third experiment determined the effect of TSL on feature extractors performance. The 

Pretoria2, Pretoria3, and Pretoria4 datasets all contained 547 CP, but varying time series lengths 

(Figure 4.8). Each dataset was processed through the feature extractors using the 70:30 split for 

training and validation. The average performance for each feature extractor was gathered by 

performing a three-fold validation process (Figure 4.8). Two of the eleven CNN architectures 

required a minimum TSL of 75 for the input dataset. Therefore, the Pretoria3 and Pretoria4 datasets 

could not be processed through InceptionV3 and InceptionResNetV2 feature extractors.  

4.2.5.4 Experiment 4: generalisability  

Testing the generalisation of the feature extractors required unseen data from different locations 

where urban change was present. Three testing sites were identified in three different provinces. 

Multiple datasets were gathered (Table 4.1) and used for three different experiments. Three-fold 

validation was performed for each experiment before image classification. In these experiments, 

nine feature extractors were trained using the Pretoria2 dataset, while testing was performed on 

unseen data from three locations: Durban1 (TSL 65), Gqeberha1 (TSL 50) and Khayelitsha1 (TSL 

50) (Table 4.1) as well as datasets with seasonality removed (Durban2, Gqeberha2, and 

Khayelitsha2 with TSL 32).  

4.2.5.5 Experiment 5: image classification  

The first image classification using the Pretoria5 and Pretoria7 datasets (MODIS 250 m) was a 

baseline classification. DenseNet121, the top-performing MODIS feature extractor (Chapter 3) 

was selected and trained with all the Pretoria5 data and then used to predict three classes (urban, 

vegetation, change) on the Pretoria7 dataset. Each pixel was then assigned to the class for which 

it had the highest probability. A simple binary classification was also derived to illustrate change 

and no-change pixels (combined urban and vegetation classes) at coarser resolution. Figure 4.9 

illustrates the workflow applied to Sentinel-2 (resampled to 30 m) to test the effects of probability 

constraints (Segal-Rozenhaimer et al. 2020) and the application of an ensemble of classifiers (Chen 

et al. 2017; S Li et al. 2019; Vasan et al. 2020). 
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Figure 4.9: Training CNNs with the Pretoria2 dataset to test minimum pixel probability constraints and an ensemble 

of CNNs for classification on the Pretoria6 dataset 

The Pretoria2 data was used to train the 11 CNN feature extractors to apply image classification 

on the Pretoria6 dataset (Sentinel-2 30m). The top-performing Sentinel-2 feature extractor 

(DenseNet169) was used to conduct four binary classifications, each altering the MPP level for 

which a pixel is assigned to a class. Four classifications were run: (1) the pixel was assigned to the 

class with the highest probability; (2) a 50% MPP constraint was applied, assigning pixels to a 

class if the prediction value was higher than 50%; (3) a 70% MPP constraint was employed, 

whereas (4) the final classification utilised a 90% MPP.  

Two ensemble classifications were conducted using multiple feature extractors trained on 

Pretoria2 while classifying Pretoria6. The first ensemble classifier used a majority agreement rule. 

This rule required a pixel class agreement from six or more feature extractors to classify a pixel as 

changed. If this agreement was not met, the pixel was then assigned to the no-change class. The 

second ensemble classification required a pixel class agreement from all feature extractors. This 

meant that all 11 feature extractors had to classify the pixel as changed for that pixel to be assigned 

to the changed class. In addition to the ensemble rules, the 50% MPP constraint was applied.  

A pixel-wise probability level classification was performed to show the individual probabilities of 

the pixels found in the classification of the Pretoria6 dataset. This classification utilised the 

traditional method of assigning the pixel to the class with the highest probability. Four probability 

levels were established, the first being 0% to 34% for no-change pixels. The next level is consistent 

with pixel probabilities ranging from 35% to 49%. The final two levels used the 50% to 59% and 

60% to 100% probability range. These three levels represented pixels that were classified as 

changed.  

To test the effect of generalisability on prediction, a three-class classification (urban, vegetation, 

change) and binary classification (change, no change) using 50% MPP constraint was performed 

for datasets Durban1, Gqeberha1, and Khayelitsha1 for all 11 feature extractors using a model 
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trained on Pretoria2. A further binary classification with 50% MPP constraint was performed on 

the seasonality removed datasets (Durban2, Gqeberha2, and Khayelitsha2).  

4.2.6 Image classification evaluation protocol 

To verify the success of the classifications, an accuracy assessment was performed using the 

confusion matrix (Dervisoglu, Bilgilioglu & Yagmur 2020). This image classification evaluation 

protocol was employed for each of the classifications performed. Stratified random points (150) 

were created for each binary classification (Stehman 1996). Each point was cross-referenced with 

a 2019 and 2021 Sentinel-2 10 m resolution image pixel to assign the class (change, no change). 

From the confusion matrix, overall accuracy (OA), Kappa, user’s accuracy (UA), and producer’s 

accuracy (PA) were formulated and recorded (Dervisoglu, Bilgilioglu & Yagmur 2020).  

4.3 RESULTS 

4.3.1 Experiment 1: resolution 

The Pretoria1 dataset was used to train 11 CNN classifiers with 433 CP using Sentinel-2 30 m 

resolution data. Figure 4.10 shows the individual average accuracy for training each CNN classifier 

comparing Sentinel-2 30 m with MODIS 250 m and MODIS 500 m resolution encoded images 

(Chapter 3). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Effect of resolution on the training of 11 CNN feature extractors 
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The DenseNet169 classifier produced an accuracy of almost 99% for this Sentinel-2 30 m dataset. 

The mean accuracy over all 11 CNN models was 97.65%. By comparison to the findings in 

Chapter 3, a four per cent increase in accuracy was recorded when using Sentinel-2 30 m when 

compared to MODIS 250 m resolution data. Although DenseNet121 was the best-performing CNN 

model in Chapter 3, it was only the fifth-best performer on the higher resolution data, however, 

the training accuracy was still higher than 98%. 

4.3.2 Experiment 2: additional training data 

The Pretoria2 dataset contained an additional 114 CP compared to the Pretoria1 dataset, resulting 

in 547 CP (Table 4.1). Figure 4.11 illustrates the performances of the CNN classifiers when trained 

using 547 CP.  

 

Figure 4.11: Training accuracy when using 11 CNNs with larger training set size (Pretoria 2: 547 CP; TSL 82) 

compared to Pretoria1 (433 CP; TSL 82) 

Mean training accuracy of 98.29% was achieved over all CNN classifiers. The DenseNet169 

classifier achieved the highest accuracy of 99.39%, while DenseNet121 scored 98.99%. This 

illustrates an 0.64% increase in the mean accuracy of the 11 CNN classifiers when additional CPs 

are used for training.  
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4.3.3 Experiment 3: TSL 

The results shown in Figure 4.12 represent the individual performance of the CNN classifiers when 

varying the TSL during training.  

 

Figure 4.12: Performance of CNNs at 82, 57, and 32 TSL using the resampled Sentinel-2 30m resolution dataset 

with 547 CP 

A mean accuracy of 93.2% was recorded when the classifiers were trained with the Pretoria4 

dataset with a TSL of 32. The Pretoria3 dataset contained a TSL of 57 and achieved a mean 

performance accuracy of 96.4%, a more than 3% increase over the TSL 32 dataset. The mean 

accuracy increased a further 1.9% when trained with the Pretoria2 with TSL of 82. The 

DenseNet121 classifier was the top-performing CNN when considering both Pretoria4 and 

Pretoria3 datasets, and second-highest on Pretoria2. However, DenseNet169 outperformed both 

by 0.67% when trained with a TSL of 82 (Pretoria2). No results were recorded for Pretoria3 and 

Pretoria4 when using the InceptionV3 and InceptionResNetV2 frameworks as they require a 

minimum TSL of 75 in contrast to the ResNet, DenseNet, VGG and MobileNet frameworks that 

require a minimum TSL of 32 (Keras 2020a).  

4.3.4 Experiment 4: generalisability 

The results shown in Table 4.2 illustrate the generalisability of the nine CNN models tested on 

Pretoria2 and applied to Durban1 (TSL 65), Gqeberha1 and Khayelitsha1 (TSL 50 each). A 
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comparison is drawn between the application of the models for two classes (no-change, change) 

or three classes (urban, vegetation, change).  

 Table 4.2: Testing generalisability of nine CNNs on binary and three-class classifications at Durban, Gqeberha, and 

Khayelitsha trained on Pretoria2 

 Durban1 (TSL65) Gqeberha1 (TSL50) Khayelitsha1 (TSL50) 

Trained on 547CP binary 3-class binary 3-class binary 3-class 

ResNet50 0.9255 0.6687 0.8921 0.3583 0.6327 0.3773 

ResNet101 0.9281 0.4417 0.8273 0.2853 0.7312 0.3662 

ResNet152 0.9389 0.4458 0.9002 0.3852 0.8164 0.2810 

DenseNet121 0.8466 0.6605 0.8848 0.3538 0.8063 0.4925 

DenseNet169 0.8909 0.7301 0.8637 0.3762 0.7429 0.3923 

DenseNet201 0.8470 0.6442 0.8925 0.3544 0.8266 0.3681 

VGG16 0.9018 0.5112 0.9012 0.3986 0.7646 0.4658 

VGG19 0.9230 0.6155 0.9075 0.3884 0.7863 0.5442 

MobileNetV1 0.9287 0.7832 0.8999 0.3871 0.6778 0.5985 

Mean 0.9046 0.6112 0.8855 0.3653 0.7661 0.4318 

The performance of the CNN classifiers for binary classification is notably higher than that of the 

three-class classification. ResNet152 produced a high of 94% for binary when tested in Durban, 

while DenseNet201 produced 83% for Khayelitsha. The MobileNetV1 classifier produced the 

highest accuracies for three classes on Durban1 and Khayelitsha1 of 78% and 60% respectively. 

At Gqeberha VGG19 had a high of 91% for two classes, but only produced a high of 40% with the 

VGG16 classifier on three classes. Not only was there an individual increase in accuracy for a 

binary classification but an increase in all three mean accuracies. Gqeberha showed the largest 

improvement using a binary classification over the three-class classification.  

Table 4.3 shows the performance for a binary classification at each testing location using the time-

series datasets with seasonality removed, Durban2, Gqeberha2, and Khayelitsha2, TSL 32. 

DenseNet169 achieved the highest performance when testing in Durban and Khayelitsha, while 

DenseNet201 performed best in Gqeberha. 
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Table 4.3: Binary classification (no-change, change) performance of generalisability of nine CNN models for 

Durban, Gqeberha, and Khayelitsha 

Binary Classification Durban2  Gqeberha2 Khayelitsha2 

Trained on 547CP TSL32 TSL32 TSL32 

ResNet50 0.9693 0.9175 0.7510 

ResNet101 0.8773 0.9133 0.7349 

ResNet152 0.8344 0.9110 0.7410 

DenseNet121 0.9755 0.8848 0.8279 

DenseNet169 0.9767 0.9040 0.8479 

DenseNet201 0.9500 0.9290 0.8378 

VGG16 0.9632 0.9185 0.8199 

VGG19 0.9693 0.9204 0.8260 

MobileNetV1 0.8037 0.7775 0.8127 

Mean 0.9244 0.8973 0.7999 

4.3.5 Experiment 5: image classification 

Table 4.4 represents the summarised confusion matrix for the image classifications on the Pretoria 

datasets (Figure 4.8 and Figure 4.9) Overall accuracy (OA), Kappa, producer’s accuracy (PA) and 

user’s accuracy (UA) are reported for classification of Pretoria7 dataset with DenseNet12, the best 

MODIS performer, and DenseNet169, the best Sentinel-2 performer on dataset Pretoria6. For each 

class (change, no change), 150 stratified random points were sampled. 

Table 4.4: Confusion matrix results for multiple binary classifications using different pixel probability constraints 

while training and testing with the Pretoria TSL82 & CP547 dataset 

The MODIS 250 m (Pretoria7) dataset achieved an OA of 92%. Using the higher resolution 

Sentinel-2 30 m data (Pretoria6), an increase of 3% was noted. As the prediction constraint 

Accuracy Assessment All Pixels Changed Pixels No-Change Pixels 

 Classifier Probability constraints OA Kappa PA UA PA UA 

DenseNet121 MODIS 35%+ 0.9225 0.8041 0.8919 0.8250 0.9333 0.9608 

Sen2 35%+ 0.9542 0.8962 0.9524 0.9091 0.9551 0.9770 

DenseNet169 Sen2 50%+ 0.9596 0.9160 0.9659 0.9341 0.9556 0.9773 

 Sen2 70%+ 0.9686 0.9344 0.9659 0.9551 0.9704 0.9776 

 Sen2 90%+ 0.9731 0.9432 0.9432 0.9881 0.9926 0.9640 

Ensemble 

Majority agreement 0.9776 0.9528 0.9545 0.9882 0.9926 0.9710 

All-in-agreement 0.9731 0.9430 0.9318 1 1 0.9574 
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increases from 35% to 90%, the OA also increases, producing a high of 97.31% OA for the 90% 

constraint. The Kappa statistic demonstrated a similar pattern. However, the PA for changed pixels 

is inversely proportional to the OA, decreasing from 96.59% to 94.32% for constraint increase 

from 70% to 90%. The same pattern was seen with the user accuracy (UA) for the no-change 

pixels. The majority agreement ensemble classifier achieved the highest OA of 97.76% as well as 

the highest Kappa value of 0.9528. The all-in-agreement ensemble classifier produced the lowest 

PA of the five Sentinel-2 classifications. 

Figure 4.13 shows a comparison of the binary classification of the 250 m Pretoria7 dataset (a) with 

four (b)-(e) probability constraint binary classifications (Pretoria6) within the study site (red square 

in Figure 4.2). The classifications (b), (c), (d) and (e) in Figure 4.13 each used different minimum-

prediction probability values, increasing from 35% to 50%, then to 70% and finally 90% 

respectively. The white pixels illustrate change whereas the black pixels represent no change.  

 

Figure 4.13: Binary classification of (a) 250 m resolution MODIS dataset (Pretoria7) and four 30 m resolution 

probability constrained Sentinel-2 (Pretoria6) at the study site. (b), (c), (d) and (e) represent the 

classification at pixel probability levels 35%+, 50%+, 70%+, and 90%+ respectively 

Of the Pretoria7 dataset in Figure 4.13(a), 39 pixels were classified as change, an area of 2.4 km2. 

For the 35%+ classification (b), 2047 changed pixels (1.8 km2) were recorded. This is 0.6 km2 less 

than that of the MODIS classification (a). The 90%+ MPP classification (e) contains far fewer 

changed pixels than the 35%+ classification (b), with only 1 237 pixels (1.1 km2) in the change 

class. This area is less than half of the changed area in the MODIS classification (a).  
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The two ensemble image classifications shown in Figure 4.14 are binary classifications using (a) 

the majority agreement and (b) the all-in-agreement ensemble classifier. The majority agreement 

is the top classifier and has the most accurate display of change pixels. 

 

Figure 4.14: Ensemble classification representing (a) majority agreement and (b) all-in-agreement 

The all-in-agreement classification (Figure 4.14b) displays fewer changed pixels. From visual 

inspection, the all-in-agreement classification consists of a large proportion of missed classified 

no-change pixels. The evidence of this is shown in Table 4.4, where the UA achieved for no-

change pixels is the lowest of all six classifications. The majority-agreement ensemble 

classification has the highest OA and Kappa (Table 4.4) and is therefore the top-performing 

classifier. Figure 4.15 shows a subset of the majority-agreement classification (Figure 4.14a) 

illustrating for each pixel the probability level class obtained from the ensemble classification.  

 

Figure 4.15: Pixelwise probability-level classification  

The black pixels classified as no change have less than 34% probability of change, while the white 

pixels were predicted as having >60% probability of change by six or more of the CNN models. 

Scales of grey represent probabilities between 35% and 59%, bordering larger bodies of change 

pixels, however, these make up a tiny proportion when compared to 60%+ pixels. 

Table 4.5 presents the confusion matrix computed from an accuracy assessment applied to the 

model generalisability experiment. OA, PA and UA are recorded at Durban, Gqeberha and 

Khayelitsha for all data.  
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Table 4.5: Confusion matrix for binary classifications demonstrating generalisability at the three testing locations 

using both the normal and seasonality removed datasets 

Accuracy Assessment All Pixels Changed Pixels No-Change Pixels 

Seasonality  Datasets OA PA UA PA UA 

Normal 

Durban1 0.9207 1 60.61 90.97 1 

Gqeberha1 0.8848 0.4783 1 1 0.8712 

Khayelitsha1 0.7771 0.1654 1 1 0.7668 

Removed 

Durban2 0.9877 1 0.9091 0.986 1 

Gqeberha2 0.9155 0.6174 1 1 0.9022 

Khayelitsha2 0.7871 0.203 1 1 0.7749 

 

The OA reflects similar results for the binary classification to those in Table 4.2 and Table 4.3. 

However, the PA for predicting changed pixels at Gqeberha and Khayelitsha is very low, showing 

that the model was not able to map the situation on the ground. The high UA shows that all changed 

pixels in the reference data were identified for these two locations. The confusion matrix confirms 

that the models were not able to generalise well to different locations from Pretoria training data. 

4.4 DISCUSSION 

This study converted per-pixel high-resolution Sentinel-2 NDVI time-series data into matrix 

representations, GAF and MTF images, from which features were extracted to represent urban, 

vegetation and change classes using a series of pre-trained CNN classifiers. The resolution, TSL 

and CP played an important role in the success of change detection. Classifications at different 

probability levels were explored, while the effect of using an ensemble of CNNs for classification 

was analysed.   

Using three-channel concatenated encoded images generated from the GASF, GADF and MTF 

transformations, 11 CNN classifiers were trained and validated. The Pretoria1 dataset contained 

433 CP (Table 4.1), selected to directly compare the MODIS 250 m (Chapter 3) and Sentinel-2 30 

m results. In Chapter 3, a mean accuracy of  93.56% was achieved using the MODIS 250 m dataset, 

with the DenseNet121 feature extractor achieving the highest accuracy of 94.44%. By comparison, 

the Pretoria1 dataset showed a 4% increase in mean accuracy (Figure 4.10). DenseNet169 was the 

top-performing feature extractor with an accuracy of 98.89 (Figure 4.10). Utilising the same 

framework and number of CPs in training allows a direct comparison of datasets. The higher-

resolution dataset (Sentinel-2 30 m) consistently achieved higher accuracies and outperformed the 

MODIS 250 m dataset. This follows the results from Chapter 3 (MODIS 500 m vs MODIS 250 
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m) and agrees with Kleynhans, Salmon & Wessels (2017). In this study, the increase in resolution 

positively affected the accuracy, and higher-resolution datasets are recommended.  

When implementing DL algorithms such as CNNs, the training data plays a significant role in the 

success of the classification (Campbell & Wynne 2011). The use of higher-resolution imagery 

provides grounds for gathering additional pixels. With the ability to increase the number of CPs 

used in training and the sensitive nature of the algorithms, the Pretoria2 dataset consisted of 114 

additional CPs (25% more training points) which led to an increase in mean accuracy of 0.64% 

(Figure 4.11). DenseNet169 remained the top-performing feature extractor and obtained a new 

individual high accuracy of 99.39% (Figure 4.11). The experiment proved that an improvement in 

model performance can be induced by increasing the sample size of the training data (Cho et al. 

2015; Dunnmon et al. 2019; Zhong et al. 2018) 

A multi-temporal change detection requires data from more than two points in time (Campbell & 

Wynne 2011). The length of the time series generated has been shown to affect the performance 

of the algorithms (Fonseca-Pinto et al. 2009; Hills et al. 2014). With the limited time frame of 

available data from the Sentinel-2 Level-2A dataset, a maximin TSL of 82 was assigned to 

Pretoria1 (Table 4.1), however, the TSL was reduced to 57 and 32, whilst keeping the same number 

of CPs. The feature extractors achieved significant decreases in overall accuracy when processing 

the additional two datasets. Mean accuracy of 96.39% and 93.22% were recorded for the TSL 57 

and TSL 32 respectively, compared with 98.29 for TSL 82. A noteworthy comment is that the 

minimum input image size for most of the CNNs (ResNet, DenseNet, VGG, MobileNet) is 32x32 

(Keras 2020a). When utilising the framework of encoding time series as 2D images, a minimum 

TSL of 32 is required. However, the InceptionV3 and InceptionResNetV2 required a TSL of 75 to 

be processed, hence the null values for Pretoria3 and Pretoria4 datasets (Keras 2020a). As found 

by Fonseca-Pinto et al. (2009) and Hills et al. (2014), this study found that the performance of the 

feature extractors is strongly dependent on the TSL of the training data.  

Using the top-performing feature extractor (DenseNet169) with the optimal training dataset 

(457CP & 82TSL), a classification of unseen data was conducted, assigning pixels to respective 

classes based on varying minimum probability constraints. A baseline classification was 

established by utilising the traditional method of assigning pixels to the class with the highest 

probability (Figure 4.13b). The baseline OA of 95.42% (Kappa 0.8962) was computed from 150 

random stratified points per class (Table 4.4). Further classifications employed a 50% and 70% 

MPP constraint, which both showed slight improvements across the evolution board (OA, PA, 

UA, and Kappa) compared to the baseline (Table 4.4). The 90% MPP classification achieved the 

highest OA and Kappa at 97.32% and 0.9432 respectively (Table 4.4). This was expected as the 
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classification requires extremely high pixel confidence from the DenseNet169 feature extractors 

predictions. Comparing the four change detection images in Figure 4.13b-d, it is clear that as the 

MPP increases, there is a decrease in the speckle and misclassification. Although the recorded OA 

was the highest, the PA for change pixels (CP) had decreased by 2.27% compared to the 70%+ 

MPP classification (Table 4.4). Although the OA may be high, it is critical to evaluate the PA of 

the changed pixels when determining the success of the change detection. A trade-off between 

OA, PA and UA is needed to determine the top classification scheme, as seen in Figure 4.16. 

 

Figure 4.16: Comparison of PA and UA for changed and no-change pixels 

In the context of this study, it was concluded that the 70% MPP classification produced superior 

change detection. Research has shown that an ensemble of CNN classifications may increase the 

performance (Chen et al. 2017; W Li et al. 2019; Vasan et al. 2020). Further investigations into 

two ensembles of CNN classifiers confirmed that a majority agreement rule, where six of the 11 

CNNs must agree on a class assignment, produced the highest OA record in the study at 97.76% 

(Table 4.4). The important accuracy to note was the PA of 95.45% of the changed pixels (Figure 

4.16). The second ensemble applied a simple all-in-agreement rule, where all 11 feature extractors 

had to agree on the class to which the pixel would be assigned. Although this ensemble achieved 

a high OA, the PA for changed pixels was significantly lower than all other change detections 

(Figure 4.16). This was due to the optimistic rule that all 11 CNNs had to agree with each other. 

This study used several diverse DL architectures with varying numbers of convolution layers and 

parameters. As a result, it is unlikely that all will agree.  

The conclusion was made that Sentinel-2 30 m resolution datasets outperform MODIS 250 m in 

change detection, based on the premise that feature extractors in Chapter 4 achieved higher 

accuracy results than those in Chapter 3. This was confirmed by a direct comparison of a MODIS 

250 m dataset processed over the same classification site (Figure 4.2). As expected, the accuracy 

of this classification (Table 4.4) is significantly lower and cannot compete with that of the Sentinel-
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2 datasets. This is due to the significant decrease in mixed pixels, which is part of the inherent 

nature of using higher-resolution imagery (Campbell & Wynne 2011).  

The final experiment undertaken focused on testing the generalisability of the feature extractors 

using unseen data (Samala et al. 2019)from three testing locations (Durban, Gqeberha, and 

Khayelitsha) through a three-class classification as well as a binary classification. The model 

validation results for three classes was very low with all sites achieving less than 62% accuracy 

(Table 4.2). These accuracies increased to above 76% when a binary classification was tested 

(Table 4.2). It was clear that the feature extractors struggled to distinguish between no-change 

vegetation and no-change urban classes at foreign locations. Merging these classes and evaluating 

the performance based on binary (change verse no-change) classification improved accuracy. 

Removing the seasonal pattern of the time series (Hamzaçebi 2008; Zhang & Qi 2005) further 

improved the mean model evaluations to above 80% (Table 4.3), however, the confusion matrix 

(Table 4.5) of the image classification shed a different light on the generalisability results. 

Both Gqeberha and Khayelitsha locations achieved a low PA for the changed pixels with 48% and 

17% respectively (Table 4.5). Removing the seasonality in the time series produced slight 

improvements, resulting in a PA of 20% and 62% for Gqeberha and Khayelitsha respectively 

(Table 4.5). As the removed seasonality data consistently achieved higher accuracies, this showed 

potential as a pre-processing requirement for model generalisation (Hamzaçebi 2008; Zhang & Qi 

2005). The performance of the feature extractors at the Durban location showed much higher 

accuracies and a PA of 100% was achieved (Table 4.5). Although the model evaluations in Table 

4.2 and Table 4.3 and the OA in Table 4.5 are relatively high, PA for the classification indicated 

the actual performance of the change detection at each location.  

The nine feature extractors were unable to generalise for the Gqeberha and Khayelitsha locations. 

Seasonality, solar angle variation, landcover complexity, climatic conditions, and the distance 

from the training scene are all major factors that allow for the generalisation of the models (Olthof, 

Butson & Fraser 2005; Phalke & Özdoğan 2018; Verhulp & Van Niekerk 2017; Woodcock et al. 

2001). Although the seasonality was accounted for, the CNN models could not overcome the 

remaining factors. Khayelitsha, located furthest from the training site, with additional ecological, 

topographic and climatic differences, resulted in the worst-performing change detection (Verhulp 

& Van Niekerk 2017). An increase in geographical distance in the north-south direction would 

result in poorer performance than the distance in the east-west direction (Olthof, Butson & Fraser 

2005). This would explain the improved performance of the Gqeberha datasets over that of the 

Khayelitsha sites. The geographical distance will also alter the climatic and ecological conditions 

(Phalke & Özdoğan 2018). A combination of these factors may explain why the feature extractors 
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were able to generalise well on the Durban datasets. The data acquired in Durban had similar 

ecological and climatic properties to Pretoria (e.g. summer rainfall) and was located the closest to 

the training data (Olthof, Butson & Fraser 2005; Owolawi, Afullo & Malinga 2009). Studies have 

suggested a framework of performing a signature extension in order to increase the generalisation 

of models (Q Li et al. 2020; Olthof, Butson & Fraser 2005; Phalke & Özdoğan 2018; Verhulp & 

Van Niekerk 2017). This proposed framework extracts signatures from known features to perform 

successful classification (Olthof, Butson & Fraser 2005). Gathering portions of training data from 

the testing locations and covering all climate zones will increase the generalisation of the feature 

extractors (Q Li et al. 2020). A recommendation for future studies is to adopt the signature 

extension framework for a generalisable model. 

4.5 CONCLUSION 

In this chapter, the framework of encoding time-series data as 2D images for multiple CNN 

classification using Sentinel-2 30m resolution imagery was investigated. A comparison 

experiment between MODIS 250 m and Sentinel-2 30 m data for urban change detection was 

conducted. As expected, the Sentinel-2 30 m datasets outperformed the MODIS datasets, 

achieving significantly more accurate results. Further results were presented on the effects of the 

TSL and the number of CPs used for training. It was concluded that model performance was 

directly proportional to the number of CPs used in training and the TSL of the dataset. It is 

recommended to process datasets with a longer TSL and as many training samples as possible. 

Multiple classification schemes were investigated, and a 70%+ MPP was selected as the optimal 

pixel classification constraint alongside the DenseNet169 feature extractor. A majority agreement 

ensemble classification scheme produced competitive results for the 70%+ MPP classification. 

Concerning the classification OA, the majority agreement ensemble classifier produced the top-

performing change detection. However, the 70%+ MPP classification achieved the highest PA for 

changed pixels with slightly lower OA. Both classification schemes are highly effective and 

compare favourably with other urban change detection methods tested in South Africa. The 

generalisability of the models was investigated at three testing locations: Durban, Gqeberha, and 

Khayelitsha. Disappointing results were found at Gqeberha and Khayelitsha. Due to ecological, 

topographic and climatic differences and the geographical distance in the north-south direction, 

the models at these locations did not generalise well. However, satisfactory results were achieved 

at the Durban testing site. The study found that converting time-series data into GAF and MTF 

images, followed by feature extraction using pre-trained CNN classifiers could successfully be 

used for change detection in an urban context. 
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CHAPTER 5:  DISCUSSION AND CONCLUSION 

This chapter will reflect on the research aim and objectives and summarise the findings from 

Chapters 3 and 4. The findings from encoding time series data for a CNN classification to perform 

an urban change detection are discussed alongside the limitations that emerged during the 

experiments. This chapter will also provide suggestions for future research and a summary of 

conclusions drawn. 

5.1 REFLECTION ON RESEARCH OBJECTIVES 

This research aimed to evaluate the potential of encoding time-series data as 2D images from 

MODIS and Sentinel-2 for urban change detection through classification with complex neural 

networks. Multiple per-pixel time-series datasets of different resolutions (500m, 250m and 30m) 

were collected using the MODIS and Sentinel-2 instruments. All the datasets were encoded using 

two Gramian angular fields (GADF and GASF) and the Markov transition fields. The 2D encoded 

images were then processed through several different pre-trained CNN architectures, and the 

results evaluated. After analysis, the top-performing CNN architecture for the respective datasets 

was selected to perform a classification to conduct an urban change detection. Accuracy 

assessments of each classification allowed comparison between the performances of the urban 

change detections. The main objective of this research was to investigate the methodology of 

performing urban change detection through a framework of encoding time series data as a 2D 

image for a CNN classification.  

The first objective was to review the literature on the background concepts and principles of RS, 

image classifications and land cover change detection that primarily focused on urban areas 

(Chapter 2). A review of the literature for AI, different DL classification techniques and novel 

computer vision (CV) methodologies were also carried out in Chapter 2. The literature review 

showed the success of applying ML and DL classifications algorithms for urban change detections 

and the recent development in the CV technique of encoding time series data as 2D images. The 

literature showed that combining a DL classification algorithm (i.e. CNN) and the novel CV 

framework of encoding holds potential for RS applications. Several methodologies, including the 

CNN algorithm, have been deployed for urban classifications and change detections. Although a 

previous study has shown the success of implementing the novel CV framework of encoding time 

series data for an RS application, none have deployed this methodology for urban change 

detection. 

Experiment 1 (Chapter 3) consisted of two objectives (2.a and 2.b). The purpose of this experiment 

was to evaluate the novel framework of encoding time series data as 2D images for a specific RS 
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application such as urban change detection. Objective 2.a specified that the novel CV framework 

of encoding would be assessed and evaluated based on its effectiveness to perform an urban change 

detection when the encoded 2D images are processed through multiple pre-trained CNNs. 

Objective 2.b was set in place to make a comparison between the performance of the novel 

framework and a baseline classification approach using the LSTM algorithm. Therefore, in 

Chapter 3, the novel framework was evaluated and compared to other state-of-the-art approaches.   

Experiment 2 falls within the scope of Chapter 4 and consists of three additional objectives (3.a, 

3.b and 3.c). Objective 3.a was set out to evaluate the effectiveness of increased spatial resolution 

on the framework proposed in Chapter 3. Chapter 4 experimented with higher resolution Sentinel-

2 imagery (resampled to 30m) and illustrates its effect on urban change detection performance. 

Objective 3.b assessed the consequences of altering the temporal nature of the input time series. 

Although Sentinel-2 has a higher spatial resolution, it has a lower temporal resolution when 

compared to that of the MODIS instrument. Sentinel-2 also has less available imagery as it is only 

available from 2019, and the coastal areas present extensive amounts of cloud cover. All these 

factors have an impact on the temporal nature of the generated time-series. The proposed encoding 

framework is strongly influenced by the length of the input time-series, and it was important to 

assess the consequences of altering the temporal nature. Objective 3.c was derived to evaluate the 

generalisability of the proposed framework when testing with data from three different 

geographical locations. A critical aspect of developing an effective model is to test the 

generalisability using unseen data. Issues were expected. However, it was essential to understand 

how the model works and performs with unknown data. Further actions could then be implemented 

to increase the performance and generalisability of the framework. 

The final objective of this research was to synthesise the results of the two main experiments 

(Chapter 3 and 4) and bring to attention the limitations that were found in order to make further 

recommendations for performing an urban change detection using the computer vision technique 

of encoding and the DL classification apparatus (i.e. CNN) (Chapter 5). 

5.2 SYNTHESIS OF FINDINGS  

The two experiments, which made up Chapters 3 and 4, were set out to investigate the effectiveness 

of deploying the CV technique of encoding time series data as 2D images for urban change 

detection. Multiple pre-trained CNN algorithms were used to perform the change detection 

classifications alongside several datasets with varying spatial and temporal resolutions. Several 

classification schemes were used in Chapter 4 to determine the optimal performance for urban 

change detections. Three different testing locations were used to test the generalisability of the 

proposed framework. 
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5.2.1 Application of time-series encoding to coarse resolution imagery 

The novel framework proposed by Wang & Oates (2015), which used GAF and MTF encoding 

transformations for converting time series data into 2D images for a CNN classification, was 

implemented and then evaluated for its effectiveness in performing urban change detection. 

Focusing on the per-pixel time-series data derived from 500m resolution NDVI MODIS imagery 

and collected within the Gauteng province of South Africa, the three encoding transformations 

(GASF, GADF and MTF) were applied. Coinciding with the literature (Dias et al. 2020;  Yang, 

Chen & Yang 2020), all three encoding transformations were processed, and a fourth concatenated 

image was formed containing the information from all three transformations. As suggested by Dias 

et al. (2020), several pre-trained CNN architectures (ResNet, DenseNet, InceptionV3, 

InceptionResNetV2, VGG and MobileNet) were deployed for multiple classifications. The mean 

accuracy from the concatenated encoded images outperformed the three remaining 

transformations, as expected (Dias et al. 2020). DenseNet121 was the single top-performing CNN 

algorithm at 93.94% accuracy using 500m resolution imagery. The second experiment in Chapter 

3 utilised 250m resolution NDVI MODIS data and it was processed using the same framework as 

before. Although, in this experiment, only the concatenated encoded images were used, due to 

their superior performance with the 500m resolution dataset (Dias et al. 2020). The results 

achieved using the 250m resolution data were in line with the findings of Kleynhans, Salmon & 

Wessels (2017). They illustrated that increasing the spatial resolution would increase the 

performance of the urban change detection. The mean accuracy for all 11 CNN architectures 

increased from 91.39% to 93.56% when the 250m resolution dataset was implemented. 

DenseNet121 remained the top classifier for the second dataset as well and yielded an accuracy of 

94.44%. 

Several studies were identified to illustrate the success that DL techniques in performing change 

detection and urban change detection (Daudt et al. 2018; Zhan et al. 2017). However, no apparent 

literature can stipulate the success of encoding time series data for urban change detection. 

Working on the premise that change detections have successfully been conducted using multi-

temporal MODIS NDVI imagery (Grobler et al. 2013; Kleynhans et al. 2012; Kleynhans et al. 

2015; Lunetta et al. 2006), a comparison was made between the novel framework and a current 

state-of-the-art time series classifier. The LSTM classifier was selected to perform a baseline 

classification using 250m resolution per-pixel MODIS NDVI time-series data. The results from 

the LSTM classifier were successful and yielded competitive accuracies to that of the findings in 

other studies that performed urban change detection within South Africa (Grobler et al. 2013; 

Kleynhans et al. 2012; Kleynhans et al. 2015). However, the accuracies from the LSTM could not 

Stellenbosch University https://scholar.sun.ac.za



81 

rise and match that of the proposed framework, for which the same multi-temporal data was 

encoded and processed through a CNN classifier. With the locality of the testing site within 

proximity to that of Kleynhans, Salmon & Wessels (2017), a fair comparison between 

methodologies was made and the proposed framework deployed in this research outperformed the 

existing study (Kleynhans, Salmon & Wessels 2017) for the Gauteng province of South Africa.  

A noteworthy comment regarding the CNN loss values would assist in a deeper understanding of 

the classification results. To avoid overfitting, the loss value, recorded alongside the accuracy as 

the model runs, should be considered as the spatial resolution increases.  Several limitations were 

noticed while deploying the proposed framework. The first major issue was that the models did 

not generalise well. All CNN models were trained using data from one location and tested on 

unseen data from a separate location (Maputo). The performance result was significantly lower, 

and urban change detection was not possible. This issue regarding model generalisability is 

discussed again with the respective results from Chapter 4. A limiting factor of running this 

proposed framework with data derived over ten years was the computing hardware on which the 

algorithms were processed. The random-access memory (RAM) capped out at 32 Gigabytes when 

processing encoded images derived from time series for large TSLs. The exponential nature of the 

transformations resulted in significantly large, encoded images, which throttled the central 

processing unit (CPU), graphics processing unit (GPU) and RAM. 

5.2.2 Factors affecting accuracy and generalizability of urban change detection method  

Following on from Chapter 3 and the success yielded by the proposed methodology, several 

experiments were set out to optimise the performance of the classification and potentially 

maximise the accuracies of the urban change detections. Chapter 4 used the same methodology to 

encode per-pixel time-series remote sensing data prior to a CNN classification as in Chapter 3. 

However, the prior knowledge that the concatenated encoded images outperformed the three 

remaining transformations affected the desired input dataset. The relationship between the spatial 

resolution and the performance of the change detection was further investigated (Chapter 3, 

Kleynhans, Salmon & Wessels 2017), especially to limit the mixed pixel effect of a lower 

resolution dataset (250m). Various open source platforms allow for easy access to high-resolution 

imagery (Daudt et al., 2018). As a result, the first experiment set out to evaluate the performance 

of the proposed framework using Sentinel-2 imagery resampled to 30m. The 30m resolution 

dataset outperformed both the 500m and 250m datasets by achieving a mean accuracy of 97.65%. 

That corresponds to a 4.09% and 6.26% increase in accuracy compared to the 250m and 500m 

resolution datasets, respectively. All three classifications utilised the same number of changed 

pixels (433) to allow for direct comparison between the spatial resolution the performance of the 
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classification. The trend once again corresponds to findings by Kleynhans, Salmon & Wessels 

(2017). The second experiment investigated the effect of increasing the training samples and its 

impact on classification accuracy. As expected, the results compared well with the findings in 

literature (Cho et al. 2015; Dunnmon et al. 2019; Zhong et al. 2018)where an additional 25% of 

changed pixels used in training allowed for a 0.64% increase in classification accuracy. 

The resolution and specified training data are both critical elements to consider when trying to 

increase the change detection performance. An essential factor to consider when deploying this 

encoding framework is the length of the input time-series (temporal nature). Previous research has 

illustrated that the TSL may play a role in the performance of an algorithm (Fonseca-Pinto et al. 

2009; Hills et al. 2014). As a result, experiments were set out to investigate how the TSL affects 

the proposed framework and the resulting change detection. By using GASF, GADF, and MTF 

transformation, the resolution of the encoded image directly relates to the temporal nature of the 

input time series. The greater the TSL of the input data, the greater the resolution of the encoded 

image. The experiment conducted in Chapter 4 illustrated that the classification performance 

would decrease as the TSL of the input data decreases. This was a critical aspect to understand, as 

it affects the choice of input data. The temporal nature of the derived time series is critical for the 

success of change detection using the proposed framework. Kleynhans, Salmon & Wessels (2017) 

stated that the temporal aspect of the data does not play a significant role in altering the 

performance unless the time stamp between images is greater than two months. The findings from 

Chapter 4 suggest otherwise and contradict the initial part of that statement. Any increase in the 

temporal nature of the input data will play a beneficial role in the outcome of the change detection. 

Although Sentinel-2 has a higher temporal resolution than its competitor Landsat-8, the time from 

when the data was available becomes the issue. The results have shown that the performance 

increase can be derived by utilising a dataset with a greater TSL. However, with the high cloud 

cover at all locations and restricted Sentinel-2 data, the TSLs were limited to a maximum of 82, 

65, 50 and 50 for Pretoria, Durban, Gqeberha, and Khayelitsha, respectively. This may increase 

the likelihood of selecting Landsat-8, as it has more available data.  

The generalisation of the models was briefly touched upon in Chapter 3. Additional experiments 

in Chapter 4 test the application of the algorithms to unseen data from different locations. All 

models were trained using data derived from Pretoria and tested with unique datasets. Due to 

localised climates, the TSL for all testing locations was ±35% lower than the Pretoria dataset. 

However, the CNN algorithms produced moderately high OA’s. These accuracies were further 

increased by 2% - 3.5% when the seasonal pattern was removed. However, the OA’s do not 

represent the change detection performances at these testing locations. When focusing on the PA 
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of the change pixels, Durban achieved a 100% accuracy, whereas Gqeberha and Khayelitsha 

produced significantly lower PAs of 61.74% and 20.3%, respectively. As a result, Durban was the 

only testing location with effective urban change detection. The results yielded at the other two 

locations showed that the model did not generalise well and could not successfully detect urban 

change. The suggested reason for the poor performances relates to the geographic distribution of 

the sites and the distance from the training sites. The geographic distance between the sites results 

in altered climatic and ecological conditions (Phalke & Özdoğan 2018; Verhulp & Van Niekerk 

2017). Although seasonality was accounted for, the CNN models could not overcome all the 

factors that play a role in spectral signature separation. Adding training data gathered from all 

locations would drastically help the models generalise (Q Li et al. 2020). The generalisability of 

the framework remains a limitation to this research. An additional limitation is that model 

evaluations are insufficient to determine the success of the model, and a confusion matrix is 

required to formulate PA and UA for each class. This is an essential step in verifying the 

performance of the urban change detections. 

The final classification is a result of applying a MPP value to assign a pixel to a class. With varying 

MPP constraints, 35%+, 50%+, 70%+ and 90% +, four different classifications were produced. 

The 90% MPP achieved the highest OA although, the PA for CP was too low. The best overall 

performing classification constraint was the 70%+ MPP, as it had a high OA of 96.86% and the 

highest recorded PA of 96.59%. It was clearly illustrated that the number of misclassified changed 

pixels decreased as the MPP increased. Two ensemble classification schemes were also deployed; 

the majority agreement ensemble scheme yielded competitive results to the 70+ MPP classification 

scheme. It was able to produce a 97.76% OA with a 95.45% PA. The typical trend in all six 

different classification schemes is a trade-off between the OA and the PA of the change pixels. 

Depending on what an individual is looking for, they need to make a judgment call on selecting 

the appropriate classification scheme. However, a limitation for performing the ensemble 

classification was that all 11 CNN architectures needed to be trained and run, whereas the 70%+ 

MPP only requires the DenseNet169 algorithm. 

5.3 SUGGESTION FOR FUTURE RESEARCH  

It is essential to identify the limitations of the research and make suggestions for any future 

research. With the limitation mentioned in the previous two sections (5.2.1 and 5.2.2), 

recommendations will be made within this section. 

All datasets for Chapters 3 and 4 use NDVI as the source, as suggested and implemented in several 

other studies. However, other indices and individual bands have also been effective in mapping 

urban change (NDBI, RNDSI and Red band) (Chapter 2). This is a noteworthy aspect, and these 
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indices and bands should be tested alongside NDVI in future research. As shown in Chapter 2, 

SAR imagery has proven valuable data sources for monitoring and mapping urban changes. It is 

recommended for future studies to potentially process SAR imagery using this framework or 

perform a data fusion of optical and SAR imagery prior to encoding the time-series.  Combining 

state-of-the-art indices with SAR imagery could potentially have a significant impact on the 

performance of urban change detection. One of the main limiting factors identified within the 

scope of this research was the temporal nature and TSL of the derived from Sentinel-2 datasets in 

Chapter 4. One should therefore consider using a high-resolution instrument that has been active 

for a longer period so that the TSL is no longer a limiting factor. The research showed that the 

increase in the TSL of the input data would be beneficial to the performance of the urban change 

detection. 

The removal of the seasonal pattern from the original time series proved successful in increasing 

the accuracies of the change detection. However, additional research into removing the seasonal 

trends is highly recommended for any future studies attempting to generalise the change detection 

models. Investigation into signature extension is also highly recommended to increase the 

generalisability of the models. By using small portions of training data from all testing locations, 

the models will transfer and generalise at a significantly high rate. 

5.4 CONCLUSION 

Urban change detections have successfully been implemented in previous studies and shown to be 

beneficial for local municipalities and regional governments for urban decision making and 

planning. Urban settlements are growing at alarming rates as people move closer to potential 

employment opportunities. Developing a fast and effective framework to accurately monitor urban 

expansion will allow regular updating of urban land cover data and valuable information about 

urban development. Autocorrelation functions currently stand as the leading methodology for 

performing a successfully urban change detection within South Africa. Although, despite the 

success, there was room for improvement. The advancement of scientific knowledge is essential 

and often requires collaboration between fields. The interdisciplinary scientific field of computer 

vision potentially possesses several ideologies and methodologies that have not yet been applied 

to RS.  

This study investigated using a novel CV methodology that encoded time series data using GASF, 

GADF and MTF transformations as 2D images for a DL CNN classification. The proposed 

framework has yet to be been deployed in the field of RS to perform urban change detection. The 

focus of the study was first to evaluate the novel framework and assess the effectiveness of 

performing urban change detection. The encoding aspect was validated by comparing the 
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performance of an LSTM classifier using the original time-series data to the results yielded by the 

novel framework. The novel framework and CNNs outperformed the LSTM classifier and the 

current state-of-the-art urban change detection deployed in South Africa. This thesis demonstrated 

that the proposed CV framework alongside DL classifiers could effectively detect the urban change 

and track the changes. Addition experiments were set out to investigate the effect of the input 

dataset on the performance. The spatial and temporal resolutions both played a significant role in 

increasing the accuracy of the change detection. It was concluded that they possessed a directly 

proportional relationship to the framework's performance. Although the research presented great 

success, the models were unable to transfer and generalise well. More research is needed to fully 

optimise the performance and deploy the framework at an operational level. 

The information displayed in this research should help convince others to branch out and 

investigate ideologies and methodologies developed within other fields, requiring the 

collaboration of knowledge. The success found within this thesis illustrates the new and improved 

method for performing highly accurate and effective urban change detection. This knowledge 

could help city planners, developers, and local municipalities understand and monitor urban 

expansion within South Africa. 
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