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Abstract
Accurate interpolation when compiling bathymetric maps is 
essential in any water depth study. In the case of Saldanha 
Bay, continuous dredging operations are constantly alter-
ing the ocean floor, which has a detrimental effect on sedi-
mentation and coastal hydrodynamics. If the integrity of the 
coastline is to be secured, accurate bathymetry predictions 
would be invaluable in determining the effect of dredging 
operations on coastal erosion. Inverse distance weighting 
(IDW) and ordinary kriging (OK) are two well- known and 
commonly used interpolation methods to produce surfaces 
through spatial autocorrelation for numerous applications, 
inter alia, to estimate bathymetry. This study aims to analyse 
and compare the efficiency of the IDW and OK interpola-
tion methods to predict the bathymetry of Saldanha Bay. 
Three comparative interpolation tests, which vary accord-
ing to the decrease in the quantity of sounding points, are 
conducted. SPSS statistical software was used to assess the 
performance of the interpolation methods. Firstly, 2D scat-
terplots were used to show the correlation between pre-
dicted and measured sounding values for each interpolation 
method. Secondly, analysis of variance was employed to 
investigate whether the difference between the IDW and 
OK interpolation methods was statistically significant, and 
to determine which method was best suited for determining 
the bathymetry of Saldanha Bay. Findings revealed a strong 
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1  | INTRODUC TION

Since the construction of its breakwater and causeway in the early 1970s, Saldanha Bay has continuously 
expanded its iron ore, gas and oil export capabilities (Saldanha Bay Municipality, 2021). During the initial port 
construction in the 1970s, substantial dredging operations took place which altered the ocean floor and in-
creased the average depth by approximately 1.5 m (Henrico & Bezuidenhout, 2020). Existing anthropogenic 
changes, such as the construction of the Saldanha Bay harbour and consequent continuous maintenance dredg-
ing operations, already impacted the structure of the ocean floor. Anticipated future development projects are 
likely to contribute to structural changes. These changes will affect oceanic forces (e.g., refraction and energy 
of currents and waves) which will again contribute to coastal erosion within Saldanha Bay. The aim of this study 
is to analyse and compare the efficiency of the inverse distance weighting (IDW) and ordinary kriging (OK) in-
terpolation methods to predict the bathymetry of Saldanha Bay when applying different quantities of sampling 
points. Three comparative interpolation tests, with varying quantities of sounding points, were conducted to 
achieve the aim of this study. The original set of sounding points was divided randomly to create an additional 
two sets of sounding points. The first data set contained 100% of the original sounding points (n = 1,653), the 
second only 66% (n = 1,091) and the third 33% (n = 546). This study applied geographic information system 
(GIS) techniques to interpolate the bathymetry of Saldanha Bay. GIS techniques were assessed using SPSS 
statistical software. The respective performance and accuracy of IDW and OK interpolation methods were 
analysed by means of bathymetry map construction, graphic illustration and statistical calculation.

GIS techniques to perform surface interpolation of sounding data are widely used to reconstruct bathyme-
try surfaces (Diaconu, Bretcan, Peptenatu, Tanislav, & Mailat, 2019; Ferreira, Rodrigues, Santos, & Rosa, 2017; 
Gong, Mattevada, & O'Bryant, 2014; Kusuma, Murdimanto, Sukresno, & Jatisworo, 2018). Numerous interpolation 
methods exist to predict surface values where there is a lack of sample data. According to Childs (2004), interpo-
lation methods are classified into two categories, namely deterministic (e.g., IDW, radial basis functions, splines, 
rectangular and natural neighbours) and geostatistical (e.g., kriging in its various forms). IDW and ordinary kriging 
(OK) are the two most commonly used methods in all disciplines (Kravchenko, 2003; Li & Heap, 2014; Zarco- 
Perello & Simões, 2017).

Interpolation methods consider the spatial correlation of known measurement points to estimate locations 
that lack measurements. Interpolation methods are therefore based on the principle that points in close proximity 
are more closely related than those that are further apart (Ajvazi & Czimber, 2019). Spatial interpolation is an 
important GIS technique for creating and analysing spatial surfaces. This study used ArcGIS 10.5.1 to conduct all 
interpolation tests (GIStandards.eu, 2020). Interpolation tools, which provide various options to conduct surface 
modelling, are available in the Geostatistical Analyst extension.

linear relationship between predicted and measured sound-
ing values for both IDW and OK when 100% of the sounding 
points are used. Conversely, for medium and small quantities 
of sounding points, a weak correlation exists. Clear similari-
ties exist in the way that IDW and OK estimate and generate 
the continuous surface of bathymetry. However, IDW con-
sistently performed better than OK across all interpolation 
tests. The findings of this study will assist in selecting the 
most suitable interpolation method for future bathymetry 
surveys of Saldanha Bay.
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Over 40 different types of interpolation methods exist, many of which are integrated into GIS software to 
create, among others, digital elevation models (Ferrando, De Rosa, Federici, & Sguerso, 2016; Ferreira et al., 2017; 
Meng, Liu, & Borders, 2013). Only a few of these interpolation methods are widely used (e.g., IDW, kriging, splines, 
nearest neighbours, local and global polynomials, radial basis functions, topo- to- raster), of which IDW and kriging 
are the most attractive (Curtarelli, Leão, Ogashawara, Lorenzzetti, & Stech, 2015; Ferreira et al., 2017; Kalivas, 
Kollias, & Apostolidis, 2013). This study considers IDW and kriging, specifically OK, to identify the optimal spatial 
interpolation method to use for mapping the bathymetry of Saldanha Bay from sounding measurements. It should 
be noted that no single interpolation method is ideal for all types of data sources. The accuracy of such estima-
tions is largely dependent on sounding density, distribution and accuracy. Low density and heterogeneous sample 
points that are inaccurate in terms of spatial location and referencing will negatively influence the accuracy of 
surface interpolation (Aguilar, Agüera, Aguilar, & Carvajal, 2005; Diaconu et al., 2019; Erdoğan, 2010; Gao, 2009; 
Setianto & Triandini, 2013).

Numerous studies have compared the efficiency of the IDW and kriging interpolation methods to predict 
bathymetric surfaces accurately (Azpurua & Ramos, 2010; Bello- Pineda & Hernández- Stefanoni, 2007; Diaconu 
et al., 2019; Ferreira et al., 2017; Meng et al., 2013; Murphy, Curriero, & Ball, 2010; Zarco- Perello & Simões, 2017; 
Zimmerman, Pavlik, Ruggles, & Armstrong, 1999). These two methods differ a great deal in their approach towards 
calculating and predicting the correlation in geospatial data. Furthermore, the choice of interpolation method is 
dependent on the specific research application and the characteristics of the spatial data. Most studies show 
that kriging outperforms IDW, especially when the number of sampling points varies and when measurements 
are sparsely distributed (Diaconu et al., 2019; Ferreira et al., 2017; Zimmerman et al., 1999). However, a few 
studies have found the IDW method to produce better results (Azpurua & Ramos, 2010; Gong et al., 2014; Meng 
et al., 2013; Zarco- Perello & Simões, 2017). However, Murphy et al. (2010) found that results are site- specific, 
that there is “no consensus as to a superior or preferred method”. Given these contradictory findings, and the 
possibility that results may be site- specific, it is imperative to find the most suitable method for interpolation of 
the bathymetry of Saldanha Bay.

Regarding Saldanha Bay, various studies had been conducted on the effects of dredging on changes in 
sedimentation (Flemming, 1977; Henrico & Bezuidenhout, 2020; Luger, Schoonees, Mocke, & Smit, 1999; 
Wiese, 2013). Some studies focused on ocean movements and the impact of wind on the Saldanha Bay envi-
ronment (Flemming, 2015; Weeks, Boyd, Monteiro, & Brundrit, 1991), while other studies concentrated on the 
characteristics of the water and marine life within the Bay (Probyn, Pitcher, Pienaar, & Nuzzi, 2001; Shannon 
& Stander, 1977; Van der Merwe & Lohrentz, 2001). Some unpublished reports (dated 2000, 2004, 2010 and 
2013) include selective bathymetry mapping, mainly of Inner (Saldanha) Bay. These reports were acquired from 
the Saldanha Bay port captain (A. Miya, personal communication, 9 September 2019). They consist mainly of 
bathymetry surveys of selected areas within the Bay, including the harbour approach channels and turning basin. 
The Council for Scientific and Industrial Research (CSIR) created these reports, which carry restricted access, for 
Transnet Capital Projects. No other studies could be found that compared IDW and kriging interpolation methods 
to determine the most suitable method to predict the bathymetry of Saldanha Bay.

Finding the most suitable interpolation method to map the ocean floor of Saldanha Bay will not only inform 
local and provincial government of the changes occurring within the Bay, but will also inform other researchers of 
the preferred interpolation method for future analysis of the bathymetry of Saldanha Bay.

2  | STUDY ARE A

Saldanha Bay (hereafter “the Bay”) was selected as the area of study (see Figure 1). The Bay is approximately 
105 km north- north- west of Cape Town, in the Western Cape province of South Africa and is bordered by the 
town of the same name, Saldanha Bay, to the west and Langebaan to the south- east. The Bay is the deepest natural 
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harbour in Southern Africa. The town of Saldanha Bay is located within a very unique ecosystem, characterised 
by West Coast flora and fauna that host various endangered and endemic plant and animal species (CSIR, 2014). 
The Bay covers an area of approximately 85 km2. It has experienced significant changes to its bathymetry over 
the years, caused not only by anthropogenic influences, but also by the severe weather conditions experienced 
from time to time along the West Coast region of South Africa (Flemming, 2015). The West Coast region has a 
Mediterranean type climate characterised by long, dry summers, with an average rainfall of 270 mm per year that 
mostly occurs during the months of winter (CSIR, 2014). This region is characterised by a seasonal reversal of wind 
direction and speed. The on- shore wind blows south- westerly during the summer months (relatively towards the 
entrance of the Bay) and off- shore north- easterly during the winter months. Wind speed, especially during sum-
mer, often exceeds 11 m/s (Transnet, 2018).

Construction of the Saldanha Bay harbour, which included the building of a causeway with an iron ore and oil load-
ing jetty and a breakwater, started in May 1973. The breakwater, which connected Hoedjiespunt with Marcus Island, 
was mostly constructed from soil collected from the massive dredging operations that took place to build the port. 
The construction of the breakwater effectively divided the Bay into Inner Bay and Outer Bay (Smith & Pitcher, 2015). 
The causeway further divided Inner Bay into Small Bay to the west of the causeway and Big Bay to the east. It is es-
timated that approximately 30 million cubic metres of sediments were removed by dredging operations (Zwemmer & 
Van't Hof, 1979). The port started its operations in September 1976. Recent plans to expand port facilities and infra-
structure by developing the marine and ocean services industry should now take effect with the recent procurement 
of multi- million- dollar investments for this purpose (Saldanha Bay Industrial Development Zone, 2020).

The consequent changes to the bathymetry of Saldanha Bay had a foreseeable effect on wave refraction and 
direction and tidal movement (predominantly from the south- west and south- south- west). These changes altered 

F I G U R E  1   Saldanha Bay was selected as the area of interest for this study. The spatial location of Saldanha 
Bay on the West Coast of South Africa is indicated by the red dot (•) on the inset map. Source: South African 
National Hydrographer
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sediment movement and beach sand deposit patterns within the Bay. Because of this, several beaches within the 
Bay have been and continue to be eroded. These processes are described and illustrated by wave refraction patterns 
that were reconstructed from aerial photography1 as before and after images of harbour construction (Figure 2). 
The general wave direction and tidal movement before harbour construction were naturally spread across the en-
tire Inner Bay. Before construction, the strongest refraction was observed in the north- eastern corner of the Bay 
where coastal and beach formation areas are most exposed. This picture changed considerably after harbour con-
struction, when the direction of wave refraction shifted more towards the north- north- eastern and eastern parts 
of the Bay. The altered direction of wave refraction shifted the erosion potential towards Langebaan beaches. Here 
the most exposed coastal and beach formation areas correspond to the erosion area indicated by the red hatch fill 
in Figure 2. These changes provide the rationale for this study, namely, to identify the most efficient interpolation 
method to accurately predict the bathymetry of Saldanha Bay, an imperative to satisfy the requirement of continu-
ously analysing the hydrodynamics of the Bay.

Direction changes in wave refraction and energy dispersion, as well as occasional storm surges experienced 
along the West Coast of South Africa, caused the Saldanha Bay Municipality (SBM) to construct a bolder beach 
front and a set of groynes to protect the affected beaches and stop coastal erosion (Legg, 2013). However, ac-
cording to Mr Jaco Kotze, the chairperson of the Langebaan Ratepayers' Association, the 43 million rand spent 
by the SBM “was money wasted”, because the Langebaan beaches are still experiencing notable erosion and are 
slowly disappearing (Legg, 2013). The unique natural characteristics of Saldanha Bay make it ideally situated to 
be a world- class freeport service location. This is evident in the recent multi- million- dollar investment to expand 
Saldanha Bay Port facilities and infrastructure (Saldanha Bay Industrial Development Zone, 2020). The challenge, 
however, lies in achieving a balance between protecting the Saldanha Bay ecosystem and welcoming the potential 
economic growth associated with development projects. Some of these development projects will influence the 
bathymetry significantly, and will ultimately put more strain on the Saldanha Bay coastline and beaches. In the 
case of Saldanha Bay, an accurate and current representation of the ocean floor is particularly important for the 
continuous assessment of the rate of anthropogenic erosion along the Saldanha Bay coastline, and its impact on 
coastal morphology. This will allow relevant authorities to take timely corrective and preventive actions to protect 
and sustain the beaches of the Bay.

F I G U R E  2   Wave refraction patterns and exposure zones before and after harbour construction, at a scale of 
1:50,000. Source: Adapted from Flemming (2015, p. 63)
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3  | METHODOLOGY

The entire bathymetric data set used during this study (n = 1,653) was received from the South African National 
Hydrographer. These soundings were collected during the last known survey of the entire Saldanha Bay in 1977. 
The lack of updated bathymetric data on Saldanha Bay was communicated to the Hydrographer during a visit to 
the South African Navy Hydrographic Office in Tokai, Cape Town, on 2 July 2020. The Hydrographer recognised 
the urgency of new and updated bathymetric data on Saldanha Bay. Subsequent to the meeting, it was planned to 
conduct a complete survey of the entire Saldanha Bay by the end of 2020.

Through both the IDW and OK methods three interpolation comparison tests consisting of different quantity 
soundings were conducted to create bathymetric profiles of Saldanha Bay. Each interpolation test aimed to deter-
mine the efficiency of the IDW and OK methods in predicting the bathymetry of Saldanha Bay. The IDW and OK 
interpolation methods were selected because they are commonly used and are considered the most commonly fa-
voured interpolation methods to estimate continuous surfaces (Curtarelli et al., 2015; Ferreira et al., 2017; Kalivas 
et al., 2013).

3.1 | Inverse distance weighting

IDW applies a deterministic and rather simple algorithm. It is described as a non- statistical interpolation method 
that ignores the spatial distribution of the data, and predicts unknown values by considering the proximity of 
known values (Li, 2013; Wang et al., 2014). IDW follows a nearest neighbour approach that gives influential 
weights to data points. Known data points carry more weight when in close proximity to unknown points and 
estimates are obtained as a weighted average of known neighbours. The general expression for IDW, as described 
by Wang et al. (2014, p. 3746), is:

where Z is the estimated value of the interpolation point, Zi is the value of sample point i , n is the number of sample 
points, di is the distance between the sample and interpolated points, and p is the power parameter (positive real 
number).

According to De Souza, Krueger, and Sluter (2003), cited in Ferreira et al. (2017), this algorithm has the ad-
vantage of creating smooth interpolated surfaces, and accounts for dimension parameters, number of sampling 
points and the power parameter, which controls the weighted neighbouring points on the interpolated points. 
However, this method does not consider data trends. It also has the disadvantage that it prefers the closest 
neighbouring points where weighted averages are essentially similar for all points in close proximity (Ferreira 
et al., 2017). Another disadvantage relates to the number of sample points used. An increase in sample points will 
smooth out the interpolated surface and a lack of sample points will affect the accuracy of the results unfavour-
ably and create what is known as the “bull's- eye” effect (Setianto & Triandini, 2013). The bull's- eye effect is an 
artefact of IDW. It causes concentric circles to appear around known measured points. This happens when there 
is a lack of sample points around known values, which results in the occurrence of peaks or channels (Li, Wang, 
Ma, & Wu, 2018). The value of the power parameter is another factor which adversely influences the accuracy 
of the results created through the IDW method. A lower power parameter will smooth out the interpolated 
surface. A high power value will place more weight on the nearest known points. The surface will therefore be 
less smooth (Esri, 2020a; GIS Geography, 2021). According to Pham, Van Huynh, Tran, and Chau (2016), the best 
choice of power parameter is 2.
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3.2 | Kriging

In contrast to deterministic models, kriging is a geostatistical interpolation method that accounts for directional 
trends in data. Kriging is similar to deterministic methods in that it also applies linear regression to predict un-
known values by considering weights assigned to known points. It accounts for the spatial autocorrelation be-
tween known values (Luo, Taylor, & Parker, 2008). Optimal interpolation weights are determined by a best- fit 
semivariogram model that considers both distance and direction to determine the spatial relationship of the data. 
The semivariogram applies the following unbiased equation to compute both distance and direction of the data 
(Aziz, Yusof, Daud, Yusop, & Kasno, 2019, p. 161):

where � (h) denotes the semivariogram, h is the lag/distance, n (h) is the number of pairs of data values, Z is an intrinsic 
random function, n is the number of sample points, and the xi are data values at point i.

The ArcGIS Geostatistical Analyst offers various types of kriging methods to choose from, namely ordinary, 
simple, universal, indicator, probability, disjunctive, empirical Bayesian, and areal interpolation, each with its own 
intrinsic capacity to handle different data types (Esri, 2019). Ordinary kriging is the most widely used interpolation 
method and is also the default selection in ArcGIS software (Esri, 2020a; Kis, 2016). OK was therefore applied 
during this study. ArcGIS allows the user to choose among different functions (e.g., circular, spherical, exponen-
tial, Gaussian and linear) to model the empirical semivariogram when applying the Kriging tool. Each function 
influences the modelling of data differently, and the choice of the optimal model is dependent on the spatial 
autocorrelation and prior knowledge of the data to achieve a best- fit representation of the data. This normally 
entails a trial- and- error approach to find the parameters that optimise the model (GIS Geography, 2017). The 
typical semivariogram and its properties (Azavea, 2016; Esri, 2020a; Ferreira et al., 2017) are graphically illus-
trated in Figure 3. The range is the distance at which the semivariogram meets the variance of the data set. Points 
located within the area of the range are spatially correlated. The sill is the variance of the entire data set. Sample 
points that fall outside this point are considered not to be spatially dependent. The nugget is the error that exists 
between zero separation distance and the position where the semivariogram intercepts the y- axis. This random 
effect can be attributed to measurement errors in the data. Ideally, the nugget value should be y(0) = 0, but this 
seldom happens because of random sampling errors and short- scale reliability. Large errors in location measure-
ments and sparsely distributed data contribute to a larger nugget effect. However, Camana and Deutsch (2020, 
p. 4) state that “a higher nugget effect in kriging will lead to smoother estimates” which are “realistic and correct”. 
The partial sill is the extent of variation of the sample points; it is derived by subtracting the nugget from the sill. 
Naturally, a strong spatial correlation exists between the sample points. When compared to the nugget, the partial 
sill is higher (Aspexit, 2020). The semivariance is the spatial correlation between data points plotted on the y- axis. 
Finally, the lag distance is the distance between pairs of sampling points plotted on the x- axis. Two rules of thumb 
for selecting the lag distance are highlighted by Esri (2018): first, to have at least 30– 50 pairs of sampling points 
for every semivariogram point measured; and second, half the largest distance between all sampling points should 
be equivalent to the number of lags multiplied by the lag size.

For this study, the OK interpolation method was applied, with a Gaussian function to model the semivario-
gram. The mathematical formula normally used to express OK is as follows (Setianto & Triandini, 2013, p. 23):
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where Z
(

S0
)

 is an unsampled location, n is the number of sample points, the �i are weights assigned to each observed 
sample point, Z is a random function, and the Si are the sample locations.

OK is considered the best model when data samples are similar at short distances (GIS Geography, 2016), a 
characteristic of the Saldanha Bay bathymetry data used in this study. OK is a simple geostatistical method that 
uses a linear- weighted technique to predict values from a stationary random field based on the assumption that 
the constant mean of the data set is unknown (Adhikary & Dash, 2017; Setianto & Triandini, 2013).

3.3 | Bathymetric data and interpolation tests

Measurements of water depth (bathymetry) are called soundings and are commonly used to map the bottom of 
oceans, rivers or lakes through interpolation to create high- resolution bathymetric maps. Various methods are avail-
able in mapping bathymetry, such as remote sensing platforms (aircraft, satellites and drones), ships and underwa-
ter vehicles, using techniques such as SoNAR and LiDAR (Giordano, Mattei, Parente, Peluso, & Santamaria, 2015). 
A multi- beam echosounder is currently most commonly used to capture soundings. This SoNAR instrument is 
typically attached to the bottom or side of ships to record reflected sound pulses from the ocean floor to calculate 
bathymetry (Hasan, Ierodiaconou, Laurenson, & Schimel, 2014).

In this study, pre- processing included the conversion of soundings to metres above mean sea level with the 
transverse Mercator projection and WGS 1984 UTM Zone 34S coordinate system (Henrico & Bezuidenhout, 2020). 
To simulate the use of a varied quantity of soundings to conduct the three comparison tests, the ArcGIS 10.5.1 
Subset Features tool was used to extract sampling points randomly from the entire sounding data set. First 66% 
and then 33% of the entire data set was extracted, so that, besides the original sounding data set, two additional 
data sets were created to constitute the three different quantity data sets used to conduct the three interpolation 
comparison tests. Test 1 used the entire sounding data set (Figure 4a), which consisted of 1,653 points; test 2 used 

F I G U R E  3   Illustration of a typical semivariogram. Source: Adapted from Scheeres (2016) and Ferreira 
et al. (2017)
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66% of the sounding data set (Figure 4b), which consisted of 1.091 points; and test 3 used 33% of the sounding 
data set (Figure 4c), which consisted of 546 points.

In this study the sounding data set was divided into three sets with varying quantity of sounding points to con-
duct the interpolation (comparison) tests to create bathymetric maps with a ground sampling distance of 2 m. For 
each test, both the IDW and OK methods were applied to determine its efficiency when the number of sampling 
points differed. The ArcGIS 10.5.1 Geostatistical Analyst wizard was used to conduct all interpolation tests. The 
parameters selected for both the IDW and OK methods were the same for all tests. They are described below.

The IDW interpolation method is based on the principle that points closer to each other are more alike than 
those further apart and therefore assigns greater weights to points closer to the interpolated location. For all IDW 
tests, the Optimize function available in the wizard was selected to optimise the output for the model (Table 1). 
However, for the IDW test only the power value is optimised (i.e., between 2.19 and 2.9). This indicates that 
lower weights were assigned to points further from the interpolated location. Therefore, immediately surround-
ing points were more inclined to influence the predictions. The maximum and minimum neighbouring points to 
consider during these tests were 15 and 10 (default selection), respectively. The one- sector parameter (a single 
ellipse) was selected for the neighbourhood sector type.

OK bases the estimation of interpolated points on the assumption that the mean of the local neighbourhood 
is constant and unknown. The ArcGIS Geostatistical Analyst wizard follows a two- phase approach in conducting 
kriging tests. Firstly, a semivariogram is applied to analyse and optimally model the data. Secondly, the semivar-
iogram model is used to create the interpolation map. For all OK tests the Optimize function was selected to 
optimise the output for the model. The properties of the semivariogram (nugget, lag size and number, partial sill 
and range) were optimised, and their values are shown in Table 2. The maximum and minimum neighbours were 5 
and 2 (default selection) respectively, and the neighbourhood sector type was a four- sector one with 45° offset.

The Geostatistical Analyst wizard allows one to examine the spatial distribution and relationship of measured 
points to make changes to the parameters before creating the interpolation map. This happens after the OK 
method is selected and the semivariogram is created and displayed. Figure 5 illustrates the Gaussian semivariance 
models created for tests 1, 2 and 3.

4  | RESULTS AND PERFORMANCE OF THE INTERPOL ATION METHODS

The results and performance of the IDW and OK comparison tests are highlighted in this section via the inter-
polation maps created by each method. The performance of each method is analysed by assessing the original 

F I G U R E  4   The different quantities of sounding points used during this study to conduct the three 
interpolation comparison tests. (a) Test 1 was conducted using the entire sounding data set, which consisted of 
1,653 points. (b) Test 2 consisted of 1,091 points. (c) Test 3 consisted of 546 points
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measured and predicted values of the three interpolation tests. Consequently, test 1 used the entire data set of 
1,653 inputs points for performance assessment, test 2 used 1,091 input points and test 3 used 546 input points. 
Results are statistically quantified and comparisons are made between the difference and performance of IDW 
and OK. The interpolation maps (Figure 6) are displayed with a red to blue colour map ramp which indicates deep 
to shallow waters. The performance of the interpolation methods was assessed through SPSS statistical software 
(version 27) (https://www.ibm.com/za- en/analy tics/spss- stati stics - software). Firstly, 2D scatterplots were cre-
ated to show the relationship between predicted and measured sounding values for each of the interpolation 
methods. Secondly, an analysis of variance (ANOVA) test was conducted to determine whether the difference 
between the IDW and OK interpolation methods was statistically significant, and to deduce which method is most 
suitable to determine the bathymetry of Saldanha Bay. The following null and alternative hypotheses are defined:

H0: the depth values of IDW and OK are not significantly different;

HA: the depth values of IDW and OK are significantly different.

The results obtained by using the complete sounding data set (1,653 points) are illustrated in Figure 6a for IDW 
and Figure 6b for OK; the results obtained by using 1,091 of the sounding points (66%) are illustrated by Figure 6c 
for IDW and Figure 6d for OK; and the results obtained by using 546 of the sounding points (33%) are illustrated 
by Figure 6e for IDW and Figure 6f for OK.

TA B L E  1   Parameters used for conducting the three IDW interpolation tests

ArcGIS Geostatistical Analyst settings for the IDW deterministic method

Parameters Test 1 (100% soundings) Test 2 (66% soundings) Test 3 (33% soundings)

Number of sample points 1,653 1,091 546

Influence power option 2.191 2.398 2.9

Max. neighbours 15 15 15

Min. neighbours 10 10 10

Sector type 1 sector 1 sector 1 sector

TA B L E  2   Parameters used for conducting the three OK interpolation tests

ArcGIS Geostatistical Analysis settings for the OK geostatistical method

Parameters Test 1 (100% soundings) Test 2 (66% soundings) Test 3 (33% soundings)

Number of sample points 1,653 1,091 546

Nugget 7.075 7.546 7.69

Lag size 108.715 103.611 103.755

Lag number 12

Partial sill 20.772 20.615 19.366

Range 869.723 828.891 830.038

Max. neighbours 5 5 5

Min. neighbours 2 2 2

Sector type 4 sectors with 45° offset 4 sectors with 45° offset 4 sectors with 45° offset

https://www.ibm.com/za-en/analytics/spss-statistics-software
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Through visual comparison of these results, it is evident that there are explicit similarities in the way IDW and 
OK estimate and generate the continuous surface of bathymetry. It is also visually evident that the OK method 
produced a smoother representation of the interpolated surface compared to the rougher depth contours created 
by IDW, which may be attributed to the estimation approach that each interpolation method follows. The bull's- 
eye effect (described in Section 3.1) is clearly visible in the IDW result of Figure 6e (indicated by black circles). 
Even though this effect is also found on some of the OK results, it is more evident in the IDW results.

4.1 | Relationship between predicted and measured sounding values

Two- dimensional scatterplots (Figure 7) were used to evaluate the relationship between the predicted and meas-
ured sounding values for each of the interpolation methods through the use of a different quantity of sounding 
points.

The results (see Table 3) show that a strong linear relationship exists between predicted and measured sound-
ing values for both IDW (r = 0.9560, p < 0.001) and OK (r = 0.9349, p < 0.001) when 100% (n = 1,653) of the 
sounding points are used. In Table 3, Spearman's correlation coefficient (rs) is 0.95 (IDW) and 0.93 (OK). This is 
statistically significant (p < 0.001). However, this picture changes dramatically when 66% (n = 1,091) and 33% 
(n = 546) of the sounding values are used. Table 3 shows that during IDW interpolation rs is respectively 0.05 and 
– 0.05 when 66% and 33% of the sample points are used. These results are not statistically significant: p = 0.09 
and p = 0.24. For OK interpolation rs is 0.06 (66%) and – 0.04 (33%), respectively. These results are not statistically 
significant: p = 0.07 and p = 0.33.

F I G U R E  5   Gaussian semivariance models of the OK interpolation method depicting the spatial correlation of 
the soundings for: (a) test 1; (b) test 2; and (c) test 3
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F I G U R E  6   Interpolation maps (scale = 1:70,000) obtained from the IDW and OK interpolation methods: (a) 
IDW, 100% of soundings (1,653 points); (b) OK, 100% of soundings (1,653 points); (c) IDW, 66% of soundings 
(1,091 points); (d) OK, 66% of soundings (1,091 points); (e) IDW, 33% of soundings (546 points); and (f) OK, 33% 
of soundings (546 points)
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The results indicate that the relationship between the predicted and measured sounding values for each of the 
interpolation methods is highly influenced by sample size. This means that for a large quantity of sounding samples 
(n = 1,653) to determine the bathymetry of the Saldanha Bay, the strong correlation can be classified as significant. 
Conversely, for medium (n = 1,091) and small (n = 546) quantities of sounding samples the weak correlation can be 
classified as not significant. It is also evident by evaluating the scatterplots that the OK prediction showed an un-
derprediction for all three interpolation tests. Underprediction is a property of OK, as confirmed by other studies 
(Bradaï, Douaoui, Bettahar, & Yahiaoui, 2016; Esri, 2020b; Thiart, Ngwenya & Haines, 2014).

A comparison of the mean squared error (MSE) and root mean squared error of calibration (RMSEC) shows 
that the IDW interpolation method (MSE = 6.495, RMSEC = 2.548) performed better than the OK method 
(MSE = 9.965, RMSEC = 3.157) in predicting the bathymetry of Saldanha Bay.

F I G U R E  7   Two- dimensional scatterplots showing the relationship between measured and predicted 
sounding values for each of the interpolation methods through the use of a different quantity of sounding 
points: (a) IDW with 1,653 points; (b) OK with 1,653 points; (c) IDW with 1,091 points; (d) OK with 1,091 points; 
(e) IDW with 546 points; and (f) OK with 546 points
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4.2 | Statistical analysis of most suitable interpolation method between IDW and OK

Next, an ANOVA test was conducted to determine if the means of the IDW and OK interpolation methods are 
significantly different (Liu & Wang, 2020; Singh, 2018). Bland and Altman plots were used to plot the measured 
versus the predicted values for IDW and OK and to show the relationship between these values to determine 
the variability of differences between the two interpolation methods. The Bland and Altman method is good for 
visually checking that “the approach was reasonable and that the data were ‘well- balanced’” (Flegal, Graubard, & 
Ioannidis, 2020, p. 1312).

An analysis of all sounding data indicated that between the two interpolation methods, IDW performed better 
than OK in predicting Saldanha Bay depth values. Table 4 shows the descriptive statistics for IDW and OK abso-
lute (abs) residuals in all measures and predicted values.

ANOVA revealed that there was a significant difference in the effects for IDW absolute residuals and OK 
absolute residuals; F(1, 1,652) = 230.40, p ≤ 0.001. The superiority of IDW compared to OK in predicting the 
bathymetry of Saldanha Bay is illustrated by Figure 8. These results suggest that the depth values of IDW and 
OK interpolation methods to generate bathymetric maps of the Saldanha Bay are significantly different. IDW 
interpolation outperformed OK. Therefore, the null hypothesis (H0) is rejected and the alternative hypothesis (HA) 
is accepted.

The Bland and Altman plots for measured and predicted analysis of IDW and OK are shown in Figure 9. The 
majority of the values fall within the “limits of agreements”, but the effectiveness of IDW is confirmed with a mean 
of 0.01 compared to a mean of 0.32 for OK. The Bland– Altman Limits of Agreement (BA LoA) are statistical limits, 
which are “calculated by using the mean and the standard deviation/s of the differences between two measurements” 
(Giavarina, 2015, p. 143).

TA B L E  3   Two- dimensional scatterplot statistics for the IDW and OK interpolation methods

Interpolation method

Test 1 Test 2 Test 3

IDW OK IDW OK IDW OK

Number of soundings, n (%) 1,653 (100%) 1,091 (66%) 546 (33%)

r 0.9560 0.9349 0.1053 0.1117 – 0.0548 – 0.0531

p 0.0000 0.0000 0.0005 0.0002 0.2011 0.2158

Spearman correlation 
coefficient (rs)

0.95 0.93 0.05 0.06 – 0.05 – 0.04

p 0.00 0.00 0.09 0.07 0.24 0.33

TA B L E  4   Descriptive statistics from the ANOVA for all measured and predicted values between IDW and OK 
interpolation methods

Interpolation method

Abs residuals

Mean Std. deviation Std. error

95% Confidence intervals for 
mean

Lower bound Upper bound

IDW 1.548053 2.025035 0.049808 1.450360 1.645746

OK 2.004112 2.439747 0.060008 1.886412 2.121812
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5  | DISCUSSION AND CONCLUSIONS

The accuracy prediction of any interpolation method, including IDW and OK, to estimate bathymetry (of Saldanha 
Bay) is dependent on various factors of influence, including data variations (e.g., accuracy, density and distribu-
tion), type of terrain and spatial resolution of the output grids (Li & Heap, 2011). In the study by Li and Heap 

F I G U R E  8   ANOVA shows the average difference in all measured and predicted values between IDW and 
OK. DV_1 on the y- axis refers to residuals

F I G U R E  9   Bland and Altman plots showing the distribution of measured and predicted values of IDW (left) 
and OK (right)
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(2011), 53 comparative studies were assessed and a total of 72 interpolation methods— with IDW and OK among 
the most commonly used— were compared and analysed. Li and Heap (2011) stated that “there are no consistent 
findings about” the effects that the influencing factors have on the performance of the interpolation methods. It 
was also stated that sampling density was found to be insignificant and that it does not affect the performance 
of the methods.

In this study, the influencing factors include: highly accurate sounding points, which were collected using 
single- beam echosounders; varied density soundings (evident in the three interpolation tests that were con-
ducted) and a good distribution of sample points, covering the entire study area. The terrain researched was the 
ocean floor of Saldanha Bay. Its terrain type is characterised by a slope profile ranging from 0 m (coastline) to 
approximately 50 m (where the Bay meets the open Atlantic Ocean). The bathymetric maps created had a very 
high spatial resolution of 2 m which generated smooth bathymetric maps. In terms of factors that could affect the 
accuracy prediction of the IDW and OK interpolation methods to estimate the bathymetry of Saldanha Bay, all 
factors had an equal effect on both IDW and OK to produce optimal prediction results, because the same soft-
ware tools, processes, settings and data sets were utilised to conduct each comparative test.

The aim of this study was to analyse and compare the efficiency of the IDW and OK interpolation methods 
to predict the bathymetry of Saldanha Bay through a varying quantity of sampling points. Visual comparison re-
veals definite similarities in the way IDW and OK estimate and generate the continuous surface of bathymetry. 
The results show that using more sample points produced better interpolation results, which is confirmed by the 
prediction errors that increased as the quantity of soundings decreased. IDW consistently performed better than 
OK across all interpolation tests. However, only a large quantity of sounding samples (n = 1,653) to determine the 
bathymetry of Saldanha Bay showed a strong correlation that was classified as statistically significant. Based on 
the results obtained from this study, IDW is identified as the most suitable interpolation method to predict the 
bathymetry of Saldanha Bay. Compared to OK, it produced better accuracy predictions for all tests conducted. 
These findings were confirmed by the ANOVA statistical method.

Although this study evaluated two well- known and common interpolation methods using ArcGIS software, 
some limitations do exist. It might be feasible for future studies to determine the effectiveness of other interpo-
lation methods to predict the bathymetry of Saldanha Bay. Scientists agree that no superior or preferred method 
exists and that results are largely site- specific and data- specific (Murphy et al., 2010). It might also be interesting to 
perform similar interpolation tests with the use of different GIS software, such as QGIS. Such a study, to compare 
the software functionalities and interpolation tools between open- source and proprietary software, would be in-
valuable given the current global GIS market trend to move towards and adopt open- source solutions (Maida, 2020).

The effectiveness of IDW as opposed to OK in predicting the bathymetry of Saldanha Bay was illustrated 
by this study. Although the Optimize function available in the ArcGIS 10.5.1 Geostatistical Analyst wizard was 
applied to conduct the interpolation tests, and default parameters were applied, it is the opinion of the author 
that altering the parameters and settings of either of the models would not have had a significant influence on the 
outcome of these tests. The approach followed during this study established that IDW consistently outperformed 
OK when sampling quantities and patterns varied. This identifies IDW as the preferred interpolation method to 
use for future analysis of the bathymetry of Saldanha Bay.
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ENDNOTE
 1 Aerial photography was downloaded from the Chief Directorate: National Geo- spatial Information portal.
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