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Abstract

English

There is stark contrast between the abilities of legged locomotion found in nature, and
locomotion found in lab environments. This performance gap is indicative of a large
knowledge gap. Roboticists are required to bridge these gaps to truly invite robots to
detach from their support rigs, and actuate within the real world. In this thesis, non-planar
contact and discontinuous locomotive dynamics were modeled as a trajectory optimization
problem. Consequently, this made understanding the complexities of legged locomotion
more tractable.

Understanding, and being able to leverage, contact is crucial to successful legged
locomotion. Therefore, a comprehensive investigation was conducted into non-planar
contact dynamics using a monopod robot. Here, methods of modeling the Coulomb
friction cone in contact implicit trajectory optimization were implemented. Literature
suggests replacing the friction cone with a polyhedral approximation thereof. However,
this method is known to underestimate the resultant friction in non-planar environments.
This thesis presents a novel method of modeling the 3D friction cone and compares it to
an implementation of the polyhedral approximation. Results from this comparison show
that the novel method was significantly more computationally efficient than the polyhedral
approximation, without underestimating the friction cone.

Dynamic bipedal locomotion remains a struggle for most robotic platforms. Robotics
literature provides few examples of robots achieving agile, dynamic locomotion. Therefore,
trajectories realizing non-planar dynamic bipedal motion were generated. Experiments
were conducted into acceleration, steady-state, deceleration, and rapid turning off the
sagittal plane. Optimal trajectories displayed the robot walking at speeds resulting in a
Froude number less than 0.5, and running at speeds resulting in a higher Froude number.
This is consistent with dynamic gaits found in nature. A sliding-mass velocity profile
emerged when conducting long-time-horizon trajectories where the robot accelerated from
a rest position and decelerated back to rest after completing multiple steps in a periodic
steady-state gait. Additionally, when turning off the sagittal plane, slip occurred at least
93.32% of the duration of contact, and turn overshoot is present in all turn trajectories.

iii
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Abstract iv

Afrikaans

Daar is skerp kontras tussen die vermoëns van voortbeweging wat in die natuur voorkom,
en diè wat in laboratoriumomgewings voorkom. Hierdie prestasiegaping is aanduidend van
’n groot kennisgaping. Robotiste is verwag om hierdie gapings te oorbrug om robotte uit
van hul ondersteuningplatforms uit te kom en in die werklike wêreld te aandryf. In hierdie
tesis word 3D kontak en diskontinue lokomotiefdinamika gemodelleer as ’n trajekoptime-
ringsprobleem. Gevolglik maak dit die verstandhouding van robotik gebeendebeweging
makliker.

Die verstaan van kontak, en hoe om dit te gebruik, is noodsaaklik vir suksesvolle
voortbeweging. Daarom is ’n omvattende ondersoek uitgevoer, met behulp van ’n monopod-
robot, om kontakdinamika beter te verstaan. Hier word metodes van modellering van die
Coulomb wrywings-keel in kontak-implisiete-trajek-optimering gëımplementeer. Literatuur
stel voor dat die wrywingskegel vervang word met ’n veelvlakkige benadering daarvan. Dit
is bekend dat hierdie metode die gevolglike wrywing in 3D omgewings onderskat. Hierdie
tesis bied ’n nuwe metode om die 3D-wrywingskegel te modelleer, en vergelyk dit met ’n
implementering van die veelvlakkige benadering daarvan. Uitslae van hierdie vergelyking
toon dat die nuwe metode meer berekeningsdoeltreffend was as die veelvlakkige benadering,
sonder om die wrywingskegel te onderskat.

Dinamiese tweevoetige voortbeweging bly ’n stryd vir die meeste robotplatforms.
Robotikaliteratuur verskaf min voorbeelde van robotte wat dinamiese voortbeweging
bereik. Daarom is trajekte gegenereer wat 3D dinamika van tweevoetbeweging realiseer.
Eksperimente word uitgevoer na accelerasie, bestendige toestand, verlangsaming en draaie
van die sagittale vlak af. Optimale trajekte het die robot laat stap teen ’n spoed wat ’n
Froude-getal minder as 0.5 laat kom, en hardloop teen spoed wat ’n hoër Froude-getal
gehad het. Dit stem ooreens met dinamiese voetvalpatrone wat in die natuur voorkom. ’n
Glymassa-spoedprofiel het voor gekom toe die lang-tyd-horison trajekte uitgevoer word:
waar die robot van ’n rusposisie versnel het en terug versnel is na rus nadat hy verskeie
stappe in periodieke bestendige-toestand voltooi het. Wanneer die robot van die sagittale
vlak afdraai, gly hy ten minste 93.32% van die tyd wat kontak plaasgevind, en beurtoorskiet
is teenwoordig in alle draaie.
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Chapter 1

Introduction

Research into legged locomotion has been a growing interest in recent years, and its impact
in modern life is ever-increasing. However, the bulk of this literature has been focused on
reducing energy consumption in periodic steady-state gaits. Little insight has been shown
into transient non-planar motion [1].

Rapid locomotion is essential for survival in nature. This need has resulted in the
the most successful displays of rapid, and transient, legged locomotion being found in
nature [2, 3]. It also highlights stark contrast between the capabilities of locomotion found
in nature, and robotic locomotion. This performance gap is indicative of a wide knowledge
gap [4].

Truly inviting legged robots into our lives requires roboticists to better understand rapid
locomotion. Therefore, this thesis aims to bridge the gaps in performance, and knowledge,
between robotic locomotion and biological locomotion. Here, trajectory optimization
models were used to investigate the effects of contact and friction to better understand
complex dynamic bipedal locomotion as shown in Figure 1.1.

Figure 1.1: This figure provides an overview of the research methodology used in this
thesis. Mathematical models of the robots used in this research were implemented
in contact-implicit trajectory optimization environments. Thereafter, these resulting
trajectories were used to identify emerging trends and heuristics.

1
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1.1. Motivation Of Study 2

1.1. Motivation Of Study

This study is motivated by the dream of inviting legged robots into our lives. This would
allow legged robots to do work unsafe for, or unwanted by, humans. However, employing
legged robots in these fields requires the performance gap between legged locomotion in
nature and in the lab to reduce: legged robots need to be at least as agile as animals.

Most of state-of-the-art robotic literature focuses on achieving robust and periodic
steady-state locomotion. Periodicity allows this motion to be described using limiting
assumptions of its dynamics: ranging from neglecting the effects of friction [5], massless
legs [6], to reduced-order dynamics [7]. These assumptions make robust legged locomotion
achievable for simplified periodic motions. Many robotic platforms make use of these
simplifications to achieve locomotion at speed. However, they do not hold for rapid and
transient motions.

The largest gap between robotic and biological locomotion lies in the ability to control
transient motions. This ability is essential in allowing robots to actuate outside of the lab.
Unfortunately, assumptions made to achieve robust steady-state motion become relevant
when studying rapid transient motions. On slippery surfaces, the effects of friction are
essential to maintaining traction. Similarly, understanding how the mass of the robot legs
affects the inertia is vital when the robot changes velocity. Additionally, foot-fall patterns
(gaits) are unknown for transient motions [1, 8]; reduced-order models can not accurately
describe the dynamics when the gait is unknown.

Recent literature has employed contact-implicit trajectory optimization methods to
model transient motions of rigid bodied robots [4, 8–11]. This research is effective for
studying transient motions. However, these studies have often been limited to studying
planar motion [1,4,10,12]. Non-planar methods of contact-implicit trajectory optimization
remains an intractable task, with inaccurate models [13,14].

Therefore, research presented in this thesis aims to bridge the knowledge gap between
biological locomotion and robotic locomotion by investigating 3D contact implicit trajectory
optimization models. This is done to develop methods of accurately understanding the
effects of contact on legged robotic platforms, and to investigate optimal transient dynamics.
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1.2. Problem Statement

The bulk of the literature describing robotic legged locomotion is focused on steady-state
locomotion. Often, this focus is narrowed further into reducing energy efficiency, or
increasing the speed of the locomotion. Insight into transient motions is a recent field
of interest, and has been restricted to planar models. To the author’s knowledge, no
investigations has yet been conducted into how robots can accelerate from, or decelerate
too, rest to achieve these gaits in a non-planar environment. 3D dynamic motion also
allows for the direction of velocity to change. There has also been limited insight into
rapid turning of legged robots.

1.3. Objectives Of The Research

Studying transient motion in non-planar environments is a problem yet to be solved and is
fundamental to inviting legged robots into our lives. Therefore, this research aims to use
trajectory optimization as a tool to model robotic platforms negotiating contact events in
non-planar environments and find dynamically feasible, and torque optimal, trajectories.
These trajectories will then be surveyed for any emerging templates, or trends. This
research will add to the literature of studying the discontinuous mechanics inherent to
legged locomotion by answering the following questions:

1. Is there a better way of understanding of modeling the effects of friction in Mathe-
matical Programs with Complimentarity Constraints (MPCCs)? Chapter 4 aims to
adequately answer this question.

2. How to realize dynamic bipedal motion? This is investigated in Chapter 5.

3. How do bipedal robots conduct rapid turns? This is investigated in Chapter 6.

1.4. Scope And Limitations Of Research

The scope of this research involved studying methods of modeling non-planar contact,
on a monopedal robot, in a trajectory optimization environment. Thereafter, a bipedal
robot model was implemented in this environment, and constrained to conduct complex
dynamic tasks.
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In this study, the four-sided polyhedral approximation of the friction cone was compared
to a novel method of modeling the friction cone. The contact model implementing the novel
method of modeling the isotropic friction cone was applied to a bipedal robot in a trajectory
optimization environment. The robot was constrained to complete complex, dynamic
tasks at different speeds. Steady-state trajectories were generated along the sagittal plane
at speeds ranging from 0.5m/s, to 4.0m/s. Thereafter, acceleration trajectories were
generated to bring the robot to the apex of these steady-state gaits from a rest position.
Similarly, deceleration trajectories were generated to return the robot back to rest from
the apex of these steady-state gaits. Finally, the scope of this thesis concluded with an
investigation into rapid turning off the sagittal plane from the apex of these steady-state
gaits.

The resulting dynamic trajectories were complex, and computationally intractable.
Therefore, certain limitations were implemented on the trajectory optimization models to
restrict the solution search space, without removing non-intuitive transient solutions of the
dynamic locomotion. The most notable limitation was the amount of discrete elements
used to describe the trajectory optimizations. The optimization problems were transcribed
into N discrete elements, where N ranged between 50 to 150 elements depending on
the task. All contact surfaces were assumed to be hard, inhibiting penetration between
the point of contact and the contact surface. Friction was modeled using a uniformed
coefficient of friction. This allowed for the 3D friction cone to have isotropic properties
to reduce the complexity of modeling it. Additionally, this research did not include a
changing coefficient of friction between static friction, and kinetic friction, during slip
events. The coefficient of friction remained constant during static, and kinetic, friction
events.

1.5. Structure Of Thesis

Figure 1.2 displays how the thesis was structured. Further detail is provided:

• Chapter 2 - Literature Review And Theory Development

This chapter provides a survey of relevant literature relating to legged locomotion. In
this chapter, examples of dynamic legged locomotion found in nature is compared to
state-of-the-art robotic locomotion. This chapter describes how friction is modeled,
and implemented in trajectory optimization programs. Special attention is given to
trajectory optimization methods, and how they have been used to model transient
contact dynamics.
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Figure 1.2: This image displays the structure of the thesis. It starts with a brief
introduction, followed by a literature review and theory development. Thereafter, a
methodology is provided in Chapter 3. Methods of modeling friction using MPCCs are
investigated in Chapter 4. Chapter 5 investigates dynamic bipedal motion, and Chapter
6 introduces rapid turning. Finally, Chapter 7 concludes the thesis with a summary, and
recommendations for future work.

• Chapter 3 - Methodology

Chapter 3 provides a detailed description of how the trajectory optimization model
was implemented. Here, detail is provided of how the dynamics were described and
discretized in the trajectory optimization. Additionally, this chapter details how
contact implicit trajectory optimization methods were implemented, and solved using
relaxation techniques.

• Chapter 4 - Methods Of Modeling 3D Friction Using MPCCs

Chapter 4 investigate methods of modeling the effects of friction and the resultant
slip of a monopedal robot in a non-planar environment. It further describes an
experiment that compares a novel method for computing the 3D friction cone using
a set of complimentarity constraints with the traditional four-sided friction pyramid.

• Chapter 5 - Realizing Dynamic Bipedal Motion

Thereafter Chapter 5 applies the novel method for modeling friction and resultant
slip on a larger trajectory optimization model of a bipedal robot in a non-planar
environment. Multiple periodic steady-state running gaits were generated at different
speeds. Acceleration, and deceleration, trajectories were generated to prove the
realizability of the steady-state gaits: that we can accelerate from rest to, and
decelerate to rest from, the apex of each steady-state gait. These trajectories were
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then stitched together to generate a long-time-horizon trajectory along the sagittal
plane.

• Chapter 6 - Bipedal Turning: To Slip Or Not To Slip?

Chapter 6 presents a series of rapid turns from the apex of the steady-state trajectories.
This is done to investigate the prevalence of slip during, and to comment on kinematic
trends emerging from, rapid turns. Additionally, a 2m/s rapid turn trajectory 45◦

off the sagittal plane is stitched onto the acceleration, deceleration, and steady-state
trajectories generated in Chaper 5. Including the rapid turn trajectory produces a
long-time-horizon trajectory that turns off the sagittal plane.

• Chapter 7 - Summary, Conclusion and Future Work

Chapter 7 concludes the thesis by presenting a summary of the work done in this
thesis. A discussion of the main findings is presented, along with recommendations
for future-research.

1.6. Publications

Two publications resulted from this study. The first one listed below was published, and
the second one is currently under review:

1. D. Pretorius and C. Fisher, “A novel method for computing the 3D friction cone
using complimentary constraints,” in 2021 International Conference on Robotics and
Automation (ICRA), 2021.

2. D. Pretorius and C. Fisher, “Bipedal turning: To slip or not,” IEEE Robotics and
Automation Letters, Under Review, 2022.
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Chapter 2

Literature Review And Theory
Development

Maneuverability is defined as the ability to control the change in magnitude and direction
of velocity to achieve a goal [15, 16]. It is used to negotiate and overcome obstacles in the
unpredictable environment in which we live. However, with the bulk of legged robotic
literature focusing on steady-state movements [8], maneuverability is one of the largest
shortcomings of legged robotics literature [17].

Nature provides examples of the the most successful implementation of maneuverable
legged locomotion. As shown in Figure 2.1a animals are known to walk and run within
hours from birth [8,18]. Whereas, 40 years after the development of Raibert’s dynamic
bipedal robot [19–21], only a few robots have displayed maneuverable dynamic locomotion
in real world environments, such as Boston Dynamic’s Atlas in Figure 2.1b [22]. Recently,
Atlas has been shown dancing in [23], and performing parkour in [24]. However, these are
exceptions to the robotics norm, with most legged robots struggling to obtain dynamic
locomotion without additional support [8]. This exposes stark contrast between the agility
of animal locomotion, and bipedal robotic locomotion. Truly inviting robots into our world
requires roboticists to understand how agile tasks are conducted in nature, and replicating
these abilities on robotic platforms.

This chapter aims to survey current literature relating to the development of legged
robotics, and develop the theory necessary for the rest of the thesis. First, this chapter
investigates implementations of dynamic locomotion in nature. Here, we investigate the
optimal number of legs needed for legged locomotion, gait selection as a function of the
speed, and examples of maneuverability in nature. Thereafter, a brief overview of inelastic
contact, and non-planar friction will be provided. Finally, this chapter will conclude by
exploring how trajectory optimization has aided in controlling robotic locomotion.

7
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(a) Image of a zebra walking 30 minutes after birth.
This image was presented in [25].

(b) Image of Atlas Robot walking outside the lab.
This image was presented in [22].

Figure 2.1: This image displays new-born zebra locomotion, and robotic locomotion of
the Atlas robot.

2.1. Dynamic Locomotion In Nature

Since its inception, robotics literature has been motivated to achieve the level of locomotion
found in nature. Animals have evolved to leverage legged locomotion to overcome practical
challenges and to survive the onslaught of natural selection [2, 3]. Faster, more agile,
predators catch slower prey continuing the lineage of the predatory species. Similarly,
faster prey escape slower predators, surviving to continue the survival of the species [3,17].
Multiple implementations of legged locomotion with varying amount of legs are evident in
nature.

2.1.1. How Many Legs Are Best?

General consensus has not yet been reached on the optimal number of legs necessary for
dynamic locomotion. Nature provides many examples of animals leveraging multi-legged
form-factors surviving in their environments; with each example equally compelling for
their intended environment.

Monopedal animals are not found in nature. However, kangaroos, some birds, and
rodents exhibit monopedal characteristics when they move, using both feet in phase to
hop [3,5]. Although these animals are technically bipedal animals they display monopedal
characteristics. Monopedal control suffers from a lack of balance as a result of using
one contact point for both balance, and translation - making foot placement, and body
orientation vital in solving the control problem. This adds to the notoriety of free-bodied

Stellenbosch University https://scholar.sun.ac.za



2.1. Dynamic Locomotion In Nature 9

monopedal control being one of the toughest control problems in locomotive literature [2,5].
Supporting monopod robots with a boom, constraining its motion to the sagittal plan,
solves this problem [8]. Ironically, robotic literature often introduces locomotion and
presents proof on concepts, using monopedal robots [5, 8, 26].

In bipedal motion, the provision of an extra leg acts as a inertial counter-balance and
reduces the dependence on foot placement; making the platform more dynamically stable,
without addressing the static instability [5]. Typically, robots are developed without ankles,
modeling contact using point feet to reduce weight and actuation complexity [5,8,19]. This
allows biped robots to maintain stability while moving (walking or running). However, it
makes bipedal robots unstable at rest. A simple solution to this static instability is the
inclusion of feet (contact surfaces replacing contact points). Examples of bipedal animals
exist in many natural environments: penguins use a bipedal form factor for underwater
agility, and ostriches and humans leverage a bipedal form factor for overland agility [2, 3].
Robotic literature is often biased towards bipedal locomotion as it can be applied to the
humanoid form-factor and directly integrates into our lives [7]. Examples of dynamic
bipedal robots include Boston Dynamic’s Atlas Robot, Raibbert’s bipedal robot, and
ATRIAS [19,22,27].

Quadrupedal locomotion solves the static stability problems faced by bipedal locomotion.
With one leg in the air, the availability of three additional contact points allow for static
stability. However, coordination problems between legs arise when translating quadrupedal
platforms [5]. Additionally, footfall patterns (gaits) are often aided by back flexibility -
raising additional dynamic complications [2]. Nature tends to favor quadrupedal locomotion
for dynamic motion and provides multiple examples of medium-sized quadruped animals
thriving in multiple settings, ranging from nimble dogs, slow tortoises, fast cheetahs, heavy-
set elephants, to lanky giraffes [3]. Multiple examples of dynamic quadruped robots are
also available: Boston Dynamic’s Big Dog, MIT’s Cheetah 3, and ETH’s ANYmal [28–30].

Additionally, animals leveraging more legs for locomotion are found in smaller form-
factors. Most insects leverage hexapedal locomotion to move: including ants, beetles, and
cockroaches. Additionally, spiders, and octopuses leverage octapedal locomotion. These
form-factors are not prevalent in the mammal community, and are beneficial for rapid
static movements - amplifying the dynamic coordination problem [2,3, 5].

The question relating to the optimal amount of legs for legged locomotion remains
unanswered. However, there is general consensus about using monopedal robots as
introductory examples to robotic literature, and to prove concepts [4,5,8]. Additionally,
the parallels between the bipedal and humanoid form factor provide promise for integrating
bipedal robots into our human lives [7]. However, this does not limit the promise and
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growth of quadrupedal robots. Although quadrupedal robots provide larger coordination
and control problems, the prevalence of the quadrupedal form-factor for dynamic motion
in nature is indicative of nature’s bias towards this form factor. Additionally, with limited
resources, higher order robotic locomotion has not yet sufficiently been explored [13].

In this thesis, two robot form factors will be used with point feet, as opposed to flat feet.
Chapter 4 presents a novel method of modeling friction events. Therefore, a monopedal
robot will be used to introduce the novel method of contact modeling. Once contact
dynamics have been sufficiently explored, Chapters 5 and 6 investigate forms of dynamic
bipedal motion.

2.1.2. Gait Selection: What To Do With My Feet?

Humans walk to achieve slow locomotion, and run to move fast [3]. These are two distinct
footfall patterns (gaits) and indicate the need to change how we move at different speeds.
Gaits refer to the pattern of steps of an animal at a particular speeds. Alexander et. al
attributes the change in gait to the optimizing of energy expenditure at different speeds [2].
It is more metabolically efficient to run at higher speeds, than it is to walk [3, 5].

Hoyt et. al. released a study comparing the metabolic efficiency of horses conducting
various gaits on a treadmill [31]. These horses were commanded to walk, trot, or gallop at
various speeds, and their oxygen consumption was measured while completing these tasks.
This research concluded that walking was the most economic gait at speeds below 1.7m/s.
Whereas, trotting was the most economic gait between 1.7m/s, and 4.6m/s. At higher
speeds, galloping was the most economic gait. Thereafter, the horses were allowed to move
freely within a marked grid. It was seen that the horses chose to move at metabolically
optimal speeds for each gait.

Similarly, [32] revealed the optimal speed for humans to change between running and
walking occurred at 2.2m/s. Wirtz et. al noted that walking commuters within urban
areas walk an average of 1.5m/s, a speed known to minimize the metabolic cost per unit
distance [33].

Alexander et. al. studied videos of animals of various species, and form-factors, moving
at different speeds and noticed a trend in gait transitions [3]. This study revealed that a
shift from walking-to-running, on bipedal animals, and walking-to-trotting on quadrupedal
animals occurred at a Froude Number around 0.5 (Fr = 0.5). Here, Fr = v2/Lg, where
v is the forward velocity of the animal, L is the leg length, and g is the gravitational
constant. For humans, on earth, this transition was seen at forward velocities at 2m/s,
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matching observations made by [5]. For the bipedal robot described in this thesis, the Fr
dictates an optimal walk-run transition speed of 1.42m/s. Additional constraints were
applied to force running gaits at lower speeds as described in Chapter 5.

Walking is a dynamically stable gait, maintaining at least one leg on the ground at all
times. Consequently, the length of the leg limits the length of the stride. Faster walking
gaits are dependent on longer legs, or increasing the swing speed of the leg above its
natural swing speed (if it behaved as a simple pendulum). However, increasing the swing
speed of the leg above its natural swing speed dramatically increases the metabolic cost.
The switch from walking to running occurs when additional energy is added to increase
the swing speed of the leg above its natural swing frequency. At this point, it becomes
more metabolically efficient to introduce a flight period and start running. This allows the
swing leg more time, and greater swing distance, to swing forward. Running is defined
as a bipedal gait with an observable flight period, where both feet are off the ground for
a period of time [3,5]. Figure 2.2 displays the mechanical difference between the human
running and walking gaits [34,35].

Running is a vague term, with different interpretations ranging from jogging, to
sprinting. Where jogging includes a full forefoot-to-heel strike, and sprinting only including
a forefoot-strike. Perkins et. al. [5] attributes the motion of jogging to modern shoes
spreading the contact force across the foot. The use of point contacts in this thesis drew
parallels between the running trajectories presented and sprinting.

Figure 2.2: This image displays the differences between the human run and walk gaits.
This image was presented in [34].

Stellenbosch University https://scholar.sun.ac.za



2.1. Dynamic Locomotion In Nature 12

2.1.3. Implementations At Speed

Intermittent contact events poses the largest problem according to robotics literature [8].
Contact events are highly discontinuous and result in sharp impulsive forces affecting
the dynamics of the system. The identification of periodic gait patterns allowed for the
planning and control of predictable contact events. Knowing when and where contact
occures, allows you to respond accordingly [7].

Predictable contact events allows for heuristics, hybrid dynamics, and dynamic as-
sumptions to be implemented. These assumptions neglect the effects of slip, and the
inertial effects of the mass of limbs [8]. Many robotic platforms including Cassie, ATRIAS,
and the Cheetah 3, have achieved stable gaits through the implementation of hybrid
dynamics [27, 36, 37]. Here, two sets of continuous Equations Of Motion (EOM) were
generated for contact and flight phases, with impulsive contact-initiation and lift-off events
separating them.

Similarly, predictable gaits allow for the generation of reduced order templates. The
Spring-Loaded Linear Inverted Pendulum (SLIP) simplifies the dynamics of the Center Of
Mass (COM), capturing the contact and flight phases during dynamic running motions.
Describing these phases allow roboticists to infer foot-fall patterns and generate stable
steady-state motions. After [38] implemented the SLIP model on a planar bipedal platform,
Wensing et. al. applied it in in a non-planar environment, on a humanoid platform [7].

To date, multiple gaits on all forms of legged platforms has been reported in robotics
literature. Monopedal hopping is a common gait found in both fast and slow monopedal
motions. Bipedal walking has been achieved for slower motions, and different forms of
running has been achieved for faster bipedal motions [1, 5, 7, 8]. Park et. al. [39] presented
the fastest bipedal running gait on the Raptor robot, shown in Figure 2.3a.

Quadrupedal walking has been achieved for slower motions, while pronking and trotting
have been achieved for intermediary quadrupedal speeds. Bounding, and galloping has
also been achieved for faster quadrupedal motions [14,36,40]. Boston Dynamics presented
the fastest quadrupedal gallop on the MIT Cheetah robot, shown in Figure 2.3b. However,
literature provides few examples of robotic platforms implementing galloping gaits. This
is due to few quadrupedal robotic platforms making it past the transition speed where
galloping becomes the optimal gait. Spine flexibility necessary for roll, and yaw, actuation
while galloping adds to the complexities of achieving this gait on robotic platforms [8, 36].
Additionally, high speed hexapedal tripod gaits [13, 41] have been achieved on robotic
platforms.
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(a) Image of the KAIST Raptor recording the
fastest bipedal robotic run [39]. This image is
from [42].

(b) Image of the MIT Cheetah achieving the
fastest quadruped robotic gallop. This image is
from [43].

Figure 2.3: This image displays the fasted implementation of robotic bipedal and
quadrupedal locomotion.

Implementing these high speed gaits has been much of the focus in the legged robotics
community. However, during implementation transient disturbances, which may be
unstable, are often noticed moments after initiating the system [44]. Perkins et. al.
developed a controller for generating steady-state running gaits on a simulated bipedal
robot, and transient effects were noticed during the first 2 seconds of the simulation. Even
after 300s, the system had not converged to a true limit cycle, however was deemed to
be stable. It was noted that the magnitude of these transient disturbances scaled in
magnitude, and time duration, proportionally to the speed of the steady-state gait [5].

These reduced order templates, heuristics, and hybrid dynamics allowed for the de-
velopment of reliable and robust running gaits at high speeds. They accurately describe
steady-state motion, maintaining a desired forward velocity shown in Figure 2.4. However,
research into agile transient motions has been limited [1, 3, 9].

2.1.4. Maneuverability: How To Achieve Speed, And What To Do
At Speed?

Studies have shown that animals spend very little of their time maintaining a speed.
Rather, much of the life of both predator and prey is spent remaining at rest. Predators
spend most of their days idle, and rely rather in their ability to change speed when
capturing prey. Similarly, species of prey spend most of their days grazing and walking
slowly. While, their survival relies rather on their ability to quickly evade predators using
transient motion [3, 8, 17].

Wilson et. al. published research describing the the hunting patterns of a group of
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Figure 2.4: This image, from [15], displays the affect that transient motions have on
forward velocity compared to steady-state. Here, steady-state motions maintain a desired
velocity and transient motions change the velocity.

wild cheetahs in Botswana [45]. Over a period of 17 months, the cheetahs were tracked
using collars equipped with Inertial Measurement Units (IMU) and Global Positioning
Systems (GPS). This research revealed that cheetahs seldom run at their top speeds. The
fastest speed tracked in this research was 25.8m/s1. Rather, accelerations of up to 18m/s2

was observed, indicating that the success of hunts rely heavily on this ability to rapidly
accelerate [45].

Williams et. al. studied polo ponies, and greyhound dogs, noting that at lower speeds
rapid acceleration and deceleration were limited by the animal controlling its pitch: tail
up during acceleration, and nose up during deceleration. Whereas, at higher speeds, the
rate of rapid acceleration or deceleration was limited by available muscle power [47]. This
motivated the use of a linear motor model to replicate these limitations on the trajectories
presented in this thesis [8, 48, 49].

Similarly, studies have investigated the rapid transient abilities of other animals:
domestication of dogs allowed for wide studies into their acceleration abilities [50–52],
while rapid turning investigations have been conducted using goats, horses, ostriches, and
chipmunks [53–55].

Transient robotic locomotion is a part of robotic literature yet to be mastered. The
ability to conduct rapid motions are key to survival in nature, and integrating robots into
our lives [8]. Therefore, roboticists need to recreate these abilities on robotics platforms [57].

1The fastest recorded speed of a cheetah running was 29m/s [46]
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Figure 2.5: This image, from [56], displays the rapid deceleration of a cheetah, greyhound
dog, and horse. Slip is evident in these examples of rapid deceleration.

Bar the exception of the Atlas Robot conducting parkour [24] and dancing [23], much
of current robotic platforms are not known for being agile or conducting rapid motions.
Therefore, understanding how these events occur are vital to the goal of inviting robots
into our lives.

It involves complex systems described by highly discontinuous mechanics [3]. These
discontinuous mechanics are largely related to the aperiodic foot contact sequences, and
the additional effects of ground contact (friction and slip) [8], as seen in Figure 2.5.
Figure 2.5 displays footage of a cheetah, greyhound dog, and horse conducting rapid
deceleration [56]. Finding solutions to models describing these systems are notorious for
being computationally intractable - constraining the development of literature relating to
transient locomotion.

Changing Magnitude Of velocity

In [4, 26], Hubicki et. al. generated multiple long-time-horizon trajectories of a planar
monopod hopper with a spring leg starting at rest, and ending at rest 20 steps later. It was
noticed that these trajectories quickly accelerated towards a limit cycle, maintained the
limit cycle (in a steady-state gait), and then abruptly decelerated to rest. Thereafter, direct
correlation was noticed in the forward velocity profile compared to that of a minimum
time control of a sliding mass. This study revealed that the forward velocity profile
of a long-time-horizon (including rapid acceleration and deceleration phases) could be
accurately described by that of a 1 degree of freedom (DOF) sliding mass. Further, Hubicki
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hypothesised that this template would hold for more complex models [4, 26].

Thereafter, Fisher et. al. confirmed this hypothesis in [1]. Here, the long-time-horizon
trajectory of bipedal and quadrupedal robots were split into separate tasks (acceleration,
periodic steady-state, and deceleration) to be optimized separately, and later stitched
together. This increased the resolution, and reduced the computational complexity of the
optimization. Thereafter, a 30m long-time-horizon trajectory was generated and correlated
directly with the split, and then stitched, trajectories. Slip effects were noticed during
the transient acceleration and deceleration trajectories, similar to that seen in Figure
2.5. Additionally, the sliding mass template emerged when analyzing the forward velocity
profiles of both the biped, and quadruped models; confirming Hubicki’s hypothesis of the
template holding for more complex models [4, 26].

Similar stitching techniques were implemented in this thesis when generating long-time-
horizon trajectories. Here, trajectories were split into acceleration, deceleration, periodic
steady-state phases. In Chapter 5 the stitching method was implemented to generate a
long-time-horizon trajectories on a non-planar bipedal robot; again, confirming Hubicki’s
hypothesis holding for more complex models [4, 26]. Further, in Chapter 6 an additional
rapid turn trajectory is added to the long-time-horizon trajectory.

Changing Direction Of velocity

In recreational sporting events, human agility is shown when athletes rapidly change their
heading angle. This is seen in rugby’s side-step, soccer’s side-fake, and basketball’s lay-up.
Similar motions are seen in the survival of animals in predatory avoidance, or in pursuit
of prey. The cheetah is known to whip its tails in pursuit of prey, buck are built light and
nimble to rapidly change its heading direction in evading predators. Changing the heading
direction of both the body, and its velocity is crucial in animal and robotic agility.

Many robots are known to complete static turns in planned and sanitized laboratory
environments [5], these robots include ASIMO [58], HRP-4C [59], and SDR-4X [60].
The prospect of robots having to slow down while conducting rapid turns, or engaging
with unpredictable real world through a support rig is impractical and motivates this
investigation.

Brilliant work has been conducted in achieving this dynamic robotic turns. Carlo et.
al. [36] reported 180◦/s turn rates on the MIT Cheetah 3. Agile rapid turn motions were
presented by Boston Dynamic’s Atlas robot. Similarly, Degrave et. al. [40] investigated
turning strategies on the Oncilla robot. However, these examples prove to be exceptions
from the norm. Robotics literature does not provide many other examples of successful
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Figure 2.6: This image, from [61], displays a cheetah conducting a rapid turn. Note the
extrusion of its claws, and the flexing of its paw, to increase its traction and control the
effects of friction.

rapid, and dynamic, turns under irregular conditions.

Wensing et. al. generated high speed turn trajectories using 3D SLIP techniques on
a 26 DOF huamnoid robot [7]. This model used known COM dynamics of a bipedal
robot, and inferred a periodic contact order from the COM trajectory. Additionally, these
trajectories inspired controllers to transition from periodic running to a turn.

Perkin’s et. al. [5] developed a set of heuristics needed for different stages of dynamic
motion: acceleration, deceleration, steady-state motion, and turning. Thereafter, these
heuristics were used to develop controllers and applied to the different stages. Simulated
turns, to both the inside and outside direction, were generated at rates of 45◦/s.

In 2020, Knemeyer et. al. presented a trajectory of a quadruped conducting a turn
60◦ off the coronal plane. This trajectory was initialized using three periodic gaits as the
starting point [14]. Seeding trajectories with known periodic gaits aid the solver to find
feasible solutions to the optimization problem. However, it biases the solution towards
local minima close to these known periodic gaits.

Within nature, it is often noted that dynamics describing transient motion are often
different from dynamics related to periodic motion. Therefore, this thesis presents experi-
ments in which rapid turn trajectories were generated from randomized seed points. This
allowed for non-intuitive solutions to rapid tasks.
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2.2. Traction And Slip Modeling

Traction plays a pivotal role in conducting rapid transient motions. Williams et. al. [47]
commented on how traction could limit the rate of acceleration and deceleration. However,
this was not quantified, as slip events did not occur in their study. In nature, animals are
often observed to slip while conducting rapid transient motions [8,62]. Slip was seen to
occur in all rapid trajectories presented in this thesis. Similarly, Fisher et. al. noticed
slip occur in long-time-horizon trajectories presented in [1, 8]. Therefore, a comprehensive
understanding how slip occurs and the role it plays in legged locomotion is prudent.

Slip is a byproduct of friction. Friction is a non-conservative force, removing energy
from the system, and is described using discontinuous dynamics [63]. Slip occurs once
Coulomb’s Law is satisfied, further altering the dynamics of the system [11]. With
simplifying assumptions regarding the nature of the contact surface, roboticists and
tribologists can better understand the mechanics of slip.

Rigid-bodied contact occurs when two bodies collide without changing form [11,64].
This simplifies the dynamics of the contact event allowing Newton’s third law [65, 66]
to describe the normal contact force, perpendicular to the contact surface. This normal
contact force produces reactive friction forces acting tangentially to the contact surface
at the point of contact [63]. Da Vinci, Coulomb, and Amontons et. al. [67–69] noted the
following characteristics of the reactive force:

• The tangential friction force is proportionally to the Normal Contact Force.

• The friction force is independent of the area of contact.

• The friction force is independent to the magnitude of velocity during slip [70], such
that:

|λ‖| ≤ µλz. (2.1)

These observations were summarized into Coulomb’s Law of Dry Friction [64], which
states that on a surface with a coefficient of friction, µ, the magnitude of the friction,
|λ‖|, is bound by the normal contact force, λz, scaled by the coefficient of friction [57].
The discontinuities of slip lies in the satisfaction of Coulomb’s Law - slip only occurs
once the magnitude of friction equals the normal contact force scaled by the coefficient
of friction [70]. This bounds the friction force by the normal contact force scaled by the
coefficient of friction [64].
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Additionally, the direction of the applied friction is determined by the Maximum
Dissipation Principle [11,63]. This states that the direction of applied friction maximizes
the rate of kinetic energy dissipation. On a surface with a uniformed coefficient of friction,
these laws and principles are applied equally around the normal contact force. Therefore,
in 3D environments, the effects of friction are visualized as an isotropic cone centered on
the normal contact force, bound by (2.1), as shown in Figure 2.7a. However, on surfaces
with a varying coefficient of friction, where µ = [µ1 µ2]T , friction forces are not applied
equally, and asymmetric friction forces are applied. This results in an an-isotropic friction
cone describing the effects of the friction, as shown in Figure 2.7b.

Here, T is magnitude of the friction force, and C is the friction cone, λT represents
the friction force, and γT represents the relative velocity at contact [70]. Note that in
the isotropic friction cone, shown in Figure 2.7a, the friction force, λT , and velocity at
contact, γT , are collinear. However, λT is negatively scaled by T , satisfying the Maximum
Dissipation Principle.

(a) Image of the isotropic friction cone (b) Image of the an-isotropic friction cone.

Figure 2.7: This image, from [70], displays top-down views of the isotropic, and an-
isotropic, friction cones.

Often, robotics literature tends to neglect or approximate the effects of friction [5,
7]. Traditional methods of modeling non-planar contact in robotic literature either
underestimate the effects of friction by implementing the 3D friction polyhedral, or
completely neglect the effects of friction [6, 11, 71]. However, accurate modeling of friction
and the resultant slip is vital to the development of legged locomotion.

In this thesis, rigid-bodied contact is modeled on a surface with a uniformed coefficient
of friction. Therefore, a isotropic friction cone is implemented in Chapter 4. Additionally,
Chapter 4 contributes to literature by presenting a novel method of modeling the 3D
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friction cone in trajectory optimization methods [57].

2.3. Trajectory Optimization

Trajectory optimization is a mathematical tool for computing multi-dimensional trajectories
that satisfy a set of constraints, while minimizing an objective function. Solutions are
found by varying a set of decision variables between variable bounds until it converges to
a locally optimal solution that satisfies all constraints described in the model [72]. Once
all constraints and bounds are satisfied, the solution is considered feasible. It is regarded
optimal once it is feasible, and minimizes a defined objective function [8].

Often it is used as a tool to find a path that minimizes some form of energy con-
sumption. It has been applied to minimize battery power usage during drone flight, and
fuel consumption during space flight [4, 73]. Minimizing battery power usage is essential
for drone flight, and minimizing fuel usage is essential for space flight. Alexander et.
al. [2,3] suggested using trajectory optimization as a tool to aid the development of robotic
locomotion. Recently, many of the developments in legged robotics literature has been
inspired by optimization techniques [1, 4, 8, 10,12,14,26,61,74,75].

2.3.1. Objective Function

Rigid-bodied legged locomotion problems are often characterized by nonlinear dynamics.
Non-linear problems are described using piece-wise functions, and solved using gradient
descent methods to iteratively minimize the objective. Piece-wise problems result in
non-convex solution spaces. Only local minima may be found within non-convex solution
spaces [72].

Local minima minimizes the objective function within a small region in the solution
space [65, 72]. This region in the solution space may change depending on where the
problem is initialized. Experiments conducted in this thesis employ direct methods of
trajectory optimization, with the starting point randomized to investigate non-intuitive
areas of the solution space [76].

With the bulk of research in legged robotics focused on energy-efficient periodic motions,
most available cost functions aim to minimize some form of energy consumption [4, 8].
However, general consensus has not yet been reached on intuitive cost functions for transient
tasks [8]. Alexander et. al. notes that most animal locomotion aims at minimizing a
metabolic cost of transport [2, 3]. Therefore, a combination of a minimum time objective

Stellenbosch University https://scholar.sun.ac.za



2.3. Trajectory Optimization 21

and a minimum work objectives are used in this research. This is further described in
Chapter 3.

2.3.2. Formulating The Problem - Direct Methods

Direct methods of optimizing trajectories are generally implemented by discretizing the
decision variables using shooting methods or collocation methods [4, 8]. These methods of
discretization are known as transcription methods [72].

In shooting methods, the optimizer only varies a disctretized control input, initial
conditions, and final conditions to simulate a continuous trajectory. Here, the simulated
trajectories are transcribed using a pre-determined discretization frequency. The control
inputs get integrated throughout the trajectory, and the optimizer aims to find the correct
set of control inputs to guide the continuous trajectory from the initial conditions to the
final conditions. These methods are often used for simple optimization problems with
continuous dynamics, and simple control laws [4,72]. Additionally, since the trajectory is not
a decision variable and is simulated, shooting methods do not support the implementation
of path constraints.

Initially, Stewart et. al. [11, 64] formulated contact-implicit trajectory optimization
methods as a multiple-shooting optimization problem. However, it was determined that
modeling contact dynamics of legged locomotion required more flexibility than fixed time-
based integrators. Therefore, Posa et. al. [10,75] proposed modeling the contact dynamics
with variable timestep integrators as a collocation based optimization problem.

Collocation methods integrate the system dynamics as a set of equality constraint
[4, 8, 72]. This allows both the optimized trajectory, and control inputs, to be discretized
using equality constraints; forcing the trajectory to find optimal solutions while maintaining
a feasible set of dynamics. Additionally, the trajectory could be initialized, and constrained
within a specific region, since all values in the trajectory are considered optimizer decision
variables. In this thesis, direct methods of optimization is implemented and discretized
using third-order orthogonal collocation methods [9]. A description of this implementation
is provided in Section 3.1.

2.3.3. Contact Implicit Optimization

Experiments conducted in this thesis aimed to find non-intuitive methods of conducting
transient dynamic locomotion. Contact implicit optimization allows for contact dynamics
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to be modeled as decision variables to be optimized. This allows for an optimal contact
sequence to be determined, without having to explicitly state a contact order or duration.
Additionally, research into legged locomotion requires multiple contacts to be optimized:
one contact for the monopod, and two for the biped.

Contact implicit trajectory optimizations frame contact dynamics as a set of Math-
ematical Programs with Complimentarity Constraints (MPCCs); where the product of
two positively bound variables, α and β, are constrained to be zero (α · β = 0)2. This is
achieved by using the law of non-interpenetration of rigid bodies to model inelastic contact
events. Further, Coulomb’s Law is satisfied by allowing the contact to slip, and altering
the system dynamics, when the friction cone is violated [10,11].

Collocation Methods In Contact Implicit Optimization

Stewart and Trickle et. al. [11] presented contact implicit trajectory optimization by
simulating the dynamics of a rigid-bodied system in terms of impulses and velocities
using multiple-shooting techniques. This allowed for the ground reaction forces (GRF)
to be modeled as a set of impulses acting on a simulated trajectory. Both friction, and
contact dynamics were described in this model. Here, the optimizer had no control of the
trajectory, and could only find feasible GRF profiles that resulted in optimal simulated
trajectories.

Posa et. al. [10,75] applied this method of contact modeling into orthogonal collocation
methods of trajectory optimization. This allowed the optimizer to alter both the dynamics
of the system, and the GRF applied to the system. The GRF was included in the set of
decision variables, allowing the optimizer to toggle the GRF as needed to produce feasible,
and locally optimal, trajectories inclusive of contact dynamics.

A variable time-step was used to apply the complimentarity constraint at the begin-
ning of the discrete time-step, determing the state of contact. Thereafter, the splines
could approximate the change in dynamics needed to satisfy the complimentarity con-
straint; giving the optimizer freedom to make or break the contact to produce dynamically
feasible trajectories. Removing the need for prior knowledge of the characteristics of
contact. Backwards-Euler integration schemes were used to transcribe the dynamics of
the optimization using linear splines. However, it resulted in low accuracy optimization
results within an order of O( 1

N
), and was infeasible for use on the 26 DOF FastRunner

Robot. Sufficient accuracy could be achieved by increasing N to increase the amount of
discrete elements defining the trajectory, or by employing higher-order integration tech-

2A comprehensive description of MPCCs, and their implementations, are provided in Chapter 3
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niques. Contact-Implicit optimization techniques are notorious for being computationally
intractable. Increasing the amount of discrete time-steps in a computationally intractable
program further increases the computational complexity of the problem.

Therefore, instead of increasing the resolution of the contact dynamics, Patel and
Manchester et. al. proposed methods of maintaining the amount of discrete points
describing the trajectory, while using higher order splines to integrate the dynamics
between node points. Manchester proposed the use of variational integrators to integrate
the contact dynamics using second order splines [12]. Similarly, Patel et. al. proposed
integrating the dynamics using cubic splines [9]. This maintains the resolution of the
contact dynamics while smoothing out the state-vector trajectories, increasing its accuracy
within an order of O( 1

N

2K−1), where K is the order of the approximating spline. Trajectories
implemented in this thesis employed Patel’s third order dynamic integration methods,
such that K = 3.

Methods Of Solving Contact Implicit Optimization Problems

Unfortunately, contact implicit trajectory optimization methods are notorious for being
computationally complex. Therefore, methods are used to guide the optimizer towards
feasible solutions [77]: penalty method [12,14], and ε-relaxation methods [1, 10, 78]. These
methods make MPCC optimization problems more computationally tractable.

The penalty method involves adding the sum of all the MPCCs as a scaled term in the
objective function, removing it as a optimization constraint. Typically, the penalty applied
to the complimentarity constraint is scaled at least two orders of magnitude above the
the scalar value of the objective function [12,14]. This makes the optimization problem
appear more feasible to the optimizer.

To solve this MPCC problem, the optimizer has to find a locally optimal solution.
The penalty method is applicable when solving an MPCC with a predictable solution.
However, it introduces uncertainties when applied to less predictable problems describing
transient dynamics. Adding additional terms to the objective function questions what is
being optimized: is the resultant solution dynamically optimal, or is it solving the MPCCs
accurately? Additionally, since these constraints are solved in the objective function, the
optimizer does not need to satisfy them. This could result in the MPCCs not being feasibly
solved [8].

ε-relaxation methods involve replacing the MPCC with an inequality constraint, and
solving it below ε ( α · β = 0 is replaced with α · β ≤ ε ). In implementing this method,
the problem is solved iteratively, with ε initialized high. After each feasible iteration,
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the ε parameter is reduced by a factor of 10, relaxing the tolerance on the MPCC to a
user-defined accuracy [8, 9, 78].

Manchester et. al. noted that ε-relaxation methods gives the optimizer freedom to
apply a GRF at a non-zero distance from the contact surface, not truly satisfying the
constraint. That was his motivation for employing the penalty method in his optimization
problem. However, when ε is reduced to a sufficient accuracy, the MPCC is deemed feasibly
solved. Fisher and Pretorius et. al. [8, 57] iteratively solve the MPCCs within an accuracy
of ε ≤ 1E − 4. This would apply a GRF when the distance between the foot and the
contact surface is within the order of magnitude of 0.0001m. At this point the MPCC is
deemed satisfied within the tolerance. Research presented in Chapter 4 suggests that this
accuracy might be redundant, and that contact dynamics are accurately satisfied when
ε ≤ 1E − 2. In this thesis, the ε-relaxation methods were implemented as described in
Chapter 3.
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Chapter 3

Methodology

This thesis aimed to investigate how legged robots leverage contact events to translate
their position in non-planar environments. Investigations were conducted by modeling
legged robot systems in contact-implicit trajectory optimization environments. Thereafter,
optimal trajectories resulting from these optimizations were analyzed.

Two robots were used as shown in Figure 3.1: a monopedal robot, and a bipedal robot
with splayed hips. In this chapter, the development of both these models will be explained.
However, in later chapters, the robot model relevant to the research will be stated.

This chapter aims to describe the dynamics of the system, and how they were in-
tegrated into the trajectory optimization environment. Section 3.1 will detail how the
three-dimension (3D) Equations of Motion (EOM) were described using Euler-Lagrange
Dynamics. Thereafter, Section 3.2 describes the development of the trajectory optimization
models.

Figure 3.1: This image displays both 3D robots used in this investigation. Two robots
were modeled: a monopedal robot, and a bipedal robot with splayed hips.

25
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3.1. Dynamics

The robots described in this thesis were modeled as a set of rigid links. Each link had a
unique mass, length, mass moment of inertia, and center of mass (COM). As shown in
Figure 3.1, the monopod robot was modeled using a two-link leg joined at the center of a
body link. Similarly, the bipedal robot was modeled using two two-link legs, separated
by a hip link. The body of the biped robot protruded from the center of the hip link.
Additionally, rotational torque actuators were used to model the joints between these links.

A set of generalized position, q, velocity, q̇, and acceleration, q̈, vectors were used
to describe the minimal set of coordinates needed to define each respective robot. For
the monopod robot, 8 DOFs were used to describe the generalized coordinates, such
that q = qMonopod. Similarly, the bipedal robot was described using 10 DOFs, such that
q = qBiped, with

qMonopod =



x

y

z

φbody

θbody

γbody

qleg


, qBiped =



x

y

z

φbody

θbody

γbody

qlegleft

qlegright



, (3.1)

where qleg was,

qleg =
 θhip
θknee

 . (3.2)

Figure 3.2 provides a graphic representation of how these generalized coordinates
described the respective robot. These generalized coordinates were used to compute the
3D Inertia Tensors, Potential Energy, and Kinetic Energy of each respective link. These
energies and inertias were used to describe Euler-Lagrange Dynamics in the form of the
Manipulator Equation, (3.21).

All angles referenced in this thesis were expressed relative to the inertial frame (absolute
angles) [79]. Thus, reducing the computational complexity of the model by simplifying
the equations of motion and improving the sparsity of the Coriolis term in (3.21) [14].

In this thesis, τ represented single DOF motor torques applied to revolute joints, and
λ represented the external ground reaction forces (GRF). For the monopod robot, motor
torques were applied at the hip and the knee, and one GRF vector was modeled at the
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foot:

τ =
 τhip
τknee

 ,λ =


λx

λy

λz

 , (3.3)

where τhip and τknee represented the applied motor torque at the hip and knee respectively.
Whereas, λx and λy represented the horizontal component of the GRF, and λz represented
the normal contact force. For the bipedal model motor torques were applied at the hip
and knee; and a contact point was modeled for both legs of the robot:

τBiped =
 τ left
τ right

 ,λBiped =
λleft
λright

 . (3.4)

Figure 3.2: This image provides a graphic representation of how the generalized coor-
dinates described the robots in this thesis. Absolute angles were used to describe the
orientation of each link.

3.1.1. 3D Dynamics

Euler angles (roll around the x-axis, φ, pitch around the y-axis, θ, and yaw around the
z-axis, ψ) were used to describe the attitude of the robots in 3D. These were used to
calculate the position and velocities of each link’s COM with respect to the global Cartesian
axes. Thereafter, the kinetic and potential energy of the respective link was computed
using these rotational coordinates. Additionally, these coordinates were appended to the
generalized coordinates and used to describe the dynamics of the system.
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Rotation Matrices

Rotation matrices were used to rotate the COM coordinates of each link around the
Cartesian Axes and to define the attitude of the system. Euler’s Rotation Theorem
states that any rotation relative to an inertial plane can be described using three rotation
angles [79]. Their respective rotations around the Cartesian Axes were described as:

Rx(φ) =


1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

 ,

Ry(θ) =


cos(θ) 0 sin(θ)

0 1 0
−sin(θ) 0 cos(θ)

 ,

Ry(ψ) =


cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 .

(3.5)

Here, Rx(φ) represented the the roll rotation about the x axis, Ry(θ), the pitch rotation
about the y-axis, and Rz(ψ), the yaw rotation about the z-axis. The net rotation around
the inertial plane was computed by multiplying of the rotation matrix for each respective
Euler Angle, such that:

Rnet(φ, θ, ψ) = Ry(θ) ·Rx(φ) ·Rz(ψ) (3.6)

This specific rotation order was chosen to avoid the occurrence of gimbal lock [80]. Gimbal
lock occurs when 2 sequential rotational DOFs align, ultimately, locking the system into a
2-DOF system. This occurs when the middle coordinate rotates 90◦ around its respective
axis. In this implementation, the robot was constrained to roll within 45◦ to maintain an
upright posture. Therefore, this specific rotation matrix order was chosen, with the roll
coordinate in the middle, avoiding the occurrence of gimbal lock.

Center Of Mass

A vector was used to describe the position and attitude of the COM, pCOM , of each link.
Using the Jacobian (J) of the position of pCOM , with respect to q, the velocity of the
COM, vCOM was computed,

vCOM = J(pCOM , q) · q̇. (3.7)
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These vectors comprised of Cartesian elements and rotational elements to describe the
position and attitude of the respective link:

plinear =


xCOM

yCOM

zCOM

 ,protational =


φCOM

θCOM

ψCOM

 , (3.8)

vlinear =


vxCOM

vyCOM

vzCOM

 , vrotational =


ωφCOM

ωθCOM

ωψCOM

 , (3.9)

pCOM =
 plinear

protational

 , vCOM =
 vlinear

vrotational

 . (3.10)

3.1.2. Kinetic And Potential Energy

The change in the energy of the system was used to describe the dynamics of the system.
Therefore, the potential energy, Vlink, and kinetic energy, Tlink, of the each respective link
was computed and summed together to compute the total energy of the system, such that:

Vlink = mlink · g · pCOMZ
(3.11)

VTot =
∑
link

Vlink (3.12)

where g represented the gravitational acceleration, mlink the mass, and pCOMZ
the vertical

height, of the respective link’s COM.

The kinetic energy, Tlink, of each link was calculated and then summed to compute the
kinetic energy of the system, TTotal. For each link the kinetic energy was split into two
components TLinear and TRotational, such that:

Tlink = TLinear + TRotation (3.13)
TTot =

∑
link

Tlink (3.14)

where, TLinear described the translational energy decomposed into the Cartesian elements,
as shown:

TLinear = 1
2 ·mlink · vCOM · vCOMT (3.15)

and TRotation described the angular energy resulting from the rotation of the rigid body
about the object’s axis of rotation,
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TRotation = 1
2 · ωCOM · IToI · ωCOM

T . (3.16)

All links described in this research were modeled as 3D solid cylinders who’s weight
was evenly distributed between the Cartesian axes. This allowed a diagonal tensor of
inertia to describe the distribution of the mass of the object, such that:

IToI =


Ixx 0 0
0 Iyy 0
0 0 Izz

 , (3.17)

Ixx = 1
12mlink(3r2

link + l2link), (3.18)

Iyy = 1
12mlink(3r2

link + l2link), (3.19)

Izz = 1
2mlinkr

2
link, (3.20)

where Ixx, Iyy, and Izz, where the moments of inertia around the x, y and z axis
respectively. rlink, llink, and mlink described the respective radius, length, and mass of
each respective link.

All links had a radius of 2.5cm, mass of 0.75kg and a length of 0.2m. However, the
parameters of the body links of both robots differed slightly. The body link of both robots
had a radius of 2.5cm, an increased mass of 1.0kg and length of 0.4m.

3.1.3. Lagrange Dynamics - Manipulator Equation

Euler-Lagrange dynamics, in the form of the manipulator equation, were used to find the
equations of motion of the robots described in this thesis:

M(q)q̈ + C(q, q̇)q̇ + G(q) = Bτ + Aλ (3.21)

where M(q) was the inertia matrix for the whole system, C(q, q̇) described the Centrifugal
Coriolis forces, and G(q) described the gravitational potentials. J described the jacobian
matrix. Both M(q) and C(q, q̇) were functions of TTotal, and G(q) were dependent on
VTotal. M(q) was computed as:

M(q) = J(J(TTot, q̇), q̇) (3.22)
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C(q, q̇) was computed element-wise to the i-th row and j-th column as:

Cij(q, q̇) = 1
2

n∑
k=1

(∂Mij

∂qk
+ ∂Mik

∂qj
− ∂Mkj

∂qi
) (3.23)

Partial differentiation of the potential energy was used to populate the gravitational
potential matrix,

G(q) = ∂

∂q
(VTotal) (3.24)

Algorithmically, this was implemented as:

Algorithm 3.1: Computing the Coriolis Matrix [8]
1: for i = 1 : length(q) do
2: for j = 1 : length(q) do
3: for m = 1 : length(q) do
4: temp=0.5(diff(M(n,j),q(m)) + diff(M(n,m),q(j)) - diff(M(j,m),q(i)))q˙(m);
5: C(n,j) = C(n,j)+ temp;
6: end for
7: end for
8: end for

Algorithm 3.2: Computing the Gravitational Potential Matrix [8]
1: for i = 1 : length(q) do
2: G(i) = diff(Vtotal,q(i))
3: end for

Additionally, A and B mapped the external GRF, and internal motor torques, to the
relevant generalized coordinates, q. For the monopod, with only one contact point at the
foot of the robot, A was calculated as the jacobian of the foot position with respect to the
generalized coordinates:

A =
∑
foot

J(pfoot(x, y, x), q) (3.25)

where pfoot represented the Cartesian position of the contact point. This method was
duplicated for both contact points present in the bipedal model.

Since the joints were defined using absolute angles, relative to the inertial frame, applied
torques had a positive effect on the lower link and a negative effect on the upper link. An
auxiliary vector describing the coordinates that was affected by the applied torque was
defined, atorque. The torque applied to knee joint of the monopod robot would rotate the
lower leg link clockwise, increasing θknee, and the upper leg link anti-clockwise, decreasing

θhip, such that atorque =
−θhip
θknee

. Thereafter, B was calculated by taking the jacobian
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of atorque with respect to q and was summed across all applied torques present in the
optimization.

B =
∑
torque

J(atorque, q) (3.26)

All linear algebra used to describe the dynamics were generated using Sympy [81]. These
dynamics were interpreted as equality constraints to allow the trajectory optimization to
find a feasible solution, satisfying all constraints.

3.2. Trajectory Optimization

The aim of this research was to gain insight into legged locomotion. This was achieved by
analyzing feasible 3D trajectories that describe the dynamics of legged-robots conducting
complex motions. These task were to be completed without having to explicitly plan for
contact events and the related friction and slip phenomena. However, these motions are
notorious for being computationally intractable, and inherently discontinuous.

Therefore, trajectory optimization methods were employed to plan new motions that
interact with a contact rich environment with inelastic contact, friction, and slip, without
having to specify contact conditions. This section describes how the trajectory optimization
methods were implemented and used in this research.

3.2.1. Long-Time-Horizon Optimizations

Research on the monopedal robot was limited to smaller tasks and solved in a single opti-
mization. However, long-time-horizon tasks were conducted using the bipedal robot. This
required the robot start, and end, at rest after completing multiple steps. These motions
are highly complex, and resulted in large and computationally intractable optimizations.

Fisher et. al. [1, 8] suggested that long-time-horizon trajectories could be split into
multiple smaller tasks and later stitched together. Task specific, and more computationally
tractable, trajectories were solved and later stitched, as shown in Figure 3.3. Chapter 5
presents the acceleration, deceleration, and steady-state trajectories. Whereas the rapid
turn trajectories are presented in Chapter 6.

Additionally, contact was not enforced. Contact orders for rapid acceleration, decelera-
tion, and turn motions are not yet fully understood. Therefore, contact-implicit trajectory
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Figure 3.3: This figure displays how the long-time-horizon trajectory was split into
multiple smaller trajectories, and then stitched together.

optimization methods were implemented to allow for optimal contact-orders to be found
by the optimizer. However, for periodic steady-state trajectories, contact orders can be
predicted. Contact events were only allowed for parts of the steady-state trajectories, and
not enforced.

All trajectory optimizations presented in this thesis were completed using the Pyomo
modeling package, in Python, using the IP-OPT solver [82–85]. Many trajectory optimiza-
tion experiments were conducted in this research. Constraints and variable bounds were
used to guide the trajectory towards feasible and optimal solutions. These constraints
and bounds are further detailed in the subsequent chapters that describe the research
conducted.

3.2.2. Collocation And Discretization

All trajectories presented in this research were discretized into N discrete time-steps,
integrated using third order polynomials. This resulted in trajectories being divided into
N node points (n ∈ [1, N ]), with 3 collocation points separating each node (j ∈ [1, 3]). N
ranged between 50 and 150 nodes depending on the task needed to complete. However, for
all trajectories, three collocation points were used to join node points on a Runge-Kutta
basis and three-point Radau techniques were used to solve the differential equations [9,86].
This allowed for an accuracy of O(h) = h2K−1, where h was the duration of the timestep,
and K the order of the polynomials, K = 3.
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Three-point Radau was implemented to integrate the equations of motion between the
discrete node points using (3.27), (3.28) and a three-point collocation matrix a, (3.31).
Whereas, (3.29) and (3.30) locked the third collocation point of the state vector, q[n, 3],
and state velocities, q̇[n, 3], onto the beginning of the next time-step’s position and velocity,
q0[(n+ 1)] and q̇0[(n+ 1)], to ensure continuous trajectories:

q[n, j] = q0[n] + h[n]
3∑

k=1
akjq̇[n, k], (3.27)

q̇[n, j] = q̇0[n] + h[n]
3∑

k=1
akjq̈[n, k], (3.28)

q0[n] = q[(n− 1), 3], (3.29)
q̇0[n] = q̇[(n− 1), 3], (3.30)

a =


0.19681547722366 0.39442431473909 0.37640306270047
−0.06553542585020 0.29207341166523 0.51248582618842
0.02377097434822 −0.04154875212600 0.11111111111111

 . (3.31)

Orthogonal collocation required that contact occurred at the beginning of the discrete
time-step, and not between discrete time-steps. Therefore, a variable time-step was
employed to provide flexibility to the duration of the time-steps. The duration of each
discrete element was constrained to vary according to (3.32). This allowed contact to occur
at the beginning of each discrete time-step. Additionally, this increased the resolution
during periods of high non-linearity, and decreased the resolution when the trajectory
could easily be accurately described using the third-order integration splines:

0.1hM ≤ h[n] ≤ 2hM ,

tt[n, j] = tt0[n] + h[n]
3∑

k=1
akj,

tt0[n] = tt[(n− 1), 3].

(3.32)

Here, h[n] was the duration of the n-th node, such that n ∈ [1, N ], and hM = T
N

described a ratio between an estimated time needed for the optimizer to complete its tasks,
T , and N . tt[n, j] represented the duration of time from the start of the optimization to
the n-th node, and j-th collocation point. Whereas, tt0[n] was used to lock the time value
of the third collocation point of the previous node to the time value of the current node
point.

Not all decision variables presented in this thesis were integrated using third-order
collocation schemes. For ease of notation, variables described using third order integration
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methods are displayed without an index. Unless otherwise stated, all references to un-
indexed decision variables were discretized to the n-th node point, and j-th collocation
point. For example, q[n, j] = q, referred to the set of state vectors discretized to both the
node point, and collocation point. Whereas, τ [n] referred to the motor torque discretized
to the n-th discrete node only.

Unless otherwise stated, all decision variables were functions of q, and q̇. For additional
ease of notation, indications this dependence will be suppressed. As an example, the
Manipulator Equation, (3.21), could be displayed as:

M + C + G = Bτ + Aλ. (3.33)

3.2.3. Cost Function

As discussed in Chapter 2, general consensus has not yet been reached on accepted cost
functions for transient motions. Therefore, energy and time based cost functions were
used interchangeably throughout this research:

Jtime =
N∑
n=1

h[n],

Jtorque =
N∑
n=1

τ [n]2h[n],

Jinitialize = 1.0,

(3.34)

where Jtime described a minimum time cost function, Jtorque described a torque cost
function scaled by the duration of the applied torque and a scalar cost function function,
Jinitialize.

Jinitialize was used to warm start the solver, allowing the solver to find a feasible, but
not optimal starting point. Thereafter, the objective was set to Jtime. This guided the
optimization towards time-sensitive minima for the rapid tasks. Jtorque was used to smooth
out the time-sensitive trajectories1.

3.2.4. Initial And Final Conditions

Initial and final conditions were chosen task dependently. These conditions are explicitly
stated for each experiment conducted in this thesis. When specific initial conditions were

1This is further explained in Section 3.2.6.
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chosen, they were set using bounds. Similarly, final conditions were forced to the desired
value using equality constraints.

All trajectories were set to start at the apex of a hop, at the center of the Cartesian
Plane (with the exception of the acceleration trajectories, which were set to start in the
rest position). This was enforced by setting, x0[1] = 0.0, y0[1] = 0.0, ż0[1] = 0.0, and
z̈[1, 1] = −9.81. However, the rest position of the biped, qrest, was defined such that all
links were vertically stacked, and at rest, as shown in Figure 3.4.

Figure 3.4: This image shows the rest position of the bipedal robot. All links were
vartically stacked, and at rest.

3.2.5. Constraints

Complimentarity Constraints

MPCCs were used to apply the contact implicit optimization techniques (αβ = 0). However,
finding feasible solutions to these problems are notorious for being computationally
intractable. Therefore, ε-relaxation schemes were applied to improve the convergence rate
of the experiments. These methods frame MPCCs as inequality constraints with an upper
bound:

αβ ≤ ε, (3.35)
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where α and β were two positively bounded variables making up the MPCC, and ε was
a relaxation parameter. Initially, ε was set to 1000, and the optimization was solved
iteratively. ε was reduced with each iteration, until a desired accuracy was achieved. Each
successful solve was used to seed the following optimization, with ε reducing by a factor
of 10. After 8 feasible solutions were found, and ε was squeezed to 1E − 4, the MPCCs
were deemed solved and the solution was saved2. Once successfully solved, the MPCC was
squeezed sufficiently close to zero as shown in Figure 3.5 [1, 9, 12, 78].

Figure 3.5: This image displays the difference between directly solving the MPCCs,
compared to relaxing them using ε-relaxation schemes [12]. It is seen that as ε reduces,
the relaxed solution of the MPCC gets solved closer to the direct solution.

To further aid the optimizer in finding feasible solutions, MPCCs were summed across
collocation points and only computed at discrete time-steps. This kept contact modes
constant throughout the discrete time-step, allowing higher order splines to describe the
dynamics, while maintaining the amount of MPCCs in the problem [9,87]. The following
slack variables were introduced in implementing the MPCCs:

α[n, j] ≥ 0, α′[n] =
K∑
j=0

α[n, j],

β[n, j] ≥ 0, β′[n] =
K∑
j=0

β[n, j],

α′[n]β′[n] ≤ ε.

(3.36)

Here, α[n, j] and β[n, j] described the MPCC variables at the n-th discrete time-step, and
j-th collocation point. Slack variables, α′[n] and β′[n], were the respective sum of α[n, j]

2Section 3.2.6 provides a comprehensive description of how the ε-relaxation schemes were applied.
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and β[n, j] across the collocation points. And, the MPCC was applied to α′[n] and β′[n].
This ensured that the MPCC was only computed once per discrete time-step, and that the
state of contact was constant throughout the duration of the time-step. Thus, increasing
the resolution of the system dynamics while maintaining the amount of MPCCs in the
problem.

Contact Implicit Trajectory Optimization

Contact-implicit trajectory optimization schemes allowed the optimizer freedom to make
and break contact events, and find optimal gaits for the respective tasks. This was done
by modeling inelastic contact events, the resultant friction, and slip, as a set of MPCCs.
These techniques have shown to aid in the development of rapid locomotion.

Extenal GRFs were modeled as λ, and comprised of a vertical, and horizonal component,
λ = [λz,λ‖]. An inelastic ground contact constraint was used to apply the vertical GRF,
λz. Whereas, a set of friction constraints were used to apply the tangential GRFs, λ‖.
In 3D environments, friction forces were made up of Cartesian components, such that
λ‖ = [λx, λy]. These constraints are described below:

• Inelastic Hard Contact

A gap function, ρ, described the distance between the contact point and the contact
surface [10–12, 64, 75]3. Inelastic contact was modeled in this research, positively
bounding the gap function, ρ ≥ 0, and modeled as a MPCC, shown in (3.37). This
MPCC allowed the optimizer to apply a GRF one discrete element prior to the
foot making contact with the ground, shown in Figure 3.6. Thus, reducing the
impulsive GRF, and smoothing out the discontinuous dynamics. This constraint,
with additional friction constraints were applied to each contact point.

ρ[n] ≥ 0,
λz[n] ≥ 0,

ρ[n+ 1] · λz[n] ≤ ε.

(3.37)

• Modeling Friction

Contact models used to describe the frictional effects of ground contact are described
in depth in Chapter 4. These contact models made use of the hard contact MPCC
described above.

3In previous literature, this gap function is represented as φ [9, 10,12]. However, this conflicts with the
notation describing the roll attitude angle, φbody, described in Section 3.21.
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Figure 3.6: This image displays how the inelasstic hard contact MPCC works. On the
left, where the robot has not made contact with the surface, the MPCC is satisfied by
setting λz = 0. When contact is made, as seen on the right, the MPCC is satisfied by
setting ρ = 0.

Motor Model

A linear speed-torque motor model was implemented to motivate the applicability of the
trajectories on real world robots. Implementing a motor model makes the trajectory results
physically realizable [8,49]. The parameters used in this model were based on the T-Motor
AK10-9 Motor [88]. This motor was chosen for its high torque limit, τmax = 54Nm, and
angular speed limit, ωmax = 47.1rad/s. The magnitude of these parameters were necessary
to provide the actuators enough torque and angular speed to conduct the rapid motions
investigated in this thesis.

Additionally, the torque actuators were integrated between the discrete node points
using linear integrators. Therefore, they remained constant throughout the discrete time-
step. This was implemented to avoid artificial oscillations in the motor torque signal which
increases the sparcity of the optimization problem [9,89,90].

A set of constraints, as shown in (3.38), were used to implement the motor model in
the optimization:

−τmax −
τmax
ωmax

ω[n] ≤ τ [n] ≤ τmax −
τmax
ωmax

ω[n] (3.38)
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Here, τmax and ωmax described the stall torque and no-load velocity of the motor. ω[n]
and τ [n] described the relative angular speed of, and the torque applied to, the respective
joint at the n-th discrete time-step [48,49].

Time Upper Bound

When ε ≤ 1.0, the objective switched from a minimum time objective to a minimum
torque objective4. To enforce this time-sensitivity in the trajectories while searching for
torque based local minima, an upper bound constraint was used to describe the maximum
time allowed for the robot to complete its task. This constraint was only activated when
ε ≤ 1.0, and was implemeneted as:

N∑
n=1

h[n] ≤ 2.0 ∗ Tmax, (3.39)

where Tmax was the duration of the the previous iteration of the solve process. This
allowed the optimizer to find torque based local minima, where the duration of the solved
trajectory was less than double the duration of the previous iteration.

3.2.6. Solver Setup

All optimizations were solved iteratively using ε-relaxation techniques. Solutions to the
previous optimizations were used to seed the next iteration of the solve process. Seeds that
solved to infeasible local minima were discarded, and the optimization process was restarted.
Employing this technique warm started the optimization using feasible initialization points
to seed the optimizations and iteratevely solved the complimentarity constraints below
ε [4, 8, 70].

For the first iteration ε was set to 1000, and the objective function set to Jscalar,
allowing the optimizer to satisfy all constraints without having to optimize a cost function.
This allowed for the solver to be seeded with a feasible set of initial decision variables.
Thereafter, the objective was set to a minimum time cost function, Jtime, and ε was reduced
by a factor of 10 for each iteration of the solve process. However, it was noticed that the
minimum time cost function guided the solution towards deep local minima producing
erratic and jerky trajectories that violated the motor model. Therefore, once ε = 1.0, the
objective was changed to a minimum torque objective, Jtorque, to smooth the trajectories
and find more torque sensitive solutions. After 8 successful iterations, and ε = 1E − 4, all

4This is further described in Section 3.2.6.
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complimentarity constraints were considered solved within acceptable tolerances.

Figure 3.7: Flow diagram of the iterative process used to find feasible solutions to the
trajectory optimization. ε-relaxation schemes resulted in the 8 iterative solve processes,
each time decreasing ε by a factor of 10. Any seed resulting in an infeasible, or corrupt,
solution was discarded.

3.2.7. Bounds

Variable bounds were chosen to restrict the search space, without ruling out non-intuitive
solutions. Decision variables were varied between these bounds to find optimal trajectories.

All external GRFs were positively, and negatively, bound less than 10 times the weight
of the robot, λ ∈ (−10mg, 10mg), where m was the mass of the robot, and g = 9.81m/s2,
the gravitational constant. Whereas, the vertical component of the GRF was positively
bound, such that λz ∈ (0.0, 10mg). This stopped the optimizer applying unrealistic GRFs
onto the robot. Excessive external forces applied to the robot could lead to mechanical
failure.

Complimentarity constraints were solved using positively bounded slack variables,
slack[n] = {α′[n], β′[n]}. These slack variables were bound sufficiently high to not restrict
the optmization search space, α′[n] ∈ (0.0, 1000.0) and β′[n] ∈ (0.0, 1000.0).

Cartesian Coordinates were bound within 2m from the orgin, such that x[n] ∈
(−2.0m, 2.0m), y[n] ∈ (−2.0m, 2.0m), and z[n] ∈ (0.0m, 2.0m). Similarly, Euler an-
gles were bound to ensure forward, and upright orientation of the robot, such that
φbody[n] ∈ (−45◦, 45◦), θbody[n] ∈ (0.0◦, 180◦), ψbody[n] ∈ (−90◦, 90◦). Note that the bounds
on the orientation exclude the occurrence of gimbal-lock in the rotation matrices [80].
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Absolute angles, relative to the inertial axes, were used to describe all joints. This
reduced the computational complexity of the model by improving the sparcity of the
Coriolis term in the Manipulator Equation, (3.21), and simplified the EOMs [14]. Joint
angles were bound using a set of constraints to restrict the motion of the respective joint.
For the two-link leg, the following constraints were applied:

lower bound ≤ θhip ≤ upper bound,
lower bound ≤ θknee − θhip ≤ upper bound,

(3.40)

where, the lower bound of the joint angles was defined by the y-axis (0◦), and the upper
bound was 135◦ from the y-axis. On the bipedal robot, the constraints applied to the hip,
and knee angle, qleg, were duplicated on both the left and right leg.

3.2.8. Variable Initialization

Highly discontinuous trajectories were used to describe the dynamics, contact events,
resultant friction, and slip. This modeling complexity was computationally intractable,
and the optimization often got stuck in deep local minima, making it tough for the
optimization to find optimal and feasible solutions.

Therefore, the state variables and its derivatives were seeded with a random seed that
varied between the bounds of the specific variable. Whereas all other variables were fixed
to 0.01 [4,26]. This warm started the optimizer, improving the rate of convergence and
allowing the multiple optimizations done in this research to comprehensively search the
solution space. Consequently, varying the optimizations conducted in the research with the
random seeds allowed for wider searching of the solution space for unintuitive solutions.

3.2.9. Decision Variables

The methods described in this Chapter are dependent on a large amount of variables
passed to the optimizer. Solutions to these optimization problems are found by varying a
set of decision variables between their respective bounds until a set of decision variables
are found which satisfies all the constraints applied to it. The decision variables used to
model the optimization problem described in this Chapter are shown:

decV ar = [q[n, j]; q̇[n, j]; q̈[n, j]; tt[n, j]; q0[n]; q̇0[n]; tt0[n]; τ [n];λ[n]; slack[n]] (3.41)

The decision variables consists of the higher order collocation position state vector,
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q[n, j], its velocity, q̇[n, j], acceleration derivatives, q̈[n, j] and time, tt[n, j]. These higher
order state and time vectors described the dynamics to the n-th discrete time step, and
j-th collocation point. Position, q0[n] velocity, q̇0[n], and time, tt0[n], vectors describing
the mechanics at the discrete time-steps were also included. Input motor torques, τ [n],
external GRFs λ[n], and complimentarity slack variables, slack[n], completed the set of
decision variables.
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Chapter 4

Methods Of Modeling 3D Friction
Using MPCCs

Capturing the nuances of bipedal locomotion is an intractable task [2, 3]. It involves
multiple legs leveraging the effects of contact to translate a body in space. Additionally,
roboticists are yet to fully understand how contact works, let alone how to leverage them.
Therefore, this investigation was prefaced by studying directional monopod hopping with a
singular contact point. This simplified the investigation, and provided relevant background
understanding of how contact events are leveraged in legged locomotion.

These studies were conducted using contact implicit trajectory optimization schemes
to study the discontinuous mechanics inherent to legged locomotion. However, previous
attempts at modeling contact events using MPCCs were often limited to planar models
due to the computational complexities of modeling the 3D friction cone [4,8]. Additionally,
current methods of modeling the 3D friction cone are notorious for being computationally
inefficient, and inaccurate under slip conditions [13]. In this chapter, we aim to address
these limitations and accurately model contact events in non-planar environments.

Modeling the friction cone using MPCCs require that it be linearized. Traditionally,
the 3D friction cone is linearized by replacing it with an inner-polyhedral approximation,
who’s edges define the friction cone. Solutions are then found along the edges of this
approximation. When the direction of motion of the contact point aligns with the edges of
the this approximation, as in planar motion, this approximation is accurate. However, when
the direction of motion lies between the axis that define the friction cone, a kinematically
feasible under-approximation is made.

This chapter aims to present an alternative approach of sampling the 3D friction cone
by efficiently finding solutions along the vector that satisfies the Maximum Dissipation
Principle. On a surface with a uniformed coefficient of friction, solutions are found along
the vector that opposes the relative velocity at contact. Thus, reducing the amount of
MPCCs needed to model the 3D friction cone [57].

44
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Additionally, within robotics literature contact implicit trajectory optimization experi-
ments are typically solved within ε ≤ 1E − 4 [1, 8]. The default tolerance for the IP-OPT
solver is 10E − 8 [91]. In the following experiments, this tolerance was set to 1E − 6. We
hypothesized that once a solution is found, with ε less than two orders magnitude of µ
the friction cone is solved within 1% an acceptable tolerance. Additionally, the solutions
for the following optimizations will converge deeper within the local minima. This makes
solutions for smaller ε parameters redundant.

Trajectory optimization experiments were conducted implementing the proposed contact
model, and the contact model implementing the polyhedral approximation, of the friction
cone on a monopod robot. This experiment included a monopedal robot interacting with
a non-planar environment trying to achieve the following aims:

• Conduct monopedal hops with clear contact dynamics, under slip pery (µ = 0.2), and
sticky conditions (µ = 1.0). Additionally, during these experiments, the direction of
motion was constrained between the Cartesian Axes.

• Analyze the feasible solutions for different ε values to identify emerging trends.

These results show significant improvements in accuracy of the novel method presented.
Thus, motivating the use of the presented method to make studying non-planar legged
locomotion in trajectory optimization more accessible.

4.1. Methods Of Modeling Friction

This section will describe the contact models used to implement each respective method
of modeling friction used in this chapter. The hard contact complimentarity constraint
accurately modeled the vertical GRF, λz. Whereas, the methods of modeling friction
described below aimed to compute λ‖. These contact models formed part of the contact-
implicit trajectory optimization methods described in Section 3.2.5, and followed after the
hard contact complimentarity, (3.37), displayed again for convenience,

ρ[n+ 1] · λz[n] ≤ ε. (4.1)

Here, ρ described a positively bounded gap function describing the distance between the
point of contact, and the contact surface, and λz described the vertical component of the
GRF. As explained in Section 3.2.5, the hard contact MPCC allowed the optimizer to
apply the GRF one discrete element prior to contact being made.
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4.1.1. Polyhedral Approximation Of The Friction Cone

In this method, the friction cone was replaced with a polyhedral approximation of the
friction cone, whose edges were defined by unit vectors Dk, for k ∈ [1, d]. Thereafter,
the applied friction force was summed across D, such that: |λ‖| =

∑d
k=0 Dkλk, where λk

represented the magnitude of the applied friction in the k direction [10, 75]. MPCCs were
applied along the edges of the polyhedral approximation, to satisfy Coulomb’s law:

|λ‖| ≤ µλz. (4.2)

All references to the polyhedral approximation of the friction cone in this thesis was
modeled as a four-sided friction pyramid, such that d = 4, shown in Figure 4.1. This
implementation is commonly found in literature, and allows the edges of the pyramid to
be defined by the Cartesian Axes [11–13,71,92].

Figure 4.1: This figure displays the four-sided friction pyramid implemented in this
experiment. Here, the positive and negative directions of the Cartesian Axes defined the
edges of the pyramid.

Therefore, D described vectors along both the positive and negative components of
the x and y axis, such that D = [x+, x−, y+, y−]T . The horizontal components of the GRF
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were split into the positive and negative components and implemented as follows:

λ+
x , λ

−
x , λ

+
y , λ

−
y , and λz ≥ 0 (4.3)

λ =


λ+
x − λ−x
λ+
y − λ−y
λz

 . (4.4)

MPCCs applied to the edges of the pyramid satisfied Coulomb’s Law:

µλz − λ+
x − λ−x − λ+

y − λ−y ≥ 0, and γ ≥ 0,
(µλz − λ+

x − λ−x − λ+
y − λ−y ) · γ ≤ ε.

(4.5)

Additional MPCCs, along the edges of the pyramid, were applied to compute the direction
of slip [10–12,64,75]:

(γ +ψ) ≥ 0, and (γ −ψ) ≥ 0,
(γ + ψx) · λ+

x ≤ ε,

(γ − ψx) · λ−x ≤ ε,

(γ + ψy) · λ+
y ≤ ε,

(γ − ψy) · λ−y ≤ ε.

(4.6)

Here, γ was the magnitude of the tangential foot velocity at contact and ψ represented
the tangential foot velocity vector (i.e. γ represented the speed, and ψ represented the
velocity, of the relative velocity at contact). In (4.5), the optimizer was allowed to apply
friction until the sum of the friction across the edges of the optimization equaled the
vertical component of the GRF scaled by the coefficient of friction, µ. Thereafter, slip was
allowed to occur in a direction direction satisfying (4.6).

4.1.2. Novel Method Of Modeling 3D Friction Cone

In this thesis, a novel method of linearizing the 3D friction cone as a set of complimentarity
constraints is presented, which can be found at [57]. The proposed method uses the
Maximum Dissipation Principle’s dependence on relative velocity to determine the direction
of the resultant friction, as shown in Figure 4.2. Therefore, the method is dependent on
the tangential component of the GRF, λ‖ = [λx, λy]T , and relative tangential velocity at
contact vrel = [vx, vy]T . These Cartesian vectors were interpreted in polar form as:

λ‖ = |λ‖|∠Θ,
vrel = |vrel|∠(Θ− 180◦),

(4.7)
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where the angle of the resultant friction taken from the x axis was represented by Θ.
Consequently, Θ was locked to oppose the direction of vrel [63, 64,93].

Figure 4.2: This figure displays the proposed method of modeling the 3D friction cone.
Here, the friction cone is defined along the direction that satisfies the Maximum Dissipation
Principle.

Once (4.1) has determined if a contact event occurred, Coulomb’s law is satisfied using
the following constraint:

|vrel|(µλz − |λ‖|) = 0. (4.8)

This constrained slip to only occur when the magnitude of the friction force equaled the
vertical component of the GRF, scaled by µ. In these events, inverse kinematics allowed
feasible slip events to occur while satisfying (3.21). Thereafter, the polar form of λ‖ is
decomposed into its Cartesian elements such that:

λx = |λ‖|cos(Θ), (4.9)
λy = |λ‖|sin(Θ). (4.10)

Altogether, (4.7) to (4.10) describe a contact model implementing the novel method of
accurately modeling non-planar friction.
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4.2. Experiments

The aim of this experiment was to prove the working of the presented method, and to
compare it to a contact model implementing the polyhedral approximation of the 3D
friction cone. This experiment was conducted under slippery surface conditions, when
µ = 0.2, and sticky surface conditions, when µ = 1.0. Additional observations regarding
the optimization setup and ε-relaxation techniques were made from these trajectories.

The trajectory optimization problem was implemented as described in Chapter 3, with
the following specifications, and their respective contact model:

1. Robot: Monopod (q = qMonopod),

2. Nodes: N = 50,

3. Estimated time of completion: T = 0.5s.

Figure 4.3 displays the friction pyramid, as seen from the z-axis. It can be seen that
the underestimation of the pyramid approximation is maximized when the direction of
motion lies 45◦ off the x-axis. When this occurs, the magnitude of the approximated
coefficient of friction is µpyramid = 0.707µTrue, where µTrue is the real coefficient of friction,
and µpyramid is the under-approximation thereof.

Figure 4.3: This image provides a top-down view of the four-sided friction pyramid,
displayed in Figure 4.1, from the z-axis. Additionally, the underestimation of the friction
pyramid, µPyramid, is highlighted. This occurs when the direction of relative velocity at
contact lies between the axes defining the edges of the pyramid.
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To generate trajectories exposing this underestimation, the robot was forced to move
off the the Cartesian axis. This was done by setting the initial heading angle of the robot
45◦ off the x-axis: ψbody[1] = 45◦. Additionally, the direction of the initial velocity was
constrained such that:

ẋ[1] = ẏ[1] (4.11)

Periodic motion was constrained by constraining the initial pose of the robot to the
final pose of the robot. However, to reduce the complexity of controlling the free-bodied
monopod, the periodicity of the velocity state vector was not enforced. The initial value of
all elements in q were constrained to equal the final value of q, except for x and y. This
allowed the robot to start in an optimal pose, and travel a distance along the Cartesian
axis.

qsteady−state = q0[N ] = q0[1], except for x, and y. (4.12)

A clear contact event was enforced by splitting the optimization into two flight phases
with a contact phase in between. During this experiment, contact was enforced between
nodes n = 20, and n = 30, as shown in Figure 4.4. Contact was forced by constraining
λz ≤ ε during the flight phases and λz ≥ BW during contact phase, where BW is the
Newtonian weight of the robot. This forced contact to occur over a period of discrete
elements while giving the optimizer freedom to determine the time duration, and magnitude
of contact.

Figure 4.4: This image displays how contact was forced on the monopod robot.
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4.3. Results

4.3.1. Computational Complexity

When starting the IP-OPT solver, the amount of variables and constraints passed to
the solver were displayed. This data is displayed in Table 4.1, and used to compare the
computational complexity of the respective optimization problem: implementing the novel
method, and traditional polyhedral approximation, of modeling the 3D friction cone.

Implementing the novel method resulted in 1200 fewer variables, 600 fewer equality
constraints, and 151 fewer constraints. Additionally, the ε-relaxation techniques framed the
MPCCs as ‘upper bound inequality constraints’. The implementation of the novel method
passed 200 fewer MPCCs to the optimizer. These results are indicative of a significant
reduction in computational complexity when implementing the novel method, compared
the a similar implementation of the polyhedral approximation of the the 3D friction cone.

Table 4.1: A tally of equations, variables, and constraints passed to the IPOPT Solver
for the trajectory optimization method implementing the respective method

Novel Polyhedral
Method Approximation

Total number of variables 6856 8056
Variables with only lower bounds 459 459
Variables with lower and upper bounds 1800 2700
Variables with only upper bounds 0 0

Total of equality constraints 6400 7000
Total inequality constraints 901 1052

Lower bound inequality constraints 85 36
Upper and lower bound inequality constraints 400 400
Upper bound inequality constraints 416 616

4.3.2. Optimal Results

An optimal set of results from experiments explained above are shown in Figure 4.5a
when µ = 1.0, and Figure 4.5b when µ = 0.2. For both experiments, the height of the
contact point, ρ, vertical component of the GRF, λz, and effective coefficient of friction,
µeffective = λz/|µλ‖| is presented. Animations of the trajectories displayed in this section
are presented in https://youtu.be/HNU_gzRHLRs.
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(a) A set of optimal trajectories modeling contact
on a non-slippery surface, where µ = 1.0.

(b) A set of optimal trajectories modeling contact
on a slippery surface, where µ = 0.2.

Figure 4.5: This image displays optimal trajectories that implement both the novel
method (blue), and the polyhedral approximation (red), of modeling the 3D friction cone.

Contact was forced between nodes 20 and 30, and is evident in the satisfaction of the
hard contact complimentarity: with λz = 0 during the flight phase of the trajectory, and
ρ = 0 during the contact phase of the trajectories. Our novel method satisfies the slip
MPCC, only allowing slip to occur when the effective coefficient of friction equals the
surface coefficient of friction. Slip occured when the effective coefficient of friction clipped
at µeffective = 1.0. However, both trajectories implementing the polyhedral approximation
of the friction cone allowed slip to occur when µeffective = 0.707. This occurs because the
direction of velocity was chosen to maximize the underestimation of the 3D friction cone
as seen in Figure 4.3.
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4.3.3. Epsilon Reduction Analysis

Due to the underapproximation exposed when implementing the friction pyramid in non-
planar environments, and to maintain reliability of the results presented throughout the
rest of the thesis, the novel method of modeling 3D friction will be used. It is worth noting
that the tolerance of the IPOPT solver used in this research is set tol=10E − 6, solving
all decision variables within this tolerance. Since the ε-relaxation methods were applied
on the MPCCs, all MPCCs were solved within a tolerance of ε.

In this research, the MPCCs were solved within a tolerance of ε ≤ 1E − 4. However,
this tight tolerance increases the scarcity of, and allowed for deep local minima within, the
solution space. Therefore, this section will investigate how tight the ε-relaxation scheme
needs to be to produce feasible and accurate trajectories of non-planar contact events.

Figure 4.6: This image displays the slack variables from the slip trajectories that
implemented the novel method of modeling the friction cone, scaled to base 10. The slack
variable trajectories are displayed for different ε values.

Figure 4.6 displays the trajectories of the different slack variables used in implementing
the novel method of modeling the friction cone, under slippery conditions and at all the
different ε values. These slack variables were used to solve the trajectory implementing
the novel method (the blue line) shown in Figure 4.5b. The graphs on the top row display
how the hard contact MPCC was satisfied: the top left graph displaying the height of
the contact point and the top right graph displaying the vertical component of the GRF.
Whereas the graphs in the bottom row display how the friction cone MPCC was satisfied
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with the bottom left graph displaying how the magnitude of the friction cone was computed,
and the bottom right graph displaying the magnitude of the foot velocity. Additionally,
the y-axis of these graphs are of a base 10.

From these graphs, it was evident that contact occured between nodes 20, and 30.
Additionally, it was noticed that the foot height trajectory, and the GRF profile, converged
when ε ≤ 1E − 1 However, to investigate the effects of friction at a smaller scale, Figure
4.7 presents the same graphs with a log scaled y-axis.

Figure 4.7: This image displays the slack variables from the slip trajectories that
implemented the novel method of modeling the friction cone, scaled to a log scale. The
slack variable trajectories are displayed for different ε values.

Large discontinuous dynamics were noticed when analysing the foot velocity, and
friction cone, when log scaled. This highlights how computationally complex modeling
friction events are. Additionally, a lot of the discontinuities were noticed when studying
the friction cone constraint during the flight phase. However, we are interested in trends
noticed during the contact period. It is noticed that the friction cone converged with the
vertical GRF, when ε ≤ 1E − 1. And the foot velocity converged when ε ≤ 1E − 2.

Additionally, since the coefficient of friction was within the order of magnitude of 1,
finding solution where ε ≤ 1E− 2, satisfied the friction cone within a 1% tolerance. Figure
4.8 displays the trajectory of the effective coefficient of friction, µeffective = λz

µ|λ‖|
, where

ε ≤ 1.0. Confirming that the coefficient of friction converges tightly when ε ≤ 1E − 2.
Therefore, all solutions solved to tighter tolerances were redundant.
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Figure 4.8: This image displays the effective coefficient of friction, µeffective = λz
µ|λ‖|

. Slip
occurred with the effective coefficient clipped at 1.0. These trajectories were seen to
converge when ε ≤ 1E − 2.

4.4. Discussion

This chapter set out to investigate the effects of contact in locomotion using a single contact.
Reducing the investigation into single contact locomotion provided a comprehensive
understanding of the effects of contact, friction, and slip.

Research conducted in this chapter contributed to legged robotic literature by presenting
a novel method of computing the 3D friction cone using MPCCs which was published and
presented at ICRA 2021 [57]. Here, the novel method was implemented in a contact implicit
trajectory optimization framework, and compared with a four-sided implementation of the
polyhedral approximation of the friction cone.

Results shown in Section 4.3 are significant as they show the benefits of using the
novel method of computing the 3D friction cone using MPCCs. It was shown that the
novel method is more reliable in satisfying Coulomb’s law in non-planar environments,
and resulted in a smaller, more computationally tractable the optimization problem being
solved. Additionally, further investigations were conducted into the necessary accuracy
needed for modeling contact events using ε-relaxation schemes. Consequently confirming
the hypothesis that contact-implicit trajectory optimizations, solved using ε-relaxation
schemes, achieve practical accuracy once a solution is found for ε less than 0.01.
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Chapter 5

Realizing Dynamic Bipedal Motion

Studying non-planar monopod hopping in Chapter 4 provided the necessary insight into
contact dynamics relevant to bipedal motion. First, the contact model used throughout
the rest of this thesis was presented in the previous chapter. It highlighted the necessity
of an accurate method of modeling the effects of friction using MPCCs. Finally, it drew
insight to an appropriate level of computational accuracy needed to model contact events
applicable to legged locomotion. However, all trajectories presented in this Chapter solve
ε ≤ 1E − 4.

These insights serve as adequate base knowledge into contact events, and can be
expanded into studying dynamic bipedal locomotion. The first dynamic motion studied is
steady-state running. Once steady-state running is sufficiently explored, we investigate
how to achieve these steady-state gaits (accelerate) from a rest position; and how to return
back (decelerate) to rest from these steady-state gaits.

Research conducted in this chapter expands on Fisher et. al’s investigation into how
legged robots should rapidly accelerate and decelerate [1]. The following experiments were
conducted:

• Steady-state trajectories were generated for the biped robot.

• Acceleration and deceleration trajectories were generated from the apex of the
steady-state gaits.

These separate trajectories were stitched together to generate a non-planar long-
time-horizon trajectory (without the rapid turn), as seen in Figure 5.1. The emerging
long-time-horizon trajectory was analyzed and compared to Fisher and Hubiki et. al’s
hypotheses regarding long-time-horizon trajectories [1, 26].

56
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5.1. Bipedal Motion

Non-planar long-time-horizon bipedal trajectories are complex and computationally in-
tractable. Therefore, they were broken into smaller task-specific trajectories and later
stitched together as described in Chapter 3. This chapter describes, and investigates, the
following sections of the long-time-horizon trajectories: acceleration, steady-state, and
deceleration.

Figure 5.1: The figure displays the expected motion of the non-planar robot conducting
a long-time-horizon dynamic trajectory along the x-axis. In the full trajectory, the robot
started at rest, accelerated to a steady-state velocity, maintained that trajectory in a
periodic gait, and then decelerated back to rest.

5.1.1. Steady-State Motion

Steady-state running refers to a periodic running gait at a specified velocity. Achieving any
form of bipedal motion requires all parameters to vary. Therefore, the specified velocity is
averaged out along its movement in the lateral plane. Additionally, a steady-state gait
requires periodicity across all parameters [5, 65].
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Experiments

In this thesis, steady-state trajectories were generated at multiple velocities, such that
vavg ∈ {0.5, 1.0, 2.0, 4.0}m/s. This set of optimal trajectories were used to define the
starting bounds and final constraints necessary for the acceleration, deceleration, and
rapid turn (presented in Chapter 6) trajectories for the respective velocity. Steady-state
trajectories were generated from methods described in Chapter 3, with the following
specifications:

1. Robot: Biped (q = qBiped),

2. Nodes: N = 100 (N = 150 when vavg = 4m/s),

3. Expected time: T = 1.0s.

Periodic motion was enforced by constraining the initial pose of the robot to the final
pose of the robot for all elements in q, except for the x generalized coordinate. A similar
constraint was enforced on the full state velocity vector, as seen in (5.1). This allowed the
robot to start in an optimal pose, travel a distance along the x axis, before ending in an
optimal pose to enforce periodic motion.

qsteady−state = q0[N] = q0[1] except x,
q̇steady−state = q̇0[N] = q̇0[0].

(5.1)

Figure 5.2 displays how a predictable contact order was encouraged by splitting the
optimization into six phases: two contact phases, two ascending flight phases, and two
descending flight phases. Contact was encouraged by constraining λz ≤ ε during the flight
phases, for the respective leg, and removing the constraint during contact phase. This
allowed contact to occur over a series of nodes without explicitly enforcing a contact event.

The chosen contact order required the robot to first place its left foot, followed by
its right foot. This was implemented by forcing contact of the left foot to not occur,
by constraining λz,left ≤ ε, for n ∈ {0, N6 } and n ∈ {2N

6 , N}. Contact of the left foot
was encouraged to occur by removing the constraint when n ∈ {N6 ,

2N
6 }. Similarly,

contact of the right foot was forced to not occur, by constraining λz,right ≤ ε, for n ∈
{0, 4N

6 } and n ∈ {5N
6 , N}. This constraint was removed, allowing right foot contact to

occur, for n ∈ {4N
6 ,

5N
6 }.

Additionally, to ensure that steady-state running gaits were generated, the foot height
height of the swing foot was constrained to be higher than 5cm above the contact surface.
Since the left foot made contact in the first half of the trajectory, the right leg was the
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swing leg for the first half of the trajectory. Similarly, the right foot made contact, and
the left contact became the swing leg, during the second half of the trajectory. This was
enforced by implementing the following constraint:

ρright ≥ 0.05, for n ∈ (1, N2 )

and ρleft ≥ 0.05, for n ∈ (N2 , N).
(5.2)

Figure 5.2: This figure displays how a prescribed contact order was encouraged in the
steady-state trajectories. The left contact was was constrained to occur in the first half
of the optimization. Whereas, the right contact was constrained to occur in the second.
Additionally, the right foot was constrained 5cm above ground for the first half of the
optimization, and the left foot for the second half.

Average Velocity

An average velocity constraint was enforced for the steady-state gait. This allowed the
optimizer to find an optimal set of initial and terminal velocities satisfying this constraint:

vavg ≤
x0[N ]− x0[0]
tt0[N ]− tt0[0] . (5.3)

Here, x0[N ] described the distance that the robot moved along the x-axis, and x0[0] the
initial position of the robot on the x-axis (x0[0] = 0m). Similarly, tt0[N ] described the
duration of the trajectory, tt0[0] was the starting time of the trajectory (tt0[0] = 0s), and
vavg described the average velocity. When applied as a constraint in the optimization, the
initial position, and start time was considered and removed, allowing the constraint to be
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rearranged as:

x0[N ] ≥ vavg · tt0[N ]. (5.4)

Note that this was a constraint on the average velocity of the robot, not on its initial or
terminal velocities. Therefore, the optimizer had to find an optimal and kinematically
feasible solution that moved the robot far enough along the x-axis at a speed satisfying
this constraint.

5.1.2. Acceleration And Deceleration

From these optimal steady-state trajectories, acceleration trajectories were generated to
demonstrate the ability of the robot to achieve the apex of the steady-state gait from rest,
seen in Figure 5.3a. Similarly, deceleration trajectories were generated to demonstrate the
ability of the robot to return back to rest from the apex of the steady-state gait, seen in
Figure 5.3b.

(a) This image displays how the robot accelerates
from a rest position to the apex of the steady-state
gait.

(b) This image displays how the robot decelerates
back to the rest position from the apex of the
steady-state gait.

Figure 5.3: These images display how the steady-state trajectories are achieved from
rest, and how the robot returns back to rest from the apex of the steady-state trajectory.

Both acceleration and deceleration trajectories were generated through the implemen-
tation of the trajectory optimization method described in Chapter 3, with additional
specifications:

1. Robot: Biped (q = qBiped),

2. Nodes: N = 100 (N = 150 when vavg = 4m/s),

3. Expected time: T=1.0s.
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Acceleration trajectories required the robot to start in rest, at the origin of the Cartesian
plane, facing the positive x-axis. Its final pose was constrained to the apex of the steady-
state gait for each respective velocity. This was implemented by setting the initial, and
constraining the final, state position and velocities as follows:

q0[0] = qrest, with x = 0.0,
q̇0[0] = q̇rest,

q0[N] = qsteady−state, except x,
and q̇0[N] = q̇steady−state.

(5.5)

Similarly, deceleration trajectories required the robot to start at the apex pose of the
steady-state trajectory for each respective velocity, at the origin of the Cartesian Plane.
Its final pose was constrained to a rest position, with the x element left unconstrained.
This allowed the optimizer to find an optimal x distance needed to decelerate the robot to
a rest position. These specifications were achieved setting the initial, and constraining the
final, state position and velocities as:

q0[0] = qsteady−state, with x = 0.0,
q̇0[0] = q̇steady−state,

q0[N] = qrest, except x,
and q̇0[N] = q̇rest.

(5.6)

5.2. Results

These results aim to show how periodic steady-state gaits were generated. Thereafter,
acceleration trajectories are presented to show how the robot achieved these gaits from
a rest position. Deceleration trajectories are presented to show how it returned back
to rest from these gaits. Additionally, these results were stitched together to form a
long-time-horizon trajectory, and heuristics were identified. Animations of the presented
trajectories can be found at: https://youtu.be/8kUCbQJLQ2M.

5.2.1. Steady-State Results

Initially, steady-state gaits were generated without (5.2), enforcing a flight period. This
was achieved by deactivating the constraint describing (5.2). Therefore, the optimizer
was able to find a set of energetically optimal gaits at the specified average velocity. The
foot-fall patterns for these trajectories are seen in the right column of Figure 5.4.
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Figure 5.4: This image displays the foot-height seen during steady-state trajectories at
different speeds. Graphs displayed in the left column show the foot-height seen during
steady-state gaits with with (5.2) enforcing a flight period. Whereas, graphs displayed
in the right column show the foot-height seen during steady steady-state gaits without
(5.2), enforcing a flight period.

However, since contact was only allowed to occur during the phases shown in Figure
5.2, traditional walking gaits with prolonged periods of contact could not naturally emerge.
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The trajectory was seen to graze the foot above the ground, finding kinematically feasible
solutions that didn’t exert GRFs while grazing the foot above the ground. Therefore, for
the analysis, the foot was deemed to be in contact when the foot height was less than 1cm
above the ground, when ρ ≤ 0.01m. With the absence of an identifiable flight period, the
robot was seen to walk at 0.5m/s, and 1.0m/s. Flight periods seen at 2.0m/s, and 4.0m/s,
were indicative of running gaits.

These observations are consistent with Alexander et. al.’s [2,3] hypothesis of the optimal
walk-run transition speed occurring when Fr ≈ 0.5, as described in Chapter 2. For the
robot used in this research, the optimal speed for transitioning between the walking gait
and the running gait occurs when v ≈ 1.42m/s. Results shown in Figure 5.4 are consistent
with this hypothesis, as walking gaits emerged when the average velocity was constrained
to 1.0m/s and 0.5m/s, where v ≤ 1.42m/s. Whereas, running gaits emerged when the
average velocity was constrained to run at 2.0m/s, and 4.0m/s, where v ≥ 1.42m/s.

However, this thesis aimed to study dynamic steady-state running motions. Therefore,
steady-state running gaits were generated with (5.2) enforcing a flight period. These
foot-fall trajectories are seen in the left column of Figure 5.4. Here, all the gaits generated
at all speeds investigated had significant flight periods.

To prove the working of the steady-state running gaits, the periodicity, and the average
running velocity, of each trajectory were examined. Identification of limit cycles within a
phase plot were used to verify the periodicity of the trajectory . This was done by plotting
each state-vector, with respect to its time derivative (q̇ vs q) [4, 5, 65]. Figure 5.5 displays
the phase plot of each element of the state vector, q.

Periodicity was enforced for all elements defining q, except for the x variable. Whereas,
the average velocity constraint was applied to the set of x variables. The top left graph
in Figure 5.5 displays how the average velocity constraint was satisfied for each speed of
interest. Additionally, clear limit-cycles were evident within the rest of the phase plots,
verifying the periodicity of the steady-state trajectories.
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Figure 5.5: This image displays the phase plots of all the state variables during steady-
state trajectories at all the speeds investigated. Clear limit cycles are seen in all state-
variables except x.
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5.2.2. Acceleration And Deceleration

(a) This image displays the forward velocities of
the robot accelerating from rest to the apex of
steady-state gaits.

(b) This image displays the forward velocities of
the robot decelerating too rest from the apex of a
steady-state gait.

Figure 5.6: These images display the forward velocity of the robot accelerating too, and
decelerating from, the apex of steady-state gaits.

To prove the realizability of the steady-state gaits presented, acceleration gaits were
from the rest position to the steady-state pose at each respective velocity. Similarly,
deceleration trajectories were generated to prove that the robot can feasibly return back
to rest from the steady-state gaits.

These trajectories are presented in Figure 5.6, where the the forward velocities are
displayed of the different acceleration and deceleration trajectories. These trajectories
were stitched onto the forward velocity profile of their respective steady-state trajectory
to maintain its velocity.

Additionally it can be seen that in all trajectories, the robot aims to jump straight
into its desired gait. This is seen in the consistency of the rate of acceleration on all the
graphs. In all the trajectories, a similar rate of acceleration is seen, ranging from 1.12m/s2

to 4.12m/s2. Similarly, deceleration trajectories were seen to jump straight to the rest
position. Rapid deceleration occurred, with a rate of deceleration ranging from 2.42m/s2

to 1.13m/s2.

5.3. Discussion

A “bang-coast-bang” template was identified in the velocity profile after placing Figure 5.6a
and Figure 5.6b side-by-side. This template was confirmed after joining the trajectories to
reveal a set of long-time-horizon trajectories shown in Figure 5.7. These long-time-horizon
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trajectories started the robot at rest, accelerated it to a steady-state gait to maintain a
desired speed, and then decelerated it back to rest.

Figure 5.7: This image displays long-time-horizon trajectories at different speeds. Here,
the acceleration, and deceleration, trajectories stitched onto periodic steady-state trajec-
tories steady-state trajectories.

Bang-coast-bang control describes the velocity profile of sliding mass subject to friction,
and a horizontal applied force. The following dynamics describe this velocity profile:

m · ẍ(t) = F (t)− c · ẋ(t). (5.7)

Here, an applied force, F (t), and a viscous friction, c, actuate on mass, m. Further, 1 DOF
is used to describe the position, x, velocity, ẋ, and, acceleration, ẍ, of m [1,4,8,26]. Figure
5.8 displays an accurate correlation between the bang-coast-bang control, and the 2m/s
long-time-horizon velocity profile. This serves as an accurate estimation of the velocity
profile of a system conducting rapid movements on a bipedal platform.

Hubicki et. al [26] first identified this template when optimizing planar long-time-
horizon monopedal trajectories and hypothesized the template holding for more complex
models. Thereafter, Fisher et. al. [1] expanded on this and presented a sliding mass profile
emerging on planar long-time-horizon trajectories on planar bipedal, and quadrupedal,
platforms. Thereby, adding the hypothesis of the sliding mass template holding for more
complex models. Results shown display the sliding mass model emerge when optimizing a
long-time-horizon trajectory of a non-planar bipedal robot, with splayed hips.
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Figure 5.8: This image displays the correlation between the velocity profile of a sliding
mass, and the 2.0m/s long-time-horizon trajectory.
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Chapter 6

Bipedal Turning: To Slip Or Not To
Slip?

The aim of this chapter was to investigate methods of how bipedal robots conduct rapid
turns. Due to the transient nature of these turn trajectories, the prevalence of slip events
is hypothesized to by significant - motivating the study of friction and slip modelling in
Chapter 4. Additionally, we aimed to conduct this study into rapid turning from feasible
and optimal starting poses - motivating the study into dynamic bipedal motion presented
in Chapter 5. These insights serve as a strong foundation for studying the significance of
slip, and kinematic trends, when conducting rapid turns.

Additionally, results shown in this section were submitted for review in the RA-L
journal [94]. The research presented in this chapter aimed to answer the following questions:

• How prevalent are the effects of slip while conducting rapid turns?

• Are there any kinematic trends noticed when conducting rapid turns to different
degrees and different speeds?

These questions were answered by analyzing trajectories describing turns at different turn
angles and different speeds. Additionally, long-time-horizon trajectories, including a rapid
turn, were presented as seen in Figure 6.1.

6.1. Turning

In dynamic locomotion, turning is distinct from acceleration, deceleration, or steady-state
motion. It is often conducted in the context of running. In nature, humans and animals
are seen to conduct rapid turn events from a desired velocity. Therefore, turns conducted

68
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Figure 6.1: This image displays the phases of the long-time-horizon trajectory, including
a rapid turn off the sagittal plane. Here, the robot accelerated from a rest position, to
the apex of a steady-state gait, maintained the steady-state gait along the x axis, and
conducted a rapid turn from the apex of the steady-state gait. The rapid turn ended in
the apex of the steady-state gait, offset by the turn angle, maintained the steady-state
gait, and decelerated back to rest.

in this chapter start at the apex of optimal steady-state gaits. This is done to ensure
kinematic feasibility of the trajectories presented in this research.

Rapid turns are distinct from other phases of motion in that the “heading” of the
robot changes during the motion. The heading of the robot refers to the direction of
both the velocity of the system, “path heading”, and the direction the robot is facing,
“system heading”. Perkins et. al. [5] defines the system heading as “the orientation of a
longitudinal axis projected onto the horizontal plane”. In this research, the horizontal
plane is aligned with the hip axis, and is projected onto the coronal plane to determine the
system heading, shown as ψbody angle in q. Additionally, the path heading is described by
the Cartesian velocity of the system, such that v = [ẋ ẏ]T , where ẋ and ẏ are elements of
q̇. Figure 6.2 provides a graphical representation of the robot heading as shown in a view
of the bipedal robot from the z-axis. The distinction between the two allows for sideways
running to be described when the heading angles are perpendicular to each other [5].

Rapid turns are conducted once both the path, and system, headings are changed
equally. Therefore, the final conditions of both the path heading and the system heading
are offset from the initial conditions by the desired turn angle.

Additionally, Perkins et. al. [5] concluded that turn trajectories can be initiated on
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Figure 6.2: A graphical description of the robot heading, shown in view of the bipedal
robot z-axis. The system heading is described by ψbody angle in q, and the path heading
is described by the Cartesian sum of the ẋ and ẏ elements of q̇.

both the inner, and outer, legs. The inner leg refers to the leg closer to, and the outer leg
refers to the leg farther from, the center of the turn.

Steady-state trajectories presented in Chapter 5 lifted off the right foot, and positioned
itself to place the left contact next to maintain periodicity. This resulted in right turns
being initiated off the outer-leg, and left turns being initiated off the inner leg. The bulk
of the experiments conducted in this chapter turn to the right, off the outer leg. To
prove that the model is agnostic to turning off the inner leg, or outer leg, an additional
investigation into turning to the left was also conducted.

6.2. Experiments

A series of experiments into rapid turning were conducted by implementing the trajectory
optimization experiment described in Chapter 3 with the following specifications:

1. Robot: Biped (q = qBiped),

2. Nodes: N = 100 (N = 150 when vavg = 4.0),

3. Expected Time: T = 1.0s.

Start conditions of rapid turns were set at the apex of the steady-state trajectories for
the desired velocity presented in Chapter 5. Similarly, end conditions were constrained to
the apex of the steady-state trajectory, with the path and system heading offset by the
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Figure 6.3: This image displays how the rapid turn trajectories started in apex pose of
the steady-state trajectories. Similarly, the final pose of the rapid turn trajectories ended
in the apex pose of the steady-state gait, with the robot heading offset by the specified
turn angle, ψTurn.

desired turn angle, ψTurn. These conditions were achieved by setting the initial conditions,
and constraining the final conditions, as shown:

q0[0] = qsteady−state,

q̇0[0] = q̇steady−state,

q0[N] = qsteady−state, excluding x, y, and ψbody,

q̇0[N] = q̇steady−state, excluding ẋ, and ẏ.

(6.1)

Final x, and y-values were left unconstrained. This allowed the optimizer to find an
optimal footfall pattern, and area, necessary to complete a rapid turn. Additionally, the
path heading was constrained by decomposing the velocity of the system into the Cartesian
elements offset by the desired turn angle, ψTurn. With the velocity of the steady-state
trajectory known, vsteady−state, the elements of the final velocity vector was offset by the
desired turn angle, ψTurn:
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|vsteady−state| =
√
ẋ2
steady−state + ẏ2

steady−state,

ẋ0[N ] = |vsteady−state|cos(ψTurn),
ẏ0[N ] = |vsteady−state|sin(ψTurn),

and ψ[N ] = ψTurn.

(6.2)

6.3. Results

To investigate the effect that the speed of the robot had on the turn trajectory, rapid
turning was conducted at multiple velocities with a fixed turn angle, such that vavg ∈
{0.5, 1.0, 2.0, 4.0}m/s and ψTurn = 45◦.

Similarly, to investigate the effect that the degree of the turn angle has on the turn
trajectory, rapid turning was conducted with a fixed velocity and multiple turn angles,
such that vavg = 2.0m/s and ψTurn ∈ {22.5◦, 30◦, 45◦, 60◦, 90◦}.

For each degree, and speed, of interest 5 trajectories were generated. These sets of
trajectories were used to compute statistical characteristics presented in this section. From
these sets, the trajectory with the lowest objective function was identified as the optimal
trajectory for that particular speed or turn angle.

All turns presented in the above experiments turned to the right, towards the inside leg.
Finally, to prove that the optimization can turn to both directions, a small investigation was
conducted. Here, the robot was constrained to turn to the left from a 2.0m/s steady-state
gait, at multiple turn angles, ψTurn ∈ {−30◦,−45◦,−60◦,−90◦}.

Animations of the turn trajectories presented in this chapter can be found at:
https://youtu.be/BdrJcXKk_68.

6.3.1. Turning At Varying Speeds

Table 6.1 displays statistical characters from the sets of trajectories described in the
experiment conducting a 45◦ rapid turns at multiple speeds. These statistical characteristics
revealed clear trends.

A decreasing trend was noticed in the average duration of contact compared to the
average trajectory duration as the velocity of the robot increased. When the velocity of
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the robot was 0.5m/s, contact occurred 75.24% of the trajectory duration; 61.19% at 1.0
m/s; 34.38% at 2.0 m/s; and 26.02% at 4.0m/s.

The duration of slip relative to the duration of contact was seen to increase proportion-
ally to the velocity of the robot. When the robot speed was 0.5m/s, slip occured 93.32% of
the average contact duration; 94.42% at 1.0m/s; 99.65% at 2.0m/s; and 100% at 4.0m/s.

Table 6.1: Statistical characteristics of rapid turns conducted at varying speeds. These
characteristics were developed using a sample set of 5 trajectories per speed investigated.

Average Speed [m/s] 0.5 1.0 2.0 4.0
Mean trajectory duration [ms] 493.16 469.75 390.20 495.54
Variance in trajectory duration [ms] 4.04 7.62 0.07 2.8
Mean air time [ms] 122.11 182.29 256.03 366.57
Variance in air time [ms] 2.15 7.52 0.11 1.96
Mean contact time [ms] 371.06 287.46 134.17 128.97
Variance in contact time [ms] 0.45 14.49 0.13 0.82
Mean slip time [ms] 346.29 271.44 133.71 128.97
Variance in time [ms] 0.45 14.49 0.13 0.82

Figure 6.4 displays the change in system heading, ψbody, for a set of optimal trajectories
describing the robot conducting 45◦ turns at multiple speeds. Here, overshoot occurred in
all trajectories. The magnitude of overshoot was noticed to increase as the speed of the
robot increased. An overshoot of 0.25◦ was noticed when the robot’s speed was 0.5m/s,
10.07◦ at 1.0m.s, 21.29◦ at 2.0m.s, and 35.80◦ at 4.0m/s.

Figure 6.4: The image displays optimal trajectories of the change in heading angle of
the robot conducting rapid turns at varying speeds.
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6.3.2. Turning At Varying Degrees

Table 6.2 displays statistical characteristics from the sets of trajectories describing 2.0m/s
rapid turns at varying degrees. The characteristics relevant to 45◦ turns can be found in
Table 6.1 in the 2.0m/s column.

A level trend was observed when comparing the average duration of contact to the
average trajectory duration, ranging between 31.00% and 41.15%. In addition, a level
trend was observed when comparing the average duration of slip with the average duration
of contact, varying between between 97.75% and 100.0%. However, the average trajectory
duration increased proportionally to the degree of the turn: 331.67ms at 22.5◦, 353.46ms
at 30◦, 390.20ms at 45◦, 484.77ms at 60◦, and 566.43ms at 90◦.

Table 6.2: Statistical characteristics of turns conducted to varying turn angles. These
characteristics were developed using a set of 5 trajectories per turn angle investigated.

Turn angle [◦] 22.5 30 60 90
Mean trajectory duration [ms] 331.67 353.46 484.77 566.43
Variance in trajectory duration [ms] 3.55 1.86 3.14 5.76
Mean air time [ms] 195.20 220.88 334.46 341.82
Variance air time [ms] 0.59 0.83 3.22 1.27
Mean contact time [ms] 136.47 132.58 150.31 224.61
Variance contact time [ms] 1.64 1.79 0.92 3.16
Mean slip time [ms] 133.39 129.39 150.12 224.61

Figure 6.5: This image displays optimal trajectories of the change in heading angle of
the robot conducting rapid turns at varying degrees.

Figure 6.5 displays the change in system heading, ψbody, of the set of optimal trajectories
describing the robot turning to varying degrees at 2.0m/s. A flat trend was observed in
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the overshoot present, ranging between 16.23◦, and 24.65◦.

6.3.3. Turning The Other Direction

To display that the optimization was capable of generating turn trajectories towards the
inside leg, the left, a set of optimal trajectories are presented. Figure 6.6 displays the
change in system heading, ψTurn while conducting turns of varying degrees, towards the
inside leg, at 2.0m/s. Overshoot is present towards the end of the trajectory. Similarly,
all trajectories display significant amounts of initial undershoot, ranging from 36.23◦ to
39.76◦ for all trajectories.

Figure 6.6: This image displays optimal trajectories of the change in heading angle of
the robot conducting rapid turns towards the inside leg, the left.

6.4. Discussion

This chapter aimed to determine the significance of slip while conducting rapid turns.
Significant amounts of slip during rapid turn trajectories presented were documented in
Table 6.1, and Table 6.2. At least 93.32% of the contact duration included slip events
while conducting 45◦ turns at multiple speeds. Similarly, 97.52% of the contact duration
included slip events while turning at 2m/s to all turn angles investigated. These results
conclude that slip plays a significant role in conducting rapid turn trajectories.

The significance of slip highlights the need for accurate methods of modeling slip and
its effects. Trajectories presented in this chapter modeled the friction cone using the
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novel method presented in Chapter 4, and solved for the MPCCs within a tolerance of
ε = 1E − 4. This ensured that the amount of friction needed to initiate slipping was not
underestimated [57].

Figure 6.4, and Figure 6.5, provide evidence of turn overshoot for all optimal results
displayed. However, it is noted that for rapid turns conducted at 2.0m/s with varying turn
angles, the overshoot is approximately the same magnitude, ranging between 5.26◦ and
14.12◦. Whereas, the overshoot increased proportionally to the speed when conducting
45◦ degree turns at multiple speeds. Similarly, the magnitude of the initial undershoot
for all turns was seen to be proportional to the speed of the turn. This is validated by a
comment made by Perkins et. al. [5], that the overshoot is proportional to the speed of
the turn, and not the degree of the turn.

Additionally, these rapid turn trajectories were set to start, and end, in the apex pose of
of a steady-state gait. Therefore, all turn trajectories could be stitched onto the respective
steady-state trajectories presented in Chapter 5. Consequently, the rapid-turn trajectories
could be included in a long-time-horizon trajectory. Figure 6.7, displays the speed, and
system heading, profile of the a 2m/s long-time-horizon trajectory including a 45◦ turn off
the sagittal plane, confirming the profile hypothesized in Figure 6.3.

The turn started 0.86s into the trajectory, after the acceleration, and two steady-state
gaits. The system heading was offset by 45◦ during the turn phase. Finally, the trajectory
ended at rest after two steady-state gaits, and a deceleration trajectory. It is encouraging
to note that robot did not have to reduce its speed significantly in conducting the rapid
turn. The speed was seen to fluctuate between 1.72m/s, and 2.7m/s.
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Figure 6.7: This image displays the velocity, and system heading, profile of a 2m/s
long-time-horizon trajectory including a 45◦ rapid turn.
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Chapter 7

Summary, Conclusion and Future Work

This thesis contributed towards legged robotic literature by posing the following 3 questions
in Chapter 1, and answering them throughout the thesis document:

1. Is there a better way of modeling the effects of friction in MPCC environments?
Chapter 4 adequately answered this question.

2. How to realize dynamic bipedal motion? This was investigated in Chapter 5.

3. How do bipedal robots conduct rapid turns? This was investigated in Chapter 6.

7.1. Summary and Conclusion

These questions arose when perusing relevant robotics literature, presented in Chapter 2.
Here, a survey of relevant robotics literature was provided and the theory necessary to
understand the research was described.

It was noticed that the bulk of legged robotics literature made use of limiting assump-
tions to generate periodic steady-state gaits. These assumptions include neglecting the
effects of friction, massless legs, and reduced order dynamics inspired by the periodicity
of steady-state motions [4–6]. All of which made it possible to generate stable gaits at
speed. However, these assumptions were only consistent for studying periodic gaits and
were not valid for transient motions [1, 8, 26]. Recent work in contact-implicit trajectory
optimization models rigid body contact dynamics without having to specify a contact order.
This has been a catalyst for studies into transient legged locomotion. However, much of
the contact-implicit optimization research has been limited to planar studies [9–12,64,75].

In the literature, it was noted that non-planar implementations of contact-implicit opti-
mization made use of the four-sided polyhedral approximations of the isotropic friction cone.
This method is notorious for being computationally intractable, and under-approximates
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Stellenbosch University https://scholar.sun.ac.za



7.1. Summary and Conclusion 79

the friction forces when the direction of velocity at contact lies between the edges defining
the polyhedral [6, 11,13,64,71]. It also inspired the first objective of this thesis.

Chapter 4 aimed to address this limitation, by presenting a novel method of modeling
the isotropic friction cone using MPCCs [57]. This novel was compared to the traditional
four-faced polyhedral approximation of the friction cone. Here, contact-implicit trajectory
optimization problems of a monopedal robot implementing each method of modeling the
friction cone were conducted. Additionally, the direction of motion was constrained to
expose underestimation of the friction pyramid. These optimizations were conducted under
slippery conditions, where µ = 0.2, and non-slippery (sticky) conditions where µ = 1.0.

Results from these experiments confirmed the underestimation of the friction pyramid:
the friction pyramid produced trajectories which always slipped. It was shown that the
novel method of modeling the friction cone satisfied Coulomb’s Law, while providing more
accurate, and computationally tractable solutions to non-planar contact implicit trajectory
optimization methods.

Further investigations were conducted into the necessary accuracy when implementing
ε-relaxation schemes to solve the MPCCs in contact implicit trajectory optimizations. It
was shown that the slack variables making up the MPCCs during slip events converged
when ε ≤ 0.01.

Therefore, studies conducted in Chapter 4 concluded that there is a better way of
modeling the effects of friction using MPCCs. Results from this chapter were published
in [57]. This novel method of modeling friction was used to answer the 2 remaining
unanswered questions in the objectives.

Next, the second objective question was tackled to realize dynamic bipedal locomotion
in Chapter 5. Here, contact implicit trajectory optimization methods were used to model
the long-time-horizon trajectories of a non-planar bipedal robot at different velocities.
Fisher et. al. [1] suggested that complex long-time-horizon trajectories could be split into
smaller, more specific tasks to be solved separately, and later stitched together.

First, Chapter 5 presented steady-state running gaits at speeds ranging from 0.5m/s,
to 4.0m/s. Due to its periodic nature the steady-state trajectories were constrained
to a run, with contact allowed (not forced) over a specified range of discrete elements.
Thereafter, acceleration and deceleration trajectories were generated towards the apex of
the steady-state gaits robot accelerating from, and decelerating too, a rest position. No
contact constraints were implemented on the rest of the tasks making up dynamic bipedal
locomotion. Here, contact-implicit trajectory optimization methods were used to give the
optimizer freedom to choose optimal gaits while satisfying Coulomb’s Law by allowing the
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contact foot to slip.

Hubicki et. al. [26] first noted the sliding mass velocity profile emerge when studying
long-time-horizon trajectories of monopod robots, and hypothesized it holding for more
complex models. This allows the forward velocity profile of complex legged robots to be
approximated using a 1 DOF sliding mass template. Thereafter, Fisher et. al. [1] confirmed
this hypothesis by presenting sliding mass templates on long-time-horizon trajectories
of planar bipedal, and quadrupedal, robots. Long-time-horizon trajectories of the robot
running along the x-axis were generated by stitching the resultant acceleration, steady-
state, and deceleration trajectories together. Research presented in Chapter 5 contributes
to this hypothesis by noting a correlation between the forward velocity profile of a sliding
mass and the long-time-horizon trajectory of a non-planar bipedal platform with splayed
hips.

Dynamic bipedal locomotion was achieved in the long-time-horizon trajectory. This
displayed that the presented robot could accelerate from rest to a desired speed, maintain
that speed, and then decelerate back to a rest position. Thereby answering the second
question posed in the objectives by generating a set of dynamic bipedal trajectories.

Chapter 6 concluded by answering the third question posed in the set of objectives by
investigating how bipedal robots conduct rapid turns off the sagittal plane. These rapid
turn trajectories were set to start at the apex of the steady-state gait, and constrained to
end in the same pose offset by the desired turn angle. It was noticed that slip occured
for most of the contact periods for all the rapid turn. On average slip occured 93.32%
of the total contact time, indicating the significant role slip plays in rapid motions. The
prevalence of slip during these rapid motions further motivated the need of accurate friction
modeling presented in Chapter 4. Additionally, Chapter 6 commented on kinematic trends
noticed during rapid turns, and presented turns towards both the inside, and outside leg.
It was seen that turn overshoot was present for all rapid turn trajectories in this research.
This overshoot was proportional to the speed of the turn, and not the degree of the turn,
as hypothesized by Perkins et. al. [5].

It is encouraging to note that all complex dynamic trajectories presented in this thesis
were initialized using randomized seeds, as described in Chapter 3. This allowed the
optimizer to comprehensively search the solution space to find feasible, and non-intuitive
solutions to complex transient problems.
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7.2. Future Work

Knowledge gained from this thesis contributed to literature relating to dynamic legged
locomotion in 3D. However, this field remains ripe with opportunities for further research.

Contact implicit trajectory optimization methods are notorious for being computa-
tionally complex [10]. Consequently, trajectories presented in this thesis were generated
using large and intractable optimization problems. Therefore, further research would be
to investigate methods of reducing the time needed to find solutions to these optimization
problems without limiting non-intuitive gaits for transient motions. Here, the IP-OPT
solver was used, with the default configuration. Investigations into using alternative
solvers, or solver configurations, with the aim of reducing the time needed to find optimal
trajectories could be conducted.

Further investigations could also be conducted into methods of formulating the opti-
mization problem to reduce the computation time. Knemeyer et. al. [14], noted reductions
in computation complexity, and time, when modeling the joints of multi-bodied robots
using absolute coordinates instead of relative coordinates. A similar investigation could be
conducted into different methods of modeling the 3D dynamics in trajectory optimization
environments. In this thesis, 3D dynamics were modeled using Euler Angles, as described
in Chapter 3. An investigation into the computational complexity of describing 3D robotic
systems using Euler Angles could be compared with an implementation modeled using
Quaternions [80].

Knowledge gained from this thesis highlights how important it is for roboticists to
comprehensively understand the effects of contact, and friction. Friction was seen to play a
significant role in the dynamics of the transient motions investigated in this research. Here,
contact was modeled on a surface with a uniformed coefficient of friction. This resulted in a
isotropic friction cone. Further investigations could be conducted into studying the effects
of friction on surfaces with a varying coefficient of friction, resulting in an an-isotropic
friction cone [70]. Additionally, investigations could be conducted studying the effects of
changing between static and kinetic friction during slip events [63].

Robots modeled in this thesis modeled each foot as a single point contact. Animals are
seen using a set of claws and to negotiate the effects of friction [61]. Additionally, shoes
aid human locomotion by increasing the surface area of contact, and traction. Therefore,
future research involves investigating the effects of friction, and slip across multiple contact
points per foot to increase the surface area of contact per foot.
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[38] G. Garofalo, C. Ott, and A. Albu-Schäffer, “Walking control of fully actuated robots
based on the bipedal slip model,” in 2012 IEEE International Conference on Robotics
and Automation, 2012, pp. 1456–1463.

[39] J. Park, J. Lee, J. Lee, K.-S. Kim, and S. Kim, “Raptor: Fast bipedal running and
active tail stabilization,” in 2014 11th International Conference on Ubiquitous Robots
and Ambient Intelligence (URAI). IEEE, 2014, pp. 215–215.

[40] J. Degrave, M. Burm, T. Waegeman, F. Wyffels, and B. Schrauwen, “Comparing
trotting and turning strategies on the quadrupedal oncilla robot,” in 2013 IEEE
International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2013, pp.
228–233.

[41] K. C. Galloway, G. C. Haynes, B. D. Ilhan, A. M. Johnson, R. Knopf, G. A. Lynch,
B. N. Plotnick, M. White, and D. E. Koditschek, “X-rhex: A highly mobile hexapedal
robot for sensorimotor tasks,” 201you0.

[42] M. L. KAIST. Kaist raptor robot runs at 46 km/h, active tail stabilization. [Online].
Available: https://www.youtube.com/watch?v=lPEg83vF Tw&ab channel=MSCLab.
KAISTd

[43] B. Dynamics. Cheetah robot runs 28.3 mph; a bit faster than usain
bolt. [Online]. Available: https://www.youtube.com/watch?v=chPanW0QWhA&
ab channel=BostonDynamics

[44] R. Nayeem, S. Bazzi, N. Hogan, and D. Sternad, “Transient behavior and predictability
in manipulating complex objects,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 10 155–10 161.

[45] A. M. Wilson, J. Lowe, K. Roskilly, P. E. Hudson, K. Golabek, and J. McNutt,
“Locomotion dynamics of hunting in wild cheetahs,” Nature, vol. 498, no. 7453, pp.
185–189, 2013.

[46] N. Sharp, “Timed running speed of a cheetah (acinonyx jubatus),” Journal of Zoology,
vol. 241, no. 3, pp. 493–494, 1997.

[47] S. B. Williams, H. Tan, J. R. Usherwood, and A. M. Wilson, “Pitch then power:
limitations to acceleration in quadrupeds,” Biology letters, vol. 5, no. 5, pp. 610–613,
2009.

[48] M. Haberland and S. Kim, “On extracting design principles from biology: Ii. case
study—the effect of knee direction on bipedal robot running efficiency,” Bioinspiration
& biomimetics, vol. 10, no. 1, p. 016011, 2015.

Stellenbosch University https://scholar.sun.ac.za

https://www.youtube.com/watch?v=lPEg83vF_Tw&ab_channel=MSCLab.KAISTd
https://www.youtube.com/watch?v=lPEg83vF_Tw&ab_channel=MSCLab.KAISTd
https://www.youtube.com/watch?v=chPanW0QWhA&ab_channel=BostonDynamics
https://www.youtube.com/watch?v=chPanW0QWhA&ab_channel=BostonDynamics


Bibliography 86

[49] ——, “On extracting design principles from biology: I. method–general answers to
high-level design questions for bioinspired robots,” Bioinspiration & biomimetics,
vol. 10, no. 1, p. 016010, 2015.

[50] R. M. Walter and D. R. Carrier, “Effects of fore–aft body mass distribution on
acceleration in dogs,” Journal of Experimental Biology, vol. 214, no. 10, pp. 1763–
1772, 2011.

[51] ——, “Rapid acceleration in dogs: ground forces and body posture dynamics,” Journal
of Experimental Biology, vol. 212, no. 12, pp. 1930–1939, 2009.

[52] S. Williams, J. Usherwood, K. Jespers, A. Channon, and A. Wilson, “Exploring the
mechanical basis for acceleration: pelvic limb locomotor function during accelerations
in racing greyhounds (canis familiaris),” Journal of Experimental Biology, vol. 212,
no. 4, pp. 550–565, 2009.

[53] C. A. Moreno, Biomechanics of non-steady locomotion: Bone loading, turning me-
chanics and maneuvering performance in goats. Harvard University, 2010.

[54] H. Tan and A. M. Wilson, “Grip and limb force limits to turning performance in
competition horses,” Proceedings of the Royal Society B: Biological Sciences, vol. 278,
no. 1715, pp. 2105–2111, 2011.

[55] D. L. Jindrich, N. C. Smith, K. Jespers, and A. M. Wilson, “Mechanics of cutting
maneuvers by ostriches (struthio camelus),” Journal of Experimental Biology, vol.
210, no. 8, pp. 1378–1390, 2007.

[56] S. Shield and A. Patel, “Waste not, want not: Lessons in rapid quadrupedal gait
termination from thousands of suboptimal solutions,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 4012–4019.

[57] D. Pretorius and C. Fisher, “A novel method for computing the 3d friction cone using
complimentary constraints,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 5000–5006.

[58] S. Shigemi, A. Goswami, and P. Vadakkepat, “Asimo and humanoid robot research
at honda,” Humanoid robotics: A reference, pp. 55–90, 2019.

[59] K. Miura, F. Kanehiro, K. Kaneko, S. Kajita, and K. Yokoi, “Quick slip-turn of hrp-4c
on its toes,” in 2012 IEEE International Conference on Robotics and Automation.
IEEE, 2012, pp. 3527–3528.

[60] T. Ishida, Y. Kuroki, and J. Yamaguchi, “Mechanical system of a small biped
entertainment robot,” in Proceedings 2003 IEEE/RSJ International Conference on

Stellenbosch University https://scholar.sun.ac.za



Bibliography 87

Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), vol. 2. IEEE,
2003, pp. 1129–1134.

[61] A. Patel and M. Braae, “Rapid turning at high-speed: Inspirations from the cheetah’s
tail,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2013, pp. 5506–5511.

[62] B. E. Unplugged. Cheetah vs greyhound, world’s fastest dog in super slow motion.
BBC Earth Unplugged. [Online]. Available: https://www.youtube.com/watch?v=
jc8Hno4M0Qs&ab channel=BBCEarthUnplugged

[63] S. Goyal, “Planar sliding of a rigid body with dry friction: limit surfaces and dynamics
of motion,” Ph.D. dissertation, Cornell University Ithaca, New York, USA, 1989.

[64] D. E. Stewart, “Rigid-body dynamics with friction and impact,” SIAM review, vol. 42,
no. 1, pp. 3–39, 2000.

[65] R. Tedrake, “Underactuated robotics: Algorithms for walking, running, swimming,
flying, and manipulation (course notes for mit 6.832),” Downloaded in May, 2020.
[Online]. Available: http://underactuated.mit.edu/

[66] N. Ratliff, “Controlling floating-based robots.”

[67] C. A. Coulomb, Th ’e orie simple machines by keeping é the friction of their parts
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Curry, A. R. Terrel, v. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and
A. Scopatz, “Sympy: symbolic computing in python,” PeerJ Computer Science,
vol. 3, p. e103, Jan. 2017. [Online]. Available: https://doi.org/10.7717/peerj-cs.103

[82] W. E. Hart, J.-P. Watson, and D. L. Woodruff, “Pyomo: modeling and solving
mathematical programs in python,” Mathematical Programming Computation, vol. 3,
no. 3, pp. 219–260, 2011.

[83] W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil, B. L.
Nicholson, and J. D. Siirola, Pyomo–optimization modeling in python, 2nd ed. Springer
Science & Business Media, 2017, vol. 67.

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.7717/peerj-cs.103


Bibliography 89

[84] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace, 2009.
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