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Security is a key challenge for any IIoT network and more so for constrained IWSN deployments.

Novel methods are thus required to enhance security, taking into consideration the lossy and low power

nature of the IWSN. The use of ICMP packets is proposed as a method to generate fingerprinting

information for IWSN devices. The ICMP based method uses the round-trip time information in the

ICMP header as a fingerprinting metric. The results showed that the effect of the physical layer can be

averaged out of the measurement if enough samples are available. A linear relationship was found

between hop count and round-trip time for a static network which can be used in the design phase of the

IWSN network or alternatively as a method to fingerprint routing anomalies in real-time. The ICMP

method was able to differentiate between devices from different vendors, but unable to fingerprint

devices from the same vendor due to physical layer interference. The work shows that fingerprinting

in an IWSN using the ICMP method is possible if the timing delta under investigation is an order

of magnitude larger than the timing variation introduced by the physical layer while maintaining a

reasonable signal-to-noise ratio.
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

Security is a key challenge for any Industrial Internet of Things (IIoT) network [1], [2] and specifically

for Industrial Wireless Sensor Networks (IWSN) [3] where the use of constrained devices and broadcast

based wireless communications channels can be exploited to compromise the security of the network

[4]–[6]. Novel methods are thus required to ensure protection against eavesdropping, identity theft,

man in the middle, and denial of service attacks [7].

Fingerprinting is the method of extracting a unique identity from a device or network using one or more

device features which are uniquely and repeatedly identifiable. Latency based device fingerprinting is

proposed as a novel solution to enhance the security of IIoT deployments. The method researched in

this thesis focuses on exploiting fingerprinting characteristics at device firmware level, specifically

investigating the use of round-trip time (RTT) information obtained via ICMP ping requests. The

majority of IIoT devices respond to ICMP ping requests without modification and is thus the ideal

method to provide additional security for vendor specific IIoT systems where changes to proprietary

firmware is impossible.

1.1.2 Research gap

Mainstream device fingerprinting research in mostly focused on hardware based signal manipulation

and AI based algorithms to produce device fingerprints. These mainstream methods require modifica-

tions to the hardware and software stack as well as computationally expensive algorithms for successful

fingerprinting. The typical IWSN consists of low-power, computationally constrained devices with

many legacy deployments and are thus not well suited towards the new techniques.
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Research is thus required to determine the feasibility of existing fingerprinting methods in constrained

IWSN deployments and how such methods can be modified to be more suitable for low-power devices.

The scope will be limited to fingerprinting methods and metrics where no modification of the existing

device firmware or hardware is required. Using external radio frequency (RF) capturing devices in

harsh environments or computationally expensive traffic analysis algorithms [8] is not practical for

constrained IWSN devices.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

The aim of the research is to identify fingerprinting criteria suitable for IWSN use. Suitable finger-

printing criteria should be evaluated for performance taking into account the lossy, low-power nature

of the communications channel.

The following research questions will be used to guide the research:

• What criteria can be used to determine a successful fingerprint for an IWSN device?

• Which of the identified fingerprinting criteria can be evaluated using ICMP ping packets?

• How does the effect of the Lossy, Low-Power Network influence the determinism of the results?

1.3 APPROACH

To meet the research questions and objectives the following approach was followed:

• Conduct a literature study on related work.

• Determine fingerprinting criteria and evaluate feasibility for use in IWSN.

• Identify possible fingerprinting criteria which can be exploited using the ICMP method.

• Evaluate efficacy of the ICMP method through experimentation.

• Prepare findings for publication.

1.4 RESEARCH GOALS

The broader goal of the research is to improve the security and performance of new and legacy

IWSN deployments. Understanding latency, determinism and the factors which influence latency and

determinism are key requirements to successfully plan, implement and operate device fingerprinting

algorithms in IWSNs.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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1.5 RESEARCH CONTRIBUTION

A structured analysis and discussion of existing fingerprinting methods and the applicability of such

methods to IWSNs is contributed as part of this thesis. The experimental results will provide concrete

statistics on the feasibility of using the ICMP method for IWSN device fingerprinting as well as

quantify the effect of the wireless channel on the measurement of latency in an IWSN.

1.6 RESEARCH OUTPUTS

The following publication has resulted from the research conducted within this study:

• C. P. Kruger and G. P. Hancke, “Enhanced security in Industrial internet of Things networks

using latency based fingerprinting,” in Proceedings of the 18th IEEE International Conference

on Industrial Informatics (INDIN), 2020, pp. 100–106

1.7 OVERVIEW OF STUDY

This thesis starts with a literature study in Chapter 2. The research methodology and test bed used to

obtain the experimental results is discussed in Chapter 3. The experimental results for the three main

types of experiments are given in Chapter 4. Results obtained in Chapter 4 are discussed in Chapter 5

and a conclusion and future work is given in Chapter 6.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY

2.1 CHAPTER OVERVIEW

The aim of the literature study is to identify relevant methods for obtaining fingerprinting metrics for

IoT devices. The sorted papers are presented in Section 2.2 and discussed from a device fingerprinting

perspective using a modified OSI stack. The lowest level of the stack is called the sensors layer

(Section 2.2.1) and consists of radio frequency sensors (Section 2.2.1.1) as well as MEMS sensors

(Section 2.2.1.2). The second layer of the model is the network layer, discussed in Section 2.2.2 and

the final layer is the software layer as in Section 2.2.3.

2.2 DEVICE FINGERPRINTING BASED ON THE OSI STACK

A structured method is required to evaluate sources of fingerprinting information and to better under-

stand the interaction and dependencies between the variables of interest. A review of the related work

has shown that fingerprinting is highly dependent on the layers used to implement the OSI stack [10],

[11]. The OSI based method of sorting the relevant literature was selected due to the UDP-IP nature of

the IWSN IoT stack [12] to be used for the experimental evaluation. The related work will thus be

organized based on the OSI stack as shown in Figure 2.1.

The seven layers of the OSI model can be grouped into three layers when evaluating possible finger-

printing features. The hardware layer is the lowest layer in the stack and the most complicated layer

from a timing and system clock perspective [13]. The hardware layer mostly consists of sensors [14]

which measure signals of interest from the environment for information gathering and communication

purposes. Fingerprinting features found in the sensor layer can further be categorized as location-

dependent and location-independent features [5]. RSSI and channel frequency response are examples

of features that change based on the location. Fingerprinting methods closer to the hardware layer

are in general harder to manipulate and spoof when compared to fingerprinting metrics higher up
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Figure 2.1. The OSI stack compared to the IIoT IWSN stack under investigation. Sources of finger-

printing features can be grouped into sensor, network and software based sources. Adapted from [9],

© 2020 IEEE.

in the stack [15]. The second layer of possible fingerprinting features is the networking layer and

can either be dependant on the hardware layer or produce fingerprinting results that are independent

of the underlying hardware. The ICMP method is an example where the fingerprinting variable of

interest, RTT is dependent on the deterministic behaviour of the hardware layer and the software

specific implementation of the network stack. While traffic analysis based fingerprinting is an example

of a software only fingerprint, independent of the hardware layer timing and only dependent on the

application layer software implementation. The software layer is the final layer in the stack and is

mostly independent from the preceding layers. Fingerprinting information is obtained by studying the

behaviour of the software in question using either active or passive probing.

2.2.1 Sensor-based fingerprinting

The relevant citations identified over a four year period shows that the majority of research in the

field of device fingerprinting is conducted at the sensor layer and focuses substantially on Radio

Frequency Fingerprinting (RFF). The body of knowledge is mostly generated by identifying new

fingerprinting metrics and applying new, known or derived classification methods. The features of

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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interest are digitised using one of several methods and classified using either Artificial Intelligence

(AI) with Machine Learning (ML) or statistical methods (SM).

2.2.1.1 Radio frequency fingerprinting

The main motivation behind Radio frequency fingerprinting (RFF) is to find computationally inex-

pensive methods to provide devices with a unique identity. One possible advantage of RFF is the

possibility to provide a computationally inexpensive method to secure IoT devices using the unique

identity provided by the manufacturing tolerances in the radio. RFF can thus be a viable replacement

for computationally expensive encryption algorithms when implementing resource constrained IWSN

devices. Existing RFF based methods are however computationally intensive due to the use of ma-

chine learning for classification. One method of reducing the computational complexity is to replace

machine learning methods with simpler and more computationally efficient protocols such as random

forest for classification [16] or alternatively moving computationally complex algorithms to a gateway

device.

RFF can be defined as the physical layer identification of radio devices by measuring the unique

tolerances introduced by the physical layer component manufacturing process. Unique features are

introduced by the manufacturing process of analog components in the transmission chain and can

differentiate devices even if the manufacturer and model are identical. A high-end and low-end

device [17], [18] can be seen as a basic measure of the extent to which the unique device tolerances

are measurable. High-end devices make use of high quality commercial grade components where

synchronized clocks and accurate, low tolerance components significantly reduces the ability to detect

the fingerprinting metrics in a noisy environment.

Low-end devices are however mass produced with an emphasis on low-cost and quantity with no-

ticeable manufacturing tolerances and are hence easier to detect when compared to high-end devices.

Examples of low-end devices include Zigbee radio modules, Bluetooth devices and low-cost software-

defined radio (SDR) devices while high-end devices consist of commercial grade GSM base stations

[19], mobile handsets and high end SDR radios. The quality of the fingerprinting metric and the

difficulty to detect a metric will thus be determined by the capturing device used to produce and

capture the signal. The literature has shown that mainly two diverging methodologies to implement

device fingerprinting has emerged. The first is manual feature extraction where the fingerprinting

metrics are selected manually based on prior knowledge of the signal. The second is where ML and

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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specifically convolutional neural networks (CNNs) with deep learning is used to automatically extract

the fingerprinting metrics or features of interest.

Manual feature selection starts by obtaining a relevant time domain sample of a signal. Fingerprinting

metrics are mostly obtained in two regions of the signal. The transient signal and steady-state signal

[20] which can also be identified as the static and dynamic sections of the signal from a protocol

perspective [21], [22]. The transient signal requires the transmitter to be cycled and additionally

requires a very high sample rate to detect in contrast to steady-state signals which are easy to identify

an analyse [23]. Once a region of the signal has been selected some prior information, such as signal

type, modulation method and noise level is needed to select an extraction method [24]. Common

methods for RFF extraction include transient signals in the signal envelope, modulation parameters,

noise characteristics, spurious characteristics and carrier frequency characteristics [24]. An extracted

signal can be further transformed using several techniques [25], [26]. The list of techniques include

time-domain methods [23], [27], [28], short time Fourier Transform [29], Wigner-Ville Distribution

and Hilbert-Huang Transform (HHT) [30]. Instantaneous amplitude, phase and frequency are the most

widely used fingerprinting characteristics [31] once a signal of interest has been identified and can

be compared to other signals of the same type using deviation, variance, skewness, and kurtosis if

higher order statistics (HOS) is used to classify signals [32]. An example of an HOS method is where

the covariance feature is extracted as an RFF and K-Nearest Neighbor (KNN) classifier is used for

classification [33]. Extracting the feature of interest before classification avoids over-training and

reduces training time due to not learning irrelevant features.

Automatic feature selection uses deep learning algorithms to extract features of interest directly

from the signal source which overcomes the traditional limitations [34] of needing expert-defined

fingerprinting metrics to successfully classify a feature of interest. The majority of automatic feature

selection methods use the in-phase and quadrature components (IQ) of a signal as input to a suitable

convolutional neural network (CNN). The CNN is responsible for the correct classification of the

signal based on the training data provided. The lack of interpretation is however a standing criticism of

automatic feature selection and one can argue that spoofable data such as MAC addresses and channel

characteristics are being used for classification instead of the unique physical layer imperfections of

the radio [35], [36]. Channel variations and correct classification thus remains a open problem and

additional work is required to design CNNs invariant to the channel [37]. Another well known problem

of CNNs is the inability to identify devices which do not belong to the original dataset. One strategy to

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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add a learning ability is to separate the feature extraction and classification process. One such example

is [38] where a CNN with deep learning is used only for feature extraction while clustering is used for

device identification. Splitting the identification and classification tasks avoids the issue of classifying

a new device as one of the existing devices in the trained CNN and thus overcomes the issue of CNNs

not being able to learn once trained [39].

2.2.1.2 MEMS sensors

MEMS sensor-based fingerprinting focuses on generating unique identification metrics from the

physical layer sensing variations in micro-electromechanical system (MEMS) sensors and is an

emerging and novel research focus area within device fingerprinting.

The concept of Physically Unclonable Functions (PUFs) [40], make use of variations in the manu-

facturing process to obtain a unique fingerprint for various types of MEMS circuits including clock

oscillators and analogue-to-digital (ADC) converters found in pressure sensors, gyroscopes and accel-

erometers. Experimental results obtained from running the IoT-ID system [40] showed an 100 percent

accuracy in repeatedly identifying individual commercial-off-the-shelf (COTS) devices in a 50 node

deployment. The efficacy of exploiting variations in the manufacturing process can thus meet the

uniqueness, robustness and repeatability requirements for fingerprinting metrics.

An acoustic based fingerprinting technique called MicPrint [14] exploits the PFU of embedded micro-

phones to uniquely identify each device. A unique feature of MicPrint is the ability to be spoof-resistant

since the acoustic PUF of the microphone is only accessible when the user blocks the microphone

with a finger. A two factor authentication system is thus introduced to protect the PFU of the device

from brute force or automated attacks. MicPrint uses a binary multi-layer perceptron (MLP) network

for classification which is part of the feed forward artificial neural network (ANN) family of ML

techniques.

A PUF can also be generated using the raw sensor data obtained from the motion sensors in a mobile

device [41], [42]. Less than a 100 data points were required from the accelerometer and gyroscope

to uniquely identify a device using the motion fingerprint PUF method. A multi-LSTM (Long Short

Term Memory) neural network was used to classify the data and hence the low number of samples

required to uniquely identify the device when compared to a conventional neural network. Similar

results are obtained [43] where the calibration data is recovered from the raw measurements to create a

Department of Electrical, Electronic and Computer Engineering
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unique ID for a smart phone device.

Another novel PUF method [44] uses the physics associated with a specific sensor to implement the

PUF function. The PUF is generated by measuring the time difference between actuating a device of

interest and receiving a confirmation that the physical device has achieved the desired state of actuation.

Timestamping and the deterministic behaviour of the network is thus critical to the success of the

method.

The concept of a PUF is combined with blockchain technology [45] to create a registry of trust factors

for each device. The trust registry is maintained by a gateway device which determines the trust factor

based on the PUF of each wireless device it is able to detect. Blockchain is used to distribute the trust

factors between gateway devices where constrained devices can query the trust database with minimal

overhead.

The idea of a PUF is further extended by considering an entire cyber physical system (CPS) as a sensor

with a unique PUF [46]. A data fusion approach is used to obtain a fingerprint for the sensors and

process noise during the normal operation of the CPS. The difference in error between the running

system and a derived model is used to detect malicious activity via unpredictable state changes. The

CPS as a sensor is further developed [47] by introducing the concept of a hybrid fingerprint, which

uses several features of a CPS to develop a unique identifier.

2.2.2 Network-based fingerprinting

Network based fingerprinting (Figure 2.1) makes use of fingerprinting metrics found inside data flows

passing through the network stack. One of the first papers to exploit clock entropy as a fingerprinting

method [48] used the TCP timestamps option as well as ICMP ping requests over a wired network to

obtain a set of measurements for fingerprinting metrics. The majority of recent work uses machine

learning to classify data once the fingerprinting metric is known in contrast to the simple differential

time methods used by Kohno et al [48] in 2005. A review of the literature has also shown that

fingerprinting metrics in the network layer are mostly obtained from either packet headers or by

analysing the data inside the packets [11], with packet lengths and transmission rates being the two

most distinctive traits of an IoT device [49].

The concept of a static and dynamic fingerprinting metrics is introduced by Bezawada et al [50]. A

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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static fingerprinting metric can be described as the protocols used by the device or the specific ports

which the device responds to. The set of dynamic fingerprinting metrics can be defined as the data

inside packets and how the data patterns change over consecutive transmissions. The idea aligns with

selecting fingerprinting metrics from either the packet header or the data inside the packet. The idea

of finding fingerprinting metrics inside a single packet can further be extended to analysing the data

in a several packet sequence of transmissions, identifying the fingerprinting metric as a behavioural

pattern. One such method is called inter-arrival-time and is a popular method to obtain a dynamic

fingerprinting metric.

After fingerprinting metrics are obtained classification can be achieved using ML, statistical analysis

or even state change analysis. The majority of ML methods used to classify fingerprinitng metrics on

the network layer are either whitelist based fingerprinting or unsupervised learning [51]. Whitelist

fingerprinting requires training data and can thus not classify data which is not part of the initial training

set. Unsupervised learning can detect new devices without additional training and thus contributes

to the popularity of k-nearest neighbors (KNN) based classification. The majority of papers in the

literature review simply classifies the fingerprinting metrics of interest using several ML algorithms and

then selects the algorithm with the best performance via a trial and error approach. A more analytical

approach is to use genetic algorithms to compare and select the fingerprinting metrics with the most

information content [52] in contrast to hand picking metrics and classifiers by trial and error.

Finding usable fingerprinting metrics for identifying devices from the same vendor is a recurring

challenge especially in a corporate environment where the same operating system image is used

company wide [53]. The problem of identifying devices from the same device type can be adressed by

using TSMC-SVM [54]. The TSMC-SVM algorithm adds cosine similarity into the support vector

machine (SVM) in an attempt to improve the identification accuracy of devices with identical hardware

and software compositions. Packet-field, sequence-protocol and sequence-statistics features were used

as fingerprinting metrics and obtained from network packet headers. The cosine method can also

be used to implement automated device identification [55] comparing the header information from

identified devices to the header information of a new packet to determine if a new device has been

discovered.

In the same way the TSMC-SVM method uses packet headers to extract fingerprinting metrics the

iFinger system [56] uses the data in network traffic to identify variables representing programmable
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logic controller (PLC) state. The fingerprinting data is then used to build a state table of allowable

states and when a state is detected outside of the allowable states in the state table, a malicious event is

detected. The boolean logic in a industrial control packet can thus be seen as a form of information

leakage. A passive fingerprintig attack using the 20-bit flow label field in the IPv6 protocol header

[53] is another example where information leakage is used to generate fingerprinting metrics. The

original idea behind the IPv6 flow label was to allow tracking of network flows for Quality of Service

features (QoS). The well known tuple generation method for encoding the flow label was however

vulnerable to reverse engineering and easily exploited. The vulnerability of using a device IP address as

a fingerprinting metric should also not be underestimated. A flaw in IP address allocation is exploited

[57] where the IP address itself is retained or reused for long periods of time. The authors conducted a

study on 34,488 unique public IP addresses obtained from 2,230 users and found that IP address based

fingerprinting remains a realistic method for determining the identity of an end-user. IP addresses are

thus overlooked as a identity metric when compared to other techniques like cookies and traffic based

fingerprinting.

Z-IoT [58] is a traffic based fingerprinting framework to identify ZigBee and Z-Wave based devices.

The inter-arrival-time of consecutive packets was used to generate the device type signature and 300

bins used to digitize the data for ML evaluation. Experimental results showed device identification with

average precision and recall of over 91 percent. The framework makes use of passive packet capture

over a wireless interface, thus incurring no performance penalty in the network in contrast to ICMP

based inter-arrival-time measurements, where obtaining and maintaining a database for fingerprinting

features can easily overwhelm a network if too many scans are run at the same time. Discrete wavelet

transformation can also be used on the inter-arrival delay of network packets to produce a unique

pattern for identification [59]. The time difference between successive packets can also be captured

on a routing device and analyzed using a CNN [60]. The Raspberry PI that was used to generate the

device signatures was only able to maintain 8-10 device signatures and the recommendation is made to

use cloud infrastructure to process the signatures.

A major advantage of network layer based fingerprinting is the ability to capture an analyse traffic

at a central location with ample processing power and storage. Centralised packet capture on a

gateway device resolves the issue of securing legacy industrial control processes due to the weak

computing and storage capabilities of the industrial equipment [61]. When malicious activity is

detected the compromised device can be immediately isolated from the rest of the network using the
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central firewall or gateway device [52]. A prototype architecture for an automated fingerprinting and

centralized packet capture system [15] incorporates both active and passive probing. Using both the

uniqueness of a network device and the state of the information available from the OS to validate a

nodes identity. The performance and scalability problems experienced by centralised fingerprinting is

addressed by a distributed device fingerprinting technique (DEFT) [62]. A DEFT controller maintains

a distributed classifiers database for fingerprinting, while gateways located at the edge implement the

device classification and automatic device discovery.

2.2.3 Software-based fingerprinting

The software layer as shown in Figure 2.1 is a valuable source of hardware and network independent

fingerprinting metrics. Many of these metrics are however contained in banner messages and user

interfaces or returned as human readable text. An natural language processing (NLP) engine [63] is used

to make sense of human readable fingerprinting metrics by automatically identifying the type, vendor,

and product of IoT devices using banner data as input. The paper emphasises that useful fingerprinting

information might not be hidden at all. Automatic collection of natural language based text is thus a

viable method to obtain fingerprinting information where diagnostic information is transferred over the

network in human readable format. NLP is further exploited to identify subtle differences between the

file systems of various firmware images as a fingerprinting method [64]. Firmware images from 9,716

official websites were learned for identification and showed that thousands of devices on the internet

are still using vulnerable firmware images.

The sheer number of possible metrics in the software layer is however a problem and intelligent

frameworks are required to distinguish between useful metrics and those that are not. AndroPRINT

[65] is a framework with the ability to automatically identify fingerprintable information in an Android

device. The framework uses a collection, preparation and evaluation phase which is similar to the

acquisition, sorting and learning phases used in most machine learning applications. The framework

does however not use any statistical methods to determine the identity and simply relies on the unique

information pattern created by querying various values from the Android API on each device in the

study. The GATT profile of Bluetooth Low Energy (BLE) devices can also be used to create a device

fingerprint that can be exploited to circumvent anti-tracking features of the BLE standard [66]. The

GATT based method uses the same principle as in AndroPRINT [65] where information exposed by

the standard feature set is collected and a fingerprint generated by combining mutually exclusive data.

Exploiting Bluetooth at the software layer in contrast to using dedicated hardware to detect anomalies
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in the RF domain and shows that multiple layers can be considered to obtain the same fingerprinting

result. The results from [66] and [65] show that rigorous statistical methods are not always required if

temporal change is not present in the data set under investigation.

CryptoFP [67] also makes use of API instructions, but adds statistical methods by measuring the

execution time required for API instructions, allowing the correct identification of computers with

different CPU load configurations. The research is an example of the original methodology followed

by Kohno etal [48] adapted to device APIs, maintaining the idea that devices can be uniquely identified

based on clock skew even at the software layer.

A cloud based clock skew authentication system [68] with multiple measurement servers is presented

and evaluated. Clock skew is calculated using the Linear Programming Method (LPM), Linear

Regression Method (LRM) and the Quick Piecewise Minimum (QPM) algorithm. Results showed

that multiple servers when hosted in the same physical environment can be used to independently

measure and produce device fingerprints. Skew values thus satisfy the relations of additive inverse and

linearity when compared between servers. Clustering algorithms can be used to identify servers that are

prone to share the same or similar fingerprints and to provide them with a new non-unique fingerprint

[69]. The authors combined the clustering techniques with virtualization technology to generate web

browsers with consistent fingerprints. A consistent fingerprint is indistinguishable and thus not prone

to identification providing protection from API mining and clock skew based attacks.

2.3 CHAPTER SUMMARY

The reasoning behind using the modified OSI approach to organise the literature study was given in

Section 2.2. The literature relevant to the sensor layer (Section 2.2.1) showed that the majority of the

work in the sensor layer focuses on RFF (Section 2.2.1.1) which is not suitable for IWSN use due to

the additional processing power and hardware modification required to implement such methods. The

literature study also indicated that fingerprinting metrics based on MEMS sensors (Section 2.2.1.2) is

an emerging focus area with potential for generating robust fingerprinting metrics. Network layer based

fingerprinting methods was explored in Section 2.2.2 and found to be the most applicable to IWSN

devices, due to the multitude of fingerprintable metrics found in the protocol information even when

encrypted. Network layer fingerprinting metrics can easily be obtained through both active and passive

methods without modification of the device under investigation and is thus ideal for legacy devices

or systems where firmware modification is not possible. Section 2.2.3 discussed several methods in
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the software layer and showed that finding relevant fingerprinting metrics can be a challenge due to

the sheer number of fingerprintable metrics in the software layer. The efficacy of using information

supplied by the device through an API to unknowingly identify itself was also demonstrated and should

be considered as a plausible method to identify IWSN devices over the network.
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3.1 CHAPTER OVERVIEW

The methods chapter starts in Section 3.2 with a discussion on fingerprinting criteria obtained from the

literature and adapted for IWSN use. Known evaluation criteria is required for possible fingerprinting

metrics, based on prior work to avoid duplication. Known fingerprinting criteria adapted to the IWSN

also provides insight into where fingerprintable metrics may be found once experimentation has started.

The main methodology (Section 3.3) is centered around three experiments named after the network

topology the experiments represent. The three experiments are designed to test the deterministic

behaviour of the IWSN as well as the evaluation criteria given in Section 3.2. The chapter concludes

with Section 3.4 where the test bed design, used to realise the proposed experiments is explained.

3.2 IWSN FINGERPRINTING CRITERIA

Any new method of device fingerprinting needs to be evaluated for performance in order to determine

the efficacy of the method. Existing evaluation criteria [48], [70], [71] does however not take into

account the lossy and low-power nature of an IWSN and thus needs to be modified accordingly for the

IWSN context. The five features of device fingerprinting is thus expanded below based on the IWSN

context as a basis for performance evaluation.

3.2.1 Universality

Every device in the IWSN must have the feature of interest and all the devices in the IWSN must

be able to independently measure the feature of interest with determinism. Universality can also be

extended to the IWSN gateway, which can perform complex measurements on behalf of a constrained

device, negating the requirement for every device in the IWSN to measure the feature of interest.

3.2.2 Uniqueness

No two devices should have the same fingerprints especially where the same hardware is used from a

single vendor. IEEE 802.15.4 EUI and MAC addresses uniquely identify devices, but can be modified
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in software and are thus not trustworthy sources of identification.

3.2.3 Collectability

Is it possible to capture the features of interest with unmodified hardware and software or is external

equipment or hardware modification required? The constrained nature of the IWSN makes collecting

large amounts of data impractical due to the strain on battery life. Collectability is thus a function

of the number of data points needed and the processing power required for obtaining a result. Many

specialized and proprietary devices are deployed in IIoT networks and cannot be modified or replaced

due to cost implications.

3.2.4 Robustness

The feature of interest should remain stable over time and the effect of external environmental aspects

that directly influence the signal propagation, clock speed and processing latency should be evaluated.

IWSN systems are deployed in harsh environments where temperature stability and RF performance is

not guaranteed. Temperature stability and RF performance should thus be fully quantified before any

conclusions are made on the robustness of a specific method.

3.2.5 Data-dependency

How much data is required to produce the fingerprint of the device and how fast can the device

be fingerprinted once the fingerprinting database has been generated? IWSN devices are mostly

constrained, battery powered devices and excessive processing or RF transmissions will dramatically

shorten the lifespan of the device. A gateway device can be used to store and process fingerprinting

data to reduce the impact of data dependency on the network performance.

3.3 METHODOLOGY

The use of ICMP ping packets to generate a fingerprint for IIoT devices using RTT delays was

successfully demonstrated in [60], [72]–[75]. The feasibility of using these methods in an IWSN are

however untested and needs to be explored further through experimentation. The robustness of the

ICMP ping method is of specific interest as the Lossy Low-Power Network (LLN) of which the IWSN

consists may introduce non-deterministic behaviour when applying fingerprinting at the transport

layer.

The effect of the wireless channel in a point-to-point configuration is of specific interest since all the

software layers above the hardware layer are dependent on the physical layer for timing accuracy and

determinism. The multi-hop timing and the effect of multiple hops on a ping measurement will also be
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Node 1 Node 2

Figure 3.1. The point-to-point experiment layout. Nodes are placed at fixed distances with line-of-sight

between nodes. Measurements are taken for each fixed distance.

Gateway Node 1 Node 2 Node 3 Node 4

Figure 3.2. The mesh experiment layout. Nodes are placed at fixed 30 meter distances with line-of-

sight between nodes. A measurement is taken from the gateway node to each of the nodes in the linear

mesh network.

investigated since the majority of IWSN deployments use multi-hop mesh topologies to realize the

network. The feasibility of device fingerprinting using the ICMP ping method will be evaluated in a

star topology once the wireless channel and multi-hop performance is known.

3.3.1 Point-to-point

The aim of the point-to-point experiment (Figure 3.1) is to obtain RTT data where only the distance

between two nodes are varied. Two nodes of the same type are placed at predetermined, linearly

increasing distances from one another and a measurement taken. Each measurement consists of a

ping6 ICMP probe with one thousand consecutive measurements. The predetermined intervals are

increased and measurement process repeated until significant packet loss is detected on the specific

measurement, indicating the experiment is finished. Care is taken to ensure line-of-sight RF conditions

between the two devices and to remove objects which may cause RF interference. The experiment will

be repeated twice once at minimum RF output power and once at maximum RF output power to assess

the influence of the physical space on the experiment.

3.3.2 Mesh topology

The aim of the mesh topology experiment (Figure 3.2) is to obtain RTT data where multiple hops are

introduced into the path taken by the ICMP packets. Five IWSN nodes of the same type are placed 30

meters apart in a straight line and configured to only have connectivity to the adjacent nodes. Data is

obtained by taking one thousand consecutive ICMP measurements with the ping6 command from the

first node to each of the nodes in the chain of devices. The experiment will be repeated twice once
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Gateway

Node 1 Node 2

Node 3Node 4

Figure 3.3. The star topology experiment. All the devices from different vendors are able to directly

communicate with the gateway device as well as with each other.

on RF channel 26 and once on RF channel 18 to assess the influence of Wi-Fi interference on the

experiment. Channel 26 is the only 802.15.4 channel which does not coincide with 802.11 and is thus

immune to interference from Wi-Fi.

3.3.3 Star topology

The aim of the star topology experiment (Figure 3.3) is to test device fingerprinting characteristics if

multiple devices from different vendors are part of the same IWSN network. A star topology network

with a maximum distance of one meter between devices is created. All the devices from different

vendors are able to directly communicate with the gateway device as well as with each other. Data is

obtained by taking one thousand consecutive ICMP measurements with the ping6 command from the

gateway node to each of the nodes in the star topology. The experiment is repeated two times. The first

time with RF interference present and the second without any RF interference.

3.4 TEST BED DESIGN

A test bed is required to host experiments and provide a stable environment with measurable attributes

in which to conduct experiments and collect data without bias. The test bed design will be explained in

three major sections. The first is the hardware used to realize the experiments, the second the software

or embedded device firmware and the third the environment in which the hardware and software will

operate. The main purpose of the test bed is to provide an environment with deterministic RF noise

levels. The effect of the RF noise has been identified as a potential influence on the determinism of the

ICMP method and needs to be reproducible to maintain the integrity of the experiments.
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3.4.1 Hardware

The effect of the physical layer and hardware on the universality and uniqueness of the ICMP method

were tested by installing Riot-OS on three different devices and running ping probes in a multi-hop

chain and star topology. Three development kits were used to obtain the experimental results as

summarized in Table 3.1 below.

Table 3.1. Specifications of IoT devices used in experiments

Device CPU Speed(MHz) FLASH(kB) RAM(kB)

ATSAMR21G18A ARM Cortex-M0+ 48 MHz 256 32

nRF52840 ARM Cortex-M4 64MHz 1000 256

CC2538 ARM Cortex-M3 32 MHz 512 32

3.4.2 Software

Riot-OS is structured in a manner where the same operating system code is executed on each device.

The hardware abstraction layer (HAL) is the only difference and thus makes the comparison between

devices more realistic in contrast to devices with different operating systems. Possible flaws that may

exist in software are equally influenced by all the experiments and thus does not bias the results in any

way due to differences in stack implementation.

Latency measurements will be obtained using the ping6 command in Riot-OS. The command will be

configured using the -c option to take one thousand measurements for each execution of the command.

The large number of measurements allows for the examination of temporal changes in the latency that

might coincide with temporary interference and signal loss. The implementation of the ping command

varies from platform to platform and analyzing the procedure used to obtain the latency measurements

is thus required. The measurement method used by the ping6 command in Riot-OS can be summarized

as follows:

• The command is entered through the user interface with the address of interest and number of

packets required.

• A unique timer component is initialized to maintain an independent microsecond timer.

• An ICMP packet with the ping payload identifier is allocated in memory.

• The current timer value is added to the ICMP packet.

• The stack sends ICMP packet to the network layer for processing.
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• The network layer waits for a packet to return or times out if no reply is received.

• If a successful packet is returned the time payload is recovered.

• The received time payload is deducted from the current timer value and displayed.

• The process is repeated until the desired number of measurements is obtained.

The calculation of the RTT is thus highly dependent on the resolution of the timer which in this case is

able to keep time accurately to microsecond level. The processing speed of the device itself does not

influence the accuracy of the timer and only effects the speed at which the network stack processes

packets. Riot-OS automatically prioritizes lower level processing and will thus provide minimal latency

in the stack itself. ICMP packets are also not required to traverse the entire stack thus reducing the time

required and possible sources of non-deterministic influences inside the network stack and operating

system implementation.

3.4.3 Environmental factors

Radio frequency characteristics and temperature drift are the two main environmental factors which

could influence the results of the experiment. RF noise from Wi-Fi devices needs to be taken into

consideration for both a baseline and continuous operating point-of-view. The usable 802.15.4

physical layer frequencies overlaps with the assigned 802.11 or Wi-Fi frequencies and should be taken

into consideration as an environmental factor. The effect of RF interference from Wi-Fi should be

included in the study since many harsh environments already have Wi-Fi infrastructure which will

practically interfere with the proposed methods in reality. The assumption is made that if sufficient

received signal strength (RSSI) is present the effect of the RF propagation loss will be negligible. A

shipping container will be used to create a Faraday cage to eliminate sources of external noise where

applicable. Temperature drift will not be a problem in the test bed, but might effect the results for a real

world deployment. The assumption is made that the OEM designer of the hardware used for testing

will compensate for the changes in clock drift due to temperature through specific design for harsh

environments. All experiments will be conducted at a room temperature of 20 degrees Celsius.

3.5 CHAPTER SUMMARY

Fingerprinting criteria adapted to the IWSN was given in Section 3.2 and used as the basis to identify the

ICMP method as a plausible fingerprinting method for IWSN devices. The robustness and uniqueness of

the ICMP method in a LLN is however untested and needs to be further investigated. The methodology

which needs to be used to test the efficacy of the ICMP ping method through experimentation was
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outlined in Section 3.3 together with an explanation of the test bed used to collect experimental data in

Section 3.4.
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4.1 CHAPTER OVERVIEW

This chapter presents the experimental results and is organized in three sections according to the

network topology of the experiment. Section 4.2 compares the point-to-point RTT over a long and

short distance, between two nodes by transmitting at maximum and minimum transmission power.

The point-to-point experiment is specifically designed to evaluate the effect of the wireless channel on

the RTT. The mesh topology experiment in Section 4.3 compares the RTT over multiple hops with

and without Wi-Fi interference and was designed to evaluate the effect of additional hops on the total

RTT. The final section (Section 4.4) evaluates the RTT in a star topology with and without Wi-Fi

interference of the same device at different time instances in order to evaluate if a unique signature can

be obtained for devices of the same type.

4.2 POINT-TO-POINT

The effect of the wireless channel was evaluated by placing two of the same type of nodes in a point-

to-point topology while maintaining line-of-sight. The distance between the two nodes were varied

and RTT measurements taken for each distance and device type.

4.2.1 Long distance, maximum transmission power

The results for the long distance, maximum transmission power for the SAMR21 development kit

are shown in Figure 4.1. Two of the SAMR21 nodes were placed at intervals of 0m, 30m, 60m and

90m apart and one thousand RTT measurements taken for each distance. The statistical measures for

the data set are given in Table 4.1. A worst case median value of around 11.6ms was obtained for

the three distances with the most deviation visible at 90m. No packet loss was observed during the

experiment.

The results for the long distance, maximum transmission power for the CC2538 development kit are
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Table 4.1. RTT for the SAM21R at maximum TX power (ms)

0m 30m 60m 90m

Median 11.331 11.636 11.346 11.350

Mode 11.649 11.652 11.338 10.379

Average 11.327 12.236 11.617 11.419

Avg Dev 0.840 1.781 1.082 0.862

Std Dev 1.032 2.778 1.716 1.097

Variance 1.065 7.720 2.946 1.204

Figure 4.1. The maximum point-to-point, transmission power RTT in milliseconds is graphed as a

function of the measurement number for the SAMR21 development kit. Two SAMR21 nodes were

placed at intervals of 0m, 30m, 60m and 90m apart and one thousand RTT measurements taken for

each interval. Adapted from [9], © 2020 IEEE.
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Table 4.2. RTT for the CC2538 at maximum TX power (ms)

0m 30m 60m 90m

Median 8.594 8.594 8.595 16.758

Mode 8.594 8.594 8.595 8.595

Average 8.600 8.612 8.608 13.107

Avg Dev 0.012 0.033 0.024 4.036

Std Dev 0.023 0.244 0.193 4.060

Variance 0.001 0.059 0.037 16.484

Figure 4.2. The maximum point-to-point, transmission power RTT in milliseconds is graphed as a

function of the measurement number for the CC2538 development kit. Two CC2538 nodes were

placed at intervals of 0m, 30m, 60m and 90m apart and one thousand RTT measurements taken for

each interval. Adapted from [9], © 2020 IEEE.
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shown in Figure 4.2. Two of the CC2538 development kits were placed at intervals of 0m, 30m, 60m

and 90m apart and one thousand RTT measurements taken for each distance. The RTT in milliseconds

is graphed as a function of the measurement number. The median remained steady at 8.5 ms for 0m,

30m and 60m and almost doubled at 90m indicating a retransmission due to a timeout. Some packet

loss was observed at 90m and the increased RTT due to retransmission thus makes sense. The statistical

measures for the data set are given in Table 4.2. The mode remains fairly constant even though the

median jumps from 8.5 to 16.7 the variance is however much larger for the 90m results.

Table 4.3. RTT for the nRF52840 at maximum TX power (ms)

0m 30m 60m 90m

Median 5.824 5.856 5.856 5.856

Mode 5.824 5.856 5.856 5.856

Average 5.826 5.857 5.861 5.862

Avg Dev 0.003 0.002 0.010 0.010

Std Dev 0.007 0.005 0.023 0.023

Variance 0.000 0.000 0.001 0.001

The results for the long distance, maximum transmission power for the nRF52840 development kit are

shown in Figure 4.3. Two of the nRF52840 development kits were placed at intervals of 0m, 30m, 60m

and 90m apart and one thousand RTT measurements taken for each distance. The RTT in milliseconds

is graphed as a function of the measurement number. The RTT for each of the four measurements can

be distinguished on the graph and increases as the transmission distance became longer. The median

remained constant at around 5.8ms without any packet loss. The variance and deviation remained

insignificant over the average of the number of measurements. The statistical measures for the data set

are given in Table 4.3.

4.2.2 Short distance, minimum transmission power

The results for the short distance, minimum transmission power for the nRF52840 development kit

are shown in Figure 4.4. Two of the nRF52840 development kits were placed at intervals of 0cm,

10cm, 20cm, 30cm, 40cm, 50cm and 60cm apart and one thousand RTT measurements taken for each

distance at minimum transmission power. The RTT increases as the transmission distance becomes

longer in the same manner as the long distance equivalent experiment. The median remained roughly

the same at 5.8ms while significant packet loss was observed at 60cm. The statistical measures for the

data set are given in Table 4.4.
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Figure 4.3. The maximum point-to-point transmission power RTT in milliseconds is graphed as a

function of the measurement number for the nRF52840 development kit. Two nRF52840 nodes were

placed at intervals of 0m, 30m, 60m and 90m apart and one thousand RTT measurements taken for

each interval. Adapted from [9], © 2020 IEEE.

Table 4.4. RTT for the nRF52840 at minimum TX power (ms)

0cm 10cm 20cm 30cm 40cm 50cm 60cm

Median 5.853 5.853 5.853 5.831 5.831 5.831 5.818

Mode 5.853 5.853 5.853 5.831 5.831 5.831 5.818

Average 5.876 5.854 5.853 5.833 5.848 5.828 5.830

Avg Dev 0.046 0.002 0.000 0.003 0.032 0.008 0.022

Std Dev 0.372 0.032 0.000 0.007 0.243 0.015 0.198

Variance 0.139 0.001 0.000 0.000 0.059 0.000 0.039
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Figure 4.4. The minimum point-to-point transmission power RTT in milliseconds is graphed as a

function of the measurement number for the nRF52840 development kit. Two nRF52840 nodes were

placed at intervals of 0cm, 10cm, 20cm, 30cm, 40cm, 50cm and 60cm apart and one thousand RTT

measurements taken for each interval. Taken from [9], © 2020 IEEE.

Table 4.5. RSSI for the nRF52840 at minimum TX power (dBm)

0cm 10cm 20cm 30cm 40cm 50cm 60cm

Median -47.000 -72.000 -73.000 -77.000 -80.000 -84.000 -92.000

Mode -47.000 -72.000 -73.000 -77.000 -80.000 -84.000 -92.000

Average -47.241 -72.052 -73.036 -76.854 -79.980 -84.031 -92.000

Avg Dev 0.458 0.104 0.069 0.253 0.128 0.117 0.000

Std Dev 0.555 0.252 0.186 0.359 0.410 0.298 0.000

Variance 0.308 0.063 0.035 0.129 0.168 0.089 0.000
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Figure 4.5. The minimum point-to-point transmission power RSSI in dBm is graphed as a function of

the measurement number for the nRF52840 development kit. Two nRF52840 nodes were placed at

intervals of 0cm, 10cm, 20cm, 30cm, 40cm, 50cm and 60cm apart and one thousand RTT measurements

taken for each interval with the corresponding dBm value for the measurement. Taken from [9], © 2020

IEEE.

The short distance, minimum transmission power RSSI for the nRF52840 development kit are shown

in Figure 4.5. Two of the nRF52840 development kits were placed at intervals of 0cm, 10cm, 20cm,

30cm, 40cm, 50cm and 60cm apart and one thousand RTT measurements taken for each distance.

The RSSI in dBm is graphed as a function of the measurement number. The RSSI increased as the

distance increased with significant packet loss at 60cm as indicated by the missing measurements.

The data set has almost no deviation or variance. The statistical measures for the data set are given in

Table 4.5.

4.2.3 Stack processing time

The localhost RTT time are shown in Figure 4.6. The ping6 with the localhost address was used to

determine the stack latency on each device. The emulator and nRF52840 had the smallest RTT, but the

nRF52840 had significantly less variation and deviation. The CC2538 was the slowest device and has

more variance and deviation than the SAMR21XPRO which is faster. The statistical measures for the

data set are given in Table 4.6.
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Table 4.6. Stack processing time (ms)

Emulator NRF52840 SAMR21XPRO CC2538DK

Median 0.352 0.331 0.523 1.369

Mode 0.353 0.331 0.523 1.369

Average 0.317 0.331 0.523 1.370

Avg Dev 0.064 0.000 0.000 0.002

Std Dev 0.086 0.001 0.000 0.009

Variance 0.007 0.000 0.000 0.000

Figure 4.6. The RTT in milliseconds for the localhost ping6 command is graphed as a function of the

measurement number. The ping6 command with the localhost address was used to determine the stack

latency on each device.
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4.3 MESH TOPOLOGY

The multi-hop timing was evaluated by placing five nRF52840DK nodes in a point-to-point topology

with each node only able to communicate with the next node in the network. Routing was statically

configured to ensure that the results would not be biased by routing topology changes. A distance

of thirty meters was selected between devices to ensure optimal RSSI levels as per the results of the

previous section. Data was obtained by running a ping6 command on the first device in the topology to

each of the nodes in the topology in a closest node first sequence.

4.3.1 No Wi-Fi interference in measurement

Table 4.7. RTT for each hop in the mesh topology without Wi-Fi interference (ms)

NODE_1 NODE_2 NODE_3 NODE_4

Median 5.830 11.585 17.333 23.064

Mode 5.830 11.585 17.333 23.064

Average 5.830 11.585 17.333 23.064

Avg Dev 0.000 0.000 0.000 0.000

Std Dev 0.000 0.000 0.000 0.000

Variance 0.000 0.000 0.000 0.000

The results from the mesh topology experiment without Wi-Fi interference are shown in Figure 4.7.

IEEE 802.15.4 channel number 26 was used to avoid Wi-Fi interference. The ping6 command was

used to obtain one thousand RTT measurements for each node. The RTT in milliseconds is graphed as

a function of the node number. Three distinct lines representing each node is visible with no deviation,

variance or any packet loss. The statistical measures for the data set are given in Table 4.7.

The results from the mesh topology experiment (Figure 4.7) without Wi-Fi interference is averaged

for each node and shown in Figure 4.8. The RTT in milliseconds is graphed as a function of the node

number. A curve fitted equation is given for the averaged results.

4.3.2 Wi-Fi interference included in measurement

The results from the mesh topology experiment with Wi-Fi interference are shown in Figure 4.9. IEEE

802.15.4 channel number 18 was used to include Wi-Fi interference. The ping6 command was used to

obtain one thousand RTT measurements for each node. Three distinct lines representing each node

is visible with negligible deviation, no variance and significant packet loss as the number of hops

increased. The statistical measures for the data set are given in Table 4.8.
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Figure 4.7. The results for the mesh topology experiment without Wi-Fi interference are shown. The

RTT in milliseconds is graphed as a function of the node number. The ping6 command was used to

obtain one thousand RTT measurements for each node and IEEE 802.15.4 channel 26 used to avoid

Wi-Fi interference. Taken from [9], © 2020 IEEE.

Table 4.8. RTT for each hop in the mesh topology with Wi-Fi interference (ms)

Node_1 Node_2 Node_3 Node_4

Median 5.830 11.585 17.333 23.064

Mode 5.830 11.585 17.333 23.064

Average 5.830 11.585 17.333 23.064

Avg Dev 0.000 0.000 0.001 0.000

Std Dev 0.000 0.000 0.001 0.000

Variance 0.000 0.000 0.000 0.000
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Figure 4.8. Results from the mesh topology experiment without Wi-Fi interference is averaged for

each node and shown in the graph. A curve fitted equation is given for the averaged results. Taken

from [9], © 2020 IEEE.

The results from the mesh topology experiment (Figure 4.9) without Wi-Fi interference is averaged for

each node and shown in Figure 4.10. The RTT in milliseconds is graphed as a function of the node

number. A curve fitted equation is given for the averaged results.

4.4 STAR TOPOLOGY

The feasibility of device fingerprinting using the ICMP ping method was evaluated by deploying devices

in a star topology. The border router consisted of a nRF52840DK with direct line of sight connectivity

to three nRF52840DK, two SAMR21XPRO, and two CC2538DK development boards. Data was

obtained by running a ping6 command on the border-router to each of the nodes in the star topology. A

distance of one meter was used between devices to try and evaluate the inter-device interference. An

identical data collection application was flashed on each device to make the fingerprinting evaluation

as realistic as possible.

The SAMR21XPRO kit did not produce any viable fingerprinting data. Similar results were obtained

for the SAMR21XPRO kit as in Figure 4.1 showing a rather large deviation in readings with no

recognizable pattern between devices. As a result the SAMR21XPRO devices were excluded from
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Figure 4.9. The results for the mesh topology experiment with Wi-Fi interference are shown. The RTT

in milliseconds is graphed as a function of the node number. The ping6 command was used to obtain

one thousand RTT measurements for each node and IEEE 802.15.4 channel 18 used to include Wi-Fi

interference

Figure 4.10. Results from the mesh topology experiment with Wi-Fi interference is averaged for each

node and shown in the graph. A curve fitted equation is given for the averaged results.
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further experiments.

4.4.1 No Wi-Fi interference in measurement

Table 4.9. Consecutive RTT measurement data for CC2538 without Wi-Fi interference (ms)

CC 1A CC 2A CC 1B CC 2B

Median 5.060 5.060 5.060 5.059

Mode 5.060 5.060 5.060 5.059

Average 5.068 5.066 5.065 5.065

Avg Dev 0.014 0.012 0.010 0.011

Std Dev 0.024 0.021 0.019 0.020

Variance 0.001 0.000 0.000 0.000

The experimental results for the star topology with the CC2538 development kit are shown in Fig-

ure 4.11. Two of the CC2538 nodes were placed one meter apart in a star topology and one thousand

RTT measurements taken for each node, labeled as A. The experiment was repeated a second time at a

different time interval and labeled as B. The experiment was conducted in a noise free environment

using a Faraday cage and thus isolated from any Wi-Fi interference. The RTT in milliseconds is

graphed as a function of the measurement number. No noticeable difference in mean or average can be

used to identify the devices. The statistical measures for the data set are given in Table 4.9.

Table 4.10. Consecutive RTT measurement data for nRF52840 without Wi-Fi interference (ms)

NRF_1A NRF_2A NRF_3A NRF_1B NRF_2B NRF_2B

Median 3.788 3.786 3.785 3.789 3.791 3.790

Mode 3.788 3.786 3.785 3.789 3.791 3.790

Average 3.793 3.788 3.792 3.789 3.791 3.790

Avg Dev 0.010 0.004 0.015 0.000 0.000 0.000

Std Dev 0.024 0.021 0.223 0.000 0.001 0.001

Variance 0.001 0.000 0.050 0.000 0.000 0.000

The experimental results for the star topology with the nRF52840 development kit are shown in

Figure 4.12. Three of the nRF52840 nodes were placed one meter apart in a star topology and one

thousand RTT measurements taken for each node, labeled as A. The experiment was repeated a

second time at a different time interval and labeled as B. The experiment was conducted in a noise
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Figure 4.11. Experimental results for the star topology experiment without noise for the CC2538

development kit are given. The RTT in milliseconds is graphed as a function of the measurement

number. One thousand RTT measurements were taken for each node, labeled as A. The experiment

was repeated a second time at a different time interval and labeled as B.

free environment using a Faraday cage and thus isolated from any Wi-Fi interference. The RTT in

milliseconds is graphed as a function of the measurement number. A noticeable difference in mean

and average is visible, but not deterministic between measurements. The statistical measures for the

data set are given in Table 4.10.

4.4.2 Wi-Fi interference included in measurement

The experimental results for the star topology with Wi-Fi interference for the CC2538 development kit

are shown in Figure 4.13. Two of the CC2538 nodes were placed one meter apart in a star topology

and one thousand RTT measurements taken for each distance, labeled as A. The experiment was

repeated a second time at a different time interval and labeled as B. The experiment was conducted in

an environment with known Wi-Fi interference. The RTT in milliseconds is graphed as a function of

the measurement number. A noticeable difference in mean and average is visible, but not deterministic

between measurements. Packet loss is present and retransmissions visible on the graph. The statistical

measures for the data set are given in Table 4.11.
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Figure 4.12. Experimental results for the star topology experiment without noise for the nRF52840

development kit are given. The RTT in milliseconds is graphed as a function of the measurement

number. One thousand RTT measurements were taken for each node, labeled as A. The experiment

was repeated a second time at a different time interval and labeled as B.

Table 4.11. Consecutive RTT measurement data for CC2538 with Wi-Fi interference (ms)

CC_1A CC_2A CC_1B CC_2B

Median 5.067 5.076 5.179 5.096

Mode 5.067 5.076 5.179 5.096

Average 5.070 5.081 5.181 5.098

Avg Dev 0.006 0.008 0.004 0.003

Std Dev 0.013 0.017 0.009 0.008

Variance 0.000 0.000 0.000 0.000
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Figure 4.13. Experimental results for the star topology experiment with noise for the CC2538 develop-

ment kit are given. The RTT in milliseconds is graphed as a function of the measurement number. One

thousand RTT measurements were taken for each node, labeled as A. The experiment was repeated a

second time at a different time interval and labelled as B.

Table 4.12. Consecutive RTT measurement data for nRF52840 without Wi-Fi interference (ms)

NRF_1A NRF_2A NRF_3A NRF_1B NRF_2B NRF_3B

Median 3.780 3.782 3.781 3.775 3.782 3.776

Mode 3.780 3.782 3.781 3.775 3.782 3.776

Average 3.780 3.782 3.781 3.784 3.782 3.783

Avg Dev 0.000 0.000 0.000 0.016 0.000 0.014

Std Dev 0.000 0.000 0.000 0.126 0.000 0.168

Variance 0.000 0.000 0.000 0.016 0.000 0.028
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Figure 4.14. Experimental results for the star topology experiment with noise for the nRF52840

development kit are given. The RTT in milliseconds is graphed as a function of the measurement

number. One thousand RTT measurements were taken for each node, labeled as A. The experiment

was repeated a second time at a different time interval and labeled as B.

The experimental results for the star topology with Wi-Fi interference for the nRF52840 development

kit are shown in Figure 4.13. Three of the nRF52840 nodes were placed one meter apart in a star

topology and one thousand RTT measurements taken for each distance, labelled as A. The experiment

was repeated a second time at a different time interval and labelled as B. The experiment was conducted

in an environment with known Wi-Fi interference. The RTT in milliseconds is graphed as a function of

the measurement number. A noticeable difference in mean and average is visible, but not deterministic

between measurements. packet loss is present with non-deterministic scattering of measurements in

some instances. The statistical measures for the data set are given in Table 4.11.

4.5 CHAPTER SUMMARY

Experimental data was collected and organized according to the network topology of the experiment.

Data from the point-to-point experiments (Section 4.2.) showed minimal packet loss and variation in

RTT when a signal strength of at least 70dBm was maintained. Devices of the same vendor had distinct

fingerprintable RTT in each measurement. The mesh topology experiment in Section 4.3 compares the

RTT over multiple hops with and without Wi-Fi interference and was designed to evaluate the effect of
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additional hops on the total RTT. Wi-Fi interference was found to contribute significantly to packet

loss which could be averaged out if enough measurements were taken. Section 4.4 evaluated the RTT

in a star topology at different time instances. The RTT fluctuated as time passed and no fingerprintable

metrics could be found for devices of the same make and model.
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5.1 CHAPTER OVERVIEW

The experimental results obtained from Chapter 4 is organised and discussed to address the research

objectives and questions posed in Chapter 1. The chapter starts by discussing the effect of the wireless

channel in Section 5.2 and continues with a discussion on the multi-hop timing in Section 5.3. The

chapter is concluded with Section 5.4 where the efficacy of the ICMP method is discussed taking into

consideration the results obtained from the point-to-point, mesh and star topology experiments.

5.2 EFFECT OF THE WIRELESS CHANNEL

The results from the three point-to-point experiments suggest that the effect of the wireless channel can

be observed as a random deviation in the round-trip time and only varies significantly once the distance

between the nodes increase beyond a maximum distance. The transmission range of a wireless signal

is directly proportional to the transmission power of the wireless signal and can thus be substituted

for received signal strength. The timing variations will thus remain within a bounded interval as the

received signal strength remains above a predetermined level. The selection of an interference free RF

channel is a key requirement for the random deviations to remain bounded.

The effect of the wireless channel can thus be quantified as a random variation in the round-trip time

measurement. The variation remains statistically bounded in the microsecond range of which the

baseline values are dependent on the type of device and RF environment.

5.3 MULTI-HOP TIMING

The data obtained from the multi-hop timing experiments showed distinct and identifiable timing

characteristics. Round-trip times in the millisecond range were observed and are an order of magnitude

larger than the effect of the physical channel and are thus reliable. Four distinct lines can be seen

for each of the four measurements without packet loss or jitter corresponding to the number of hops
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in the network. The experiment was repeated several times during different times in a location with

high levels of Wi-Fi interference. Wi-Fi interference caused ICMP packets to drop and thus did not

influence the average of the measurements as the packet is automatically discarded and not included in

the averaging process.

Averaging the results obtained from the multi-hop experiments and graphing according to node

number produces a set of data to which a straight line can be fitted. The resulting equation is shown

below.

f (x) = 5.745x+0.0905 (5.1)

Where f(x) is the expected round-trip time and x is the hop-count. Equation (5.1) can be further

simplified by forcing an intercept at zero resulting in the equation :

f (x) = 5.775x (5.2)

A rule of thumb can thus be deduced from (5.2) for the NRF52840DK devices running Riot-OS where

every additional hop will add 5.775 ms in latency.

5.4 EFFICACY OF THE ICMP METHOD

The ability to introduce device fingerprinting based on the ICMP method is discussed according to

the fingerprinting criteria identified and modified for IWSNs in Chapter 3 . Universality, uniqueness,

collectability robustness and data-dependency will be discussed from a semi-active perspective as the

ping6 command can connect to a device from a remote location, but not make changes to the device

itself.

5.4.1 Universality

The universality of the ICMP method was the most attractive feature of the ICMP method. The majority

of IoT devices supports the measurement of RTT using ICMP packets and all the experimental data

was collected using an unmodified version of the stock ping6 command provided by Riot-OS. The

ICMP method thus fully meets the universality requirement for device fingerprinting.
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5.4.2 Uniqueness

Data obtained from the star topology experiments shows that RF interference either adds or subtracts

from the round-trip time in a random manner which is dependent on the environment and inter-device

interference. What might seem as a pattern or ordered deviation in the point-to-point experiment is

actually just noise. Extracting fingerprinting information at the microsecond level is thus not possible

due to the randomizing effect of the noise floor and even if the noise floor could be reduced the ICMP

processing of the networking stack in Riot-OS has no obvious fingerprinting characteristics in the

microsecond timing ranges as shown by the localhost RTT experiment. The ICMP method thus fails to

achieve the uniqueness requirement for devices of the same type.

5.4.3 Collectability

Collecting RTT measurements using the ping6 command is a trivial process and does not require

modification to the hardware and software of a WSN device if the ping6 command is supported.

Obtaining RTT data uses no more processing power or battery life than a normal sensor measurement

would and can even be collected in parallel to the sensor measurements when raw packet data is used

to determine the delta in arrival time. Automating data collection or implementing routing decisions

based on RTT data is however more involved and will require supporting infrastructure for making

intelligent decisions.

5.4.4 Robustness

The averaged RTT for each device did not remain stable over time as shown by the data obtained from

measuring the RTT to the same device at different time intervals in the star topology experiment. The

mean value shifted either adding or subtracting to the initial value as time progressed, violating the

robustness requirement for generating device fingerprints.

5.4.5 Data-dependency

The amount of noise and Wi-Fi interference will influence the number of measurements required to

successfully converge on an accurate mean. A thousand RTT measurements were used to confirm

that experimental results are reliable, but in reality far less measurements are required. Most of the

experimental data can be obtained by fifty or less measurements, but is highly dependable on the

interference which effects the bounded behaviour of the RTT. The ICMP method is thus viable if

low levels of interference or high levels of signal strength can be maintained in the network from a

data-dependency point of view.
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5.5 CHAPTER SUMMARY

The effect of the wireless channel was discussed in Section 5.2 and can be observed as a random

deviation in the round-trip time. The deviation remains bounded when sufficient signal strength is

maintained. The multi-hop timing results in Section 5.3 produced a linear equation for estimating RTT

and a rule of thumb that can be used in the design stage of an IWSN. The discussion concluded in

Section 5.4 where the efficacy of the ICMP method is discussed taking into consideration the results

obtained from the point-to-point, mesh and star topology experiments. The ICMP method failed to

meet the uniqueness and robustness requirement for device fingerprinting of devices from the same

vendor.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

43



CHAPTER 6 CONCLUSION

6.1 SUMMARY

The feasibility of using the ICMP method to generate fingerprinting information in an IWSN was

evaluated. A linear relationship was found between hop count and round-trip time for a static network

with reasonable signal strength. The physical layer effect of the Lossy, Low-Power Network can be

averaged out if several measurements are averaged. The multi-hop round-trip time estimation can thus

be used in the design phase of any IWSN network to estimate latency or alternatively used as a method

to detect routing anomalies for enhanced security or fault diagnosis.

The ICMP method was able to differentiate between devices from different vendors using millisecond

timing deltas. The timing results for identifying unique nodes from the same vendor drifted between

consecutive experiments due to physical layer noise. The ICMP ping method is thus not suitable for

fingerprinting devices with a response time in the microsecond range.

The experiments showed that microsecond and below delta measurements are influenced by the

randomness of the RF channel and thus randomizing the delta measurements according to the noise

and multi-path components experienced by the physical layer. Phenomenon in the millisecond ranges

are easy to fingerprint, if they exist because the timing deltas are an order of magnitude larger than the

randomness introduced by the physical layer. A device with a microsecond or faster response time is

difficult to fingerprint, if not impossible due to the small timing offsets caused by the effects of the

physical layer. Devices with sub-millisecond responses are thus more secure against fingerprinting

attacks in IWSNs.

6.2 RESEARCH CONTRIBUTION

This thesis makes the following contributions:
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• Contributes an OSI stack based approach to identifying, sorting and evaluating related work and

the inter-stack dependencies of related fingerprinting methods.

• Provides evaluation criteria for IWSN fingerprinting methods taking into consideration the

unique design criteria of an IWSN.

• Quantifies the expected timing requirements and related design parameters for IWSN round-trip-

time measurements.

• Presents a new empirical method to determine the latency of a static routed multi-hop IWSN

deployment.

• Provides baseline experimental results for the use of round trip based device fingerprinting

methods in an IWSN.

6.3 FUTURE WORK

A lack of formal fingerprinting tools for 802.15.4 networks was highlighted in the related work section

and should be further explored. There are several fingerprinting methods in related work which have

not yet been adapted and evaluated in IWSN networks.

The effects of time slotted communications (802.15.4e) on the ICMP ping method was not evaluated

in this paper as part of a scope restriction and should be further investigated on a suitable emulator

or test bed. Maintaining a large 6LowPAN mesh network with static routing is impractical and the

experiments should be expanded based on common deployment scenarios in an IWSN.

Neighbor discovery is a key attribute of timely communication in the RPL based IWSN [76] and

should be an area of focus for mobility, deterministic behaviour and device fingerprinting. The speed

at which neighbours are discovered, updated and added to the routing tables is a key attribute of timely

communication and has a much greater impact on latency and determinism than the microsecond

delays introduced on the physical layer.
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