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Abstract

An RFI Simulation Pipeline to Help Teach
Interferometry and Machine Learning

Insight Enya Aku Agbetsiafa
Department of Electrical and Electronic Engineering,

University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (Elec)
April 2022

An interferometer is a collection of radio antennas that together form one
instrument. Machine Learning is the collective term that is used to refer to
a set of algorithms that can automatically learn to perform a speci�c task if
it is provided with training examples. Interferometry has become an intricate
part of the scienti�c landscape in South Africa with the advent of MeerKAT.
Similarly, utilizing Machine Learning (ML to improve our lives has grown in
popularity worldwide. Machine Learning is nowadays used to determine the
likes of people, to interpret human utterings, to automatically classify images
and the like. As these two �elds grow in popularity and importance within
the South African context, so does the development of tools that can aid in
teaching these �elds to undergraduate students.

A major problem for radio observatories worldwide is Radio Frequency In-
terference (RFI. RFI can be detected using ML. A simulator that can simulate
interferometric observations that are corrupted by RFI can serve as a testbed
for di�erent ML approaches. Moreover, if the simulator is simplistic enough
it can even be utilized as a teaching tool. In this thesis such a simulator is
developed. This simulator can aid in teaching students how visibilities can
be simulated and how RFI can be detected via ML. In e�ect, one tool that
can help teach two relevant undergraduate topics, namely interferometry and
ML. In particular, an experiment is proposed which an undergraduate student
can repeat to gain a deeper understanding of interferometry and ML. In this
experiment, visibilities are simulated, RFI is injected and detected using four
di�erent ML techniques, namely Naive Bayes, Logistic Regression, k -means
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ABSTRACT iii

and Gaussian Mixture Models (GMM). The results are then analysed and
conclusions are drawn. For the simplistic setup considered here, the ranking
of the four algorithms is from best to worst: Naive Bayes, Logistic Regres-
sion, GMM and then k -means. In the future, if the simulator is extended
somewhat, it can also be used as a testbed for comparing numerous other ML
algorithms. The thesis also provides a comprehensive review of all the theory
that a student requires to master both interferometry and ML.
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Uittreksel

'n RFI Simulasie Pyplyn om te Help met die Onderrig
van Interferometrie en Masjienleer

(�An RFI Simulation Pipeline to Help Teach Interferometry and Machine 
Learning�)

Insight Enya Aku Agbetsiafa
Departement Elektriese en Elektroniese Ingenieurswese,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Elek)
April 2022

'n Interferometer is 'n versameling van radio antennas wat saam een instrument 
vorm. Masjienleer is die kollektiewe term wat grebruik word om te verwys na 
'n stel algoritmes wat automaties kan leer hoe om 'n spesi�eke funksies te 
verrig, gegee afrigtingsvoorbeelde. Interferometrie, het 'n belangrike deel van 
die wetenskaplike landskap in Suid-Afrika geword met die loots van MeerKAT. 
Soortgelyk, masjienleer se gebruik het wêreldwyd drasties gegroei. Masjienleer 
word deesdae gebruik om die voorkeure van mense te bepaal, om die woorde 
wat mense uiter te herken, om prentjies te klassi�seer en dies meer. Soos 
wat die twee velde se gewildheid groei, word dit al hoe meer belangrik om 
toepassings te ontwikkel wat gebruik kan word om te help om die twee velde 
aan voorgraadse studente te verduidelik.

'n Groot probleem wat radio-sterrewagte in die gesig staar is Radio Fre-
kwensie Inmenging (RFI. RFI kan met behulp van masjienleer geïdenti�seer 
word. 'n Simulator wat sigbaarheidsmetings kan genereer wat besmet is met 
RFI kan gebruik word om verkillende masjienleer tegnieke met mekaar te ver-
gelyk. Verder, as 'n simulator eenvoudig genoeg is, kan dit ook gebruik word 
as 'n onderrigstoepassing. In hierdie tesis word so 'n simulator ontwikkel. 
Die simulator kan gebruik word om beide, interferometrie en masjienleer, aan 
studente te verduidelik. Meer spesi�ek, 'n eksperiment word voorgestel wat 
studente sal kan herhaal. In die eksperiment word sigbaarhaeidsmetings ge-
genereer wat vermeng word met RFI. Vier masjienleer algoritmes word dan
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gebruik om die RFI te identi�seer. Die vier algoritmes is: Naïewe Bayes, Lo-
gistiese Regressie, Gausiese Mengsel Modelle (GMM) en k -gemdideldes. Die
akkuraatheidsrangorde van die vier algoritmes, soos in die studie bevind, is
dieselfde as wat hier gegee is. As die simulator uitgebrei word kan dit ook
gebruik word om verkeie ander masjienleeralgoritmes met mekaar te vergelyk.
Die tesis bevat ook 'n oorsig van al die teorie wat 'n student sou kon help om
beide velde te bemeester.
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Chapter 1

Introduction

1.1 Background to the Study

Radio astronomy is a branch of astronomy that involves the study of radio
emissions from celestial sources at radio frequencies. Radio telescopes receive
radio waves being emitted from celestial sources in the universe. An image
of the MeerKAT radio telescope is seen in Figure 1.1. Radio telescopes are
discussed in greater detail in Chapter 2. The signals received by radio antennas

Figure 1.1: A view of two out of the 64 dishes of the South African MeerKAT radio

telescope [7].

get corrupted by Radio Frequency Interference (RFI).
RFI lowers the quality of data; in the worst case the data becomes unusable.

Radio data therefore needs to be cleaned thoroughly before use; by utilizing
elimination or reduction techniques. This is discussed in greater detail in
Chapter 3.

1
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CHAPTER 1. INTRODUCTION 2

Radio observatories have also developed e�ective physical RFI mitigation
strategies. These measures include the building of obervatories in secluded
places. Another is prohibiting the use of some bandwidths at and around the
observatories and also using natural cover such as the mountains to protect
radio telescopes from RFI [1].

Machine learning (ML) refers to the study of a set of algorithms that learns
from data. It is discussed further in Chapter 4. It can be used in various ways
but in this project, it is used for RFI detection.

It is important to highlight the fact that this project is multifaceted. An
RFI simulator is proposed within this thesis which can serve as both a teaching
tool and a testbed (if extended) of RFI detection algorithms. In the latter
regard, four algorithms namely Naive Bayes, Logistic Regression, k -means
and Gaussian Mixture Models (GMM) were considered. The performance of
these methods were determined and their accuracy is reported in Chapter 5.
The name of this simulator is Simulator-Insight, it can be downloaded here:
https://github.com/Insight-Agbetsiafa/Simulator-Insight.

Let us now discuss the motivation behind the development of this simula-
tor. The theoretical standard textbooks that are currently being used to teach
interferometry and ML, respectively, are Interferometry and Synthesis in Ra-
dio Astronomy [1] and Deep Learning [2]. Recently, some textbooks have come
out which are more practical in nature in both �elds, namely Fundamentals
of Radio Interferometry [4] and Hands-on ML using Scikit-learn, Keras and
Tensor�ow [3]. Images of some of the textbooks are seen in Figure 1.2. The
practical interferometry textbook [4] can be further supplemented via simula-
tors like, the Friendly Virtual Radio Interferometer [8], APSYNSIM [9] and
Pynterferometer [10]. The aforementioned simulators are all radio interferom-
etry related.

This notion can be extended further, by developing a simulator that can
aid in teaching both interferometry and ML. This can be best accomplished by
developing an RFI simulator. There exists a host of RFI simulaters, namely
RFIsim [11], HIDE [12] and hera_sim [13]. Most of these simulators are
deductive, meaning they employ the physical laws of nature to produce output
values. In this thesis, an inductive simulator is proposed. Inductive simulators
reproduce the statistical properties of a dataset directly; it does not fall back
on physics to do so. The fact that the proposed simulator is inductive makes it
simplistic, which in turn implies that it can be e�ectively utilized as a teaching
tool.

1.2 Research Objectives

To summarize, there are three main objectives:
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CHAPTER 1. INTRODUCTION 3

(a) Interferometry and

Synthesis in Radio As-

tronomy Textbook [1]

(b) Deep Learning Text-

book [2]
(c) Hands-on ML using

Scikit-learn, Keras and

Tensor�ow Textbook [3]

Figure 1.2: Images of some Radio Interferometry and Machine Learning Textbooks

Objective 1
Develop a simplistic inductive simulator which can be utilized as a teaching
tool. This tool should enable students to master the �elds of interferometry
and ML. The objective of this project is to develop a simulation pipeline (using
Python programming) which would serve as a teaching tool, i.e. it must enable
students learn the fundamentals of interferometry and machine learning in a
practical way.

Objective 2
Provide a concise summary of the theory a student would need to master both
interferometry as well as ML.

Objective 3
Compare the e�cacy of four ML algorithms when used to detect RFI, namely
Naive Bayes, Logistic Regression, k -means and Gaussian Mixture Models (GMM)
using the aforementioned simulator. Draw initial preliminary conclusions as
to which algorithm is best suited to detect RFI.

Of course these conclusions shoud be con�rmed, once the simulator is ex-
tended. Some of the limitations of the simulator are listed in Section 5.4 of
Chapter 5.

1.3 Organisation of Study

This thesis is divided into six chapters:

1. The �rst chapter gives an overview of the background to the study, the
research objectives and the organisation of the study.
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CHAPTER 1. INTRODUCTION 4

2. The second chapter includes the background and theory on the funda-
mentals of radio interferometry.

3. The third chapter consists of research and reviewed literature in relation
to RFI.

4. The fourth chapter discusses ML and includes a detailed explanation on
the various classi�cation algorithms that were used in this project.

5. The �fth chapter includes the methodology of the project, limitations,
results and analysis.

6. The sixth chapter lists conclusions and future recommendations.
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Chapter 2

Interferometry

In this chapter, the background regarding interferometry is presented. A his-
torical introduction is given in Section 2.1, the cooordinate systems that are
used within interferometry are discussed in Section 2.2, the nature of visibili-
ties and the Van Cittert-Zernike theorem are discussed in Section 2.3, the fact
that the visibility function and the sky distribution function form a Fourier
pair is stated in Section 2.4 and lastly, an overview of imaging and calibration
is presented in Section 2.5.

2.1 A Brief History of Radio Astronomy and

Interferometry

Radio astronomy is the study of celestial bodies that give o� radio emission.
Examples of such bodies include planets and galaxies. To detect the radio
emissions coming from celestial bodies, a radio telescope can be used [14].
Karl G. Jansky was a radio engineer from Bell Telephone Laboratories. He
was the �rst to conduct a radio astronomy experiment (in 1931). His task
was to study and detect static interference which a�ected telephone signals
[14]. In order for him to make further observations, he designed and built
a directional antenna system which was around 30 metres long by 4 metres
high and placed it on a platform with four wheels that could rotate horizon-
tally (azimuth) [15]. Jansky made observations with this antenna which he
grouped into three types of static. The �rst type was local thunderstorms, the
second was distant thunderstorms and the third was a faint steady hiss from
an unknown origin, which he later realized was emanating from the centre of
the Milky Way Galaxy. He could not further his research because he had no
�nancial support. Fortunately, Grote Reber who was also a radio engineer
knew about Jansky's ideas and decided to extend it by building a parabolic
re�ector radio telescope. In addition to this antenna system moving along the
azimuth, it could move in an upward and downward direction too [15].

5
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CHAPTER 2. INTERFEROMETRY 6

Figure 2.1: Image of Karl Jansky who was the �rst to conduct a radio astronomy

experiment in 1931 [15].

With time, bigger antennas were designed and built in order to detect very
weak signals from sources that are further away. A single dish telescope does
not have a large collecting area since it is made of a single dish. This makes
it impossible to achieve higher resolution. To solve this problem, a technique
known as interferometry was developed, which entails creating an array using
several individual radio telescopes [1].

In 1946, Martin Ryle and Derek Vonberg built a radio inteferometer using
this technique to examine cosmic radio emission which had been detected by
previous scientists [1]. This was how interferometry originated.

An interferometer works by using interference principles to determine the
locations of sources that radiate waves. This dates back to Albert Abra-
ham Michelson who developed the Michelson interferometer which was used
to measure the diameter of the red giant Betelgeuse in an experiment [1]. This
interferometer comprised of a half-silvered mirror known as a beam-splitter
and two other mirrors. When light falls on the beam-splitter, half of the beam
goes to one mirror and the other half goes to the second mirror. After being
re�ected by the two mirrors, these beams merge again and are then processed
by the detector. The di�erence in path length of the two light beams results
in the formation of a fringe pattern which is then examined by the detector
[16].

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. INTERFEROMETRY 7

Figure 2.2: An array of radio telescopes known as the Very Large Array (VLA).

Aside the MeerKAT in Figure 1.1, this is another type of radio telescope comprising

of 27 dishes [17].

2.1.1 Interferometers

An interferometer consists of several individual antennas working together to
form a single instrument. The instrument so obtained has a higher resolution
than any of its constituent antennas. This is due to the fact that it is made
of multiple antennas in an array, and the size of the array determines the
amount of incoming radiation that can be collected or how best very weak
signals can be detected. Several baselines can be formed from the various
antennas. A baseline can be de�ned as the di�erence vector which is formed
by the coordinates of two antennas. The interferometer tracks a point on
the sky known as the phase centre. Regardless of the distance between other
sources, time delays are introduced for waves arriving in phase across the array
of antennas. When the time delayed signals from all antennas are correlated
with one another, visibilities are created.

In Figure 2.3, the two dishes point in the same direction as the unit vector
�s. The angle θ is the angle between the baseline vector b⃗ and �s; c is the speed
of light in a vacuum. The geometric delay, τg is the di�erence in the arrival
times of plane waves. This delay that is experienced by a plane wave arriving
at antenna 1 in this �gure is:

τg =
b⃗ · ŝ
c

(2.1)
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Figure 2.3: Diagram of a single baseline interferometer: two antennas separated by

the baseline vector b⃗ of length b pointing from antenna 1 to antenna 2 [18].

2.2 Coordinate Systems

Coordinate systems for astronomical source positions, antennae positions and
their associated baseline vectors are important in interferometry. These coor-
dinate systems are used to identify positions of objects in space [4].

One of the coordinate systems used in this project is the equatorial coor-
dinate system. The coordinates used in this system include: right ascension
(α) and declination (δ). These coordinates are of the J2000 epoch which re-
ports the source locations of celestial objects as they were in the year 2000 [1].
The coordinate systems used for the antennas are the ENU (East-North-Up),
XYZ and uvw coordinates. These coordinates are rotations of one another,
measured in the same distance units. Further details are presented in section
2.2.3 on page 13.

2.2.1 Celestial Coordinates

Celestial coordinates are coordinates used to pinpoint positions of celestial
bodies on the celestial sphere.

The universe can be projected onto an imaginary sphere which surrounds
earth. This sphere is known as the celestial sphere [4]. The celestial equator
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which is the projection of the earth's equator onto it can be found on the
celestial sphere. The north and south celestial poles are also determined by
projecting the Earth's poles onto the celestial sphere [4]. This is illustrated in
Figure 2.4.

Figure 2.4: Diagram of the celestial sphere showing the equator and the poles with

the ball-like structure inside the big sphere representing the Earth. The equatorial

coordinates: right ascension and declination (in green) are being shown too. The

red circle is the sun's apparent path around the sky, which de�nes the ecliptic [19].

2.2.1.1 Equatorial Coordinates

Equatorial coordinates is a popular coordinate system used to locate objects
on the celestial sphere. These coordinates are independent of the location of
the observer and the time of the observation. Thus, observers in di�erent
locations and on di�erent times can use the same coordinates. Just as an
individual can pinpoint locations on Earth using the latitude and longitude
of that location as depicted in Figure 2.5, so can celestial objects be located
using their equatorial coordinates.

This coordinate system is similar to the geographical coordinate system
used on Earth. They use the same basic plane and poles as that of the ge-
ographic coordinate system. The main di�erence between the equatorial and
geographic coordinate systems is that: the equatorial system is �xed to the
stars which seems to rotate across the sky which is not actually the case. The
geographic coordinates on the other hand is �xed to the earth [4].
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Figure 2.5: Earth shown covered in an imaginary grid of latitude lines (measured

from 0◦ to 90◦ north and south of the equator) and longitude lines (measured from

0◦ to 180◦ east and west of the prime meridian). The East and West longitude

su�xes are occassionally replaced by a negative sign for the western hemisphere and

a positive sign for the eastern hemisphere [19].

Equatorial coordinates of an object is de�ned by its right ascension and
declination. Declination refers to an angle and indicates by how much an
object lies above or below the celestial equator. Its unit of measure is degrees,
arcminutes and arcseconds. The right ascension measures the angle of objects
east of the Vernal Equinox and its unit of measure is hours, minutes and
seconds or in units of time [4]. Vernal Equinox is the point where the celestial
equator intersects the ecliptic (path sun travels on celestial sphere) which serves
as a reference point for all other celestial bodies [4].

2.2.1.2 Hour Angle:

Hour circle is any great circle on the celestial sphere that passes through the
celestial poles, intersecting the celestial equator perpendicularly. Hour angle
(H ) is like a dynamic right ascension and is de�ned as the angular distance
between the hour circle of a celestial object and the local meridian measured
along the celestial equator [4]. This angle is commonly measured in hours,
minutes and seconds [15]. The hour angle is expressed mathematically as
H = LST−α where α is the right ascension and LST, the Local Sidereal Time
(i.e the hour angle of the �rst point of Aries). Astronomers are interested in
observing the stars. For this reason, they use a sidereal time-keeping system
to keep track of the vernal equinox instead of the sun [4].
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Figure 2.6: The relationship between direction α, H and LST. The red plane

represents the fundamental plane of the celestial coordinate system. The blue plane

also represents the fundamental plane of the horizontal coordinate system [4].

2.2.2 Direction Cosine Coordinates

Another useful coordinate system which is used to pinpoint a location on the
celestial sphere are the l, m and n coordinates. The l, m and n coordinates
are actually direction cosines and are aligned with the u,v,w coordinates as
depicted in Figure 2.7.

Direction cosine coordinates can be used to highlight the fact that the
sky brightness distribution and the visibility function form a Fourier pair.
Figure 2.8 shows the fundamental plane of the direction cosine coordinate
system and the fundamental plane of the equatorial system represented in
blue and red respectively. The �eld centre, Sc is used as an arbitrary reference
point and the n-axis points toward it. S represents the direction cosine position
vector of a celestial body. If this vector is projected onto the lm-plane, then
this resulting vector will have a length equal to sin θ. Here, θ denotes the
angular distance between the �eld centre Sc and S measured along the surface
of the celestial sphere [4]. If θ is small, the aforementioned length is also equal
to
√
l2 +m2, which implies that l2 +m2 ≈ θ2. Therefore,

√
l2 +m2 may be

interpreted as the angular distance measured between the source at S and the
�eld centre Sc measured along the surface of the celestial sphere. The l and
m coordinates may be measured in degrees [4].
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Figure 2.7: Diagram showing the two fundamental coordinate systems in interfer-

ometry. Namely, the uvw coordinate system and lmn coordinate system[18]

Figure 2.8: The relationship between direction cosines coordinates and the celestial

coordinate system. The fundamental plane of the direction cosine coordinate system

represented in blue and the fundamental plane of the equatorial system represented

in red. Since the radius of the celestial sphere is equal to one, the orthogonal funda-

mental axes of the direction cosine coordinate system l, m and n can be labelled [4].
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The l,m,n coordinates are dimensionless direction cosines but if |a|=1, they
become cartesian coordinates:

l =
a1
|a|

= cos(α)

m =
a2
|a|

= cos(β) (2.2)

n =
a3
|a|

= cos(γ)

Figure 2.9: Direction cosine coordinates (l,m,n) and their angles represented by α,

β and γ respectively [4].

From the right ascension (α) and declination (δ) of sources, the l and m
coordinates can be obtained if the �eld-center is known. This is expressed in
Equation (2.3).

l = sin(θ) sin(ψ) = cos(δ) sin(α− α0)

m = sin(θ) cos(ψ) = sin(δ) cos(δ0)− cos(δ) sin(δ0) cos(α− α0)

δ = sin−1
(
m cos δ0 + sin δ0

√
1− l2 −m2

)
α = α0 + tan−1

(
1

cos δ0
√
1− l2 −m2 −msinδ0

)
(2.3)

2.2.3 Baseline Coordinates

A baseline is the distance or separation vector between two antennas in an
interferometric array [4]. In an interferometric array comprising of antennas,
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several baselines are formed by every pair of antennas in the array. For in-
stance, for the 7-dish Karoo Array Telescope (KAT-7) consisting of 7 antennas,
21 baselines are formed. To �nd the number of baselines given the number of
antennas, this formula is used:

B =
N2 −N

2
(2.4)

where N represents the number of antennas and B represents number of base-
lines.

2.2.3.1 ENU Coordinates

The ENU coordinate system also known as the East-North-Up coordinate sys-
tem is a basic antenna coordinate system measured in meters. These coordi-
nates are relative to the local horizon. Another useful coordinate system is
the horizontal frame (A, E). Here A denotes azimuth and E denotes elevation.
Figure 2.10 shows the relation between the horizontal frame (A, E) and the
ENU cartesian frame. The azimuth is referred to as the angle in the plane
of the local horizon measured in the clock-wise direction from North to East.
The elevation also is the angle that is measured from the horizon to the local
zenith [4].

Figure 2.10: Relation between the horizontal frame (A, E) and the (E,N,U ) carte-

sian frame [4].

Baseline vectors are di�erences between coordinates and to calculate a base-
line between antenna one and antenna two, the following vector can be calcu-
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lated:
b⃗ = (bx, by, bz) = (x2 − x1, y2 − y1, z2 − z1) (2.5)

2.2.3.2 XYZ Coordinates

A new coordinate system, XYZ, is obtained from a single rotation of the ENU
coordinate system. The X-axis of the XYZ coordinate system points towards
(0h, 0◦) depicting the point where the vernal equinox crosses the local meridian,
the Y-axis points towards (−6h, 0◦) due East and the Z-axis passes through
the North Celestial Pole (NCP) [4; 1].

XY
Z

 = D

cosL sin E − sinL cos E cosA
cos E sinA

sinL sin E + cosL cos E cosA

 (2.6)

where D represents the baseline length and L represents the latitude.

2.2.3.3 uvw Coordinates

The uvw coordinate is yet another cartesian coordinate system. Antenna po-
sitions are also described when using this coordinate system.

Equation 2.6 above can be transformed into a uvw frame. This new frame
is found in equation 2.7. Here δ denotes the declination of the �eld center and
H0 denotes its hour angle, while λ denotes the observational wavelength. This
same equation shows that the u coordinate of a baseline depends only on the
hour angle of the source but does not depend on the declination δ.

uv
w

 =
1

λ

 sinH0 cosH0 0
− cosH0 sin δ0 sinH0 sin δ0 cos δ0
cosH0 cos δ0 − sinH0 cos δ0 sin δ0

XY
Z

 (2.7)

The uv -coverage of a baseline is generated by converting the baseline vec-
tors in the XYZ coordinate system to the uvw coordinate system as the hour
angle of the centre of the observational �eld varies over time. The uvw coor-
dinate system is �xed to the centre of the observation �eld [20]. Figure 2.11
shows the relationship between the XYZ and uvw coordinate systems. The
phase reference also known as the �eld centre of the observation is represented
by s0 and the equatorial coordinates of s0 are (H0, δ0).

2.3 Visibilities

Considering a quasi-monochratic plane wave of frequency f, striking a pair of
antennas such as those depicted in Figure 2.3. Assuming the voltage induced
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Figure 2.11: Relationship between the XYZ and uvw coordinates. XYZ coordinates

represented in black and uvw coordinates represented in red [20].

at each antenna is directly proportional to the electric �eld of the arriving
electromagnetic wave, the voltages, Vj and Vk, as a function of time at antennas
j and k will be equal to:

Vj = V cos[ω(t− τg)], Vk = V cos(ωt) (2.8)

Taking the cross-correlation of the signals (Vj and Vk) where ω = 2πf :

⟨VjVk⟩ = V 2
〈
cos(2πf(t− τg)) cos(2πft)

〉
(2.9)

=
V 2

2

〈
cos(4πft− 2πfτg) + cos(2πfτg)

〉
(2.10)

=
V 2

2
cos(2πfτg) (2.11)

The angle brackets (<.,.>) is the inner product which sums the responses at
each antenna (antenna j and antenna k), multiplies the two and averages them.
The cosine addition rule and the double angle identity for both cosine and sine
are used in equations (2.9) and (2.10). Simplifying these two equations, results
in equation (2.11). This mathematical operation is performed by the so called
cosine correlator. If a phase delay of 90◦ is added to one of the antennas, the
result will be V 2

2
sin(2πfτg). A complex correlator can now be created whose

output is de�ned by a complex number as:
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V 2e−2πifτg (2.12)

A small region around the phase centre is considered since the directional
feedback of a parabolic dish is very small, thus around 1◦ on the sky. The
output correlator in equation(2.12) is directly proportional to V 2 which is also
proportional to the power received (i.e. the brightness distribution Iv(s) per
unit frequency at v in direction s). More formally:

r(τ) =

∫
Iv(s)e

−2πifτgdΩ

=

∫
Iv(s)e

−2πib.s
λ dΩ (2.13)

dΩ describes an element of in�nitesimal solid angle on the celestial sphere
that can also be expressed in terms of (l,m,n) coordinates by using the Jacobian
determinant, i.e.

dΩ =
dldm

n
=

dldm√
1− l2 −m2

(2.14)

The Van Cittert-Zernike theorem now follows from Equation 2.1, Equation
2.13 and Equation 2.14:

V (u, v, w) =

∫ ∫
I(l,m)e−2πi[ul+vm+w(n−1)]dldm

n

where n =
√
1− l2 −m2. Note that for the sake of brevity, some of the steps

needed to derive the Van Cittert-Zernike theorem are not given here. The
reader interested in these steps is referred to [1].

2.4 Fourier Transform

Assuming the �eld of view (fov) of a telescope, de�ned by the primary antenna
beam is small such that l2 + m2 ≪ 1 =⇒ n ≈ 1. It now follows that the
w -term in the Van Cittert-Zernike theorem becomes negligible. This same
equation, therefore, simpli�es and becomes:

V (u, v) =

∫ ∫
I(l,m)e−2πi(ul+vm)dldm (2.15)

= F{I(l,m)}
I(l,m) ≈ F−1{V (u, v)}

Equation (2.16) reveals that the visibility function and the sky distribution
function form a Fourier pair.
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2.5 Calibration and Synthesis Imaging

A brief overview of calibration and imaging is provided in this section although
they are not explored in our pipeline.

2.5.1 Imaging

Imaging entails producing an image of the sky from visibility measurements of
an interferometric array [4]. The sky distribution, I and the visibility function,
V form a Fourier pair. This can be written as:

V ⇀↽ I (2.16)

Equation (2.16) is only valid when the uv -plane is sampled continuously such
that the visibility is measured for all values of (u, v). If there are �nite number
of antennas, the uv -plane is sampled at discrete points:

S(u, v) =
∑
k

δ(uk, vk) (2.17)

where uk and vk are the (u, v) points measured by the telescope and S(u, v)
denote the sampling function. The feedback of an imaging system to a point
source is known as the Point Spread Function (PSF). The following equation
shows the Fourier Transform relationship between the PSF and the sampling
function:

S(u, v)⇀↽ PSF (l,m) (2.18)

Now the dirty image can be de�ned as:

ID(l,m) ≈
∫ ∞

−∞

∫ ∞

−∞
S(u, v)Vobs(u, v)e

−2πi(ul+vm)dudv (2.19)

where Vobs(u, v) represents the observed visibilities, S(u, v) represents the sam-
pling function and ID(l,m) represents the dirty image. The sampled visibilities
V S become the product of the observed visibility function Vobs and the sam-
pling function S:

V S = S(u, v)Vobs(u, v) (2.20)

Taking the fourier transform of equation 2.20 results in:

ID = F{V S} = F{SVobs} (2.21)

It now follows from the convolution theorem that the dirty image can be de-
scribed as the convolution of two functions, F{S} and F{Vobs}:

ID = F{S} ◦ F{Vobs} (2.22)
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F{S} is the PSF response of an array and depends on the array con�gurations.
F{Vobs} is the Fourier transform of the visibility space that is fully sampled.
The (l,m) and (u, v) symbols are discarded for simplicity.

It can therefore be concluded that, the dirty image results from the convo-
lution of the Fourier transform of the sampling function i.e. the PSF with the
Fourier transform of the visibility function i.e. the true sky/ideal image.

ID = PSF ◦ I ideal (2.23)

After a dirty image is made, deconvolution is performed. This is decribed in
the following section.

2.5.1.1 Deconvolution

Visibility sampling causes a dirty image containing bright sources which are
surrounded by PSF-like sidelobes [4]. These sidelobes in the PSF can be
removed using deconvolution methods. Deconvolution is therefore de�ned as
the process of correcting a dirty image by removing the sidelobes caused by
the PSF from the image [4].

Residual image(noise left behind after removing the sky model) and re-
stored image (residual image convolved with restoring beam) are the results
of deconvolution.

Irestored = Iskymodel ◦ PSFideal + Iresidual (2.24)

Approaches used for deconvolution include: Högbom's CLEAN algorithm
(Image-Domain CLEAN), Clark's CLEAN algorithm (Gridded Visibility Do-
main CLEAN), Cotton-Schwab's CLEAN algorithm (Visibility Domain CLEAN),
Maximum Entropy Method (MEM), Non-negative least-squares (NNLS) algo-
rithm and many others. Some of the various CLEAN algorithms are discussed
next in the sections below:

2.5.1.1.1 Högbom's Algorithm: This algorithm is widely used and was
introduced by Jan Högbom in 1974. This deconvolving algorithm is used
particularly in the image domain [1].

The pseudocode of Högbom's CLEAN Algorithm and a brief summary of
it is given below [1; 4]:

1. A copy is made of the dirty image ID(l,m) to be cleaned which is called
the residual image Ires(l,m).

2. Find the position of the brightest pixel in the residual image.

3. At the maximum position, subtract from the residual image the dirty
beam multiplied by the maximum strength fmax and a gain factor γ
which is referred to as loop gain.
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input: ID(l,m), PSF (l,m), γ, fthresh, N
initialize: Smodel ← {}, Ires ← ID, i← 0
while any(Ires > fthresh) or i ≤ N do

lmax,mmax ← argmax
l,m

Ires(l,m)

fmax ← ID(lmax,mmax)
Ires ← Ires − γ.fmax.PSF (l + lmax,m+mmax)
Smodel ← Smodel + {lmax,mmax : γ.fmax})
i← i+ 1

end while
output: Smodel, Ires

4. Go back to step 2 unless the intensity of all remaining pixels are below
some user speci�ed threshold or when the number of iterations reach the
limit speci�ed by the user.

5. The accumulated point source model is convolved with a clean beam
which is a 2D Gaussian �tted to the central lobe of the dirty beam.

6. The residuals of the dirty image is added to the CLEAN image to form
the restored image.

2.5.1.1.2 Clark's Algorithm: Clark introduced this algorithm in 1980.
It is based on the subtraction of point source responses in the (u, v) plane.
This algorithm has two cycles known as the minor cycle and the major cycle.
The minor cycle uses a beam patch including the main beam and the ma-
jor sidelobes to identify the components to be removed by doing approximate
subtractions. In the major cycle, the point source models that were identi�ed
in the minor cycle are subtracted without approximation in the (u, v) plane.
These point source models can be transformed using Fourier Transforms, mul-
tiplied by the inverse transform of the beam, transformed back and subtracted
from the dirty image. The minor and major cycles are repeated until a stop
condition is reached [1].

2.5.1.1.3 Cotton-Schwab's Algorithm: Another algorithm used is the
Cotton-Schwab Algorithm which is a variant of the Clark Algorithm. The
major cycle subtracts CLEAN components from the ungridded visibility data
which removes aliasing noise and gridding errors [1]. This algorithm makes use
of the gridder/de-gridder functions and can be more expensive but generates
better results.
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2.5.1.2 Comparison of Algorithms

The Högbom's algorithm (image-domain) and Clark's (gridded visibility-domain)
are easy to use but accuracy in PSF removal is limited e.g. w-term e�ects.
Cotton-Schwab's (visibility-domain) is preferable because it performs accurate
subtraction of sky model but it is computationally costly [4].

2.5.2 Calibration

In radio interferometry, there are propagation phenomena that introduce er-
rors into signals measured by a radio interferometer, which in turn a�ects the
visibilities. The errors are sometimes caused by instrumental factors such as
the antenna gains and positions, and at other times by environmental fac-
tors such as the atmosphere. Removal of these errors is known as calibration
[1]. Calibration procedures allow antenna gains and phases to be determined
during usual operation of the radio telescope. Consider the following equation:

||r|| = ||d−m|| =

√√√√ N∑
i=1

(di −mi)2 (2.25)

When given a model and some data, a set of parameters is determined.
This set of parameters minimizes the di�erence between the model and data.
The model vector and data vector is represented by m and d respectively.
The Euclidean vector norm of their di�erence is minimized and the residual
vector which is a measure of the di�erence between the predicted values by the
model and the observed values is represented by r. Also, m is a parameterized
function with input parameters such as (x1, x2, x3, ...) that forms the param-
eter vector x. Minimizing the above equation is known as Least Squares
Minimization. Using this approach, one can �nd the antenna gains which
minimizes the di�erence between the observed and the predicted visibilities.

Calibration is divided into three generations. They are: 1GC calibration,
2GC calibration and 3GC calibration.

2.5.2.1 1GC Calibration

1GC calibration is the oldest form of calibration i.e. �rst generation cali-
bration. This type of calibration is carried out using calibrator observations.
These are observations of sources with parameters that have been well char-
acterized, i.e their shape, �ux and spectral response are well known. The
calibrator observation is then used to obtain calibration solutions which is
applied in order to correct the target �eld observation.

An observing strategy includes intermittent calibrator scans of a calibrator
�eld which is known. The obtained calibration solutions can then be inter-
polated onto scans of the target �eld [21]. This procedure is e�ective when
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removing large-scale errors in visibilities and is performed by using the least-
squares approach [4].

2.5.2.2 2GC Calibration

2GC calibration also known as second generation calibration was introduced in
the 1980s. It involves using the target �eld itself to calibrate the observation.
[22]. 2GC calibation is also known as self-calibration.

The self-calibration framework is an iterative approach which helps reduce
errors between predicted visibilities that are corrupted by an instrumental
model (the free parameters) and observed visibilities in a least squares sense
during each iteration. An initial sky model for selfcal (self-calibration) can be
obtained by imaging visibilities that have been corrected by the interpolated
calibrator solutions.

Self-calibration switches between the image domain where deconvolution
is done and the visibility domain where calibration takes place. The self-
calibration framework is depicted in Figure 2.12.

Figure 2.12: Self Calibration Framework [4]

The steps used in self-calibration are as follows [4; 1]:
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1. Create an incomplete initial sky-model of a chosen �eld

2. The initial sky-model is then used to calibrate the observed visibilities.

3. The resulting image is deconvolved.

4. Run a source �nder on the deconvolved image to create a more accurate
sky model.

5. Go back to step 2, or stop the process if the target dynamic range has
been reached.

2.5.2.3 3GC Calibration

3GC calibration (is known as the third generation calibration) is the contem-
porary way of calibrating. It is primarily used to remove direction-dependent
e�ects (DDEs) eg. primary beam or the sensitivity pattern of antennas. These
e�ects are non-uniform across the �eld of view, hence, they have to be removed
in order to fully exploit the capabilities of telescopes such as the MeerKAT
and the SKA [22; 4]. Procedures used in this form of calibration are add-ons
of the 2GC self-calibration.

Techniques used in 3GC are grouped into two categories: physics-based and
heuristic-only techniques. In physics based technique, the underlying physical
phenomenom is known. Based on this underlying phenomenon, a parametrized
model is constructed and the parameters are solved for. The results obtained
are then used to correct the observed visibilities. An example of this approach
is the Kalman �lter [23]. The heuristic-only technique on the other hand deals
with unknown underlying physical phenomenon. A number of free-parameters
are solved for and are used to optimize [4]. An example of this approach is
di�erential gains [24].
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Chapter 3

Radio Frequency Interference

Section 3.1 of this chapter discusses interference, its e�ects on signals and the
various divisions of radio frequencies. Following this, the sources of RFI which
includes satellites are presented in Section 3.2. Some ways by which RFI can
be detected and monitored, as well as some approaches from literature that
are used in eliminating or reducing the e�ects are discussed in Section 3.3 and
Section 3.4 respectively. An overview of some simulators that can be used to
detect RFI are presented in Section 3.5. The generation of noise and RFI that
was injected into the simulator presented in this thesis is as well discussed in
Section 3.6.

3.1 Introduction

RFI is any undesirable signal that is present in data sets collected by receiving
systems. These undesirable signals are as a result of radio waves that are emit-
ted from �noisy� radio transmitters [25]. It is essential that radio astronomy
observations be made without its data sets being contaminated by interfering
signals.

Radio frequencies are divided into bands assigned for di�erent purposes.
Thus, a spectrum is allocated for use in radio astronomy in order to prevent
interferences from transmissions by services using other bands. In the early
years, the bands of radio astronomy systems were in the MHz range but as time
went by, it was increased to above ∼ 100GHz. Some bandwidth allocations
were made for radio lines too. An example is the Hydrogen (H1) radio line
that was assigned the 1420-1427 MHz band [1].

3.1.1 Interference

Interference occurs in many forms. Some are emissions from electrical and
industrial appliances. Others are unwanted signals from Global System for

24
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Mobile Communications (GSM) that originate from towers and cellular phones.
Radio observatories such as SKA, MeerKAT etc developed techniques to

minimize the detrimental e�ects that RFI has on the observations they make.
Measures taken to reduce RFI e�ects include the building of antennas at se-
cluded places with no human movement or activities taking place. Moreover,
they also make use of natural shields to protect the antennas from RFI [1].

3.1.2 RFI Signals

RFI signals are stronger in nature than the signals arriving on Earth from
astronomical objects. These RFI signals can render data useless because they
are capable of swamping the data collected by the receivers of radio telescopes
[25].

Figure 3.1: On the left is an image of a radio galaxy. This observation was made

using the Very Large Array(VLA). On the right is the image of the same radio galaxy

but this time around, a satelite passed within 25 degrees of the aforementioned radio

galaxy. This image clearly shows that the signal from the satellite has completely

overpowered the signal from the radio galaxy to such an extent that the original

source is no longer visible [25]

3.1.3 Radio Frequency Spectrum

The radio frequency spectrum regulated by the International Telecommuni-
cation Union (ITU) describes the various divisions and allocations of radio
frequencies for di�erent uses. This is shown in Figure 3.2. It ranges from
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the Very Low Frequency (VLF) band which starts from 3 kilohertz (kHz)
to the Extremely High Frequency (EHF) band, which ends at 300 gigahertz
(GHz). For instance, the frequency range for satellite communication is dif-
ferent from that of mobile phones. These radio frequencies are in terms of
wavelength, which is the ratio between the speed of light in a vacuum and the
radio frequency. Interference thereby occurs when two radio links share the
same frequency band and are close to each other.

Figure 3.2: Radio Frequency Spectrum1 showing the various radio frequency bands:

VLF (Very Low Frequency) band, LF (Low Frequency) band, MF (Medium Fre-

quency) band, HF (High Frequency) band, VHF (Very High Frequency) band, UHF

(Ultra High Frequency) band, SHF (Super High Frequency) band and EHF (Ex-

tremely High Frequency) band.

3.2 RFI Sources

Table 3.1 shows the various frequency ranges of major sources of RFI [6]. Some
details of each of these sources are discussed and are also shown in Figure 3.3
and Figure 3.4.

3.2.1 Satellites

Satellites are objects that rotate around larger objects. There are two types
of satellites, namely: natural satellites eg. the moon and arti�cal satellites eg.
Sputnik. The �rst arti�cial satellite was Sputnik which was launched by the
Soviets on October 4, 1957 [26]. Subsequently, other satellites were launched;
each one di�ering in size and being designed to perform a speci�c task. An
example is the weather satellites which are used for weather forecasts.

Transmissions from satellites that are in orbit around the Earth are partic-
ularly troublesome for radio astronomers since those transmitters are located
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RFI Source Frequency Range (MHz)
GSM (Global System

for Mobile Communication)
900 - 915 MHz uplink

925 - 960 MHz downlink

Aircraft transponders
Multiple <1 MHz bandwidth

intermittent signals
between 962 and 1213 MHz

GPS (Global
Positioning System)

L1: 1565 - 1585 MHz
L2: 1217 - 1237 MHz
L3: 1375 - 1387 MHz
L5: 1166 - 1186 MHz

GLONASS (Global Orbiting
Navigation Satellite System)

L1: 1592 - 1610 MHz
L2: 1242 - 1249 MHz

Galileo 1191 - 1217 MHz, 1260 - 1300 MHz
Inmarsat 1526 - 1554 MHz
Iridium 1616 - 1626 MHz

Table 3.1: RFI corrupted regions of the L-band range (900MHz - 1670MHz) [6]

Figure 3.3: Figure showing the frequency channels in the MeerKAT L-band which

are being corrupted by known RFI sources. The blue line represents the average

across baselines shorter than 1km and the orange line also represents the average

of baselines longer than 1km. The grey boxes are bands assigned to di�erent RFI

sources [6].

up above where radio telescopes are also pointing at in order to make observa-
tions [25]. Technology can be utilized to drastically reduce RFI interference.

3.2.1.1 GNSS Satellites

Global Navigation Satellite Systems (GNSS) refers to a constellation of satel-
lites that provide positioning, navigation and timing (PNT) data to GNSS
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Figure 3.4: A zoomed in version of Figure 3.3, which is displaying the quietest

portion of the L-band [6]

Figure 3.5: The signal represented in black is from an orbiting Earth Satellite which

ignored regulations by an international agreement. The regulations are to prevent

spillover from the satellites into the frequency ranges used by radio telescopes [25]

receivers. These GNSS receivers then use the PNT data to �nd locations in
space. GNSS provide global services and are used in various forms of trans-
portation eg. maritime, road and rail. The GNSS systems have two global
systems that are up and running. They are the United States GPS and the
Russian Federation's GLONASS. The following are the developing global and
regional systems: China's BeiDou Navigation Satellite System (BDS), Eu-
rope's Galileo and India's Regional Navigation Satellite System (IRNSS) and
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Japan's Quasi-Zenith Satellite System (QZSS) [27].

3.2.1.2 Telecommunication Satellites

Telecommunication satellites are satellites that allow long-distance telephone
calls to be made. Also these satellites make live television broadcast from
across the world possible [26].

3.3 Detection of Interference

Detecting of RFI is done by inspecting or monitoring the output of an obser-
vation. However, weak signals are hard to detect and when this happens, the
channel bandwidths are compared to the bandwidth of an interfering trans-
mitter. Unfortunately, this process cannot guarantee a 100 percent indication
of RFI [1]. RFI can be detected in various ways. Some approaches used to
detect interference are [1]:

� The operation of receivers used for monitoring; with antennas pointed
towards interference sources.

� Inspection of the statistics of the output data of receivers.

� Utilizing multichannel receivers of high-resolution to detect interference
from di�erent channels.

3.3.1 RFI Monitoring

One way that detection and monitoring can be done is discussed in [5]. This
document talks about an RFI monitoring system that was built for MeerKAT
which utilized the Real Time Transient Analyser (RATTY). RATTY consists
of an antenna that gathers electromagnetic radiation, a Recon�gurable Open
Architecture Computing Hardware (ROACH) board that carries out signal
processing in addition to analog-to-digital conversions and a computer for data
storage and control. The system design is shown in Figure 3.6. The monitor
automatically collects data from the RATTY system, the monitor then pro-
vides information of the RF environment, runs an automatic RFI detection on
the obtained radio spectra and stores them on a regular basis. The statistics of
the radio spectra obtained help infer the radio frequency environment and can
be utilized to spot the incoming RFI sources. The spectral data, RFI detec-
tions and statistical data can be acquired via the web either by downloading
the unprocessed data or by using visual tools.
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Figure 3.6: Block diagram of how the RFI Monitor works [5]

3.4 Elimination of Interference

RFI comes in di�erent forms, hence there is no single algorithm that will work
for all contamination instances. Therefore, this section discusses the various
techniques used to eliminate or mitigate RFI.

Mitigation of RFI can be done in two phases: during the pre-correlation
phase and during the post-correlation phase. Amongst the two, the pre-
correlation phase tends to be more e�ective since the observational data re-
mains untouched by the approach itself [28]. Also, mitigation of RFI in terms of
historical approaches is grouped into three classes: linear methods, threshold-
based algorithms eg. SumThreshold [28] and employing supervised machine
learning approaches [29].

Other approaches that are commonly used to deal with RFI include: re-
moving the corrupted data and cancelling the interference via spatial �ltering;
where a null is created in the reception pattern of an antenna towards the
direction of an interfering object. Nulling exists in di�erent forms, namely:
spatial nulling, deterministic nulling and adaptive nulling. In spatial nulling,
a null is formed by combining signals using a set of antennas in the direction
of the interfering source. In another type of nulling known as deterministic
nulling, the direction of the interfering source is known and a null is created in
that same direction by measuring the received signals. Adaptive nulling also
involves the removal of the consequences of a signal causing interference by
positioning a null in the reception pattern of a group of antennas facing the
direction of the interfering signal [1].

From all the aforementioned approaches, the threshold-based algorithms
and the supervised machine learning approaches will be discussed since they
are the most popular. How they eliminate or mitigate inteference is discussed in
the sections below. Whether a technique is pre-correlation or post-correlation
is also distinguished.
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3.4.1 Pre-correlation Phase

This section discusses an approach that takes place in the pre-correlation
phase.

The preferable way of reducing interference is by cancellation instead of
deleting the corrupted part [30]. For the cancellation of interference approach,
adaptive interference cancelers are used which comes in two forms: analog
adaptive interference and the digital adaptive interference cancelers. The ana-
log adaptive interference cancelers were introduced in the 1960s for the cancel-
lation of issues related to radio communications and radar but unfortunately,
this system lacked certain traits such as versatility and dynamic range. The
digital adaptive interference cancelers were then introduced in the mid-90s
to minimize undesirable noise in audio systems. Cancellation does not only
require detection of the interference signal but requires a precise estimation
of the signal which is then applied to the removal procedure. In [30], exci-
sion of interference using real-time adaptive cancellation is implemented. An
adaptive canceler was built comprising of two receivers namely: the primary
channel and a di�erent reference channel. In the case of RFI mitigation, the
primary channel would be called the astronomy antenna which receives signal
contaminated by RFI. The reference channel is pointed in the direction of the
interferer which receives RFI only; the signal is then �rst processed using a
digital adaptive �lter and is subtracted from the primary channel input. Reg-
ulation of the weighting coe�cients of the digital adaptive �lter is done to
reduce the RFI e�ect at the system output.

3.4.2 Post-correlation Phase

This section discusses the various approaches that take place in the post-
correlation phase.

In this document [28], di�erent post-correlation radio frequency interfer-
ence classi�cation methods were described and compared. These methods were
tested on arti�cial data and on data that was observed from the Westerbork
Synthesis Radio Telescope (WSRT) in the Low Frequency Array (LOFAR) fre-
quency range. The following were taken into consideration during the selection
of the RFI mitigation plan: the true or false-positive ratio of the classi�cation
of RFI, the speed of the algorithm as well as its detection and the e�ects of
reducing RFI on noise. Thresholding is an e�ective technique that is mostly
used to eliminate strong RFI. The threshold value is decided on or set with re-
spect to the mode distribution variables per baseline. Values that are beyond a
certain limit from the mean or median are identi�ed as RFI and hence, �agged
in order to obtain good data. The methods that were investigated are: the
cumulative sum method (CUSUM), combinatorial thresholding, VarThresh-
old parameters and the SumThreshold method. It was concluded that the
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best amongst all of the methods that were investigated is the SumThreshold
method. The SumThreshold is an iterative method which evaluates signals by
performing a surface �t in the time-frequency plane. This method is quick,
powerful and can be carried out without using a data model.

RFI �agging is done to reduce RFI in signals to make data robust. If the
RFI is determined to be above some critical threshold, the data sample is
�agged. Almost all samples will have some amount of RFI in them. Manual
�agging of data entails observing the data physically, checking if it is corrupted
and then �agging it. This process is a tiresome one and requires a lot of e�ort.
New methods were thereby introduced to �ag data automatically since large
data sets are being observed. Astronomical software packages such as CASA
(Common Astronomy Software Applications) has helped radio astronomers in
dealing with RFI when performing data reduction or �agging.

AOFlagger is a �agging software that is used for the LOFAR radio tele-
scope, WRST etc to eliminate RFI in astronomical data and to examine mea-
surement data. The software has a graphical interface (rfgui) that aids in
viewing data in various ways. Its code was written in C++ [31]. Debatably,
it is the best �agger in relation to speed and precision. As time went by, a
new type of AOFlagger was invented which uses the MeerKAT SDP pipeline.
This RFI �agger, i.e. the new AOFlagger is known as the SDP (Science Data
Processing) Flagger.

In [32], �agging of RFI was done using two di�erent methods. The �rst
method uses visibilities that are redundant to spot contaminated data. The
second method uses a strategy that was invented to identify weak RFI signals
in the time-channel visibility plane of baselines. When powerful sources are
subtracted improperly, ripples occur. These ripples minimize the ability to
detect RFI in the residual visibilities. Some of the reasons why this occur
is because of some direction dependent calibration errors and asymmetric pri-
mary beam. The ripples are thereby removed by cutting out the corresponding
peaks in the related Fourier plane.

Deep learning can also be used to �ag RFI as discussed in [29]. A con-
volutional neural network (CNN) contains convolutional layers. U-Net is a
type of CNN. Its architecture shrinks and then enlarges images to their initial
state by utilizing deconvolutional layers. Another CNN known as the ResNet
Convolutional Neural Network (R-Net) is proposed by [29] for RFI detection.
The ResNet architecture utilizes skip connections which makes it possible to
train very deep networks. R-Net is an example of a supervised learning ap-
proach; the algorithm learns via existing RFI examples. The R-Net algorithm
was tested on single-dish as well as RFI simulations and was trained on the
magnitudes of the complex visibilities. When using supervised deep learning
for RFI, large amounts of data consisting of many baselines have to be la-
belled for classi�cation to take place, which is quite challenging. It is highly
recommended that deep learning be performed on simulations when doing �ag-
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ging. In [29], the R-Net algorithm was compared to the deep U-Net algorithm
and the standard SDP Flagger. The following metrics were considered: the
F1-score metrics, the AUC (Area Under the ROC (Receiver Operating Char-
acteristic) curve) metrics etc. In [33], a few conventional ML algorithms were
used to detect RFI in KAT-7 data. These algorithms include Naive Bayes,
k -Nearest Neighbour and the Random Forest Classi�er (RFC). Data used was
randomly divided according to the ratio of 70:30, that is to say 70% of the
splitted data was used for cross-validation in order to train the algorithms and
30% for testing. It was �nally concluded that the RFC detected RFI the best
with an AUC of 98% and a recall of 91%.

Amongst the recent algorithms such as the U-Net and the standard SDP
Flagger which was applied in the MeerKAT data reduction pipeline, the results
proved that ResNet was most e�cient. Some other comparisons showed that
the execution time needed for R-Net is a bit less than the other algorithms;
this is because the convolutional layers of the R-Net's architecture are of the
same sizes which enables parallel handling of operations.

3.5 RFI Simulators

This section discusses the various RFI simulators that have been created and
exist within the literature. Most of these simulators are deductive in nature.
The simulator created in the work presented in this thesis is inductive. The
approach used is discussed in the next section. The di�erence between an
inductive and a deductive simulator is discussed in detail in Section 5.2 and
Section 1.1 highlights the di�erence.

3.5.1 HIDE and SEEK package Simulator

Two data packages known as the HIDE (HI Data Emulator) and SEEK (Signal
Extraction and Emission Kartographer) are presented in [12]. These data
packages are used to simulate radio survey data. They can either be used
hand in hand or separately. HIDE gathers astronomical signals in a single-
dish radio telescope and simulates RFI signals. The single-dish radio telescope
data is then processed by SEEK. Again, SEEK identi�es RFI signals and masks
them, utilizes �ux calibration and focuses to restore the astronomical signal.
The documentation2 on these two packages can be found on GitHub under the
GPLv3 license.

2http://hideseek.phys.ethz.ch/
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3.5.2 RFsim

In [11], a simulator is proposed for radio interferometers and in particular for
the MeerKAT telescope. The simulator utilized a physical RFI model (GPS
satellite orbits) and generated visibilities which looked exactly like visibilities
from real observations. This data set was used to develop an advanced �agging
and mitigation technique.

3.5.3 HERA_sim

HERA_sim is a simulation package that is used to simulate interferometric
arrays similar to Hydrogen Epoch of Reionization Array (HERA) which is a
redundant array. HERA_sim has a highly con�gurable interface and as such
it can be used to add several attributes to visibilities that exist [13].

3.6 Generation of Noise and RFI

Thermal noise that is injected into an interferometric system is proportional to
the bandwidth and integration time [34]. Formally, it is expressed as follows:

σ ∝ Tsys√
∆vτ

, (3.1)

where σ is the standard deviation associated with the noise, Tsys is the system
temperature, ∆v is the observational bandwidth and τ is the integration time
for a visibility [34]. This equation can be referred to as the general noise
model of an interferometric observation. Tsys is normally not changed because
its associated to the instrument and is a constant as well. The integration time
and the bandwidth however are not �xed and are changeable, which thereby
creates a certain SNR (signal-noise-ratio). The parameter σ determines the
power in the noise, thereby determining the SNR value of the contaminated
signal. It is not necessary to know the integration time and bandwidth but
rather, an SNR value can be chosen which is equivalent to choosing a value
for either the integration time or/and the bandwidth. Simplyput, integration
time and bandwidth translates into a certain SNR value.

The shorthand, < · > will be used to refer to averaging over frequency v,
time t and baseline pq. The equation below de�nes SNR:

SNR = 10 log

(
< D ⊙ D̄ >v,t,pq

< N ⊙ N̄ >v,t,pq

)
(3.2)

where D represents a noise-free visibility cube indexed by time t, frequency
v and baseline pq and D̄ is its conjugate. The symbol N is a noise cube and
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< ⊙ > denotes the hadamard product. Equation 3.2 computes the power
(P_signal) in D, divides it by the power in N (P_noise) and the resulting
ratio is then converted to dB.

It now follows from Equation 3.2 that if given a certain SNR value and a
data cube D (from which P_signal can be computed), then the power that
the noise should have can be computed via

Pnoise = Psignal × 10−
SNR
10 (3.3)

How is N now generated so that it has the required amount of power
P_noise? It is a well established fact, that if the real and the imaginary
components of N are drawn from a zero mean normal distribution with a

standard deviation3 σ =
√

Pnoise

2
, then the power of N will be P_noise.

This same approach can be used to add thermal noise and to add RFI.
Given two SNR values: one for the thermal noise level and one for the RFI
noise level, two noise matrices are generated so that they have the correct
power level as discussed earlier in this section. The two noise matrices are
then added to the noiseless visibility cube. Note that P_signal is the same
value whether the noise level is computed to add for the thermal noise as well
as the RFI. Formula to add noise to visibilities of a certain SNR threshold
where D now becomes the visibility with noise added:

D̃ = D +N (3.4)

The python code for the formulas to generate noise and RFI can be located
in the noise_visibility.ipynb and RFI_visibilities.ipynb �les respectively in the
github repository.

3https://dsp.stackexchange.com/questions/16216/adding-white-noise-to-complex-
signal-complex-envelope
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Chapter 4

Machine Learning

In this chapter, Section 4.1 presents an overview of ML, Section 4.2 outlines
some of the applications that make use of ML and the steps involved in setting
up an ML framework. Section 4.3 discusses three of the machine learning meth-
ods, namely: supervised learning, unsupervised learning and semi-supervised
learning. Section 4.4 presents the identities used in classi�cation and Section
4.5 presents the two types of approaches used to create models: generative
and discriminative approaches. Classi�ers belonging to the generative group-
ing and the discriminative grouping are discussed in Section 4.6 and Section 4.7
respectively. The classi�ers that do not belong to the aforementioned group-
ings but rather make use of the unsupervised learning are discussed in Section
4.8. An overview of the confusion matrix and the metric used in this work is
given in Section 4.9. Lastly, the Iris dataset and results obtained when the
four classi�ers (Naive Bayes, Logistic Regression, k -means and GMM) were
applied on on the Iris dataset is presented in Section 4.9.

4.1 Introduction

Machine learning is a sub-�eld of Arti�cial Intelligence (AI). ML is the collec-
tive name used to identify a set of algorithms that are capable of learning from
data. Furthermore, after learning has taken place, these algorithms can then
apply what they have learned to perform a speci�c task [35]. As an example,
a piece of software that can accurately predict outcomes makes use of ML to
do so.

The learning process involves �nding patterns in data; these patterns are
then used to predict future outcomes. Features of a dataset are referred to as
attributes of the dataset. The number of features are also referred to as the
dimension of the dataset.

36
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4.2 Machine Learning Applications

Machine learning applications make use of statistics to discover patterns in a
given dataset [35]. These applications use input data to predict an outcome.
Examples of services that make use of machine learning1 are:

� Digital Assistants eg. Google Assistant, Apple Siri

� Recommendations: Google, Facebook, Twitter

� Online advertisements

� Chatbots

� Fraud detection

� Cybersecurity

� Medical image analysis

� Self-driving cars

� Email spam �ltering

For instance, Siri, the voice assistant application collects input data in the
form of audible words. It then �nds words in a dictionary that best match
the recorded words. Other examples are websites that make recommendations
based on what one watches, searches or listens to.

It can be concluded that machine learning algorithms are trained to dis-
cover patterns in data which can then be used to make decisions.

4.2.1 Steps Involved in Machine Learning

The steps involved in setting up an ML framework are [36; 37]:

1. Data gathering: This is the �rst step in machine learning. It involves
gathering large amounts of high quality data, which in turn determines
the accuracy of the predictive model.

2. Data preparation: After data is collected, it is prepared for training.
A training dataset refers to the dataset which is required by an ML
algorithm in order for learning to take place. It can be either labelled or
unlabelled data. The order of data is randomized and cleaned in order
to correct errors in the data, to get rid of duplicates and other data
alterations. Data is then visualized to see if there are any imbalances
and splitted into training and testing sets.

1https://www.ibm.com/cloud/learn/machine-learning
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3. Selecting a model: Choosing a model is dependent on the type of training
data, the size of dataset and the expected outcome of the task at hand.

4. Training the model: This step entails using an algorithm to learn model
parameters, checking the di�erences between the known output and the
expected outcome and minimizing the aforementioned di�erence by ad-
justing the model parameters. These steps are repeated multiple times
until the correct results are attained from the algorithm.

5. Evaluating the model: After the model is trained, it is tested to evaluate
its performance. Depending on the problem that needs to be solved,
the model created is tested with new data. This thereby increases the
model's precision and e�ciency.

6. Parameter tuning: This is also known as hyperparameter tuning. It
involves tuning model parameters to improve performance. Examples
of these parameters are learning rate, number of training steps, initial-
ization values etc. The values of hyperparameters are determined by a
validation set.

7. Making predictions: The test sets are then used to test the model to
determine its performance in the real world. It can then, be used for
prediction.

4.3 Machine Learning Methods

There are two major tasks expected from ML algorithms; regression and clas-
si�cation. These two algorithms fall under the supervised learning methods.
Classi�cation entails �nding a model that divides input data into several classes
and are used to identify discrete values. Regression on the other hand entails
�nding a model that identi�es a continuous value depending on its input vari-
ables [38]. The di�erence between the two is that, the classi�cation algorithm
locates a mapping function in order to map the input (x) onto the discontinu-
ous output (y) while the regression algorithm does the same but rather maps
the input (x) onto the continuous output (y) [38]. The primarily focus in this
thesis is the classi�cation task.

Types of machine learning methods can be classi�ed into three primary cat-
egories, namely: supervised learning, unsupervised learning and semi-supervised
learning.

4.3.1 Supervised Learning

Supervised learning is a type of machine learning which uses labelled data for
training [39; 2; 37]. A learning algorithm from this category is able to predict
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future occurences by applying what has been learned previously to new data
using labelled examples. In other words, the algorithm receives inputs together
with the desired outputs and then learns by comparing its generated output
with the expected output. This comparison procedure helps in discovering
errors and can in turn be used to improve the accuracy of the model.

Some techniques used in supervised learning include: Linear Regression,
Logistic Regression, Naive Bayes and Random Forest [39]. One disadvantage
of this method is that the production of labelled data is costly.

4.3.2 Unsupervised Learning

Unsupervised learning deals with data with no labels. This suite of algorithms
are unable to tell the intended output but rather analyzes data and draws
conclusions by �nding hidden patterns from unlabelled data [2; 37]. Clustering
software thereby use whichever patterns they �nd [39]. Examples of techniques
used in unsupervised learning are k -means clustering and GMM.

4.3.3 Semi-supervised Learning

A semi-supervised machine learning algorithm uses both labelled and unla-
belled data for training [40]. It mostly uses a smaller portion of labelled data
for classi�cation during training and a bigger portion of unlabelled data when
extracting features. This algorithm is best used when labelled data is not
enough for training and learning to occur.

4.4 Basic Overview of some Statistical

Relationships

This section presents the relationship between variables that will be used from
Section 4.5 to Section4.7 to perform some derivations.

Consider two events X and Y . P (X, Y ) is the probability of event X and
Y occuring. P (X|Y ) is the conditional probability that event X will occur
given that event Y occurred. Consider the following identities [41; 37]:

1. Product Rule
P (X, Y ) = P (X|Y )P (Y ) (4.1)

2. Bayes Theorem

P (Y |X) =
P (X|Y )P (Y )

P (X)
(4.2)

3. Margenalization

P (Y |X) =
P (X|Y )P (Y )∫
P (X|y)P (y)dy

(4.3)
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4. Conditional Independence

P (X, Y |Z) = P (X|Y, Z)P (Y |Z) = P (X|Z)P (Y |Z) (4.4)

4.5 Classi�cation

This section closely follows the content presented in [41; 2; 37]. Here, the two
di�erent types of probabilistic models are discussed.

As has been mentioned already, classi�cation is one of the major tasks for
which ML is used. This section discusses the classi�cation algorithms that are
used in this work into details.

Let D = {X,y}. D is referred to as a dataset. The rows xi of X represent
observation vectors with corresponding label yi, where i ∈ {1, · · · , N}. The
pth feature of x is denoted by xp. In other words, the observations can belong
to one of k classes. The class label yi = j if xi belongs to class Cj, where
j ∈ {1, · · · , k}.

Classi�cation entails assigning an observation vector x to one of k classes
by �rst calculating the class probabilities P (Cj|x). The observation vectors
are assigned to the class with the highest probability:

C∗ = argmaxCj
P (Cj|x) (4.5)

A generative or a discriminative approach can be used to create the model
P (Cj|x). The generative approach employs Bayes Theorem. It follows from
Bayes Theorem that:

P (Cj|x) ∝ P (x|Cj)P (Cj), (4.6)

where P (Cj) is known as the class prior and P (x|Cj) is known as the class
conditional density. To implement the generative approach, P (x|Cj) needs to
be estimated. The class conditional density can be used to generate synthetic
examples belonging to each class. Classi�ers belonging to this grouping are
called Probabilistic Generative Models (PGM). An example is Naive Bayes.

The discriminative approach dispenses with the class conditionals P (x|Cj);
instead a predetermined model is chosen with which the posterior P (Cj|x)
is computed. Classi�ers belonging to this grouping are called Probabilistic
Discriminative Models (PDM). An example is the logistic regression classi�er.
Training data is used to di�erentiate between classes.

4.6 Probabilistic Generative Models (PGM)

In this section, the generative approach is discussed in more detail. Assume
that x is an observation vector and that it can belong to either C1 or C2. It
now follows from Bayes Theorem that:
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P (C1|x) =
p(x|C1)P (C1)

p(x|C1)P (C1) + p(x|C2)P (C2)

=
1

1 + p(x|C2)P (C2)
p(x|C1)P (C1)

=
1

1 + exp(−a(x))
=σ(a(x)) (4.7)

In Equation 4.7, a(x) denotes the log posterior odds, while σ denotes the
logistic sigmoid function. The formal de�nition of a(x) is:

a(x) = ln
p(x|C1)P (C1)

p(x|C2)P (C2)
(4.8)

Moreover, the logistic sigmoid function is de�ned as:

σ(a) =
1

1 + exp(−a)
(4.9)

For k classes,

P (Cn|x) =
P (x|Cn)P (Cn)∑k
j=1 P (x|Cj)P (Cj)

=
exp an(x)∑k
j=1 exp aj(x)

(4.10)

where
aj(x) = lnp(x|Cj) + lnP (Cj) (4.11)

It can easily be veri�ed that
k∑

j=1

P (Cj|x) = 1. The ratio of the exponentials

in the numerator to the normalized sum of exponentials in the denominator in
Equation 4.10 is called the softmax function. This function outputs posterior
probabilities and provides a di�erentiable or smooth form of the max function.
P (Cn|x) ≈ 1 for j ̸= n and P (Cj|x) ≈ 0 for j ̸= n if an >> aj.

To determine the posterior probability, the prior class probabilities P (Cj)
and class-conditional densities p(x|Cj) are required.

4.6.1 Shared Covariance

If the class-conditional densities are Gaussian, then:

P (x|Cj) =
1

2π
√
|Σj|

exp

(
− 1

2
(x− µj)

TΣ−1
j (x− µj)

)
(4.12)
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where Σ is the covariance and µ is the mean. Now consider, once again a
binary classi�cation. If the two classes C1 and C2 share a covariance matrix,
then a(x) becomes linear, i.e Equation 4.7 simpli�es and becomes:

P (C1|x) = σ(wTx+ w0) (4.13)

Under these conditions, Equation 4.8 now becomes:

a(x) = wTx+ w0 (4.14)

where
w = Σ−1(µ1 − µ2) (4.15)

and

w0 = −
1

2
µT
1Σ

−1µ1 +
1

2
µT
2Σ

−1µ2 + ln
P (C1)

P (C2)
(4.16)

Take note of the following:

1. The bias term w0 is dependent on the prior probabilities.

2. Due to the shared covariance, the quadratic terms in the Gaussians cancel
out; resulting in a linear classi�er (i.e the classi�er has a linear decision
boundary). To see why this is the case, consider the following argu-
ment. If P (C1|x) > P (C2|x) then x is assigned to C1 else it is assigned
to C2. The decision boundary is, therefore, determined by P (C1|x) =
P (C2|x) = 1−P (C1|x) which is rewritten as σ(wTx+w0) = 1−σ(wTx),
or σ(wTx+w0) =

1
2
. The decision boundary then becomeswTx+w0 = 0.

3. The mean associated with each class needs to be estimated, as well as
the shared covariance matrix if Equation (4.13) is to be implemented.
For d-dimensional data this equates to 2d + 1

2
d(d + 1) parameters. If

Equation (4.13) is inspected, w and w0 is estimated, which amounts to
only needing to estimate d+ 1 parameters instead. This is exactly what
is e�ectively accomplished by rather following a discriminative approach.

Considering the k-classes scenario under the shared covariance assumption
again, Equation 4.10 now becomes:

P (Cn|x) =
exp an(x)∑k
j=1 exp aj(x)

(4.17)

where

aj(x) =w
T
j + wj0 (4.18)

wj =
−1∑

µj

wk
j =

1

2
µT
j

−1∑
µj + lnP (Cj) (4.19)
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A shared covariance results in the creation of linear decision boundaries. On
the other hand, if the shared covariance assumption is not adhered to, the
decison boundaries becomes non-linear. This phenomenon is illustrated in
Figure 4.1. How to estimate the parameters of P (Cj|x) has already being
shown under the shared covariance assumption. How then are the parameters
of the class conditional densities and prior probabilities of a statistical model
computed in general? This is the topic of the next section.

Figure 4.1: Image of a non-linear classi�er showing its quadratic decision boundary

[41]

4.6.2 Non-shared Covariance

Again let us consider the two-class case. The maximum likelihood estimates
of the two means and the two covariance matrices are:

µ1 =
1

N1

N∑
n=1

ynxn and µ2 =
1

N2

N∑
n=1

(1− yn)xn (4.20)

and

Σ1 =
1

N1

Σn∈C1(xn − µ1)(xn − µ1)
T and Σ2 =

1

N2

Σn∈C2(xn − µ2)(xn − µ2)
T

(4.21)
where the sample sizes are represented by N1 and N2, yn = 1 if xn ∈ C1 and
yn = 0 if xn ∈ C2. Moreover, the maximum likelihood estimate of P (C1) = π
and P (C2) = 1− π, where π = N1

N
.

Maximum Likelihood Estimation (MLE) can be de�ned as the statistical
method of determining values for parameters of a model given a set of data
[41; 40; 35].
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4.6.3 Naive Bayes Classi�er

Bayes' theorem which forms the basis of the Naive Bayes classi�er was de-
veloped by Thomas Bayes (1702 to 1761) who was born in Hertforshire2. He
studied Logic and Theology at the University of Edinburgh from the years
1719 to 1722. To obtain the Naive Bayes classi�er, some naive independence
assumptions need to be made between the observational dimensions [40; 37].

Assuming that the observation vector is conditionally independent, then

P (x|C) =
d∏

n=1

P (xn|C), where P (x|C) are class conditionals and xn are the

individual features of x. Interestingly, this assumption forces the covariance
matrix of P (x|C) to be diagonal. This is the de�nition of independence, which
is why it is called �Naive�. Bayes' theorem can now be used to calculate:

P (Cj|x) =
P (Cj)P (x|Cj)

p(x)

=

P (Cj)
∏
n

p(xn|Cj)∑
i P (Ci)

∏
n

p(xn|Ci)
, (4.22)

to which class an observation is assigned to can, therefore, be computed using:

C∗ = argmax
Cj

P (Cj)
∏
n

p(xn|Cj)∑
i P (Ci)

∏
n

p(xn|Ci)
(4.23)

Equation 4.22 can be simpli�ed, since the denominator in Equation 4.23
depends on all Cj. The main di�erence now in comparison to the previous
PGM models discussed earlier is that, here, the standard deviation and the
mean associated with each class-conditional density of each dimension can be
determined seperately. In other words, in the previous PGM models all the
entries of the covariance matrix had to be estimated, now only its diagonal
entries need to be calculated. This leads to a massive reduction in the number
of parameters that must be estimated. The maximum likelihood estimates of

2https://holypython.com/nbc/naive-bayes-classi�er-history/
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the aforementioned parameters are given by:

P (Cj) =
Nj

N

µnj =
1

Nj

∑
xnj

σ2
nj =

1

Nj

∑
(xnj − µnj)

2

(4.24)

where Nj represents the number of samples in class for n = (1, ..., d); j =
(1, ..., k) and Cj; summing over all the samples xnj that belongs to class Cj.

4.7 Probabilistic Discriminative Models

(PDM)

Classi�ers utilizing a discriminative approach do not use class-conditionals;
instead they use model weights. The model weights are chosen so that the
likelihood of the data is maximized [41].

4.7.1 Logistic Regression Classi�er

Logistic regression was introduced as a statistical model by Joseph Berkson
who was a trained physicist, statistician and physician [42].

To model the probability of events occuring in statistics, a logistic model
can be used. Consider an event; win (�1�) or loss (�0�). The logistic model
determines which of the event has occurred or not which would be given a
probability between �0� and �1�. Logistic regression can be used to classify the
event by eveluating the logistic model parameters. A binary logistic model
has a variable made of two values which are being labelled as �0� and �1�. The
logarithm of the odds (log-odds) for the labelled value �1� represents the linear
combination of one or multiple independent variables. These independent
variables can be of a binary class or any real number. Logistic function is
the name given to the function that transforms log-odds to probability. The
log-odds scale is thereby measured in logit which is derived from logistic unit
[42].

Again, in the binary classi�cation problem, consider D = {X,y}, where
as before X represents observation matrix with corresponding label vector y.
Note that yi ∈ {0, 1}. Equation 4.7 implies that if a linear decision boundary
is chosen, then the following model choice naturally follows [2]:

P (C1|x,w) = σ(wTx) (4.25)
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Here, w contains w0 and an extra one has been appended to the end of x. The
aim is now to �nd the weight vector w which maximizes the likelihood of D.
To accomplish this, the joint distribution P (D|w) has to be simpli�ed �rst:

P (D|w) = P (X,y|w)

= P (y|X,w)P (X|w)

= P (X)
N∏

n=1

P (yn|X,w)

= P (X)
N∏

n=1

P (yn|xn,w) (4.26)

where yn is assumed to be conditionally independent given xn and X which is
independent of the weight vector w. Since yn follows a Bernoulli distribution
[41; 2; 35]; it may be written:

P (yn|xn,w) = P (C1|xn,w)yn(1− P (C1|xn,w))1−yn (4.27)

Equation 4.27 is substituted into Equation 4.26 to obtain:

P (D|w) = p(X)
N∏

n=1

P (C1|xn,w)yn(1− P (C1|xn,w))1−yn (4.28)

Expressing Equation 4.28 in terms of Equation 4.25 results in

P (D|w) = p(X)
N∏

n=1

σ(wTxn)
yn(1− σ(wTxn))

1−yn (4.29)

Equation 4.29 is referred to as the likelihood of the data D given the weight
vector w. For the sake of brevity, however, this same equation will simply be
referred to as the likelihood function in this thesis from here onward. Min-
imizing the negative log-likelihood function E(w) is the same as maximizing
the likelihood function. The log-likelihood function is given by:

E(w) =− lnP (D|w)

=−
N∑

n=1

{ynlnσ(wTxn) + (1− yn)ln(1− σ(wTxn))} − lnp(X) (4.30)

The weight vector w which minimizes E(w) can be determined by setting
∇E(w) = 0. The gradient of E(w) is equal to

∇E(w) =
N∑

n=1

(σ(wTxn)− yn)xn (4.31)
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There is no analytic solution to ∇E(w) = 0. This solution can only be deter-
mined numerically, i.e the Newton-Raphson's method has to be employed to
do so. This is discussed in greater detail in Section 4.7.2.

Note that there is a problem: if the weights are not constrained in some way,
they can grow arbitrarily large. This results in over�tting. To see why this is
the case, note that if xn is assumed to be far from the decision boundary then
σ(wTxn) ≈ 1 and σ(wTxn)− yn ≈ 0, i.e xn has little e�ect on this equation:

N∑
n=1

(σ(wTxn)− yn)xn = 0 (4.32)

If an observation is close to the decision boundary the converse is true. To
force an observation into the correct class, w can simply be made arbitrarily
large, i.e wT →∞ implies that σ(wTxn)→∞. To prevent this, the weight w
needs to be constrained which can be accomplished by adding a penalty term
to E(w).

4.7.2 Newton-Raphson's method

Consider

l(w) = −
N∑

n=1

{ynlnσ(wTxn)ln(1− σ(wTxn) + (1− yn))}+
1

2λ
wTw+ C

(4.33)

where C is a constant. Note here that the aforementioned penalty term is
added. This approach of constraining the weight vector w is known as regu-
larization and λ is known as the regularization constant.

As before l(w) can be minimized by setting ∇l(w) = 0. The derivative of
l(w) with respect to w is given by

∇l(w) =−
N∑

n=1

(yn − σ(wTxn))xn +
1

λ
w = 0 (4.34)

∇l(w) = 0 can only be solved numerically. One approach is to employ
Newton-Raphson's method:

wk+1 = wk −H−1∇l(w) (4.35)

where H(wk) is the Hessian of l(w). The Hessian H is given by

H(w) =
N∑

n=1

σ(wTxn)(1− σ(wTxn))xnx
T
n +

1

λ
I (4.36)

where I is the identity matrix. To use Equation 4.35, a starting value of w
has to be chosen where one choice would be the all one vector.
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4.8 Unsupervised Classi�cation

This section is about unsupervised learning that makes use of datasets that
are unlabelled. Two algorithms are presented in this section, namely k -means
and GMM.

4.8.1 k-means Clustering

In the year 1957, Stuart Lloyd of Bell Labs proposed the standard (k -means)
algorithm as a method for pulse-code modulation (digital way of presenting
analog signals) which was not published at that time, but only later in the year
1982. Before Lloyd's work was published, Edward W. Forgy had produced
a publication (in the year 1965) that was very similar to Lloyd's. James
MacQueen, however was the �rst to coin the term k -means in the year 1967
[43].

k -means is a clustering algorithm which sorts data points with similar fea-
tures together into clusters, either by location, shape or density. �k � in k -means
refers to number of clusters, hence can be referred to as cluster means. Given a
dataset, each observation is assigned to the cluster with the closest mean. Ob-
servations belonging to each cluster is used to update the cluster mean. Using
the updated cluster means, observations can be re-allocated to clusters and
is repeated until there is no further change (convergence) [43]. Since k-means
utilizes the Euclidean norm, it has a linear decision boundary [2].

4.8.2 Gaussian Mixture Models (GMM)

A mixture model is a statistical model which is used to characterize an event
within a group of events. Datasets are however not needed to locate the events
to which each observation belongs [44].

Karl Pearson (1894) who was a mathematician and a statistician handled
decomposition issues in characterizing unusual behaviours (of forehead to body
length ratios) that female shore crab populations possess. Pearson's work is
mostly referenced although work based on identifying the various elements, as
well as parameters of mixture distributions have been in existence since 1846.
He had inspiration for his work by a zoologist named Walter Frank Raphael
Weldon [44].

Gaussian Mixture Models consist of a mixture of Gaussians in relation to
discrete latent variables z. Assuming X indicates an n×m dataset, the dataset
X would consist of n observations and each observation x would have m fea-
tures [45]. This mixture of Gaussians with k being the number of components
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can be represented as

P (x|θ) =
k∑

j=1

πjN (x|uj,Σj) (4.37)

where πj is the prior probability of the j -th Gaussian component, uj is the
mean, Σj is the covariance matrix and N (x|uj,Σj) is a Gaussian density
with the mean vector and the covariance matrix. Also, θ={πj,uj,Σj |j ∈
{1, 2, ..., k}}. However, it can be estimated by applying the Expectation Max-
imization (EM) algorithm [40]. Using the EM algorithm, θ is initialized by
applying the k -means algorithm. In the E-step, the responsibilities are eval-
uated,

γnj =
πjN (xn|uj,Σj)∑k
i=1 πiN (xn|ui,Σi)

(4.38)

In the M-step, the parameters (in θ) are calculated using the current respon-
sibilities:

uj =
1

Nj

N∑
n=1

γnjxn

Σj =
1

Nj

N∑
n=1

γnj(xn − uj)(xn − uj)
T

πj =
Nj

N
(4.39)

where Nj =
∑N

n=1 γnj. The E-step and the M-step is repeated until conver-
gence. Since the various components do not share a covariance matrix, the
decision boundary of GMM is non-linear.

4.9 Confusion Matrix

A confusion matrix is a metric which is used to report the performance of a
classi�cation algorithm. It is represented in a tabular form with each entry
being di�erent combinations of actual and predicted values [35]. In Figure 4.2,
the various divisions of a confusion matrix are shown. This same �gure is
associated with a binary classi�cation problem which is made of two classes:
the positive and negative class. Given a data, the positive class refers to the
actual positive instances in the data whilst the negative class refers to the
actual negative instances.

The following are terms used to describe the structure of a confusion matrix
in terms of the positive and negative classes [39]:
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Figure 4.2: Structure of confusion matrix for binary classi�cation (two classes)

1. True Positive (TP): This refers to the situation where a classi�er correctly
predicts that a positive sample is positive.

2. True Negative (TN): This refers to the situation where a classi�er cor-
rectly predicts that a negative sample is negative.

3. False Positive (FP): This refers to the situation where a classi�er incor-
rectly predicts that a negative sample is positive.

4. False Negative (FN): This refers to the situation where a classi�er incor-
rectly predicts that a positive sample is negative.

4.9.1 Performance Metrics

Confusion matrices involve calculations which gives a better understanding on
what the model is doing right and what it is doing wrong. To further aid
in understanding how the model is performing, the following metrics can be
calculated: recall, accuracy, speci�city and many others when doing classi�ca-
tion [37]. Out of the numerous metrics that were just stated, only that of the
accuracy was used in this thesis.

4.9.1.1 Accuracy

It provides the relation between the total number of correct predictions and
the total predictions that were made. It shows how often a classi�er is correct
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and it is formally expressed as

Accuracy =
TP + TN

TP + FP + TN + FN
(4.40)

4.10 Iris dataset

In this section, the four algorithms presented in this chapter were applied to
a dataset. This was done to highlight some of the di�erences between these
algorithms in a practical setting. The dataset that has been chosen for this
purpose is the Iris dataset.

The Iris �ower data set also known as Fisher's Iris dataset is a multivariate
data set which was created by Ronald Fisher, who was a statistician and biolo-
gist, in the year 1936. An American botanist by the name of Edgar Anderson
gathered the data to vary the Iris �owers of three species morphologically.
These species were called: Iris setosa, Iris versicolor and Iris virginica [46].
Due to this, the Iris �ower data set is sometimes referred to as the Anderson's
Iris dataset. They are shown in Figure 4.3:

(a) Iris setosa (b) Iris versicolor (c) Iris virginica

Figure 4.3: Figures representing the Iris dataset : Iris setosa, Iris versicolor and

Iris virginica respectively.

This data set contains 50 samples; each of these samples can be associated
with one of the three Iris species. The individual samples/observations has
four features: the width and length of sepals and that of petals. Also, the
unit length of measure used by Fisher was centimetres. He employed a linear
discriminant model to di�erentiate the di�erent species from one another using
the aforementioned features [46]. It has become common place to use this
dataset as a testbed for a variety of classi�cation algorithms [46].

The Iris dataset is easily accessible via R and Python (scikit-learn package)
and can be used by ML novices.
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4.10.1 Results

This section consists of the various results which were obtained by the four
classi�ers presented in this chapter when they were applied on the Iris data
set. Only two of the three classes were considered, i.e versicolor and virginica
and two out of the four features, namely: petal width and petal length. All of
the data was used for training and testing. The decision boundaries that the
various approaches �nd is what is of interest in this thesis and to relate this
with the theory presented, and not the optimal classi�cation accuracy of these
methods.

Figure 4.4: Scatter plot of two out of the three classes of the Iris dataset (versicolor

and virginica) using the petal length on the x-axis and petal width on the y-axis

.

4.10.2 Observations and conclusions

1. Scatter plot: From the scatter plot, it can be concluded that versicolor
and virginica classes are linearly separable.

2. Confusion matrix: In terms of confusion matrices, the Naive Bayes and
Logistic Regression methods predicted both classes equally well. No
versicolor was detected as virginica and vice-versa, unlike that of the
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(a) Confusion Matrix (b) Plot of decision boundary

Figure 4.5: The confusion matrix and decision boundary plots of the versicolor and

virginica classes of the Iris data set that were obtained if the Naive Bayes classi�er

is employed.

(a) Confusion Matrix (b) Plot of decision boundary

Figure 4.6: The confusion matrix and decision boundary plots of the versicolor and

virginica classes of the Iris data set that were obtained if the Logistic Regression

classi�er is employed.

GMM and k -means that predicted more of versicolor than the virginica
class. Hence, the supervised methods outperformed the unsupervised.

3. Decision boundary: The decision boundaries of the Naive Bayes and
GMM were observed to be non-linear, whereas that of logistic regression
and k -means are linear or have linear boundaries which aligns with the
theory aspect presented in this thesis.
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(a) Confusion Matrix (b) Plot of decision boundary

Figure 4.7: The confusion matrix and decision boundary plots of the versicolor and

virginica classes of the Iris data set that were obtained if the k -means classi�er is

employed.

(a) Confusion Matrix (b) Plot of decision boundary

Figure 4.8: The confusion matrix and decision boundary plots of the versicolor

and virginica classes of the Iris data set that were obtained if the Gaussian Mixture

Model classi�er is employed.
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Chapter 5

Testing, Results and Analysis

In this chapter, Section 5.1 presents an overview of the simulator, its bene�ts
to students and the programming language that was used. Section 5.2 presents
a �owchart on how the simulator was created and what one can achieve using
this simulator. Section 5.3 discusses the programmatic �ow and how the sim-
ulator was tested. The limitations of the simulator are outlined in Section 5.4
and the plots of the results obtained from the simulator runs are seen in Section
5.5. The average TP, TN, FN, FP and standard deviation values of each algo-
rithm that are tabulated, as well as the results after applying the classi�cation
algorithms are presented in Section 5.6. Furthermore, Section 5.7 outlines the
summary and conclusions of the observations that were made. Section 5.8 lists
the python �les that can be located in the github repository (see Section 1.1),
which can be used to teach students the basics of interferometry and ML.

5.1 Introduction

The main target of this work is to create an RFI pipeline that would serve
as a teaching tool for students who wish to learn interferometry and machine
learning. This pipeline would thereby be of bene�t to students learning about
machine learning and interferometry.

This is a software based project which made use of the Python program-
ming language. The textbook Python Cookbook [47] is a useful reference for
students who wish to master programming. As per the objectives this project
sought to achieve, the simulator was tested by running a couple of experiments
to ensure that it functions properly.

5.2 Simulator Design

One �rst needs to design the software architecture before development com-
mences. Below is a block diagram describing how the simulator works.

55
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Create new sources

Create visibilities Add noise and RFI

Classi�cation Pickling

Results

Import python packages and antenna layout �le Convert coordinates Calculate baselines

Create uv-tracks

Figure 5.1: Block diagram describing how the simulator works

This block diagram is discussed in detail in Section 5.3. The software can
plot uv-tracks (see Figure 5.3), visibilities (see Figure 5.7), visibilities corrupted
via noise (see Figure 5.8(a)), visibilities corrupted via RFI (see Figure 5.8(b))
and the results obtained from four classi�ers (see section 5.6). The run time
of a simulation is dependent on the complexity of the model in addition to the
number of runs. The simulator is user-friendly, easy to operate and performs
input validation. It was coded in Python 3 and also makes use of the following
external packages: matplotlib1, numpy2, sklearn [48], pickle3 etc. The user
interface of the simulator is the command prompt.

The simulator consists of a custom built Python object. An inductive
based RFI model was used, which entails the replication of a dataset via a
statistical model. The simulator presented in [11] on the other hand made use
of a deductive model. A deductive simulation model replicates the physical
mechanism which resulted in the dataset being considered. All RFI sources
were modelled on the physical level and then sources were created which were
RFI objects. They were then observed and the visibilities gotten when the
sources were observed are simulated. By de�nition4, a deductive model is
one which begins with a general statement or hypothesis and aims at testing
theories which already exists whereas an inductive model generates new theory
from speci�c observations, thus, conclusions are drawn from the data itself. In
an inductive model, observations are made, patterns are observed and then
theories are developed which is exactly what was done in this study. In-depth

1https://matplotlib.org/stable/contents.html
2https://numpy.org/doc/stable/numpy-user.pdf
3https://docs.python.org/3/library/pickle.html
4https://www.livescience.com/21569-deduction-vs-induction.html
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discussions of the two models can be seen in [49]. Also, the di�erences between
these two models is discussed in Section 1.1. Some of the existing deductive
RFI simulators were reviewed in Section 3.5. Some detail as to how to go
about implementing an inductive RFI simulator is given in Section 3.6.

5.3 Simulator Settings and Programmatic Flow

The command line arguments which are passed into the simulator is parsed
via getopt5. The command line arguments are: number of sources to create
represented as n, the pareto parameter as a, the �eld of view as f, the number
of channels as c, the number of experiments to perform as e, the signal-to-noise
ratio value due to the thermal noise as s and the signal-to-noise ratio value
due to the RFI as r and which classi�er to use for the experiment.

The antenna layout used was that of KAT-7. The ENU coordinates of
KAT-7 is depicted in Table 5.1. The observational parameters used in our
simulator is given in Table 5.2, they include the latitude, starting hour angle
H0, stopping hour angle H1, declination δ0, right ascension α0 and the obser-
vational frequency f. These parameters except frequency were converted into
radians from degrees. This information was imported into our simulator via a
package called pandas6. The observation wavelength was also calculated from
the observation frequency f.

Antenna E (x) N (y) U (z)
Antenna 1 25.095 m (x1) -9.095 m (y1) 0.045 m (z1)
Antenna 2 90.284 m 26.380 m -0.226 m
Antenna 3 3.985 m 26.893 m 0.000 m
Antenna 4 -21.605 m 25.494 m 0.019 m
Antenna 5 -38.272 m -2.592 m 0.391 m
Antenna 6 -61.595 m -79.699 m 0.702 m
Antenna 7 -87.988 m 75.754 m 0.138 m

Table 5.1: The ENU (east-north-up) coordinates of KAT-7

Table 5.2 provides information about an observation that was conducted
with KAT-7.

Since the information in Table 5.1 tells us about the number of antennas in
KAT-7, the number of baselines of our interferometer can be computed. The
formula that was used to calculate the number of baselines is given in Equation
2.4 of Chapter 2.

5https://docs.python.org/3/library/getopt.html
6https://pandas.pydata.org/docs/

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. TESTING, RESULTS AND ANALYSIS 58

Name Value
Latitude L −30◦ − 43′ − 17.34”

Starting hour angle H0 -4h
Stopping hour angle H1 4h

Field center δ0 −74◦ − 39′ − 37.481”
Field center α0 4h 44m 6.686s

Observational frequency f 1.4 GHz

Table 5.2: Observation conducted with KAT7

Figure 5.2: Plot of the positions of the KAT-7 antenna given in Table 5.1.

The ENU baseline di�erence vector of the various baselines, the length D of
the baselines, the azimuth angle A and the elevation (altitude) angle E of the
baselines were calculated and are then used to calculate the XYZ coordinates.
The XYZ coordinates are then converted into uvw coordinates. As the hour
angle changes, the computed uvw coordinates start to form uv -tracks. One
can refer back to Section 2.2 to see how these calculations are to be performed.

The pareto distribution is an exponential decaying probability distribution
used to express types of events eg. social and scienti�c events [50]. The shape
of the pareto distribution is a�ected by a parameter known as the pareto
parameter. The pareto distribution is however used in this case to describe
sources; as there are few bright sources and many faint sources. In relation to
this thesis, one hundred �at spectrum sources were created using the pareto
parameter and are located uniformly in a pre-speci�ed �eld of view (FoV).
The amplitude of these sources were drawn from a pareto distribution with a
pre-speci�ed pareto parameter. The values of the pareto parater and the FoV
used for the simulation were 2 and 10 respectively. Subsequently, a completely
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�lled in uv -plane is created with visibilities which is then sampled (see Section
2.3). The sky model is expressed as I(l,m) =

∑
k Ak δ(l−lk,m−mk) where Ak

represents the amplitude, lk and mk represents the l and m coordinates of the
k -th source. The FT of I(l,m) is then V (u, v) =

∑
k Ak exp(−2πi(ulk+vmk)),

this is how the sky model is constructed.
A mask which indicates which channels to corrupt is then constructed.

This mask is also used to generate the waterfall plots in Figure 5.8(a) and
Figure 5.8(b). The number of channels simulated is 200, �ve of which were
corrupted.

Thermal noise was generated with a speci�c SNR value and was added
to the visibilities. The same was done to add RFI to our simulation (this is
discussed in more detail in Section 3.6) but measured relative to the astro-
nomical sources and not to the thermal noise that is added to the visibility.
Thus, the RFI is added under the assumption that the astronomical compo-
nent is the power. Hence, it is not added on the noise induced visibility but
rather computed based on the power in the original signal. The RFI SNR
value always needs to be less than the SNR value of the thermal noise which
is added because RFI is much stronger than noise and the more negative a
value is, the more the noise level. Three di�erent thermal and RFI SNR com-
binations are considered in this study. They were chosen by performing a grid
search. These three combinations can be associated with three di�erent RFI
categories, namely a strong RFI use case (SNR = 5 dB and RFI = −17 dB),
a strong-to-medium RFI use case (SNR = 10 dB and RFI = −13 dB) and
medium RFI use case (SNR = 0 dB and RFI = −11 dB).

Machine learning was also incorporated into the pipeline. ML is used to
perform RFI detection (see Section 5.6). Plots of the decision boundaries,
confusion matrices and scatter plots are seen in the aforementioned section as
well. Four classi�ers were used, namely: Naive Bayes classi�er, the Logistic
Regression classi�er, GMM classi�er and k -means classi�er (see Chapter 4).
The data associated with a single baseline was then randomly split into a
training set (Xtrain) and a test set (Xtest) of equal size. The classi�ers were
trained using Xtrain and tested using Xtest. This experiment was repeated
100 times for each classi�er.

The confusion matrices of each run were all pickled or stored to di�erent
pickle �les. These �les were stored in di�erent directories which were named
after each classi�er type. The individual �les in each directory contained the
following information in their names: the classi�er type, experiment number,
SNR value for thermal noise and RFI. For example, all GMM experiments
were saved to a GMM experiments directory, and in that directory, there were
di�erent folders which were used to group the results of the 100 experiments
for each of the three SNR combinations. A di�erent script was written to read
in the pickle �les which calculates the average of all confusion matrices, accu-
racies, true positives and true negatives (also see Section 4.9). The standard
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deviations of each classi�er were calculated and then averaged as well. How
this is calculated is discussed in Section 5.6.

5.4 Simulator Limitations

This simulator is of a simplistic nature. Below are some of the limitations of the
project and the simulator. However, all these limitations can be worked on and
if it is improved enough, it could possibly be useful in real-world applications.
Its current simplistic design makes it an ideal teaching tool.

1. No median �lter is applied before RFI detection is performed. The per-
formance of the classi�ers would improve if the visibilities were �ltered
�rst. This is so because median �lters are used to remove noise from
signals hence if applied, the noise content from visibilities will reduce,
thereby increasing the performance of the classi�ers.

2. No hyper-parameter tuning/no regularization was performed when run-
ning the Logistic Regression classi�er experiment. The default value
produced accurate enough results.

3. Only one baseline is considered.

4. Polarization is ignored.

5. Only a limited number of channels were corrupted

6. Same SNR value was used for each of the channels that were corrupted.

7. A very simple �rst order normal distribution was assumed as the distri-
bution for RFI noise for the sake of simplicity. Channel independence
was also assumed. This should be tested via experiments and improved
upon if need be.

8. A Graphical User Interface (GUI) should be added to improve its e�cacy
as a teaching tool

9. More advanded ML metrics can be considered to evaluate the di�erent
RFI detection methods.

5.5 Simulator Validation

The results plotted in Figures 5.3 to Figures 5.8(b) were obtained by running
the simulator and are shown here for validation purposes.
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Figure 5.3: uv -track of a single baseline

(baseline 12 and 21)
Figure 5.4: uv -coverage

Figure 5.5: Real and imaginary part of visibilities plotted with 100 sources, pareto

number of 2 and Fov value of 10

5.6 Machine Learning and RFI Detection

Results

This section comprises of tables which includes the average confusion matrices
(True Positive (TP), False Positive (FP), False Negative (FN), True Negative
(TN)) of each SNR combination of the four algorithms (Naive Bayes, Logistic
Regression, GMM and k -means algorithms). It also contains a multitude of
plots that tell us how e�ective the aforementioned algorithms were at detecting
RFI. The values reported are normalized and are not percentages.

The standard deviation was calculated by adding the diagonals of each of
the saved confusion matrices (TP and TN) and averaged (divided by 2). The
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Figure 5.6: Sampled visibilities with their real and imaginary components of 100

sources, pareto number of 2 and Fov value of 10 plotted

Figure 5.7: The phase and amplitude of the visibilites of baseline 12 (Antenna 1

and 2) as a function of frequency and timeslots. This plot is commonly referred to

as a waterfall plot within the literature. The top panel is the amplitude and the

bottom panel is the phase.

average computed values were then plotted in the bar graph (see Figure 5.34).
It is the same value which is reported in the tables.

Three SNR combinations were investigated. In the �rst use case, 5 dB
and -17 dB were used. This represents the use case in which the RFI is very
high. The thermal noise level is relatively low. For the second use case, 10 dB
and -13 dB was used. In this use case the RFI noise level which is induced
is medium-to-high. The thermal noise level is lower than that in the �rst use
case (this is of secondary importance, the main thing that is of interest in
modelling for each of the three use cases is the level of RFI noise which was
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(a) Visibility with noise (b) Visibility with RFI e�ects

Figure 5.8: The plots in the �gures above are visibilities with thermal noise and

RFI added, respectively. The visibilities are plotted as a function of frequency and

time-slots. In the top panel the amplitude is plotted, in the middle panel the phase

and in the bottom panel the RFI corruption mask.

added). In the last use case, 0 dB and - 11 dB was used. In other words, a
medium RFI noise level and a relatively high level of thermal noise were used.

The green and red labels used in the scatter plots and decision boundary
plots correspond to the �g� and �r� labels that are used in the confusion matrices
respectively. For the sake of readability, these labels are used in all plots in
this section. It is clear from the scatter plot that the red label indicates
true visibilities and the green label indicates RFI. Furthermore, the visibilities
represent the positive class and RFI represents the negative class.

5.6.1 Naive Bayes Results

The confusion matrix associated with Naive Bayes is diagonally dominant.
This method is performing the best. The average confusion matrices for the
three use cases for the Naive Bayes classi�er is presented in Table 5.3. The
confusion matrix, a labelled visibility scatter plot and a decison boundary plot
of a randomly selected experiment involving the Naive Bayes classi�er for the
three use cases considered is depicted in Figures 5.10 to 5.14.

5.6.2 Logistic Regression Results

The LR classi�er performs similarily to the NB classi�er. The average con-
fusion matrices for the three use cases for the Logistic Regression classi�er is
presented in Table 5.4. The confusion matrix, a labelled visibility scatter plot
and a decison boundary plot of a randomly selected experiment involving the
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SNR RFI Confusion Matrix Standard
value SNR TP FP FN TN deviation

0 -11 0.9985 0.0014 0.3561 0.6438 ± 0.0287

5 -17 0.9995 0.0004384 0.1188 0.8811 ± 0.0156

10 -13 0.9990 0.0009687 0.2515 0.7484 ± 0.0237

Table 5.3: The average confusion matrices of the Naive Bayes classi�er for the three

use cases that were considered in this study.

(a) Confusion Matrix (b) Plot of decision boundary

Figure 5.9: The confusion matrix and decision boundary plots for the SNR combi-

nation 0 dB and -11 dB for the Naive Bayes classi�er

Logistic Regression classi�er for the three use cases considered is depicted in
Figures 5.15(a) to 5.19(a).

SNR RFI Confusion Matrix Standard
value SNR TP FP FN TN deviation

0 -11 0.9997 0.0002866 0.4007 0.5992 ± 0.0394

5 -17 0.9999 0.00007538 0.1324 0.8675 ± 0.0189

10 -13 0.9998 0.0001841 0.2878 0.7122 ± 0.0274

Table 5.4: The average confusion matrices of the Logistic Regression classi�er for

the three use cases that were considered in this study.

5.6.3 Gaussian Mixture Model (GMM) Results

In terms of unsupervised classi�cation, this model outperforms k -means. The
average confusion matrices for the three use cases for the GMM classi�er is
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Figure 5.10: Scatter plot of the Naive Bayes classi�er for the SNR combination 0

dB and -11 dB

(a) Confusion Matrix (b) Plot of decision boundary

Figure 5.11: The confusion matrix and decision boundary plots of the SNR com-

bination 5 dB and -17 dB for the Naive Bayes classi�er

presented in Table 5.5. The confusion matrix, a labelled visibility scatter plot
and a decison boundary plot of a randomly selected experiment involving the
GMM classi�er for the three use cases considered is depicted in Figures 5.21(a)
to 5.25(a).
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Figure 5.12: Scatter plot of the Naive Bayes classi�er for the SNR combination 5

dB and -17 dB

(a) Confusion Matrix (b) Plot of decision boundary

Figure 5.13: The confusion matrix and decision boundary plots for the SNR com-

bination 10 dB and -13 dB for the Naive Bayes classi�er

5.6.4 k-means Results

This method performed the worst. The average confusion matrices for the
three use cases for the k -means classi�er is presented in Table 5.6. The con-
fusion matrix, a labelled visibility scatter plot and a decison boundary plot of
a randomly selected experiment involving the k -means classi�er for the three
use cases considered is depicted in Figures 5.27(a) to 5.32.
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Figure 5.14: Scatter plot of the Naive Bayes classi�er for the SNR combination 10

dB and -13 dB

(a) Confusion Matrix (b) Plot of decision boundary

Figure 5.15: The confusion matrix and decision boundary plots for the SNR com-

bination 0 dB and -11 dB for the Logistic Regression classi�er

5.6.5 Average accuracy

The bar graph in Figure 5.33 shows that k -means is performing the worst of all
the methods but the remaining methods are all performing similarly. Not one
of the methods is signi�cantly outperforming the other methods. The average
accuracy of each method is reducing as the RFI SNR value increases.
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Figure 5.16: Scatter plot of the Logistic Regression classi�er for the SNR combi-

nation 0 dB and -11 dB

(a) Confusion Matrix (b) Plot of decision boundary

Figure 5.17: The confusion matrix and decision boundary plots for the SNR com-

bination 5 dB and -17 dB for the Logistic Regression classi�er

5.6.6 Standard Deviation

The bar graph in Figure 5.34 is a plot of standard deviation versus the SNR
combinations. It indicates that the classi�ers are very stable (the Naive Bayes
classi�er in particular). The only exception (quite notably) is k -means (and
to a lesser degree GMM as well), which is to be expected since it is a linear
unsupervised approached. It was observed that the TP and TN of the k -
means classi�er changed quite signi�cantly during the simulator runs. The
same applies to GMM for the SNR combination of {0dB,−11dB}. The Naive
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Figure 5.18: Scatter plot of the Logistic Regression classi�er for the SNR combi-

nation 5 dB and -17 dB

(a) Confusion Matrix (b) Plot of decision boundary

Figure 5.19: The confusion matrix and decision boundary plots for the SNR com-

bination 10 dB and -13 dB for the Logistic Regression classi�er

Bayes classi�er was more stable than the other methods.

5.6.7 True Positive

TP is the upper left cell in a confusion matrix which tells us how well it labelled
true visibilites as such and how well the visibilities can be distinguished from
the corrupted ones. Its graph is shown in Figure 5.35. In the TP results,
there is not much di�erence in GMM and k -means for the �rst two use cases
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Figure 5.20: Scatter plot of the Logistic Regression classi�er for the SNR combi-

nation 10 dB and -13 dB

SNR RFI Confusion Matrix Standard
value SNR TP FP FN TN deviation

0 -11 0.9809 0.0190 0.3120 0.6879 ± 0.0530

5 -17 0.9995 0.0004164 0.1236 0.8763 ± 0.0157

10 -13 0.9987 0.001256 0.2554 0.7445 ± 0.0228

Table 5.5: The average confusion matrices of the GMM classi�er for the three use

cases that were considered in this study.

(a) Confusion Matrix (b) Plot of decision boundary

Figure 5.21: The confusion matrix and decision boundary plots for the SNR com-

bination 0 dB and -11 dB for the GMM classi�er
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Figure 5.22: Scatter plot of the GMM classi�er for the SNR combination 0 dB and

-11 dB

(a) Confusion Matrix (b) Plot of decision boundary

Figure 5.23: The confusion matrix and decision boundary plots for the SNR com-

bination 5 dB and -17 dB for the GMM classi�er

SNR RFI Confusion Matrix Standard
value SNR TP FP FN TN deviation

0 -11 0.8367 0.1632 0.2419 0.7581 ± 0.1497

5 -17 1 0 0.3299 0.6701 ± 0.0212

10 -13 0.9923 0.0076 0.3691 0.6309 ± 0.0510

Table 5.6: The average confusion matrices of the k -means classi�er for the three

use cases that were considered in this study.
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Figure 5.24: Scatter plot of the GMM classi�er for the SNR combination 5 dB and

-17 dB

(a) Confusion Matrix (b) Plot of decision boundary

Figure 5.25: The confusion matrix and decision boundary plots for the SNR com-

bination 10 dB and -13 dB for the GMM classi�er

plotted in Figure 5.35. For the SNR combination {0 dB,−11 dB}, k -means
performed signi�cantly worse than GMM. It was observed during the course of
the experiments that the TPs of k -means and GMM often deviated signi�cally
from one, lowering the overall accuracy of these two methods. The supervised
approaches on the other hand were able to �nd decision boundaries which
maximized their TP scores. This explains their consistency and the results
reported in Figure 5.34 as well.
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Figure 5.26: Scatter plot of the Gaussian Mixture Model classi�er for the SNR

combination 10 dB and -13 dB

(a) Confusion Matrix (b) Plot of decision boundary

Figure 5.27: The confusion matrix and decision boundary plots for the SNR com-

bination 0 dB and -11 dB for the k -means classi�er

5.6.8 True Negative

TN is the lower right cell in a confusion matrix which tells how well it labelled
RFI as such. All TN values were averaged and plotted in Figure 5.36. It
was observed that k -means did the worst in detecting RFI. The TN results of
k -means did improve for the SNR combination use case {0 dB,−11 dB}. The
fact that k -means has such a low TN value is what is lowering its overall ac-
curacy, making it one of the weakest RFI approaches considered in the study.
Moreover, the improvement it shows for the use case {0dB,−11dB} SNR com-
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Figure 5.28: Scatter plot of the k -means classi�er for the SNR combination 0 dB

and -11 dB

(a) Confusion Matrix (b) Plot of decision boundary

Figure 5.29: The confusion matrix and decision boundary plots for the SNR com-

bination 5 dB and -17 dB for the k -means classi�er

bination is overshadowed by a drop in its TP value for that same combination
(as noted in Section 5.6.7). In contrast with the other methods, it is much
better at detecting RFI when the RFI is weak, but under those conditions it
looses the ability to identify a true visibility when it is given one. It sets to
high a threshold when the RFI is strong. A similar trend is observable for the
GMM classi�er, albeit to a much lower degree.

All methods, are less capable of detecting RFI as the RFI becomes weaker,
which is to be expected. The only exception being k -means (and to a lesser
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Figure 5.30: Scatter plot of the k -means classi�er for the SNR combination 5 dB

and -17 dB

(a) Confusion Matrix (b) Plot of decision boundary

Figure 5.31: The confusion matrix and decision boundary plots for the SNR com-

bination 10 dB and -13 dB for the k -means classi�er

degree GMM). Having said this, k -means is still performing the worst. When
the RFI is strong it struggles to detect it but when it is weak it detects it well,
but in that case it is no longer able to detect uncorrupted visibilities accurately
(and on average has a lower accuracy than the other methods).

5.7 Discussions, Summary and Conclusion

The following general conclusions can be drawn:
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Figure 5.32: Scatter plot of the k -means classi�er for the SNR combination 10 dB

and -13 dB

Figure 5.33: A graph of average accuracies of all classi�ers versus the SNR combi-

nations

1. TP: Most methods can identify when a visibility is real or not, this
degrades when the RFI becomes weaker.

2. TN: Most methods can identify RFI well. This degrades as the RFI be-
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Figure 5.34: A graph of average standard deviation of all classi�ers versus the SNR

combinations

comes weaker. The most notable exception is k -means because of a drop
in its TP value for the {0 dB,−11 dB} SNR combination. However, it
remains the weakest method with the lowest accuracy of all the methods
(the standard deviation results corroborate this and shows that GMM
also follows this trend).

3. Accuracy: The accuracy of each method is reducing as the RFI SNR
value increases. Accuracy improves as the RFI SNR value changes from
-11 to -13 to -17; which is to be expected.

4. The supervised classi�cation methods did better than the unsupervised
methods; which is to be expected.

5. The two unsupervised methods performed on par (although it seems
that Naive Bayes slighty outperformed the Logistic Regression method
possibly due to the fact that it is a non-linear method, whilst Logistic
Regression is a linear method).

6. Non-linear methods outperformed linear methods; which is to be ex-
pected.

7. The supervised methods produced more consistent results compared to
the unsupervised methods.
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Figure 5.35: A graph of average true positives of all classi�ers versus the SNR

combinations

8. The ranking of the four algorithms according to the accuracy graph is:
Naive Bayes, GMM, Logistic Regression and k -means. Due to the fact
that GMM had unstable results, the aforementioned ranking is changed
to: Naive Bayes, Logistic Regression, GMM and k -means.

Recall that the main aim of this simulator is for it to be used as a teaching
tool. The conclusions that were drawn from this study, therefore, may di�er
to what one might observe if these approaches were applied to real world data.

5.8 Teaching Tool

This section focuses on how this simulator can be utilized as a teaching tool.
It was created to help teach students the basics of interferometry and machine
learning. Table 5.7 lists all the main concepts a student can master by using
the created pipeline. It also lists the relevant python �le which should be
studied to master these concepts.
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Figure 5.36: A graph of average true negatives of all classi�ers versus the SNR

combinations

Teaching tool Location in Github repo

How to convert coordinates to radians coordinate_conversion.ipynb

How to create uv -tracks uv-track.ipynb

How to create sources source_creation.ipynb

How to create visibilities visibility.ipynb

How to add noise to visibilities noise_visibility.ipynb

How to add RFI to visibilities RFI_visibilities.ipynb

How to perform classi�cation classi�cation_parameters.ipynb

How to generate classication plots classi�cation_plottings.ipynb

Table 5.7: Table referring to the teaching tool consisting of locations of python �les

in the github repository where one can go to learn how this simulator was created.
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Chapter 6

Conclusion and Recommendation

6.1 Conclusion

As stated in Section 1.2 of Chapter 1, the thesis had three main objectives.
The creation of an RFI simulator to serve as a teaching tool, a succinct review
of the theory underpinning interferometry and ML; and the utilization of the
aforementioned simulator to rank four classi�cation algorithms. Let us see if
these three objectives were achieved.

The main contribution of this work is a new inductive RFI simulator. The
details of this simulator was presented in Chapter 5. This simulator is multi-
faceted and was designed to serve as both a teaching tool and a testbed for
ML algorithms. Students can use this simulator to learn the basics of inter-
ferometry and ML. The simulator can generate visibilities from a skymodel,
create uv-tracks, induce RFI onto said visibilities and employ ML to detect
the aforementioned RFI. The simulator was validated in Chapter 5. How the
simulator can be used to learn speci�c concepts is made clear in Section 5.3.
The theory underpinning interferometry and ML is thoroughly presented in
Chapter 2 and Chapter 4 respectively. An ML experiment which can be re-
peated by a student wanting to learn more about ML is presented in Section
4.10. Moreover, a naive initial accuracy ranking of the four classi�cation algo-
rithms namely Naive Bayes, Logistic Regression, GMM and k -means in terms
of using them to detect RFI is presented in Section 5.7 of Chapter 5. It was
observed that the accuracies of the algorithms decreased as the RFI SNR value
increased. This implies that, the more negative the RFI SNR value, the more
the RFI noise level. In short, the thesis clearly achieved all three objectives.

To conclude, a simplistic aproach was used and the outcome thereo� was
a teaching and training tool.

80
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6.2 Recommendation for Future Studies

The limitations of the simulator is clearly outlined in Section 5.4. Each of
these limitations should be improved upon in future work. Moreover, only
four relatively basic ML algorithms were ranked in this study. As discussed in
Chapter 3, there exists a multitude of ML algorithms which can be employed to
detect RFI. Once the simulator presented in this thesis is improved to an extent
that it can generate realistic RFI e�ects, then it can be used as a testbed for
all the algorithms presented in Chapter 4. This, however, is beyond the scope
of the current work. A study to evaluate the e�ectiveness of the developed
teaching tool should also be conducted as part of a future endeavour.
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