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Abstract

The noisy intermediate-scale quantum (NISQ) era refers to the current technological
epoch permeated with quantum processors that are big enough (50-100 qubits) to
be no longer trivially simulatable with digital computers but not yet capable of full
fault-tolerant computation. Such processors provide great testbeds to understand the
practical issues and resources needed to realize quantum tasks in these processors,
such as quantum algorithms. Many pressing issues arise in this context that are a
direct consequence of the limitations of these processors (limited number of qubits,
low qubit connectivity, and limited coherence times). Hence, for near-term quantum
algorithms, there is an overriding imperative to adopt an approach that takes into
account, and attempts to mitigate or circumvent some of these limitations.

In this thesis, we examine realizing Grover’s quantum search algorithm for four qubits
on IBM Q superconducting quantum processors, and potentially scaling up to more
qubits. We also investigate non-canonical forms of the quantum search algorithm that
trade accuracy for speed in a way that is more suitable for near-term processors. Our
contribution to this topic of research is a slight improvement in the accuracy of the
solution to a graph problem, solved with a quantum search algorithm implemented
on IBM Q quantum processors by Satoh et .al in IEEE Transactions on Quantum
Engineering (2020). We also explore the realization of a measurement-based quantum
search algorithm for three qubits. Unfortunately, the number of qubits and two-qubit
gates required by such an algorithm puts it beyond the reach of current quantum
processors.

Based on a recently published work with Professor Mark Tame, we also report a
proof-of-concept demonstration of a quantum order-finding algorithm for factor-
ing the integer 21. Our demonstration builds upon a previous demonstration by
Martín-López et al. in Nature Photonics 6, 773 (2012). We go beyond this work by
implementing the algorithm on IBM Q quantum processors using a configuration of
approximate Toffoli gates with residual phase shifts, which preserves its functional
correctness and allows us to achieve a complete factoring ofN D 21 using a quantum
circuit with relatively fewer two-qubit gates.

Lastly, we realize a small-scale three-qubit quantum processor based on a spontaneous
parametric down-conversion source built to generate a polarization-entangled Bell
state. The state is enlarged by using the path degree of freedom of one of the photons
to make a 3-qubit GHZ state. The generated state is versatile enough to carry out
quantum correlation measurements such as Bell’s inequalities and entanglement
witnesses. The entire experimental setup is motorized and made automatic allowing
remote control of the measurements of each of the qubits, and we design and build a
mobile graphical user interface to an provide intuitive and visual way to interact with
the experiment.
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Abstrak

Die ruiesende intermediêre skaal kwantum (NISQ) era verwys na die huidige tegnolo-
giese epog deurdring met kwantumverwerkers wat groot genoeg is (50-100 qubits) om
nie meer doeltreffend gesimuleer te kan word op digitale rekenaars nie, maar nog nie
in staat is om volle foutverdraagsame berekening uit te voer nie. Sulke verwerkers bied
baie goeie toetsplatforms om die probleme en hulpbronne mee te verstaan wat nodig
is om kwantumtake soos kwantumalgoritmes in hierdie verwerkers te verwesenlik.
Baie dringende kwessies ontstaan in hierdie konteks wat ’n direkte gevolg is van die
beperkings van hierdie verwerkeers (beperkte aantal qubits, lae qubit konnektiwiteit
en beperkte samehang tye). Daarom is daar vir naby-termyn kwantum algoritmes ’n
oorheersende noodsaaklikheid om ’n benadering aan te neem wat hierdie beperkings
in ag neem en pogings aanwend om sommige daarvan te versag of te omseil.

In hierdie handeling het ons ondersoek ingestel na Grover se kwantumsoekalgoritmes
vir vier qubits op IBM Q supergeleier kwantumverwerkers en die moontlike opskaal
na ’n groter aantal qubits. Ons ondersoek ook nie-kanonieke vorms van die kwantum-
soekalgoritmes wat akkuraatheid vir spoed verhandel op ’n manier wat meer geskik is
vir naby-termyn verwerkers. Ons bydra tot hierdie navorsingsonderwerp is ’n effense
verbetering aan die akkuraatheid van die oplossing vir ’n grafiekprobleem opgelos met
’n soekalgoritme wat op IBM Q kwantumverwerkers geïmplimenteer is deur Satoh et
al. In IEEE Transactions on Quantum Engineering (2020). Ons ondersoek ook die
verwesenliking van ’n waarneming-gebaseerde kwantumsoekalgoritme vir drie qubits.
Die aantal qubits en twee-qubit logikahekke wat deur so ’n algoritme vereis word plaas
dit buite die bereik van huidige kwantumverwerkers.

Gebaseer op ’n onlangs-gepubliseerde navorsingsstuk saam met professor Mark Tame
rapporteer ons ook ’n bewys-van-konsep demonstrasie van ’n kwantum volgordebepal-
ing algoritme vir die faktorisering van die heelgetal 21. Ons demonstrasie bou voort
op ’n vorige demonstrasie deur Martín López et al. In Nature Photonics 6,773 (2012).
Ons brei uit op hierdie navorsing deur die die algoritme op IBM Q kwantumverwerk-
ers te implimenteer met gebruik van benaderde Toffoli logikahekke met oorblywende
faseverskuiwings – wat sy funksionele integriteit behou en ons instaat stel om ’n
volledige faktoriseering van N = 21 te bereik met behulp van ’n kwantumstroombaan
met ’n kleiner aantal twee-qubit logikahekke.

Laastens bewerkstellig ons ’n kleinskaalse drie-qubit kwantumverwerker gebaseer op
’n spontane parametriese fluoressensie (“spontaneous parametric down-conversion”)
bron wat gebou is om ’n polarisasie-verstrengelde Bell staat te genereer. Hierdie staat
word vergroot deur die baanvryheidsgraad van een van die fotone te gebruik om
kwantumkorrelasie metings soos Bell se ongelykhede en verstrengelingsgetuies uit te
voer. Die hele eksperimentele opstelling word gemotoriseer en geautomatiseer sodat
waarnemings van elk van die qubits deur middel van afstandbeheer gemaak kan word,
en ons ontwerp en ontwikkel ’n mobile grafiese gebruikerskoppelvlak om ’n intuïtiewe
en visuele manier te bied om met die eksperiment te kommunikeer.
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“Le mieux est l’ennemi du bien.”

— Voltaire, Dictionnaire philosophique
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0
Prelude

0.1 Historical footnote

“Begin at the beginning,” the King said, very gravely, ”and go on till you come to the end:
then stop.”

— Lewis Carroll, Alice in Wonderland

T
WO score years have passed since Richard Feynman conceived the idea of
simulating quantum mechanical phenomena with a fundamentally “new
kind of computer” [1]. He argued for the necessity of such a new kind of

computer on the account that conventional digital computing machines were inadept
at such a task; reasons being that any classical description of the quantum state of a
many-particle system needed to keep track of a large number of variables, far greater in
number than the size of the system:

“But the full description of quantum mechanics for a large system with R par-
ticles is given by a function which we call the amplitude to find the particles at
x1; x2; : : : ; xR and therefore, because it has too many variables, it cannot be sim-
ulated with a normal computer with a number of elements proportional to R.”

He also put forth the point that the predictions of quantum mechanics, supported by
numerous experimental validations to remarkable levels of accuracy1, were incompat- 1 The prediction of the value of the

anomalous magnetic moment of the
electron by quantum electrodynamics
agrees with the experimentally measured
value to more than 10 decimal figures; i.
e. the error in the prediction is less than
the ratio of the width of a human hair
strand to the height of Mount Everest.

ible with any interpretation that attempted to reconcile them within classical physics,
i. e., by interpreting the probabilities arising in quantum mechanics as a reflection of
the observer’s ignorance of the full degrees of freedom of a quantum system:

“If you take the computer to be the classical kind I’ve described so far (not the quan-
tum kind described in the last section) and there’re no changes in any laws, and
there’s no hocus-pocus, the answer is certainly, No! This is called the hidden vari-
able problem: It is impossible to represent the results of quantum mechanics with a
classical universal device.”

Thus it seemed to Feynman that any inquiry directed towards quantum mechanical
phenomena by way of simulation, classical in its foundations, in one way or another
would miss out on a full understanding of these phenomena, and that a possible way
of circumvention was the full acceptance of quantum mechanics, that is, any such
simulation needed to be quantum mechanical from the outset.
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What he meant by this, was that the new kind of computer he envisaged would “itself
be built of quantum mechanical elements which obey quantum mechanical laws”, and
he would call such a computer, a quantum computer2. To Feynman this was a condicio 2 Aptly named; uncharacteristically good

nomenclature by a physicist.sine qua non, and to this end he said these epoch-making words:

“Nature isn’t classical, dammit, and if you want to make a simulation of nature,
you’d better make it quantum mechanical, and by golly it’s a wonderful problem,
because it doesn’t look so easy.”

Notwithstanding, the boldness of such an enterprise, Feynman’s ideas grew in influ-
ence, and in the same decade they would reach a new zenith. In 1985, David Deutsch
formulated a fully quantum mechanical model of computation [2, 3], which formal-
ized many of the ideas that had been floating around up until that point. In particular,
he showed that the operations of such a computing device subsume the operations of
a conventional digital computer, but would further admit a class of operations, which
exploit quantum phenomena such as superposition, interference, entanglement, and
non-determinism, with no classical analogues. Deutsch’s ideas on this subject had
taken a slightly different trajectory; he sought for a general purpose quantum com-
puting machine, which could be used for, but was not entirely limited to, simulating
physics3; which meant the aforementioned phenomena would be exploited in a pro- 3 Such as an analogue quantum simula-

tor.grammable way, analogous to the operation of a conventional digital computer. To
this end, Deutsch and Josza [4] formulated a problem4, which in principle could be 4 Putting utility aside for the moment.

solved more efficiently by quantum computation than by any classical computation,
deterministic or otherwise. Thence, endeavors in this direction escalated rapidly, and
soon culminated in Peter Shor’s discovery of an efficient way to perform the discrete
Fourier transform on a quantum computer, which he applied in his chef-d’œuvre [5],
showing that quantum computers were, in principle, capable of efficiently computing
discrete logarithms, and subsequently prime factorization of large numbers, which are
both considered to be difficult problems for a classical computer.5 5 Difficult as in, there is no known

classical algorithm that can give an
answer to the problem in algorithmic
time that scales polynomially with the
problem size.

The discoveries of Peter Shor, and their implications were a significant milestone for
quantum computing as a field of study. Notwithstanding the progress that had been
made thus far, there were questions yet to be answered, particularly those of a practical
kind. All of the considerations hitherto were in abstracto, based on the hypothetical
premise that such a quantum device would be operating under ideal conditions, that
is, its operations would be fully coherent quantum mechanical processes, free from
any errors, or, in the least negligible. In fact, the presupposition that the device would
have the ability to be prepared in a coherent superposition of input states, and be kept
in such a state for the duration of a computation, had been the crux in its efficiency
gains. In practice this entailed precise control over the device’s means, among other
practical issues, which had not been addressed yet, and few things are so fatal to
an ideal as its realization. One preeminent stumbling block that stood in the path
towards realizing this ideal was that of decoherence, which can arise as a consequence
of a quantum system, however isolated, coupling to unwanted and external degrees
of freedom such as those of its surrounding environment. As a result of this external
influence, over time the ability of the system to be in a coherent superposition of
states is lost6. This is often attributed to the interaction having a preferred subset 6 Relaxation noise , where a system in

an excited state spontaneously relaxes
to its ground state, can also affect its
coherence.

of “classical” (statistical mixtures of ) states in the full Hilbert space of the system
together with its environment, with the vast of majority of states effectively excluded
by the interaction, in a phenomena known as environment-induced superselection [6,
7].

2

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 0. PRELUDE

The time scale over which the computer remains quantum-mechanically coherent
(coherence time), is of great practical importance, since it dictates the length of the
longest possible quantum computation. Candidate quantum systems then (e. g. quan-
tum optical systems) had relatively short-lived coherence times7, if the effects of 7 Coherence times have much improved

since then. For instance, the coherence
times for superconducting qubits ranges
between 50 µs to 100 µs,while for
trapped-ion qubits the coherence times
range between 0.2 s to 600 s [8, 9].

decoherence were left unchecked, a large-scale quantum device of such a kind would
not be viable for the foreseeable future, or ever!

“There will always be rocks in the road ahead of us. They will be stumbling blocks or step-
ping stones; it all depends on how you use them.”

— Friedrich Nietzsche

The advent of theoretical developments surrounding appropriate extensions of classi-
cal fault-tolerant methods, led to the discovery of quantum analogs of error detection
and correction, which could, under reasonable assumptions, reduce errors introduced
during a computation by the inimical effects of decoherence. These discoveries, in
conjunction with the threshold theorem [10, 11] meant that, in principle, it is possible
to perform a quantum computation reliably on imperfect hardware, at the cost of an
overhead incurred from its fault-tolerant design (fault-tolerantly encoded states and
elementary operations) in the computation, which grows polylogarithmically with the
length of the computation [12]. As a result there was renewed optimism in that build-
ing a scalable and fault-tolerant quantum computer should be possible in practice.
However, the overheads in the fault-tolerant methods have unforeseeably put their use
far beyond reach, even for modern-day quantum computers [13].

The noisy intermediate-scale quantum (NISQ) era refers to the interregnum per-
meated with quantum computers that are big enough in size (50-100 qubits) to
be no longer trivially simulatable with digital computers but not yet capable of full
fault-tolerant computation [13]. Due to their non fault-tolerant operation and other
hardware-related limitations such as inaccurate control and size, their capabilities will
be limited in scope. Despite these apparent limitations, such devices have a utility
that is peculiar to them. John Preskill in Ref. [13] mentions that they make for great
testbeds for the investigation of many practical issues brought about by their non-ideal
behaviour in a bottom-up manner. In the near-term, many algorithms with a provable
quantum advantage will continue to elude realization due to their great costs in re-
sources (number of qubits, number of two-qubit gates). As a result, there is emphasis
in designing near-term algorithms in a way that is aware, and attempts to circumvent
some of the limitations of near-term devices. One approach, in the way of this empha-
sis, is one that seeks reduction of the aforementioned resources in near-term quantum
algorithms. It is in this light with which this thesis deals.

0.2 Organization

“Sometimes a scream is better than a thesis.”

— Ralph Waldo Emerson

In broad terms, the content of this thesis is divided in two as dictated by its initial
aims and objectives. The first of which, is to investigate some of the practical issues of,
and study in detail, the realization of quantum algorithms on cloud-based quantum
processors.

3
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We confine our scope of study to two kinds of quantum algorithms, namely quantum
search [14] and quantum factoring [5] algorithms, and their realization on IBM’s
quantum experience platform [15]. Here, superconducting quantum processors will
be used and their performance under non-ideal operation will be quantified. Even to
such a seemingly confined scope, there remains much to be studied, and this thesis
comprises nothing more than a mere dint on the surface of a volumeous subject. The
other half of the thesis turns towards experimental physics, with the aim of under-
standing how to build and optimally access a remote small-scale quantum processor.
Such a small-scale quantum processor is one based on the use of photons, prepared
in a state that falls under a special class of states exhibited by two-state systems called
graph states, which serve as a substratum for one-way quantum computing [16]. Thus
the structure of this document will be of the form8: 8 This document has as its contents the

Masters thesis under the title ’Quantum
Computing on Cloud-Based Processors’,
written for the Department of Physics,
Faculty of Natural sciences, Stellenbosch
University, solely with the intention
of earning its author a Masters degree.
In effect, the author seeks to only
convey the main results of his study
with minimal meanderings, and does
not seek to write a full-blown textbook-
style thesis. Thus where ever possible
the author omits some of the details,
though not unnecessary per se, but
simply because they have been written
elsewhere with commendable diligence
and erudition.

Part I: Realizing quantum algorithms on the cloud

Chapter 1 will be a preliminary chapter, partly with the aim of providing neces-
sary background, however brief. The chief aim of this chapter will be for the sake of
completeness of the document in its entirety; for a thorough introduction, many a
textbook and lecture notes have been written [17–19], this chapter will be mainly
comprised of their spoils. Fundamental notions of quantum mechanics such as state
space, evolution and measurements will be revisited, and their relation to quantum
computation summarized.

Chapter 2 transitions towards the main matter of the thesis and introduces the prob-
lem of finding a needle in a haystack via quantum search algorithms. This topic is
first treated within the theoretical machinery of the quantum circuit model, where we
review and study two instances of quantum search algorithms; Grover’s search [14]
and partial search [20] quantum algorithms along with related results in this regard
and their implementations (and their viability thereof ) on current quantum hardware.
The topic is treated in a similar manner within framework of measurement-based
quantum computing (MBQC), by first revisiting the simplest scenario; that of when
the needle is in a four-element haystack, which naturally arises as a measurement pro-
cedure on a four-qubit graph state. Next, we consider the scenario of an eight-element
search space, which contrary to the aforementioned scenario, does not arise as a mea-
surement procedure on a well known graph state. Thence one has to work backwards
from its quantum circuit model implementation; by constructing graph states for its
various components, of which the most resourceful (in terms of number of qubits
and two-qubit gates) is the diffusion operator, which is equivalent to a Toffoli gate
(modulo single qubit gates). Thus, the graph state implementations of a Toffoli gate
are explored, and their performances assessed on quantum hardware (and thus their
viability thereof ).

Chapter 3 presents the crown jewel of quantum computation in the form of Shor’s
algorithm for prime factorization [5]. We follow the path of least action, and adopt
the standard textbook modus operandi, by first introducing the quantum phase estima-
tion algorithm; which seeks to estimate an eigenvalue corresponding to an eigenvector
of a unitary matrix, and the theoretical machinery thereof. Thereafter, we reduce
prime factorization into an isomorphic problem; that of order-finding, which can be
reformulated as a phase estimation problem, and thereby treated with the theoretical
machinery of quantum phase estimation.

4
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Similar to the previous chapters, we mention a selection of relatively recent realiza-
tions of Shor’s algorithm. Finally, we present the main contribution of the thesis;
which is a proof-of-concept demonstration of the complete prime factorization of
N D 21, which builds upon a recent demonstration in this regard, that of Martín-
López et al. in Nature Photonics 6, 773 (2012), and goes beyond this demonstration
in fully factorizingN D 21, aided by a great reduction in resources (number of two-
qubit gates) compared to the original demonstration.

Part II: Building a three-qubit one-way quantum computer

Chapter 4 endeavors towards experimentally realizing and characterizing a photonic
source of entanglement which takes the form of a two-qubit Bell state where the two
qubits are encoded in the polarization degree of freedom (DOF) of two photons; a
nonlinear optical process that converts a single photon of higher energy, incident on a
nonlinear crystal to a pair of lower energy photons, such that the total momenta and
energy of the entire process is conserved. One of the consequences of the aforemen-
tioned conversation laws is that the joint polarization state of the generated pair is
non-separable or entangled; it is no longer possible to describe the polarization state of
one photon (qubit 1) without making reference to the state of the other photon (qubit
2), the manifestation of such an effect is the appearance of non-classical correlations
for the polarization measurements of each photon [21]. An experiment that generates
photons in this way is set up in the laboratory, and appropriately characterized as
dictated by our aims.

Chapter 5 is dedicated to the expansion of the two qubit state from the previous
chapter to three qubits, with the additional qubit encoded on the path DOF of one
of the down-converted photons. The additional qubits are realized by having each
photon go through a Mach-Zehnder interferometer (MZI). Effectively, the full joint
state after this expansion is a linear graph state of three-qubits; a versatile source of
entanglement. Once the aforementioned state is characterized, automatic wave plates
and translatable mirrors are incorporated into the experimental setup, providing
remote control of the measurements of each of the qubits. With accessibility in mind,
we designed and built a small mobile graphical user interface (android mobile “app”),
providing an interactive and visual way to remotely control our experimental setup.
Through the app, one can conduct experiments of a similar nature in this thesis by the
specifying measurement basis for each qubit, and subsequently retrieve the experiment
data for analysis via the app.

Lastly, the thesis concludes with Chapter 6, which summarizes the entire body of
work, and the author gives an outlook towards related future research.

0.3 Contributions

This thesis draws a significant portion of its material from earlier work in the follow-
ing papers jointly written with Mark Tame:

• U.Skosana, M.Tame. “Demonstration of Shor’s factoring algorithm for N=21 on
IBM quantum processors”. Scientific Reports 11, 16599 (2021).

• U. Skosana and M. Tame. “On the advantages of relative-phase Toffolis”. The
Proceedings of SAIP2021, the 65th Annual Conference of the South African Institute of
Physics. (Accepted for publication)
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Preliminaries

“Throughout the narrative you will find many statements that are obviously nonsensical and
quite at variance with common sense. For the most part these are true.”

— Robert Gilmore, Alice in Quantumland: An Allegory of Quantum Physics

Readers acquainted with one of the main background texts [17, 18] may skip this
chapter without a great reduction in their entropy; this chapter is primarily included
for the sake of completeness and mainly bound up with spoils from the aforemen-
tioned texts.

1.1 Notation

W
E begin by introducing some notation that we will repeatedly make use of
throughout this thesis. The first piece of notation is the bra-ket notation,
which provides a convenient way to notationally represent vectors in a

complex vector space equipped with an inner product. An element of a d -dimensional
complex vector space V D Cd , in conventional notation is typically denoted as Ev;
in bra-ket notation such an element is denoted as jvi. The symbol j�i denotes a ket
vector, called a ket for brevity. The notation generalizes to infinite dimensional vector
spaces, however, for our purposes we will only consider the former case. Sometimes,
we will write jvi explicitly, similar to conventional vector notation as

jvi D

0BB@v1:::
vd

1CCA; (1.1)

where vi 2 C. Associated with the complex vector space V , there is a complex vector
space called the dual vector space of V , and denoted by V �. Elements of the dual
vector space V � are linear maps � that associate each element in V to a number in C,
� W V ! C. In bra-ket notation, the linear function � is associated another symbol,
which is denoted by h�j, called a bra vector, or simply called a bra. The action of the
linear function on a element v 2 V , in this notation is denoted as

�w.v/ ! hwj .jvi/ � hwjvi ; (1.2)

where hwjvi 2 C. In the case ofw 2 Cd , a bra hwj is uniquely associated with the
complex conjugate transpose of the elementw,

Stellenbosch University https://scholar.sun.ac.za



1.2. QUANTUM MECHANICS

hwj D
�
jw�

i
�T

D

0BB@ Nw1
:::

Nwd

1CCA
T

D

�
Nw1 : : : Nwd

�
; (1.3)

where � is element-wise complex conjugation, i. e. for a complex ˛ D aC ib 2 C with
a; b 2 R, and i D

p
�1; the complex conjugate of c is denoted by Nc D a � ib. The

symbol .�/T denotes the transpose, which transforms a column vector to row vector
and vice versa with the same entries. Often, we shall write the complex conjugate
transpose with a dagger �, that is,

h�j D j�
�
i
T

� j�i
� : (1.4)

Thus, for the finite-dimensional vector space Cd , the linear map �w can take the form

�w.v/ D w�v D hwjvi D Nw1v1 C Nw2v2 C � � � C Nwdvd ; (1.5)

that is, � is a linear function of the components of the vector v. Since we can associate
a ket jvi, uniquely with a bra hvj, we can define an inner product on the vector space
V . The inner product of two vectors v;w 2 V is a function that maps two vectors to
a number in C, .�; �/ W V � V ! C

.jwi ; jvi/ D �w.v/ D hwjvi D Nw1v1 C Nw2v2 C � � � C Nwdvd : (1.6)

The inner product imparts the notion of orthogonality on the vector space; two
vectors v;w 2 V are said to be orthogonal if hwjvi D 0. Furthermore, the
inner product imparts a notion of length on the vector space by inducing a norm
k�k W V ! Œ0;1/ on V . For a v 2 V , the norm is defined in terms of the inner
product as

kvk D
p

hvjvi: (1.7)

Subsequently, the norm imparts a notion of distance on the vector space; a distance
metric d W V � V ! Œ0;1/

kv � wk D
p

hv � wjv � wi; (1.8)

for v;w 2 V . A vector space V equipped an inner product .�; �/ is called a Hilbert
space, specially denoted by H. The Hilbert space is where quantum states live.

1.2 Quantum mechanics

Max Planck’s postulates about then mysterious spectrum of black body radiation in
terms of discrete energy quanta, was the cock’s crow of the physical theory we know
today as quantum mechanics. Since then, quantum mechanics has achieved acclaimed
status as one of the most successful physical theories in accounting for phenomena at
the atomic and subatomic scales. Unsurprisingly, the theory of quantum mechanics
is at the foundation of quantum computation. This sections describes the necessary
and minimal background from the theory of quantum mechanics relevant for quantum
computing.

8
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1.2.1 States

The state of a physical quantum system, isolated from its immediate environment,
is mathematically described by a unit vector in a Hilbert space H[17]. The simplest
non-trivial physical quantum system is a two-state quantum system, the state of such
a system can preoccupy two distinct states. The state of a two-state quantum system
is described by a unit vector in a two-dimensional Hilbert space H D C2, often, the
two distinct states are denoted as j0i and j1i. The states j0i ; j1i form an orthonormal
basis for the Hilbert space, hence a general state j i in such a vector space be written
as,

j i D ˛ j0i C ˇ j1i D ˛
�
1 0

�T
C ˇ

�
0 1

�T
: (1.9)

where ˛; ˇ 2 C, and we enforce the condition j˛j
2
Cjˇj

2
D 1, such that h j i D 1.

The spanning coefficients ˛ and ˇ are called amplitudes of states j0i and j1i, respec-
tively. Such a mathematical abstraction of a two-state quantum system is called a
quantum bit or simply “qubit”, analogous to the bit, which is the most basic informa-
tion carrying unit of information in classical computation and can only preoccupy
either one of two possible states. Similarly, a qubit is the most basic information
carrying unit in quantum computation and information. In the nomenclature of quan-
tum computation and information, the orthonormal basis fj0i ; j1ig is called the
computational basis, and elements of this basis are called computation basis states.
One of the peculiarities of a qubit, which makes it distinct from its classical counter-
part is a direct consequence of Equation (1.9); which suggests that in addition to the
two states j0i ; j1i, such a two-state system can occupy a continuum of states that
are not either j0i nor j1i but a linear combination of these states. This strange, and
somehow counterintuitive property is called superposition.

The constraint h j i D 1, which implies that j i is a unit vector in a two-
dimensional Hilbert space, gives a useful way to geometrically visualize the state of
a qubit. For real numbers � and ', a general pure state of a qubit can be written as

j i D ei cos �
2

j0i C ei' sin �
2

j1i ; 0 � � � �; 0 � ' < 2�;  2 R:

The parameters � and ' represent a point on the sphere of a ball in R3 with unit
radius, called a Bloch sphere as shown in Figure 1.1.

The Hilbert space H D C2 can be spanned by some other orthonormal basis other
than fj0i ; j1ig. Sometimes, it might instructive or convenient to write a general qubit
state j i in a different basis. Common bases include the Pauli-X basis denoted by
fjCi ; j�ig

j˙i D
j0i ˙ j1i

p
2

I j˙i D

�
1=

p
2;˙1=

p
2
�T
;

and the Pauli-Y basis denoted by fjCii ; j�iig

j˙ii D
j0i ˙ i j1i

p
2

I j˙ii D

�
1=

p
2;˙i=

p
2
�T
;

where i D
p

�1.
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z

x y

j i

�

�

Figure 1.1: Visualization of the state
of a qubit as a unit vector in R3

1.2.2 Evolution

A completely isolated physical quantum system is an idealization, not only that but
such a system would be uninteresting, as its state will never change, and an external
observer would have no way to access it which ipso facto would present a sizeable
challenge if we ever to hope do any meaningful information processing. In reality,
however, such an idealization does not hold, quantum system have dynamics and
evolve over time. Mathematically, the dynamics of an isolated1 quantum state are 1 Isolated here includes whatever is

instigating the dynamics, i. e. a laser
pulse causing a transition between
energy levels of a hydrogen atom.

described by a special kind of linear operator defined on the Hilbert space of the
quantum state. A linear operator U W V ! V defined on the Hilbert space H is a
linear operator such that for a general ket vector j i D

X
i

˛i jvi i 2 H,

ˇ̌
 0
˛
D U j i D U

 X
i

˛i jvi i

!
D
X
i

U.˛i jvi i/ D
X
i

˛iU jvi i ; (1.10)

for all jvi i 2 H and ˛i 2 C and j 0i 2 H. i.e The linear operator acts on a quantum
state and maps it to another quantum state.

Hence, formally stated — the evolution of the state of an isolated quantum sys-
tem over time is described by a unitary transformation [17]. That is, the state of a
quantum system at the present time j i and at a later time j 0i is described by a
linear operator defined on H. Why unitary ? Recall that we imposed the constraint
that the quantum states are described by unit vectors in H, hence it must be that
h j i D h 0j 0i D 1 which implies that the linear map U must be preserve
the norm defined on the space. Norm-preserving linear operators are called unitary
operators. The inverse of a unitary operator U is the same as its complex conjugate
transpose U �, i. e. U �U D U �U D 1 since

˝
 0
ˇ̌
 0
˛
D .U j i/�U j i D j i

� U �U j i D h jU �U j i (1.11)

Since it must be that h j i D h 0j 0i, the last expression implies U �U D 1.
Hence, a unitary operator U always has an inverse and hence the evolution over time
of an isolated system is always reversible.

10
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For a single qubit, unitary operators are represented by square complex matrices,
and their action on a qubit can be visually presented as rotations on the Bloch sphere
shown in Figure 1.1. Perhaps, the most prevalent example of such unitary operators
for a single qubit are the Pauli matrices, �x ; �y ; �z and the identity matrix 1

1 D

 
1 0

0 1

!
�1 � X D

 
0 1

1 0

!

�2 � Y D

 
0 �i

i 0

!
�3 � Z D

 
1 0

0 �1

!
:

The action of each of the above gates on a general qubit state j i are given by

X.˛ j0i C ˇ j1i/ D ˛ j1i C ˇ j0i ;

Y.˛ j0i C ˇ j1i/ D i.˛ j1i � ˇ j0i/;

Z.˛ j0i C ˇ j1i/ D ˛ j0i � ˇ j1i :

Hence, the Pauli-X gate is called a NOT gate analogous to the classical NOT gate
since it swaps around j0i and j1i, the Pauli-Z gate is called the phase flip gate since it
puts a negative phase on j1i, and Pauli-Y gate (Y D ZX) gate performs both of these
operators in sequence. The Pauli matrices have many useful algebraic properties:

�
�
i D ��1

i D �i Hermitian and unitary;˚
�i ; �j

	
D 2ıij1 Mutually anti-commutation;�

�i ; �j
�

D 2i"jkl�l su.2/ Lie algebra:

where "jkl is the Levi-Civita symbol, fA;Bg D AB C BA and ŒA; B� D AB � BA

denote anti-commutator and commutator, respectively. Prominently, a single qubit
rotation by angle � around an axis On can be written as an exponential of Pauli matrices

R On.�/ D e�i �
2 On�E�

D cos �
2

� i sin �
2
.nxX C nyY C nzZ/; (1.12)

where On D .nx ; ny ; nz/ and E� D .X; Y;Z/. Common examples of rotations are
rotations around the x; y and z axes of the Bloch sphere

Rx.�/ D cos �
2

� i sin �
2
X D

 
cos �

2
�i sin �

2

�i sin �
2

cos �
2

!
;

Ry.�/ D cos �
2

� i sin �
2
Y D

 
cos �

2
� sin �

2

sin �
2

cos �
2

!
;

Rz.�/ D cos �
2

� i sin �
2
Z D

 
e�i �

2 0

0 ei
�
2

!
: (1.13)

Similar to three-dimensional Euclidean space, an arbitrary qubit rotation can be
decomposed into three successive rotations around two non-parallel axes On and Om,
On � Om ¤ ˙1

U D ei˛R On.ˇ/R Om./R On.ı/; ˛; ˇ; ; ı 2 R:
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1.2. QUANTUM MECHANICS

In R3, the angles ˇ; ; ı are the so-called Euler angles. Other ubiquitous and note-
worthy single unitary operators are the HadamardH , Phase S , and T gates; as
matrices they are written as

H D Rx.�=2/Rz.�=2/Rx.�=2/ D
1

p
2

 
1 1

1 �1

!
; R� D e�i �

2 Rz.�/ D

 
1 0

0 ei�

!
;

T D e�i �
8 R�=4 D

 
1 0

0 ei
�
4

!
; S D R�=2 D

 
1 0

0 i

!
:

Perhaps, the most note-worthy among these is the Hadamard gateH , which operates
on the basis states j0i ; j1i to give a uniform superposition of the two basis states
jCi ; j�i, respectively (and vice versa).

1.2.3 Measurements

“We cannot see the things as they are. What we do see are only the different aspects of a
quantum object, the ‘quantum shadows’ in the sense of Plato’s famous parable.”

— Ulf Leonhardt, Measuring the Quantum State of Light

In addition to dynamics being a prerequisite for doing any meaningful information
processing with physical quantum systems, being able to extract useful information
from the system at the end of any information processing task is vital, as such infor-
mation can be useful in the characterization and assessment of the success of the said
information processing task. At the onset, we are confronted with the situation that
the very act of measuring a quantum system by observation by however means, implies
the system is no longer isolated, making the evolution of a quantum system under
measurement no longer unitary.

Formally stated in the standard text [17] — quantum measurements are described by
a collection fMmg of Hermitian operators 2, called measurement operators. The set 2 A Hermitian operator H is a linear

operator that is equal to its own complex
conjugate transpose H� D H .

fmg is the set of all possible measurement outcomes that may occur in the experiment.
Which outcome occurs? We can never determine in advance, but rather each outcome
m occurs with a probability p.m/. A measurement operator describes the evolution
of the system undergoing a measurement, if the state of a quantum system is j i

immediately before the measurement, then state after the measurement j 0i if the
outcomem is obtained is given by

ˇ̌
 0
˛
D
Mm j ip
p.m/

; (1.14)

where p.m/ D h jM
�
mMmj i, the denominator ensures that h j i D 1.

The probability that we will obtain an outcome whatever it may be is unity, i. e.P
m p.m/ D 1. Hence

X
m

p.m/ D
X
m

h jM �
mMmj i ;

D h j

X
m

M �
mMmj i D 1 D h j i H)

X
m

M �
mMm D 1:

12

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1. PRELIMINARIES

The measurement operators are therefore said to satisfy a completeness relation.
A particular example of a measurement operators we will refer to throughout this
thesis, are the measurement operators of the computational basis fM0;M1g D

fj0i h0j ; j1i h1jg, corresponding to the two possible outcomes f0; 1g. On a general
state written in the basis fj0i ; j1ig,

j i D ˛ j0i C ˇ j1i ; (1.15)

the probabilities that we obtain the outcomesm D 0 andm D 1 are given by
p.0/ D j˛j2 and p.1/ D jˇj2, respectively. The respective states directly after
measurements are given by

M0j ip
p.0/

D
˛

j˛j
j0iI

M1j ip
p.1/

D
ˇ

jˇj
j1i

The numbers ˛
j˛j
; ˇ

jˇ j
corresponding to phases of the form ei� with modulus 1, and

have no physical significance since they do not influence the measurement probabil-
ities. For instance, if j 0i differs from j i by a global phase ei� , then probability of
measuring an outcomem on j 0i after a measurement is given by

p.m/ D
˝
 0
ˇ̌
M �
mMm

ˇ̌
 0
˛
D h je�i�M �

mMme
i�

j i D h jM �
mMmj i : (1.16)

Given the ability to perform any arbitrary single qubit unitary operation together with
the ability to perform a computational basis measurement, it is possible to perform
a measurement in any arbitrary basis. To perform a measurement in an arbitrary
basis fjv0i ; jv1ig, we can first apply a unitary operator U such that fU jv0i D

j1i ; U jv1i D j1ig, and perform a measurement in the computational basis. For
instance, anX basis fjCi ; j�ig measurement can be performed in this way by first
applying the Hadamard gateH , takingH jCi D j0i andH j�i D j1i, respectively,
then a computational basis measurement.

The measurement operators on H, such as those of the computational basis, belong
to a special class of measurement operators called projectors, and the corresponding
measurements are called projective measurements [17]. Such measurement are said
to be projective because their action is to project a quantum state onto a subspace of
the Hilbert space. As we have seen for computational basis measurements, which
project a general state onto either j0i or j1i. Projective measurements are associated
with Hermitian operators or observables on H D C2; since a Hermitian operator
O is also a normal operator, i. e.

�
O;O�

�
D ŒO;O� D 0. HenceO has a spectral

decomposition

O D
X
i

m jvmi hvmj ; (1.17)

wherem 2 R are eigenvalues corresponding to the eigenvectors jvi i. For a Hermitian
operatorO , the eigenvectors can be chosen to form complete orthonormal basis for
H, with mutually orthonormal basis states

˝
vi
ˇ̌
vj
˛

D ıij . The action of the operators
Pm D jvmi hvmj on quantum state is to project onto a eigenspace associated with the
eigenvaluem of the Hermitian operatorO , hence their name.
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1.2. QUANTUM MECHANICS

Choosing the measurement operators asMm � Pm D jvmi hvmj is a valid
choice; the projectors Pm are Hermitian and satisfy the completeness relations since
the basis fjvmig forms a complete basis for H. Furthermore, as a consequence of
orthonormality of the basis, the projectors Pm are mutually orthogonal, that is,
PmPm0 D ım;m0Pm. The action of a projector Pm on a general state j i is given
by,

ˇ̌
 0
˛
D
Pm j i

p.m/
; (1.18)

where p.m/ D h jPmj i. The computational basis measurement fj0i h0j ; j1i h1jg

is an example of a projective measurement, and the corresponding observable is the
PauliZ matrix. Similarly, for theX basis measurement fjCi hCj ; j�i h�jg, the
corresponding observable is the PauliX matrix. In summary,

Z D 1 j0i h0j � 1 j1i h1j ; (1.19)

X D 1 jCi hCj � 1 j�i h�j : (1.20)

Projective measurements have properties that make them appealing in an experimen-
tal scenario, for instance, we can easily calculate the expected value or mean value of
the projective measurements with respect to a general state j i,

EŒO� � hOi D
X
m

mp.m/;

D
X
m

m h jPmj i ;

D h j

X
m

mPmj i ;

D h jOj i : (1.21)

Similarly, the statistical spread of the projective measurement or variance can be
written in terms of hOi as

�.O/2 D
˝
.O � hOi/2

˛
D
˝
O2
˛
� hOi

2 : (1.22)

1.2.4 Multiple systems

Hitherto, in everything we have discussed we only made reference to a single quan-
tum system, in the case of a two-state system, its state belongs to a two-dimensional
Hilbert space H. In some scenarios, we may be interested in a collective quantum sys-
tem made up of n distinct physical systems with the state of each in a distinct Hilbert
space Hi , for instance the collective quantum system of multiple distinct qubits inter-
acting amongst each other. How do we describe the collective state of a such a system?
The tensor product provides a way to construct a new Hilbert space composed up of
two other Hilbert spaces in a natural way [17].

If the state space of system A is the Hilbert space H1 and the state space of system
B is the Hilbert space H2, then joint state space of system AB is the Hilbert space
H1 ˝ H2.
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CHAPTER 1. PRELIMINARIES

This Hilbert space is formed by all possible pairs of basis elements of each space of the
form fjvi i ˝

ˇ̌
wj
˛
g, where fvig and fwj g is an orthonormal basis for H1 and H2,

respectively. Hence, the dimension of the Hilbert space H1 ˝ H2 is the product of
the dimensions of the individual Hilbert spaces. An element of the collective Hilbert
space H1 ˝ H2 is written as

j i D
X
i;j

˛i;j jvi i ˝
ˇ̌
vj
˛
; (1.23)

and inner product on H1 ˝ H2 is defined by

.jvi ˝ jwi ; jpi ˝ jqi/ D hvj ˝ hwj .jpi ˝ jqi/ � hvjpi hwjqi ; (1.24)

the product of the inner products defined on each Hilbert space. For the sake of
brevity whenever there is no risk of ambiguity we will write jvi ˝ jwi as jvi jwi

or jv;wi. The notion of constructing a larger Hilbert space to describe the state of
a collective quantum system by taking the tensor product of the Hilbert spaces of
each constituent system generalizes to an arbitrary number of systems. The joint state
of a collective system made up of n constituent systems in the state j i i is given by
j 1i ˝ j 2i ˝ � � � ˝ j ni.

Again, returning to the two-state quantum system, consider an example of two-qubit
state j�i 2 C4, composed of system A in the state j 1i 2 C2 and system B in the
state j 2i 2 C2, with

j 1i D ˛1 j0i1 C ˇ1 j1i1 ;

j 2i D ˛2 j0i2 C ˇ2 j1i2 :

The joint state j�i can be constructed by taking the Kronecker product of the two
states of the individual systems

j�i D j 1i ˝ j 2i ;

D ˛1 j0i1 ˝ .˛2 j0i2 C ˇ2 j1i2/C ˇ1 j1i1 ˝ .˛2 j0i2 C ˇ2 j1i2/;

D ˛1˛2 j0i1 ˝ j0i2 C ˛1ˇ2 j0i1 ˝ j1i2 C ˛2ˇ1 j1i1 ˝ j0i2 C ˇ1ˇ2 j1i1 ˝ j1i2 ;

D ˛1˛2

0BBB@
1

0

0

0

1CCCAC ˛1ˇ2

0BBB@
0

1

0

0

1CCCAC ˛2ˇ1

0BBB@
0

0

1

0

1CCCAC ˇ1ˇ2

0BBB@
0

0

0

1

1CCCA: (1.25)

Linear operators defined on a single Hilbert space can be extended in a similar man-
ner; if the operatorsO1; � � � ; On are defined on H1; � � � ;Hn respectively, then the
operatorO1 ˝ � � � ˝On is defined on H1 ˝ � � � ˝ Hn as

O1 ˝ � � � ˝On.j 1i ˝ � � � ˝ j ni/ � .O1 j i/˝ � � � ˝ .On j ni/: (1.26)
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1.2. QUANTUM MECHANICS

Additionally, an operatorOi acting on a Hi can be extended to act on a joint Hilbert
space H1 ˝ � � � ˝ Hn by defining it as

Oi .j 1i ˝ � � � ˝ j i i ˝ � � � ˝ j ni/ �

.11 j 1i/˝ � � � ˝ .Oi j i i/˝ � � � ˝ .1n j ni/; (1.27)

which acts on the joint Hilbert space, but has a non-trivial effect only on the respective
Hilbert space Hi . Whenever there is a possibility of ambiguity, such as with single
qubit rotations with a subscript, i. e. Rn.�/, the subscript used to denote separate
Hilbert spaces will be upgraded to a superscript denoted asR.i/n .�/.

1.2.5 Quantum non-separability

In addition to the phenomena of superposition, another phenomena inherently quan-
tum mechanical and associated with composite quantum systems is the phenomena of
entanglement, and a staple of quantum advantage in many quantum information pro-
cessing tasks. A joint quantum system is said to possess entanglement if its quantum
state cannot be written as a product state of the states of its individual subsystems, i. e.
non-separable — the individual subsystems are do not have a definite state, but only
collectively when describe it by referencing to the state of the other subsystem.

Consider a joint Hilbert space H D Ha ˝ Hb . A pure state j i is said to be
separable if it can be written as a product state of the form j i D j ia ˝ j ib for
j ia 2 Ha and j ib 2 Hb . Similarly, a density matrix % is separable if it can be
written as a convex sum of product states % D

P
j pj%j ˝ %j , where pj � 0 andP

j pj D 1 [23]. If a quantum system is not separable under the above criteria, it is
said to be entangled or non-separable. A two-qubit system is the smallest system that
is capable of exhibiting entanglement; the Bell states are the only maximally entangled
two-qubit states.

ˇ̌
˚C

˛
D

1
p
2
.j0; 0i C j1; 1i/ ;

j˚�
i D

1
p
2
.j0; 0i � j1; 1i/ ;ˇ̌

	C
˛
D

1
p
2
.j0; 1i C j1; 0i/ ;

j	�
i D

1
p
2
.j0; 1i � j1; 0i/ : (1.28)

Another important example of a maximally-entangled state is the three-qubit GHZ
state

j GHZi D
1

p
2
.j0; 0; 0i C j1; 1; 1i/: (1.29)

The above states are said to be maximally-entangled with respect to some entangle-
ment measure. Unfortunately, there is no general-purpose measure of entanglement
that fits all the sundry scenarios. We briefly outline a few ways used to characterized
the presence of entanglement (albeit not true entanglement measures) in a quantum
system in this thesis and refer the interested reader to the Refs. [24, 25] for a detailed
treatment of this subject.
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Bell-CHSH violations

Formulated by Clauser-Horne-Shimony-Holt (CHSH), the Bell-CHSH inequality
imposes necessary conditions on the measured correlations from an arbitrary two-
qubit state, under the local realism of classical local hidden variable theories, and
shows that quantum mechanics can violate such conditions [26]. The canonical Bell-
CHSH inequality asserts that, for any local hidden variable theory jS j � 2 where

S D E.x; y/ �E.x; y0/CE.x0; y/CE.x0; y0/; (1.30)

where x; y; x0 and y0 are different measurement bases andE.x; y/ is the corre-
sponding correlation measurement in the joint basis x; y. If theE.x; y/ are quantum
correlations, then quantum mechanics violates the aforesaid condition achieving a
possible maximum of jS j D 2

p
2. The description in Ref. [27] et al. derives sufficient

and necessary conditions on quantities derived from an arbitrary two-qubit state for a
violation of a Bell-CHSH inequality, such conditions are derived by way of measuring
correlations of this kind on the density matrix %:

Tnm D Tr.%�n ˝ �m/: (1.31)

The two largest singular values (�1; �2) of the resulting matrix T , give the maximum
expectation value of the operator associated with Bell-CHSH inequality achievable by
the density matrix %

hSi D 2

q
�21 C �22; (1.32)

the maximum value for the above expression is achieved when hSi D 2
p
2, which

occurs when the absolute values of singular values of T attain their maximum value
of 1. Under local realism, the maximum value attainable is hSi D 2. A violation
of Bell-type inequality is often considered an excellence indicator of the presence of
entanglement in a pure two-qubit system; alas, despite its experimental convenience, it
is not a true measure of entanglement3. 3 Ref. [28] shows that in general, it is

not possible to discern the degree of
entanglement (a quantifiable measure) in
a state via an inference from a violation
of a Bell-type inequality.

Bell-Mermin operator

A similar condition to the Bell-CHSH can be derived for aN -qubit GHZ state (and
any state locally equivalent to it) and the existence of non-local quantum correlations
can be verified by a measurement of the Bell-Mermin operator [29]:

MN D
1

2i

0@ NY
jD1

.Xj C iYj / �

NY
jD1

.Xj � iYj /

1A ; (1.33)

whereXj ; Yj denote the Pauli matrices, acting on the qubit j . One can show that
permutations of the terms of the form Y1Y2 � � �Y2m � � �Xn wherem 2 1; 2; : : : ;

�
N
2

˘
vanish. Such a term will have a coefficient of i2m D �1 from the first product and a
coefficient of �.�1/2mi2m D 1 from the second product. Hence, only permutations
of terms with an odd number of Y ’s are non-vanishing.
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1.3. QUANTUM CIRCUIT MODEL

Permutations of a term where the number of Y ’s is k D 2l C 1 have a coefficient C1,
where l is in the set of all even numbers less thanN (including 0), otherwise having

�1. The number of such distinct permutations is given by
X
jodd

 
N

j

!
D 2N�1.

Furthermore, the GHZ state is an eigenstate with eigenvalue 2N�1 of the Bell-
Mermin operator, which implies that the GHZ state is an eigenstate with eigenvalue
C1 of each of the non-vanishing terms4, and attains the maximum expectation value 4 Self-adjoint operators with this property

with respect to some state, are said to be
stabilizing operators of that state. More
on this a few lines down the text.

with respect to the Bell-Mermin operators i. e. hMN iGHZ D 2N�1. While lo-
cal hidden-variable theories under local realism [30] predict an expectation value of
hMN i < 2N=2 for evenN , and hMN i < 2.N�1/=2 for oddN [29] — which for
n � 3 are both less than the maximum expectation value for the quantum analog,
thus leading to a violation of both inequalities that grows exponentially inN . For the
three-qubit case, the Bell-Mermin operator of Equation (1.33) takes the form:

M D X1X2X3 �X1Y2Y3 � Y1X2Y3 � Y1Y2X3: (1.34)

Entanglement witnesses

A way to detect genuine multi-particle entanglement5 around the expected state is 5 A pure state is genuinely multipartite
entangled if it cannot be written as
tensor product of two states in any
bipartition [31].

by means of a so-called entanglement witness operator W . An entanglement witness
operator W is a self-adjoint operator, which has a positive or zero expectation value
for all product states (fully separable states) and negative for some non-separable
states [32]; that is:

Tr.W%/ D

(
� 0 for all product states %s;

< 0 for some entangled states %e
: (1.35)

In general, finding such an entanglement witness operator is not a trivial matter6, 6 See Refs. [33, 34] for a thorough
exposition on this.however for a certain class of states, called stabilizer states, finding a witness operator

can be reduced to finding the so-called stabilizing operators. A stabilizing operator
S .k/ for some stateN -qubit j i, satisfies the following:

S .k/ j i D j i ; (1.36)

i. e. it is an eigenstate of S .k/ with eigenvalue C1 [35]. Stabilizer states can be
uniquely defined in terms of their stabilizing operators, thus it is possible to con-
struct entanglement witnesses, detecting entanglement around the ideal state. An
entanglement witness operator detecting genuine multi-partite entanglement around
the ideal state j i has a noise threshold plimit, that is, it will detect a mixed state of
the form %.pnoise/ D pnoise1=2

N C .1 � pnoise/ j ih j as genuinely entangled if
pnoise is below the positive-valued threshold 0 < plimit < 1 [35].

1.3 Quantum circuit model

The quantum circuit model (or quantum network model) [3] has many parallels with
the classical model of Boolean logic circuits, and in fact it is a quantum generalization
of the latter. In the classical model of Boolean logic circuits, the smallest information
carrying unit is the bit and information processing proceeds temporally via computa-
tions.
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A computation is an abstraction of any operation that takes as input a set of given
input values (bits in this instance) to give a set of output values (bits in this instance).
A basic computation is abstracted as a Boolean logic gate, which given a fixed length
Boolean input of n bits computes some Boolean function of the form f W f0; 1gn !

f0; 1g. Hence, at the very basic level, a Boolean logic circuit consists of a set of n
inputs andm outputs, and intermediary between the inputs and outputs is a network
of logic gates that perform Boolean functions of the aforesaid form for various fixed
length input sizes, with the outputs of some gates serving as input to other logic gates
in the network.

In the quantum circuit model of computation, the qubit is the corresponding smallest
information carrying unit and information processing proceeds temporally in a similar
fashion to the classical case, via computations. The quantum analog of a Boolean logic
gate is a quantum logic gate, and a quantum circuit consists of quantum logic gates
acting on a set of input n qubits, which at the end of the computation are subsequently
measured in some basis to producem output bits. At each time step, a quantum
logic gate performs some unitary (reversible) operation U , hence the quantum circuit
model of computation is a reversible model of computation (before measurement).

When visualizing in a quantum circuit, represented as wires, qubits start in some
initial state and evolve temporally from left to right, with the inputs on the left of the
diagram and the outputs on the right. At the right end of the circuit after measure-
ment, classical bits are indicated with double wires. Common quantum logic gates we
will frequently refer to throughout this thesis are shown in Table 1.1.

Figure 1.2 shows a simple quantum circuit that prepares one of the maximally entan-
gled Bell states, j˚�i D .j00i � j11i/=

p
2 shown in Equation (1.37) and measures

the two qubits in the computational basis,

j0i

j0i

X H
Figure 1.2: A quantum circuit
preparing one of the Bell state j˚�i

and measures it in the computa-
tional basis states.

j˚�
i D

1
p
2
.j00i � j11i/: (1.37)

Initially, the state j i begins as

j i D HX ˝ 1 j00i ;

D j�i j0i : (1.38)

Applying a controlled-NOT gate on the above gives

CX j�i j0i D
1

p
2
CX.j0i j0i � j1i j0i/;

D
1

p
2
.j0i j0i � j1i j1i/: (1.39)

Measuring the above state in the computational basis states will yield the measure-
ment outcome o D 00 or o D 11 with equal probability.
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Gate Nomenclature Circuit symbol Matrix representation

NOT/X Pauli-X X

 
0 1

1 0

!
Y Pauli-Y Y

 
0 �i

i 0

!
Z Pauli-Z/Phase flip Z

 
1 0

0 �1

!
H Hadamard H 1p

2

 
1 1

1 �1

!
T T Gate T

 
1 0

0 ei�=4

!
S Phase Gate S

 
1 0

0 i

!
R� Phase-Shift

R�

 
1 0

0 ei�

!

CNOT/CX Controlled-NOT

0BBB@
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1CCCA
CPHASE/CZ Controlled-Z Z

0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

1CCCA
SWAP Swap Gate

0BBB@
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1CCCA

CCNOT/CCX/C 2ŒX� Toffoli/Controlled-Controlled-NOT

0BBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

1CCCCCCCCCCCCA

CCPHASE/CCZ/C 2ŒZ� Controlled-controlled-Z/Controlled-Controlled-Phase Z

0BBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 �1

1CCCCCCCCCCCCA

C-SWAP Fredkin/Controlled-SWAP

0BBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

1CCCCCCCCCCCCA

Table 1.1: Common quantum
logic gate with their names, circuit
symbol and matrix presentation

In later chapters we will make plenty of references to circuit depth; circuit depth is
defined as the number of consecutive parallel operations in a circuit from its input to
output. Circuit depth is taken to be a good proxy for algorithmic time, since each such
parallel operations can be counted as a single step. Consider the circuit Figure 1.3,
the circuit has 8 quantum logic gates and a circuit depth of 6. This is because the
operations in a given column can be executed in parallel, take for instance the set of
operationsH ˝ 1˝ 1, 1˝H ˝ 1, and 1˝ 1˝H ; these operations are equivalent
to the single operationH ˝ H ˝ H , and thus can executed in parallel without
temporal racing conditions.

j0i

j0i

j0i

H

H

H

S T

H S

H

Figure 1.3: A quantum circuit with
8 quantum logic gates and circuit
depth of 6.
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CHAPTER 1. PRELIMINARIES

1.3.1 Universal gate sets

In classical computation the gate set fAND, OR and NOTg defines a universal
gate set as every Boolean can be decomposed into a finite sequence of the gates in
the set, and in classical reversible computation the reversible the Boolean Toffoli
gate is a universal logic gate. This implies that any logic circuitL which computes
a Boolean function of the form f W f0; 1gn ! f0; 1g can be decomposed into
a logic circuitL0, equivalent in operation, made up of only a combination of gates
in the universal gate set. Similarly in quantum information processing, a quantum
logic gate set is said to be a universal gate set if any unitary operation U can be de-
composed into a finite sequence of the gates in that set. A commonly used universal
gate set is fH;S;CNOT; T g, in terms of the HadamardH , phase S , CNOT and
T gates. A controlled-controlled-NOT gate with such a universal gate set can be
decomposed into seven T=T �, twoH and six controlled-NOT gates. A physical
realization may implement a different gate from the aforesaid set to the convenience
of the physical implementation, i. e. the universal gate set for IBM Q processors is
fCNOT; Rz .�/ ;

p
X;Xg and same gate may not necessarily decompose into the

same number of gates across universal gate sets, which may raise concerns over the
efficiency of a particular gate set. However, any two universal gate sets can simulate
one another efficiently [36] and a particular choice of universal gate set does not the
effect the asymptotic efficiency of a physical realization implementing a particular gate
set.

1.4 Polarization measurements

In the experiments we will describe in later chapters we shall make plenty of references
to performing polarization measurements on a quantum state of light. Hence, I have
endeavored to outline in passing what is essential in this regard, that is the mathe-
matical description of the operations of optical elements that alter and measure the
polarization of single photons.

1.4.1 Wave plates

Perhaps, the most wide-spread of such optical elements are wave plates. Wave plates
are optical elements made up of birefringent material and alter the polarization of
light normally incident on it by introducing a phase-shift between its polarization
components along the ordinary and extraordinary axes7 of the material. For light 7 Sometimes called slow-axis and fast-

axis, respectivelynormally incident on a wave plate, the polarization component along the ordinary
axis8 experiences a different refractive index than the polarization component along 8 The material is often cut such that the

ordinary axis is normal to the plane of
the wave plate’s front face.

the extraordinary axis, hence the polarization state of the transmitted light exits the
wave plate out of phase by '.

For a phase shift of ' D � , the corresponding wave plate is called a half-wave plate
(HWP). The action of a HWP on the two perpendicular polarization modes OaH ; OaV

(typically horizontal and vertical axis of the lab frame) of a single photon9 is given 9 Here, Oa
�
H

jvaci D jH i D j0i and

Oa
�
V

jvaci D jV i D j1iby [37]

UHWP.�/ D

 
cos.2�/ � sin.2�/

� sin.2�/ � cos.2�/

!
; (1.40)

where � is the angle between the extraordinary axis and the vertical axis of the lab
fame. Similarly, when ' D �=2 the corresponding wave plate is called a quarter wave
plate.
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1.4. POLARIZATION MEASUREMENTS

The action of a QWP on the two perpendicular polarization modes OaH ; OaV (typically
horizontal and vertical axis of the lab frame) of a single photon is given by [37]

UQWP.�/ D
1

p
2

 
i � cos.2�/ sin.2�/

sin.2�/ i C cos.2�/

!
; (1.41)

where � is similarly defined as before.

Similar to Equation (1.12), any polarization rotationR 2 SU.2/ can be decomposed
as a combination of the action of two QWPs and one HWP, coaxially aligned [38].
Furthermore, the said components can be in any arrangement, i. e. a HWP sand-
wiched between two QWPs.

1.4.2 Beam splitters

A polarizing beam splitter (PBS) acts as a polarization filter; a photon polarized along
the transmission axis of a PBS is transmitted, and one polarized perpendicular to
the transmission axis of a PBS is reflected at a right angle to the transmission axis.
Hence, in an experimental setting a PBS can be taken to be measurement device
performing projective measurements of polarization and thus the computational
basis fjH D 0i ; jV D 1ig. Typically, whenever a PBS is designated as measurement
device its transmission axis is parallel with the horizontal plane in the lab frame (hence
transmitting horizontally polarized light and reflecting vertically polarized light)
and the transmitted light is sent to a detection stage. The action of a PBS when its
transmission axis is parallel with the horizontal, or vertical plane in the lab frame
respectively are given by,

PH D jH ihH j D

 
1 0

0 0

!
; (1.42)

PV D jV ihV j D

 
0 0

0 1

!
: (1.43)

A non-polarizing beam splitter (NPBS) has almost an similar action to wave plates,
however not on the polarization of the light but instead on the spatial path modes of
the light. The action of a NPBS on the input modes on each side (at right-angles to
one another) of the beam splitter cube Oain and Obin is given by10 10 Similarly, Oa

�
in jvaci D jli D j0i and

Ob
�
out jvaci D jri D j1i

U.'; �/NPBS D

 
cos.�/ ie�i' sin.�/
iei' sin � cos.�/

!
(1.44)

The angle � parameterizes the probability amplitudes of transmission and reflection,
and the relative phase ei' ensures that the above action is unitary. A 50:50 beam
splitter corresponds to the choice ' D �=2 and � D �=4 and its action is given by

U.'; �/NPBS D
1

p
2

 
1 1

�1 1

!
; (1.45)

which is equivalent to the action of the Pauli-Z and Hadamard gateH , U.�=2; �=4/ D

ZH .
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The combination of a HWP, QWP, PBS and detector can be used to perform any
polarization projective measurement, the polarization analyser is shown in Figure 1.4.

HWP PBSQWP

Figure 1.4: A sketch of polariza-
tion analyser consisting of a HWP,
QWP, PBS, and a detector.

Table 1.2 shows examples of wave plate settings for projecting out a target state, in the
case when the PBS transmits horizontally polarized light.

Target state QWP.�/ HWP.�/

jH i 0ı 0ı

jV i 0ı 45ı

jDi 45ı 22:5ı

jAi 45ı �22:5ı

jRi 90ı 22:5ı

jLi 0ı 22:5ı

Table 1.2: Examples of wave plates
settings for the polarization analyser
in Figure 1.4 to project out a target
state. Here, jDi :D.jH i C jV i/=

p
2,

jAi � .jH i � jV i/=
p
2,

jLi :D.jH i C i jV i/=
p
2 and

jRi :D.jH i � i jV i/=
p
2.
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2
Unstructured Quantum Search

2.1 Introduction

T
HE canonical quantum search algorithm due to Grover [14] provides a way
to find a unique target element in an unstructured list of sizeN , provided
that the specified target element exists, with high probability after O.

p
N/

search queries, giving a quadratic advantage over a classical exhaustive search over all
possible target elements, which requires O.N / search queries. Grover’s algorithm is
phrased as solving the problem of searching an unstructured list of a particular size,
its applications are broad and wide-ranging, encompassing combinatorial search and
optimization problems such as graph coloring problems and Boolean satisfiability
problems [17, 18]. At the heart of Grover’s algorithm is a quantum routine called
amplitude amplification [39, 40] that amplifies the amplitudes of the so-called target
elements1 while suppressing amplitudes associated with non-target elements, thus 1 In general, there could be more than

one target element or no target element
at all.

in effect increasing the probability of measuring the target elements at end of the
subroutine. It is typically phrased as follows [39]: Given a Boolean function � W Z !

f0; 1g such that one or more x satisfy �.x/ D 1, there exists a quantum subroutine
A that makes no use of intermediate measurements and has probability p of finding a
jxi, when applied to j0i. Then O.1=p/ applications of A and A�1 suffice to produce
the measurement outcome(s) x with probability greater than half, if the applications
of A and A�1 are followed by an appropriate measurement2. 2 As we will see later that the canonical

quantum search algorithm due to Grover
may be taken to be the special case of
quantum amplitude amplification, where
A D H˝n, such that p D 1=

p
N (i.

e. A prepares an equal superposition of
all possible outcomes), and the promise
that there is one unique target element
s, where �.s/ D 1.

There is a large body of experimental work that exists demonstrating the realization
of instances of Grover’s algorithm forN D 4 on two qubits on sundry quantum
architectures. The pioneering work was demonstrated on a liquid-state nuclear mag-
netic resonance (NMR) based quantum architecture, successfully verifying that the
algorithm can find a specified target item with near-certainty in a single step of the
algorithm, although in a non-programmable and non-scalable manner [41]. One of
the very first instances of Grover’s algorithm was done on a trapped-ion system [42],
with the ability to arbitrary specify any of theN D 4 as a target element, and subse-
quently find it with one single step of the algorithm. Technological improvements over
the years made similar programmable demonstrations (promises of scalability) possi-
ble [43]. The next instance of Grover’s algorithm is on three qubits for a search space
ofN D 8 elements; the only three-qubit experimental demonstrations of Grover’s
algorithm are due to Vandersypen et al. [44] on a liquid NMR architecture and a
complete implementation (with the ability to find arbitrarily specified target elements
in a programmable way) is due to Figgat et al. [45] on a trapped-ion system. At the
time that the author writes this thesis, there is no complete four-qubit experimental
demonstration of Grover’s algorithm in its canonical form.
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CHAPTER 2. UNSTRUCTURED QUANTUM SEARCH

The standard construction of the algorithm has been proven to be optimal in the num-
ber of search queries (steps) [40, 46, 47]. However, in actuality, each of these steps
are broken down into intermediary subroutines. In particular, for NISQ processors,
the intermediary subroutines are further broken down into atomic operations. Such
atomic (unitary) operations constitute a finite gate set called a universal gate set [36]
for which any unitary operation can be approximated in terms of a finite set of gates
from a universal gate set. In the instance of superconducting qubit based architectures,
the universal gate set is realized with a set of single-qubit gates along with a high-
fidelity two-qubit entangling gate [8]. NISQ processors are severely limited by the
debilitating effects of decoherence, that limit the time over which a computation can
remain fully coherent, thus there is an upper limit on the number of operations over a
set of qubits that can be in a circuit mapped to a physical processor and guarantee a re-
liable result at the end of the computation. As it stands, standard constructions of the
algorithm on four or more qubits present a sizeable challenge on NISQ processors.

One of the intermediary subroutines of the algorithm is the so-called global Grover
iterate, which constitutes the most resource intensive part of the algorithm in terms
of two-qubit gate count. The global Grover iterate for the standard algorithm on n-
qubits consists of one or more n-qubit Toffoli gate (modulo single gates). For n � 4

the exact controlled-NOT count for a n-qubit Toffoli without auxiliary of qubits is
unknown [48]. Additionally, to guarantee close to sure success of finding the target

element(s), the global Grover iterate is repeated roughly
j
c
p
N
k

times (for some
positive constant c), which presents a considerable handicap for its physical imple-
mentation. In our preliminary tests of the standard construction of Grover’s algorithm
on four qubits, we found that the output probability distribution is indistinguishable
from a uniform noise on the IBM quantum processors.

Apart from the standard construction, there are other variants of Grover’s algorithm
that trade accuracy in various ways for a reduction in the number of search queries,
making them suitable for small-scale implementation on NISQ processors. For

instance, it has been shown that one may stop short of
j
c
p
N
k

search queries and
still guarantee a high probability of success [40], with the downside that we may have
to repeat the algorithm in case of failure. Other variants, the canonical variant being
due to Grover and Radhakrishnan [20, 49], modifies the Grover iterates to search
for a subspace of possible elements to which the target element belongs, rather than
the target element itself. This may be thought of as finding the first n � m bits, for
somem, of the target element instead of all the bits of the target element. By way of
combining local and/or global Grover iterates, it is possible to reduce the number of
search queries at the expense of accuracy. Here, the choice of the sequence of local
and/or global Grover iterates, and the size of the local Grover iterates (n � m) is
of practical interest in maximizing the success probability with the least number of
search queries, and hence a reduced two-qubit gate count. In particular instances, local
Grover iterates can be applied to the full search problem with appropriate choices for
m. There is a large corpus of work studying the optimal sequences of local and/or
global Grover iterates [49–53], and a configuration that has with several local Grover
iterates sandwiched between one global iterate on one side and several global iterates
on another has been shown to be optimal.
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During the period over which this part of the thesis was conducted, several important
results were published in succession [54–59] that addressed many of the questions,
aims and objectives we initially had towards this particular research topic, which had
the overriding imperative of reducing the resources used by algorithm, making it
suitable for implementation on NISQ devices, hence this chapter will mainly consist
of a survey of these results. We also present two marginal results of our own in this
chapter, the first of which is an improvement in the success probabilities of the im-
plementation in [54] by way of a further iteration using a local Grover iterate. Alas,
the improvements in the results are most probably indicative of the improvement in
the quality of the devices used rather than anything particular to our construction
as it uses more controlled-NOT gates in comparison. The second result is related
to a measurement-based three-qubit implementation of Grover’s algorithm, and we
also present results of implementing a measurement-based controlled-controlled-Z
(equivalent to three-qubit Toffoli gate), which is an important subroutine in the algo-
rithm. The results are unfortunately negative, as the measurement-based controlled-
controlled-Z necessarily requires a graph state of ten qubits with twelve edge connec-
tions (controlled-Z gates between nodes), which cannot be further reduced by edge
local complementation. For these reasons, it is out of reach for current NISQ devices.

2.2 Background

2.2.1 Canonical construction of Grover’s algorithm

We begin by reviewing the standard construction of the algorithm in the circuit model
of quantum computation, closely following Refs. [14, 17, 18]. The Grover’s algorithm
provides a way to solve the following dilemma:

On one faithful day, you happen to have locked yourself out of the laboratory and for
some reason urgently need to access to your laboratory3. To worsen your woes, you 3 Based on a true story.

realize that you completely forgot the lock combination, but luckily you happen to
recall that the lock in question uses a lock-mechanism as the one shown in Figure 2.1;
it has n-switches each of which has an “on” and “off ” setting, and the lock combination
that unlocks your laboratory is some unique configuration s of the n switches, with
each being either set to either “on” or “off ”.

Figure 2.1: A configuration of n
binary switches where some config-
uration of the switches is denoted a
winning configuration, as an exam-
ple to illustrate the search problem
Grover’s algorithm tries to solve.

If you don’t have any prior knowledge of the configuration s, the best you can do is to
simply employ a random guess and check strategy, i. e. you might try the combination
shown in Figure 2.2 and check if the lock opens.

Figure 2.2: An example configura-
tion of the n binary switches where
two of the switches are in the on
state and rest are in the off state.

If this is the best you can do, in the worst-case scenario you should expect to try all
possible combinations, of which there areN D 2n, until you find s, thus the worst-
case behaviour scales linearly withN , O.N /.
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We can rephrase the above problem more concretely; assume we have the Boolean
function � W f0; 1; : : : ; N � 1g ! f0; 1g such that

�.x/ D

(
1 x D s

0 x ¤ s
; (2.1)

for some unknown s. We refer to s as a target element. The above problem can be
phrased as finding the unknown s by querying the above Boolean function, with some
input x and check if �.x/ D 1.

On a quantum computer, we can do slightly better than O.N / for the above. We
assume here that the size of the search problem is a power of 2,N D 2n for n 2 N.
We can thus realize the entire search space for a particularN on n D log .N /
qubits 4. One of the first clever tricks is to represent the effect of the Boolean function 4 All logarithms log.�/ are taken base 2

unless state otherwise. ln.�/ is reserved
for loge

� to indicate whether a particular input is a target element as a unitary transformation
U�, which acts on basis states jxi like so,

U� W jxi ! .�1/�.x/ jxi : (2.2)

Observe for all x ¤ s, the above unitary transformation acts trivially on the cor-
responding basis state jxi, and for x D s, the corresponding basis state acquires
a negative phase; the unitary U� is often called a phase oracle. U� may be written
explicitly as,

U� D 1 � 2 jsihsj : (2.3)

The algorithm starts with an n-qubit state j0i˝n and prepares an equal superposition
of all basis states, by applying a Hadamard transformation on each qubit,H˝n

j i D H˝n
j0i˝n

D
1

p
N

N�1X
xD0

jxi : (2.4)

It is useful to write the above state in a different basis. If there are t target elements
(andN � t non-target elements), then define jx?i and

ˇ̌
x==
˛
as such

jx?i D
1

p
N � t

X
x¤s

jxi ;

ˇ̌
x==
˛
D

1
p
t

X
xDs

jxi ; (2.5)

we can rewrite j i as

j i D

p
N � t
p
N

jx?i C

p
t

p
N

ˇ̌
x==
˛
; (2.6)

We can further adopt the parametrization

� D arcsin
r
t

N
;

cos .�/ D

r
N � t

N
;

sin .�/ D

r
t

N
; (2.7)
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for which we can further rewrite Equation (2.6) as

j i D cos .�/ jx?i C sin .�/
ˇ̌
x==
˛
: (2.8)

Applying Uf to the above state yields

U� j i D cos.�/ jx?i � sin .�/
ˇ̌
x==
˛
: (2.9)

Another clever trick in Grover’s algorithm is an application of another unitary trans-
formationD; defined similarly to Equation (2.3)

D D H˝n.2 j0ih0j˝n � 1/H˝n;

D D 2 j ih j � 1: (2.10)

The above unitary transformation is often called a global diffuser operator. Expanding
D in terms of the basis fjx?i ;

ˇ̌
x==
˛
g, we get to the expression

D D 2 cos2 .�/ jx?i hx?j C 2 sin2 .�/
ˇ̌
x==
˛ ˝
x==
ˇ̌

C sin .2�/ jx?i
˝
x==
ˇ̌
C sin .2�/

ˇ̌
x==
˛
hx?j � 1: (2.11)

We applyD to Equation (2.9), after trigonometric and algebraic gymnastics we arrive
at

DU� j i D .cos 2� cos � � sin 2� sin �/ jx?i

C .sin 2� cos � C cos 2� sin �/
ˇ̌
x==
˛
;

D cos 3� jx?i C sin 3�
ˇ̌
x==
˛
: (2.12)

The fullDU� has a geometric interpretation; the state j i is a vector in a 2-dimensional
Euclidean space spanned by jx?i and

ˇ̌
x==
˛
, initially angled at � with respect to jx?i.

U� reflects the vector j i about the jx?i axis, i. e. � 7! �� ; the angle between j i

and U� j i at this point is 2� . D finally reflects U� j i about the j i axis; the angle
between jx?i andDU� j i is 3� ; see figure below.

Figure 2.3: The geometric inter-
pretation of a single Grover iterate;
the uniform superposition state j i

starts at an angle � with respect
to the axis jx?i, the action of the
phase oracle U� reflects j i about
the axis jx?i. Likewise, the action
of the diffuser operator is to reflect
U� jx?i about the axis j i to get
DU� jx?i.
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Looking at Equation (2.12), we can conveniently write the action ofDU� on the basis
states fjx?i ;

ˇ̌
x==
˛
g as

DU� D

 
cos .2�/ � sin .2�/
sin .2�/ cos .2�/

!
; (2.13)

that is,DU� is an element of the special orthogonal group SO.2/, the group of
rotations in two dimensions. The unitary operatorG D DU� is called the global
Grover iterate. Rotating by an angle � around a point k times is equivalent to a single
rotation by an angle k� . From this, it is easy to see that k applications ofG give

Gk j i D cos ..2k C 1/�/ jx?i C sin ..2k C 1/�/
ˇ̌
x==
˛
: (2.14)

Another useful visualization aid for gaining intuition about the Grover iterate is look
to at its effect at the level of the amplitudes of the state in Equation (2.4). Consider
the case where there is one unique target element; as we have seen the amplitude of
the target element jsi acquires a negative phase under the action of unitary operator
U� while the other amplitudes are left unaltered, hence applying U� to Equation (2.4)
gives

U� j i D
1

p
N

0@� jsi C
X
x¤s

jxi

1A : (2.15)

It is not to hard to show that the action of the diffuser operatorD on a general n-
qubit state j'i D

PN�1
xD0 ˛x jxi is given by

D j'i D

N�1X
xD0

.2 h˛i � ˛x/ jxi ; (2.16)

where h˛i D
PN�1
xD0 ˛x=N is the average value of the amplitudes 5. Hence, when we 5 The action of the diffuser operator D

on the amplitudes of a general state is
often called inversion about the average
for this reason, since ˛x ! 2 h˛i � ˛x

for each amplitude ˛x associated with a
computational basis state jxi.

applyD to U� j i in Equation (2.15) we obtain the following expression

DU� j i D

�
2.N � 2/

p
NN

C
1

p
N

�
jsi C

�
2.N � 2/

p
NN

�
1

p
N

�X
x¤s

jxi ;

D
3N � 4
p
NN

jsi C
N � 4
p
NN

X
x¤s

jxi ; (2.17)

since h˛i D .N�2/=
p
NN ; clearly, 3N�4 > N�4. We see that the action ofDU�

is to increase the amplitude associated with the target element jsi while decreasing the
amplitudes of the non-target elements (see Figure 2.4). For this reason, the process
bears the name amplitude amplification.

How many applications k of the global Grover iterate should be applied to guarantee
close to unity probability of observing the target element(s)

ˇ̌
x==
˛
when we perform

an appropriate measurement? Looking at Figure 2.3, we see that if we do not perform
enough iterates we might undershoot and fall short of reaching

ˇ̌
x==
˛
. More worry-

ingly, we might overshoot past
ˇ̌
x==
˛
, running the risk of having additional iterations

for a clockwise round trip to cycle back close to
ˇ̌
x==
˛
.
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Figure 2.4: The action of a sin-
gle Grover iterate on the level of
the amplitudes for a search space
of size N D 24 D 16, when we
guaranteed that there is a unique
target element. (a) We begin with
the uniform superposition state
j i, the amplitude of the target
state is indicated in red while the
non-target elements are indicated in
blue. (b) After applying the phase
oracle, the amplitude of the target
element (indicated in red) acquires a
relative negative sign. (c) The action
of the diffuser operator is to invert
all amplitudes about the average
amplitude h˛i. Hence, non-negative
amplitudes decrease while negative
amplitudes increase; amplifying the
amplitude of the target element.

The probability of measuring
ˇ̌
x==
˛
is given by

Pk D

ˇ̌̌˝
x==
ˇ̌
Gk j i

ˇ̌̌2
D sin ..2k C 1/�/2: (2.18)

For a particular Qk, we want P Qk
to be close to 1, that is sin ..2 Qk C 1/�/

2
' 1. From

elementary trigonometry, we know that sin .�/ D 1 if � D �=2, then it must be that
.2 Qk C 1/� D �=2, giving Qk D �=4� �

1
2
. In instances where Qk is not integer, if

we chose the number of iterations k to be the closest integer to Qk, we will still measureˇ̌
x==
˛
with high probability. If we pick Qk as k D b�=4�c, we have a probability of

failure that is less than t=N [40], as shown below

1 � Pk D 1 � sin ..2k C 1/�/2 D cos ..2k C 1/�/2;

D cos Œ.2k C 1/� C .2 Qk C 1/� � .2 Qk C 1/��
2
;

D cos Œ.2 Qk C 1/C .2.k � Qk//��
2
;

D cos .�=2C 2.k � Qk/�/
2
;

D sin .2.k � Qk/�/
2
;

� sin .�/2 D
t

N
; (2.19)

here we used
ˇ̌̌
k � Qk

ˇ̌̌
� 1=2 and .2 QkC 1/� D �=2. The asymptotic behaviour of the

number of global Grover iterates k when t � N is

k �
�

4�
D

�

4 arcsin
q

t
N

�
�

4

r
N

t
; (2.20)

since
p
t=N D arcsin .�/ � �. Hence, the algorithm asymptotically requires

O.
p
N=t/ iterations to achieve a probability of success close to one. It is clear that

for a given � , Equation (2.18) does not scale linearly with number of iterations k in
reaching its maximum value. Noticing this behaviour, Refs. [40, 60] suggest that if
we seek to be frugal in the number of global Grover iterates (steps) — which is often
an overriding imperative in practical considerations particularly for NISQ processors
with short coherence times — then we may stop short of b�=4�c and still find the
target element(s) with reasonably high probability. How do we decide when to stop in
such a scenario?
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The expected number of times we will have to repeat the algorithm until we find a
target element, if we stop it every time afterm iterations and restart in case of failure is

EŒX� D

1X
jD1

.mj /Pm.1 � Pm/
j�1;

D

1X
jD1

.mj / sin ..2mC 1/�/2 cos ..2mC 1/�/.2j�2/;

D m tan ..2mC 1/�/2
1X
jD1

j cos ..2mC 1/�/2j ; (2.21)

D
m

sin ..2mC 1/�/2
D

m

Pm
;

D
2m

1 � cos .2.2mC 1/�/
: (2.22)

Here we used
P1

j j cos .�/2j D cot .�/2 csc .�/2, and sin .�/2 D 1=2.1 �

cos .2�//. Taking the derivative of the above expression with respect tom and
setting it to zero, we get an expression form that minimizes the above expres-
sion. In the asymptotic limit t � N , the above expression is minimized when
4m� D tan .2m�/, numerically giving 4m� � 2:33112. This gives the num-
ber of iterations asm � 0:58278

p
N=t , and the probability of finding a tar-

get element as Pm D sin ..2mC 1/�/2 � sin .2m�/2 � 0:84458 and
EŒX� � 0:69003=� � 0:8785�=4� < �=4� .

Grover’s algorithm has been proved to be asymptotically optimal (no quantum algo-
rithm can achieve the same success with a fewer number of steps) in the number of
search queries (iterates) [40, 47, 61], with proofs of this kind finally culminating in
Ref. [46], which shows that the algorithm is not only asymptotically but exactly opti-
mal in the number of search queries. For the sake of brevity, we omit the proofs here
and refer the interested reader to the aforementioned references.

A seemingly problematic scenario may arise when we are interested in finding multiple
target elements, and we are oblivious to how many are there. That is, we don’t know
the value of t , hence � . In such a scenario, there is seemingly no way to know how
many global Grover iterates we should apply to maximize the probability of finding
a target element, Pk D sin ..2k C 1/�/2. Fortunately, it turns out it is still possi-
ble to preserve the asymptotic optimality of the algorithm, O.

p
Nt/, if we adopt a

method that continuously tries and updates informed guesses for k, and restarting the
algorithm in case of failure, with the assumption that t is bounded above by d3N=4e,
the interested reader may refer to Ref. [40] for more details. We show the schematic
circuit diagram of Grover’s algorithm in Figure 2.5, and conclude this subsection by
summarizing the steps of Grover’s quantum search algorithm when the number of
target elements t is known.

1. Initialization

Prepare j0i˝n and applyH˝n on all the qubits, creating a uniform superposition
ofN D 2n basis states:

j0i˝n
!

1
p
N

N�1X
xD0

jxi :
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2. Global Grover iterates

Apply the global Grover iterates k times, where k D

jp
N=t�=4

k
for close to

unity success and k D 0:58278
p
N=t for a success probability of ' 0:8446:

1
p
N

N�1X
xD0

jxi !
1

p
N

N�1X
xD0

Gk jxi :

3. Measurements

Measure all qubits in the computational basis, yielding a target element in with

high probability if k D

jp
N=t�=4

k
. In case of failure for k D 0:58278

p
N=t ,

go back to step 1; the average number of times we will have to repeat the algorithm
is at least ' 0:8785

p
N=t�=4 times before success.

jx0i D j0i

jx1i D j0i

jxni D j0i

H

H

:::

H

Repeat O.
p
N=t/ times

U�

H

H

H

2 j0ih0j˝n � 1

H

H

H

:::

Figure 2.5: A schematic circuit dia-
gram of Grover’s algorithm; which
begins with all n qubits in the state
j0i, after which a Hadamard gate
H is applied to all qubits to cre-
ate a uniform superposition of 2n

basis states. Grover iterates, with
each consisting of a phase oracle
and diffuser operators are repeated
O.

p
N/. Measuring the qubits in

the computational basis, with high
probability we obtain the outcome
corresponding to the target element.

2.2.2 Partial search quantum algorithm

The partial search quantum algorithm due to Grover and Radhakrishnan [20] offers
another way we might trade accuracy for fewer elementary operations. Rather than
searching for a target element6, the partial search quantum algorithm instead parti- 6 In the case where we are assured this is

one unique target element, i. e. t D 1.tions the search space intoK D 2n�m blocks of size b D 2m, i. e. N D bK D 2n,
and searches on the level of blocks, that is, it seeks find the block to which a target
element belongs rather than the target element itself. Intuitively, this can be under-
stood as performing the canonical quantum search algorithm on the first .n � m/

bits of the target element s. The analysis proceeds in a similar way to the canonical
quantum search of the previous section; we begin with j0i˝n and prepare a uni-
form superposition, by applying Hadamard gates to every qubit, preparing the state
in Equation (2.4). In the case of a single and unique target element7, we introduce the 7 The algorithm has been generalized to

accommodate multiple target elements
across the blocks [62, 63]. In such a
scenario optimality is achieved when the
target elements are evenly distributed
across the blocks [62]. We do not
consider such cases here. The interested
reader may refer to the aforementioned
references.

basis

jsi D js1i ˝ js2i ;

jnsi D
1

p
b � 1

X
x¤x1

jx1i ˝ jxi ;

jui D
1

p
N � b

.
p
N j i � jsi �

p
b � 1 jnsi/; (2.23)

here jsi is the target element, bipartitioned into a product state of js1i and js2i,
where we seek to find js1i, jnsi is the normalized sum of all non-target elements
in the block containing the target elementjsi, jui is the normalized sum of all the
elements belong to blocks not containing jsi, and j i is the uniform superposition
in Equation (2.4).
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In this new basis, we can write Equation (2.4) as

j i D
1

p
N

jsi C

p
b � 1
p
N

jnsi C

p
N � b
p
N

jui : (2.24)

We adopt the following parametrization

sin .�/ D
1

p
K
;

cos .�/ D

p
K � 1
p
K

;

sin .�/ D
1

p
b
;

cos .�/ D

p
b � 1
p
b

; (2.25)

and arrive at

j i D sin .�/ sin .�/ jsi C cos .�/ sin .�/ jnsi C cos .�/ jui : (2.26)

We see that j i may be taken to be a vector in a spherical coordinate system with
coordinates (1 (radius), � (inclination), � (azimuth)) where the x-axis is defined by
jnsi, y-axis by jsi and the z-axis by jui. We proceed in a similar fashion and apply
the phase oracle U� to Equation (2.26), giving the amplitude of the target element
jsi a negative sign. The crucial distinction between the canonical and partial search
quantum algorithm is the introduction of a local diffuser operatorDn;m, which acts in
the same way the global diffuser operatorD does but on a subspace ofm qubits rather
than all the qubits,m < n. That is,

Dn;m D 12n�m ˝ .2 j�ih�j � 12m/; (2.27)

where j�i D H˝m j0i˝m is a uniform superposition ofm qubits in such a subspace.
The unitary operatorDn;m has a similar effect on the amplitudes asD does, that
is, it inverts about the average in each block simultaneously. The unitary operator
Gn;m D Dn;mU� is called the local Grover iterate8; we can similarly trace its effects 8 From now on, we will denote to global

Grover iterates with a with a single
subscript Gn, instead of Gn;n. Similarly,
we will indicated a global diffuser
operator Dn instead of Dn;n.

on Equation (2.26) as before by looking at the evolution of the amplitudes after each
step, as shown in Figure 2.6.

A feature worth noting is that for some choice of the block size b, the local Grover
iterate can amplify the amplitude of the target element to a moderately high value
relative to the rest of the amplitudes. Grover and Radhakrishnan noticed this too, and
in Ref. [20] suggested that we can use local Grover iterates in conjunction with global
Grover iterates to guarantee a high probability of measuring the target element.

The order in which global and local Grover iterates are applied is important, since
the two operators share non-trivial commutation relations, Figure 2.7 shows the
amplitudes after applying two local Grover iteratesGn;m and one global Grover
iterateGn in different orders. Ref. [20] proves that it is possible to guarantee a high
probability of measuring the target if l1 sequences of the global Grover iteratesGn are
applied first followed by l2 sequences of local Grover iteratesGn;m, and lastly a single
global Grover iterateGn, that is,GnG

l2
n;mG

l1
n .
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Figure 2.6: The action of a single
local Grover iterate on the level of
the amplitudes for a search space
of size N D 24 and a block size
b D 23, which divides the search
into K D 2 blocks.

˝
˛B0

˛
and

˝
˛B1

˛
represent the block average for
each block. (a) We begin with the
uniform superposition state j i,
the amplitude of target element
is indicated in red and the rest of
amplitudes in the target block is
indicated in blue, while all the
amplitudes in the non-target block
indicated in orange. (b) After apply-
ing the phase oracle the amplitude
of the target state acquires a relative
minus sign. (c) The action of local
diffuser operator D4;3 is to invert
the amplitudes in each block about
the block’s average amplitude,
thus non-negative amplitudes de-
crease while negative amplitudes
increase in each block; amplifying
the amplitude of the target element.

They further show that the number of iterates (both local and global) for large values
ofK scales like �=4

p
N � c

p
b for a positive constant c. Refs. [49–53] study var-

ious sequence and application orders ofGn;m andGn with the aim of reducing the
constant c, culminating in Ref. [51] showing that sequences of the kindGnG

l1
n;mG

l2
n

are optimal among different classes of sequences. The values of l1; l2 can be found
by minimizing S D l1 C l2 C 1 ' �=4

p
N � c

p
b for a certain probabil-

ity threshold value and number of blocksK . Ref. [50] adopts the parametrization
l1 D �=4

p
N��K

p
b and l2 D ˛K

p
b and numerically minimizes c D .˛K��K/;

Table 2.1 shows some values for ˛K and �K from the aforementioned reference. The
quantum partial search with this sequence of local and global is called the Grover-
Radhakrishnan-Korepin (GRK) algorithm. Equation (2.26) is suggestive that the
partial quantum search algorithm has a similar geometric interpretation as the canon-
ical quantum search. Indeed,GGRK D GnG

l1
n;mG

l2
n is an element of the orthogonal

groupO.3/ [52].
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˛
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(c)

R
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R
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˛
x
/

h˛B0i

h˛B1i

Figure 2.7: The actions of different
application order of a global and
two local Grover iterates on the
level of the amplitudes for N D 24,
b D 23, and K D 2.

˝
˛B0

˛
and

˝
˛B1

˛
represent the block average for
each block. Action of the appli-
cation order (a) G4;3G4;3G4, (b)
G4;3G4G4;3, and (c) G4G4;3G4;3.
The order of operators is impor-
tant since the local and global
Grover operators have non-trivial
commutation relations, in all three
scenarios we end up with different
probabilities for the target element.

We summarize the GRK algorithm to conclude the subsection and show its schematic
in Figure 2.8.

K ˛K �K

2 0:7854 1:1107

3 0:65906 0:9961

4 0:6155 0:9553

5 0:6155 0:9341

1 0:5236 0:866

Table 2.1: Numeric values for ˛K
and �K for different values of the
number of blocks K for the GRK
algorithm, adopted from Ref. [50].
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jx0i D j0i

jx1i D j0i

jxmi D j0i

jxni D j0i

H

H

:::

H

:::

H

Repeat l1 ' �=4
p
N � �K

p
b times

U�

H

H

H

H

2 j0ih0j˝n � 1

H

H

H

H

Repeat l2 ' ˛K
p
b times

U�

H

H

H

2 j0ih0j˝m � 12m

H

H

H

U�

H

H

H

H

2 j0ih0j˝n � 1

H

H

H

H

:::

Figure 2.8: A schematic circuit dia-
gram of the GRK algorithm; which
begins with all n qubits in the state
j0i, after which a Hadamard gate
H is applied to all qubits to create
a uniform superposition of 2n ba-
sis states. A sequence of l1 global
Grover operators, followed by a
sequence of l2 local Grover iterates,
and lastly a single global Grover
operator is applied to the uniform
superposition. Measuring in the
computational basis, the target
element will be found with high
probability.

1. Initialization

Prepare j0i˝n and applyH˝n on all the qubits, creating a uniform superposition
ofN D 2n basis states:

j0i˝n
!

1
p
N

N�1X
xD0

jxi

2. Global Grover iterates

Apply the global Grover iterates l1 ' �=4
p
N � �K

p
b times:

1
p
N

N�1X
xD0

jxi !
1

p
N

N�1X
xD0

Gl1n jxi

3. Local Grover iterates

Apply local Grover iterates l2 ' ˛K
p
b times:

1
p
N

N�1X
xD0

Gl1n jxi !
1

p
N

N�1X
xD0

Gl2n;mG
l1
n jxi

4. Single global Grover iterate

Apply a single global Grover iterate:

1
p
N

N�1X
xD0

Gl2n;mG
l1
n jxi !

1
p
N

N�1X
xD0

GnG
l2
n;mG

l1
n jxi

5. Measurements

Measure all qubits in the computational basis yielding a target element with high
probability. In case of failure, go back to step 1.

2.3 Survey of recent results relating to NISQ processors

As we have seen in sections § 2.2.1 and § 2.2.2, both the canonical and partial quan-
tum search algorithms in various scenarios have been proven to be optimal in the
number of steps they undertake to solve the search problem. However, as I briefly
alluded to in the opening of this chapter, in physical implementations (emphasis on
NISQ processors) of any quantum algorithm, each of these steps are broken down
into intermediary subroutines and further into physically realizable atomic operations
in the universal gate set of a particular physical implementation.

35

Stellenbosch University https://scholar.sun.ac.za



2.3. SURVEY OF RECENT RESULTS RELATING TO NISQ PROCESSORS

For physical realizations of quantum search algorithms, the Grover iterates constitute
the most resource intensive parts of the algorithm in terms of such atomic operations.
The phase oracle U� in the Grover iterate is equivalent to an n-qubit controlled-Z
gate (modulo single qubit gates). Suppose our unique target element is the computa-
tional basis state jb0b1b2 � � � bn�1i, then following circuit composed of PauliX gate
and n-qubit controlled-Z, C n�1ŒZ� gates, implements a phase oracle U� that gives
the state jb0b1b2 � � � bn�1i a relative negative amplitude 9.

9 For n D 2, it is equivalent to a
controlled-Z and for n D 3 it is
equivalent to a controlled-controlled-Z
gate.

b0

b1

bn�2

bn�1

X:b0

X:b1

:::

X:bn�2

X:bn�1 Z

X:b0

X:b1

:::

X:bn�2

X:bn�1

Figure 2.9: A circuit diagram that
realizes a general phase oracle in
Grover’s algorithm; the circuit maps
jb0b1b2 � � � bn�1i ! � jb0b1b2 � � � bn�1i,
where .Xa/ba applies a Pauli X
gate to qubit a if ba D 1 and applies
the identity if b0. Z denotes the
Pauli Z gate

where :0 D 1 and :1 D 0. The diffuser operatorGn is implemented similarly

b0

b1

bn�2

bn�1

H

H

X

X

:::

H

H

X

X Z

X

X

H

H

:::

X

X

H

H

Figure 2.10: A circuit diagram that
realizes a global diffuser operator in
Grover’s algorithm, where X;Z;H
are the Pauli X;Z and H is the
Hadamard gate respectively.

As we have seen, these two operators (the Grover iterateDnU�) must be repeated
several times to guarantee some threshold for the probability of success. For NISQ
processors, the n-qubit controlled-Z gate for more than two qubits is not an atomic
operation. The n-qubit controlled-Z gate is equivalent to a generalized n-qubit Tof-
foli gate, C n�1ŒX�, by applying a Hadamard gateH to the target qubit just before
and after the gate (i. e. HZH D X). The generalized n-qubit Toffoli gate itself
is also not an atomic operation on NISQ processors, but instead decomposed into
atomic operations (controlled-NOT and single qubits). The two-qubit gate such as
the controlled-NOT gate are physically realized through two-qubit interactions that
induce conditional dependence of the state of one qubit to the other, for instance a
cross-resonance interaction for superconducting qubits [8] and Mølmer-Sørensen
interaction for trapped ions qubits [9]. The commonality across NISQ architectures
is that such two-qubit interactions are non-trivial, making them experimentally ex-
pensive and much more prone to errors than single-qubit gates. Hence, for reasons
motivated by practicality, the analysis of circuit complexity is done usually in terms of
the two-qubit gate count in a circuit.

For n D 3, the controlled-controlled-Z (hence the controlled-controlled-NOT gate)
gate cannot be implemented with less than five two-qubit gates [64]; the traditional
three-qubit decomposition shown in Figure 2.11, uses six controlled-NOT and
seven T=T � gates, has shown to be optimal in terms of controlled-NOT count [48].
However, for n � 4 the exact controlled-NOT count of its decomposition without
the use auxiliary of qubits is not known [48]. He et al. [65] have shown that if a single
auxiliary qubit is provided 24n−72 controlled-NOT gates suffice.
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Z

D

T � T T � T

T T �

T
Figure 2.11: A circuit diagram
showing the decomposition of
a controlled-controlled-Z gate
in terms of elementary gates; six
controlled-NOT and seven T=T �

gates.
Additionally, they show that if n � 1 auxiliary qubits are provided, then 4n−7
controlled-NOT gates suffice. With such a decomposition it is possible to trade
for a great reduction of controlled-NOT gates at the expensive of using more qubits.
The unavoidable consequence for physical implementations is that, it becomes much
harder to maintain quantum coherence as the relevant Hilbert space is much larger
(from 2n to 22n�1 possible states). Furthermore, NISQ processors have limited con-
nectivity among the qubits on the physical device hence multi-qubit gates cannot be
performed directly on qubits that are not directly connected, and instead must be done
by way of appropriate SWAP gates; a single SWAP gate costs three controlled-NOT
gates, as shown in Figure 2.12

D
Figure 2.12: A circuit diagram
showing the decomposition of a
SWAP gate in terms of elementary
gates; three controlled-NOT gates.

The theoretical reduction of the controlled-NOT gate count gained by the use of
auxiliary qubits in practice may be lost depending on the connectivity of the physical
device. Besides, the two-qubit gate count, another way circuit complexity is examined
is in terms of its circuit depth. Circuit depth is the number of consecutive parallel
operations in a circuit from its input to output. Each such parallel operation can be
counted as a single step, and thus circuit depth can be taken to be a good proxy for
algorithmic time. Analysis in terms of circuit depth is also motivated by practicality,
since NISQ processors have short-lived coherence times, over which a computation
can remain fully coherent, and thus limited to realizing shallow depth circuits [13].
The aforementioned decomposition of an n-qubit Toffoli due to He et al. [65] has a
linear depth O.n/ and logarithmic depth O.logn/ for a single auxiliary qubit and
n � 1 auxiliary qubits, respectively.

2.3.1 Depth optimization of the quantum search

On the account of the limitations of NISQ processors, i. e. the short-lived coherence
time, limited number of qubits and limited connectivity among qubits, an analysis by
Zhang and Korepin [55] emphasizes the imperative of designing algorithms in such a
way that is aware of these limitations. Inspired by the GRK algorithm, and these prac-
tical considerations, they proposed a modification of the quantum search algorithm
that is optimal in circuit depth, not necessarily optimal in the number of steps with
respect to achieving some probability threshold. To facilitate this optimization, they
define a figure of merit ˛, that is a ratio of the depth of the phase oracle depth and
depth of the diffuser operatorDn

˛ D
d.U�/

d.Dn/
; (2.28)

for single-target oracle implementations of the kind in Figure 2.9 and global diffuser
operator of the kind in Figure 2.10, since the dominating circuit depth arises from the
n-qubit controlled-Z gate, it is expected that ˛ D 1.
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Recall that the local diffuser operatorsDn;m act on a small subspacem < n, thus
in theory require fewer elementary operators and have lower depth than the global
diffuser operators, at the cost of reducing the success probability10; hence their opti- 10 This is clear from the perspective

of Figure 2.10, we expect an m-qubit
controlled-Z gate will decomposed into
fewer elementary gates than n-qubit
controlled-Z gate if m < n.

mization method is based on the replacement of global diffuser operators with local
diffuser operators to minimize the depth of Grover’s algorithm, while taking into ac-
count the trade-off in the probability of success. Similar to the GRK algorithm, they
consider a general sequence of local (Gm) and global Grover iterate operators (Gn) of
the form

Sn;m. Nl/ D Gl1n G
l2
m � � �G

lq�1
n G

lq
m ; (2.29)

here Nl D .l1; l2; : : : ; lq/ is a tuple of natural numbers, ltot D
Pq
pD1 lp is the total

number of Grover iterates (both local and global). For instance, Sn.l; 0/ D Gln is
the canonical Grover algorithm. The notational convention is that last number lq is
always the number of local Grover iterate operators, thus in this notation the Grover
iterate for the GRK is denoted by Sn;m.1; l2; l1; 0/ D G1nG

l2
mG

l1
n G

0
m. Furthermore,

the above notation only considers local Grover iterate operators acting on the same
qubit subspace with the same block sizem. For such a sequence of Grover iterates, the
probability of measuring the target element jsi is given by

Pn;m. Nl/ D

ˇ̌̌
hsjSn;m. Nl/H

˝n
j0i˝n

ˇ̌̌2
: (2.30)

From this, they define the ratio of the expected depth for the Grover iterate sequence
Sn;m and its probability of success as

Qd.˛/ D
d.Sn;m. Nl//

Pn;m. Nl/
; (2.31)

and minimize the above quantity with respect bothm � 2 and the tuple of natural
numbers Nl .

Qd.˛/ D minimize
m; Nl

d.Sn;m. Nl//

Pn;m. Nl/
: (2.32)

The study in Ref. [55] report that below certain threshold values of ˛ for n � 4, their
algorithm gives rise to sequences that have lower expected depth than the canonical
algorithm, that is, the canonical algorithm is not optimal in depth11. Ref. [55] gives

11 Sn.l; 0/ D Gl
n, for l D

j
0:583

p
N
k

.
Recall from § 2.3.1 this value of l gives
the least expected number of iterations,
and thus the minimal expected depth,
for a Pn.l/ ' 0:845 probability of
success.

examples of depth-optimal sequences Sn;m. Nl/ for ˛ D 1, n 2 3; 4; : : : ; 10, in
comparison with the canonical sequence with only global Grover iterates Sn; shown
in Table 2.2 and Table 2.3, respectively.

n Sn. Nl/ Pn. Nl/ d
�
Sn. Nl/

�
Qd.˛ D 1/

4 S4.1; 0/ 0:473 30 64:47

5 S5.2; 0/ 0:602 124 205:83

6 S6.4; 0/ 0:816 504 617:36

7 S7.6; 0/ 0:833 1446 1756:35

8 S8.9; 0/ 0:861 2916 3388:03

9 S9.12; 0/ 0:798 4848 6071:76

10 S10.18; 0/ 0:838 8712 10397:28

Table 2.2: The minimum expected
depth for the quantum search
algorithm for the sequence of
the kind Sn.l; 0/ D Gln, where

l D

j
0:583

p
N
k

from Equa-
tion (2.29), where the ratio in Equa-
tion (2.28) is set to ˛ D 1; adopted
from Ref. [55].
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n Sn;m. Nl/ Pn;m. Nl/ d
�
Sn;m. Nl/

�
Qd.˛ D 1/

4 S4;3.1; 1/ 0:821 52 63:32

5 S5;4.1; 1; 1/ 0:849 154 181:48

6 S6;4.1; 1; 2/ 0:755 360 475:97

7 S7;4.1; 1; 2; 1; 2/ 0:887 1173 1322:75

8 S8;4.1; 1; 2; 1; 2; 1; 2/ 0:875 2211 2527:43

9 S9;5.1; 1; 2; 1; 2; 1; 2; 1; 2/ 0:831 3713 4470:20

10 S10;5.1; 1; 2; 1; 2; 1; 2; 1; 2; 1; 2/ 0:847 6453 7614:56

Table 2.3: The minimum expected
depth for the quantum search algo-
rithm for the sequence of the kind
Sn;m. Nl/ D G

l1
n G

l2
m � � �G

lq�1
n G

lq
m

from Equation (2.29), where the ra-
tio in Equation (2.28) is set to ˛ D 1;
adopted from Ref. [55].

2.3.2 Multi-stage strategy for quantum search

Another significant contribution from Ref. [55] is a multi-stage quantum search
algorithm that divides the quantum search algorithm into separate circuits (with
reinitializations and measurements) that each find them bits of the target element
jsi (similar to the partial search). Each subsequent stage is dependent on the results
of the preceding stage to reinitialize the subsequent circuit such that the firstm1
bits of the target are those found from the preceding, then find anotherm2 of the
target element. This process is repeated until we have all the bits of the target element
are recovered. In each subsequent stage, the diffuser operators no longer act on the
reinitialized subspace from the preceding stage. This greatly reduces the number
of elementary operations (hence circuit depth) in each subsequent stage. The great
advantage of such a multi-stage algorithm is mostly due to the reinitializations, since
coherence no longer has tp be maintained over one long circuit, and is renewed on
each reinitialization, preventing the effects of noise from accumulating. The steps for
a two-stage quantum search from Ref. [55] are given below and the circuit diagram
schematic is shown in Figure 2.13

1. Initialization

Prepare j0i˝n and applyH˝n on all the qubits, creating a uniform superposition
ofN D 2n basis states:

j0i˝n
!

1
p
N

N�1X
xD0

jxi :

The target element is jsi is bipartitioned into jsi D js1i ˝ js2i, where s1 ism1
bits long and s2 ism2 bits long such thatm1 Cm2 D n.

2. Finding js1i

Apply the sequence of Grover iterates Sn;m2
. Nl/ D G

l1
n G

l2
m2

� � �G
lq�1
n G

lq
m2

:

1
p
N

N�1X
xD0

jxi !
1

p
N

N�1X
xD0

Sn;m2
. Nl/ jxi ;

where the local Grover operatorGm2
are acting on them2 qubit subspace.

3. First round of measurements

Measure the on them1 qubit subspace in the computational basis; Suppose we
obtain the bit string outcome b D b0b1 � � � bm1�1; the probability for obtaining
this outcome is denoted by P .1/n;m2

. Nl/.
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4. Reinitialization

Restart the computation to j0i˝n and prepare the state
ˇ̌
b0b1 � � � bm1

˛
on the first

m1 qubits by applyingXb0 ˝ Xb1 ˝ � � � ˝ Xbm on j0i˝n. ApplyH˝m2 on the
m2 qubit subspace, creating a uniform superposition ofM D 2m2 basis states on
this subspace:

Xb0 ˝Xb1 ˝ � � � ˝XbmH˝m2 j0i˝n
!

1
p
M

M�1X
xD0

ˇ̌
b0b1 � � � bm1�1

˛
˝ jxi :

5. Finding js2i

Apply the sequence of Grover iterates Sm2;m0. Nl 0/ D G
l 0
1
m2
G
l 0
2

m2;m0 � � �G
l 0
q�1
m2

G
l 0q
m2;m0 :

1
p
M

M�1X
xD0

ˇ̌
b0b1 � � � bm1�1

˛
˝ jxi !

1
p
M

M�1X
xD0

ˇ̌
b0b1 � � � bm1�1

˛
˝ Sm2;m0. Nl 0/ jxi :

6. Second round of measurements

Measure the on them2 qubit subspace in the computational basis; Suppose we
obtain the bit string outcome b0 D b0

0b
0
1 � � � b0

m2�1, the probability for obtaining

this outcome is denoted by P .2/m2;m0. Nl 0/.

7. Verify solution

We verify the solution s D b1b2 � � � bm1�1b
0
m1
b0
m1C1 � � � b0

n by simply checking
the boolean function � in Equation (2.1) if �.s/ D 1. If it happens that �.s/ D 0,
then we go back to step 1.

Similarly, as they define the expected depth for the two-stage algorithm for the differ-
ent sequences in the algorithm

Qd.˛/ D
d.S

.1/
n;m2

. Nl//C S
.2/
m2;m0. Nl 0//

P
.1/
n;m2

. Nl/P
.2/
m2;m0. Nl 0/

; (2.33)

and minimize the above quantity with respect tom2; m0 and Nl ; Nl 0

Qd.˛/ D minimize
m2;m0; Nl; Nl 0

d.S
.1/
n;m2

. Nl//C S
.2/
m2;m0. Nl 0//

P
.1/
n;m2

. Nl/P
.2/
m2;m0. Nl 0/

: (2.34)

The optimal two-stage quantum search sequences for ˛ D 1, n 2 f3; 4; : : : ; 10g are
shown in Table 2.4.

Sn;m. Nl/ Pn;m. Nl/ d.Sn;m. Nl//

n Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 d.˛ D 1/

4 S4;2.1; 1/ S2;0.1; 0/ 0:953 1 48 18 69:25

5 S5;2.1; 1/ S2;0.1; 0/ 0:658 1 96 34 197:51

6 S6;2.1; 1; 1; 1/ S2;0.1; 0/ 0:791 1 384 66 569:22

7 S7;4.1; 4/ S2;0.2; 0/ 0:739 0:908 792 274 1587:09

8 S8;5.1; 4; 1; 2/ S5;4.1; 1; 2/ 0:882 0:998 1806 724 2876:40

9 S9;5.1; 4; 1; 3; 1; 3/ S5;4.1; 1; 2/ 0:096 0:998 3542 884 4898:88

10 S10;5.1; 4; 1; 3; 1; 3; 1; 3/ S5;4.1; 1; 2/ 0:810 0:998 5485 1044 8081:89

Table 2.4: The minimum expected
depth for the two-stage quantum
search algorithm where the ratio
in Equation (2.28) is set to ˛ D 1;
adopted from Ref. [55].

The multi-stage quantum search algorithm also lends itself to a natural way to par-
allelization, that is, having each stage run on a different quantum processor [55].
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(a)

jx0i D j0i

jx1i D j0i

ˇ̌
xm1�1

˛
D j0i

jxni D j0i

H

H

:::

H

:::

H

U�

Dm1

: : :

: : :

: : :

: : :

: : :

: : :

U� Dn

: : :

: : :

: : :

: : :

: : :

: : :

U�

Dm1

:::

b0

b1

bm1�1

(b)

jx0i D j0i

ˇ̌
xm1�1

˛
D j0iˇ̌

xm2

˛
D j0i

ˇ̌
xm2Cm0

˛
D j0i

jxni D j0i

Xb0

:::

Xbm1�1

H

:::

H

:::

H

U�

Dm0

: : :

: : :

: : :

: : :

: : :

: : :

: : :

: : :

U�

Dm2

: : :

: : :

: : :

: : :

: : :

: : :

: : :

: : :

U�

Dm0
:::

:::

bm2

bm2Cm0

bn

Figure 2.13: A schematic circuit
diagrams for the two-stage quan-
tum search algorithm; (a) In the
first stage a sequence of local and
global diffuser operators are used
in conjunction to search for the first
m1 bits of the target element, where
the local diffuser operators act on
the first subspace of m1 qubits, at
the end of this stage, these qubits
are measured in computational
basis. (b) The second stage begins
by first preparing the measured
outcome from the first stage in the
first m1. Then a sequence of local
diffuser operators are applied on
the m2 qubit space and on a smaller
subspace of m0 qubits. At end of
this stage we measure all m2 in the
computational basis to recover the
last m2 bits of the target element.

However, unlike a parallelized classical unstructured search, it is not clear that such
a parallelization would offer significant improvements in performance (in terms of
number of steps) over the multi-stage quantum search algorithm on a single processor;
for the canonical algorithm, the performance of such parallelization and multi-stage
quantum search (not necessarily depth-optimal) are asymptotically equivalent [46].

2.3.3 Implementations on NISQ processors

The first (of great value) of the results of implementations of quantum search algo-
rithms on NISQ processors is due to Wang and Kristic [56], who provided a thor-
ough analysis of the performance of the quantum search algorithms presented here
under different sources of errors and decoherence afflicting NISQ processors. By way
of simulation, they consider the effects of gate errors such as phase, bit flips and depo-
larizing noise, and dissipative decoherence mechanisms such as amplitude and phase
damping, with an increasing number of qubits used. To facilitate their analysis, they
define a metric S they call selectivity

S D 10 log10 .Ps=Phn/; (2.35)

that quantifies the signal-to-noise of the measured probability of the target element
(signal) Ps , in comparison to the highest measured probability among the non-target
states (noise) Phn. A negative value for the selectivity is deemed to indicate the search
was unsuccessful as the measured probability of the target state is indistinguishable
from the noise, i. e. Phn > Ps .
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In this way, the analysis is of how much of the various sources of noise can afflict a
quantum search algorithm before the selectivity goes below a certain threshold, above
which they consider the search to be successful, and defines the greatest strength of the
afflicting noise source tolerated by the algorithm [56].

The results in the aforementioned reference show that the depth-optimized quantum
search algorithm of Ref. [55], particularly the two-stage variant has better tolerance
than the canonical algorithm under the various noise sources. Additionally, if one
incorporates the use of n-qubit controlled-NOT gates that use one auxiliary qubit of
the form in Ref. [66], the noise resilience of both the canonical and depth-optimized
quantum search algorithms can be improved. This improvement is cited as due to
the reduction in the number of elementary gates in comparison to using n-qubit
controlled-NOT gates without auxiliary qubits12. 12 The n-qubit controlled-NOT gate

synthesis due to Barenco et al. [66] uses
48n� 208 controlled-NOT gates with a
linear depth; a much more economical
synthesis is due to He et al. [65], which
uses 24n� 72.

The first experimental demonstration to this topic of research of a four-qubit quantum
search algorithm on a real NISQ processor is due to Gwinner et al. [57]. Distinct
from the schemes presented here thus far, both constructions of the phase oracle and
diffuser operators in Ref. [57] are tailored towards the connectivity of the NISQ
processors. Their circuit for the four-qubit case of Grover’s algorithm uses local dif-
fuser operators with controlled-controlled-Z gates aided by a single auxiliary qubit.
They are able to construct the diffuser operators in a way that mitigates the limits of
qubit connectivity on a physical device. For instance, the standard decomposition of
a three-qubit controlled-Z gate shown in Figure 2.11 is modified to the form shown
in Figure 2.14. The great advantage of the latter circuit is that the controlled-NOT
gates in the circuit are only acting between successive qubits, i. e. qubits connected in
a line. Thus, the circuit can be transpiled to a physical NISQ processor with such a
topology without incurring additional SWAP gates.

Z

D

T �

T �

T � T �

T

T T

Figure 2.14: A circuit diagram
showing the decomposition of a
controlled-controlled-Z gate in
terms of elementary gates such that
it can realized on a set of qubits
that are connected in a line; six
controlled-NOT and seven T=T �

gates.

The modified gate is used to construct the four-qubit controlled-Z used in the phase
oracle in a way that is suitable for NISQ devices with low connectivity, with the aid
of one auxiliary qubit. To aid with the construction, they make use of a three-qubit
controlled-Y gate (ZX D Y ) shown in Figure 2.15.

Y D G G G� G� Z

Figure 2.15: A circuit diagram
showing the decomposition of a
controlled-controlled-Y gate in
terms of elementary gates such that
it can realized on a set of qubits
that are connected in a line; three
controlled-NOT, one controlled-
Z and seven G=G� gates, where
G D Ry.�=4/.

The above gate, due to Margolus [67], is also suitable for a line topology, since the
controlled-NOT gates are between successive qubits. Hence, in Ref. [57] a four-
qubit controlled-Z shown in Figure 2.16. With above multi-qubit gates adapted for
NISQ devices with low connectivity among their physical qubits, Gwinner et al. [57]
were able to successfully conduct a four-qubit quantum search algorithm on IBM Q
processors.
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Z

D j0i

Y

Z

Y �
Figure 2.16: A circuit diagram
showing the decomposition of a
four-qubit controlled-Z gate with
the help of one auxiliary qubit
in terms of the controlled-Z con-
struction in Figure 2.14 and the
controlled-controlled-Y construction
in Figure 2.15.

The four-qubit quantum search algorithm in Ref. [57] finds the target element with
probability> 21% with a global diffuser operator (i. e. D4) only and with a prob-
ability of 25% for a three qubit local diffuser operator (i. e. D4;3). An additional
significant contribution from Ref. [57] is another metric, similar to the selectivity
from Ref. [56], that benchmarks the success of a quantum search algorithm on NISQ
hardware. The so-called degraded ratio is defined as

R D
Pexp

Ptheo
; (2.36)

where Ptheo is the theoretical probability of finding the target element and Pexp is
the measured probability of finding the target element. A value close to one for the
degraded ratioR indicates a good agreement between the theoretical and measured
probabilities for finding the target element, and value close to zero is indicative of the
reverse. The study in Ref. [57] reports that the degraded ratioR decays exponentially
with the number of two-qubit gates in a circuit for a quantum search algorithm. For
the 5-qubit ibmq_vigo processor, the degraded ratio decays drastically when a circuit
for a quantum search algorithm is transpiled down to aforesaid physical device and the
two-qubit gate count exceeds 30 gates [57].

Recently, Zhang et al. [59] improved over above the demonstration in Ref. [57] by us-
ing the connectivity-aware multi-qubit gates in the latter reference, and incorporating
them into the depth-optimized and two-stage quantum search algorithms in their ear-
lier work [55]. Their two-stage algorithm with these connectivity-aware multi-qubit
gates incorporated, achieves a probability of success above 30%. Similar to Ref. [57]
they report that above a 30 two-qubit gate count, the degraded ratio decays sharply.
Lastly, they attempted to run a five-qubit quantum search algorithm; due to the in-
creased number of gates, the success of their endeavor is inconclusive as their results
are comparable to a classical search, roughly 6:25% probability of finding the target
element [59].

2.4 Results

2.4.1 Application of the Grover’s algorithm: Maximum cut graph problem

As already alluded to in the introduction of this chapter, Grover’s algorithm can
applied to a range of combinatorial search and optimization problems such as graph
problems. However, as we have seen, their realization on NISQ processors may be
unattainable due to the limitations of these devices. As a result, there is growing
emphasis on designing and benchmarking the performance of algorithms in a manner
that is aware of such limitations. Ref.[54] is another recent result that emphasizes
the above point; Satoh et al. [54] propose an adaption of Grover’s algorithm suitable
for NISQ processors (reduction of two-qubit gate count and a connectivity-aware
design), and apply it to solve the five vertex maximum cut (MAX-CUT) problem for a
sparse graph.
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The MAX-CUT problem is formally stated as follows: For an undirected graph
G D .V;E/, with jV j vertices and jEj edges, each cut inG D .V;E/ is a subset of
vertices S � V . The complement set of the cut S is given denoted by NS D V nS , and
E.S; NS/ denotes the set of edges with a vertex in S and another in NS . Edges ofG that
one vertex in S , and other in NS are referred to as cut edges, and theE.S; NS/ is the set
of cut edges. Hence, the MAX-CUT problem aims to find a cut S that maximizes the
number of cut edges jE.S; NS/j. Visually, one can think of the MAX-CUT problem
as using two colors palette to color the vertices ofG, one color is labeled as S and
the other as NS . We begin by assigning each vertex inG a color, either from either S
or NS (repeating colors is allowed). Then we tally up the number of edges that exist
between different colored vertices. Once we have exhausted all possible ways to color
graph with the two colors, the color combination x with the greatest number of edges
between the two colors S and NS solves the MAX-CUT problem. Figure 2.17 shows
an example of a MAX-CUT for a planar graph with five vertices, and the MAX-CUT
color combination for this cut is given by s D 00101; Here vertices belonging to S are
labeled with 0 and the vertices belong to NS are labeled with 1.

3

0

2

4

1

Figure 2.17: MAX-CUT on an ex-
ample graph with five vertices.
The vertices are colored with two
different colors, red and purple. The
dashed line shows the maximum
cut.The above visual interpretation is suggestive of an unsophisticated way to find such

a MAX-CUT of a general graphG D .V;E/ by trying all possible 2jV j � 1 color
combinations, that is, for each step we color in the vertices ofG with the two colors
and count the number of cut edges and continue until we have exhausted all combi-
nations, then the color combination with the maximum number of cut edges is the
MAX-CUT solution. Ref. [54] applied Grover’s algorithm to solve the MAX-CUT
by assigning the colors as j0i and j1i, and designed a subdivided phase oracle that as-
signs a negative sign to the amplitude of the basis corresponding to color combination
x with more edge connections than some threshold t � jEj.

The procedure for MAX-CUT of the graphG D .V;E/ is no different from the
canonical algorithm; the aforesaid oracle and an appropriate diffuser operator are
applied O.

p
N/ times to a uniform superposition jCi

jV j of 2jV j basis states, with
each representing a possible color combination. If the found measurement outcome
x is a valid color combination for the current threshold, that is, a color combination
with more than t cut edges, then we increase the threshold t and repeat. Otherwise,
we decrease the value of t and if the value of t returns to a prior value, then the cur-
rent measurement outcome is the MAX-CUT solution. The authors in Ref. [54]
reason that we expect to repeat such a procedure O.log.E// times to get MAX-CUT
solution with high probability. This is because we can zone in on the value of t by re-
peatedly dividing the search interval for t in half and checking whether we get an legal
or illegal output at the end of each iteration (binary search).

The proposed design for the oracle for a general graphG D .V;E/ in Ref. [54] is by
way of subdividing the full oracle operatorO into sub-oraclesOv;w , which checks if
an edge .v; w/ 2 E is a cut edge, that is, if the vertices v andw are colored differently.
Thus, such a sub-oracleOv;w performs the following unitary transformation on two
qubits jqvi and jqwi, with each representing the vertices v andw, respectively

Ov;w jqvi jqwi jqaccumi ! jqvi jqwi jqaccum C .qv ˚ qw/i ; (2.37)

where qaccum is a register of an appropriate size that accumulates the number of cut
edges.
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Whenever the vertices v andw are colored differently, then the corresponding qubit
states jqwi and jqvi will differ, i. e. jqwi D j0i and jqvi D j1i or jqwi D 1 and
jqvi D 0; for such a scenario represents a cut edge and accordingly qw ˚ qv D 1 is
accumulated to the accumulator register (it is a binary half adder from classical digital
logic circuits).

(a)

0

1

2

3

(b)

0

1

2

3

4

Figure 2.18: Tree graphs where
the number of vertices jV j is equal
to the number of edges plus 1,
jV j D jEj C 1. (a) K1;3 and (b) K1;4
star graphs, where in each case the
vertex with the highest degree is the
vertex 0.

The full oracleO for a general graphG D .V;E/ is realized by applying above sub-
oracleOv;w between all pairs of vertices .v; w/ 2 E . An additional flag register
that initially contains the state j�i is required. For a particular data input jxi, if
value in the accumulator register for the input jxi is equal to or exceeds t after the
application of the full oracleO , multi-qubit controlled operations between the flag
register and accumulator register are applied such that the flags register acquires a
negative amplitude i. e. � j�i. Effectively the joint state of all three registers acquires
a phase, i. e. � jxi jqaccumi j�i; see Ref. [54] for details. Their proposed scheme for
the MAX-CUT problem was applied to both the four node graphK1;3 and five node
graphK1;4 shown in (a) and (b) of Figure 2.18 as proof-of-concept demonstrations.
For bothK1;3; K1;4 graph, Ref. [54] reports that the realization of the full circuit
on IBM Q processors was not possible as the circuits requires at least 36 controlled-
NOT gates per iteration for even a smallerK1;3 graph shown in Figure 2.18 (a), with
the bulk of the controlled-NOT gates coming from the half adder that accumulates
the number of cut edges, and which additionally adds to the number of qubits used by
circuit, since it requires at least log .jEj C 1/ qubits to store the number of possible
cut edges [54]

To circumvent the above issue, Ref. [54] proposed a design for the above oracle that
avoids the need for storing the number of cut edges in binary data, which removes
the need for both the accumulator and flag register, and the circuitry between the
two registers. The proposed oracle significantly reduces the number of qubits and
two-qubit gates in comparison to the original circuit at cost of accuracy. For a two-
qubit state jqvi jqwi with each representing a vertex v andw in a general graph
G D .V;E/, respectively; the action of the new subdivided phase sub-oracleOv;w.�/
is given by

Ov;w.�/ jqvi jqwi D ei� jqvi jqwi ; (2.38)

where � 2 .0; ��. Similarly, the full oracleO.�/ is realized by applying the above
sub-oracleOv;w.�/ to all pairs of vertices .v; w/ 2 E inG D .V;E/. If the basis
state jsi represents the color combination s for a vertex inG D .V;E/ that gives the
MAX-CUT solution, applying theOv;w.�/ between all pairs of vertices .v; w/ 2 E

on jsi gives

O.�/ �
Y

.u;w/2E

Ou;w.�/ jsi D eik� jsi ; (2.39)

for some value of k � jEj, such that k� � � . The value of k is the number of cut
edges for the MAX-CUT color combination s. Hence the above oracle stores the
number of cut edges for a particular color combination x in the phase information of
the corresponding basis state jxi after the application of the full oracleO.�/. Clearly,
for any other color combination x of the vertices that is not the MAX-CUT solution
whose corresponding basis state jxi acquires the phase ei Qk� , it must be that Qk < k.
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The proposed algorithm then proceeds as usual by applying the above oracle and a
global diffuser operator to the uniform superposition jCi

jV j of 2jV j basis states, with
each representing a possible color combination of the vertices inG D .V;E/. Recall
the action of the diffuser operator on the amplitudes shown in Equation (2.16); the
amplitude of the basis state jxi corresponding to the color combination x after the
application of the full oracleO.�/ and global diffuser operatorDn will be

˛x.�/ D
1

2jV j

�
2 h˛.�/i � eik�

�
; (2.40)

where h˛.�/i is the mean amplitude after the application of full oracleO.�/ on all
vertex pairs .v; w/ 2 E for a graphG D .V;E/. The oracle is designed in such a way
that the angle � for the full oracleO.�/ is by maximizing the probability

p.�/ D
1

2jV j

�ˇ̌̌
2 h˛.�/i � eik�

ˇ̌̌�2
; (2.41)

probability of measuring the color combination x after one Grover iterate. Hence, for
each iteration of the algorithm, we choose a k � jEj and find a � that maximizes the
above probability, and appropriately increase or decrease k as described previously and
repeat this process until we cycle back to a prior value of k.

It is worthy to note that each color combination (hence the MAX-CUT color com-
bination) has a redundancy of two, i. e. if x D 01010 is a color combination then the
binary complement (corresponding to swapping the colors) of s D 10101 is also a
valid color combination. This redundancy can removed by fixing the color of one ver-
tex; a natural choice is one with the most number of edges incident to it [54]. For the
graphK1;4 shown in Figure 2.18 (b) with jV j D 5 and jEj D 4 from Ref. [54]. The
mean amplitude for such a graph after the full oracleO.�/ application on the uniform
superposition has the form

h˛.�/i D
1

2jE j

jE jX
kD0

 
N

k

!
eik� : (2.42)

Alas, due to the many trials it takes to find a value for k that yields the MAX-CUT
outcome with high probability for a general graphG D .V;E/, it is not clear whether
proposed algorithm in [54] offers any significant improvement over a classical algo-
rithm for the MAX-CUT problem. We suspect that this is the reasons the graphs
K1;3 andK1;4 are chosen, as from their simple structure one can deduce that k D 3

and k D 4 respectively forK1;3 andK1;4, which corresponds to the number of edges
in the MAX-CUT of each graph (see Figure 2.18). Hence, as a proof-of-concept
demonstration for theK1;4, the value of k is taken as k D 4 a priori rather than
through iteration as described earlier. For k D 4, using Equation (2.42) to maximize
p.�/ in Equation (2.41), one obtains p.�opt/ ' 0:212 with � ' 0:323� . The afore-
mentioned probability of success is about half the probability of success given by the
complete circuit with the accumulator oracle for t D 4 and a single grover iteration,
p ' 0:473. Caveat emptor, for the input basis state jsi corresponding to the MAX-
CUT color combination s where k D 4 and the input basis state jxi corresponding to
a color combination x with no cut edges where k D 0, the corresponding probabilities
for measuring both outcomes after amplitude amplification are equal for the graphs
K1;3 andK1;4 for any � .
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This is because for k D 0 and k D 4, the absolute value (complex modolus) factors in
Equation (2.41) are equal

j2 h˛.�/i � 1j2 D

ˇ̌̌
2 h˛.�/i � ei4�

ˇ̌̌2
(2.43)

for any � , where h˛i is of the form shown in Equation (2.42). Hence, we correctly
detect the MAX-CUT and no-cut outcomes with equal probability; this is the trade-
off in accuracy the algorithm suffers by encoding the number of cut edges in this way.
The sub-oracle operation in Equation (2.38) for an edge .v; w/ 2 E with the vertices
v andw, represented by qubits jqvi and jqwi, respectively, can be realized by the
following circuit [54]

qv

qw

X

Rz.�/

X

X

Rz.�/

X

Figure 2.19: A circuit diagram
that implements the sub-oracle
Ov;w .�/ circuit for a pair of vertices
.v; w/ 2 E for a graph G D .V;E/,
with each vertex represented by the
qubits jqw i ; jqvi respectively. If
.v; w/ 2 E is a cut edge, then the
vertices v;w are colored differently,
hence the states jqvi ; jqw i differ
then this circuit applies a ei� phase
to joint state jqvi jqw i.

whereRz.�/ D diag .1; ei� / whereRz.�/ j0i D j0i ; Rz.�/ j1i D ei� j1i. In
Ref. [54] for the graphK1;4, to remove the redundancy of the MAX-CUT prob-
lem as described earlier in the passage, the color of vertex 0 inK1;4 is fixed as 0 and
corresponding qubit is set to j0i. The vertex 0 is chosen because it has the highest
degree and every other vertex inK1;4 is connected to it. After this modification, the
full oracleO.�/ is given by

O.�/ D
Y

.u;w/2E

Ou;w D R.1/z .�/˝R.2/z .�/˝R.3/z .�/˝R.4/z .�/: (2.44)

Setting the qubit corresponding to vertex 0 as j0i removes the need of the controlled-
Rz.�/ gates in since it is fixed at j0i and the sub-oracleO0;w.�/ of the form in Fig-
ure 2.19 will always apply aRz.�/ for any other vertexw connected to the vertex
0, andOw;0.�/ will have no effect sinceRz.�/ j0i D j0i. Hence, for this reason
the full oracle can be implemented with only single qubit gates on four qubits13. In

13 The qubit corresponding to the
vertex 0 can thus be removed from
the circuit, and taken to be a virtual
vertex [54]. Thus, whenever we obtain
the measurement outcome four-bit
x1x2x3x4 on four qubits, it corresponds
to the five-bit outcome 0x1x2x3x4 for
the original MAX-CUT for the graph
K1;4.

Ref. [54], the global diffuser is implemented with a 4-qubit Toffoli gate with one aux-
iliary qubit. Thus, their proposed algorithm is implemented on five qubits with a total
of 13 controlled-NOT gates (before transpiling it down to the physical device), and
theK1;4 graph is mapped onto the physical qubits of an IBM Q processor with the
topology as shown in Figure 2.21 (a) (see Ref. [54] for more details).

The first of our marginal contributions to this topic of research is an improvement
in the success probabilities of the MAX-CUT implementation for theK1;4 graph
in [54] by way of a further iteration using an additional local diffuser operator. Be-
fore we present our results, for comparison we implemented their scheme on the
four-qubits without the use of an auxiliary qubit for the four-qubit Toffoli gate. The
circuit is shown in Figure 2.20 and mapping of vertices (qubits) onto the physical
device is shown in Figure 2.21 (b). The angle � is taken to be � ' 0:323� , which
maximizes the probability of measuring the MAX-CUT solution. With the mapping
shown in Figure 2.21 (b), the circuit is transpiled to a physical device that contains 19
controlled-NOT gates in total, and has a circuit depth of 15. Figure 2.22 shows the
measurement outcomes from two processors ibmq_montreal and ibm_hanoi, where
measurement error mitigation has been applied to results, which mitigates the effect
of readout errors on the raw results (see section § A.1 of technical Appendix A for
details).
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Figure 2.20: A circuit diagram for
the MAX-CUT problem for the star
graph K1;4 in the study [54] realized
on four-qubits. Here, one Grover
iterate is used where � ' 0:323�

yields an ideal probability of ob-
serving the MAX-CUT outcome
close to 0:212 upon measuring all
the qubits in the computational
basis.

(a)

a1 2

3

4

(b)

2 10

3

Figure 2.21: A T-shaped physical
device mapping for the MAX-CUT
algorithm for the K1;4 star graph
shown in Figure 2.18 (b) from the
study [54]; The physical device
mapping (a) uses an auxiliary qubit
for the three-qubit Toffoli, indicated
by the node a and the rest of the
vertex of K1;4 corresponds to a
qubit with the same label on the
device. While the mapping (b) uses
no auxiliary qubits and each vertex
of K1;4 corresponds to a qubit with
the same label on the device.

The outcomes x D 1111, corresponding to the MAX-CUT solution and x D 0000,
where no edge is cut. Recall since the qubit corresponding to vertex 0 ofK1;4 is set
to 0, hence the outcome x D 1111 corresponds to the x D 01111, likewise the
outcome x D 0000 corresponds to x D 00000 for original MAX-CUT problem
for the graphK1;4. The aforesaid outcomes occur with probability close to 0:14 and
0:17, respectively on the ibmq_montreal processor. And occur with probability close
to 0:16 and 0:18, respectively on the ibm_hanoi processor. The ideal probability is
close to 0:21.

We compare the experimental and ideal probability distributions via the Kolmogorov
distance [17], which measures the closeness of two discrete probability distributions
P andQ and is defined by the equationD.P;Q/ �

P
x2X jP.x/ � Q.x/j=2,

where X represents all possible outcomes. The Kolmogorov distance between the
measured distribution and the ideal distribution is close to 0:1289 and 0:1730 for
ibmq_montreal and ibm_hanoi, respectively. This is indicative that there is good
agreement between measured and ideal probability distributions.
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Figure 2.22: Results of the MAX-
CUT problem for the star graph
K1;4 on IBM Q processors. The
four-qubit circuit in Figure 2.20 is
used where the qubit for vertex 0
is not included as described in the
main text. On each processor, the
circuit was executed 8192 � 900

times with measurement error mit-
igation. The error bars represent
95% confidence intervals around
the mean value of each histogram
bin (See § A.2 of technical Ap-
pendix A for details). The simulator
probabilities show the ideal case.
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Compared to the results in the study [54], they represent an improvement as they
exceed 0:11 for the MAX-CUT solution. However, the comparison is a bit unfair,
as the improvement of the results is probably indicative of the improvement of the
capabilities of the IBM Q processors more than anything else, as the study [54] used
earlier processors that could only tolerate lower two-qubit gates in a circuit than the
currently reported 30 two-qubit gate limit for current IBM Q processors [57, 59].
More importantly, our transpiled circuit uses 6more controlled-NOT gates.

We now improve the maximum ideal probability for measuring the MAX-CUT
by using a further Grover iterate that uses a local diffuser operator as shown in Fig-
ure 2.23. The circuit is mapped to a physical device using the same mapping as in Fig-
ure 2.21 (b) as before, with the controlled-NOT gates in the transpiled circuit tallying
to 33.
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Figure 2.23: A circuit diagram
for the MAX-CUT problem for
the star graph K1;4 realized on
four qubits that uses two Grover
iterates improves over the ideal
probability of MAX-CUT in the
study [54]. Here, one local Grover
iterate G4;3.�0/ where �0 ' 0:323�

and a global Grover iterate G4.�1/
where �1 ' 0:322� yield an ideal
probability of observing the MAX-
CUT outcome close to 0:25 upon
measuring all the qubits in the
computational basis.

We choose the values �0 D �1 ' 0:323� (more on this choice later ), for this choice
the ideal probability of measuring the MAX-CUT is close to 0:25. Figure 2.24 shows
the readout error mitigated results of measurement outcomes from the two processors.
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Figure 2.24: Results of the MAX-
CUT problem with two Grover
iterates for the star graph K1;4 on
IBM Q processors. The four-qubit
circuit in Figure 2.23 is used where
the qubit for vertex 0 is not included
as described in the main text. On
each processor, the circuit was
executed 8192 � 900 times with
measurement error mitigation. The
error bars represent 95% confidence
intervals around the mean value of
each histogram bin (See § A.2 of
technical Appendix A for details).
The simulator probabilities show the
ideal case.
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The MAX-CUT outcome 1111, and the no-cut outcome 0000 (00000 and 01111
respectively since virtual vertex 0 is set to 0), occur with probability close to 0:16 and
0:19, respectively on the ibmq_montreal processor. And occur with probability close
to 0:22 and 0:22, respectively on the ibm_hanoi processor. The Kolmogorov distance
between the measured distribution and the ideal distribution is 0:1308 and 0:1844
for ibmq_montreal and ibm_hanoi, respectively. With an additional local diffuser
operator, we have slightly improved over the results in Figure 2.22. At the time of
writing this thesis, it dawned on the author that the choice of angles �0 and �1 as
0:323� for the circuit Figure 2.23 do not necessarily achieve the maximum possible
ideal probability of measuring the MAX-CUT any more. The choice �0 ' 0:301�

and �1 ' 0:541� for the circuit shown in Figure 2.23 yields a maximum ideal proba-
bility for measuring the MAX-CUT close to 0:311. Interestingly, another revelation
that occurred to the author is that the local diffuser operatorD4;3 in Figure 2.23
can be replaced with a smaller local diffuser operatorD4;2 as shown in Figure 2.25.
Choosing the angles �0 and �1 as 0:359� and 0:814� , respectively yields a probabil-
ity of measuring the MAX-CUT close to 0:2482.
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Figure 2.25: A circuit diagram
for the MAX-CUT problem for
the star graph K1;4 realized on
four qubits that uses two Grover
iterates improves over the ideal
probability of MAX-CUT in the
study [54] even with a smaller lo-
cal diffuser operator compared to
Figure 2.20. Here one local Grover
iterate G4;2.�0/ where �0 ' 0:359�

and global Grover iterate G4.�1/
where �1 ' 0:814� yields an ideal
probability of observing the MAX-
CUT outcome close to 0:2482 upon
measuring all the qubits in the
computational basis.

Unfortunately, the author realized the aforementioned possibilities quite late in their
thesis writing when they returned to the MAX-CUT problem and could not test the
two circuits in shown Figure 2.23 and Figure 2.25 on the IBM Q processors in time.
However, it is not too far-fetched to think that the results would slightly improve over
the ones presented here, even more so, for the circuit in Figure 2.23, since it would be
transpiled to a circuit with fewer two-qubit gates. This combination of local and global
diffuser operators together with a subdivided oracleO.�/, where the � are optimized
at each stage to maximize the probability of observing the MAX-CUT solution, is an
interesting direction for future work in realizing the MAX-CUT problem on NISQ
processors.

However, it is unlikely that such an algorithm can be still considered as Grover’s al-
gorithm because we modify the angles of the oracle at each step by classically finding
the optimal angles �i for the oracleO.�i / that achieve maximum probability of ob-
serving the desired outcome at that step. Such an algorithm is comparable to hybrid
quantum/classical algorithms such as the variational quantum eigensolver (VQE) [68]
and quantum approximate optimization algorithm (QAOA) [69]. In a similar fash-
ion, the aforesaid algorithms seek to prepare some desired n-qubit state j i that
maximizes/minimizes some objective cost function. In the case of VQE, the desired
state j i is one that minimizes the expectation value h jH j i = h j i with re-
spect to some HamiltonianH . For QAOA, j i maximizes some cost function for an
optimization problem such as the MAX-CUT (see Ref. [69] details).
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For both algorithms at each step, a sequence of gates U1.�1/U2.�2/ � � �U.�n/ pa-
rameterized with tunable parameter(s) E� is applied to the current best approxima-
tion of j i after which, a quantum computer evaluates the objective function and
the classical computer aids by optimizing the parameters E� for the next evaluation
step. For the previously described scheme, the oracleO.�/ can be viewed as the
U1.�/U2.�/ � � �U.�/ and the objective cost function is p.�/ from Equation (2.41).
Recently, such a hybrid quantum/classical approach to Grover’s canonical search al-
gorithm has been considered in the study [70]. For a parametrized phase oracle and
non-parametrized diffuser (and other), such a hybrid approach achieves a better suc-
cess probability than Grover’s algorithm canonical quantum search for small search
space sizeN , asymptotically both algorithms have the same performance [70].

2.4.2 Quantum search in measurement-based quantum computing

The experimental demonstrations of Grover’s algorithm have also been realized in
the context of MBQC on graph states. The canonical quantum search algorithm on
two qubits has been experimentally realized by different studies thus far [16, 71–73]
on a four-qubit graph state. Common among the aforementioned references, is the
realization that the canonical quantum search algorithm on two qubits naturally arises
as a measurement procedure on a four-qubit box graph state shown in Figure 2.26.

0 1

3 2

Figure 2.26: Four qubit box graph
state realized by first preparing all
qubits in the jCi, and then applying
controlled-Z gates between qubits
with edges connecting them.

Recall that in MBQC, gates are simulated by performing measurements on an initially
prepared graph state in the equatorial measurement basis B.˛/ D fjC˛i ; j�˛ig,
where j˙˛ij D .j0ij ˙ ei˛ j1i/. Thus if we measure qubits 0 and 3 in the ba-
sis B0.˛/ and B3.ˇ/, respectively. This set of measurements effectively applies the
.Xm0HRz.˛//

.q0/ ˝ .Xm3HRz.ˇ//
.q3/CZq0q3

on qubits jq0i and qubit jq3i of
graph state shown in Figure 2.26 14. The valuesm0; m3 2 f0; 1g denote measure- 14 See Ref.[74–76] for detailed descrip-

tions of MBQC.ment outcomes of the preceding measurements outcomes where a value ofmi D 0 or
mi D 1 indicates that we measured the jC˛i or j�˛i state, respectively, on qubit i .
Lastly, we perform the measurement B.�/ on both qubits 1 and 2.

It is useful to writeXmaHRz.�/ asHZmaRz.�/ where we use the identityXH D

HZ. From this, the effective two-qubit state after the above measurement pro-
cedure that resides on qubits 2 and 3 is equivalent to the circuit diagram shown
in Figure 2.27 in the quantum circuit model. The aforementioned circuit real-
izes Grover quantum search algorithm on two qubits for an appropriate choice of
the angles ˛ and ˇ, in the case wherem0 D m3 D 0. For the choice of angles
.˛; ˇ/ D .��;��/; .��; 0/; .0;��/ and .0; 0/, the phase oracle puts a negative
sign on the amplitude of the state j00i ; j01i ; j10i and j11i, respectively. For any
combination ofm0; m3, the above circuit still realizes Grover’s algorithm with an ap-
propriate reinterpretation of the measurement outcomes. The interested reader may
refer to section § B.1 of the technical Appendix B for more details.

jq0i D jCi

jq1i D jCi

Phase oracle

Z

Rz.˛/

Rz.ˇ/

Zm0

Zm3

Diffuser

H

H Z

Z

Z

H

H

Figure 2.27: A circuit diagram
equivalent of the remaining two
qubit after the four-qubit mea-
surement procedure described in
the main text; the resultant cir-
cuit realizes Grover’s algorithm
for two qubits with the appropri-
ate choice of angles ˛ and ˇ. For
.˛; ˇ/ D .��;��/; .��; 0/; .0;��/

and .0; 0/ the circuit finds the target
j00i ; j01i ; j10i and j11i respec-
tively.51
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In my honours studies, we realized the above measurement-based Grover’s algorithm
for two qubits successfully on IBM Q processors. Additionally, we were able to re-
alize a measurement-based Grover’s algorithm for two qubits on a graph state with
one fewer edge, thus one less two-qubit gate in its state preparation. The original
four-qubit graph state and the latter graph state belong to the same LU-equivalence
class [77, 78]. The local unitaries relating the two states can be derived by succes-
sive applications of the edge local complementation rule [77, 78]. For the interested
reader, the missing details are filled in sections § B.1 and § B.2 of the technical Ap-
pendix B.

Hence, we considered the next natural step; whether it would be possible to realize a
measurement-based Grover’s algorithm for three qubits. The initial hurdle was that
the quantum circuit model equivalent of Grover’s algorithm on three qubits does not
naturally arise as a measurement procedure on any well known graph state unlike
the case for two qubits, as far as we are aware. An unsophisticated way to circumvent
this hurdle is to look for measurement-based implementations of the various gates
in the quantum circuit model of Grover’s algorithm for three qubits, and thus by
constructing the measurement-based equivalent of each gate in the circuit and linking
them together, one can realize the entire circuit as a measurement-based procedure.

0

1

23

4

5

6

7 8

9

Figure 2.28: Ten-qubit graph state
used as a resource for realizing a
measurement-based three-qubit
Toffoli gate. Qubits 0; 1; 2; 6 are
measured in the HB.�=4/ basis
and qubits 3; 4; 5 in the HB.�=4/
basis, which realizes a controlled-
controlled-Z gate up to measure-
ment outcome byproducts acting
on the inputs in qubits 7; 8 and 9
as two control and target qubits,
respectively.

As we have seen earlier, the n-qubit C n�1ŒZ�, in this case, a controlled-controlled-Z
gate constitutes the most resourceful part in Grover’s algorithm, appearing in both the
phase oracle and diffuser operators. The canonical measurement-based controlled-
controlled-Z due to Browne and Briegel [74] can be realized on a graph state of
ten qubits. The measurement-based controlled-controlled-Z gate is a special case
of a general result from the aforementioned reference, any n-qubit unitary operator
diagonal in the computational basis of the form [74]

Un D
Y

Em

exp
�
i
� Em

2
.Z1/

m1 ˝ .Z2/
m2 ˝ � � � ˝ .Zn/
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�
;

D exp

0@ i
2

X
Em

� Em.Z1/
m1 ˝ .Z2/

m2 ˝ � � � ˝ .Zn/
mn

1A; (2.45)

wheremj 2 f0; 1g andZj is the PauliZ operator acting on qubit j . The sum is per-
formed over all possible bit strings of length n. From the above form, the controlled-
controlled-Z gate is realized by the following choice of angles

�000 D 0; �001 D �
�

4
; �010 D �

�

4
; �011 D

�

4
;

�100 D �
�

4
; �101 D

�

4
; �110 D

�

4
; �111 D �

�

4
: (2.46)

The ten-qubit graph state that realizes the three-qubit Toffoli gate is shown in Fig-
ure 2.28. The input qubits 7; 8 and 9 can be prepared in any single-qubit state rather
than strictly jCi since qubits 7; 8 and 9 are designated as input controls and target
qubits, respectively, for the MBQC controlled-controlled-Z gate. Thus, the proce-
dure to realize a controlled-controlled-Z gate with input qubits jc1i ; jc2i ; jti as
follows: (i) Prepare inputs jc1i ; jc2i ; jti to any state of our choosing, the rest of the
qubits are prepared in the jCi, and we perform controlled-Z gates on qubits con-
nected by an edge in Figure 2.28. (ii) perform the projective measurements of the
HB.�/ D cos �=2 j0i ˙ sin �=2 j1i, with � D �=4 for qubits 0; 1; 2; 6 and
� D ��=4 for qubits 3; 4; 5, respectively [74].
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The above measurement procedure realizes a three qubit controlled-controlled-Z
gates acting on the inputs c1; c2; t and output of the gate residing on qubits 7; 8 and 9,
up to the byproduct Pauli operators that arise from the measurement outcomes.

.Zm0Cm3Cm4Cm6/.7/ ˝ .Zm1Cm4Cm5Cm6/.8/ ˝ .Zm2Zm3Zm5Zm6/.8/;

(2.47)

wheremi 2 f0; 1g is an outcome from the aforementioned measurement procedure
on qubit i , and the byproducts act on qubits 7; 8 and 9, respectively.

0 1 2

8

9 4 365

7

Figure 2.29: Physical device ten-
qubit mapping for the ten-qubit
graph state in Figure 2.28; each
labeled node in the aforesaid is
mapped to the corresponding la-
beled qubit in this figure.

In implementing the described measurement-based controlled-controlled-Z gate on
IBM Q, we begin by mapping the graph state to the qubits of a physical device. The
graph state in Figure 2.28 is highly connected, and no physical device exists with such
a topology. Thus, we choose to map qubits that have the most connections to the
physical qubits that have most connections on the physical device; in Figure 2.28 the
qubits 7; 8 and 9 have the most edges. We show a physical device mapping in Fig-
ure 2.29, which results in 60 controlled-NOT gates for the transpiled circuit. Such
a number of two-qubits gates in circuit is well-beyond the 30 two-qubit gate count
limit [57], nonetheless we tested the measurement-based controlled-controlled-Z gate
by preparing the qubits 7; 8 and 9 in various input states, and subsequently performed
quantum state tomography to recover the corresponding output states, and then mea-
sured the state fidelity of each of the recovered output states against a set of expected
output states. From these measurements, we are able to construct a truth table for the
controlled-controlled-Z gate for various input and output states, this is shown in Fig-
ure 2.30. As seen can be seen by the naked eye, the discrepancies between the ideal
truth tables and measured truth tables on the ibmq_montreal and ibmq_mumbai are
quite conspicuous. We show the greatest element difference between the ideal and the
measured truth tables for both processors in Table 2.5. The fourth truth table shows
the smallest value among the truth tables, which corroborates with the visual represen-
tation of the fourth truth table in Figure 2.30, as it bears somewhat of an resemblance
to the corresponding ideal truth table.

Figures Emumbai � Eideal Emontreal � Eideal
(b) and (c) 0:427 0:395

(e) and (f ) 0:401 0:336

(h) and (i) 0:435 0:353

(k) and (l) 0:308 0:268

Table 2.5: The maximum element
difference between a measured
truth table and corresponding ideal
truth table for the truth tables of
measurement-based controlled-
controlled-Z in Figure 2.30.

Similar to the case for the four-qubit graph realizing Grover’s algorithm for two
qubits, we can hope to reduce the number of controlled-Z operations we have to apply
to create the ten-qubit graph state shown in Figure 2.28 by finding an LU-equivalent
graph state with fewer edges. However, it turns out that the graph state in Figure 2.28
corresponds to the one with the least number of edges in its LU-equivalence class.
See the technical appendix Appendix B for details. Thus at the present moment
a measurement-based implementation of a controlled-controlled-Z is beyond the
reach of current NISQ processors. Which subsequently also puts realization of
a measurement-based Grover’s algorithm for three qubits beyond reach, since at
least two controlled-controlled-Z and a few single qubit gates are required to realize
Grover’s quantum search algorithm for three qubits.
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Figure 2.30: Various truth tables for
the measurement-based three-qubit
controlled-controlled-Z gate. Three
figures in each row show a single
truth table showing the ideal truth
table and measured truth tables
from the ibmq_montreal processor
and the measured truth tables from
ibmq_mumbai processor, respec-
tively. When performing the state
tomography on the outputs of the
gate, we only consider where all the
outcomes on the measured qubits
are 0, resulting in no byproducts. (a,
d, g, j) Ideal truth tables. (b,e,h,k)
Measured truth tables from the
processor ibmq_montreal. (c, f, i,
l) Measured truth tables from the
processor ibmq_mumbai.

2.5 Concluding remarks

In this chapter, we first began by describing the canonical quantum search algorithm,
which assumes no a priori knowledge about the structure of the search problem. Such
a quantum search algorithm achieves a quadratic speedup over an exhaustive classical
search [14]. We also described a variant of the quantum search algorithm called the
partial search quantum algorithm, which trades accuracy for speed by finding a partial
bit string or target block to which the target element belongs rather than the target
element itself [20]. With regards to practicality, especially on NISQ processors, the
appealing feature of the quantum partial search algorithms in comparison to the
canonical quantum search is that they are economical in the number of elementary
gates and algorithmic steps they use, albeit the above advantage comes at the expense
of accuracy. This realization prompted a large corpus of work interested in realizing
small-scale demonstrations of the quantum search algorithm for four qubits and
beyond, by reducing the number of elementary operations, particularly two-qubit
gates, in quantum search algorithms.

Two important theoretical results along these lines were the depth-optimization of
the quantum search algorithm, and multi-stage quantum search [55], which both
place an emphasis on and try to circumvent one of the foremost pressing limitations
of NISQ processors; short periods of time over which NISQ can maintain quantum
coherence. The depth-optimized quantum search algorithm optimizes circuit depth
of the quantum search algorithm, and hence the algorithmic (proxy) time spent on
the processor. The multi-stage quantum search takes this a further step, by breaking
up the quantum search algorithm into smaller stages. Each stage performs a smaller
quantum search for a substring of the target element at a time, and is executed by a
reinitialized circuit. The great advantage of the multi-stage quantum search is that it
splits circuits (which would require long coherence times for reliable execution) into
smaller circuits that perform the quantum search stage by stage, recovering the target
element substring by string, which then reduces the time over which the qubits in each
circuit must remain coherent for a reliable execution of the quantum search algorithm,
since these qubits are reinitialized at each stage.
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Studies in such a direction, eventually led to the first realization of a four-qubit quan-
tum search algorithm on IBM Q processors [57]. The aforesaid study follows suite in
finding ways to circumvent the limitations of NISQ processors; by designing multi-
qubit gates such as the controlled-Z and controlled-controlled-Z in a manner that
is suitable for physical quantum processors with limited connectivity between their
physical qubits. Similarly, Ref. [59] experimentally realized an improved a four-qubit
quantum search algorithm through incorporating the methods in [55] on IBM Q
processors. The study in Ref. [59] also reported an inconclusive five-qubit quantum
search algorithm with a success probability comparable to a classical search. Lastly,
an application of Grover’s algorithm to the MAX-CUT problem was studied by
Ref. [54] successfully implementing a proof-of-concept demonstration on IBM Q
processors for sparse graphs by proposing a design for a low-depth subdivided phase
oracle that assigns a large phase shift to target outcomes and compared to non-target
elements. Alas, the advantage for such a demonstration over a classical algorithm was
not proved. Nonetheless, our marginal contribution is an adaptation that improves
over the theoretical and measured success probability for the MAX-CUT by way of
an additional shallow depth iteration of the proposed algorithm. Furthermore, we
found that if we vary and optimize the phases imparted by the oracle to between it-
erations to maximize the probability of obtaining the MAX-CUT outcome, we can
further increase the theoretical success probability for our contributed adaptation.
However, it is not clear whether such an adaptation can be still considered as Grover’s
algorithm; it is comparable to hybrid quantum classical algorithms [68–70].

Prompted by the success during my Honours studies of a measurement-based
Grover’s quantum algorithm for two-qubits, we attempted to realize a measurement-
based Grover’s algorithm for three qubits. We found that, due to the large number of
qubits (10) and controlled-NOT gates (>60) required for simulating a measurement-
based controlled-controlled-Z gate on IBM Q processors, the output of the controlled-
controlled-Z gate for various truth tables is comparable to uniform noise. Hence, the
realization of a three-qubit measurement-based Grover’s algorithm is somewhat out
of reach for these processors; the situation is even more bleak when we consider that
Grover’s algorithm for three-qubits requires at least two such gates (one for the phase
oracle and another for a diffuser operator) and a few single qubits, which must linked
together somehow to realize the full measurement-based quantum search algorithm
for three qubits.

Another measurement-based implementation of a controlled-controlled-Z (or
controlled-controlled-NOT) gate is due to Tame et al. [79], which realizes a controlled-
controlled-Z gate on a graph state of 8 qubits. For the eight-qubit graph state in
Ref. [79], some edges between the qubits are created in the usual way by applying a
controlled-Z gate between qubits connected by an edge. While other edges are created
with a controlled-Rz.�/ gate for a particular choice of � , the standard controlled-Z
gate corresponds to � D � . Edges created in this way are called weighted edges, and
the angle � for such an edge is said to be the weight of that edge. A graph state with
edges is said to be a weighted graph [79]. The eight-qubit weighted graph state that
realizes a measurement-based controlled-controlled-Z in Ref. [79] has one weighted
edge, with a weight � D �=2 and the rest of edges have weight � D � (corresponds
to controlled-Z gate). However, such a measurement-based gate is not yet suitable
for IBM Q processors as it requires real-time adaptive measurements for the realized
controlled-controlled-Z gate to be deterministic.

56

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. UNSTRUCTURED QUANTUM SEARCH

As of Nov 2020, IBM’s quantum processors do not yet support real-time classical
conditionals necessary for the implementation of the adaptive measurements. Alas, in
the future once the capability of performing real-time classical conditionals is added,
it is not fully clear whether such a measurement-based controlled-controlled-Z gate
would offer a significant improvement on NISQ processors over the one in Ref. [74],
since the number of qubits and two-qubit gates for the two gates are comparable (8
versus 10 qubits , 11 versus 12 two-qubits gates, respectively).
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3
Quantum prime factorization

3.1 Preface

This chapter is based on the work reported in Ref. [80], originally appearing in Nature
Scientific Reports. It was co-authored by Professor Mark Tame and the author of this
thesis. Both Professor Mark Tame and the author of this thesis conceived the idea and
designed the experiments, with the author of this thesis performing the experiments.
Both authors analyzed the results, contributed to the discussions and interpretations.

3.2 Introduction

S
HOR’S algorithm [5] is a quantum algorithm that provides a way of finding
the nontrivial factors of anL-bit odd composite integerN D pq in poly-
nomial time with high probability. There is no known classical algorithm

that can solve the same problem in polynomial time [17, 18]. The crux of Shor’s algo-
rithm rests upon quantum phase estimation (QPE) [17], which is a quantum routine
that estimates the phase 'u of an eigenvalue e2�i'u corresponding to an eigenvector
jui for some unitary matrix OU . QPE efficiently solves a problem related to factor-
ing, known as the order-finding problem, in polynomial time in the number of bits
needed to specify the problem, which in this case isL D dlog2N e. By solving the
order-finding problem using QPE and carrying out a few extra steps, one can factor
the integerN .

A large corpus of work has been done with regards to the experimental realization of
Shor’s algorithm over the years. Similar to the experimental realization of Grover’s
algorithm discussed in the previous chapter, the pioneering work was performed with
liquid-state nuclear magnetic resonance, factoring 15 on a 7-qubit computer [81].
The considerable resource demands of Shor’s original algorithm were circumvented
by using various approaches, including adiabatic quantum computing [82] and in
the standard network model using techniques of compilation [83] that reduced the
demands to within the reach of single-photon architectures [84–86] and a super-
conducting phase qubit system [87].
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In 2012, a proof-of-concept demonstration of the order-finding algorithm for the inte-
ger 21 was carried out with photonic qubits using, in addition to the aforementioned
compilation technique, an iterative scheme [88], where the control register is reduced
to one qubit and this qubit is reset and reused [89]. However, factoring was not pos-
sible in this demonstration due to the low number of iterations. Later, the iterative
scheme was demonstrated for factoring 15, 21 and 35 on an IBM quantum processor
by splitting up the iterations and combining the outcomes [90]. Recently, building on
previous schemes of hybrid factorization [91, 92], a quantum-classical hybrid scheme
has been implemented on IBM’s quantum processors for the prime factorization of
35. This hybrid scheme of factorization alleviates the resource requirements of the
algorithm at the expense of performing part of the factoring classically [93].

The main result of this chapter builds on the order-finding routine of Ref. [88] and
implements a version of Shor’s algorithm for factoring 21 using only 5 qubits – the
work register contains 2 qubits and the control register contains 3 qubits, each provid-
ing 1-bit of accuracy in the resolution of the peaks in the output probability distribu-
tion used to find the order. This approach is in contrast to the iterative version [94]
used in Refs. [88] and [90], which employs a single qubit that is recycled through
measurement and feed-forward, giving 1-bit of accuracy each time it is recycled. The
advantage of the iterative approach lies in this very reason; through mid-circuit mea-
surement and real-time conditional feed-forward operations, the total number of
qubits required by the algorithm is significantly reduced. At the time of writing, IBM’s
quantum processors do not yet support real-time conditionals necessary for the imple-
mentation of the iterative approach, so we use 3 qubits for the control register, one for
each effective iteration. Thus, our compact approach is completely equivalent to the
iterative approach. In future, once the capability of performing real-time conditionals
is added, a further reduction in resources will be possible for our implementation, po-
tentially improving the quality of the results even more and opening up the possibility
of factoring larger integers.

As it stands, the controlled-NOT gate count of the standard algorithm forN D

21 [95] exceeds 40. In our preliminary tests we found that the output probability
distribution is indistinguishable from a uniform probability distribution (noise) on
the IBM quantum processors. Our improved version reduces the controlled-NOT
gate count through the use of relative phase Toffoli gates, reducing the controlled-
NOT gate count by half while leaving the overall operation of the circuit unchanged
and we suspect this technique may extend beyond the case considered here. We
have gone further than the work in Ref. [88], where full factorization of 21 was not
achieved as with only two bits of accuracy for the peaks of the output probability
distribution, the final step of continued fractions would fail to extract the correct
order. On the other hand, in the work in Ref. [90], where 21 was factored on an
IBM processor, a larger number of 6 qubits was required and the iterations were
split into three separate circuits, with the need to re-initialise the work register into
specific quantum states for each iteration. Our approach is thus more efficient and
compact, enabling algorithm outcomes with reduced noise. To support our claims,
we successfully carry out continued fractions and evaluate the performance of the
algorithm by (i) quantitatively comparing the measured probability distribution with
the ideal distribution and noise via the Kolmogorov distance, (ii) performing state
tomography experiments on the control register, and (iii) verifying the presence of
entanglement across both registers.
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3.3 Background

3.3.1 Order-finding

The order-finding problem is intimately related to that of finding prime factors1 of a 1 A prime number is any integer greater
than 1, which only is divisible by 1 and
itself.

composite integer. The two problems are tied together with a few number and group
theoretic results, we will follow [17, 18] and mention these in passing here.

Two positive integersN and x � N �1 are relatively prime to each other if they share
no common factor, that is, the largest positive integer c that divides bothN and x is
1. The integer c is called the greatest common divisor of the integersN and x, and
denoted by gcd.x;N / D c; for relatively prime integersN and x, gcd.x;N / D 1.
The set of positive integers x that are relatively prime toN , form a finite Abelian
group 2 with the group operation being multiplication modN , this group is denoted 2 Multiplication of elements in the

group are also in the group (closure),
multiplication under the group operation
is associative and commutative, the
group contains a multiplicative identity
with respect to the group operation and
every element in the group has a unique
multiplicative inverse with respect to the
group operation.

by Z�
N . Consider an arbitrary element x of Z�

N , the sequence

x0 modN D 1; x1 modN; x2 modN; x3 modN; : : : ; (3.1)

this sequence of elements forms a subgroup (finite) of Z�
N . For the subgroup to be

finite implies that the above sequence will not carry on indefinitely but repeat after
several iterations, that is, there exists a positive integer r for which

xr modN D 1; (3.2)

for positive integers greater than r , the sequence in Equation (3.1) will cycle again,
restarting at integer multiples of r . Thus the size of the subgroup is given by the
smallest integer r satisfying Equation (3.2), evidently r � N . Such an integer is called
the order of element x in Z�

N . The order-finding problem may be stated as follows.
Given two relatively prime positive integersN and x 2 f0; 1; : : : ; N � 1g , we seek to
find the smallest positive integer r 2 f0; 1; : : : N g such that xr modN D 1.

It is not immediately clear how the solution to the above problem has anything at all to
do with prime factorization of composite integers. To see this, suppose we were able
to find an even order r for two integersN and x,

xr modN D 1;

xr � 1modN D 0;

.xr=2/2 � 1modN D 0;

.xr=2 � 1/.xr=2 C 1/modN D 0: (3.3)

The case where the solution to the last expression excludes both xr=2 D 1 and
xr=2 D N � 1 (collectively, xr=2 modN ¤ ˙1) is of particular interest, since
this would mean that at least one of the factors .xr=2 � 1/ and .xr=2 C 1/, which
are both greater than 0 and less thanN , dividesN . Computing the greatest common
divisor gcd.xr=2 ˙ 1;N /, we can possibly learn at least one non-trivial prime factor
ofN , that is a factor ofN is only divisible by 1 and itself only. The reasons why
gcd.xr=2 ˙ 1;N / is not always guaranteed to be a non-trivial prime factor ofN are
the crucial assumptions leading to the result; that the found order r is even so that
for the chosen x relatively prime toN , xr=2 modN ¤ ˙1, these two assumptions
are not always true. However, they are true half of the time, it can be shown that the
probability that the order r is even and a randomly chosen element x in Z�

N , satisfies
xr=2 modN ¤ ˙1 is greater than one half3. 3 The interested reader may refer for

a proof of this statement in Theorem
A4.13 of Ref. [17]60
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Thus we may find a prime factorization of a composite integerN with high proba-
bility, by finding the order of the group Z�

N . If we can efficiently compute the order
of Z�

N , we can find an efficient algorithm to successfully compute the factors ofN
with high probability since the preliminary steps can be also be computed efficiently4. 4 An efficient algorithm is one that

computes a solution to a problem in
steps/elementary operations that scale
polynomially with the intrinsic size of
the problem. For prime factorization,
the size of problem is the number of bits
needed to specify N , L � dlogN e.

For a chosenN , (i) we can check easily check if it is even and return 2. (ii) We also
can always check ifN D pm is a prime power, and find p efficiently. (iii) To check
if a chosen x is relatively prime toN , we compute gcd .x;N / D 1 if not, then
gcd .x;N / is a factor ofN and the gcd.x;N /may be computed efficiently as well.
(iv) Lastly, we compute the order of x modN and check if gcd .xr=2 ˙ 1;N / yields
a non-trivial factor ofN , succeeding most of the time.

Classically, such an algorithm that solves the order-finding problem with steps that
scale polynomially in the number of bitsL � dlogN e needed to specifyN is yet
to be found [17, 18]. Here enters Shor’s algorithm which efficiently solves the order-
finding problem with a number of elementary operations that scale polynomially with
dlogN e.

3.3.2 Shor’s quantum algorithm for order-finding

Peter Shor’s insight was the realization that the order-finding problem can reduced
into another related problem, for which quantum computers were known to solve
efficiently, that is, with a number of elementary operations (quantum gates) that scales
polynomially. The latter problem is the finding an eigenvalue � corresponding to an
eigenvector jui of a unitary matrix U , that is U jui D � jui. Since U is unitary
(U�1 D U �), its eigenvalues are complex numbers with unit modulus, since

1 D hujui D hujU �U jui D ��� huj1jui D j�j
2; (3.4)

therefore �may be parametrized by � D e2�i' with ' 2 Œ0; 1/. The canonical QPE
is due to Kitaev [96] (and later by Cleve et al. [97] in its current form) and provides
an efficient way to estimate the value of '. The quantum algorithm for order-finding
is an instance of the QPE for the following unitary Ux . For two relatively prime
positive integers x andN , and for y 2 f0; 1; 2; : : : ; N � 1g, the action of Ux on a
computational basis element jyi is defined by:

Ux jyi D jxy modN i : (3.5)

The matrix Ux is unitary since hyjy0i D ıy;y0 and

˝
y
ˇ̌
U �xUx

ˇ̌
y0
˛
D
˝
xy modN

ˇ̌
xy0 modN

˛
;

D
˝
xy
ˇ̌
xy0

˛
;

D ıxy;xy0 ;

D ıy;y0 : (3.6)

This because if xy D xy0 H) x�1xy D x�1xy0 H) y D y0, similarly
xy ¤ xy0 H) y ¤ y0.

61
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Since x is relatively prime toN , the multiplicative inverse modN of x exists. Recall
from Equation (3.2) that if r is the order of x modN , then xr modN D 1, for our
unitary matrix Ux this means that for any computational basis state jyi

.Ux/
r

jyi D jxry modN i D jyi H) .Ux/
r

D 1 (3.7)

From the above fact, if juki is an eigenstate of Ux , then the corresponding eigenvalues
are r-th roots of unity,

hukjI juki D hukj.Ux/
r
juki D �rk D 1;

�k D e2�ik=r ; k 2 f0; 1; 2; : : : ; r � 1g: (3.8)

With a little of bit algebraic deadlifting one can show that the corresponding mutually
orthonormal eigenvectors are given by [17]:

juki D
1

p
r

r�1X
qD0

e2�iqk=r
ˇ̌̌
xky modN

E
; (3.9)

for any y in f0; 1; 2; : : : ; N � 1g (for convenience, typically y D 1). Thus, in this
instance for a given eigenstate juki of Ux , the QPE algorithm provides an estimate of
k=r , which if we are clever enough we may extract the order r .

Next, we summarize the QPE algorithm; given the unitary matrix U and an effi-
cient way to apply the controlled-U 2

j
operations in terms of other elementary gates,

estimate ' for the eigenstate jusi of U with eigenvalue e2�i' . In the case of order-
finding, each of the unitaries U 2

j
carry out modular exponentiation on a basis state:

U 2
j

x jyi D

ˇ̌̌
x2

j

y modN
E
: (3.10)

The QPE algorithm initially proceeds by preparing a set of n qubits in the state j0i

and a HadamardH gate is applied on each of the n qubits; preparing an equal super-
position state of all the possible 2n computational basis states

H˝n
j0i˝n

D jCi
˝n

D
1

p
2n

2n�1X
jD0

jj i : (3.11)

An eigenstate jusi of the unitary matrix U is prepared by another set ofm qubits,
resulting in the joint state at beginning of the algorithm.

1
p
2n

2n�1X
jD0

jj i ˝ jusi : (3.12)

This is then followed by repeated applications of the controlled-U operations, raised
to successive powers of two as shown in Figure 3.1.
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Figure 3.1: Part of the QPE routine.

To see the action of this step, we consider a particular computational basis state jj i in
the above superposition, which we can write as a bitstring jj i D jb0b1b2 � � � bn�1i,
i. e. j D b02

n�1 C b12
n�2 C � � � C bn�22

1 C bn�12
0 (in little endian). The

application of a U 2
i
is conditioned on the i -th (i -th qubit from the right most qubit)

qubit being in the state j1i, or equivalently the corresponding bit bn�i being 1, oth-
erwise it acts trivially. Thus, the action of the above step on a state jj i ˝ jusi D

jb0b1b2 � � � bn�1i ˝ jusi is

jj i ˝ jusi 7! jj i ˝ U b02
n�1Cb12

n�2C���Cbn�22
1Cbn�12

0

jusi ;

D jj i ˝ U j jusi ;

D jj i ˝ e2�isj=r jusi : (3.13)

By the linearity of the controlled unitaries, Equation (3.12) becomes,

1
p
2n

2n�1X
jD0

e2�isj=r jj i ˝ jusi : (3.14)

In general, modular exponentiation implemented by the controlled-U 2
j

for order-
finding may be realized with a number of elementary operations that scale polynomi-
ally inL, O.L3/ [17, 97]. The next crucial step in the QPE algorithm is the QFT,
which is defined by its action on a computational basis state [17, 18],

jj i 7!
1

p
2n

2n�1X
kD0

e2�ijk=2
n

jki (3.15)

The inverse QFT inverts the above operation. Applying the inverse QFT on the first
set of n-qubits on the state in Equation (3.14), we arrive at the following state,

1
p
2n

2n�1X
jD0

e2�isj=r jj i ˝ jusi 7! j2ns=ri ˝ jusi : (3.16)

The QFT (and its inverse) can be realized with two-qubit gates that asymptotically
scale like O.L2/ [17, 18].
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If s=r can be written exactly with n bits and we proceed to measure the state above in
the appropriate measurement basis, we recover the bitstring of s=r with a probability
of 1, and we can subsequently extract the value of r via a continued fractions expan-
sion. Whenever this isn’t the case (i. e. when s=r is not a fraction of a power of two),
the algorithm still yields an n-bit approximation of s=r with high probability5. 5 The interested reader may refer to

Ref. [17] and Ref. [97] for a thorough
treatment of this case.

An assumption of the algorithm described above is that we can prepare one of the
eigenstates of U in Equation (3.9), however this would require knowledge of r . De-
spite this, the algorithm still guarantees a high probability for obtaining an approxi-
mation of s=r . Recall that the eigenstates of U form an orthonormal basis, thus any
general state j i may be expressed as

j i D

r�1X
qD0

˛q
ˇ̌
uq
˛
: (3.17)

Thus for a general j i, the probability to recover an approximation of s=r for a
particular jusi is simply scaled with the probability to measure that particular jusi,
which is j˛sj

2. For the case of order-finding it turns out that

j1i D
1

p
r

r�1X
qD0

ˇ̌
uq
˛
; (3.18)

and j1i is easy to prepare! Thus we use j1i in place of the jusi, and when we perform
a measurement at the end of the algorithm, the values of s are now randomly sam-
pled from a uniform distribution of values in f0; 1; 2; : : : r � 1g. Caveat emptor, in
such a scenario it might happen a particular s shares a common factor with r such
that s=r D p=q, in which case continued fractions would incorrectly yield q, which
we always check in constant time (aq modN D 1). Fortunately, with enough tri-
als, we can successfully extract r in a constant number of steps. This is because for
two independent trials of the algorithm yield that s1=r1 and s2=r1, respectively; if
gcd.s1; s2/ D 1 then the candidate value of r is the least common multiple of r1 and
r2, and the probability that gcd.s1; s2/ D 1 for two independent trials is greater than
0:25 [17].

The total cost of the order-finding quantum algorithm scales polynomially withL,
with most of the cost being due to the modular exponentiation operation which
requires O.L3/ quantum gates [17]. The continued fractions is classically realized
with atomic steps that scale similarly. We conclude this section by summarizing Shor’s
quantum algorithm for order-finding:

Shor’s algorithm for order-finding uses two quantum registers; a control register and
a work register. The control register contains n qubits, each for one bit of precision
in the algorithmic output. The work register containsm D dlogN e qubits where
m is the number of qubits to encodeN . The measurement of the control register
outputs a probability distribution peaked at approximately the values of 2ns=r , where
s is associated with the outcome of the measurement and thus randomly assigned.
The details of how the peaked probability distribution comes about are given in the
order-finding routine outlined below. One can determine the order r from the peak
values of the distribution using continued fractions, with a number of steps that scales
polynomially in dlogN e, O.L3/.
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j0i˝n

j1i˝m

H˝n

U 2
j

x

QF T � Figure 3.2: Circuit diagram
schematic of the routine used
for the period finding part of Shor’s
algorithm. The first (control) register
has n qubits. The number of qubits
in the control register determines
the bit-accuracy of the value of
2ns=r . The bottom (work) regis-
ter has the m qubits required to
encode N . First, the control and
work registers are initialized, then
conditional modular exponentia-
tion is performed, indicated by the
controlled unitary and an inverse
quantum Fourier transform is ap-
plied to the control register followed
by a standard computational basis
measurement. The circuit is essen-
tially the QPE algorithm applied to
the unitary matrix OUx – see text for
details.

The procedure, or routine, for order finding is summarized below.

1. Initialization

Prepare j0i˝n
j0i˝m and applyH˝n on the control register andX˝m on the

mth qubit in the work register to create a superposition of 2n states in the control
register and j1i˝m in the work register:

j0i˝n
j0i˝m

!
1

2n=2

2n�1X
jD0

jj i j1i˝m :

2. Modular exponentiation

Conditionally apply the unitary operation OU that implements the modular expo-
nentiation function xj modN on the work register whenever the control register is
in state jj i:

1

2n=2

2n�1X
jD0

jj i j1i !
1

2n=2

2n�1X
jD0

jj i
ˇ̌
xj modN

˛
D

1
p
r2n

r�1X
sD0

2n�1X
jD0

e2�isj=r jj i jusi :

In the second line, jusi is the eigenstate of OU W OU jusi D e2�is=r jusi and

1p
r

r�1X
sD0

jusi D j1i has been used for the work register. This provides an alter-

native way to write the output state and allows a connection between the modular
exponentiation operation and the QPE algorithm for the unitary operation OU .

3. Inverse Quantum Fourier Transform (QFT)

Apply the inverse quantum Fourier transform on the control register:

1
p
r2n

r�1X
sD0

2n�1X
jD0

e2�isj=r jj i jusi !
1

p
r

r�1X
sD0

j'si jusi :

4. Measurements

Measure the control register in the computational basis, yielding peaks in the
probability for states where 's ' 2ns=r due to the inverse QFT. Thus, the
outcome of the algorithm is probabilistic, however, there is a high probability of
obtaining the location of the 's peaks after only a few runs. The accuracy of 's to
2ns=r is determined by the number of qubits in the control register.

5. Continued fractions

Apply continued fractions to ' D 's=2
n (the approximation of s=r) to extract out

r from the convergents (see § C.4 of technical Appendix B for details).
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3.4 Compiled Shor’s quantum algorithm for order-finding

As mentioned in the previous section the most resource intensive part of Shor’s quan-
tum algorithm for order-finding is modular exponentiation, which is implemented by
the controlled unitaries, thus an analysis of the resource demands for the algorithm are
mostly to analyze the resource demands of the modular exponentiation function. We
have seen that the controlled unitaries can be implemented with O.L3/ elementary
quantum gates. However, the preceding analysis may take for granted the physical im-
plementations of elementary gates. In Ref. [98], a full-scale implementation of Shor’s
algorithm to factor anL-bit number would require a quantum circuit with O.L3/
elementary quantum gates acting on 7L C 1 qubits for the modular exponentiation.
Here, the elementary gates are taken to be a single-qubit Pauli-X operation, a two-
qubit controlled-X operation, and a Toffoli gate. Beckman et al. [99] devised a circuit
for modular exponentiation that uses 5L C 1 qubits and 72L3 similarly defined ele-
mentary gates, i. e. factoringN D 21 would require 9000 elementary quantum gates
acting on 26 qubits. An improvement of both of these schemes is due to Zalka [100],
which uses 3L qubits and O.L3/ Toffoli gates. the modular exponentiation circuit
due to Beauregard [95] uses 2LC 3 qubits and O.L3 log.L// elementary gates with
a circuit depth of O.L3/, which represents a slight improvement over the previous
schemes6. 6 The circuit depth is the number of

consecutive parallel operations from
input to output (measurement). Each
such parallel operation can be counted
as a single step, and thus depth is a
proxy for algorithmic time.

The overriding assumptions in the analysis of these schemes are (i) the underlying
physical implementation of a QC has a high connectivity between its qubits and
(ii) that the physical implementations natively implement a Toffoli gate, and thus
may be taken to be an elementary gate. However, for modern-day NISQ physi-
cal implementations, these two assumptions do not necessarily hold. For instance,
superconducting-qubit based architectures implement a set of single-qubit gates along
with a high-fidelity single two-qubit entangling gate [8], for which a n-qubit Toffoli
gate is then decomposed into single and two-qubits from such a native set [66]. The
canonical decomposition of a three-qubit Toffoli gate uses six controlled-NOT (re-
call Figure 2.11 in the previous chapter) and for a general n-qubit Toffoli gate without
the use auxiliary of qubits7, its exact controlled-NOT count is not known [48, 64]. 7 Recall from the previous chapter that if

auxiliary qubits are permitted, a n-qubit
Toffoli gate can be realized with O.n/
elementary gates.

Taking this into consideration, and while even ignoring the difficulties that arise from
compiling such circuits on physical devices with limited connectivity, the cost of im-
plementing these circuits on a near-term devices is significantly increased if the cost
analysis of the previous schemes is done in terms of two-qubit gates.

The overhead in quantum gates comes from the modular exponentiation function
part of the algorithm, while the overhead in qubits comes from the level of accuracy
needed to successfully carry out the continued fractions part of the algorithm. Such
an overhead obviously puts a full-scale implementation beyond the reach of current
devices. However, compilation techniques such as the one described in Ref. [99],
bridge this gap and allow for small-scale proof-of-concept demonstrations, where the
quantum circuit is tailored around properties of the number to be factored. This sig-
nificantly simplifies the controlled-operations that realize the modular exponentiation
operation (see § 3.3.2), which is the most resource-intensive part of the order-finding
routine. The resource demands (mostly two-qubit gates) of the compiled quantum
circuit are significantly reduced, making it suitable for NISQ quantum devices with
low connectivity and moderate two-qubit gate errors.
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From Ref. [88], we extend the compiled quantum order-finding routine for the par-
ticular case of factoringN D 21 with x D 4 to accommodate another iteration
for better precision in the resolution of the peaks for the value of 2ns=r . For the case
ofN D 21, other choices of x give 2, 4 or 6 for r . The cases for r D 2 or r D 4

have been demonstrated forN D 15 [81, 84–87] and would bear a similar circuit
structure in the present case. With only three iterations, r D 6 would be out of reach
as continued fractions would fail. For x D 4 we have r D 3, which is a choice that
does not suffer from the aforementioned reasons. Despite r being an odd integer, the
algorithm is successful in finding it from x D 4. This is the case for certain choices of
perfect square x and odd r , and x D 4 and r D 3 is such a case8. 8 See Ref. [101] and supplementary

information of Ref. [88] for more details.

In contrast to Ref. [88], our implementation is not iterative and uses three qubits for
the control register rather than one qubit recycled on every iteration. The iterative
version is based on the recursive phase estimation, made possible by the use of the
semi-classical inverse QFT [89], which replaces two-qubit gates in the circuit with
single-qubit rotations classically conditioned on the measurement outcomes, reducing
the cost of circuit to O.L log.L// single-qubit gates. However, we have used the tra-
ditional inverse QFT because mid-circuit measurements with real-time conditionals
are not possible yet on IBM’s quantum processors. The traditional inverse QFT for 3
qubits is realized by the circuit below [17]

H S� T �

H S�

H
Figure 3.3: Circuit diagram for the
three-qubit inverse QFT. Here, up
to a global phase, S� D Rz.�

�
2 /

and T � D Rz.�
�
4 / are phase and

�=8 gates, respectively.

In the case where the inverse QFT is performed before a set of measurement, we can
replace the controlled gates in the above circuit to ones that are classically controlled
by a preceding measurement outcome [89], and we are able to reset qubits back to j0i

during a computation, then the above circuit can be made to use a single qubit [94]

j0i

c0 D 0
c1 D 0
c2 D 0

H j0i H S� j0i H T � S� Figure 3.4: Circuit diagram for the
three-qubit semi-classical inverse
QFT that recycles a single qubit and
replaces the two-qubit gates in the
fully coherent QFT with classically
controlled gates by the preceding
measurement outcomes. Here, up
to a global phase, S� D Rz.�

�
2 /

and T � D Rz.�
�
4 / are phase and

�=8 gates, respectively.

The latter is the semi-classical QFT that makes possible the implementation of the
iterative version of Shor. If mid-circuit measurements with real-time conditionals
were possible, the 3-qubit semi-classical QFT would be possible and may improve the
quality of the results we present here through the use of only 1 qubit for the control
register, as in Ref. [88]. IBM has suggested that the behaviour of real-time condi-
tionals can be reproduced through post selection of the mid-circuit measurements.
However, in the present case the speed up gained would be lost using this post selec-
tion method (see § C.1 of technical Appendix B for details).

A step that is unique to the demonstration in Ref. [88], among the compilation steps
of previous demonstrations, and central to their demonstration is mapping the three
levels j1i, j4i and j16i accessed by the possible 2L D 25 levels of the work-register to
only a single qutrit system.
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In our demonstration we also use this step, however IBM processors consist of qubits
and so we represent the work register by 3 basis states from a two-qubit system and
discard the fourth basis state as a null state. The states encoding the three possible
levels of the work register; j1i, j4i and j16i are mapped to jq0q1i according to

j1i 7! jlog4 1i D j00i ;

j4i 7! jlog4 4i D j01i ;

j16i 7! jlog4 16i D j10i : (3.19)

Therefore instead of evaluating 4j mod 21 in the work register as described in step 2
of the order-finding routine, the compiled version of Shor’s algorithm effectively
evaluates log4Œ4j mod 21� in its place for j D 0; 1 : : : 23 � 1 [99], which reduces
the size of the work register to 2 qubits in comparison to the 5 qubits required in
the standard construction. Note the ordering of quantum bits in the work register is
jqi D jq0i jq1i, where the rightmost qubit is associated with the least significant
bit. Similarly, with the control register we have jci D jc0i jc1i jc2i. In total the
algorithm requires 5 qubits: 3 for the control register and 2 for the work register.
Implementing the controlled unitaries OU x that perform the modular exponentiation
jj i jyi ! jj i OU

j
x jyi D jj i

ˇ̌
xjy modN

˛
reduces to effectively swapping around

the states j1i, j4i and j16i in the work register controlled by the corresponding bit of
the integer j in the control register, which is given by x D c22

0 C c12
1 C c02

2. In
other words, OU j D OU c02

2
OU c12

1
OU c22

0
. Thus, depending on the control qubit ci ,

one of the following maps is applied:

OU 1 W fj1i 7! j4i ; j4i 7! j16i ; j16i 7! j1ig;

OU 2 W fj1i 7! j16i ; j4i 7! j1i ; j16i 7! j4ig;

OU 4 W fj1i 7! j4i ; j4i 7! j16i ; j16i 7! j1ig: (3.20)

The next simplification step comes from the fact that these operations on the work
register need not be controlled SWAP (Fredkin) gates, they can be as simple as
controlled-NOT gates, as we show next.

3.4.1 Modular exponentiation

Implementing OU 1 on the two-qubit work register is simplified considerably by noting
that the states j4i and j16i initially have zero amplitude, and thus the operation
j1i 7! j4i alone is sufficient. This operation can realized with a controlled-NOT gate
controlled by jc2i targeting the second work qubit jq1i, as shown Figure 3.5

jc2i

jq0i

jq1i
U 2

0

D

Figure 3.5: Decomposition of the
controlled-U 2

0
unitary as only a

single controlled-NOT gate.

Similarly, the implementation of OU 2 can be simplified by noting that the states j1i and
j4i are the only non-zero amplitude states in the work register after OU 1 may have been
applied, thus prompting us to only consider j1i 7! j16i and j4i 7! j1i. A controlled-
NOT gate controlled by jc1i targeting jq1i followed by a Fredkin gate, swapping jq0i

and jq1i realizes this simplified OU 2, as shown in Figure 3.6
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jc1i

jq0i

jq1i
U 2

1

D

Figure 3.6: Circuit diagram showing
the decomposition of the controlled-
U 2 unitary in terms of a Toffoli gate
and two controlled-NOT gates.

In Figure 3.6, the Fredkin gate has been decomposed into a Toffoli gate and two
controlled-NOT gates. The subsequent implementation of OU 4 admits no simplifi-
cations as all the possible states in the work register may have non-zero amplitude at
this point. This operation is implemented with a Toffoli gate and a Fredkin gate with
single-qubit Pauli-X gates, shown in Figure 3.7

jc0i

jq0i

jq1i

U 2
2

D

X X

Figure 3.7: Circuit diagram showing
the decomposition of the controlled-
U 2

2
unitary in terms of two Toffoli

gates, three controlled-NOT gates
and two single-qubit gates.

The full circuit diagram is shown in Figure 3.8 – note that before simplification the
order of application of the controlled unitaries is interchangeable, OU 2

.n�1/
or OU 2

1

could be applied first. Interchanging the order only has the effect of interchanging the
order of the outcome bits at the end of the computation. This is the reason the order
of application of the controlled unitaries here is in reverse order to that in Ref. [88].

jc0i

jc1i

jc2i

jq0i

jq1i

H

H

H

U 2
0

U 2
1

U 2
2

X X

QF T �

H S� T �

H S�

H

Figure 3.8: Compiled quan-
tum order-finding routine for
N D 21 and x D 4. This circuit uses
five qubits in total; 3 for the control
register and 2 for the work regis-
ter. The above circuit determines
2ns=r to three bits of accuracy,
from which the order can be ex-
tracted. Here, up to a global phase,
S D Rz.

�
2 / and T D Rz.

�
4 / are

phase and �=8 gates, respectively.

3.4.2 Modular exponentiation with relative phase Toffolis

In total, the modular exponentiation routine requires three Toffoli gates; traditionally
a single Toffoli gate can be decomposed into six controlled-NOT gates and several
single-qubit gates, the decomposition is equivalent to the one shown in Figure 2.11
modulo two single qubit gates (HZH D X)

D

H T � T T � T H

T T �

T
Figure 3.9: Circuit diagram showing
the decomposition of a Toffoli gate
in terms of elementary gates; six
controlled-NOT gate and seven
T=T � gates.

Taking into account a given processor’s topology and the constraints it poses, as well as
other parts of the circuit (the inverse QFT), further increases the tally of controlled-
NOT gates.
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This becomes undesirable as it is understood that there is an upper limit on the num-
ber of controlled-NOT gates that can be in a circuit with the guarantee of a successful
computation on NISQ processors, with current limit is understood to be around 30
controlled-NOT gates for IBM Q processors [57, 59]. The number of controlled-
NOT gates from the decomposition of the Toffoli gate can be cut in half if we permit
the operation to be correct up to relative phase shifts. Margolus constructed a gate
that implements the Toffoli gate up to a relative phase shift of j101i 7! � j101i

that only uses three controlled-NOT gates and four single qubit gates [67]. This
construction has been shown to be optimal [102].

M

D

G G G� G�

Figure 3.10: Circuit diagram
showing the decomposition of
a Margolus gate in terms of ele-
mentary gates; three controlled-
NOT and four G D Ry.�=4/

single qubit gates, where
Ry.�=4/ D e�i�=8SHTHSZ,
S D diag.1; i/ and
Z D diag.1;�1/.

Maslov showed the advantages of using a relative phase Toffoli gate when the gate is
applied last or when relative phases do not matter for certain configurations of Toffo-
lis, resulting in no overall change to the functionality in any significant way [103]. The
configuration in the circuit shown in Figure 3.8 is one such configuration that per-
mits a replacement of Toffoli gates with Margolus gates without changing the overall
functionality. All the Margolus gates in the circuit in Figure 3.11 (which is the cir-
cuit in Figure 3.8 with the Toffoli gates replaced by Margolus gates) never encounter
the basis state j101i, thus leaving the operation of the circuit unchanged. See § C.2
of technical Appendix B for details. This further compacting reduces the number of
controlled-NOT gates considerably and puts the algorithm within reach of current
IBM processors with a limited number of noisy qubits.

jc0i

jc1i

jc2i

jq0i

jq1i

H

H

H

U 2
0

U 2
1

M

U 2
2

X M X M

QF T �

H S� T �

H S�

H

Figure 3.11: Approximate compiled
quantum order-finding routine
implemented with Margolus gates
in place of Toffoli gates in the
construction in Figure 3.8.

3.5 Experiments

The proposed compiled circuit in Figure 3.11 was mapped onto 5 physical qubits
(3 control qubits and 2 work qubits) and executed on a sub-processor of IBM’s
7-qubit quantum processor ibmq_casablanca and 27-qubit quantum processor
ibmq_toronto, which we will refer to as 7Q and 27Q, and whose topologies are
shown in Figure 3.12 (a) and (b), respectively. When mapping the compiled circuit a
few considerations can be taken into account. First, as can be seen from Figure 3.10,
the Margolus gate can be implemented on a collinear set of qubits, as the first control
qubit need not be connected to the second control qubit.
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(a) (b) Figure 3.12: Qubit topology of IBM
Q experience processors, (a) 7-qubit
device ibmq_casablanca, and (b)
27-qubit device ibmq_toronto

c0

c2c1

q1 q0

Figure 3.13: Qubit connections
required by the compiled circuit Fig-
ure 3.11.

On the other hand, mapping the three-qubit inverse QFT onto physical qubits with-
out incurring additional SWAP gates is not possible, as the three controlled-phase
gates require all three qubits to be interconnected in a triangle and the aforementioned
quantum processors do not have such a topology. Additionally, more SWAP gates
are introduced to the transpiled circuit, as the processor topologies do not permit the
topology required by the compiled circuit, as shown in Figure 3.13.

The only possible five-qubit mappings on the quantum processors are all isomorphic
to either a collinear set of qubits or a T-shaped set of qubits, as shown in Figure 3.14
(a) and (b). Choosing the mapping in (b) over the one in Figure 3.14 (a) is motivated
by the fact that the former is slightly more connected than latter and thus in effect
would reduce the number of SWAP gates in the mapped and transpiled circuit.

(a)

210 3 4

(b)

0

1

4

2 3

Figure 3.14: The two possible 5-
qubit processor mappings on the
architectures shown in Figure 3.12,
(a) A collinear 5-qubit processor
mapping, and (b) A T-shape 5-qubit
processor mapping

3.5.1 Performance

To evaluate the performance of the algorithm, we first transpiled the circuit in Fig-
ure 3.11 down to the chosen quantum processor with the mapping below

0 7! c0;

1 7! c2;

4 7! c1;

2 7! q1;

3 7! q0: (3.21)

Through the transpiler’s optimization, with the mapping above it is possible to have a
circuit that has 25 controlled-NOT gates and a circuit depth of 35. Figure 3.15 shows
the results of measurements on the control register qubits from the two processors,
where measurement error mitigation has been applied to results and mitigates the
effect of measurement errors on the raw results (see § A.1 of technical Appendix B
details). The outcomes j101i and j110i occur with probability close to 0:17 and 0:18,
respectively on the ibmq_casablanca processor. And occur with probability close to
0:19 and 0:16, respectively on the ibmq_toronto processor.
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Figure 3.15: Results of the com-
plete quantum order-finding routine
for N D 21 and x D 4. On each
processor, the circuit was executed
8192 � 100 times with measure-
ment error mitigation. The error
bars represent 95% confidence
intervals around the mean value of
each histogram bin (see § A.2 of
technical Appendix B details). The
simulator probabilities show the
ideal case.

The theoretical ideal probability is close to 0:25, as can be seen from the simulator
results in Figure 3.15. However, the amplification of the peaks j000i, j101i and j110i

is clearly visible from the processor outcomes.

We quantify the successful performance of the algorithm by comparing the exper-
imental and ideal probability distributions via the trace distance or Kolmogorov
distance [17], which measures the closeness of two discrete probability distributions
P andQ and is defined by the equationD.P;Q/ �

P
x2X jP.x/ � Q.x/j=2,

where X represents all possible outcomes. This measure shows an agreement be-
tween measured and ideal results – the trace distance between the measured distribu-
tion and the ideal distribution is close to 0:1694 and 0:1784 for ibmq_toronto and
ibmq_casablanca, respectively. On the other hand, the trace distance between the
ideal distribution and a candidate random uniform distribution is 0:4347. Further-
more, we evaluate the performance of the algorithm by characterizing the measured
output state in the control register, this is achieved via state tomography yielding the
density matrix of the measured state. The measured state and ideal state on the output
register are quantitatively compared using the fidelity for two quantum states % and

ı, and is defined to be F.%; &/ � Tr
�pp

%&
p
%
2
�

[17]. We measured a fidelity of
F.%id; %27Q/ D 0:6948˙00650 and F.%id; %7Q/ D 0:70˙0:0275 on the 27 qubit
and 7 qubit quantum processors respectively. In Figure 3.16 we show the estimated
density matrices in the computational basis for each respective device.
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Figure 3.16: Ideal and measured
density matrices after the inverse
QFT, estimated via a maximum-
likelihood reconstruction from mea-
surement results in the Pauli-basis.
A matrix plot of the (a) real and (b)
imaginary part of the ideal state
j	 ih	 j. These plots are compared
with the measured states �27Q and
�7Q with the corresponding matrix
plots of their real parts in panels
(c) and (e), and imaginary parts
in panels (d) and (f), respectively.
We observe there is a resemblance
between the ideal state and the
measured states, but noise in both
real and imaginary parts is notable.
Note that in all figures the color
bar has been rescaled to a range
between �0:3 and 0:3 for visual
clarity.

3.5.2 Factoring N D 21

The measured probability distributions in Figure 3.15 are peaked in probability
for the outcomes 000 .'s D 0/, 101 .'s D 5/ and 110 .'s D 6/, with ideal
probabilities of 0:35, 0:25 and 0:25, respectively. Here we are using the integer rep-
resentation of the binary outcomes. The outcome 000 corresponds to a failure of
the algorithm [88]. For the outcome 101, computing the continued fraction expan-
sion of ' D 's=2

n D 5=23 D 5=8 gives the convergents f0; 1; 1=2; 2=3; 5=8g

(see § C.4 of technical Appendix B for details), so that the third convergent 2=3 in
the expansion can be identified as s=r and correctly gives r D 3 as the order when
tested with the relation xr modN D 1, while the other convergents do not give
an r that passes the test. On the other hand, the continued fraction expansion of
' D 6=8 gives f0; 1; 3=4g and incorrectly gives r D 4 as the order (see § C.4 of
technical Appendix B for details). This failure can be avoided in principle by adding
further qubits to the control register so that the peak in the probability distribution
becomes narrower and more well defined [88]. Another option is to simply apply
continued fractions to all peaked outcomes and test if the value of r found satisfies the
order relation for x andN . It is interesting to note that from the results of Ref. [88],
successfully finding the order r D 3 was not possible to achieve, as with only two
bits of accuracy in the experiment the continued fractions would always fail due to
the peaked outcomes of 10 .2/ and 11 .3/ giving the convergents of f0; 1=2g and
f0; 1; 3=4g, respectively. In our case, we successfully find r D 3, from which we ob-
tain gcd.xr=2 ˙ 1;N / D gcd.8˙ 1; 21/ D 3 and 7. Thus, with our demonstration,
extending the number of outcome bits to three has allowed us to fully perform the
quantum factoring ofN D 21.
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3.5.3 Verification of entanglement

The presence of entanglement between the control and work registers is known to be
a requirement for the algorithm to gain any advantageous speedup over its classical
counterpart in general [83, 104, 105]. For detecting genuine multipartite entangle-
ment around the vicinity of an ideal state j i, one can construct a projector-based
witness such as the one below:

OW D ˛1 � j ih j ; (3.22)

where ˛ is the square of the maximum overlap between j i and all biseparable states.

In other words, Tr
�

OW %
�

� 0 for biseparable states and Tr
�

OW %
�
< 0 for

states with genuine multipartite entanglement in the vicinity of j i [106]. For
the ideal state after modular exponentiation (but before the inverse QFT) in both
the control and work registers, ˛ D 0:75 was found using the method described
in the appendix of Ref. [106]. This was implemented using the software package
QUBIT4MATLAB [107]. Therefore ideally the state in both registers after modular
exponentiation has genuine multipartite entanglement.

In order to check whether the output state from the IBM processors is close to the
ideal state and has genuine multipartite entanglement, full state tomography would
normally be needed to characterize the state %exp in both the control and work reg-
isters. This would require 35 measurements, making it impractical to gather a suffi-
ciently large data set within a meaningful time frame. However, we need not measure
the full density matrix, the quantity Tr

�
j	 ih	 j %exp

�
suffices. To measure this, we can

decompose % D j	 ih	 j into 293 Pauli terms as

j	 ih	 j D
X
ijklm

pijklm�
.1/
i �

.2/
j �

.3/

k
�
.4/

l
� .5/m ; (3.23)

where �i D fI;X; Y;Zg are the usual Pauli matrices plus the identity.

However, the number of measurements needed to obtain all 293 expectation values
can be reduced. This is because the measured probabilities from a measurement of
a single Pauli expectation value, i. e. hZZZZZi, can be summed in various combi-
nations to derive other Pauli expectations values, i. e. hZIZZZi ; hIZZZZi, etc.
The values derived are nothing but the marginalization of the measured probabilities
over the outcome space of some set of qubits (see § A.3 of technical Appendix B for
details). We can do the same for each term in the set of terms from the Pauli decom-
position of %, calling it Sd , forming a set of other Pauli terms that can be derived from
the same counts. Taking the union of these sets to be Su, the complement Sd n Su
gives the 79 terms we only need to measure (see § A.3 of technical Appendix B for
details). We measure the 79 Pauli expectation values of the terms above with respect
to the state in both registers after modular exponentiation and from this we com-
pute/derive the 293 terms in Sd and therefore Tr

�
j	 ih	 j %exp

�
; the measurement

outcomes for evaluating some of the Pauli operator expectation values are shown
in Figure 3.17.
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The measured probabilities for each term result in an expectation value of Tr
�
j	 ih	 j %7Q

�
D

0:677˙ 0:00365 and Tr
�
j	 ih	 j %27Q

�
D 0:626˙ 0:00304, which leads to

Tr
�

OW	%7Q

�
D 0:0729˙ 0:00365;

Tr
�

OW	%27Q

�
D 0:124˙ 0:00304: (3.24)

The results obviously fail to detect genuine multipartite entanglement, however, this
does not mean entanglement is entirely absent. Consider the square of the maxi-
mum overlap between the ideal state j	 i and all pure states j�i that are unentangled
product states with respect to some bipartite partition (bipartition) B of the qubits,

max
�2B

jh� j	 ij
2

D ˇ	 : (3.25)

Thus, any other state j�i for which

jh�j	 ij
2 > ˇ	 ; (3.26)

cannot be a product state with respect to the bipartition B, implying that there is
non-separability, or entanglement, across this bipartition. The above result extends
to mixed states %� due to the convex sum nature of mixed quantum states [107]. We
compute Equation (3.25) for all possible bipartitions of our ideal state j	 i (see § C.3
of technical Appendix B for details).

For the experimental state %7Q we find, with the exception of the bipartition B D

.c0c1c2q1/.q0/, that it is non-separable with respect to all other bipartitions, i. e.
the square of the overlap between %7Q and j	 i (� 0:677) is greater than the max-
imal square overlap between j	 i and all product states in each of these bipartitions.
Similarly for %27Q, with the exception of bipartitions B D .c0c1c2q1/.q0/ and
B D .c0c1c2q0/.q1/, the state is non-separable with respect to all other bipartitions.
Most notably, both %7Q and %27Q are non-separable with respect to the bipartition
B D .c0c1c2/.q0q1/, which is a bipartition between the control and work registers.
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Figure 3.17: A subset of 9 of the 79
measurement settings required for
each term in: (a) Tr

�
j	 ih	 j %7Q

�
and (b) Tr

�
j	 ih	 j %27Q

�
. The x-axis

from left to right shows the labels
from p00000 to p11111.
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3.6 Concluding remarks

In summary, we have implemented a compiled version of Shor’s algorithm on IBM’s
quantum processors for the prime factorization of 21. By using relative phase shift
Toffoli gates, we were able to reduce the resource demands that would have been
required in the standard compiled and non-iterative construction of Shor’s algorithm
(with regular Toffoli gates), and still preserve its functional correctness. The use of
relative phase shift Toffoli gates has also allowed us to extend the implementation in
Ref. [88] to an increased resolution. Moreover, while the latter implementation used
only 1 recycled qubit for the control register, in contrast to our 3 qubits, it falls one
iteration short of achieving full factoring for the reasons already mentioned. It is not
clear what additional resource overheads (single and two-qubit gates) would be needed
in implementing another iteration in their scheme and it is likely that these overheads
are what prevented the full factoring of 21 in the photonic setup used. Furthermore,
we note that in principle there is no real advantage in using 3 qubits for the control
register as we have done here instead of 1 qubit recycled, as in Ref. [88]. However, in
practice it is not possible at present to recycle qubits on the IBM processors and so we
used 3 qubits instead. In future, once this capability is added, a further reduction in
resources will be possible for our implementation, potentially improving the quality of
the results even more.

We have verified, via state tomography, the output state in the control register for the
algorithm, achieving a fidelity of around 0:70. For the verification of entanglement
generated during the algorithm’s operation, the resource demands of state tomography
were circumvented by measuring a much reduced number of Pauli measurements to
directly estimate the fidelity of the state. However, this method is quite specialized
and cannot be easily generalized to larger systems. In scaling up Shor’s algorithm to
higher integers beyond 21 using larger quantum systems, other methods of quantum
tomography / direct fidelity estimation can be used to characterize the performance.
These include compressed sensing [108] and classical shadows [109], which give
theoretical guarantees, and improved scaling in the number of Pauli measurements
and classical post-processing than standard methods. In the case where one is only
interested in a direct estimate of fidelity, the method due to Flammia and Liu [110]
provides a fidelity estimate using a constant number of Pauli expectation values.

For states that belong to a class of states with certain symmetries, such as stabilizer
states, only a few measurements are required for measuring the fidelity and detecting
multipartite entanglement [35]. However, not all entangled states are neatly housed
within these well-studied classes. Ref. [111] introduces a device-independent method
for multipartite entanglement detection which scales polynomially with the system
size by relaxing some constraints. Another scheme constructs witnesses that re-
quire a constant number of measurements of the system size at the cost of robustness
against white noise. This provides a fast and simple procedure for entanglement detec-
tion [112]. Many fundamental questions on the subjects of quantum tomography and
multipartite entanglement still remain to be answered [113] and advances will help in
efficiently quantifying the performance of algorithms in larger quantum processors.

Our demonstration involves a two-fold reduction of the resource count from the full
circuit in Figure 3.8 via the replacement of regular Toffoli gates with relative phase
variants, which is an approach that is in the spirit of the NISQ era; tailoring quantum
circuits to circumvent the shortcomings of noisy quantum processors.
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In addition, the resource count of the full QFT in our circuit may be reduced through
the use of the approximate QFT [114], while possibly still maintaining a clear reso-
lution of the peaks in the output probability distribution [115]. A possible avenue of
future research derived from what we have reported here is the investigation and iden-
tification of scenarios where one can replace Toffoli gates with relative phase Toffoli
gates while preserving the functional correctness, in a wide range of algorithms in-
cluding Shor’s algorithm, as seen here. In the present case, whether such an approach
is special to the case ofN D 21 or extendable to otherN is not known. Ref. [103]
has performed some work in this regard, however a proper analysis and systematic
composition of relative phase Toffoli gates for such purposes is still an open problem.
In future, a similar approach may make possible the factorization of larger numbers
with adequate accuracy in resolution of the algorithm’s outcomes and their characteri-
zation.
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4
Polarization-entangled photons

“Quantum phenomena do not occur in a Hilbert space. They occur in a laboratory.”

— Asher Peres, Quantum Theory: Concepts and Methods

4.1 Introduction: Non-separability in the laboratory

I
N the introductory chapter we have described various linear optical ele-
ments and how information can be encoded and subsequently measured
in the polarization DOF of a single photon. As the avid reader (or by the

title of this thesis) might have suspected, much of the appeal of such optical systems
comes about from their potential applications to quantum information processing
tasks. In this particular chapter, we steer towards this direction and consider this use
of polarization-entangled pairs of photons generated via a nonlinear process called
SPDC, with the polarization of a single-photon as a substrate for a quantum bit.
Multi-qubit states that possess non-classical correlations have been realized in a va-
riety of, and often exotic optical systems, but in this regard perhaps, the most readily
available and controllable source of entanglement arises from polarization-entangled
photons. This is in part attested by their ubiquitous use; for demonstrations of Shor’s
algorithm from the first half of thesis (see Chapter 3); after the pioneering work on a
spin-1=2 nuclei system [81], have been realized on single-photonic architectures mak-
ing use of polarized-entangled photons [84, 86, 88] and other sundry tasks; including
state-preparation in measurement-based/one-way quantum computing [116–120],
algorithms [16, 72, 73] and quantum communication protocols [121–124].

Needless to say, the commonality among all these demonstrations is the central role
of entanglement, which necessitates the need for a complete characterization of such
entangled states in such applications. In earlier pioneering work of this kind, quali-
tative arguments for the presence of entanglement were made in the way of violation
of Bell-type inequalities from fringe visibility measurements being above a certain
threshold [125, 126]. Such measurements gave qualitative evidence for the exis-
tence of non-classical correlations in a given experiment, not consistent with any local
hidden-variable theory [26, 127, 128].

A violation of Bell-type inequalities is often considered an excellence indicator of the
presence of entanglement in a pure two-qubit system; alas, despite its experimental
convenience, it is not a true measure of entanglement1. 1 Ref. [28] shows that in general, it is

not possible to discern the degree of
entanglement (a quantifiable measure) in
a state via an inference from a violation
of Bell-type inequality
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A more thorough characterization of polarization-entangled photons is through quan-
tum state tomography (QST) [129, 130]. From a set of measurements performed on
an ensemble of identically prepared quantum states, a maximum likelihood estimate
of the density matrix of the polarization-entangled photon state is obtained, and from
which physical quantities of interest such as fidelity, purity and concurrence can be
derived.

4.2 Experimental design

In the experiment that we will describe in this chapter, we endeavour to generate
and characterize a photonic three-qubit maximally entangled state2 first studied by 2 Maximally entangled state has a

maximum entropy of entanglement
for each of its bipartitions. For a two
qubits, the Bell states are examples of
maximally-entangled states.

Greenberger–Horne–Zeilinger (GHZ) and thus bears their name. The experimental
procedure is conceptually simple to describe: A two-photon, two-qubit polarized-
entangled state is generated from a SPDC and appropriately characterized with quan-
tum state tomography. Once characterized and optimized, this state is enlarged by
using the path (momentum) DOF of one of the photons to a three-qubit polarization
and path entangled GHZ state, locally equivalent to a graph state [131]. Encoding
a quantum bit on a separate DOF on one of the polarization-entangled photons is
motivated by two main reasons.

Primo Experimental convenience: Having additional photons (generated by another
SPDC process) in an experimental setup of this kind would necessitate additional
tabletop linear optical components i. e. mirrors, wave plates, beam splitters, filters,
polarizers, etc. The end goal of the experiment is to eventually carry out remotely
controllable measurements on the generated state, thus it is preferable to have fewer
moving parts.

Secondo Practicality: SPDC is a probabilistic process, that is, for every photon inci-
dent on the crystal, with some probability p, it will down convert to a polarization-
entangled photon-pair, and the probability p is typically low, on the order of
≲ 1% [37]. Thus having an additional two photons produced in our experimental
setup would occur with even lower probability p2 (assumption of independence of
the two events), and would also alter the coincidence counting electronics; typically
one has to allow a long coincidence window to observe multiple low probability
events of this kind3. 3 In Ref.[119], a six-photon, six-qubit

polarized-entangled state was produced
with three SPDC processes occurring
in succession,and six-fold coincidence
events (� p3) were accumulated over a
three hour coincidence window.

Similarly, once this state is generated, we appropriately characterize it. Reconstructing
the density matrix of a three-qubit state would necessitate a full tomographic analysis,
which for a three-qubit state would require 64measurement settings [132]. However,
a GHZ state is locally equivalent to another three-qubit state that is a member of a
special class of states, called graph states [77, 131]. What is peculiar to graph states
is that they are completely described by their so-called stabilizer operators, which
provide an experimentally economical way to discern the presence of entanglement
and a lower bound for the fidelity of the generated state by way of evaluating their
expectation values [35].

Once characterized, we proceed to automate the experimental calibration and mea-
surement procedures. This is achieved by having the relevant linear optical compo-
nents in our experimental setup, all connected to a centralized and remotely accessible
server that mediates the control of the optical components.
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Figure 4.1: Experimental setup
for generation and measurement
of a two photon two-qubit Bell
state. HWP, quarter-wave plate
(QWP), ˇ-barium borate (BBO),
PBS, NPBS and interference fil-
ter (IF). A photon pair is created
whenever a laser pump photon
with 405 nm wavelength is incident
on the paired BBO crystals cut for
type-I SPDC, generating photons at
810 nm. Each photon is guided by
a set of mirrors to a QWP, HWP,
and PBS which are used to per-
form polarization measurements
of the quantum state. Finally, each
photon is sent to an IF at 800 nm
with a bandwidth of 40 nm and
collected by a single-mode fiber
(SMF) and sent to a photon detector.
Each photon detector produces an
electronic signal and sends it to the
coincidence counting electronics,
which count the signals that arrive
simultaneously.

With accessibility in mind, we designed a proof-of-concept mobile app that provides
a graphical user interface to communicate with the server, which permits the user to
specify an experiment with arbitrary (allowed) measurement settings and retrieve
their experimental results. The rest of this chapter is dedicated to the filling in the
details and describing the experimental design and subsequently, results from the
experiments.

The main goal of the initial stage of the experiment was to characterize the polarization-
entangled two-photon two-qubit state from a SPDC source using full quantum state
tomography. To perform full quantum state tomography, we used the techniques and
tools described in Ref. [129]. We begin by describing the various components of the
experimental apparatus shown in Figure 4.1 — A laser and SPDC source, measure-
ment apparatus, photon collection optics, and coincidence detection electronics. The
SPDC source used was two concatenated 5 mm � 5 mm � 0.5 mm BBO crystals cut
for type-I phase matching, with their two optical axes aligned in perpendicular planes.

When this source is pumped with a vertically polarized pump beam, due to type-I
phase-matching, down-conversion will occur in the first crystal producing horizontally
polarized energy-degenerate, non-collinear photon pairs. Similarly, a horizontally
polarized pump beam will stimulate type-I down-conversion in the second crystal,
generating energy-degenerate photon pairs. A diagonally polarized laser is likely to
equally stimulate down-conversion in both crystals [126]. Photons in the spatially
overlapping regions, diametrically opposed (due to momentum conservation) on the
two light cones, will be in the state .jH1;H2i C ei� jV1; V2i/=

p
2 as illustrated

in Figure 4.2. A main condition here is that the spatial modes of a given pair must
have a significant overlap [126]. Our SPDC source is pumped with a continuous wave
(CW) blue laser4, to produce frequency-degenerate photon pairs at a wavelength of

4 We keep our power relatively low,
as high power pumps are known to
stimulate double pair emissions [133,
134], which degrade the single-photon
quality. Our laser pump operates
at a power of �50 mW) for every
experiment we conducted unless stated
otherwise.810 nm, emitted onto a light cone with an (full) opening angle of 6ı.
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Pump

(45°-pol)

Paired

type-I

BBOs

Figure 4.2: Two paired BBO (ˇ-
barium borate) crystals cut for
type-I phase matching as a source
of entangled photons. For every
pump photon, the photon pairs
emerge from the crystal at a fixed
from the pump photon thus creat-
ing a cone around the direction of
the pump photon. Photon pairs at
diametrically-opposed points where
the cones intersect represent points
of indistinguishability (spatial, tem-
poral and polarizations), and their
two-qubit state is an entangled state
of the form shown in this figure.
The x, y, z axes are formed by
the second crystal’s optic axis, the
pump beam and first crystal’s optic
axis respectively.

The value of � is determined by the phase-matching, and details and geometry of the
two crystals. The laser in our experiment produces vertically polarized light, we use a
rotatable HWP5 to adjust the beam to a desirable linear polarization.

5 Thorlabs Ø1/2” Mounted Zero-Order
HWP at 405 nm

The next stage of the apparatus is dedicated for tomographic analysis of the exper-
imentally generated state and detection. An arrangement of a rotatable QWP and
HWP, and PBS6, allows one to project any arbitrary polarization state. The IFs are

6 Thorlabs Ø1/2” Mounted Zero-Order
QWP/HWP at 808 nm and PBS202
20 mm cube with wavelength range of
620 −1000 nm, respectively.

centred at 800 nm with a full width at half maximum (FWHM) � 40 nm are used
for spectral filtering, the photons in each output mode are then sent to a fibre coupler
(FC)7 mounted on a Thorlabs MBT613D/M fibre launch with a FC-connectorized

7 With a Thorlabs RMS20X objective
with an effective local length of 9 mm
and numerical aperture of 0:4.

fibre holder with a SMF8 directly coupled into a single photon detector - built-in

8 Thorlabs P1-830A-FC-5 5 m long
fibre with cut-off wavelength range of
830 −980 nm

silicon avalanche photo-diode (APD)9. These last two steps improve the spatial in-

9 Excelitas single photon counting
modules (SPCM), SPCM-AQRH-15 with
efficiencies of 65% and dark count rates
of order 50s�1.

distinguishability of the collected photons. The detector outputs go to a coincidence
counting module described in detail in Ref. [135]. An field-programmable gate array
(FPGA) board which takes inputs from the detectors, and outputs the signals and
coincidences between the inputs into a computer serial port, accessed by a LABVIEW
program, gives the experimenter data processing and storage capabilities. An FPGA
also permits a variable time window for n input signals to be detected as an n-fold
coincidence. In all the experiments presented, the coincidence window was set to
�7 ns.

4.3 A few practical notes on alignment

The initial alignment stage was done with a lower-power class-1 red laser beam sent
from the collection optics (fibre couplers) back towards the crystals. Using the 3-
axis dials on the fibre launch and the two target irises10, we could align the beam

10 A more convenient, but less precise
alignment technique uses two target
rulers. Vertical alignment is achieved
by directing the beam spot onto a
target mark on both rulers. Horizontal
alignment is achieved by having the
beam spot clipped by the two rulers
(which would be aligned by the screw
holes on the optical table) equally.

path precisely along the plane of the optical table. The beam path in either arm is
directed towards a so-called Z-fold laser pattern, two-mirror arrangement. This
two-mirror arrangement allows us to precisely get the two beams to be at the correct
opening angles of the light cone from the BBO crystals. By having a target with ruler
markings at a distance d from the BBO crystals, we could get the two beams to have
the correct distance from the CW blue laser beam spot (measured on the target ruler)
such that they are incident on the BBO crystals close to the correct half-opening
angle of �=2 D 3ı. A simplified schematic of this geometric arrangement is shown
in Figure 4.3. The furthest mirror from the BBO crystals in the Z-fold arrangement
aligns the red laser beam spot at the ruler target, and the other mirror aligns the red
laser beam spot such that it is superimposed with the CW blue laser beam spot on the
BBO crystals, the procedure is identical for the two arms.
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The above alignment procedure is precise enough such that when the two crystals
are pumped with the CW blue laser operating at �50 mW with the HWP after it
set to 22:5ı to stimulate both crystals, we can see a few coincidence counts when
polarization tomographic analysis optics are set to project out the state jH1;H2i. The
angle is counterclockwise with respect to the fast axis inscribed on the mounted optic,
which is aligned perpendicular to the plane of the optical table for the all wave-plates
in our experiments. It is also worthy to mention that, all the mounted wave-plates
should be oriented to be either front-facing or back-facing, such that a propagating
beam is always incident on the optic on the same side. A mismatch of kind between
two wave-plates would gives rise to 180ı relative difference between their optic axis,
and as a consequence the reference frames for the polarization in the optic would
be different. A counterclockwise (from the front) tilt on a wave-plate for a beam
propagating towards the front-face of the optic, appears as a clockwise tilt for a beam
propagating in the opposite direction. Fine adjustments are done with the dials on
the fibre couplers to maximize the coincidence counts for both the two-photon state
jH1;H2i and jV1; V2i measurements, first independently then concurrently.

Figure 4.3: Schematic of the geom-
etry due to the opening angle of the
light cone from a SPDC source; For
a horizontal distance of d from a
SPDC source, the two frequency-
degenerate photons generated from
the source will both be at a distance
of d tan �

2 from the horizontal axis,
defined by the direction of original
beam incident on the crystals.

4.4 Results

After we performed the coarse alignment procedure described above to a prelim-
inary and satisfactory level, we performed full quantum state tomography for the
two-photon, two-qubit polarization-entangled state with the theoretical machinery
described by James et al. [129]. We performed the full set of 16 polarization measure-
ment settings shown in Table 4.1. The coincidence rates were collected over a time
interval of 10 s for each measurement setting, with a coincidence window of 7 ns. For
the experimentally generated state %, for each measurement setting and corresponding
projector in Table 4.1, experimentally we expect to observe the average number of
coincidences given by �v D h%j vj%i. The set of projectors in the aforesaid table are
complete set of measurements, that is, % can be completely and uniquely determined
by the said set of measurements. From all 16 projective measurements, it is possible
to recover an estimate of %. Recover a valid density matrix estimate of % (Hermitian,
positive etc) the estimate of % is recovered via maximum likelihood (see [129] for
details). Equation (4.1) shows the reconstructed density matrix of the polarization
entangled-state and Figure 4.4 shows a graphical representation of this state.

% D

0BBB@
0:43 �0:044 � 0:042i 0:021 � 0:061i �0:14C 0:32i

�0:044C 0:042i 0:013 0:016C 0:0089i �0:0071 � 0:024i

0:021C 0:061i 0:016 � 0:0892i 0:045 0:020C 0:053i

�0:14 � 0:32i 0:0071C 0:024i 0:020 � 0:053i 0:51

1CCCA:
(4.1)

The reconstructed state shows a commendable degree of entanglement; It has a fi-
delity of F% D 0:787 ˙ 0:0113 with the maximally entangled state .jH1;H2i �

i jV1; V2i/=
p
2. Our measured state also achieves a value of hSi D 2:344C 0:0228

for the Bell-CHSH operator, which represents a violation of the inequality, thus con-
firming that the state possess non-local correlations. Furthermore, from the density
matrix, we can derive physical quantities that give an inkling of the statistical proper-
ties of the measured state. One such quantity is the linear entropy, which quantifies
the statistical “mixedness” of the measured state. We measure it to have a value of
SL D 4=3.1 � Tr

�
%2
�
/ D 0:387C 0:0183.
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m Projector h1 q1 h2 q2 N (10s�1)

1 jV ihV j ˝ jV ihV j 45ı 0ı 45ı 0ı 2348
2 jV ihV j ˝ jH ihH j 45ı 0ı 0ı 0ı 24
3 jH ihH j ˝ jH ihH j 0ı 0ı 0ı 0ı 2410
4 jH ihH j ˝ jV ihV j 0ı 0ı 45ı 0ı 206
5 jLihLj ˝ jV ihV j 22:5ı 0ı 45ı 0ı 720
6 jLihLj ˝ jH ihH j 22:5ı 0ı 0ı 0ı 1295
7 jDihDj ˝ jH ihH j 22:5ı 45ı 0ı 0ı 1525
8 jDihDj ˝ jV ihV j 22:5ı 45ı 45ı 0ı 1346
9 jDihDj ˝ jLihLj 22:5ı 45ı 22:5ı 0ı 2350
10 jDihDj ˝ jDihDj 22:5ı 45ı 22:5ı 45ı 1005
11 jLihLj ˝ jDihDj 22:5ı 0ı 22:5ı 45ı 2132
12 jV ihV j ˝ jDihDj 45ı 0ı 45ı 45ı 826
13 jH ihH j ˝ jDihDj 0ı 0ı 0ı 45ı 1705
14 jH ihH j ˝ jRihRj 0ı 0ı 0ı 90ı 1129
15 jV ihV j ˝ jRihRj 45ı 0ı 45ı 90ı 1662
16 jLihLj ˝ jRihRj 22:5ı 0ı 22:5ı 90ı 626

Table 4.1: Measurement settings
and coincidence counts for a pre-
liminary tomography analysis of
a two-photon polarization state
prior to optimization. Coinci-
dence counts, collected over a
ten second intervals, for each of
the 16 settings, are sufficient to
recover an estimate of the density
matrix of the two-qubit polar-
ization state of the two photons.
Here, jDi :D.jH i C jV i/=

p
2,

jLi :D.jH i C i jV i/=
p
2 and

jRi :D.jH i � i jV i/=
p
2
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Figure 4.4: Density matrix of a state
estimated by maximum likelihood
tomography prior to optimization,
from the experimental data given
in Table 4.1 (a) Real part of the
estimate of %. (b) Imaginary part of
the estimate of %.

As also reflected by the graphical representation of the density matrix of this state,
this value indicates a considerable amount of mixture present in measured state. The
errors of the quantities here were also estimated from a Monte Carlo simulation of
100 samples with Poisson noise. The values for quantities reported above are not
necessarily of low quality; the generated state shows a fidelity of commendable quality,
and significant degree of entanglement. However, we had to a reason to suspect that
the state generated could be improved. An experiment of a similar kind [126], reports
over 140 coincidence counts per second per milliwatt of pump power over a 5 nm
bandwidth and a value of hSi D 2:700, thus there is much room for improvement.

Next we will describe the optimization procedure followed to improve the quality of
the state generated in the experiment, and the subsequent result. Optimization is with
respect to some utility function, and what will be described here is not necessarily a
procedure suitable in all circumstances, and definitively imperfect. An imperative of
uttermost practical importance to our experiment, was the tuning of the value of � in
the state jH1;H2i C ei� jV2; V2i generated by the SPDC source.
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As it can be inferred from the preliminary results, for that particular state, which has a
significant fidelity with the state jH1;H2i � i jV1; V2i, the value of � can be crudely
inferred to take on a value � D � . We seek to generate one of the four Bell states:

ˇ̌
˚C

˛
D

1
p
2
.jH1;H2i C jV1; V2i/ ;

j˚�
i D

1
p
2
.jH1;H2i � jV1; V2i/ ;ˇ̌

	C
˛
D

1
p
2
.jH1; V2i C jV1;H2i/ ;

j	�
i D

1
p
2
.jH1; V2i � jV1;H2i/ : (4.2)

This imperative is once again motivated by the end goal of ultimately generating a
three qubit GHZ state. Thus, with this end in view, it is more experimentally con-
venient if we were to generate either one of the first two Bell states in Equation (4.2).
In any case, our SPDC source alone is limited to the generation of these two partic-
ular Bell states11. We chose to optimize for the second Bell state, the optimization

11 All four Bell states are equivalent up
to some local unitary operation, for
instance, if our SPDC source gener-
ates the states jH1;H2i ˙ jV1; V2i,
an extra HWP in the second arm that
interchanges H and V (rotated 45ı

counterclockwise to its fast-axis), pre-
pares jH1; V2i ˙ jV1;H2i. Similarly,
the unitary operator U D 1 ˝ S ,
where S D diag.1; i/, acting
on jH;H i ˙ i jV1; V1i, prepares
jH1;H2i ˙ jV1; V1i.

procedure for this particular state is guarded by the following observations.

Consider one of the projectors from tomography analysis, PDD D jD1ihD1j ˝

jD2ihD2j where jDi D .jH i C jV i/=
p
2. Calculating the expectation value of

the projector12 with respect to the state j˚�i in Equation (4.2), we observe that

12 This expectation value is related to
the probability of a getting an outcome
associated with the projector upon
performing the projective measurement
on j˚�i.

(omitting normalization constants):

h˚�
jPDDj˚�

i D h˚�
j.jD1ihD1j ˝ jD2ihD2j/j˚

�
i ;

D jhH jDij
4

� jhDjH i hV jDij
2

� jhDjH i hV jDij
2

C jhV jDij
4;

D

�
1

p
2

�4
�

�
1

p
2

�4
�

�
1

p
2

�4
C

�
1

p
2

�4
;

D 0: (4.3)

Similarly, the projector PLR D jL1ihL1j ˝ jR2ihR2j, where jL=Ri D .jH i ˙

i jV i/=
p
2 gives:

h˚�
jPLRj˚�

i D h˚�
j.jL1ihL1j ˝ jR2ihR2j/j˚

�
i ;

D jhH jLi hRjH ij
2

� hH jLi hLjH i hH jRi hRjV i ;

� hV jLi hLjH i hV jRi hRjH i C jhV jLi hRjV ij
2;

D

�
1

p
2

�4
�

�
1

p
2

�4
�

�
1

p
2

�4
C

�
1

p
2

�4
;

D 0: (4.4)

Aided by the above observations, we conjure up a procedure to optimize for the state
j˚�i:

Primo Set the polarization analysis optics to project out jH1;H2i and maximize the
corresponding coincidence counts, typically achieved by fine adjustments to using
the z-dial on the kinematic mount that holds the BBO crystals, which tilts the
crystals with respect to the z-x plane (left-handed Cartesian coordinate system).
Similarly, maximize the coincidence counts for the projection of jV1; V2i, achieved
by fine adjustments to the dials on the rotation stage at the bottom of the kinematic
mount, which rotate the crystals about to the z-axis.
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Secondo Set the polarization analysis optics to project out jD1;D2i and minimize
the corresponding coincidence counts, which we achieved by rotating the crystals
with respect to y-axis with the radial dial on the kinematic mount. Similarly,
set the polarization analysis optics to project out jL1; R2i and minimize the
corresponding coincidence counts, by using the x-y axis dials on either side of the
kinematic mount.

Terzo We go through several iterations of this process, and roughly equalize the two
coincidence counts observed for jH1;H2i and jV1; V2i, while minimizing the ones
observed for jD1;D2i and jL1; R2i.

While iterating the steps of the above procedure, one eventually reaches a point where
additional iterations have non-desirable results; The coincidence counts for jD1;D2i

and jL1; R2i reach some local minimum (typically around 30s�1) and start increas-
ing again, or the counts for jH1;H2i and jV1; V2i are no longer equal. At this point
we halt and take the previous iteration to be optimal. Physically, the optimization
procedure is changing the opening directions of the two light cones emerging from the
BBO crystals such that the collection optics in our experiment can access as much of
the light cones as possible, and as close as possible to diametrically-opposed regions of
indistinguishability. The measurement results after several iterations of this process
are shown in Table 4.2 and the corresponding graphical representation of the recon-
structed density matrix shown in Figure 4.5, where the corresponding density matrix
for the two-photon state is given by

% D

0BBB@
0:49 0:028C 0:033i 0:017 � 0:025i �0:41C 0:054i

0:028 � 0:033i 0:0074 �0:0019C 0:0017i 0:0011C 0:023i

0:017C 0:025i �0:0019 � 0:0017i 0:0074 �0:034 � 0:042i

�0:41 � 0:054i 0:0011 � 0:023i �0:034C 0:042i 0:49

1CCCA:
(4.5)

From the above density matrix and its graphical representation, in comparison to
the earlier reconstruction in Figure 4.4, we note a few conspicuous differences. The
populations of horizontally-and vertically-polarized photons are equalized in the
optimized measured state13. Likewise, the coherences14 between these two pop-

13 Represented by the diagonal element
on the top-left and diagonal element
bottom-right respectively.

14 Represented by the off-diagonal
elements. For this particular instance,
the entries on the bottom left and top
right.

ulations are equalized, and have a close resemblance to the coherences of the Bell
state j˚�i; the fidelity between the measured state and the aforementioned state
is F% D 0:902 ˙ 0:00588. Furthermore, there is an improvement of the other
previously reported physical quantities; The measured state a violates a Bell-CHSH
inequality, attaining a value of hSi D 2:594˙ 0:0153.

Lastly, the linear entropy of the above state has a value of SL D 0:211 ˙ 0:0134,
which reflects a decrease in the “mixedness” of the state, in comparison to the earlier
reconstruction. The errors in these quantities were estimated from a Monte Carlo
simulation of 100 samples with Poissonian noise on the count statistics15.

15 This is because due to the proba-
bilistic nature of SPDC, the number
of n discrete photon pairs that arrive
at the detectors for given a collection
time interval �t follows a Poissonian
probability distribution Pois.� D n�t/.

89

Stellenbosch University https://scholar.sun.ac.za



4.4. RESULTS

m Projector h1 q1 h2 q2 N (10s�1)

1 jV ihV j ˝ jV ihV j 45ı 0ı 45ı 0ı 2738(83)
2 jV ihV j ˝ jH ihH j 45ı 0ı 0ı 0ı 33(5)
3 jH ihH j ˝ jH ihH j 0ı 0ı 0ı 0ı 2718(69)
4 jH ihH j ˝ jV ihV j 0ı 0ı 45ı 0ı 35(2)
5 jLihLj ˝ jV ihV j 22:5ı 0ı 45ı 0ı 1256(14)
6 jLihLj ˝ jH ihH j 22:5ı 0ı 0ı 0ı 1492(40)
7 jDihDj ˝ jH ihH j 22:5ı 45ı 0ı 0ı 1470(23)
8 jDihDj ˝ jV ihV j 22:5ı 45ı 45ı 0ı 1479(26)
9 jDihDj ˝ jLihLj 22:5ı 45ı 22:5ı 0ı 1434(46)
10 jDihDj ˝ jDihDj 22:5ı 45ı 22:5ı 45ı 284(15)
11 jLihLj ˝ jDihDj 22:5ı 0ı 22:5ı 45ı 1614(31)
12 jV ihV j ˝ jDihDj 45ı 0ı 45ı 45ı 1549(31)
13 jH ihH j ˝ jDihDj 0ı 0ı 0ı 45ı 1079(11)
14 jH ihH j ˝ jRihRj 0ı 0ı 0ı 90ı 1661(46)
15 jV ihV j ˝ jRihRj 45ı 0ı 45ı 90ı 1159(24)
16 jLihLj ˝ jRihRj 22:5ı 0ı 22:5ı 90ı 254(12)

Table 4.2: Measurement settings
and coincidence counts for a to-
mography analysis of a two-photon
polarization state after optimization.
Coincidence counts, collected over
a ten second intervals, for each
of the 16 settings, are sufficient to
recover an estimate of (reduced)
density matrix of the two-qubit po-
larization state of the two photons.
Here, jDi :D.jH i C jV i/=

p
2,

jLi :D.jH i C i jV i/=
p
2 and

jRi :D.jH i � i jV i/=
p
2.
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Figure 4.5: Density matrix of a state
estimated by maximum likelihood
tomography from the experimen-
tal data given in Table 4.2 after
optimization. (a) Real part of the
estimate of %. (b) Imaginary part of
the estimate of %.

Alas, while the above results improve over the preliminary results and are in good
agreement with expected state jH1;H2i � jV1; V2i, unwanted artefacts such as the
apparent loss in the coherences of the two orthogonal polarizations and a small, non-
negligible mixedness of the state, in the reconstructed state still persist. The origins of
some of these unwanted artefacts can be attributed to systematic errors, such as those
stemming from efficiencies of the various optical components in the experiment16.

16 PBS transmission and reflection
efficiencies, photon detector efficiency
and their coupling efficiency to optical
fibres, collection efficiencies etc.

While the origins of the loss of coherences are often attributable to the many deco-
herence mechanisms of polarization-entangled sources, which vary from source to
source and dependent on nature and application of the experiment at hand. We will
briefly outline the two decoherence mechanisms that are relevant to our application,
following references [136–139].
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An ideal process of type-I SPDC has stringent phase matching conditions; for a
pump photon incident on a crystal down converts to two photons, a signal and an
idler photon, with the same polarization. The entire process must both conserve
momentum and energy, which give rise to the aforementioned conditions:

Eki C Eks D Ekp;

!i C !s D !p; (4.6)

where Ek and ! are the wave vector and frequency of the photon respectively. The
subscripts i , s and p refer to the idler, signal and pump photon respectively. For a
frequency degenerate type-I SPDC process, the idler and signal photons have half the
frequency of the pump photon individually. In an ideal experiment, one expects the
phase-matching conditions to be perfectly satisfied, in an actual experiment this is not
the case. In reality, there is often a phase mismatch, which enters into Equation (4.6)
via an additional effective wave vector E�, which has a non-trivial effect on the spectral
properties of the process.

Eki C Eks C E� D Ekp: (4.7)

Ideally, for a type-I non-collinear degenerate SPDC process, only frequency-degenerate
photon pairs are emitted at the emission angle of the light cones. However, due to the
phase mismatch, it is possible for the process to also produce non-degenerate fre-
quency photons pairs. The emission angles of the non-degenerate pairs will not always
be asymmetric around pump beam; the findings in Ref. [139] report the production
of non-degenerate pairs at 662.2 nm (signal photon) and 747.3 nm (idler photon)
respectively, with the signal photon within the collection angle of their system (around
3ı), while the idler photon falls outside this collection angle, hence does not contribut-
ing to the single photon rates.

The said effect produces spectral profiles for both signal and idler photons that are
asymmetric around the degenerate frequency. The result of this spectral profile asym-
metry along with the geometry of a experiment, have a bearing on the two-photon
joint spectra which determines the coincidence counts. Baek and Kim [139] show
that the joint spectra is significantly reduced in comparison to the spectral profile of
the signal/idler photon pairs, and limited by the collection angles in their experiment,
2:95ı � 3:17ı; this collection range does not collect one of the photons from a non-
degenerate pair. As a result, the two-photon spectra can also have asymmetric spectral
profile around the degenerate frequency, which can be significantly altered by small
alignment errors.

A way to compensate for this spectral asymmetry is by way of spectral filtering over
the bandwidth of a narrow bandwidth filter around the degenerate frequency, the
spectral profiles of the idler and signal photons, and consequently two-photon joint
spectra are made more similar to one another, by effectively filtering out the unwanted
non-degenerate photon pairs. This method of compensation comes at the expense
of collection efficiency of the experiment. The spectral filters in our experiment have
quite a broad bandwidth, centred at 800 nm with a FWHM of 40 nm, thus it is
not far-fetched to suspect the presence of non-degenerate photon pairs, which is by
evidenced by the significantly high single count rate in comparison to coincidence rate
(by roughly a scale � 0:3).
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We attempted to use narrow bandwidth filters, centred at 810 nm with a FWHM
of 10 nm, which did not improve the results by much, upon inspection, we found
that when filtering a white light source17 the two filters had non-overlapping regions 17 Fianium WhiteLase micro with

spectrum <450 nm to >2000 nm with
a pulse width of �6 ps and a repetition
rate of 20 MHz.

of considerable size in their spectral profiles. One of the interference filters was not
centred at 810 nm (as indicated by the manufacturer) but slightly higher, which for the
interim explains why the results did not improve by much.

Another dominant decoherence mechanism, particularly for a paired-BBO type-I
SPDC source, is one that degrades the temporal indistinguishability of the down
converted photons. Crudely represented, the two crystals having finite thickness,
means the two down-conversion processes in the two crystals will occur at slightly
different times (order of femtoseconds). Over the thickness of the crystals, both
birefringent and dispersive effects influence the group velocities of both signal and
idler photons, and subsequently their emission times from the two crystals. If the
assumption is that two down-conversion processes take place at halfway the length of
each crystal, then time taken by the signal and idler photons to traverse the lengthL
of the two crystals, can be calculated as follows [138]. For photons down converted in
the first crystal:

Primo A pump photon will traverse half of the length of the first crystal where it is
extraordinary polarized, after which it down converts resulting in a polarization
perpendicular to the original and hence ordinary polarized.

Secondo The resulting signal/idler photon will traverse the second half of the first
crystal ordinary polarized.

Terzo After exiting the first crystal, the signal/idler photon will traverse the full
length of the second crystal extraordinary polarized.

The time spent by a signal photon in each of the three stages above depends on the
refractive-index-dependent group velocities of ordinary and extraordinary photons in
the two crystals and the lengthL:

ts D
L

2V eg .!p/
C

L

2V og .!s/
C

L

V e.!s/
; (4.8)

the reasoning is similar for photons down converted in the second crystal, and gives:

t 0s D
L

V og .!p/
C

L

2V eg .!p/
C

L

2V og .!s/
; (4.9)

and the net delay�ts between the two down conversion processes is given by

�ts D t 0s � ts D L

 
1

V og .!p/
�

1

V eg .!s/

!
: (4.10)

The above time difference leads to the degradation of the temporal indistinguishability
between the two light cones; photons belonging to one light cone will be delayed by
�ts=i relative to the photons from the other light cone.
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Rangarajan et al. [138] derive an expression for the density matrix of the two-photon
down converted state with such a delay:

%0
D
1

2

0BBB@
1 0 0 �.�ts; �ti /

0 0 0 0

0 0 0 0

��.�ts; �ti / 0 0 1

1CCCA; (4.11)

where �.�s; �i / is dependent on the two-photon joint spectra. As expected, we note
that this decoherence mechanism has no effect on the two populations but only affects
the coherence between the two polarizations. Refs. [136–138] recommended the use
of birefringent crystals, with the same but opposite time delay between extraordinary
and ordinary components of the pump photons, to pre(post)compensate for the delay
between the emission-times of the two down conversion processes. With use of such
techniques, they were able to state fidelities in excess of 0:977.

4.5 Concluding remarks

In this chapter, we described and conducted an experiment based on SPDC, generat-
ing a two-photon two-qubit polarization-entangled state. The generated state is fully
characterized through QST, recovering its density matrix, from which other physical
quantities of interest, such as those quantifying the degree of entanglement possessed
by the state can be derived from. The SPDC source is optimized, with a rule of thumb
procedure described in the text, to generate one of the Bell states (j˚�i). We repeat
this process until we achieve a fidelity of 0:90. In comparison to similar demonstra-
tions in the current literature, which can achieve fidelities in access of 0:97, this is
a relatively is low fidelity, nevertheless the obtained result is satisfactory to our ex-
perimental needs. Lastly, we briefly outlined a description of the two decoherence
mechanisms for paired BBO type-I non-collinear SPDC and how these maybe coun-
teracted to improve the fidelity of the generated polarization-entangled state. In the
chapter that follows, we will describe how the polarization-entangled state generated
by this Bell-state photon pair source may be extended to accommodate an additional
qubit through a different DOF.
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5
Path-polarization-entangled photons

“ Am I a wave? Am I a particle? Am I analog or digital?
The answer surely must be both or none.
My laws say quarks and clocks alike show interference,
That if you watch a state, it never changes,
That two entangled systems act as one.”

— Peter Shor, Quantum Poetry Tweet Collection

5.1 Introduction: Multi-degree of freedom entanglement

T
HE preceding chapter describes the generation of a two-photon two-qubit
polarization-entangled state via the process of SPDC with type-I phase
matching. In this chapter, we endeavor to describe and experimentally re-

alize one possible way to enlarge this two-qubit state to a state of more qubits. From
the previous chapter, one can at least get an inkling that the generation of entangled
photons by way of SPDC is appealing due to its accessibility, in the case of type-I
SPDC, ease of alignment and relatively high photon counts in comparison to type-II
phase matched SPDC [126]. Thus one could possibly conceive of a way to enlarge the
aforesaid two-qubit state via the same SPDC process; a string of successive SPDC
processes producing a pair of entangled photons at each step, as done in the experi-
ments of Ref. [119, 140, 141]. One potential and sizeable obstacle to such methods
is decoherence. As briefly alluded to in the previous chapter, unless one incorporates
methods to counteract some of the effects of decoherence on SPDC sources such as
phase-compensation [136, 138] to improve the brightness of the source, experiments
making use of cascaded SPDC processes typically suffer from low efficiencies 1 1 Due to the decoherence mechanisms

of SPDC source, but also due to ineffi-
ciencies of the optics in the experiment,
e.g. the collection and detection ineffi-
ciencies.

Hitherto, we have only considered the polarization DOF, however photon pairs
generated in this way also possess various forms of entanglement. The phase-matching
conditions for SPDC give rise to conservation laws for both energy and momenta
of the photon pairs, as a result the pairs are entangled in these continuous DOFS as
well. The experiments of Rarity et al. [142] and Kwiat et al. [143] were few of the first
to demonstrate a violation of a Bell-inequality for a continuous DOFS, energy (and
time) and momentum, respectively.
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Relatively recent experiments have given evidence that, the process of SPDC conserves
the orbital angular momentum [144, 145]; demonstrating the generation and analysis
of coherent superposition of Laguerre-Gaussian (LG) transverse spatial modes, and
a violation of a Bell-inequality for qutrits. A theoretical justification for this conser-
vation law was later derived by Franke-Arnold et al. [146] from the phase-matching
conditions of SPDC. For a LG mode pump beam carrying the quantum number
lpump

2, the sum of the corresponding quantum number for signal and idler photons 2 Every photon in the beam carries
an orbital angular momentum of
„lpump [147].

must be the same, i. e. lsignal C lidler D lpump. For a pump beam with lpump D 0, the
resultant two-photon orbital angular momentum (OAM) state will be

j iOAM D ˛0;0 j01; 02i C ˛1;�1 j11;�12i C ˛�1;1 j�11; 12i C : : : : : : ; (5.1)

with the LG modes spanning a countably-infinite dimensional Hilbert space, where
the kets denote OAM states labelled with the indices l and ˛’s denoting their corre-
sponding probability amplitudes; the subscripts 1 and 2 represent the signal and idler
photons, respectively.

Photons produced via SPDC could result in photons possessing non-classical cor-
relations in degrees of freedom simultaneously, with each DOF independently ad-
dressable for such measurements. Such multiply-entangled states are called “hyper-
entangled” states, coined by Kwiat [148]. For instance, photon pairs produced by a
paired BBO type-I SPDC process, generate a state represented by the product state:

j	 i � .jH1;H2i � jV1; V2i/˝ .j�11;�12i C j11; 12i/: (5.2)

For this particular state, each DOF is independently addressable and in a well de-
fined state, that is, measurements of observables on either subsystem, whether of
polarization or orbital angular momentum, have no bearing on the other subsystem.
Formally, a partial trace over the subsystem in either DOF leaves the other subsystem
unaffected.

TrA.%AB/ D TrA.%A ˝ %B/;

D

3X
iD0

hi j%Ajii ˝ %B ;

D 1A ˝ %B ;

D %B ; (5.3)

where %A D 1=2.jH1;H2i � jV1; V2i/.hH1;H2j � hV1; V2j/ and %B D

1=2.j�11;�12i C j11; 12i/.h�11;�12j C h11; 12j/, and where jii’s are from
the orthonormal basis set fjH1;H2i ; jH1; V2i ; jV1;H2i ; jV1; V2ig for the po-
larization subsystem. It is also possible for a SPDC source to generate a state of the
kind:

j	 i � .jH1;H2;�11;�12i C jV1; V2; 11; 12i/: (5.4)
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Such a state is a little different from the state of Equation (5.2). The first obvious
difference is this state isn’t a product state; the state in either DOF can no longer be
described separately, we can only collectively describe it by referencing to the state
of the other DOF i. e. the full joint state is non-separable. For such a state (as we’ve
seen elsewhere), a measurement in one DOF has a bearing on the other DOF. For
instance, taking the partial trace over the OAMDOF yields:

TrCD.%ABCD/ D TrAB.jH1;H2;�11;�12i hH1;H2;�11;�12j

C jH1;H2;�11;�12i hV1; V2; 11; 12j

C jV1; V2; 11; 12i hV1; V2; 11; 12j

C jV1; V2; 11; 12i hH1;H2;�11;�12j/

D jH1;H2i hH1;H2j C jV1; V2i hV1; V2j : (5.5)

where the partial trace is performed over the basis set fj�11;�12i ; j�11; 12i

; j11;�12i ; j�11;�12ig. Note that the resultant state is one in which coherences
between jHH i and jV V i are completely destroyed; the density matrix of the state
has no off-diagonal elements. The said states are called “hypoentangled states” [149],
their defining feature is that they exhibit simultaneous entanglement, but when one of
DOFS is considered independently, the entanglement in that DOF isn’t preserved.

Paired

BBO

crystals

Figure 5.1: A SPDC source with
two concatenated BBO crystals
stimulated by a pump beam in
both directions. The two pairs are
emitted in different directions, l1; l2
and r1; r2 denoting the four spatial
modes.

The first demonstration and complete characterization of a hyper entangled photonic
quantum system was done by Langford [149], generating and completely charac-
terizing a 144-dimensional state, simultaneously and independently entangled in
polarization, transverse (OAM) spatial modes and photon emission times (time-bin
encoding). The rarity and novelty of such a demonstration would seem to suggest the
experimental difficulity/novelity of realizing photonic states of this kind. Indeed, ex-
erting control over different DOFS is not trivial. They often necessitated sophisticated
and tricky mode (spatial and/or temporal) matching requirements to implement in
practice.

The same partly holds true in practice, for similar experiments that generate hy-
per(hypo) entangled photonics states through polarization and momentum (direc-
tions of the emitted photons) DOFS. Here, a pump beam stimulates a SPDC crystal
in both directions resulting in polarization-entangled photon pairs in both directions,
which are then appropriately isolated to four optical path modes (l1; l2 and r1; r2
in Figure 5.1). If the paired path modes, one mode from the backward photon pair
and another from the forward photon pair (l1 and r1 and l2 and r2) are overlapped
temporally (and spatially) on the input ports of a 50:50 beam splitter (see Figure 5.2),
can they can realize a hyperentangled state of the form [150]:

j	 i � .jH1; V2i ˙ jH1; V2i/˝ .jr2; l2i ˙ jl1; r1i/; (5.6)

Photon
detector

D1
Mode 1

Mode 2

Photon
detector

D2

Figure 5.2: Temporal delay between
two spatial modes incident on the
input ports of a 50:50 beam splitter.
The temporal delay leads to tem-
poral indistinguishability, which in
an interferometric experiment has a
debilitating effect on the observed
interference.

alternatively if paired path modes belong to the same photon pair (l1 and l2 and
r1 and r2) are similarly overlapped temporally (and spatially) generate the hypoentan-
gled state [72]:

j	 i � .jH1;H1i C jV1; V2i/ jl1; l2i C .jH1;H2i � jV1; V2i/ jr1; r2i/: (5.7)

In this kind of experimental setup, in addition to the spatial and/or temporal mode
matching requirements, the generated state depends on the rate of photon pair emis-
sions in both directions.
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For the states described above, the aforesaid rates should be equalized. It is known
for a SPDC source, particularly non-collinear non-degenerate SPDC, the resultant
(single and joint) spectral profiles, hence the two-photon emission rates and output
spatial modes, are dependent on the focus of the pump beam [151]. Hence, the ex-
periments in Refs.[72, 150] equalize the emission rates of the two SPDC processes
(backwards and forwards) using an appropriate arrangement of focusing optics (i. e.
lens). These added complications compel us to consider an experimental scheme for
enlarging our two-photon state from the previous chapter that explicitly avoids them.
We consider adopt the experimental scheme of Park et al. [116], which uses a single-
photon pair source to realize a polarization-path-entangled state. Hence we describe
the experimental design next.

5.2 Experimental design

In this experiment, we extend the experimental setup from the previous chapter to ac-
commodate an additional path qubit. The experimental setup is shown in Figure 5.3;
conceptually, this experiment is again simple to describe. The experimental design
is similar to the design in the previous chapter (see Figure 4.1) with only one minor
addition; in one of the arms, arm 1 in the figure, the photon beam is incident on a
PBS, transmitting horizontally-polarized photons and reflecting vertically-polarized
photons, which effectively defines our path modes (l1 and r1). Our SPDC source pro-
duces a state close to .jH1;H2i � jV1; V2i/=

p
2, at the dashed line after the action of

the PBS as shown in Figure 5.3 this state becomes:

j	1i D
jH1; r1;H2i � jV1; l1; V2i

p
2

: (5.8)

We designate the polarization and path states of the photon in arm 1 as qubit 1 and
qubit 2, respectively and the polarization of the photon in arm 2 as qubit 3. Further-
more, relabelling jH i .jV i/ as j0i .j1i/, and similarly jri .jli/. The state in Equa-
tion (5.8) becomes

ˇ̌
	 0
1

˛
D

j0; 0; 0i � j1; 1; 1i
p
2

D
j0i˝3

� j1i˝3

p
2

: (5.9)

The state in Equation (5.9) is locally equivalent to GHZ state 3. Similarly, if we

3 Applying the unitary operator
(11Z213) to j	i, we recover the
GHZ state in its standard form
.j0i

˝3
C j1i

˝3/=
p
2.

apply the unitary operator U D 1Z213 to state in Equation (5.9) and proceed to
rotate the coordinate system for all our polarization measurements by � D �22:5ı

(jH i 7! .jH i C jV i/=2; jV i 7! .jH i � jV i/=
p
2), j	1i becomes:

j	1i D
jC; 0;Ci � j�; 1;�i

p
2

; (5.10)

where .j˙i D j0i ˙ j1i/=
p
2. The above state is a three-qubit linear graph state,

which may be generated by applying controlled-Z operations on neighboring qubits
(1 � 2 and 2 � 3) of the initial resource state jCi1 jCi2 jCi3.

The rest of the optics in arm 1 of the experimental setup are designated for measure-
ment and analysis, consisting of a MZI, which combines the two path modes on the
output ports of a 50:50 beam splitter.
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PBS

IF

IF

PBS

HWP

HWPQWP

HWPQWP

HWP

PBS

NPBS

Cascaded
BBO

crystals

Photon
detector

D2

Photon
detector

D1

Translation
stage

Beam
blocks

Conincidence 

detection

CW diode laser
(45°-pol, 405 nm)

Figure 5.3: Experimental setup
for generation and measurement
of a two-photon three-qubit path-
polarization-entangled state locally
equivalent to a GHZ state. HWP,
QWP, BBO, PBS, NPBS, translatable
mirror, translatable beam blocks,
and IF. A photon pair is created
whenever a laser pump photon
with 405 nm wavelength is incident
on the paired BBO crystals cut for
type-I SPDC, generating photons at
810 nm. One of the photons enters
a MZI where path modes are made
to interfer when combined on , at
the dashed line the joint state

ˇ̌
	 0
1

˛
is locally equivalent to a GHZ state.
Each photon is guided by a set of
mirrors to a QWP, HWP, and PBS
which are used to perform polariza-
tion measurements of the quantum
state. Finally, each photon is sent
to an IF at 800 nm with a band-
width of 40 nm and collected by a
SMF and sent to a photon detector.
Each photon detector produces an
electronic signal and sends it to the
coincidence counting electronics,
which count the signals that arrive
simultaneously.

One of the path modes is reflected off a mirror on an motorized translation stage
(MTS25/M-Z8 - 25 mm (0.98”) Motorized Translation Stage with a KDC101
K-Cube Motor Controller), which can used to change the relative phase difference
between the two path modes, projecting the path qubit to states on thex-y plane of
the Bloch sphere (on the equator) with the form:

j'i D
j0i C ei' j1i

p
2

: (5.11)

In both paths, there are beam blocks mounted on an electronically-controlled transla-
tion stage, which can either block one of the paths or let them both pass. Whenever
we block one of the paths, we project out one of the states .j0i ; j1i/ depending on
which path is blocked. The combined beam on one of the output ports of the beam
splitter is sent to polarization analysis optics and eventually to the photo detector,
consisting of a rotatable QWP and HWP, a PBS and an IF at 800 nm with a 40 nm
bandwidth. After this stage, the beam goes to a photon detector via a fibre launch cou-
pled to the detector with a SMF. The optical path of arm 1 is slightly longer than that
of arm 2, for this reason we modify our coincidence counting electronics to add a vari-
able delay to arm 2 to roughly compensate for the delay on arm 1 introduced by the
MZI. Through a bit of tinkering, we find that a delay between 0.5 ns to 1.5 ns works
well enough; our delay electronics operate in increments of 0.5 ns, the true delay is
probably somewhere in between this range.

To match the optical path difference of the two paths to be on the order of the coher-
ence length of the down-conversion photons (' 60 μm) we used a broad spectrum
white laser source. The beam from this laser source is guided into the experiment
through fibre coupler we previously used to hold the SMF taking the beams to the
detectors. It is then sent through the MZI and collected by another fibre coupler near
the crystals coupled with a SMF into a spectrometer (Thorlabs CCS200/M with a
wavelength range of 200 nm-1000 nm).
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We can thus resolve the interference fringes in spectra near our collection bandwidth
(800 nm˙40 nm) by translating the mirror inside the MZI to obtain optimal match-
ing of the path lengths of two arms of the MZI. Once the MZI is optimized for the
coherence length of the down-converted photons, when the two path modes from
one of the down-conversion photons combine on the output ports of the 50:50 beam
splitter, the state j	1i of Equation (5.8) then becomes:

j	2i D
1

2
.e'1.jH1; p1;H2i C jH1; q1;H2i/

�e'2.jV1; p1; V2i � jV1; q1; V2i//; (5.12)

where p1; q2 are the path modes of the output ports of the beam splitter and '1; '2
are the phases acquired by path modes (l1 and r1) by the time they are incident on the
beam splitter. Here we adopt the convention jr1i 7! .jp1i � jq1i/=

p
2 and jl1i 7!

.jp1i C jq1i/=
p
2 for the 50:50 beam splitter. After a bit of algebraic deadlifting, the

preceding equation becomes:

j	2i D
1

2
.jp1i .jH1;H2i � ei.'2�'1/ jV1; V2i//C

jq1i .jH1;H2i C ei.'2�'1/ jV1; V2i///: (5.13)

The mode q1 goes through the polarization analysis optics and eventually to the
photon detector yielding:

j	2i D
1

p
2
.jH1;H2i C ei' jV1; V2i/; (5.14)

where ' D '2 � '1. Note that the phase difference between the two path modes
influences the state measured by the polarization analysis optics. We can thus infer
this phase difference with a similar procedure from our observations in Equation (4.3)
and Equation (4.4) to optimize the SPDC source for a particular Bell state. By in-
serting a HWP in the path mode r1, and setting it at � D 45ı (jH i $ jV i),
Equation (5.14) becomes:

ˇ̌
	 0
2

˛
D

1
p
2
.jH1;H2i C ei' jH1; V2i/;

D
1

p
2

jH1i .jH2i C ei' jV2i/: (5.15)

We infer the value ' by choosing the appropriate projectors, for instance projecting
PHR D jH1ihH1j ˝ jL2ihL2j on the above state and a bit algebraic deadlifting one
obtains the expression for detection probability:

˝
	 0
2

ˇ̌
PHR

ˇ̌
	 0
2

˛
D
1

2
�
1

2
sin': (5.16)

Thus moving the translation stage mounted with the mirror, we can minimize the
observed coincidence counts which would then correspond to ' D �=2, and max-
imized coincidence counts correspond to the setting ' D ��=2. The aforemen-
tioned values of ' project the path qubit in Equation (5.11) to .j0i C i j1i/=

p
2 and

.j0i � i j1i/=
p
2, which are the positive and negative eigenvectors of the Pauli matrix

Y . Any value of ' maybe inferred similarly.
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Therefore, any equatorial basis measurement of the form:

B.'/ D

�
j0i C ei' j1i

p
2

;
j0i � ei' j1i

p
2

�
; (5.17)

can be performed on the path qubit. Together with theZ basis measurements
(fj0i ; j1ig), it is possible to perform measurements, measuring each of the eigen-
vectors of Pauli matrices; which allows us to independently address each of the three
qubits for control and measurements of quantum-mechanical correlations of the
generated state.

5.3 Results

To get an inkling of how well the MZI can contrast between constructive and de-
structive interference of the two path modes, we measure the fringe visibility for
down-conversion photons in following configurations: (i) When only one of the BBO
crystals, producing theH -polarized light cone is stimulated. (ii) When only one of
the BBO crystals, producing the V -polarized light cone. (iii) When both BBO crys-
tals are stimulated. For all three configurations, there is a HWP at the gate of the
interferometer (before the PBS) set to 22:5ı (jH i $ jDi), and the half wave-plate
in the path mode r1 is set to � D 45ı, giving the state in Equation (5.15) and project
out PHD D jH1ihH1j˝jD2ihD2j, giving the expression for the detection probability

˝
	 0
2

ˇ̌
PHD

ˇ̌
	 0
2

˛
D
1

2
C
1

2
cos'; (5.18)

by translating the mirror in the MZI in increments of 40 nm, we can vary '. Typical
(normalized) coincidence counts when ' is varied for the three aforesaid settings are
shown in (a), (b) and (c) of Figure 5.4, respectively4. It was worth mentioning that 4 The fitting function used for the plots

is of the form a cos .bx C c/C d . The
parameters a; b; c; d were found using
Mathematica’s NonlinearModelFit
function.

the motor translating the stage can resolve translations down to �30 nm, however
this may come at the price of accuracy. In a sporadic fashion, the motor sometimes
translates the mirror slightly less or slightly more than the set step size, hence the plots
in the figure above show a few slightly sparse regions. We observe close-to-unity fringe
visibilities (calculated from the minima and maxima of the fit) of 0:940, 0:901 and
0:921, respectively. The non-ideal spatial overlap between the two path modes and
less-than-unity fidelity of the Bell state prior to the MZI may explain the less-than-
unity fringe visibility. However, we deem these values sufficient and as indicative that
the two path modes are indeed interfering with one another and their optical path
difference is within the coherence length of the down-conversion photons.

As we have seen elsewhere, to fully characterize an experimentally generated state, one
often needs to perform full QST; reconstructing an estimate of the density matrix
from which physical quantities of interest may be derived. QST for a general three-
qubit state would require at least 64 coincidence measurements. However, if we are
only interested in the fidelity of the experimentally generated state and detecting
whether the said state possesses genuine multi-particle entanglement around the ideal
state we expect to observe, it is possible to circumscribe performing a full tomographic
analysis to derive the said quantities, at the cost of generality.

100

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. PATH-POLARIZATION-ENTANGLED PHOTONS

(a)

0 2 4

Phase, �=�

0.0

0.2

0.4

0.6

0.8

1.0

C
oi
nc

id
en

ce
co

un
ts

(1
0
s�
1
),
N
=
N

m
ax

data
fit

(b)

0 2 4

Phase, �=�

0.0

0.2

0.4

0.6

0.8

1.0

C
oi
nc

id
en

ce
co

un
ts

(1
0
s�
1
),
N
=
N

m
ax

data
fit

(c)

0 2 4

Phase, �=�

0.0

0.2

0.4

0.6

0.8

1.0

C
oi
nc

id
en

ce
co

un
ts

(1
0
s�
1
),
N
=
N

m
ax

data
fit

Figure 5.4: Photon coincidence
counts traversing the MZI as a func-
tion of the relative phase between
the two paths in the interferometer:
(a) coincidence counts vs. � for
pairs of only vertically polarized
photons (b) Coincidence counts
vs � for pairs of only horizontally
polarized photons (c) Coincidences
counts vs � for pairs of entangled
photons (Bell state). The error bars
represent 95% confidence intervals
around the mean value (see sec-
tion § A.2 of technical Appendix A.

Without directly deriving the density matrix of the experimentally generated state, we
can derive an estimate of the fidelity of the generated state from a reduced set of Pauli
operator expectation value measurements, in comparison to full QST. Recall that the
fidelity between a expected % and measure state & is given by [17]:

F.%; &/ D Tr
�q

p
%&

p
%
2
�

D Tr.%&/: (5.19)

The desired state � may be decomposed into a linear combination ofN -fold prod-
ucts of 1; X; Y;Z. In the case of a three-qubit GHZ state in its standard form, this
decomposition is given by:

% D
1

8
.111213 C 11Z2Z3 CX1X2X3 �X1Y2Y3

� Y1X2Y3 � Y1Y2X3 CZ112Z3 CZ1Z213/: (5.20)

Estimating of the fidelity of our measured state & amounts to the evaluation of the ex-
pectation values5 of above operators with respect to the measured state, and summing 5 For any self-adjoint operator O, the

expectation value of O with respect to
the general state & is given by, hOi �

Tr.O&/

them up appropriately. We reduce the number of unique measurements by noting
that the expectation value of the terms 11Z2Z3; Z112Z3 andZ1Z213 may be de-
rived from the measurement ofZ1Z2Z3 as their distributions are marginal distribu-
tions ofZ1Z2Z3 when the outcome of the qubit acted on by the identity is not taken
into consideration. Similarly, the expectation value of 111213 may derived from
any of terms via marginalization, it is equal to unity in any case6. Thus, we need only 6 Tr.111213&/ D Tr.&/ D 1

(normalization condition)evaluate 5 unique measurements: X1X2X3; X1Y2Y3; Y1X2Y3; Y1Y2X3; Z1Z2Z3.
Panels (a), (b), (c), (d) and (e) in Figure 5.5 show the measurement outcomes (8
each) required for the evaluation of the expectation values of the Pauli operators
X1X2X3; X1Y2Y3; Y1X2Y3; Y1Y2X3 andZ1Z2Z3, respectively. The error bars
represent 95% confidence intervals around the mean value (see section § A.2 of the
technical Appendix A). Table 5.1 shows the measured expectation values from the
measurements in Figure 5.5 of each operator. Evaluating the fidelity using Equa-
tion (5.19), and the Pauli decomposition of our expected state in Equation (5.9), we
obtain a fidelity of F% D 0:868˙ 0:00996.
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Figure 5.5: Photon coincidence
counts of various projected states
for the evaluation of the expectation
values (a) hX1X2X3i (b) hX1Y2Y3i

(c) hY1X2Y3i (d) hY1Y2X3i (e)
hZ1Z2Z3i. The outcomes 0 and 1
correspond to the measurement of
the positive- and negative-valued
eigenvalue of the corresponding
Pauli operator, respectively. The
error bars represent 95% confidence
intervals around the mean value
(see section § A.2 of technical Ap-
pendix A).Operator Expectation value

Z1Z2Z3 �0:0453.0:0329/

11Z2Z3 0:922.0:0329/

Z112Z3 0:908.0:0329/

Z1Z213 0:973.0:0329/

X1X2X3 �0:807.0:0275/

X1Y2Y3 0:800.0:0163/

Y1Y2X3 0:765.0:0237/

Y1X2Y3 0:743.0:0286/

111213 1:00.0:0264/

Table 5.1: Three-qubit operator
expectation values for the evalua-
tion of the fidelity and witness of
the measured state. The values in
parenthesis represent 95% confi-
dence intervals around the mean
value and derived from the values
in Table 5.1 with appropriate error
propagation.

The Bell-Mermin operator (See section § 1.2.5) takes the form:

M D X1X2X3 �X1Y2Y3 � Y1X2Y3 � Y1Y2X3: (5.21)

We can evaluate the expectation value of Bell-Mermin from the same expectation
values in Table 5.1. Our generated state gives a expectation value of hMi D 3:137˙

0:0490, clearly violating the bound of hMi D 2 under the assumption of local
realism 7. 7 For the case of a state locally equiv-

alent to a GHZ state as in Equa-
tion (5.9), the Bell-Mermin for this
state is M D �X1X2X3 CX1Y2Y3 C

Y1X2Y3 C Y1Y2X3.
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CHAPTER 5. PATH-POLARIZATION-ENTANGLED PHOTONS

Lastly, we may further detect the genuine multi-particle entanglement around the
expected state (GHZ) by means of a stabilizer-based entanglement witness operator
W . An stabilizer-based entanglement witness operator for a three-qubit GHZ state
in its standard form is given by: [35]:

W D
3

2
111213 �X1X2X3 �

1

2
.Z1Z213 C 11Z2Z3 CZ112Z3/ : (5.22)

The above entanglement witness operator has an expectation value of �1 with respect
to an ideal three-qubit GHZ state, since the GHZ state has an expectation value
of C1 with respect to the individual stabilizing operator terms8. An entanglement

8 The vigilant reader may notice that
Bell-Mermin operator of Equation (5.21)
resembles a entanglement witness.
In fact, it is a disguised entanglement
witness for genuine three-qubit entangle-
ment. See Toth et al. [35].

witness operator detecting genuine multi-partite entanglement around the ideal
state j i has a noise threshold plimit, that is, it will detect a mixed state of the form
%.pnoise/ D 1=2N C .1 � pnoise/ j ih j as genuinely entangled if pnoise is below the
positive-valued threshold 0 < plimit < 1 [35]; for the above witness plimit D 2=5.

We evaluate the witness for our experimentally generated state 9 using the expecta-
9 For the three-qubit state in Equa-
tion (5.9) is a locally equivalent to the
three-qubit standard GHZ state, its en-
tanglement witness operator is given
by W D 3=2111213 C X1X2X3 �
1
2
.Z1Z213 C 11Z2Z3 CZ112Z3/.

tion values of the stabilizing operators in Table 5.1, we obtain a value of Tr.W%/ D

�0:709 ˙ 0:0560, confirming that the generated state exhibits genuine three-qubit
entanglement. Furthermore, the expectation value of the above entanglement wit-
ness gives a lower bound for the fidelity of the measured state & with respect to the
expected state % [35]:

F.%; &/ D Tr.%&/ �
1

2
.1 � hWi/ : (5.23)

As a check for self-consistency, we evaluate the above expression for our experimen-
tally generated state & and obtain a lower bound of F.%; &/ � 0:854˙0:0280, which
indeed corroborates our measured fidelity from earlier.

In comparison to similar experiments, particularly that in reference [84] where the
generation of a three-qubit three-photon GHZ state played a crucial role in an exper-
imental demonstration of Shor’s algorithm for the factorization of 15, they achieve a
lower fidelity of F% D 0:74 ˙ 0:02. Although their full joint state is product state
of a GHZ state and j0i (ideally), nonetheless our fidelity results are suggestive of
an improvement. Similar reasoning from the previous section may explain the less-
than-unity fidelity of our generated state, since this experiment builds upon on it; an
improvement of the former will likely improve the latter. Nonetheless, the deviation
between the two fidelities is not too great, and the latter result demonstrates that the
experimental scheme of Park et al. [116] works well enough in practice, while crucially
avoiding the added complications of using two or more SPDC processes to generate
moderate hyper(hypo)entangled photonic states.

As noted earlier, a three-qubit GHZ state is locally equivalent to a three-qubit graph
state of the form:

jG3i D
jC; 0;Ci C j�; 1;�i

p
2

; (5.24)

which in the circuit model may be generated by an application of controlled-Z (two-
qubit gate) operations on neighboring qubits (1-2 and 2-3) of the initial resource state
jCi1 jCi2 jCi3.
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5.3. RESULTS

Interestingly enough, through only the application of local operators (single-qubit
gates) we can generate another graph state, that can be otherwise generated from an
application of controlled-Z (two-qubit gate) operations on all neighboring qubits (1-2
and 2-3, and 1-3) of the initial resource state jCi1 jCi2 jCi3:

ˇ̌
C0
3

˛
D

j0; 0;Ci C j1; 0;�i C j0; 1;�i � j1; 1;Ci

2
;

D
j˚�;Ci C

ˇ̌
	C;�

˛
p
2

; (5.25)

1

2

3 1

2

3

Figure 5.6: LU equivalent graph
states through a single applica-
tion of the ELC rule. A graph state
generated with two non-local
controlled-Z operations between
1-2 and 2-3 is locally equivalent to
a graph state generated with three
non-local controlled-Z operations
between 1-2, 2-3 and 1-3. The
action of an LU operation Ua.G/
on the level of the graph, for the
chosen vertex a (indicated with a
dashed outline) an edge is created
between its neighbors (opaque
indigo line).

where j˚�i and
ˇ̌
	C

˛
are two of the Bell states. Thus our experimentally realized

state, generated with two non-local gates in the circuit model, is locally equivalent to
a graph state, generated with three non-local gates! (See Figure 5.6 for illustration)!
A projection of the third qubit (polarization) in either jCi or j�i leaves the qubit 1
(polarization) and qubit 2 (path) in the state j˚�i or

ˇ̌
	C

˛
, respectively. graph states

with this peculiar property are said to belong to same LU-equivalence class [77, 78].

The local unitaries, which may absorbed into our measurement basis, relating the
graph state in Equation (5.24) and Equation (5.25) are given by:

U D
p
.iZ1/

p
.�iX2/

p
.iZ3/: (5.26)

The experimental components that are used in performing the measurements (transla-
tion stages and wave plates), had their operations made fully automatic. Thorlabs pro-
vides a host-controller communications protocol, which provides a more fine-grained
control over their motorized components. Through the programmatic use of this pro-
tocol, the operation of each of the aforesaid motorized components was modularized
and made accessible through an application programming interface (API), remotely
served by a Raspberry Pi 4. Additionally, we designed a simple mobile graphical user
interface (GUI) for this API that gives users 10 the ability to remotely perform the 10 At the moment, only the author has

access. I will be taking applications for
early stage access soon :).

same data acquisition experiments in this chapter11. A more-detailed explanation

11 Measurements for witness, fidelity,
Bell-Mermin inequality violation, etc

of how this was achieved is of very little scientific interest, and thus can be found in
the technical Appendix D. Figure 5.7 shows a schematic flow diagram of the various
components as described above, and Figure 5.8 shows various demonstrations of the
mobile GUI. See Appendix D for details.

Ngrok

Thorlabs APT
protocol

Motor #1

Motor #2

Motor #3

Flask Serve APIMobile GUI

FPGA Figure 5.7: Schematic flow diagram
showing the various components.
Through the GUI one can queue
up an experiment through an ngrok
endpoint, which serves our locally
hosted API on a Raspberry Pi served
by a Flask server. Depending on
the invoked endpoint, the API using
invokes APT protocol to trigger the
various motors. In the instance, we
invoked endpoint is a move; after
this execution, an FPGA collects the
coincidence counts from the single
photon detectors and sends them
back to the mobile GUI.
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(a) (b)

(c) (d)

Figure 5.8: Various demo screens
for the mobile GUI. See Ap-
pendix D for details
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5.4. CONCLUDING REMARKS

5.4 Concluding remarks

In this chapter, we described an experimental scheme due to Park et al. [116] for
generating a two-photon three-qubit polarization-path-entangled GHZ state from
a Bell-state photon pair source. We experimentally realized this scheme, generating
a moderate fidelity state, higher than a previous similar experiment, that is locally
equivalent to a three-qubit GHZ state and two graph states. Each of the qubits is
addressable by measurement, with the path qubit limited to equatorial basis mea-
surements. We also showed that the generated state possess non-local correlations
by showing that it leads to a clear violation of the Bell-Mermin inequality. Further-
more, we verify that the non-local correlations the state possesses are indeed due to
genuine three-qubit entanglement, by evaluating an entanglement witness for the gen-
erated state. Finally, we proceed to make this entanglement source remotely accessible
and designed a simple GUI that allows users the ability to perform data acquisi-
tion experiments. A possible avenue of departure from here, would be to extend the
three-qubit state to a four-qubit state by similarly encoding a path qubit on the other
down-conversion photon, which would realize a four-qubit linear graph state, pro-
viding an even more versatile 4-qubit processor on which one can carry out quantum
algorithms [72] and other types of quantum protocols, such as quantum games [124].
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6
Conclusion

The aim of the project was to investigate the issues that face and study in detail the
realisation of quantum algorithms using online cloud-based quantum NISQ proces-
sors. The study was not meant to be a comprehensive study of quantum algorithms,
and was confined to two kinds of quantum algorithms; quantum search and quan-
tum factoring algorithms. Hence, the first part of the thesis was wholly concerned
with realizations of these algorithms on IBM’s quantum experience platform, and the
difficulties thereof. Most of the discussions concerning the difficulties of realizing
quantum algorithms on NISQ processors are phrased in terms of coherence time,
or number of two-qubit gates. This is a recurring theme which is emphasized and
highlighted with fervent frequency in the first part of the thesis.

We introduced the topic of the thesis in Chapter 0 and began Chapter 1 by providing
the necessary background to fundamental notions of quantum mechanics, such as
state space, evolution, measurement and entanglement. The main body of the thesis
began Chapter 2 by introducing the quantum search algorithm for the problem of
finding a needle in a haystack. We explored several contributions in this regard that
emphasized the imperative of designing algorithms in such a way to circumvent the
limitations of NISQ processors (short coherence, low qubit connectivity etc) using
sundry methods, and presented a marginal contribution of our own that improves
over an implementation of a MAX-CUT problem using Grover’s algorithm [54] with
the aforesaid methods. However, the improvement is not clear cut, as it is hard to
discern whether it is entirely attributable to the improvement of the capabilities of
the IBM Q quantum processors. We also attempted to realize a measurement-based
Grover’s algorithm for three qubits and found that such a realization is somewhat
out of reach for IBM Q processors. Our attempts to reduce the number of resources
required to realize such a measurement-based algorithm, were futile as there is no
LU-equivalent graph state with fewer than the initial resource graph state for realizing
the measurement-based Toffoli gate.

Chapter 3 introduced Shor’s algorithm for prime factorization [5] and presented the
main contribution of the thesis; which is a proof-of-concept demonstration of the
complete prime factorization ofN D 21, which builds upon a recent demonstration
in this regard in Ref. [88], and goes beyond this demonstration in fully factorizing
N D 21, aided by a great reduction in resources (number of two-qubit gates) com-
pared to the original demonstration [80].
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This feat was achieved by a replacement of the Toffoli gates (which decompose into
six controlled-NOT each) in the demonstration in Ref. [88] with relative phase
Toffoli gates (which decompose into three controlled-NOT each), such a replacement
cuts the number of two-qubit gates in half in comparison to the demonstration in
Ref. [88]. An interesting point of departure and line of research is whether such a
use case of a relative phase Toffoli gates is applicable to instances of Shor’s quantum
algorithm for a larger number of qubits.

To reiterate, the first part of the thesis comprises nothing more than a mere dint on
the surface of a volumeous subject, that is the ongoing effort to use NISQ processors
as testbeds for the investigation of many of their practical issues, and the realization
of near-term algorithms that are of practical use. The practical issues of NISQ as we
have seen throughout the first part of the thesis places an emphasis in designing near-
term algorithms in a way that is suitable for NISQ processors (algorithms that use
circuits that require low connectivity among qubits, short circuit depth and fewer two-
qubit gates). As suggested by Preskill [13] one route towards progress in the near-
term is via bottom-up experimentation. Most of the material presented in the first
part of the thesis represents such bottom-up experimentation; multi-qubit gates with
low connectivity in Ref. [57] and divide-and-conquer methods such as the divided
QPE routine in Ref. [90] and the depth multi-stage quantum search algorithm in
Ref. [55], less than ideal subdivided oracle for an application of Grover’s algorithm in
Ref. [54] and the replacement of Toffoli gates in a circuit with relative phase Toffoli
gates while preserving its functional correctness in Ref. [80]. As NISQ processors
grow in hardware (increased coherent times, qubit connectivity, real-time classical
conditionals) and software capabilities (error mitigation, transpiling, etc), many
existing algorithms with provable advantages may become viable, however, until then
experimentation may lend a helping hand.

In the second part, we steered towards experimental physics, and in Chapter 4 we
realized and characterized a photonic source of entanglement which takes the form of
a polarization-entangled Bell state. In Chapter 5 we expanded of the aforesaid two-
qubit polarization-entangled Bell state to a three-qubit path-polarization-entangled
GHZ state, with the additional qubit encoded on the momentum DOF of one of
the down-converted photons. We designed and built a small mobile graphical user
interface, providing an interactive and visual way to remotely control our experimental
set up which is the main contribution of the second part of the thesis. Novelty aside,
the author believes that such a remotely controlled experimental set up with its ease of
access and use can potentially be of some pedagogical worth to future students, partic-
ularly undergraduates as such a small-scale experimental setup that contains the some
of the core aspects of quantum mechanics are a rarity in the author’s department1. A 1 For the author, the experiments per-

formed in this thesis were the first of
their kind (quantum mechanical) they
had ever done.

possible point of departure from here would be the expansion of the three-qubit state
to a four-qubit state [116], providing an even more versatile resource state to remotely
control, and on which to carry out quantum algorithms and quantum games. The
author would also like to refine the experimental setup and mobile GUI (or a web
interface), with the aim of eventually making it publicly accessible to everyone else
besides the author and his supervisor.
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“Je n’ai fait celle-ci plus longue que parce que je n’ai pas eu le
loisir de la faire plus courte.”

— Blaise Pascal, Lettres Provinciales
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A
Appendix A

A.1 IBM Quantum Experience

The experiments in this thesis were conducted on the IBM Quantum Experience
ibmq_montreal, ibmq_mumbai, ibm_hanoi, ibmq_toronto and ibmq_casablanca
processors through the software development kit Qiskit [152]. Each experiment
reported was conducted on the date shown in the table below.

Experiment Date

Compiled quantum order-finding on ibmq_casablanca 2020/12/03
State tomography on ibmq_casablanca 2020/12/04
Verification of entanglement on ibmq_casablanca 2020/12/04
Compiled quantum order-finding on ibmq_toronto 2020/12/06
Verification of entanglement on ibmq_toronto 2020/12/07
State tomography on ibmq_toronto 2020/12/16
Original and improved MAX-CUT problem with on ibm_hanoi 2021/08/31
Original and improved MAX-CUT problem with on ibm_montreal 2021/11/07
Truth tables for measurement-based controlled-controlled-Z gate on ibm_montreal 2021/11/07
Truth tables for measurement-based controlled-controlled-Z gate on ibm_mumbai 2021/11/20

Table A.1: Dates of experiments on
IBM Q processors.

For instance, when characterizing the compiled quantum order-finding, experiments
were submitted in batches of 900 circuits with each circuit having 8192measurement
shots, hence in total, 900 � 8192measurement shots. In choosing the qubit device
mappings shown in the main text, preference was given to the qubit pairs with rel-
atively small controlled-NOT error rates. Table A.2 and Table A.3 show reported
single qubit-error rates for ibmq_toronto and ibmq_casablanca respectively, where
U2.�; �/ D Rz.�/Ry.�=2/Rz.�/. Table A.4 shows the controlled-NOT error
rates for the two processors used in the compiled quantum order-finding. The dates of
the experiments are given in the captions. In the rest of the experiments, preference is
similarly given to qubits with relatively small controlled-NOT error gates if the choice
is between qubits with a similar connectivity, and we override this preference in the
cases where one qubit has better connectivity than another.

U2 gate error rate (10�2) Readout error rate (10�4)

Q0 6.010 4.39
Q1 3.14 2.12
Q2 2.98 1.96
Q3 0.930 5.74
Q4 1.34 2.097

Table A.2: Reported single-qubit
gate errors on 16 December 2020.

Stellenbosch University https://scholar.sun.ac.za



U2 gate error rate (10�2) Readout error rate (10�4)

Q0 2.16e-2 2.18
Q1 1.31e-2 4.042
Q2 1.54e-2 2.78
Q3 9.30e-2 2.62
Q4 1.67e-2 4.96

Table A.3: Reported single-qubit
gate errors on 06 December 2020.

ibmq_toronto (10�3) ibmq_casablanca (10�2)

CX (0,1) 6.620e-3 0.9126
CX (1,4) 8.214e-3 1.114
CX (2,1) 7.152e-3 0.7446
CX (3,2) 6.824e-3 1.337

Table A.4: Reported controlled-
NOT gate errors on 06 December
(ibmq_casablanca) and 16 Decem-
ber (ibmq_toronto) 2020.

Qiskit’s QST fitter uses a least-squares fitting to find the closest density matrix de-
scribed by Pauli measurement results [153]. On an n-qubit system, the fitter requires
measurement results from executing 3n circuits. This makes QST on large circuits
in impractical. Thus only 30QST experiments were performed for the three control
register qubits and in total 33 � 30 � 8192measurement were made.

In reducing the effect of noise due to final measurement errors, Qiskit recommends a
measurement error mitigation approach. The approach starts off by creating circuits
that each perform a measurement of the 2n basis states. The measurement counts
of the 2n basis state measurements are put into a column vector Cnoisy , arranged in
ascending order by the value of their measurement bitstring, i.e. 00 : : : 00 is the first
element, the next is 00 : : : 01 and so on. The approach assumes that there is a matrix
M called the calibration matrix, such that

Cnoisy D MCideal; (A.1)

where Cideal is a column vector of measurement counts in the absence of noise. IfM is
invertible then, then Cnoisy can transformed into Cideal by findingM�1

Cideal D M�1Cnoisy: (A.2)

Qiskit [154] uses a least-squares fit to calculate an approximateM�1 by some other
matrix QM�1, as in generalM is not invertible, giving

Cmitigated D QM�1Cnoisy: (A.3)

The entries of the column vector Cmitigated correspond to the mitigated measurement
counts in same order as before. The entirety of the results reported in our work make
use of this approach.
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A.2 Error bars

The bootstrap resampling method is a statistical method dealing with a non-parametric
estimation of mean, variances, and measures of error [155, 156]. Suppose we have a
sample of n independent random variables from an unknown discrete distribution P

X1; X2; � � �Xn
iid
� P (A.4)

Having observed values x1; x2; � � � xn, we wish to compute some estimate O�.X/ and
subsequently the variance and error of this estimate. The bootstrap gives a procedure
for this, which can be summarized in the following steps [155, 156].

Assign a equal probability to each observed data point xi D
1
n
, and then proceed to

randomly draw with replacement from the observed values to get a new sample

X�
1 ; X

�
2 ; � � � ; X

�
n (A.5)

Then one computes O�� D O�.X�
1 ; X

�
2 ; � � � ; X

�
n /, then independently repeat the

random sampling to a desired number of iterations B . From this we collect a set
of B bootstrapped values of the estimate O��1

; O��2
; � � � ; O��B

and the mean of the
bootstrapped values is calculated in the standard fashion as O�� D B�1

PB
bD1

O��b
.

We are now in a position to calculate the variance of the estimate

O�2
O�

D
1

B � 1

BX
bD1

f O��b

� O��
g
2: (A.6)

The reason why we consider using the bootstrap resampling method to estimate
quantities such as the variance and standard error instead of naively calculating the
variance from the original observed values is because the sample size is fairly small for
statistical inference. The bootstrap resampling method provides a way to account for
the some of behavior of the full unknown distribution that may not be represented
in a specific sample [155, 156]. All the confidence intervals of the data presented
here were established via the above non-parametric bootstrap resampling techniques.
In order to place the constraint that the measurement counts should sum to the
number of experimental shots, a sample contains data as column vectors of outcomes
of some experiment. In each round, the resampling draws entire column vectors whose
elements respect the aforementioned constraint. For each outcome across the column
vectors, mean estimates are obtained and a confidence interval around the estimates
can be appropriately constructed.

To elucidate the above, consider the following example. Consider the outcomes of a
two-qubit experiment with experimental shots of 8192 repeated 4 times, as shown
in Table A.5.
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Outcomes Counts

Exp. 1 Exp. 2 Exp. 3 Exp. 4

00 2335 2208 2406 2203
01 665 690 633 656
10 183 100 197 177
11 5009 5192 4956 5156

Table A.5: Example data for a
two-qubit experiment repeated 4
times for illustrating how bootstrap
resampling was done.

Suppose we resampled the experiments 1; 1; 2; 4 from Table A.5, making a bootstrap
sample of size 5.

B D ŒŒ2335; 665; 183; 5009�;

Œ2335; 665; 183; 5009�;

Œ2208; 690; 100; 5192�;

Œ2203; 656; 177; 5156��: (A.7)

From this, we can obtain appropriately the bootstrap sample for each outcome (corre-
sponding to an index), e.g. the bootstrap sample for the outcomes at index 0 (outcome
00) is

B0 D Œ2335; 2335; 2208; 2203�: (A.8)

The bootstrap mean estimates and confidence intervals can then be performed for each
outcome while respecting the constraint of the measurement counts summing up to
the total number of experimental shots.

A.3 Pauli measurements

As an example, consider the measurement of the Pauli expectation value hZZZZZi.
Let pijklm denote the probability for a computational basis measurement fj0i ; j1ig

of five qubits to output the binary string ijklm, i.e. p00000 denotes the probability
to measure all the qubits in j0i state. To calculate hZZZZZi we can combine these
probabilities as given in the equation below

hZZZZZi D p00000 � p00010 � p00100 C p00101 C p00110 � p01000 C p01001

C p01010 C p01100 � p01101 � p01110 C p01111 � p10000 C p10001

C p10010 � p10011 C p10100 � p10101 � p10110 C p10111 C p11000

� p11001 � p11010 C p11011 � p11100 C p11101 C p11110 � p11111:

(A.9)

Similarly, the expectation hIZIZI i is given by

hIZIZI i D p00000 � p00010 C p00100 C p00101 � p00110 � p01000 � p01001

C p01010 � p01100 � p01101 C p01110 C p01111 C p10000 C p10001

� p10010 � p10011 C p10100 C p10101 � p10110 � p10111 � p11000

� p11001 C p11010 C p11011 � p11100 � p11101 C p11110 C p11111:

(A.10)
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However, the terms in the equation above are given by the marginalization of the
distribution measured in Equation (A.9) across the outcome space of qubits 1, 3 and
5. By considering all such marginalizations of the distribution in Equation (A.9), we
obtain the set of Pauli expectation values that can be derived from a measurement of
hZZZZZi, namely

fZZZZI;ZZZIZ;ZZZII;ZZIZZ;ZZIZI;ZZIIZ;ZZIII;

ZIZZZ;ZIZZI;ZIZIZ;ZIZII;ZIIZZ;ZIIZI;ZIIIZ;

ZIIII; IZZZZ; IZZZI; IZZIZ; IZZII; IZIZZ; IZIZI;

IZIIZ; IZIII; IIZZZ; IIZZI; IIZIZ; IIZII; IIIZZ;

IIIZI; IIIIZ g: (A.11)

After applying what is described above to the Pauli decomposition of the ideal state
� D j	 ih	 j, we reduce the number of terms that we need to measure from 293 to 79
terms, as given below

fXXXXZ;XXXZX;XXXZZ;XXY YZ;XXYZY;XXZXX;XXZXZ;

XXZY Y;XXZZX;XYXYZ;XYXZY;XY YXZ;XY YZX;XY YZZ;

XYZXY;XYZYX;XYZYZ;XYZZY;XZXXX;XZXY Y;XZXZZ;

XZYXY;XZY YX;XZZXZ;XZZZX; YXXYZ; YXXZY; YXYXZ;

YXYZX; YXYZZ; YXZXY; YXZYX; YXZYZ; YXZZY; Y YXXZ;

Y YXZX; Y YXZZ; Y Y Y YZ; Y Y YZY; Y YZXX; Y YZXZ; Y YZY Y;

Y YZZX; YZXXY; YZXYX; YZYXX; YZY Y Y; YZYZZ; YZZYZ;

YZZZY;ZXXXZ;ZXXZX;ZXXZZ;ZXY YZ;ZXYZY;ZXZXX;

ZXZXZ;ZXZY Y;ZXZZX;ZYXYZ;ZYXZY;ZY YXZ;ZY YZX;

ZY YZZ;ZYZXY;ZYZYX;ZYZYZ;ZYZZY;ZZXXX;ZZXXZ;

ZZXY Y;ZZXZX;ZZYXY;ZZY YX;ZZY YZ;ZZYZY;ZZZXX;

ZZZY Y;ZZZZZ g: (A.12)
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B
Appendix B

B.1 The equivalence of Grover’s algorithm with a measurement proce-
dure on a four qubit box graph state

In section § 2.4.2 of Chapter 2, we conjectured that Grover’s algorithm for two qubits
is equivalent to a measurement procedure on a four-qubit box graph state shown
in Figure 2.26, which begins by measuring qubits 0 and 3 in basis B.˛/ andB.ˇ/ ,
respectively. Followed by a measurement of qubits 1 and 2 in the basis B.�/.

jq0i D jCi

jq1i D jCi Z

Rz.˛/

Rz.ˇ/

H

H Z

Z

Z

H

H

Figure B.1: Effective operations
applied to the two remaining qubits
after measurement procedure de-
scribed in § 2.4.2 on a four-qubit
box graph state when the measure-
ment outcomes on qubit 2 and 3 are
m0 D m3 D 0. With an appropriate
choice of ˛; ˇ, the circuit diagram is
equivalent to Grover’s algorithm on
two qubits.

After this measurement procedure, on the remaining qubits, originally in the state
jCi jCi, we have effectively applied the set of operations shown in the circuit diagram
in Figure B.1, when the measurement outcomes on qubits 0 and 3 are bothm0 D

m3 D 0. Namely,

CZ01 OH .0/
˝ OH .1/ OR.0/z .ˇ/˝ OR.1/z .˛/CZ01 jCi0 jCi1 ; (B.1)

all the unitary operations in the above equation can be written in matrix notation as

CZ01 D

0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

1CCCA;

OR.0/z .˛/˝ OR.1/z .ˇ/ D
1

2

0BBB@
ei.˛Cˇ/=2 0 0 0

0 ei.˛�ˇ/=2 0 0

0 0 ei.ˇ�˛/=2 0

0 0 0 e�i.˛Cˇ/

1CCCA;

OH .0/
˝ OH .1/

D
1

2

0BBB@
1 1 1 1

1 �1 1 �1

1 1 �1 �1

�1 �1 �1 1

1CCCA; (B.2)

and the state jCi0 jCi1 is written as
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j 0i D jCi0 jCi1 D
1

2

0BBB@
1

1

1

1

1CCCA: (B.3)

Applying the unitary matrices to the state vector jCi0 jCi1, as in Equation (B.2),
after some algebraic deadlifting we arrive at the state vector

D
ei.˛Cˇ/=2

4

0BBB@
1C e�iˇ C e�i˛ � e�i.˛Cˇ/

1 � e�iˇ C e�i˛ C e�i.˛Cˇ/

1C e�iˇ � e�i˛ C e�i.˛Cˇ/

�1C e�iˇ C e�i˛ C e�i.˛Cˇ/

1CCCA: (B.4)

The four-qubit box graph state in Figure 2.26 can be realized by applying controlled-
Z gates between the qubits connected by edges as depicted in figure.

Y
.i;j /2E

CZij jCi0 jCi1 jCi2 jCi3 ;

D
1

2
.j0i1 jCi2 j0i3 jCi4 C j0i1 j�i2 j1i3 j�i4

C j1i1 j�i2 j0i3 j�i4 C j1i1 jCi2 j1i3 jCi4/; (B.5)

where CZij is a controlled-Z gate with a control qubit i and target qubit j , and for
the graph in Figure 2.26E D f.0; 1/; .0; 3/; .1; 3/; .3; 2/g. The projectors that
correspond to the measurement basis B.˛/ are given by

�˙˛;i D j˙˛i i h˙˛i j D
1

2
.j0ii C ei˛i j1ii /.h0ji C e�i˛i h1ji /: (B.6)

For algebraic convenience, and without the loss of generality, we will only consider
measurement outcomemi D 0 corresponding to the projector�C˛;i . The measure-
ment procedure begins by first measuring qubit 0 in the basis B.˛/. In the case where
we obtain the outcomem0 D 0, the state after the projective measurement is

�C˛;0 j i D
1

4
.j0i0 C ei˛ j1i0/.jCi1 j0i2 jCi3 C j�i1 j1i2/ j�i3

C e�i˛
j�i1 j0i2 j�i3 C e�i˛

jCi1 j1i2 jCi3/: (B.7)

The above projective measurement is followed by another similar projective measure-
ment in the basis B.ˇ/ on qubit 3. In the case where we obtainm3 D 0 the state after
projective measurement is given by

�Cˇ;3�C˛;0 j i D
1

8
.j0i0 C ei˛ j0i0/.j0i3 C eiˇ j1i3/..1C e�iˇ / jCi1 j0i2

C .1 � e�iˇ / j�i1 j1i C .1 � e�iˇ / j�i1 j0i3

C .1C e�iˇ / jCi1 j1i2/: (B.8)

Stellenbosch University https://scholar.sun.ac.za



Using vector notation, we can write the expression in Equation (B.8) as

�Cˇ;3�C˛;0 j i D
1

8

0BBB@
.1C e�iˇ /C .1 � e�iˇ /e�ˇ

.1C e�iˇ /e�i˛ C 1.1 � eiˇ /

.1C e�iˇ / � .1 � e�iˇ /e�i˛

.1C e�iˇ /e�i˛ � .1 � e�ˇ /

1CCCA;

D
1

8

0BBB@
1C e�iˇ C e�i˛ � e�i.˛Cˇ/

1 � e�iˇ C e�i˛ C e�i.˛Cˇ/

1C e�iˇ � e�i˛ C e�i.˛Cˇ/

�1C e�iˇ C e�i˛ C e�i.˛Cˇ/

1CCCA: (B.9)

Up to normalization and a global phase, the above state vector is equivalent to the
state vector in Equation (B.4) we arrived at via the circuit diagram in Figure B.1.

If our choice of the angles ˛; ˇ is such thatRz.˛/ ˝ Rz.ˇ/ puts a negative sign on
the amplitude of jk0i jk1i, then the action of the byproductZm0 ˝ Zm3 due to the
measurement outcomes will be such that the negative sign moves to the amplitude of
the state jk0 ˚m0i jk1 ˚m3i. Thus, dependingm0 andm3 on qubits 0 and 3, we
merely add modulo 2 the measurement outcome of qubit 1 to qubit 0 (m0 ˚ m1),
and of qubit 2 to qubit 3 (m2 ˚ m3), respectively. In this way, we recover Grover’s
algorithm for the target element originally determined by our choice of the angles
˛; ˇ.

B.2 Local unitary equivalence class of the four-qubit box graph states
through edge local complementation

Two graph states jGi ; jG0i corresponding to the graphsG D .V;E/;G0 D .V;E 0/

respectively, with the same set of vertices (under a graph isomorphism)1, i. e. G D 1 Two graphs G and H are said to
be isomorphic if there exists a bi-
jection between their vertex set i.e
f W V.G/ 7! V.H/ such that when
the two vertices share an edge in one
graph, the edge is preserved in the new
graph (i. e. a relabeling of vertices), such
an edge-preserving bijection is called
an isomorphism. We write G Š H to
denote that G and H are isomorphic.

.V;E/ andG0 D .V;E 0/, are said to be LU-equivalent if there exists a sequence of
unitary operators Ua.G/ where a 2 V such that

Y
Ea

Ua.G/ jGi D
ˇ̌
G0
˛
; (B.10)

where Ea is a sequence of vertices in V . The unitary transformation Ua.G/ is of the
form

Ua.G/ D

p
iX .a/

Y
b2�a

p
iZ.b/: (B.11)

Here �a is the neighborhood of the vertex b,X .a/ andZ.a/ are PauliX andZ,
respectively, acting on qubit a2. The above unitary transformation Ua.G/ is indepen- 2 For a graph G D .V;E/, the neighbor-

hood of a vertex b 2 V , is the set of all
vertices that share an edge with b, that
is, 8a W .a; b/ 2 E .

dently due to Hein [77] and Nest [78]. Through repeated applications of the Ua.G/,
it is possible to generate an entire LU-equivalence class of graph states.

On the level of graphs, the unitary transformation Ua.G/ has a graph theoretic inter-
pretation, that is, applying Ua.G/ to jGi, the graphG D .V;E/ is transformed to
anotherG0 D .V;E 0/ such that the set of edges in the new graph is given by

E 0
D E [E.�a; �a/ nE \E.�a; �a/; (B.12)
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whereE.�a; �a/ is the all set of possible edges between the vertices in the neighbor-
hood of a, \ and [ are the set interpretation and union operators, respectively, and n

denotes the set complement operation. Graphically, the transformation Ua.G/ adds
new edges between the vertices in the neighborhood of vertex a toE (E[E.�a; �a/),
if they are already present, i. e. inE \ E.�a; �a/, the said edges are removed fromE .
(nE \ E.�a; �a/), such a transformation in graph theory is called edge local comple-
mentation (ELC) [157].

One advantageous consequence of the above unitary transformation is the following
we may wind up in a scenario where we are interested in realizing some quantum
protocol which uses a graph state jGi, with the underlying graphG D .V;E/, as
an initial resource state. For the state initialization procedure of a given protocol, we
would have to apply jEj controlled-Z gates between the connected qubits .v; w/ 2 E

to the initial state jCi
˝jV j to get jGi. However, if jGi happens to belong to an LU-

equivalence class, and we may be able to find the equivalence class member jG0i with
the least of number of edges in that class, such that jGi D U jG0i for some local
unitary operator U (tensor product of Pauli matrices and/or their square roots).
Thus, in our new state initialization procedure, we can choose to prepare jG0i instead
with jE 0j < jEj controlled-Z gates. Such a reduction in controlled-Z gates in
practice might be of some appeal and advantage, since two-qubit gates are considered
non-trivial and expensive in comparison to local (tensor product of single-qubit gates)
unitaries.

1

2

0

3 1

2

0

3

1

2

0

31

2

0

3

U2

U1

U2

Figure B.2: LU equivalence of a
four-qubit graph state with three
edges connected with the four-qubit
box graph state through repeated
applications of edge local comple-
mentation. The action of an LU
operation Ua.G/ on the level of
the graph, for the chosen vertex a
(indicated with a dashed outline)
leads to an edge created between
its neighbors (opaque indigo line)
and if it already exists is removed
(opaque dashed indigo line).

We now illustrate an example of the scenario described above. The measurement-
based equivalent of Grover’s algorithm for two qubits can realized on the four-qubit
box graph state, which in total has four connections, as we have seen in § 2.4.2. The
four-qubit box graph state is LU-equivalent (and up to a graph isomorphism) to a
four-qubit linear graph state with one less qubit connection. Starting from the latter
graph state, by applying local unitaries U2.G/, U1.G/ and U2.G/ on qubits 2; 1
and 2, respectively, we end up with a four-qubit graph state that is isomorphic to
four-qubit box graph state; this is shown in Figure B.2.

We can find the effective local unitaries that relate the two graph states by successively
applying the rule in Equation (B.11), to the initial four-qubit linear graph state as
depicted in Figure B.2. Initially, U2.G/ is given by

OU2.G/ D

p
�iX .2/

Y
b2�2

p
iZ.b/: (B.13)

For the initial graph, the neighbors of vertex 2 are vertices 1 and 3. Thus, the above
expression for U2.G0/ becomes

OU2.G0/ D 1.0/ ˝

p
iZ.1/ ˝

p
iZ.2/ ˝

p
�iX .3/: (B.14)

The action of U2.G0/ transformsG0 to new a graphG1, which has an edge between
qubits 1 and 3. For the new graph state jG1i, the local unitary U1.G1/ that follows is
given by

OU1.G1/ D

p
�iX .1/

Y
b2�1

p
iZ.b/: (B.15)
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InG1, the neighbors of vertex 1 are vertices 0; 2 and 3. Hence, we have

OU1.G1/ D

p
iZ.0/ ˝

p
�iX .1/ ˝

p
iZ.2/ ˝

p
iZ.3/: (B.16)

From which, the resultant new graphG2 has new edges .0; 3/ and .0; 1/, and the edge
between .2; 3/ is removed. Lastly, we consider the local unitary U2.G2/ on the new
graphG2

OU2.G2/
p

�iX .2/
Y
b2�2

p
iZ.b/; (B.17)

where the neighbors of the vertex 2 are now the vertices 0 and 1.

OU2.G2/ D

p
iZ.0/ ˝

p
iZ.1/ ˝

p
�iX .2/ ˝ 1.3/: (B.18)

The action of U2.G2/ is to remove the edge .0; 1/ to give the new graphG3. Looking
at Figure B.2, the graphG3 under the following isomorphism

f .1/ D 2;

f .2/ D 1;

f .3/ D 3;

f .0/ D 0; (B.19)

is equivalent to the four-qubit box graph state Figure 2.26. Tallying up the all local
unitaries and using the identities [158]:

p
X D ei�=4Rx.�=2/;

p
Z D ei�=4Rz.�=2/: (B.20)

The full unitary operation is then given by

U2.G0/U1.G1/U2.G2/ D iU .0/ ˝ U .1/ ˝ U .2/ ˝ U .3/;

U .0/ D R.0/z .�/;

U .1/ D R.1/z .�=2/R.1/x .�=2/R.1/z .�=2/;

U .2/ D R.2/x .�=2/R.2/z .�/;

U .3/ D R.3/z .�=2/R.3/x .�=2/: (B.21)
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B.3 Edge local complementation equivalence class of a graph state re-
alizing a measurement-based controlled-controlled-Z gate

Starting from the ten-qubit graph state in Figure 2.28 that realizes the measurement-
based controlled-controlled-Z gate with an appropriate choice of measurements
as described in § 2.4.2. By repeated applications of the ELC rule, which results in
the local unitaries of the form in Equation (B.11); using the graph-state compass
program [159] from Ref. [160] we expand the equivalence class to which the aforesaid
graph state belongs. The representative members of this equivalence class are shown
in Figure B.3; in the equivalence class, the member with the least number of edges is
the original ten-qubit graph state.

Figure B.3: An equivalence class of
ten-qubit graph states that performs
a controlled-controlled-Z gate with
an appropriate choice of measure-
ments as described in § 2.4.2.
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C
Appendix C

C.1 Postselection scaling

In order to do mid-circuit measurements and post select the outcomes, we need to
know the basis to measure in for each of the qubits. Looking at Figure 3.11, one
would need to measure qubit 1 (or the first iteration in the recycling case) in the
fjCi ; j�ig basis (since there is Hadamard gateH on acting qubit 1 before theZ-
basis measurement), then qubit 2 (or the second iteration in the recycling case) in
either the fS� jCi ; S j�ig (if our measurement outcome on qubit 1 was jCi) or
fjCi ; j�ig basis, then qubit 3 in either the fT �S� jCi ; TS j�ig, fS� jCi ; S j�ig

or fjCi ; j�ig basis. Thus, the number of measurements needed scales as nŠ, which
grows faster than an exponential with constant base, e.g. 2n. So in general the speed
up gained would be lost for general factoring using a post selection method, i. e. factor-
ing numbers larger than 21.

C.2 Effect of relative phase Toffolis

Below we show the compiled circuit for the period-finding routine and label specific
instances during the evolution of the computation. The aim is to show the invariance
of the computation when replacing Toffoli gates with relative phase Toffoli gates that
use fewer resources.

jc0i

jc1i

jc2i

jq0i

jq1i

H

H

H

j	0i j	1i

M

j	2i

X

M

X

j	3i

M

QF T �

Figure C.1: States in both regis-
ters at various points during the
execution of the circuit.
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The states at various points of the evolution are given explicitly as

j	0i D jCic0
jCic1

jCic2
j0iq0

j0iq1
;

j	1i D jCic0
.j0ic1

j0ic2
j0iq0

j0iq1
C j0ic1

j1ic2
j0iq0

j1iq1
C

j1ic1
j0ic2

j0iq0
j1iq1

C j1ic1
j1ic2

j0iq0
j0iq1

/;

j	2i D j0ic0
j0ic1

j0ic2
j0iq0

j0iq1
C j0ic0

j0ic1
j1ic2

j0iq0
j1iq1

C

j0ic0
j1ic1

j0ic2
j1iq0

j0iq1
C j0ic0

j1ic1
j1ic2

j0iq0
j0iq1

C

j1ic0
j0ic1

j0ic2
j0iq0

j0iq1
C j1ic0

j0ic1
j1ic2

j0iq0
j1iq1

C

j1ic0
j1ic1

j0ic2
j1iq0

j0iq1
C j1ic0

j1ic1
j1ic2

j0iq0
j0iq1

;

j	3i D j0ic0
j0ic1

j0ic2
j0iq0

j0iq1
C j0ic0

j0ic1
j1ic2

j0iq0
j1iq1

C

j0ic0
j1ic1

j0ic2
j1iq0

j0iq1
C j0ic0

j1ic1
j1ic2

j0iq0
j0iq1

C

j1ic0
j0ic1

j0ic2
j1iq0

j0iq1
C j1ic0

j0ic1
j1ic2

j0iq0
j1iq1

C

j1ic0
j1ic1

j0ic2
j0iq0

j0iq1
C j1ic0

j1ic1
j1ic2

j1iq0
j0iq1

: (C.1)

Looking at the state j	1i, one can see that none of its constituent states is transformed
into j1ic1

j0iq0
j1iq1

by the CX gate that follows, since the state j1ic1
j1iq0

j1iq1

that would be transformed to the former is not present in j	1i. Thus the relative
phase Toffoli gate does not affect the phase in the registers. Similarly for j	2i, the
state j1ic0

j1iq0
j0iq1

is not present when the subsequent relative phase Toffoli gate
is applied because the state j1ic0

j1iq0
j1iq1

is absent from the register for j	2i and
this is needed when OX is applied to qubit q1. The scenario for j	3i is the same as
that of j	1i, the only difference is the control is now c0. The Margolus gates in this
particular quantum circuit never encounter the basis state j101i, thus the operation
of the circuit remains unchanged by the replacement of full Toffoli gates with their
respective relative phase counterparts.
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C.3 Maximum overlap with respect to the bipartitions

The values listed below were obtained using the software package QUBIT4MATLAB [107].
Here, j�i is a pure biseparable state in some defined bipartite partition (bipartition),
i.e. a separable product state with respect to this bipartition, and j	 i is the ideal state
in both the control and work registers preceding the application of the QFT to the
control register.

max
�2f.c1/.c0c2q0q1/g

jh�j	 ij
2

D 0:500;

max
�2f.c2/.c0c1q0q1/g

jh�j	 ij
2

D 0:500;

max
�2f.q0/.c0c1c2q1/g

jh�j	 ij
2

D 0:750;

max
�2f.q1/.c0c1c2q0/g

jh�j	 ij
2

D 0:625;

max
�2f.c0c1/.c2q0q1/g

jh�j	 ij
2

D 0:500;

max
�2f.c0c2/.c1q0q1/g

jh�j	 ij
2

D 0:500;

max
�2f.c0q0/.c1c2q1/g

jh�j	 ij
2

D 0:427;

max
�2f.c0q1/.c1c2q0/g

jh�j	 ij
2

D 0:570;

max
�2f.q0q1/.c0c1c2/g

jh�j	 ij
2

D 0:375;

max
�2f.c0q1/.c0c1q0/g

jh�j	 ij
2

D 0:570;

max
�2f.c1q1/.c0c2q0/g

jh�j	 ij
2

D 0:570;

max
�2f.c1q0/.c0c2q1/g

jh�j	 ij
2

D 0:427;

max
�2f.c2q0/.c0c1q1/g

jh�j	 ij
2

D 0:427;

max
�2f.c1c2/.c0q0q1/g

jh�j	 ij
2

D 0:500: (C.2)

For a given separation of the qubits into two partitions (a bipartition), e.g. .c1/.c0c2q0q1/,
there is a pure product state j�i with respect to these partitions, i.e. no entanglement
between the partitions, that maximizes the overlap squared with the ideal state. The
value of the overlap squared between this product state and the ideal state, e.g. 0.5,
is therefore the highest value that can be obtained for an separable state between the
partitions. Thus, if a given state has an overlap squared larger than 0.5 it must be
an entangled state with respect to the partitions. The value of the maximum overlap
squared changes for the different partitions chosen as it depends on the structure of
the ideal state. The above results extend to mixed states across the bipartitions due to
the convex sum nature of quantum states [107].
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C.4 Continued fractions and convergents

A 2LC 1 bit rational number ' is said to have a continued fraction expansion if it can
be written as

' � Œa0; a1; : : : ; an� � a0 C
1

a1 C
1

a2C 1

���C 1
an

; (C.3)

where n is a finite integer and the ai ’s are integers. Additionally, if ' < 1, we have
a0 D 0. The convergents of the continued fraction expansion are the rationals,

a0; a0 C
1

a1
; a0 C

1

a1 C
1
a2

; � � � (C.4)

If a rational number s=r satisfies the following inequality

ˇ̌̌ s
r

� '
ˇ̌̌

�
1

2r2
; (C.5)

then s=r will appear as a convergent in the continued fraction expansion of '. If '
is an approximation of s=r accurate to 2L C 1 bits, then we have js=r � 'j �

1=22LC1. For r � N � 2L, we have that 1=22LC1 � 1=2r2. Therefore, since
the inequality holds for the approximation ', there is a classical algorithm that can
compute the convergents of ', and produce integers s0; r 0 such that gcd.s0; r 0/ D 1

in O.L3/ operations [17]. We can then check if r 0 is the order of x andN by testing
whether xr

0

mod N D 1. Note that in our approach, ' D 's=2
n ' s=r is not an

approximation that is accurate to 2LC 1 bits as above, but is a further approximation
of s=r depending on the resolution, i.e. the number of iterations, or alternatively
qubits in the control register.

Consider the following example of the final measurement outcomes from Figure 3.15
in the main text, where the outcomes j110i D j6i and j101i D j5i are peaked in
the outcome distribution and we have used the integer representation of the binary
outcome. The former outcome gives ' D

6
23 and latter gives ' D

5
23 . Computing the

continued fractions of the former gives

6

8
D
3

4
;

3

4
D 0C

1
4
3

;

3

4
D 0C

1

1C
1
3

: (C.6)

Thus

6

8
D Œ0; 1; 3�: (C.7)
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Computing the convergents according to Equation (C.4) gives 0; 1; 3=4. On the other
hand, computing the continued fractions of the latter ' gives

5

8
D 0C

1
8
5

;

5

8
D 0C

1

1C
3
5

;

5

8
D 0C

1

1C
1
5
3

;

5

8
D 0C

1

1C
1

1C 2
3

;

5

8
D 0C

1

1C
1

1C 1
3
2

;

5

8
D 0C

1

1C
1

1C 1

1C 1
2

: (C.8)

The above calculation gives the following continued fractions expansion

5

8
D Œ0; 1; 1; 1; 2�: (C.9)

Computing the convergents gives 0; 1; 1=2; 2=3; 5=8. Looking at the former and
latter computed convergents, we note that the fourth convergent of the latter correctly
gives r 0 D 3 while the convergents of the former do not give the correct order when
tested using xr

0

modN D 1.
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D
Appendix D

The server architecture we designed for making our entanglement resource remotely
accessible for data acquisition experiments was built around Thorlabs’ host-controller
communications APT protocol [161]. The protocol provides a way to programmat-
ically communicate with almost all Thorlabs motion controllers1. The communica- 1 Our experiment uses KDC101 - K-Cube

Brushed DC Servo Single-Channel Motor
Controllers.

tion protocol is based on a message structure that always starts with a fixed length,
6-byte message header which, in some cases, is followed by a variable length data
packet, which specifies the sundry byte sequences for sundry operations, all commu-
nicated over a USB port. In the name of simplicity, we do not use the protocol in this
form but instead use an open-sourced functional implementation in python made by
YAQ [162], which provides modularized functions to invoke sundry operations on
motion-controllers such as specifying motors and changing the parameters (speed,
acceleration etc) of the motors, hiding the fine-grained implementation details of the
APT protocol to the user.

For example, the following code snippet packages the byte sequence to be sent from a
source port to a destination source that specifies that an operation that homes a motor
to its zero position.

def mot_move_home(dest: int, source: int, chan_ident: int) -> bytes:

return _pack(0x0443, dest, source, param1=chan_ident)

Subsequently, the packaged byte sequence can then be communicated over a USB port
to execute on some specified motor, with the following prototypical code snippet:

import thorlabs_apt_protocol as apt

import serial

# grab motor connected to USB port 0

port = serial.Serial("/dev/ttyUSB0", 115200, rtscts=True, timeout=0.1)

port.rts = True

port.reset_input_buffer()

port.reset_output_buffer()

port.rts = False

# home motor

port.write(apt.mot_move_home(source=source, dest=dest, chan_ident=chan_ident))

We used the protocol in a similar manner to the above code snippet, and through
an application programming interface (API), we exposed the relevant higher-order
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functionalities required to carry out the various projective measurements in our ex-
periment. Our API is served by an HTTP Flask server [163] locally hosted on a
Raspberry Pi 4. The HTTP server communicates with clients via HTTP requests
(GET, POST, PUT); we use GET requests to serve information about the motors,
such as the homing parameters, device status, etc to a client that makes such a request.
Similarly, PUT requests are used by clients to update the aforesaid parameters on the
motors. And lastly, POST requests are used by clients to start the execution of moves,
such as homing, jog etc. The code snippet below shows an API endpoint for requests
related to the homing move. The GET request here performs the necessary operations
to get the homing parameters from a motor specified through the parameters of the
request and returns them to the requesting client:

@app.route("/home", methods=["GET", "POST", "PUT"])

def home():

if request.method == "GET":

device = int(request.args.get("device", 0))

port = devices[device]

if port is None:

return jsonify({"status": "error", "error": "Device unavailable"}), 500

for i in range(retries):

port.write(

apt.mot_req_homeparams(source=source, dest=dest, chan_ident=chan_ident)

)

unpacker = apt.Unpacker(port)

for message in unpacker:

if hasattr(message, 'msg') and message.msg == "mot_get_homeparams":

sem.release()

logging.info(message)

return jsonify(message), 200

return (

jsonify({"status": "error", "error": "Could not get home parameters"}),

500,

)

...

Similarly, all the necessary operations were exposed as an endpoint of the API. Once
this was accomplished, the entirety of the locally hosted API was made accessible
through a public URL via ngrok [164], giving remote access to the API. Lastly, we
designed a mobile graphical user interface (GUI) with Expo [165], which provides a
simple and intuitive way to use the API for carrying out user-defined experiments and
parameter updating operations. We conclude this appendix by showing a demo of the
various screens of mobile GUI in Figure D.1, Figure D.2 and Figure D.3.
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(a) (b)

(c) (d)

Figure D.1: Various screens for
our mobile graphical user interface
for controlling our remote source
of entanglement: (a), (b) On the
initial load of the GUI, a user gets
directed to the dashboard where
they can see all the motorized de-
vices and their meta data (online
status, hardware etc) accessible by
the API. (c) Whenever a user clicks
one of the cards, they are directed
to a screen with more fine-grained
details about that specific device
such as jogging parameters, velocity
parameters, etc. (d) If a user wishes,
it possible to edit the parameters
by clicking the edit button next to
the type of parameters they wish
to change. Where they are taken
to a screen with text fields of the
editable parameters and the ability
to save these changes.
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(a) (b)

(c) (d)

Figure D.2: Various screens for
our mobile graphical user inter-
face for controlling our remote
source of entanglement. (a), (b)
The composer screen allows a
user to set up a simple experiment
by specifying the projective mea-
surements on each qubit, with
each of the clickable squares rep-
resenting the measurement basis
indicated on the square 0 D j0i,
1 D j1i, ˙ D .j0i ˙ j1i/=

p
2 and

˙i D .j0i ˙ i j1i/=
p
2. (c) Once

a user is happy with their choice
of measurement basis, by clicking
start button they can set up data
acquisition parameters such as the
interval of data collection (period),
how many data points are collected
(rounds) for the collection interval.
Furthermore, they can also specify
how many times this experiment
is to be repeated (cycles) and the
paused between these repeated
cycles (dwell). (d) By clicking the
start button on the previous screen,
the relevant HTTP requests are
made to the API, which are then
executed on the motors. Once
completed the API returns the col-
lected coincidences counts, which
are then shown to the user in table
format. In this case, the coincidence
counts are for the measurement of
j1; 1; 1ih1; 1; 1j
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(a) (b)

(c) (d)

Figure D.3: Various screens for our
mobile graphical user interface for
queueing up a sequence of projec-
tive measurements on our remote
source of entanglement. (a) This
screen allows a user to queue up
a sequence of projective measure-
ments in a first in first out (FIFO)
queue. (b), (c) By clicking the add
button on bottom right, a screen
similar to the composer pops up
for specifying a projective mea-
surement on each qubit and save
it on the queue. (d) The queued
projective measurements populate
the screen in (a), where queued
measurements can be edited and
deleted.
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(a) (b)

(c) (d)

Figure D.4: Various screens for our
mobile graphical user interface for
editing and executing a sequence
of projective measurements on
our remote source of entangle-
ment. (a) The queued projective
measurements are each assigned
a unique ID. (b) By clicking on a
specific card, identified by its ID,
a screen similar to the composer
pops up where the projective mea-
surements can edited or deleted
from the queue. (d) Once a user is
happy with their queued projective
measurements, by clicking the start
button screen (a), they can specify
move parameters similar to Fig-
ure D.2 (c) and start running the
queued projective measurements;
a loading state is shown. (d) Once
finished, the collected double coin-
cidences counts are returned, and
are shown to the user in table for-
mat, in order of in the order of their
execution from the FIFO queue.
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