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Abstract:
In this work, a transit network design problem is presented. The problem is identified as a typical
large-scale complex system. Subsequently, it is decomposed into its sub-components. The first
two sub-components, which encompass the network design and frequency setting problems, are
then tackled by means of an innovative solution framework that combines a genetic algorithm
with agent-based travel demand modelling. An analysis of results obtained from applying the
proposed method to different testing scenarios shows that it is capable of designing transit
networks that address the individual and collective perspectives of different stakeholders. Hence
it can be used as a viable decision support tool for policy makers in the transportation network
sector.
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1. INTRODUCTION

Urban transportation networks provide spatial connection
between points of travel demand production or attraction
within a given geographical space. They also facilitate
the efficient movement of people, goods and information.
When considered as a large-scale complex system, it is
easy to observe such features as the presence of a large
number of human agents with their stochastic decision
making and interactions on the network; non-linear phe-
nomenon like congestion where a localised incident such
as a vehicle crash can lead to network wide travel delays;
and interconnectivity between the network and other ex-
ternal dynamic systems like the environment or economy
[Rodrigue et al., 2013]. Owing to these features, designing
a transportation network is a very arduous endeavour
that will be implausible to consider as a single system.
A more realistic approach to tackling them would be to
decompose the system into more tractable sub-systems,
thereby allowing the easier handling of the latter [Filip and
Leiviska, 2009]. Ceder [2015] identifies four sub-systems of
the urban transportation network design problem (UT-
NDP) as follows: route design, frequency setting, vehicle
crew assignment and vehicle scheduling. This work focuses
on the first two sub-problems, namely route design and
frequency setting. The first deals with the provision of
transportation network routes relative to their configu-
ration and level of demand utilisation. The second sub-
problem focuses on providing schedules that would enable
operators satisfy the revealed demand for travel on the
routes. Since there should be a feedback loop between an
urban transportation route and its service frequency in

order to meet the travel demand, the two problems should
be solved simultaneously. However, the intractable nature
of the problem and drawbacks of conventional travel de-
mand modelling has limited the ability of researchers to
achieve this goal. Specifically, modelling travel demand
which by nature, is stochastic with static models like the
four step travel demand model; and the difficulty of encod-
ing both elements (transportation network and operational
frequencies) as a single decision variable within a solution
scheme such as meta-heuristic algorithms have impacted
the possibility of solving this problem. Consequently, a
sequential ideation of the problems is often done in the
literature [Ceder, 2007].

Therefore, the goal of this work is to propose a network
design approach that combines a genetic algorithm with
an agent-driven travel demand model simulation as a
way of addressing these limitations, in a transit setting.
The agent-based model (ABM) procedure replaces the
traditional conventional traffic assignment that has been
used in nearly all transit network design efforts in the
literature. The case for using of ABM is made owing to
the fact that it espouses the modelling of agents’ activity
and by consequence the trips connecting these activities
rather than looking at trips in isolation. The resulting
network solutions will then be analysed; looking closely
at how it impacts stakeholders such as the users and
operators on the network. The remainder of this paper is
structured as follows: section two discusses the theoretical
background for the proposed solution method. Section
three presents the mathematical model upon which the
problem is set, while section four outlines the component
algorithms of the solution technique. In section five, the

Proceedings of the 15th IFAC Symposium on
Large Scale Complex Systems: Theory and Applications
Delft, The Netherlands, May 26-28, 2019

Copyright © 2019 IFAC 13

Transit network design with meta-heuristic
algorithms and agent based simulation

Obiora A. Nnene ∗ Johan W. Joubert ∗∗

Mark H.P. Zuidgeest ∗

∗ Centre for Transport Studies, Faculty of Engineering and the Built
Environment, University of Cape Town, Private Bag X3 Rondebosch

7701, South Africa (e-mail: nnnobi002@myuct.ac.za)
∗∗ Centre for Transport Development, Industrial Engineering,

University of Pretoria, Pretoria, 0083, South Africa

Abstract:
In this work, a transit network design problem is presented. The problem is identified as a typical
large-scale complex system. Subsequently, it is decomposed into its sub-components. The first
two sub-components, which encompass the network design and frequency setting problems, are
then tackled by means of an innovative solution framework that combines a genetic algorithm
with agent-based travel demand modelling. An analysis of results obtained from applying the
proposed method to different testing scenarios shows that it is capable of designing transit
networks that address the individual and collective perspectives of different stakeholders. Hence
it can be used as a viable decision support tool for policy makers in the transportation network
sector.

Keywords: transit network design, genetic algorithm, agent based modelling, large scale
complex system, optimisation

1. INTRODUCTION

Urban transportation networks provide spatial connection
between points of travel demand production or attraction
within a given geographical space. They also facilitate
the efficient movement of people, goods and information.
When considered as a large-scale complex system, it is
easy to observe such features as the presence of a large
number of human agents with their stochastic decision
making and interactions on the network; non-linear phe-
nomenon like congestion where a localised incident such
as a vehicle crash can lead to network wide travel delays;
and interconnectivity between the network and other ex-
ternal dynamic systems like the environment or economy
[Rodrigue et al., 2013]. Owing to these features, designing
a transportation network is a very arduous endeavour
that will be implausible to consider as a single system.
A more realistic approach to tackling them would be to
decompose the system into more tractable sub-systems,
thereby allowing the easier handling of the latter [Filip and
Leiviska, 2009]. Ceder [2015] identifies four sub-systems of
the urban transportation network design problem (UT-
NDP) as follows: route design, frequency setting, vehicle
crew assignment and vehicle scheduling. This work focuses
on the first two sub-problems, namely route design and
frequency setting. The first deals with the provision of
transportation network routes relative to their configu-
ration and level of demand utilisation. The second sub-
problem focuses on providing schedules that would enable
operators satisfy the revealed demand for travel on the
routes. Since there should be a feedback loop between an
urban transportation route and its service frequency in

order to meet the travel demand, the two problems should
be solved simultaneously. However, the intractable nature
of the problem and drawbacks of conventional travel de-
mand modelling has limited the ability of researchers to
achieve this goal. Specifically, modelling travel demand
which by nature, is stochastic with static models like the
four step travel demand model; and the difficulty of encod-
ing both elements (transportation network and operational
frequencies) as a single decision variable within a solution
scheme such as meta-heuristic algorithms have impacted
the possibility of solving this problem. Consequently, a
sequential ideation of the problems is often done in the
literature [Ceder, 2007].

Therefore, the goal of this work is to propose a network
design approach that combines a genetic algorithm with
an agent-driven travel demand model simulation as a
way of addressing these limitations, in a transit setting.
The agent-based model (ABM) procedure replaces the
traditional conventional traffic assignment that has been
used in nearly all transit network design efforts in the
literature. The case for using of ABM is made owing to
the fact that it espouses the modelling of agents’ activity
and by consequence the trips connecting these activities
rather than looking at trips in isolation. The resulting
network solutions will then be analysed; looking closely
at how it impacts stakeholders such as the users and
operators on the network. The remainder of this paper is
structured as follows: section two discusses the theoretical
background for the proposed solution method. Section
three presents the mathematical model upon which the
problem is set, while section four outlines the component
algorithms of the solution technique. In section five, the

Proceedings of the 15th IFAC Symposium on
Large Scale Complex Systems: Theory and Applications
Delft, The Netherlands, May 26-28, 2019

Copyright © 2019 IFAC 13

Transit network design with meta-heuristic
algorithms and agent based simulation

Obiora A. Nnene ∗ Johan W. Joubert ∗∗

Mark H.P. Zuidgeest ∗

∗ Centre for Transport Studies, Faculty of Engineering and the Built
Environment, University of Cape Town, Private Bag X3 Rondebosch

7701, South Africa (e-mail: nnnobi002@myuct.ac.za)
∗∗ Centre for Transport Development, Industrial Engineering,

University of Pretoria, Pretoria, 0083, South Africa

Abstract:
In this work, a transit network design problem is presented. The problem is identified as a typical
large-scale complex system. Subsequently, it is decomposed into its sub-components. The first
two sub-components, which encompass the network design and frequency setting problems, are
then tackled by means of an innovative solution framework that combines a genetic algorithm
with agent-based travel demand modelling. An analysis of results obtained from applying the
proposed method to different testing scenarios shows that it is capable of designing transit
networks that address the individual and collective perspectives of different stakeholders. Hence
it can be used as a viable decision support tool for policy makers in the transportation network
sector.

Keywords: transit network design, genetic algorithm, agent based modelling, large scale
complex system, optimisation

1. INTRODUCTION

Urban transportation networks provide spatial connection
between points of travel demand production or attraction
within a given geographical space. They also facilitate
the efficient movement of people, goods and information.
When considered as a large-scale complex system, it is
easy to observe such features as the presence of a large
number of human agents with their stochastic decision
making and interactions on the network; non-linear phe-
nomenon like congestion where a localised incident such
as a vehicle crash can lead to network wide travel delays;
and interconnectivity between the network and other ex-
ternal dynamic systems like the environment or economy
[Rodrigue et al., 2013]. Owing to these features, designing
a transportation network is a very arduous endeavour
that will be implausible to consider as a single system.
A more realistic approach to tackling them would be to
decompose the system into more tractable sub-systems,
thereby allowing the easier handling of the latter [Filip and
Leiviska, 2009]. Ceder [2015] identifies four sub-systems of
the urban transportation network design problem (UT-
NDP) as follows: route design, frequency setting, vehicle
crew assignment and vehicle scheduling. This work focuses
on the first two sub-problems, namely route design and
frequency setting. The first deals with the provision of
transportation network routes relative to their configu-
ration and level of demand utilisation. The second sub-
problem focuses on providing schedules that would enable
operators satisfy the revealed demand for travel on the
routes. Since there should be a feedback loop between an
urban transportation route and its service frequency in

order to meet the travel demand, the two problems should
be solved simultaneously. However, the intractable nature
of the problem and drawbacks of conventional travel de-
mand modelling has limited the ability of researchers to
achieve this goal. Specifically, modelling travel demand
which by nature, is stochastic with static models like the
four step travel demand model; and the difficulty of encod-
ing both elements (transportation network and operational
frequencies) as a single decision variable within a solution
scheme such as meta-heuristic algorithms have impacted
the possibility of solving this problem. Consequently, a
sequential ideation of the problems is often done in the
literature [Ceder, 2007].

Therefore, the goal of this work is to propose a network
design approach that combines a genetic algorithm with
an agent-driven travel demand model simulation as a
way of addressing these limitations, in a transit setting.
The agent-based model (ABM) procedure replaces the
traditional conventional traffic assignment that has been
used in nearly all transit network design efforts in the
literature. The case for using of ABM is made owing to
the fact that it espouses the modelling of agents’ activity
and by consequence the trips connecting these activities
rather than looking at trips in isolation. The resulting
network solutions will then be analysed; looking closely
at how it impacts stakeholders such as the users and
operators on the network. The remainder of this paper is
structured as follows: section two discusses the theoretical
background for the proposed solution method. Section
three presents the mathematical model upon which the
problem is set, while section four outlines the component
algorithms of the solution technique. In section five, the

Proceedings of the 15th IFAC Symposium on
Large Scale Complex Systems: Theory and Applications
Delft, The Netherlands, May 26-28, 2019

Copyright © 2019 IFAC 13

Transit network design with meta-heuristic
algorithms and agent based simulation

Obiora A. Nnene ∗ Johan W. Joubert ∗∗

Mark H.P. Zuidgeest ∗

∗ Centre for Transport Studies, Faculty of Engineering and the Built
Environment, University of Cape Town, Private Bag X3 Rondebosch

7701, South Africa (e-mail: nnnobi002@myuct.ac.za)
∗∗ Centre for Transport Development, Industrial Engineering,

University of Pretoria, Pretoria, 0083, South Africa

Abstract:
In this work, a transit network design problem is presented. The problem is identified as a typical
large-scale complex system. Subsequently, it is decomposed into its sub-components. The first
two sub-components, which encompass the network design and frequency setting problems, are
then tackled by means of an innovative solution framework that combines a genetic algorithm
with agent-based travel demand modelling. An analysis of results obtained from applying the
proposed method to different testing scenarios shows that it is capable of designing transit
networks that address the individual and collective perspectives of different stakeholders. Hence
it can be used as a viable decision support tool for policy makers in the transportation network
sector.

Keywords: transit network design, genetic algorithm, agent based modelling, large scale
complex system, optimisation

1. INTRODUCTION

Urban transportation networks provide spatial connection
between points of travel demand production or attraction
within a given geographical space. They also facilitate
the efficient movement of people, goods and information.
When considered as a large-scale complex system, it is
easy to observe such features as the presence of a large
number of human agents with their stochastic decision
making and interactions on the network; non-linear phe-
nomenon like congestion where a localised incident such
as a vehicle crash can lead to network wide travel delays;
and interconnectivity between the network and other ex-
ternal dynamic systems like the environment or economy
[Rodrigue et al., 2013]. Owing to these features, designing
a transportation network is a very arduous endeavour
that will be implausible to consider as a single system.
A more realistic approach to tackling them would be to
decompose the system into more tractable sub-systems,
thereby allowing the easier handling of the latter [Filip and
Leiviska, 2009]. Ceder [2015] identifies four sub-systems of
the urban transportation network design problem (UT-
NDP) as follows: route design, frequency setting, vehicle
crew assignment and vehicle scheduling. This work focuses
on the first two sub-problems, namely route design and
frequency setting. The first deals with the provision of
transportation network routes relative to their configu-
ration and level of demand utilisation. The second sub-
problem focuses on providing schedules that would enable
operators satisfy the revealed demand for travel on the
routes. Since there should be a feedback loop between an
urban transportation route and its service frequency in

order to meet the travel demand, the two problems should
be solved simultaneously. However, the intractable nature
of the problem and drawbacks of conventional travel de-
mand modelling has limited the ability of researchers to
achieve this goal. Specifically, modelling travel demand
which by nature, is stochastic with static models like the
four step travel demand model; and the difficulty of encod-
ing both elements (transportation network and operational
frequencies) as a single decision variable within a solution
scheme such as meta-heuristic algorithms have impacted
the possibility of solving this problem. Consequently, a
sequential ideation of the problems is often done in the
literature [Ceder, 2007].

Therefore, the goal of this work is to propose a network
design approach that combines a genetic algorithm with
an agent-driven travel demand model simulation as a
way of addressing these limitations, in a transit setting.
The agent-based model (ABM) procedure replaces the
traditional conventional traffic assignment that has been
used in nearly all transit network design efforts in the
literature. The case for using of ABM is made owing to
the fact that it espouses the modelling of agents’ activity
and by consequence the trips connecting these activities
rather than looking at trips in isolation. The resulting
network solutions will then be analysed; looking closely
at how it impacts stakeholders such as the users and
operators on the network. The remainder of this paper is
structured as follows: section two discusses the theoretical
background for the proposed solution method. Section
three presents the mathematical model upon which the
problem is set, while section four outlines the component
algorithms of the solution technique. In section five, the

Proceedings of the 15th IFAC Symposium on
Large Scale Complex Systems: Theory and Applications
Delft, The Netherlands, May 26-28, 2019

Copyright © 2019 IFAC 13

Transit network design with meta-heuristic
algorithms and agent based simulation

Obiora A. Nnene ∗ Johan W. Joubert ∗∗

Mark H.P. Zuidgeest ∗

∗ Centre for Transport Studies, Faculty of Engineering and the Built
Environment, University of Cape Town, Private Bag X3 Rondebosch

7701, South Africa (e-mail: nnnobi002@myuct.ac.za)
∗∗ Centre for Transport Development, Industrial Engineering,

University of Pretoria, Pretoria, 0083, South Africa

Abstract:
In this work, a transit network design problem is presented. The problem is identified as a typical
large-scale complex system. Subsequently, it is decomposed into its sub-components. The first
two sub-components, which encompass the network design and frequency setting problems, are
then tackled by means of an innovative solution framework that combines a genetic algorithm
with agent-based travel demand modelling. An analysis of results obtained from applying the
proposed method to different testing scenarios shows that it is capable of designing transit
networks that address the individual and collective perspectives of different stakeholders. Hence
it can be used as a viable decision support tool for policy makers in the transportation network
sector.

Keywords: transit network design, genetic algorithm, agent based modelling, large scale
complex system, optimisation

1. INTRODUCTION

Urban transportation networks provide spatial connection
between points of travel demand production or attraction
within a given geographical space. They also facilitate
the efficient movement of people, goods and information.
When considered as a large-scale complex system, it is
easy to observe such features as the presence of a large
number of human agents with their stochastic decision
making and interactions on the network; non-linear phe-
nomenon like congestion where a localised incident such
as a vehicle crash can lead to network wide travel delays;
and interconnectivity between the network and other ex-
ternal dynamic systems like the environment or economy
[Rodrigue et al., 2013]. Owing to these features, designing
a transportation network is a very arduous endeavour
that will be implausible to consider as a single system.
A more realistic approach to tackling them would be to
decompose the system into more tractable sub-systems,
thereby allowing the easier handling of the latter [Filip and
Leiviska, 2009]. Ceder [2015] identifies four sub-systems of
the urban transportation network design problem (UT-
NDP) as follows: route design, frequency setting, vehicle
crew assignment and vehicle scheduling. This work focuses
on the first two sub-problems, namely route design and
frequency setting. The first deals with the provision of
transportation network routes relative to their configu-
ration and level of demand utilisation. The second sub-
problem focuses on providing schedules that would enable
operators satisfy the revealed demand for travel on the
routes. Since there should be a feedback loop between an
urban transportation route and its service frequency in

order to meet the travel demand, the two problems should
be solved simultaneously. However, the intractable nature
of the problem and drawbacks of conventional travel de-
mand modelling has limited the ability of researchers to
achieve this goal. Specifically, modelling travel demand
which by nature, is stochastic with static models like the
four step travel demand model; and the difficulty of encod-
ing both elements (transportation network and operational
frequencies) as a single decision variable within a solution
scheme such as meta-heuristic algorithms have impacted
the possibility of solving this problem. Consequently, a
sequential ideation of the problems is often done in the
literature [Ceder, 2007].

Therefore, the goal of this work is to propose a network
design approach that combines a genetic algorithm with
an agent-driven travel demand model simulation as a
way of addressing these limitations, in a transit setting.
The agent-based model (ABM) procedure replaces the
traditional conventional traffic assignment that has been
used in nearly all transit network design efforts in the
literature. The case for using of ABM is made owing to
the fact that it espouses the modelling of agents’ activity
and by consequence the trips connecting these activities
rather than looking at trips in isolation. The resulting
network solutions will then be analysed; looking closely
at how it impacts stakeholders such as the users and
operators on the network. The remainder of this paper is
structured as follows: section two discusses the theoretical
background for the proposed solution method. Section
three presents the mathematical model upon which the
problem is set, while section four outlines the component
algorithms of the solution technique. In section five, the

Proceedings of the 15th IFAC Symposium on
Large Scale Complex Systems: Theory and Applications
Delft, The Netherlands, May 26-28, 2019

Copyright © 2019 IFAC 13

Transit network design with meta-heuristic
algorithms and agent based simulation

Obiora A. Nnene ∗ Johan W. Joubert ∗∗

Mark H.P. Zuidgeest ∗

∗ Centre for Transport Studies, Faculty of Engineering and the Built
Environment, University of Cape Town, Private Bag X3 Rondebosch

7701, South Africa (e-mail: nnnobi002@myuct.ac.za)
∗∗ Centre for Transport Development, Industrial Engineering,

University of Pretoria, Pretoria, 0083, South Africa

Abstract:
In this work, a transit network design problem is presented. The problem is identified as a typical
large-scale complex system. Subsequently, it is decomposed into its sub-components. The first
two sub-components, which encompass the network design and frequency setting problems, are
then tackled by means of an innovative solution framework that combines a genetic algorithm
with agent-based travel demand modelling. An analysis of results obtained from applying the
proposed method to different testing scenarios shows that it is capable of designing transit
networks that address the individual and collective perspectives of different stakeholders. Hence
it can be used as a viable decision support tool for policy makers in the transportation network
sector.

Keywords: transit network design, genetic algorithm, agent based modelling, large scale
complex system, optimisation

1. INTRODUCTION

Urban transportation networks provide spatial connection
between points of travel demand production or attraction
within a given geographical space. They also facilitate
the efficient movement of people, goods and information.
When considered as a large-scale complex system, it is
easy to observe such features as the presence of a large
number of human agents with their stochastic decision
making and interactions on the network; non-linear phe-
nomenon like congestion where a localised incident such
as a vehicle crash can lead to network wide travel delays;
and interconnectivity between the network and other ex-
ternal dynamic systems like the environment or economy
[Rodrigue et al., 2013]. Owing to these features, designing
a transportation network is a very arduous endeavour
that will be implausible to consider as a single system.
A more realistic approach to tackling them would be to
decompose the system into more tractable sub-systems,
thereby allowing the easier handling of the latter [Filip and
Leiviska, 2009]. Ceder [2015] identifies four sub-systems of
the urban transportation network design problem (UT-
NDP) as follows: route design, frequency setting, vehicle
crew assignment and vehicle scheduling. This work focuses
on the first two sub-problems, namely route design and
frequency setting. The first deals with the provision of
transportation network routes relative to their configu-
ration and level of demand utilisation. The second sub-
problem focuses on providing schedules that would enable
operators satisfy the revealed demand for travel on the
routes. Since there should be a feedback loop between an
urban transportation route and its service frequency in

order to meet the travel demand, the two problems should
be solved simultaneously. However, the intractable nature
of the problem and drawbacks of conventional travel de-
mand modelling has limited the ability of researchers to
achieve this goal. Specifically, modelling travel demand
which by nature, is stochastic with static models like the
four step travel demand model; and the difficulty of encod-
ing both elements (transportation network and operational
frequencies) as a single decision variable within a solution
scheme such as meta-heuristic algorithms have impacted
the possibility of solving this problem. Consequently, a
sequential ideation of the problems is often done in the
literature [Ceder, 2007].

Therefore, the goal of this work is to propose a network
design approach that combines a genetic algorithm with
an agent-driven travel demand model simulation as a
way of addressing these limitations, in a transit setting.
The agent-based model (ABM) procedure replaces the
traditional conventional traffic assignment that has been
used in nearly all transit network design efforts in the
literature. The case for using of ABM is made owing to
the fact that it espouses the modelling of agents’ activity
and by consequence the trips connecting these activities
rather than looking at trips in isolation. The resulting
network solutions will then be analysed; looking closely
at how it impacts stakeholders such as the users and
operators on the network. The remainder of this paper is
structured as follows: section two discusses the theoretical
background for the proposed solution method. Section
three presents the mathematical model upon which the
problem is set, while section four outlines the component
algorithms of the solution technique. In section five, the

Proceedings of the 15th IFAC Symposium on
Large Scale Complex Systems: Theory and Applications
Delft, The Netherlands, May 26-28, 2019

Copyright © 2019 IFAC 13



14 Obiora A. Nnene  et al. / IFAC PapersOnLine 52-3 (2019) 13–18

proposed solution is applied to a large scale network in the
city of Cape Town South Africa and its results discussed;
especially as it affects passengers and service operators. In
the final section, conclusions on the work are drawn.

2. LITERATURE

2.1 Introduction

The design of urban transportation networks is broadly
classified as a transit network design problem (TNDP).
In the literature, the problem deals with the optimised
design of transit route networks and the scheduling of
their operational frequencies. It is often presented as the
minimisation of transit costs or the maximisation of net-
work utilities subject to some feasibility constraints on
available resources. This is done with the aim of achieving
a compromise network solution for all stakeholder across
the transportation area being analysed. Normally, the
problem is represented by an objective function which is
a mathematical expression of the stakeholder goals to be
optimised. Newell [1979] first identified the TNDP as a
non-linear programming problem. It is further classified
as np-hard by Fan and Machemehl [2004]. Some features
of the TNDP include: one or more decision variables, an
objective or cost function, a user behaviour sub routine for
evaluating passenger behaviour on the network, transit de-
mand which is usually represented by an origin-destination
(OD) matrix (replaced by passengers’ daily plans in this
paper) and feasibility constraints.

Two major ways of solving the TNDP in the literature are
conventional and heuristic approaches. The former, is able
to find a unique solution to the TNDP using analytical
algorithms. The major criticism of this solution approach
is that they are hardly applicable to real life large scale
transit network problems, since, getting a closed form
expression for the objective function is computationally
too expensive [Chakroborty, 2003]. On the other hand,
heuristics by nature, cannot search for an exact solution
to the TNDP. They rather obtain suitable approximate
solutions of a global optimum solution—assuming the
latter exists. In any case, their solutions are normally
considered acceptable give the relatively smaller amount
of time they use to find the solution. For this reason
heuristics, especially meta-heuristic algorithms, have been
widely adopted with positive outcome in the solution of
large scale TNDP(s).

Some works in the literature, which, demonstrate the
application of meta-heuristics to the TNDP are Chen
et al. [2017], Cipriani et al. [2012], Pattnaik et al. [1998].

In Pattnaik et al. [1998], the authors formulated a two-
stage model involving the generation of feasible routes and
determining the best options among them. Their objective
function minimizes a total travel cost expression, which,
is a summation of the total travel time representing the
user perspective and total bus kilometres, which, denotes
the operator perspective. In stage one they first generated
feasible transit network routes with heuristic procedure.
The authors then assign travel demand, with the aid of a
heuristic that was used in Baaj and Mahmassani [1990].
The heuristic assigned travel demand with priority given
to routes based on the number of transfers on the route.

In the second stage of the model, the authors implemented
a genetic algorithm (GA) to search for an optimized
solution. Binary variables were used to denote each route
and the GA was coded using two different techniques
namely, fixed and variable string coding. Their model was
tested on a small network in south India.

Cipriani et al. [2012], proposed a two stage model com-
prising a route generation phase and a genetic algorithm.
Their model dealt with a simultaneous determination of
a sub-optimal set of routes and their frequencies. The
objective function was to minimize total costs, while, their
decision variables were route network and their frequen-
cies. Constraints used in the model were route length, load
capacity and maximum line frequency. In the first phase of
their model, three types of routes (types A, B and C) were
initially generated from the study network using different
criteria. A-type routes connected high demand nodes and
addressed the user perspective of minimized transfers and
increased trip directness. B-type routes on the other hand,
represented the operator’s perspective. These routes con-
nected major transit centres like rail stations. Their travel
demand assignment was done with a flow concentration
procedure used earlier by Carrese and Gori [2002]. This is
essentially an iterative All or Nothing traffic assignment,
which aggregates demand volumes on links, and those with
the highest volumes considered the best. C-type routes
in addition were the existing bus network routes. In the
second stage of the model, a GA implemented in parallel,
was used to get the optimal network from the pool of
generated routes.

Lastly, Chen et al. [2017] proposed a model to optimise
suburban routes with sparse travel demand for airport
access. They sought to minimise total access time to the
system. They chose pick-up locations and the visiting
sequence of the locations as their decision variables. The
problem was modelled as a discrete optimisation. Their
travel demand model was similar to the flow concentra-
tion technique first used by Cipriani et al. [2012]. They
developed a small case study of the problem and solved
it with a dynamic programming approach. However, to
solve a more realistic life-size network problem, a meta-
heuristic—artificial bee colony algorithm was used. The
work was applied to two suburban bus routes in Melbourne
Australia.

In this paper, the optimised design of a transit network
and its operational frequencies is achieved by combining
a typical meta-heuristic—GA, with agent-based travel
demand modelling.

2.2 Genetic Algorithm

Genetic algorithms are meta-heuristic search procedures
that can be used to find efficient solutions to optimisation
problems. In the literature, they are classified as bio-
inspired algorithms because their operations mimic the
principle of natural genetics. GAs work by enabling the
realisation of newer and presumably better generations of
solutions from existing ones. A typical genetic algorithm
framework consists of a population of solutions or chromo-
somes. Each chromosome is made up of genes that depend
on the particular representation of the chromosome. Fur-
thermore, the algorithm has operators, namely selection,
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crossover and mutation. The action of these operators
on the current population gives rise to offspring solutions
which are generally assumed to be fitter or perform better
than their progenitors.

In the context of the transit network design problem,
individual network solutions are the chromosomes that
make up the population. The genes in a chromosome are
the routes in the network. The best performing chromo-
some or network in the population represents a global
optimum solution. However, in very difficult problems like
the TNDP it is not feasible to determine that a solution
is the global optimum. Therefore, efficient local optimum
solutions obtained within a reasonable time frame are
generally considered as acceptable. An initial population
of chromosomes is usually set in the GA. This is followed
by the evaluation of each individual in the population to
determine their fitness score or objective function value.
Individuals with the best scores then have a higher pos-
sibility of being selected as parents for the reproduction
of offspring. These processes are achieved by the actions
of the earlier mentioned genetic operators. The procedure
continues iteratively, until a predefined termination crite-
ria is attained.

To apply a GA to a problem, the chromosomes need to
be encoded in a way that is applicable to the opera-
tors of the GA. Taking a historic look at the literature,
string and binary representation are the most common
representations used when solving the TNDP with GAs.
Over the years, GA-based models have become one of the
most efficient methods for solving the TNDP [Buba and
Lee, 2018, Kepaptsoglou and Karlaftis, 2009, Nnene et al.,
2017].

2.3 Agent-based modelling

At this stage it is important to briefly discuss how pas-
senger behaviour which has been identified as a major
component in the proposed network design solution frame-
work will be modelled. An agent based travel demand
simulation model is used; the technique is based on the
microsimulation of people’s activities in a geographical
area. Travel demand is, hence, generated by the trips
connecting those activities. It was conceived in an attempt
to overcome the limitations of trip based models such as
the four step model, which were increasingly unable to
respond to dynamic and more complex transport plan-
ning scenarios [Castiglione et al., 2015]. The foundational
assumption employed in the model, is that an individ-
ual’s decision to engage in an activity is based on the
following factors: the agent or decision maker; the set of
activity options or choice sets; and certain heuristic rules,
which, govern the choice sets and define the boundaries
outside which they become unrealistic. The two major
components of an agent-based travel demand model are
1) an activity based demand generation and 2) a dynamic
traffic assignment. Activity based demand generation con-
sists of creating a synthetic population and their daily
activity schedule using the concept of a random realisation
presented in Balmer et al. [2006], which basically means
the creation of a virtual population that share the same
demographic structure as that of the survey or census of a
real population. After generating the demand, a dynamic

traffic assignment is used to distribute the generated de-
mand on the basis of users route choices. This method
of traffic assignment was developed as an improvement
over the static assignment, with the major enhancement
being its ability to generate time dependent traffic or link
volumes see [Friedrich et al., 2000, Kaufman et al., 1991].

2.4 Innovation

The work discussed in this paper, draws lessons from the
earlier discussed [Cipriani et al., 2012, Pattnaik et al.,
1998]. However, two major distinctions from those works
are; 1) conventional travel demand models like the four
step model used for travel behaviour modelling in [Cipriani
et al., 2012], is replaced with an agent based model in
this work. 2) our definition of a more robust encoding
for the decision variable encoding, than that of [Pattnaik
et al., 1998]. Firstly, by using an agent based simulation,
for user behaviour modelling and evaluation of solutions
within the GA solution framework, we will more correctly
describe the stochastic behaviour of stakeholders and more
accurately predict the decisions they take in response
to the changes that occur on the network in real time.
Therefore, since, the problem’s objective functions are
evaluated based on the outcome of modelling people travel
behaviour, the effect is that the final network solutions,
would be better suited to respond to the travel demand
in the transportation area being studied. Secondly, In this
paper an innovative encoding is used that is based on a java
script object notation (JSON) data structure [Crockford,
2011]. This representation is markedly different from other
works in the literature as it accommodates the encoding
of each network with a detailed operational schedule.
The advantage of this approach, is that it enables the
simultaneous handling of the route network design and
frequency setting sub-problems of the TNDP, which, have
previously been handled consecutively (see section 1).

3. MATHEMATICAL MODEL

In this paper, the network is represented as a graph
G = (N,L) which is a multi-connection of a finite sets
of n ∈ N nodes and l ∈ L links. The objective function
in “(1)” is a linear summation of user and operator costs
see “(2)” and “(3)” below. Users view cost in terms of
their total travel time, while, operators are concerned
with the total operational cost. Therefore, by minimising
this objective function, the total cost incurred on the
network will be optimised for both stakeholders: users and
operators.

Z = z1 + z2 (1)

z1 = W1(a ∗
∑
r=1

trqr) (2)

z2 = W2(b ∗
∑
r=1

lrfr + e ∗
∑
r=1

trfr) (3)

subject to agent based stochastic user equilibrium on the
network:

qnr = τ(c(x{qnr })) (4)

and some feasibility conditions on route length, frequency
and vehicle fleet:

lmin ≤ lr ≤ lmax (5)
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crossover and mutation. The action of these operators
on the current population gives rise to offspring solutions
which are generally assumed to be fitter or perform better
than their progenitors.

In the context of the transit network design problem,
individual network solutions are the chromosomes that
make up the population. The genes in a chromosome are
the routes in the network. The best performing chromo-
some or network in the population represents a global
optimum solution. However, in very difficult problems like
the TNDP it is not feasible to determine that a solution
is the global optimum. Therefore, efficient local optimum
solutions obtained within a reasonable time frame are
generally considered as acceptable. An initial population
of chromosomes is usually set in the GA. This is followed
by the evaluation of each individual in the population to
determine their fitness score or objective function value.
Individuals with the best scores then have a higher pos-
sibility of being selected as parents for the reproduction
of offspring. These processes are achieved by the actions
of the earlier mentioned genetic operators. The procedure
continues iteratively, until a predefined termination crite-
ria is attained.

To apply a GA to a problem, the chromosomes need to
be encoded in a way that is applicable to the opera-
tors of the GA. Taking a historic look at the literature,
string and binary representation are the most common
representations used when solving the TNDP with GAs.
Over the years, GA-based models have become one of the
most efficient methods for solving the TNDP [Buba and
Lee, 2018, Kepaptsoglou and Karlaftis, 2009, Nnene et al.,
2017].

2.3 Agent-based modelling

At this stage it is important to briefly discuss how pas-
senger behaviour which has been identified as a major
component in the proposed network design solution frame-
work will be modelled. An agent based travel demand
simulation model is used; the technique is based on the
microsimulation of people’s activities in a geographical
area. Travel demand is, hence, generated by the trips
connecting those activities. It was conceived in an attempt
to overcome the limitations of trip based models such as
the four step model, which were increasingly unable to
respond to dynamic and more complex transport plan-
ning scenarios [Castiglione et al., 2015]. The foundational
assumption employed in the model, is that an individ-
ual’s decision to engage in an activity is based on the
following factors: the agent or decision maker; the set of
activity options or choice sets; and certain heuristic rules,
which, govern the choice sets and define the boundaries
outside which they become unrealistic. The two major
components of an agent-based travel demand model are
1) an activity based demand generation and 2) a dynamic
traffic assignment. Activity based demand generation con-
sists of creating a synthetic population and their daily
activity schedule using the concept of a random realisation
presented in Balmer et al. [2006], which basically means
the creation of a virtual population that share the same
demographic structure as that of the survey or census of a
real population. After generating the demand, a dynamic

traffic assignment is used to distribute the generated de-
mand on the basis of users route choices. This method
of traffic assignment was developed as an improvement
over the static assignment, with the major enhancement
being its ability to generate time dependent traffic or link
volumes see [Friedrich et al., 2000, Kaufman et al., 1991].

2.4 Innovation

The work discussed in this paper, draws lessons from the
earlier discussed [Cipriani et al., 2012, Pattnaik et al.,
1998]. However, two major distinctions from those works
are; 1) conventional travel demand models like the four
step model used for travel behaviour modelling in [Cipriani
et al., 2012], is replaced with an agent based model in
this work. 2) our definition of a more robust encoding
for the decision variable encoding, than that of [Pattnaik
et al., 1998]. Firstly, by using an agent based simulation,
for user behaviour modelling and evaluation of solutions
within the GA solution framework, we will more correctly
describe the stochastic behaviour of stakeholders and more
accurately predict the decisions they take in response
to the changes that occur on the network in real time.
Therefore, since, the problem’s objective functions are
evaluated based on the outcome of modelling people travel
behaviour, the effect is that the final network solutions,
would be better suited to respond to the travel demand
in the transportation area being studied. Secondly, In this
paper an innovative encoding is used that is based on a java
script object notation (JSON) data structure [Crockford,
2011]. This representation is markedly different from other
works in the literature as it accommodates the encoding
of each network with a detailed operational schedule.
The advantage of this approach, is that it enables the
simultaneous handling of the route network design and
frequency setting sub-problems of the TNDP, which, have
previously been handled consecutively (see section 1).

3. MATHEMATICAL MODEL

In this paper, the network is represented as a graph
G = (N,L) which is a multi-connection of a finite sets
of n ∈ N nodes and l ∈ L links. The objective function
in “(1)” is a linear summation of user and operator costs
see “(2)” and “(3)” below. Users view cost in terms of
their total travel time, while, operators are concerned
with the total operational cost. Therefore, by minimising
this objective function, the total cost incurred on the
network will be optimised for both stakeholders: users and
operators.

Z = z1 + z2 (1)

z1 = W1(a ∗
∑
r=1

trqr) (2)

z2 = W2(b ∗
∑
r=1

lrfr + e ∗
∑
r=1

trfr) (3)

subject to agent based stochastic user equilibrium on the
network:

qnr = τ(c(x{qnr })) (4)

and some feasibility conditions on route length, frequency
and vehicle fleet:

lmin ≤ lr ≤ lmax (5)
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fmin ≤ fr ≤ fmax (6)

rtot ≤ R (7)

Where:
Z = objective function;
z1 = user cost function;
W1 = weight factor for user cost;
a = monetary unit value for user travel time;
tr = travel time on route r;
qr = total travel demand on route r;
z2 = operator cost function;
W2 = weight factor for operator cost;
b = monetary unit value for vehicle mileage;
lr = length of route r;
fr = frequency on route r;
e = monetary unit value for vehicle operating time;
qnr = individual agent demand on the route r;
n = index of the agent;
τ = agent based probabilistic route choice model;
c(x) = network costs;
{qnr } = all individual agent route demands on the network;
lmin = minimum route length;
lmax = maximum route length;
fmin = minimum frequency value;
fmax = maximum frequency value;
rtot = number of designed routes;
R = maximum specified number of routes;

The objectives are subject to agent-based stochastic user
equilibrium, which, describes the simulation of the indi-
vidual traveller’s behaviour on the network represented
by “(4)”. This approach of modelling travel behaviour
extends the traditional stochastic user equilibrium because
rather than model flows on routes in the form of produc-
tions and attractions, each individual traveller’s demand
and behaviour is modelled. Furthermore, the route and
mode choices used in the traditional user equilibrium is
expanded to include other dimensions such as destination
choice. Lastly, a stochastic network loading is utilised with
time dependent trip departure times.

Other feasibility constraints for the model are those on,
route length, frequency and vehicle fleet size which are
seen in “(5)” to “(7)”. These are put in place to define the
allowable limiting conditions for the allocation of resources
on the network. Equation (5), is a route length constraint
introduced to specify the upper and lower bounds outside
which it would be illogical to operate a bus service.
Such constraint, prevents the algorithm from proposing to
operate a bus service on a route where walking is preferred
due to its short distance, or operating one on routes
that are extremely long which prevents keeping adequate
bus schedules Cipriani et al. [2012]. Equation (6), is the
frequency feasibility constraint introduced to represent the
maximum and minimum operable frequency on each route
within the bus network. It is usually dependent on the
available fleet size and transit demand for each route.
Equation (7), is a constraint on the maximum number of
routes, which is generally determined by transit authorities
who stipulate the size of their network or number of routes.
In practice this constraint is dictated by the available
resources at the disposal of the authorities to operate the
routes.

4. SOLUTION PROCEDURE

The proposed solution is a three step model that involves:
a heuristic network generation technique, an agent based
travel demand simulation network analysis procedure and
a GA. The generation step, involves creating feasible net-
work options from which an initial population is selected
by the GA. In the analysis phase of the, an agent based
simulation model known as MATSim [Horni et al., 2016]
is used to evaluate each network solution. Lastly, a search
of the solutions is done with a genetic algorithm to obtain
an efficient solution.

4.1 Network Generation

The input for this stage includes: nodes of an existing
transit network, minimum and maximum route length; and
the number of routes per network. The network generation
heuristic first reads in the nodes data, it then obtains the
shortest paths between all origin destination pairs in the
data using a k-shortest path algorithm [Yen, 1971]. In
this way, all possible routes are enumerated between the
origin destination pairs. Each path must then be checked
for the route length feasibility condition. Lastly, networks
are built by randomly choosing a user specified number
of shortest paths from the created set. This process is
repeated, until the user specified number or pool of feasible
candidate network solutions are generated. Using this
process, a pool of 1500 feasible networks were generated.
Each network is allowed to contain a user-specified number
of routes.

4.2 Network Analysis

This step of the model involves setting up a MATSim
simulation. In the introductory part of this section, it was
indicated that MATSim is used to analyse the network
solutions. Its inputs include the network selected by the
GA, a synthetic population of agents and their travel
demand or (24-hour activity plan), which, is created from
the fare collection data of an existing transit service,
with the aid of a heuristic. Other inputs are, an initial
schedule of transit operations on the routes of the network,
comprising a timetable—detailed fleet schedule and vehicle
departures. The final input is the fleet of transit vehicles
that will operate the schedules.

MATSim works, by iteratively, simulating users initial
demand and optimising them in three steps namely ex-
ecution, scoring and replanning. Execution, involves sim-
ulating the agent’s plans in an efficient queue-based sim-
ulation. Two factors that influence the agent’s travel be-
haviour during execution, are the start time of their ac-
tivities, and the space they occupy on the network on
the way to their activity locations. The latter impacts
how an agent executes their plan, as a likely build up
of congestion on a route, could delay the travel time of
agents that would have used the route. After execution,
the performance of the agents’ plans are scored using
a utility function, that allocates values to different time
components such as waiting time, travel time and time
spent on the activity. The function describes the agent’s
experience on the network. It also measures, how well an
agent’s plan performed. After the plan scores are obtained,
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the agent database is updated. Lastly, about 10% of the
agents are allowed to replan or modify their original plan.
This makes it possible for an agent to improve its plan in
subsequent iterations. During the simulation, the agents’
actions are written to an events file. When the simulation
ends, the events file are analysed. The objective function,
of the transit network design problem, is then evaluated
from the simulation results. The obtained score, is used
in the GA in step three of the model to determine the
survival of the feasible solutions.

4.3 Solution Search

The genetic algorithm (GA) starts by randomly choosing
100 networks from the pool of feasible networks created in
section 4.1. These are then initialised as the first popula-
tion. The solutions are encoded in a JSON format. This
facilitates the easy manipulation of the transit schedule
file that is originally in XML format. However, this has the
implication that the GA operators have to be customised
to enable them manipulate the JSON representation. After
defining the appropriate encoding scheme, the solutions
are evaluated with the simulation model in section 4.2 and
assigned their respective fitness values which are obtained
by analysing the result of the simulation. Subsequently,
pairs of parent solutions are drawn from the population
based on their fitness with the GA’s selection operator.
The other operators known as crossover and mutation are
then used to manipulate the selected pairs leading to the
reproduction of a new generation of offspring (networks).
A custom single point crossover and a polynomial muta-
tion was used in this work. The termination criteria is
the number of generations. Consequently, the offspring
obtained at the final generation represents the optimised
solution to the transit network design problem at hand.

5. TESTING AND RESULTS

To determine the ability of the proposed model solution
to design a large-scale public transportation network, it is
applied to the improvement of a bus rapid transit network
in the City of Cape Town, South Africa. The network
consists of 472 nodes and, currently, about 46 operational
routes. This test involves three network design scenarios
in which the relative weight factors for the user and
operator components of the objective function in “(2)” and
“(3)” are altered. Results obtained of various performance
indicators pertaining to the network stakeholders, are
presented in the tables 1 and 2 below. Subsequently, the
results are discussed in this section.

Table 1. Aggregate transit network perfor-
mance indicators for the identified scenarios

Indicators Users Operators Balanced

Total demand (pax) 38569 38569 38569
Satis. demand (pax) 34216 29590 31654
Unsat. demand (pax) 4353 8979 6915
Utilisation (%) 88.71 76.72 82.07
Veh. dist (km) 45215.15 48567.20 42452.99
Veh. time (hr) 1507.17 1618.91 1348.43
Op Cost (’000 ) 2137 2484 2178
Obj function/utility 3489543 3521928 3364508

Table 2. Average performance indicators at the
route level for the identified scenarios

Indicators Users Operators Balanced

Number of routes 46 46 46
Route density (pax/route) 744 643 634
Avg veh dist. (km/route) 982.94 1055.81 922.89
Avg veh time (hr/route) 32.76 35.19 29.31
Avg op cost (’000) 46.45 54.00 47.35

In the first scenario, the transit user is given priority by
setting the weights in an 80:20 split between the user and
operator. From the results presented in table 1, it can
be observed, that there is a higher satisfied demand and
network utilisation than the operators and balanced sce-
narios. Vehicle mileage and times are, however, less than
only the operator’s perspective. This can be attributed to
the fact that users opt for direct routes, which, are gen-
erally shorter than more circuitous ones. This, therefore,
implies that passenger demand on direct routes are served;
leaving out the majority of travel demand on longer routes.
Operationally, the result is realistic, as a transit network
designed with a bias for the user, will contain direct routes
that guarantees the shortest travel time for passengers.
Hence, more people will be encouraged to use the service.
This also implies that circuitous routes and those running
through transfer points will be minimal or totally excluded
in the solution.

In the second scenario the weightings are now changed
to prioritise the service operator, using a 20:80 split in
their favour. Again, in table 1, the results show that the
operator has a greater vehicle mileage and operational
hours than the user-centric solution. However, it satisfies
less demand. This may be due to the fact, that while
transit operators try to maximise network coverage by
using circuitous routes, this may ultimately discourage
some passenger who want to use only the direct routes.
A network that is skewed in favour of the operator will
largely contain routes that are longer than the preference
of users.

Lastly, an optimal transit network solution would contain
a mix of direct routes and other more circuitous ones.
Hence, in the last scenario, a balance is struck between the
perspectives of the user and operator, by assigning equal
weightings to both stakeholders. Since direct routes reduce
the ability of operators to cover demand occurring along
more circuitous paths. An optimised solution is balanced
between the user and operator’s cost perspectives. This is
revealed in the last column of table 1 where the indicators
can be seen to have values between the user and operator
perspectives. This indicates, that this scenario is a com-
promise between the earlier mentioned ones. The solution
also has the least objective function score, showing that it
is indeed an efficient solution as it minimises cost for all
stakeholder.

The outcomes discussed above are reinforced in table 2
where the balanced network solution has indicator values
that compromise between the users and operator perspec-
tive. However in terms of route density, it maintains a
higher value than the others. The latter is a measure of how
easily people can access the transit network. This result
shows that the balanced solution is the most attractive for
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agents are allowed to replan or modify their original plan.
This makes it possible for an agent to improve its plan in
subsequent iterations. During the simulation, the agents’
actions are written to an events file. When the simulation
ends, the events file are analysed. The objective function,
of the transit network design problem, is then evaluated
from the simulation results. The obtained score, is used
in the GA in step three of the model to determine the
survival of the feasible solutions.

4.3 Solution Search

The genetic algorithm (GA) starts by randomly choosing
100 networks from the pool of feasible networks created in
section 4.1. These are then initialised as the first popula-
tion. The solutions are encoded in a JSON format. This
facilitates the easy manipulation of the transit schedule
file that is originally in XML format. However, this has the
implication that the GA operators have to be customised
to enable them manipulate the JSON representation. After
defining the appropriate encoding scheme, the solutions
are evaluated with the simulation model in section 4.2 and
assigned their respective fitness values which are obtained
by analysing the result of the simulation. Subsequently,
pairs of parent solutions are drawn from the population
based on their fitness with the GA’s selection operator.
The other operators known as crossover and mutation are
then used to manipulate the selected pairs leading to the
reproduction of a new generation of offspring (networks).
A custom single point crossover and a polynomial muta-
tion was used in this work. The termination criteria is
the number of generations. Consequently, the offspring
obtained at the final generation represents the optimised
solution to the transit network design problem at hand.

5. TESTING AND RESULTS

To determine the ability of the proposed model solution
to design a large-scale public transportation network, it is
applied to the improvement of a bus rapid transit network
in the City of Cape Town, South Africa. The network
consists of 472 nodes and, currently, about 46 operational
routes. This test involves three network design scenarios
in which the relative weight factors for the user and
operator components of the objective function in “(2)” and
“(3)” are altered. Results obtained of various performance
indicators pertaining to the network stakeholders, are
presented in the tables 1 and 2 below. Subsequently, the
results are discussed in this section.

Table 1. Aggregate transit network perfor-
mance indicators for the identified scenarios

Indicators Users Operators Balanced

Total demand (pax) 38569 38569 38569
Satis. demand (pax) 34216 29590 31654
Unsat. demand (pax) 4353 8979 6915
Utilisation (%) 88.71 76.72 82.07
Veh. dist (km) 45215.15 48567.20 42452.99
Veh. time (hr) 1507.17 1618.91 1348.43
Op Cost (’000 ) 2137 2484 2178
Obj function/utility 3489543 3521928 3364508

Table 2. Average performance indicators at the
route level for the identified scenarios

Indicators Users Operators Balanced

Number of routes 46 46 46
Route density (pax/route) 744 643 634
Avg veh dist. (km/route) 982.94 1055.81 922.89
Avg veh time (hr/route) 32.76 35.19 29.31
Avg op cost (’000) 46.45 54.00 47.35

In the first scenario, the transit user is given priority by
setting the weights in an 80:20 split between the user and
operator. From the results presented in table 1, it can
be observed, that there is a higher satisfied demand and
network utilisation than the operators and balanced sce-
narios. Vehicle mileage and times are, however, less than
only the operator’s perspective. This can be attributed to
the fact that users opt for direct routes, which, are gen-
erally shorter than more circuitous ones. This, therefore,
implies that passenger demand on direct routes are served;
leaving out the majority of travel demand on longer routes.
Operationally, the result is realistic, as a transit network
designed with a bias for the user, will contain direct routes
that guarantees the shortest travel time for passengers.
Hence, more people will be encouraged to use the service.
This also implies that circuitous routes and those running
through transfer points will be minimal or totally excluded
in the solution.

In the second scenario the weightings are now changed
to prioritise the service operator, using a 20:80 split in
their favour. Again, in table 1, the results show that the
operator has a greater vehicle mileage and operational
hours than the user-centric solution. However, it satisfies
less demand. This may be due to the fact, that while
transit operators try to maximise network coverage by
using circuitous routes, this may ultimately discourage
some passenger who want to use only the direct routes.
A network that is skewed in favour of the operator will
largely contain routes that are longer than the preference
of users.

Lastly, an optimal transit network solution would contain
a mix of direct routes and other more circuitous ones.
Hence, in the last scenario, a balance is struck between the
perspectives of the user and operator, by assigning equal
weightings to both stakeholders. Since direct routes reduce
the ability of operators to cover demand occurring along
more circuitous paths. An optimised solution is balanced
between the user and operator’s cost perspectives. This is
revealed in the last column of table 1 where the indicators
can be seen to have values between the user and operator
perspectives. This indicates, that this scenario is a com-
promise between the earlier mentioned ones. The solution
also has the least objective function score, showing that it
is indeed an efficient solution as it minimises cost for all
stakeholder.

The outcomes discussed above are reinforced in table 2
where the balanced network solution has indicator values
that compromise between the users and operator perspec-
tive. However in terms of route density, it maintains a
higher value than the others. The latter is a measure of how
easily people can access the transit network. This result
shows that the balanced solution is the most attractive for
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all stakeholders and it also offers better access to public
transit services. Overall, these results show that suitable
network design solutions can be obtained by setting ap-
propriate weight factors in the model.

6. CONCLUSION

The connection between the quality of urban transit net-
works and the general well being of a society is well
documented in the literature. Therefore it is important,
that on a continuing basis efforts are taken to improve the
design of urban transit networks. This paper presented
an innovative design procedure that reduces the cost of
utilisation for users and that of operations for the service
provider. By combining meta-heuristics with agent-based
models in network design framework, better networks can
potentially be design because of the improved understand-
ing and ability to model human behaviour on the network.
The results show that the proposed design technique is ca-
pable of developing network solutions that respond to the
stated objective of the network designer or policy maker.
Having successfully applied the scheme to the context of a
uni-modal public transit in the city of Cape Town, future
efforts should be geared towards expanding its application
to design multi-modal transit networks.
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