
Evolutionary algorithms for robot path
planning, task allocation and collision
avoidance in an automated warehouse

by

Marco Croucamp

Dissertation presented for the degree of Doctor of Philosophy
in the Faculty of Engineering at Stellenbosch University

Supervisor: Prof. Jacomine Grobler

April 2022

Declaration

By submitting this dissertation electronically, I declare that the entirety of the work contained
therein is my own, original work, that I am the sole author thereof (save to the extent explicitly
otherwise stated), that reproduction and publication thereof by Stellenbosch University will not
infringe any third party rights and that I have not previously in its entirety or in part submitted
it for obtaining any qualification.

April 2022

Copyright ©2022 Stellenbosch University
All rights reserved

ii

Stellenbosch University https://scholar.sun.ac.za

Abstract

Research with regard to path planning, task allocation and collision avoidance is important
for improving the field of warehouse automation. The dissertation addresses the topic of routing
warehouse picking and binning robots. The purpose of this dissertation is to develop a single
objective and multi-objective algorithm framework that can sequence products to be picked or
binned, allocate the products to robots and optimise the routing through the warehouse. The
sequence of the picking and binning tasks ultimately determines the total time for picking and
binning all of the parts. The objectives of the algorithm framework are to minimise the total
time for travelling as well as the total time idling, given the number of robots available to perform
the picking and binning functions. The algorithm framework incorporates collision avoidance
since the aisle width does not allow two robots to pass each other. The routing problem sets
the foundation for solving the sequencing and allocation problem. The best heuristic from the
routing problem is used as the strategy for routing the robots in the sequencing and allocation
problem. The routing heuristics used to test the framework in this dissertation include the
return heuristic, the s-shape heuristic, the midpoint heuristic and the largest gap heuristic. The
metaheuristic solution strategies for single objective part sequencing and allocating problem
include the covariance matrix adaptation evolution strategy (CMA-ES) algorithm, the genetic
algorithm (GA), the guaranteed convergence particle swarm optimisation (GCPSO) algorithm,
and the self-adaptive differential evolution algorithm with neighbourhood search (SaNSDE). The
evolutionary multi-objective algorithms considered in this dissertation are the non-dominated
sorting genetic algorithm III (NSGA-III), the multi-objective evolutionary algorithm based on
decomposition (MOEAD), the multiple objective particle swarm optimisation (MOPSO), and
the multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES).

Solving the robot routing problem showed that the return routing heuristic outperformed the
s-shape, largest gap and midpoint heuristics with a significant margin. The return heuristic was
thus used for solving the routing of robots in the part sequencing and allocation problem.

The framework was able to create feasible real-world solutions for the part sequencing and
allocation problem. The results from the single objective problem showed that the CMA-ES
algorithm outperformed the other metaheuristics on the part sequencing and allocation problem.
The second best performing metaheuristic was the SaNSDE.

iii

Stellenbosch University https://scholar.sun.ac.za

The GA was the third best metaheuristic and the worst performing metaheuristic was the
GCPSO. The multi-objective framework was able to produce feasible trade-off solutions and
MOPSO was shown to be the best EMO algorithm to use for accuracy. If a large spread and
number of Pareto solutions are the most important concern, MOEAD should be used.

The research contributions include the incorporation of collision avoidance in the robot
routing problem when using single and multi-objective algorithms as solution strategies. This
dissertation contributes to the research relating to the performance of metaheuristics and
evolutionary multi-objective algorithms on routing, sequencing, and allocation problems. To
the best of the author’s knowledge, this dissertation is the first where these four metaheuristics
and evolutionary multi-objective algorithms have been tested for solving the robot picking
and binning problem, given that all collisions must be avoided. It is also the first time
that this specific variation of the part sequencing and allocation problem has been solved
using metaheuristics and evolutionary multi-objective algorithms, taking into account that all
collisions must be avoided.

iv

Stellenbosch University https://scholar.sun.ac.za

Opsomming

Navorsing in verband met roete beplanning, part allokasie en botsing vermyding is belangrik
vir die bevordering van die pakhuis automatisering veld. Die verhandeling handel oor die
onderwerp van parte wat gestoor en gehaal moet word en die verkillende parte moet ook
gealokeer word aan ’n spesifieke robot. Die doel van hierdie verhandeling is om ’n enkele
doelwit en ’n multidoelwit algoritme raamwerk te ontwikkel wat parte in ’n volgorde rangskik
en ook die parte aan ’n robot alokeer. Die roete wat die robot moet volg deur die pakhuis
moet ook geoptimeer word om die minste tyd te verg. Die volgorde van die parte bepaal
uiteindelik die totale tyd wat dit neem vir die robot om al die parte te stoor en te gaan
haal. Die doelwitte van die algoritme raamwerk is om die totale reistyd en die totale ledige
tyd te minimeer, gegewe die aantal beskikbare robotte in die sisteem om die stoor en gaan
haal funksies uit te voer. Die algoritme raamwerk bevat botsingsvermyding, aangesien die
gangbreedte van die pakhuis nie toelaat dat twee robotte mekaar kan verbygaan nie. Die roete
probleem lê die grondslag vir die oplossing van die volgorde en allokerings probleem. Die beste
heuristiek vir die roete probleem word verder gebruik in die volgorde en allokerings probleem.
Die verskillende roete heuristieke wat in hierdie verhandeling oorweeg was, sluit in die terugkeer
heuristiek, die s-vorm heuristiek, die middelpunt heuristiek en die grootste gaping heuristiek.
Die metaheuristieke vir die volgorde en allokerings probleem sluit die volgende algoritmes in:
die kovariansie matriks aanpassing evolusie algoritme (CMA-ES), die genetiese algoritme (GA),
die gewaarborgde konvergerende deeltjie swermoptimerings (GCPSO) algoritme, en laastens
die selfaanpassende differensiële evolusie algoritme met die teenwoordigheid van buurtsoek
(SaNSDE). Die evolusionêre multidoelwit algoritmes wat oorweeg was vir die volgorde en
allokerings probleem sluit die volgende algoritmes in: die multidoelwit kovariansie matriks
aanpassing evolusie algoritme (MO-CMA-ES), die nie-dominerende sortering genetiese algoritme
III (NSGA-III), die multidoelwit evolusionêre algoritme gebaseer op ontbinding (MOEAD) en
laastens die multidoelwit deeltjie swermoptimering algoritme (MOPSO).

Oplossings van die robot roete probleem het gewys dat die terugkeer heuristiek die s-vorm,
grootste gaping en middelpunt heuristiek met ’n beduidende marge oortref het. Die terugkeer
heuristiek is dus gebruik vir die oplossing van die roete beplanning van robotte in die volgorde
en allokasie probleem.

v

Stellenbosch University https://scholar.sun.ac.za

Die raamwerk was doeltreffend en die resultate het getoon, vir die enkel doelwit probleem, dat
die CMA-ES algoritme beter gevaar het as die ander metaheuristieke vir die volgorde en allokasie
probleem. Die SaNSDE was die naas beste presterende metaheuristiek. Die GA was die derde
beste metaheuristiek, en die metaheuristiek wat die slegste gevaar het, was die GCPSO. Vir
die multidoelwit probleem het die MOPSO die beste gevaar, as akkuraatheid die belangrikste
doelwit is. As ’n grootter verskeidenheid die belangrikste is, is die MOEAD meer geskik om ’n
oplossing te vind.

Die navorsingsbydraes sluit in dat vermyding van botsings in ag geneem word in die robot
roete probleem. Hierdie verhandeling dra by tot die navorsing oor die oplossing van roete
beplanning, volgorde en allokasie probleme met metaheuristieke. Na die beste van die outeur se
kennis is hierdie die eerste keer dat al vier metaheuristieke getoets was om die robot stoor-en-gaan
haal probleem op te los, onder die kondisie dat alle botsings vermy moet word. Dit is ook die
eerste keer dat hierdie spesifieke variant, enkel-en-multidoelwit probleem van die volgorde en
allokasie van parte met behulp van metaheuristieke en multidoelwit evolusionêre algoritmes
opgelos was, met die inagneming dat alle botsings vermy moet word.

vi

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

The author wishes to acknowledge the following people and institutions for their contributions
towards the completion of this work:

• Prof. Jacomine Grobler for always believing in me and for her excellent mentorship.

• My wife for her unconditional love and support during the completion of this dissertation.

• My family and friends for their support and encouragement during the completion of this
dissertation.

vii

Stellenbosch University https://scholar.sun.ac.za

Table of Contents

Contents

Declaration ii

Abstract iii

Opsomming v

Acknowledgements vii

Table of contents viii

List of Figures xi

List of Tables xiii

List of Algorithms xiv

List of Acronyms xv

List of Reserved Symbols xvi

Introduction and background 1
1.1 Background . 1
1.2 Contributions . 4
1.3 Research objectives . 4
1.4 Dissertation structure . 5

Metaheuristic solution strategies for robot picking 6
2.1 Single objective optimisation algorithms . 6

2.1.1 Single objective robot routing literature 8
2.1.2 Genetic algorithm . 12
2.1.3 Differential evolution . 12
2.1.4 CMA-ES . 16
2.1.5 Particle swarm optimisation . 18
2.1.6 Summary . 20

viii

Stellenbosch University https://scholar.sun.ac.za

2.2 Multi-objective optimisation . 21
2.2.1 The non-dominated sorting genetic algorithm III 22
2.2.2 The multi-objective evolutionary algorithm based on decomposition . . . 24
2.2.3 The multiple objective particle swarm optimisation 24
2.2.4 The multi-objective covariance matrix adaptation evolution strategy . . . 25
2.2.5 Multi-objective performance metrics . 26

2.3 Summary . 27

Automated warehousing literature review 28
3.1 Warehousing activities . 28
3.2 The travelling salesman problem and Steiner travelling salesman problem 31
3.3 Automated routing robots and automated guided vehicles 34
3.4 Single objective robot path planning and task allocation literature 36
3.5 Multi-objective robot path planning and task allocation literature 48
3.6 Summary . 49

Single objective mathematical model and algorithm framework 50
4.1 Single objective part sequencing and allocation model 50
4.2 Single objective algorithm framework . 52
4.3 Summary . 55

Data analysis and the robot routing problem 56
5.1 Data description . 56
5.2 The robot routing problem . 57
5.3 The robot routing results . 58
5.4 Summary . 61

Evaluating the single objective part sequencing and allocation algorithm 62
6.1 The part sequencing and allocation algorithm . 62
6.2 Single objective algorithm parameters . 64
6.3 Algorithm framework evaluation results . 65
6.4 Single objective diversity function results . 68
6.5 Single objective metaheuristic results analysis . 71

6.5.1 Investigating the solutions found by the GCPSO 72
6.5.2 Analysis into the GCPSO’s parameter performance 73

6.6 Single objective hypothesis test results . 74
6.7 Single objective algorithm framework sensitivity analysis 75
6.8 Summary . 77

Data exploration for multi-objective correlation 78
7.1 Objective functions considered for the multi-objective problem 78
7.2 Data analysis evaluation setup and results . 79
7.3 Correlation coefficient results and interpretations 80
7.4 Objective space analysis for makespan versus number of collisions avoided 82
7.5 Summary . 84

The multi-objective mathematical model and algorithm framework 85
8.1 Multi-objective part sequencing and allocation model 85
8.2 Multi-objective algorithm . 87
8.3 Summary . 89

ix

Stellenbosch University https://scholar.sun.ac.za

Empirical evaluation of the EMO algorithm framework 90
9.1 Experimental setup . 90
9.2 Multi-objective metric results . 91
9.3 Multi-objective EMO algorithm performance analysis 100
9.4 Multi-objective EMO algorithm Pareto front analysis 102
9.5 EMO algorithms hypothesis test . 106
9.6 Summary . 107

Conclusion 108
10.1 Single objective part sequencing and allocation problem summary 108
10.2 Multi-objective part sequencing and allocation problem summary 109
10.3 Future research opportunities . 110
10.4 Last words . 111

Bibliography 112

Appendices 121

x

Stellenbosch University https://scholar.sun.ac.za

List of Figures

List of Figures

1 Warehouse floor plan . 3
2 Optimisation algorithms (Grobler et al., 2008) . 7
3 Routing heuristics examples . 8
4 PSO Particle velocity given the three components (Grobler et al., 2008) 18
5 Three main strategies for addressing multiple conflicting objectives (Rardin and

Rardin, 1998) . 21
6 Warehouse configuration examples . 30
7 Warehouse configuration graph G . 32
8 Automated guided vehicle system . 35
9 Incremental path planning for AGV . 40
10 Solution strategies . 53
11 Process flow of algorithm . 55
12 8 parts routing results . 58
13 16 parts routing results . 59
14 24 parts routing results . 59
15 32 parts routing results . 60
16 40 parts routing results . 60
17 8 parts fitness value results . 65
18 16 parts fitness value results . 66
19 24 parts fitness value results . 66
20 32 parts fitness value results . 67
21 40 parts fitness value results . 67
22 8 parts diversity value results . 68
23 16 parts diversity value results . 69
24 24 parts diversity value results . 69
25 32 parts diversity value results . 70
26 40 parts diversity value results . 70
27 Single objective metaheuristic results . 71
28 Histogram of fitness values obtained (16 Part problem, GCPSO) 73
29 Analysis into the GCPSO’s parameter performance 74
30 Sensitivity analysis . 76

xi

Stellenbosch University https://scholar.sun.ac.za

31 Average objective function values for 40 parts . 80
32 Correlation plot for 40 parts . 81
33 Makespan versus number of collisions objective space analysis for 8 parts 83
34 Makespan versus number of collisions objective space analysis for 16 parts 83
35 Makespan versus number of collisions objective space analysis for 24 parts 83
36 Makespan versus number of collisions objective space analysis for 32 parts 83
37 Makespan versus number of collisions objective space analysis for 40 parts 84
38 Process flow of multi-objective algorithm . 89
39 Hypervolume results for 8 parts over time, for one run 92
40 Hypervolume results for 16 parts over time, for one run 92
41 Hypervolume results for 24 parts over time, for one run 93
42 Hypervolume results for 32 parts over time, for one run 93
43 Hypervolume results for 40 parts over time, for one run 94
44 Spread results for 8 parts over time, for one run 95
45 Spread results for 16 parts over time, for one run 95
46 Spread results for 24 parts over time, for one run 96
47 Spread results for 32 parts over time, for one run 96
48 Spread results for 40 parts over time, for one run 97
49 Number of Pareto solutions results for 8 parts over time, for one run 98
50 Number of pareto solutions results for 16 parts over time, for one run 98
51 Number of pareto solutions results for 24 parts over time, for one run 99
52 Number of pareto solutions results for 32 parts over time, for one run 99
53 Number of pareto solutions results for 40 parts over time, for one run 100
54 Multi-objective EMO algorithm results analysis 101
55 Pareto fronts for one run (8 Parts) . 103
56 Pareto fronts for one run (16 Parts) . 103
57 Pareto fronts for one run (24 Parts) . 103
58 Pareto fronts for one run (32 Parts) . 103
59 Pareto fronts for one run (40 Parts) . 104
60 All Pareto points for 30 runs (8 Parts) . 105
61 All Pareto points for 30 runs (16 Parts) . 105
62 All Pareto points for 30 runs (24 Parts) . 105
63 All Pareto points for 30 runs (32 Parts) . 105
64 All Pareto points for 30 runs (40 Parts) . 106
65 Average objective function values for 8 parts . 121
66 Average objective function values for 16 parts . 121
67 Average objective function values for 24 parts . 122
68 Average objective function values for 32 parts . 122
69 Correlation plot for 8 parts . 123
70 Correlation plot for 16 parts . 124
71 Correlation plot for 24 parts . 125
72 Correlation plot for 32 parts . 126

xii

Stellenbosch University https://scholar.sun.ac.za

List of Tables

List of Tables

1 Research that includes collision avoidance . 43
1 Research that includes collision avoidance . 44
2 Part location ID and name . 57
3 Routing heuristics results . 61
4 Routing heuristic hypothesis testing results . 61
5 Metaheuristic parameters . 64
6 Metaheuristics results . 68
7 Hypothesis testing results . 74
8 Example of total waiting times for three robots (Kleyn, 2020) 79
9 Correlation coefficients for 40 parts . 82
10 Multi-objective model parameters . 91
11 Hypervolume results for all data sets . 91
12 Spread results for all data sets . 94
13 Number of Pareto solutions, results for all data sets 97
14 Hypothesis test results for HV, SM and NPS for each EMO algorithm 106
15 Correlation coefficients for 8 parts . 127
16 Correlation coefficients for 16 parts . 128
17 Correlation coefficients for 24 parts . 129
18 Correlation coefficients for 32 parts . 130

xiii

Stellenbosch University https://scholar.sun.ac.za

List of Algorithms

List of Algorithms

1 Midpoint heuristic . 9
2 Largest gap heuristic . 10
3 S-shape heuristic . 10
4 Combined heuristic . 11
5 Return heuristic . 11
6 Basic DE algorithm . 14
7 SaNSDE algorithm . 16
8 Basic PSO algorithm . 19
9 GCPSO algorithm . 20
10 NSGA-III, the process to create generation t (Jain and Deb, 2013) 23
11 MOEAD at each generation t . 24
12 MOPSO Algorithm . 25
13 MO-CMA-ES . 26
14 Single objective part allocation and sequencing algorithm 54
15 Robot routing algorithm . 58
16 Multi-objective part allocation and sequencing algorithm 88

xiv

Stellenbosch University https://scholar.sun.ac.za

List of Acronyms

AGV Automated guided vehicle
AGVS Automated guided vehicle system
APF Artificial potential function
CMA-ES Covariance matrix adaptation evolution strategy
DE Differential evolution
DH Dedicated heuristic
EMO Evolutionary multi-objective optimisation
ES Evolution strategies
GA Genetic algorithm
GCPSO Guaranteed convergence particle swarm optimisation
GMM Gaussian mixture model
HGA Hybrid genetic algorithm
HV Hypervolume
JIT Just-in-time
JPS Jump point search
MO-CMA-ES Multi-objective covariance matrix adaptation evolution strategy
MOEAD Multi-objective evolutionary algorithm based on decomposition
MOO Multi-objective optimisation
MOPSO Multi-objective particle swarm optimisation
NPS Number of Pareto solutions
NSDE Differential evolution with neighbourhood search
NSGA-III Non-dominated sorting genetic algorithm
PAES Pareto archive evolution strategy
PSO Particle swarm optimisation
RRT Rapidly exploring random tree
SaDE Self-adaptive differential evolution
SaNSDE Self-adaptive differential evolution algorithm with neighbourhood search
SM Spacing metric
SPLOM Scatter plot matrices
SSD Solution space diversity
STAMC Simultaneous task allocation and motion coordination
STSP Steiner travelling salesman problem
TSP Travelling salesman problem

xv

Stellenbosch University https://scholar.sun.ac.za

List of Reserved Symbols

a ∆= set of parts allocated to a robot.

a
∆= number of aisles.

b ∆= set of parts to be binned per robot.

B(g) ∆= represents an orthogonal n× n matrix.

C(π) ∆= the value or cost of the permutation.

c′
i(t)

∆= ith offspring at time t.

cij(t) ∆= denotes the jth dimensions of the ith offspring solution.

c1/2
∆= the cognitive and social acceleration constants respectively.

Ct
∆= set of items contained in a list t.

D(t) ∆= a diagonal nx × nx matrix obtained from the eigen decomposition.

Dk,l
∆= distance between a location k and l.

fδl
∆= improvement in fitness value.

Fl
∆= last front.

f(x) ∆= denotes the vector of the objective function to be minimised.

γ
∆= a linear or exponentially decreasing value.

g
∆= the generation number.

g
∆= the generation number.

I
∆= number of parts in the warehouse.

I
∆= the number of parts in the warehouse.

K
∆= the number of robots in the system.

λ
∆= population size.

xvi

Stellenbosch University https://scholar.sun.ac.za

m
∆= number of picking lists.

mi,k
∆= ending time at point j for robot k.

n
∆= number of items (and locations).

ni,k
∆= starting time of new task for part i from the entrance gate.

Ni(0.5; 0.3) ∆= a Gaussian random number with mean 0.5 and standard deviation 0.3.

NM(0, M) ∆= denotes the multivariate normal distribution.

ns
∆= is the population size.

ns1/2
∆= the number of offspring generated.

nx
∆= the number of dimensions.

p ∆= set of parts to be picked per robot.

p
∆= process time for picking or binning incurred for all parts.

pc
∆= the crossover probability.

P F
∆= Pareto optimal set.

pT
∆= probability of reproduction.

Pt
∆= parent population.

Qt
∆= the offspring of Pt.

r1j(t) ∆= random sample from uniform random distribution U(0, 1).

r2j(t) ∆= random sample from uniform random distribution U(0, 1).

ρ
∆= niche count.

s
∆= current state.

s∗ ∆= neighbouring state.

ti
∆= the transport time without delays of part i from entrance to exit of warehouse.

T ij(t) ∆= target vector.

U
∆= the number of best individuals that will be recombined.

ui,t
∆= picking order of item i in list t.

ϱq
∆= are the equality constraints.

vij(t) ∆= the velocity of particle i in dimension j at time t.

ςij(t) ∆= is referred to as the standard deviation of the Gaussian mutations.

w
∆= inertia weight.

wi
∆= recombination of weights.

wi,j,k
∆= time added to avoid collision if part i is picked or binned.

wl
∆= weight contribution to l.

xvii

Stellenbosch University https://scholar.sun.ac.za

x ∆= set of continuous variables given by the metaheuristic where x = 3× I.

x̂ij/xij(t) ∆= the pbest and position of a particle i in dimension j at time t respectively.

xτj(t) ∆= the jth component of the best individual in the population at time t.

x∗
j (t) ∆= global best position (gbest) in dimension j.

xt+1
k

∆= represents the offspring created.

xp1(t) ∆= parent individual.

xp2(t) ∆= parent individual.

xpkj(t) ∆= denotes the jth dimension of the kth vector of the parent individual i of generation t.

x(g)
w

∆= the generation number.

Zr ∆= supplied reference points.

ζq
∆= are the inequality constraints.

xviii

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction and background

This chapter introduces the real-world warehouse considered in this dissertation and describes
its background. Section 1.1 discusses the background of the warehouse routing problem and
the importance of warehousing activities. Section 1.2 discusses the contributions that this
dissertation is aiming to contribute. The research objectives are discussed in Section 1.3,
followed by the dissertation structure in Section 1.4.

1.1 Background

Warehouse efficiency has a significant impact on a supply chain’s efficiency. The efficiency of
a supply chain is measured by the time and costs of warehouse activities, amongst other factors.
The benefits of optimising warehouse activities include a decrease in order picking and binning
time, cost savings on correct part picking, a decrease in incorrect shipments and an overall
increase in customer satisfaction. The presence of an optimised warehouse system has a directly
proportional positive impact on the competitiveness of a business’s supply chain. Specifically
efficient and effective warehousing in the supply chain can lead to greater competitiveness. The
competitive advantages are customer service, decreased lead times, and decreased logistical
costs.

The goal to achieve a lean and efficient warehouse has led to an increasing interest in
warehouse functions. This field has been studied in both literature and industrial practice.
Warehouse functions have become a critical part of business supply chains. Warehouse functions
and operations include, but are not limited to, the receiving, storing and dispatching of products.
Part allocation and batching are important planning and operational factors when considering
optimising the warehouse routing strategy (De Koster et al., 2007a).

1

Stellenbosch University https://scholar.sun.ac.za

The costs of warehouse activities also need to be considered. Costs related to order picking
can be as high as 45 to 55% of all operational costs (Tompkins et al., 1996). Although this is not
a new concept, businesses struggle with the implementation of automatic warehouse systems
due to inexperience, capital expenses and technological gaps. Automated warehousing solutions
have been conceptualised since 2009 (Banker, 2009). In 2009 Kiva robots were introduced by
Amazon, but nobody knew that it would eventually change the face of automated warehousing.
Amazon, for example, is using over 30 000 of the Kiva robots in their facilities to perform
picking and binning tasks (Banker, 2009).

The purpose of this dissertation is to develop an algorithm framework that is able to use
metaheuristics and evolutionary multi-objective algorithms to solve the part sequencing and
allocation problem, and optimise the routing strategy through the warehouse. The sequence
of the picking and binning tasks ultimately determines the total time required for the picking
and binning. The main objectives of the framework includes minimising the total time needed
to pick and bin parts and minimise the idle time for all robots. The algorithm framework
contributes significantly to literature because it incorporates collision avoidance.

The performance of the metaheuristics and other algorithms are tested in the part sequencing
and allocation framework. This dissertation focuses on the performance of the metaheuristics
and evolutionary multi-objective algorithms on the part sequencing and allocation problem.
The metaheuristics considered were the covariance matrix adaptation evolution strategy, genetic
algorithm, particle swarm optimisation, and differential evolution strategies. The evolutionary
based multi-objective algorithms include the non-dominated sorting genetic algorithm III, the
multi-objective evolutionary algorithm based on decomposition, the multiple objective particle
swarm optimisation, and the multi-objective covariance matrix adaptation evolution strategy. In
addition to the metaheuristics and the evolutionary multi-objective algorithms listed, different
routing heuristics are tested to solve the robot routing problem. These heuristics include the
midpoint heuristic, the s-shape heuristic, the return heuristic, and the largest gap heuristic.

The robot routing problem is solved before the sequencing and allocation problem because
the best performing routing heuristic is used in the part sequencing and allocation algorithm
framework. For solving the single objective or multi-objective part sequencing and allocation
problem the framework is set up over five data sets with 30 simulation runs each. The five data
sets included the following problem sizes: 8 parts, 16 parts, 24 parts, 32 parts, and 40 parts.

The warehouse considered in this dissertation is used as a buffer storage area to keep stock
for a just-in-time (JIT) supply chain. The warehouse currently stocks 40 parts. The binning
and picking of products in the warehouse happens daily. Currently, the warehouse tasks are
done manually by personnel using a forklift or by hand. The personnel and forklift driver
are responsible for collecting and replenishing all the products required and the dispatching of
products from the warehouse to the assembly floor is a continuous process. The simplified floor
plan of the warehouse in the assembly plant can be seen in Figure 1.

2

Stellenbosch University https://scholar.sun.ac.za

Figure 1: Warehouse floor plan

The warehouse consists of pallet racks with parallel aisles between the racks. There are two
cross aisles at the front and back of the warehouse, respectively, and there are two gates allowing
access into and out of the warehouse. One gate is used as an entrance and the other as an exit.
All products have a designated storage space allocated to them and the space allocation does
not change frequently.

The operation of order picking and binning are considered to be similar in this dissertation.
The robot has to move from the entrance gate to the part’s assigned destination to either pick
or bin a part. The picking or binning operations refer to the collection or storage of parts,
respectively. The picking and binning quantities are based on the customer’s demands and the
supplier’s delivery schedule (Roodbergen and De Koster, 2001).

Total picking time refers to the actual time it takes to complete all the activities required for
picking an order. These activities include: travel time from the current position of the robot to
the offloading or loading position, searching for the part to be picked, and the actual picking
time (Dekker et al., 2004). De Koster et al. (2007b) identified four methods to possibly reduce
travelling distances, namely:

1. Storage location assignment. Storage location refers to the fixed position where a part is
stored. This position does not change frequently.

2. Warehouse zoning. Warehouse zoning has been used in a larger warehouse where the
warehouse is divided into zones, since the zones help with finding locations more easily.

3. Order batching. Batching includes the collection of multiple items in one trip.

4. Vehicle routing methods. Vehicle routing methods are used to guide the vehicle from start
to finish, and includes the path that the vehicle will follow to successfully complete the
picking of orders and reaching the end destination.

3

Stellenbosch University https://scholar.sun.ac.za

For this dissertation, the framework sequences all of the products to be picked or binned and
allocates each part to a respective robot. A part can only be allocated to one robot for picking
or binning. The robot uses the sequence of parts given by the algorithm framework to complete
the picking and binning. Furthermore, the robots use optimised routes that are collision free.
The next section includes the detailed problem statement.

The aim can be formulated as follows:

Developing an algorithm framework that can efficiently identify parts to be picked or binned,
assign them to a robot, and create the best found picking and binning sequence. The objectives
are to minimise the total time required to pick and bin all of the parts and minimise the total
idle time for all robots. The robot routing algorithm needs to incorporate collision avoidance
since the aisle width does not allow two robots to pass each other in the same aisle.

1.2 Contributions

The research contributions of this dissertation include the incorporation of collision avoidance
in the robot routing and path planning problem while using metaheuristics and evolutionary
multi-objective algorithms as solution strategies. This dissertation contributes to the research
into the performance of metaheuristics routing, multi-objective algorithms, collision avoidance,
and sequencing and allocation problems. To the best of the author’s knowledge, this dissertation
is the first where these four metaheuristics and evolutionary multi-objective algorithms have
been tested for solving the robot picking and binning problem, given that all collisions must
be avoided. Finally, a framework is developed for solving the part sequencing and allocation
problem. The framework addresses multiple robots, path planning, task allocation and collision
avoidance. To the best of the author’s knowledge this specific problem scenario cannot be found
in literature.

1.3 Research objectives

The main objective of this dissertation is to develop a framework that is able to find feasible
solutions for the single and multi-objective part sequencing and allocation problem. This
objective is divided into sub-objectives which will lead up to the completion of the main
objective. The sub-objectives are listed, along with the chapter that addresses the sub-objective.

1. Provide feasible robot routing solutions for the robot routing problem - Chapter 2

2. Identify and discuss evolutionary single objective and multi-objective algorithms that are
used to solve the single and multi-objective part sequencing and allocation problem -
Chapter 2

3. Investigate and determine which metrics to consider for analysing the algorithm results -
Chapter 2

4. Motivate the necessity for efficient and automated warehousing solutions - Chapter 3

5. Provide a detailed review of routing and path planning strategies for both single and
multi-objective path planning and task allocation problems - Chapter 3

6. Develop a mathematical model and algorithm framework for the single objective part
sequencing and allocation problem - Chapter 4

7. Develop an experimental evaluation to determine the best routing strategy and discuss
the results - Chapter 5

4

Stellenbosch University https://scholar.sun.ac.za

8. Develop a single objective algorithm framework to solve the single objective part sequencing
and allocation problem - Chapter 6

9. Evaluate the performance of the single objective algorithm framework - Chapter 6

10. Identify objective functions that can be used in the multi-objective algorithm framework
that is not correlated - Chapter 7

11. Develop a multi-objective algorithm framework to solve the part sequencing and allocation
problem - Chapter 8

12. Setup and evaluate the performance of the multi-objective algorithm framework on the
multi-objective part sequencing and allocation problem - Chapter 9

13. Conclude the results obtained from the algorithm framework and provide suggestions for
future research - Chapter 10

1.4 Dissertation structure

Chapter 2 provides feasible solution strategies for solving the robot routing problem. Also
discussed in chapter 2 are the evolutionary single objective and multi-objective algorithms that
are used for solving the part sequencing and allocation problem. The metrics used for analysing
the framework results are also discussed in chapter 2. Chapter 3 explores literature available and
discusses automated warehouse systems, warehouse layouts, warehousing activities, automated
warehouse routing, optimisation algorithms, the travelling salesman problem, routing an order
picking or binning robot, and the sequencing of parts. Chapter 3 also gives a detailed review of
routing strategies for the single and multi-objective path planning and task allocation problem.
Chapter 4 develops and describe the mathematical model and the part sequencing and allocation
algorithm framework for the single objective part sequencing and allocation problem. Chapter
5 presents the data analysis and empirical evaluation results for the robot routing problem.
Chapter 6 discusses the single objective part sequencing and allocation problem results. Chapter
7 identifies the objectives that are used for the multi-objective algorithm framework. Chapter 8
develops the multi-objective algorithm framework, using the identified objective functions from
chapter 7. Chapter 9 develops and evaluates the performance of the multi-objective algorithm
framework on the part sequencing and allocation problem using the metrics investigated in
chapter 2. Chapter 10 concludes the dissertation with a summing up and topics for future
work.

5

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Metaheuristic solution strategies for
robot picking

Heuristics are often defined for a given problem. These heuristics can be problem-specific and
do not guarantee an optimal solution. Heuristics are normally strategies derived from previous
experiences with similar problems and usually need a well-defined problem with a given set of
rules. Metaheuristics tend to be problem-independent techniques. Different metaheuristics can
be applied to multiple problems. A heuristic can be as simple as choosing a random solution from
a list whereas a metaheuristic does not have to have any information about the problem; it can
treat fitness functions as black boxes. This chapter is structured as follows: Section 2.1 discusses
various single objective optimisation algorithms including the genetic algorithm, the differential
evolution algorithm, the covariance matrix adaptation evolution strategy (CMA-ES) and the
particle swarm optimisation (PSO) algorithm. Section 2.2 discusses a number of multi-objective
optimisation algorithms including the non-dominated sorting genetic algorithm III (NSGA-III),
the multi-objective evolutionary algorithm based on decomposition (MOEAD), the multiple
objective particle swarm optimisation (MOPSO), and the multi-objective covariance matrix
adaptation evolution strategy (MO-CMA-ES).

2.1 Single objective optimisation algorithms

Optimisation algorithms solve problems by testing different combinations of input variables
in an attempt to find an acceptable solution. These algorithms use different strategies to find
an acceptable solution, such as crossover mechanisms, mutation processes and other forms of
generating the next set of candidate solutions. These strategies are used in an iterative manner,
where in each iteration the candidate solutions created are tested and evaluated based on a
fitness function. The optimisation algorithm attempts to improve the best fitness values until
no better solution can be found or when the terminating condition is met.

6

Stellenbosch University https://scholar.sun.ac.za

Figure 2 (Grobler et al., 2008) shows the interrelationship between the commonly used
optimisation algorithms. The first distinction is between continuous and combinatorial problems.
Exact methods can take a significant amount of time to solve. Therefore, to find a near-optimal
solution in a smaller time frame an approximate method would be more useful. Approximate
methods for a combinatorial problem include metaheuristics and heuristics.

Figure 2: Optimisation algorithms (Grobler et al., 2008)

In the case where the problem is continuous in nature, linear, quadratic, or non-linear methods
can be used to find a candidate or near-optimal solution. Non-linear problems can be solved
using local methods, searching for local optimums, or global methods. Global methods searches
a very large solution space to find the best possible solution given the termination criteria.
Global methods include classical methods and metaheuristics.

Metaheuristics can be subdivided into two main groups, neighbourhood-based algorithms and
population-based algorithms. Neighbourhood-based algorithms include simulated annealing and
tabu search. For simulated annealing, consider a neighbouring state s∗ of the current state s.
A probabilistic process decides to move the system to a state s∗ or remain in state s. These
probabilities lead the system to move to a state that is of sufficient quality for the application or
until a termination criterion is met. The tabu search’s strategy is to move iteratively from one
potential solution x to a better solution x∗ in the neighbourhood of x, until a stopping criterion
has been satisfied. The tabu search adopts the better solution and stores past solutions in a
tabu list. It is possible for the tabu search to adopt a poor solution to escape out of a local
optimum. The tabu search thus has the ability to eliminate the risk of following the same route
by verifying that the better solution found is a new solution and is not part of the current tabu
list.

7

Stellenbosch University https://scholar.sun.ac.za

A typical population-based algorithm is the particle swarm optimisation (PSO) algorithm.
The PSO algorithm assigns a velocity to each individual or candidate solution. The individual
then moves through hyperspace searching for better solutions at the assigned velocity.

The evolutionary algorithms include the covariance matrix adaptation evolution strategy
(CMA-ES), the genetic algorithm (GA), genetic programming, differential evolution (DE) and
evolutionary programming. The CMA-ES learns the relationships and dependencies between a
given set of decision variables by adapting a covariance matrix. The genetic algorithm relies on
biological operations such as mutation, crossover and selection to find the best possible solution
in the solution space. The differential evolution aims to improve the population by means of
recombination, evaluation and selection during each iteration.

The following sections introduce the metaheuristics that were used to solve the single objective
part sequencing and allocation problem. Section 2.1.2 discusses the genetic algorithm used in
this dissertation. Section 2.1.3 describes the basic differential evolution (DE) algorithm as well
as the improved self-adaptive differential evolution algorithm (SaNSDE). Section 2.1.4 explains
the covariance matrix adaptation evolution strategy (CMA-ES) algorithm in detail. Section
2.1.5 presents the basic particle swarm optimisation (PSO) algorithm and also the improved
guaranteed convergence particle swarm optimisation (GCPSO).

2.1.1 Single objective robot routing literature

Dekker et al. (2004) modified existing solution techniques in order to solve the order picker
routing problem. The existing solution strategies considered by Dekker et al. (2004) include:
the midpoint heuristic, the largest gap heuristic, s-shape heuristic and combined heuristic. The
four methods listed above, including the return heuristic, are discussed in more depth in the
rest of this section. See Figure 3 for examples of these routing heuristics.

Figure 3: Routing heuristics examples

8

Stellenbosch University https://scholar.sun.ac.za

Midpoint heuristic

The midpoint heuristic commences by separating the warehouse into two horizontal sections,
creating a hypothetical midline between them (Theys et al., 2007). The midpoint heuristic then
allows for all the products in section one to be picked. After all the products in section one
have been picked the robot can move into the second section. The pseudocode for the midpoint
heuristic is shown in Algorithm 1:

Algorithm 1: Midpoint heuristic
1 Initialise a warehouse with I number of storage spaces per aisle and a number of aisles
2 Midpoint = I/2
3 for aislenumber ≤ a do
4 if there is a part to be picked in an allocation coordinate ≤ Midpoint then
5 Pick all parts in the aisle ≤ Midpoint
6 else
7 Skip to next aisle (a = a + 1)
8 end
9 Move to the opposite side of the warehouse

10 a = 0
11 for aislenumber ≤ a do
12 if there is a part to be picked in an allocation coordinate ≥ Midpoint then
13 Pick all parts in the aisle ≥ Midpoint
14 else
15 Skip to next aisle(a = a + 1)
16 end

Largest gap

The largest gap heuristic follows the same methodology as the midpoint heuristic. The only
difference is that the robot follows an aisle until it reaches the largest gap in the aisle. The
robot then returns to the beginning of the aisle and moves on to the next aisle. The largest gap
is the largest part of an aisle where no parts need to be picked. The pseudocode for the largest
gap heuristic can be seen in Algorithm 2.

9

Stellenbosch University https://scholar.sun.ac.za

Algorithm 2: Largest gap heuristic
1 Initialise a warehouse with I number of storage spaces per aisle and a number of aisles
2 for aislenumber ≤ a do
3 define Largestgap for aislenumber ≤ a
4 if there is a part to be picked in an allocation coordinate ≤ Largestgap then
5 Pick all parts in the aisle ≤ Largestgap

6 else
7 Skip to next aisle (a = a + 1)
8 end
9 Move to the opposite side of the warehouse

10 a = 0
11 for aislenumber ≤ a do
12 if there is a part to be picked in an allocation coordinate ≥ Largestgap then
13 Pick all parts in the aisle ≥ Largestgap

14 else
15 Skip to next aisle (a = a + 1)
16 end

S-shape

Hall (1993) commented that the s-shape heuristic is significantly different from the midpoint
and largest gap heuristics. In the s-shape heuristic, the robot only enters aisles which have a
part to be picked. For each aisle the robot enters, it travels through the whole aisle; in other
words the robot enters the aisle at one point and exits at the opposite point of the aisle.

Aisles that have no order to be picked are skipped (Dukic and Oluic, 2007). After picking the
part in a specific aisle the robot drives through the whole aisle and returns to the main aisle in
the form of an ‘s’, until all the products have been picked. For clarification, the pseudocode is
shown in Algorithm 3.

Algorithm 3: S-shape heuristic
1 Initialise a warehouse with I number of storage spaces per aisle and a number of aisles
2 for aislenumber ≤ a do
3 if there is a part to be picked in aisle a then
4 Turn into aisle a and move through the whole aisle
5 else
6 Skip to next aisle(a = a + 1)
7 end

Combined

The combined heuristic follows the same methodology as the s-shape heuristic. The combined
heuristic uses both the s-shape heuristic for main route planning and when inside an aisle, the
combined heuristic uses the largest gap methodology to look ahead. Roodbergen and Koster
(2001) described this algorithm in depth. The pseudocode for the combined heuristic can be
seen in Algorithm 4.

10

Stellenbosch University https://scholar.sun.ac.za

Algorithm 4: Combined heuristic
1 Initialise a warehouse with I number of storage spaces per aisle and i number of aisles
2 Define Largestgap for aislenumber ≤ a
3 for aislenumber ≤ a do
4 if there is a part to be picked in aisle a then
5 if there is a part to be picked in an allocation coordinates ≤ Largestgap then
6 Pick all parts in the aisle which are ≤ Largestgap

7 else
8 Skip to next aisle (a = a + 1)
9 else

10 there is no part to be picked in aisle a

11 end
12 Move to the opposite side of the warehouse
13 for aislenumber ≤ a do
14 if there is a part to be picked in aisle a then
15 if there is a part to be picked in allocation coordinates ≥ Largestgap then
16 Pick all parts in the aisle which are leq Largestgap

17 else
18 Skip to next aisle (a = a + 1)
19 else
20 There is no part to be picked in aisle a

21 end

Return

The last order picking heuristic is called the return heuristic. The return heuristic does
exactly what the name describes. The robot will enter every aisle, collect all the items in the
aisle and return to the beginning of that aisle. If there are no products to be picked in an aisle
the robot will skip that aisle.

In this heuristic, a robot will never transverse any aisle completely (Dukic and Oluic, 2007).
The pseudocode for the return heuristic is shown in Algorithm 5.

Algorithm 5: Return heuristic
1 Initialise a warehouse with I number of storage spaces per aisle and a number of aisles
2 for aislenumber ≤ a do
3 if there is a part to be picked in aisle a then
4 Turn into aisle a and pick all the parts in this aisle
5 return to point of entry for aisle a

6 else
7 Skip to next aisle (a = a + 1)
8 end

All the routing heuristics described in the paragraphs above are modifications or combinations
of existing heuristics, but none of them optimises the sequencing of the order picking. The
sequencing of the order picking products must be done by more intelligent metaheuristics to
obtain higher quality solutions.

11

Stellenbosch University https://scholar.sun.ac.za

2.1.2 Genetic algorithm

The GA is a population-based optimisation algorithm. A population can be defined as a group
of potential individual solutions. These populations are created and reproduced by previous
populations by using crossover and mutation of individuals.

The GA is inspired by the process of natural selection using biological operations such as
mutation, crossover and selection (Mitchell, 1996), (Sadeghi et al., 2014). GAs are commonly
used to find high quality solutions for optimisation and search related problems. John Holland
introduced the GA in the 1960s and after its invention the GA was popularised by David
Goldberg (Goldberg and Holland, 1988).

In this dissertation the GA with floating point representation, tournament selection, blend
crossover (Eshelman and Schaffer, 1993) and Gaussian mutation was used (Olorunda and
Engelbrecht, 2009). For each individual i, the two parent vectors are selected by means
of tournament selection. The two parents xp1(t) and xp2(t), where xpkj(t) denotes the jth

dimension of the kth vector of the parent individual i of generation t where i ̸= p1 ̸= p2. For all
dimensions, j, if r ∼ U(0; 1) ≤ pc, where pc denotes the crossover probability, cij(t) denotes the
jth dimensions of the ith offspring solution, where xp1j(t) ≤ xp2j(t). The uniform and Gaussian
distributions between 0 and 1 are denoted as U(0; 1) and N(0; 1) respectively:

δj = 2U(0, 1)− 0.5 (1)

and
cij(t) = (1− δj)xp1j(t) + δjxp2j(t) (2)

The ith offspring at time t, c
′
ij(t) can be calculated using Equation (3). ς is referred to as the

standard deviation of the Gaussian mutations,

c
′
ij(t) = cij(t) + ςij(t)Nij(0, 1), (3)

with

ςij(t + 1) = ςij(t)eτ1N(0,1)+τ2N(0,1) (4)

τ1 = 1√
2
√

nx

(5)

and
τ2 = 1√

2nx
(6)

where nx represents the number of dimensions. If the fitness of c
′
i(t) is better than the

original xi(t), then the individual gets replaced by c
′
i(t) (Engelbrecht, 2006).

2.1.3 Differential evolution

The DE algorithm was originally developed from work done by Storn (1996) and Storn and
Price (1997). The strategy and procedure of a DE is described below as presented in Brownlee
(2011). DE is a stochastic direct search and a global optimisation algorithm. The DE is an
evolutionary algorithm from the field of evolutionary computation. It shares similarities with
the GA, evolutionary programming, evolution strategies and there are even similarities to the
PSO.

12

Stellenbosch University https://scholar.sun.ac.za

The strategy of the DE involves maintaining a population of possible solutions. These
populations are evolved by means of recombination, evaluation and selection at each iteration.
The recombination process creates new candidate solution components based on the weighted
difference of two random population candidates added together, forming the third population
candidate. This process perturbs population members. In parallel, the perturbation effect
organises the sampling of the solution space, bounding it to known areas and areas that are of
interest with regard to the possible optimal solution.

Grobler et al. (2008) investigated the basic DE algorithm and variations of it. The alternative
DE algorithms include changes to the selection mechanisms, selection strategies and crossover
mechanisms. Since the publication of the DE algorithm, researchers have studied the practical
aspect of the DE in multiple optimisation problems.

The basic DE algorithm as described in the following paragraphs is discussed in greater depth
in Storn (1996) and Storn and Price (1997). For each individual candidate i in the solution
population, a vector xi1(t) exists. There are two other vectors xi2(t) and xi3(t) which are
randomly selected from the current population where xij(t) denotes the jth dimension of the
candidate i of generation t and i ̸= i1 ̸= i2 ̸= i3. The target vector, T ij(t), can be calculated
using the differential mutation operator seen in Equation (7), where F is the scaling factor and
ci is known as the trial vector.

Tij(t) = xi1j(t) + F (xi2j(t)− xi3j(t)) (7)

Then for all dimensions j, if r ∼ U(0, 1) ≤ pr or j = v ∼ U(1, ..., nx) then:

Cij(t) = Tij(t). (8)

Otherwise cij(t) = xij(t), where pr represents the probability of reproduction.

The rule of replacement states that one candidate may only replace another candidate if the
fitness value of the ith candidate is better than the candidate from the original population.
Grobler et al. (2008) provided the pseudocode for the basic DE algorithm, reproduced in
Algorithm 6.

13

Stellenbosch University https://scholar.sun.ac.za

Algorithm 6: Basic DE algorithm
1 Initialise an nx-dimensional population of ns candidates
2 t = 1, i1 = 0, i2 = 0, i3 = 0,
3 while t < Imax do
4 for each candidate do
5 Randomly select a candidate i1 from the population
6 Randomly select a candidate i2 from the population
7 while i1 = i2 do
8 Randomly select a candidate i2 from the population
9 end

10 Randomly select a candidate i3 from the population
11 while i2 = i3 or i1 = i3 do
12 Randomly select a candidate i3 from the population
13 end
14 Randomly select a dimension, v
15 for All dimensions j do
16 if r ∼ (0, 1) ≤ pr or j = v then
17 calculate cij(t) using Fi(t) = Fi4(t) + N(0, 0.5)(Fi5(t)− Fi6(t))
18 else if then
19 cij(t) = xij(t)
20 end
21 end
22 for each candidate do
23 if f(ci(t)) ≤ f(xi(t)) then
24 xi(t + 1) = ci(t)
25 end
26 t = t + 1
27 end

A number of self-adaptive differential evolution (SaDE) algorithms have been developed. The
algorithms developed include the differential evolution algorithm with neighbourhood search
(NSDE) as discussed in Yang et al. (2007), the self-adaptive differential evolution algorithm as
discussed in Qin and Suganthan (2005), and the self-adaptive differential evolution algorithm
with neighbourhood search (SaNSDE) (Yang et al., 2008), which combines the best features of
the NSDE and the SaDE.

The SaNSDE has been shown to outperform both the SaDE and the NSDE (Yang et al., 2008).
The SaNSDE is considered to be a highly successful DE algorithm and thus the SaNSDE is used
in this dissertation. The pseudocode for the SaNSDE is provided in Algorithm 7.

Ni(0.5; 0.3) is a Gaussian random number with mean 0.5 and standard deviation 0.3. xτj(t),
denotes the jth component of the best individual in the population at time t and γ denotes
a linear or exponentially decreasing value, (γ ∈ (0, 1)). Equation (9) is used to calculate the
probability of reproduction for each individual i. All of the pri values that were successful from
offspring ql are stored in a set prsucc

; and Equation (10) calculates the sum total of all the
successful values.

14

Stellenbosch University https://scholar.sun.ac.za

The improvement in fitness value, fδl, is calculated using Equation (14). The lth weight is
calculated using Equation (13). The probability pT is calculated using Equation (12) and ns1
denotes the number of offspring generated by Equation (7). Similarly, ns2 denotes the number
of successful offspring generated by Equation (11). nf1 and nf2 denote the number of offspring
generated by Equations (7) and (11) (Grobler, 2015).

pri = Ni(prµ ; 0 : 1) (9)

prµ =
|prsucc |∑

l=1
wlql (10)

Tij(t) = γxτj(t) + (1− γ)xi1j(t) + F (xi2j(t)− xi3j(t)) (11)

pT = ns1(ns2 + nf2)
ns2(ns1 + nf1) + ns1(ns2 + nf2) (12)

with

wl = fδl∑|fδ|
l=1 fδl

(13)

given

fδl = f(xl)(t)− f(cl)(t + 1) (14)

15

Stellenbosch University https://scholar.sun.ac.za

Algorithm 7: SaNSDE algorithm
1 Initialise an nx-dimensional population of ns candidates
2 t = 1
3 while no stopping condition is satisfied do
4 for each individual i do
5 Generate a scale factor Fi = Ni(0 : 5; 0 : 3)
6 Generate a probability factor pri = Ni(prµ ; 0 : 1)
7 Randomly select a candidate i1 from the population
8 Randomly select a candidate i2 from the population
9 while i1 = i2 do

10 Randomly select a candidate i2 from the population
11 end
12 Randomly select a candidate i3 from the population
13 while i2 = i3 or i1 = i3 do
14 Randomly select a candidate i3 from the population
15 end

16 Tij(t) =
{

xi1j(t) + F (xi2j(t)− xi3j(t)), if Ui(0, 1) < pT

γxτj(t) + (1− γ)xi1j(t) + F (xi2j(t)− xi3j(t)), otherwise

17 cij(t) =
{

Tij(t), if r ∼ U(0, 1) ≤ prorj = v ∼ U(1, ..., nx)
xij(t), otherwise

18 end
19 for each candidate do
20 if f(ci(t)) ≤ f(xi(t)) then
21 xi(t + 1) = ci(t)
22 end
23 t = t + 1
24 Update the probabilities pT , pf , and prµ

25 end

2.1.4 CMA-ES

The covariance matrix adaptation evolution strategy (CMA-ES) algorithm is an evolutionary
strategy and is designed to learn the relationships and dependencies between a given set of
decision variables by adapting a covariance matrix (Hansen and Ostermeier, 1996). The matrix
defines the sampling distribution of each candidate solution (Hansen et al., 2003). The capability
of learning the dependencies between a number of decision variables forms the CMA-ES’s
practical limitations: memory storage and computational complexity per function evaluation
(Ros and Hansen, 2008).

The CMA-ES is described in depth in Hansen and Kern (2004). They tested the performance
of the CMA-ES on various techniques and multimodal test functions. In particular, the effect
of population size was investigated. The results concluded that an increase in population
size improved the performance of the CMA-ES model on six of the eight test functions. In
comparison with state-of-the-art search strategies, the CMA-ES achieved superior performance
on multimodal test functions. The CMA-ES benefits from larger population sizes when using
ranking and weighted recombination of offspring (Ros and Hansen, 2008).

16

Stellenbosch University https://scholar.sun.ac.za

The offspring generating the next generation (t + 1) are sampled using:

xt+1
k ∼ (x)(t)

w + σ(t)B(t)D(t)z
(t+1)
k , k = 1, ..., ns (15)

Where

xt+1
k represents the offspring created, t is the generation number, ns is the population size

where generally ns = 4 + 3(ln(n)). U is the number of best individuals that will be recombined
(normally ns/2). B(t) represents an orthogonal nx×nx matrix and D(t) a diagonal nx×nx matrix
obtained from the eigen decomposition of C(t), C(t) = B(t)D(t)(B(t)D(t))T . The covariance
matrix C(t) is symmetric positive definite, and its default initial value is I. x

(t)
w = Σµ

i=1wix
(t)
i:ns

is the weighted mean of the µ best individuals at the generation and x
(t)
w denotes the ith best

out of the ns individuals ranked by the function value.

Simple modifications can be made to the CMA-ES to achieve linear complexity; these include:

• Obtaining the weighted mean of the best individual values for generation g; and

• The recombination of weights (wi) is positive and if added together are equal to one. To
favour the best ranked (µ) individuals,

wi = ln(µ + 1)− ln(i)∑
j={1,...,µ}(ln(µ + 1)− ln(j)) . (16)

More of these modifications can be seen in Ros and Hansen (2008). The CMA-ES then uses a
global step function implemented as an evolution path. The initial step size (σ(0)) is a problem
dependent parameter and the initial evolution path Pσ(0) = 0. After the initialisation phase
the evolution path and step size are calculated as:

Pσ(t+1) = (1− Cσ)P (t)
σ +

√
Cσ(2− Cσ)×√µeff B(t)Z(t+1)

w (17)

σ(t+1) = σ(t)exp(cσ

dσ
(|p(t+1)

σ |
E(|NM(0, I)|) − 1)) (18)

Where NM(0, M) denotes the independent realisations of the multivariate normal distribution,
with a covariance matrix M . The random vectors z

(t+1)
k are N(0, I) distributed and for

x
(t)
k , we can compute their weighted mean: z

(t+1)
w = Σµ

i=1wiz
(t)
i:ns

. σ(t) ∈ R is the step size.
cσ ∈ [0, 1] is the time constant for the adaption of the step size σ(t+1). µeff denotes the
variance-effective selection mass and dσ > 0 is a damping factor with a default value of

1 + 2×max(0,

√
µeff − 1
nx + 1 − 1) + cσ.

The initial step size is a problem-dependent parameter. The process of sampling individuals
and updating of internal strategy parameters is iterated until the desired stopping criterion is
reached.

17

Stellenbosch University https://scholar.sun.ac.za

2.1.5 Particle swarm optimisation

Particle swarm optimisation (PSO) has roots that tie it to artificial life; the flocking of birds,
fish schooling and swarming theory in general (Eberhart and Kennedy, 1995a). PSO uses
basic mathematical operators and requires minimum computational capacity relative to other
metaheuristics. The PSO performed well on test functions when compared with a GA when first
developed (Eberhart and Kennedy, 1995a). PSO can be used to solve many similar problems to
a GA (Eberhart and Kennedy, 1995b). The advantage of the PSO over the GA is the memory
of the previous solutions.

In PSO, individuals who fly past optimal solutions will return towards them. The system
is initialised with a population of random solutions. It differs from the GA in the way that
each potential solution is assigned a velocity, whereafter it is then called a particle, which ‘flies’
through hyperspace at the assigned velocity. Each particle stores the coordinates in hyperspace
of the best solutions it has achieved thus far (the fitness value is also stored). The value of the
best-found value of each particle is called the pbest value. With regard to the bigger picture
there is another ‘best’ value, the global best value found thus far by any particle, gbest (Eberhart
and Kennedy, 1995a).

The basic PSO algorithm is discussed in great depth in Eberhart and Kennedy (1995a).
Throughout the optimisation process of the PSO the velocity and displacement of each particle
is changed, moving the particle to a new position. The magnitude and direction of a particle
at time t is shown in Figure 4 (Grobler et al., 2008). A particle’s velocity is the result of three
vectors. The particle’s velocity at time (t + 1), the cognitive component (pbest), and the social
component (gbest).

Figure 4: PSO Particle velocity given the three components (Grobler et al., 2008)
.

As discussed earlier the gbest model calculates the velocity of a particle i in the dimension j
at time t + 1 as:

vij(t + 1) = wvij(t) + c1r1j(t)[x̂ij(t)− xij(t)] + c2r2j(t)[x∗
j (t)− xij(t)] (19)

Where vij(t) is the velocity of particle i in dimension j at time t; c1/2 are the cognitive
and social acceleration constants respectively; and x̂ij/xij(t) are the pbest and position of a
particle i in dimension j at time t respectively. x∗

j (t) represents the global best position (gbest)
in dimension j and w is the inertia weight. r1j(t) is a random sample from uniform random
distribution U(0, 1) and r2j(t) is a random sample from uniform random distribution U(0, 1).

The displacement of a particle i at time t is simply derived from vij(t + 1) as:

xij(t + 1) = xij(t) + vij(t + 1) (20)

18

Stellenbosch University https://scholar.sun.ac.za

It is because of the simultaneous movement of particles toward their previous best solution
(pbest) and the best solution found by the entire swarm (gbest) that the particles converge to
one or more good solutions in the search space. Grobler et al. (2008) went on to provide the
pseudocode for the basic PSO, shown in Algorithm 8.

Algorithm 8: Basic PSO algorithm
1 Initialise an nx-dimensional swarm of ns particles
2 t = 1
3 while t < Imax do
4 for each particle i do
5 if f(xi(t)) ≤ f(x̂i(t)) then
6 x̂i(t) = xi(t)
7 if f(x̂i) < f(x∗) then
8 x∗ = x̂i

9 end
10 for each particle i do
11 vij(t + 1) = wvij(t) + c1r1j(t)[x̂ij(t)− xij(t)] + c2r2j(t)[x∗

j (t)− xij(t)]
12 xij(t + 1) = xij(t) + vij(t + 1)
13 end
14 t = t + 1
15 end

The basic algorithm for the PSO is not guaranteed to converge. Van den Bergh and Engelbrecht
(2002) showed that non-convergence will happen if any particle reaches the position where:

x̂ = x(t) = x∗ (21)

Given the obstacle of non-convergence, the guaranteed convergence particle swarm optimisation
(GCPSO) algorithm introduced by Van den Bergh and Engelbrecht (2002) has been shown to
address this problem effectively. The GCPSO requires a different velocity and displacement
update shown below in Equations (22) and (23).

vrj(t + 1) = −xrj(t) + x∗
j (t) + wvrj(t) + p(t)(1− 2rj(t)) (22)

xrj(t + 1) = x∗
j (t) + wvrj(t) + p(t)(1− rj(t)) (23)

The equations listed above are applied to the global best particle where p(t) is a time-dependent
scaling factor and rj(t) is sampled from a uniform random distribution, U(0, 1). All the other
particles are still updated using Equations (19) and (20) (Grobler et al., 2008). The pseudocode
for the GCPSO can be seen in Algorithm 9.

19

Stellenbosch University https://scholar.sun.ac.za

Algorithm 9: GCPSO algorithm
1 Initialise an nx-dimensional swarm of ns particles
2 t = 1, p(t) = 1, ζ = 0, η = 0
3 while t < Imax do
4 for each particle i do
5 if f(xi(t)) ≤ f(x̂i) then
6 x̂i = xi(t)
7 if f(x̂i) < f(x∗) then
8 η = 0
9 x∗ = x̂i

10 else if then
11 η = η + 1
12 ζ = 0
13 end
14 for each particle i|i ̸= τ do
15 vij(t + 1) = wvij(t) + c1r1j(t)[x̂ij(t)− xij(t)] + c2r2j(t)[x∗

j (t)− xij(t)]
16 xij(t + 1) = xij(t) + vij(t + 1)
17 vrj(t + 1) = −xrj(t) + x∗

j (t) + wvrj(t) + p(t)(1− 2rj(t))
18 xrj(t + 1) = x∗

j (t) + wvrj(t) + p(t)(1− rj(t))
19 end
20 t = t + 1
21 end

2.1.6 Summary

This section presented suitable solution strategies for the part picking and allocation problem.
Each of these search methodologies was described in detail. The four metaheuristics chosen
as suitable solution strategies include the CMA-ES, GA, GCPSO and the SaNSDE. The next
section discusses the multi-objective optimisation algorithms used to solved the multi-objective
part picking and allocation problem.

20

Stellenbosch University https://scholar.sun.ac.za

2.2 Multi-objective optimisation

Multi-objective optimisation, in general, has been receiving increasing attention over the past
few years. This section focuses on the multi-objective optimisation problem.

A multi-objective optimisation (MOO) problem can be formally defined as follows:

Minimise f(x) (24)
subject to ζq(x) ≤ 0, q = 1, ..., nζ (25)

ϱq(x) = 0, q = nζ + 1, ..., nζ + nϱ (26)
x ∈ [xmin, xmax]nx (27)

where f(x) denotes the vector of the objective function to be minimised, ζq and ϱq are the
inequality and equality constraints respectively, and x ∈ [xmin, xmax]nx represent the boundary
constraints. A solution to a MOO problem can thus be defined as a vector x that satisfies the
constraints and optimises the vector function f(x) (Zitzler et al., 1999). A large number of
approaches have already been documented in literature to optimise conflicting objectives.

Fortunately, Werner (2006) provided a generic classification which differentiates between
different MOO approaches depending on the stage of the optimisation process at which the
decision makers’ preferences are incorporated as seen in Figure 5. The first of these strategies,
known as priori MOO techniques, incorporates the decision makers’ preferences at the start of
the optimisation process. Examples of preference information include relative importance or
targets for each objective function. This information is then incorporated into the optimisation
process. Since most a priori techniques transform the multi-objective problem into a single
objective problem, only one solution to the scheduling problem can be obtained at a time. One
of the most popular examples of this strategy includes weighted aggregation where all objective
functions are combined into a linear combination of criteria (Rardin and Rardin, 1998).

Figure 5: Three main strategies for addressing multiple conflicting objectives (Rardin and
Rardin, 1998)

21

Stellenbosch University https://scholar.sun.ac.za

Interactive MOO methods involve the decision-makers throughout the optimisation process.
Decision-makers who specify weight changes at intermittent stages of the optimisation process
are an example of an interactive approach. This strategy is useful in steering the algorithm to
more desirable regions of the objective space. This research is more concerned with a priori
versus a posteriori optimisation; however, a more detailed study of interactive methods can be
found in Vanderpooten (1990). No user preferences are taken into account before or during the
optimisation process in a posteriori MOO. The focus is on providing the decision-makers with
as diverse a set of solutions as possible to facilitate the selection of the most suitable solution
from the set (Werner, 2006). The purpose of a posteriori MOO can thus be summarised as
finding a set of trade-off solutions referred to as the Pareto optimal set, P F .

Evolutionary multi-objective optimisation (EMO) algorithms are a branch of evolutionary
algorithms. EMO algorithms were investigated by Wong et al. (2010) who provided a short
survey. A more detailed review of EMO algorithms can be found in Shir et al. (2010), Stoean
et al. (2010), and Coello et al. (2007).

The following section introduces the metaheuristics that are used to solve the multi-objective
part sequencing and allocation problem in the algorithm framework. The next sections discuss
the multi-objective optimisation algorithms, which includes the non-dominated sorting genetic
algorithm III (NSGA-III) in Section 2.2.1, the multi-objective evolutionary algorithm based on
decomposition (MOEAD) in Section 2.2.2, the multiple objective particle swarm optimisation
(MOPSO) are discussed in Section 2.2.3, and the multi-objective covariance matrix adaptation
evolution strategy (MO-CMA-ES) in Section 2.2.4.

2.2.1 The non-dominated sorting genetic algorithm III

The structure of the NSGA-III is very similar to the original NSGA-II algorithm (Deb et al.,
2002). Significant changes have been made with regard to its selection operator. In contrast to
the NSGA-II, the maintenance of the population diversity is improved by creating and adaptively
updating the number of well-spread reference points (Deb and Jain, 2013). As described in
Deb and Jain (2013), consider the tth generation of the NSGA-II algorithm. Let the parent
population at the respective iteration be Pt, and its size ns. The offspring of Pt is then Qt with
ns number of members. The first step will be to identify the best performing ns members from
both the parent (Pt) and the offspring (Qt) given Rt = Pt ∪Qt (size 2ns). In order to identify
the best performing members the combined population Rt is sorted based on non-domination
order (F1, F2, ..., FN). Each non-dominated level is then used to develop a new population St.
If the last level is denoted as the lth level, all solutions from (l +1) onward are rejected from the
combined population Rt. In NSGA-II this is achieved through a niche preservation operator
that computes the crowding distance for every last member in a level. The crowding distance is
calculated as the summation of an objective-wise normalised distance between two neighbouring
solutions. The solutions with the higher crowding distance values are chosen. In the NSGA-III,
the crowding distance operator is changed using the following approaches (Deb and Jain, 2013):

• Classification of population into non-dominated levels,

• Determination of reference points on a hyperplane,

• Adaptive normalisation of population members,

• Association operation,

• Niche-preservation operation.

The above-mentioned operators are described in more detail in Deb and Jain (2013).

22

Stellenbosch University https://scholar.sun.ac.za

Jain and Deb (2013) discussed the many objective NSGA-II or NSGA-III in detail. For
the initialisation phase the parent population Pt (of population size ns) is randomly initialised,
thereafter the binary tournament selection, cross-over and mutation operators create an offspring
population Qt. After that the two populations are combined and sorted according to their
domination level (Jain and Deb, 2013). The best ns members then form the next generation.
Unlike NSGA-II, NSGA-III starts with a set of reference points Zr. After the domination
sorting all front members and the last front (Fl) which could not be completely accepted are
saved in a set St. Members that are part of St and Fl are automatically part of the next
generation; however, the remaining members are selected from Fl in a way that the desired
diversity is maintained in the population.

The NSGA-II used the crowding distance measure to select a well-distributed set of points.
The NSGA-III used the supplied reference points Zr to select the remaining members. In order
to achieve identical ranges, the objective values and the reference points need to be normalised.
Thereafter the orthogonal distance between a member in St and each of the reference lines
(joining an ideal point and a reference point) is calculated. The member will then be associated
with the reference point having the smallest orthogonal distance. After that point has been
determined, the niche count ρ for each reference point is defined as the number of members
in St and Fl that are associated with the reference point. The reference that has the lowest
niche count is identified and the member that is before Fl is then associated with the identified
reference point and is included in the final population.

The niche count is increased by one and the process is repeated to fill up the population
P t+1. Algorithm 10 presents the algorithm used in Jain and Deb (2013) to generate generation
t of the NSGA-III.

Algorithm 10: NSGA-III, the process to create generation t (Jain and Deb, 2013)
1 Input: H reference points Zr, parent population Pt

2 Output: P t+1
3 St = ∅, i = 1
4 Qt = Recombination + Mutation(Pt)
5 Rt = Pt ∪Qt

6 (F1, F2, ...) =Non-dominated sort (Rt) while |St| < ns do
7 St = St ∪ Fi

8 i = i + 1
9 end

10 Last front to be included: Fl = Fi

11 if |St| = N then
12 P t+1 = St, break
13 else
14 P t+1 = ∪l−1

j=1Fj

15 Points to be chosen from Fl : K = N − |P t+1|
16 Normalise objectives
17 Associate each members of the set St with a reference point: [π(s), d(s)] = Associate

(St, Zr)%π(s): closest reference point, d: distance between s and π(s)
18 Compute niche count of reference point j ∈ Zr : ρj = ∑

s∈St/Fl
((π(s) = j)(1 : 0)

19 Choose K members one at a time from Fl to construct P t+1: Niching
(K, ρj , π, d, Zr, Fl, P t+1)

23

Stellenbosch University https://scholar.sun.ac.za

2.2.2 The multi-objective evolutionary algorithm based on decomposition

Decomposition is a basic strategy in multi-objective optimisation. Although it has been used
in multi-objective optimisation it has not been used widely in evolutionary multi-objective
optimisation (Zhang and Li, 2007).

The MOEAD algorithm decomposes the multi-objective problem into a number of scalar
optimisation problems. After the decomposition, an evolutionary algorithm is employed for
solving these subproblems simultaneously. All the individual solutions in the population are
associated with a subproblem. A neighbourhood relationship among all subproblems is defined
based on the distance of their weight vectors. In summary, the MOEAD optimises a number
of subproblems and then uses the information from the neighbouring subproblems to move to
near-optimal solutions.

In the following description of the MOEAD the Tchebycheff approach was employed (Zhang
and Li, 2007). Let λ1, ..., λE be a set of even spread weight vectors and z∗ be the reference
point. The objective function of the jth subproblem is (Zhang and Li, 2007):

gte(x|λj, z∗) = max(l ≤ i ≤ m){λj
i fi(x)− z∗|} (28)

where λj = (λj
1,, λj

m)T). The MOEAD algorithm minimises all these E objective
functions simultaneously. The optimal solution of gte(x|λi, z∗) should be close to that of
gte(x|λj , z∗) if λi and λj are close to each other. Information about these gte’s with weight
vectors close to λi benefits the optimising of gte(x|λj , z∗).

In the MOEAD algorithm, the Tchebycheff approach evaluates Algorithm 11 at each generation
t,:

Algorithm 11: MOEAD at each generation t

1 Initialise a population of ns points x1, ..., xN ∈ Ω, where xi is the current solution to
the ith sub-problem

2 F V 1, ..., F V N , where F V i is the F -value of xi, i.e. F V i = F V (xi) for each
i = 1, ..., N

3 z(z1, ..., zm)T , where zi is the best value found so far for objective fi

4 Create an external population (EP), which is used to store non-dominated solutions
found during the search for each generation.

2.2.3 The multiple objective particle swarm optimisation

Extending the particle swarm optimisation with evolutionary algorithms to multi-objective
optimisation can be done with the use of a Pareto ranking scheme (Golberg, 1989). The
repository of best-found solutions can be used to store non-dominated solutions generated
(similar to the notion of elitism as used in evolutionary multi-objective optimisation) (Coello and
Lechuga, 2002). The strategy is to use global attraction mechanisms combined with a repository
of previously found non-dominated solutions, which would enhance convergence towards globally
non-dominated solutions. The algorithm keeps data in a global repository in which every particle
will store its flight data. Additionally, the updates in the global repository are performed
considering a geographically-based system defined by the objective function. This technique
is inspired by the Pareto archive evolution strategy (PAES) (Knowles and Corne, 2000). The
algorithm for the multi-objective particle swarm optimisation algorithm as described by Coello
and Lechuga (2002) is:

24

Stellenbosch University https://scholar.sun.ac.za

Algorithm 12: MOPSO Algorithm
1 Initialise the population
2 Initialise the speed of each particle
3 Evaluate each particle in the population
4 Store the geographical positions of each non-dominated solution in the repository
5 Generate hyper-cubes of the search space explored
6 Initialise the memory of each particle (This memory is also stored in the repository)
7 while maximum number of iteration has not been reached do
8 Compute the new speed of each particle
9 Compute the new position of each particle

10 Maintain the particles within the search space
11 Evaluate each particle in the population
12 Update the repository
13 Update the particle’s memory if the current position is better than the position

stored
14 Increment the loop counter
15 end

2.2.4 The multi-objective covariance matrix adaptation evolution strategy

The multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) algorithm
is an evolutionary strategy and is designed to learn the relationships and dependencies between
a given set of decision variables by adapting a covariance matrix. The performance of the
MO-CMA-ES was tested on various techniques and multi-objective test functions (Igel et al.,
2007). The standard CMA-ES relies on the non-elitist (µ, λ) selection. The µ will then form
the next parent population and all older populations are discarded. In order to maximise
the number of different strategy parameter sets, given a fixed population size, the number of
offspring per parent must be as small as possible (Igel et al., 2007). First, a single objective
elitist (1 + λ)-CMA-ES with (1 + λ) selection was developed, where λ can be as small as 1.
In the single objective (1 + λ)-CMA-ES the parent population consists of a single individual
generating λ offspring and the best individual from the offspring and parent population becomes
the parent of the next generation. This means that the (1+λ)-CMA-ES inherits all in-variance
properties from the original CMA-ES. The in-variance properties are then integrated into the
MOO framework by considering a population of (1 + λ) evolution strategies.

In the multi-objective CMA-ES λMO × (1 + λ)-MO-CMA-ES is a population of λMO elitist
(1 + λ)-CMA-ES. The ith individual in iteration t is denoted as

x
(t)
i = [x(t)

0 , p̄
(t)
succ,i, σ

(t)
i , p

(t)
c,i , C

(t)
i]

where xi is the initial candidate solution, p
(t)
succ,i is the success probability and σ(t) denotes

the global step size. For simplicity Igel et al. (2007) considered the standard case λ = 1. In each
iteration (t) each of the parents λMO, generates λ = 1 offspring. The parents and their offspring
form the set Q(t). The step size of a parent and its offspring are updated depending on whether
the mutations were successful. The mutations are classified as successful when the offspring is
better than the parent according to the relation ≺Q(t) , where ≺ refers to the precedence. The
algorithm as described in Igel et al. (2007) is shown in Algorithm 13

25

Stellenbosch University https://scholar.sun.ac.za

Let us denote:

λ
(t+1)
succ,Q(t),i

=

1 if α

′(t+1)
i ≺Q(t) α

(t)
k is the number of successful offspring

from parent α
(t)
i for λ = 1 and Q

(t)
≺:i is the ith best

offspring in Q(t) w.r.t. ≺Q(t)

0 otherwise

Algorithm 13: MO-CMA-ES
1 t = 0, initialise x

(t)
i for i = 1, ..., λMO

2 while maximum number of iteration has not been reached do
3 for i = 1, ..., λMO do
4 x

′(t+1)
i ← x

(t)
i

5 x
′(t+1)
i ∼ N(x(t)

i , σ
(t)2

i C
(t)
i)

6 end
7 Q(t) = {x

′(t+1)
i , x

(t)
i |1 ≤ i ≤ λMO} for i = 1, ..., λMO do

8 update step size (x(t)
i , λ

(t+1)
succ,Qt,i

)
9 update step size (x

′(t+1)
i , λ

(t+1)
succ,Qt,k

)

10 update step covariance (x
′(t+1)
i ,

x
′(t+1)
i −x

(t)
i

σ
(t)
i

)

11 end
12 for i = 1, ..., λMO do
13 x

(t+1)
i ← Q

(t)
≺:i

14 end
15 t← t + 1
16 end

It is notable that a MO-CMA-ES has never been tested on this specific problem. The
contribution of this research includes the incorporation of collision avoidance in the robot routing
multi-objective problem while using metaheuristics as solution strategies, thus to the best of the
author’s knowledge, this research is the first where the MO-CMA-ES is benchmarked against
the MOPSO, NSGA-III, and MOEAD, given that all collisions must be avoided.

2.2.5 Multi-objective performance metrics

The following popular multi-objective performance metrics were considered.:

1. Hypervolume (HV) (Zitzler and Thiele, 1999): The hypervolume metric calculates the
area of the objective space created by the Pareto front, from a given reference point.

2. Number of Pareto solutions (NPS) (Hassan-Pour et al., 2009): The NPS calculates the
total number of Pareto optimal solutions found for each evaluation run.

3. Spacing metric (SM) (Deb et al., 2000): The spacing metric calculates the uniformity of
the spacing of the points on the Pareto front. The SM is calculated as:

SM = [1
n− 1

m∑
i=1

(d− di)2)]0.5 (29)

di =
√

(q2 − q1)2 + (y2 − y1)2) (30)

26

Stellenbosch University https://scholar.sun.ac.za

Where d is the mean value of all di, where di is the distance between two succeeding
non-dominated Pareto solutions and p(q1, q2), p(y1, y2) represents the coordinates of the
Pareto solution.

2.3 Summary

Section 2.1 discussed the single objective robot routing literature as well as the four single
objective metaheuristics chosen as suitable solution strategies; namely, the GA, DE, CMA-ES,
and PSO. Section 2.2 presented suitable solution strategies for the multi-objective part picking
and allocation problem. Each of these search methodologies was described in detail. The four
algorithms chosen as suitable solution strategies include the MO-CMA-ES, NSGA-III, MOPSO
and the MOEAD.

27

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Automated warehousing literature
review

Warehouses are typically simple buildings used for storing products and goods. Warehouses
allow a supply chain to keep buffer stock at a predetermined position in the supply chain. They
can be used in different supply chains for various reasons including; safety stock, long lead time
items, space constraints, or simply a business requirement. Warehouses usually have dedicated
loading and unloading areas for transportation vehicles. The aim of a warehouse is to handle
these vehicles and associated picking and binning operations as efficiently as possible. Section
3.1 discusses all activities related to warehousing and possible warehouse layouts. Section 3.2
discusses special cases of the travelling salesman problem that are compared to the robot routing
and allocation problem. Section 3.3 introduces the automated guided vehicle and automated
guided vehicle systems. Section 3.4 discusses single objective robot path planning and task
allocation literature and Section 3.5 discusses the multi-objective robot path planning and task
allocation literature. Section 3.6 summarises the chapter.

3.1 Warehousing activities

Warehousing activities form an important part of a business’s supply chain. From a financial
perspective, warehousing costs amount to approximately 20% of the total logistics costs (Baker
and Halim, 2007). Order picking and binning have been identified as the most time-consuming
general functions in a warehouse (Roodbergen and Koster, 2001). Although many companies
minimise the need for warehouse space by creating just-in-time (JIT) systems or by creating a
synchronised supply system, there is still a need for inventory warehouses. Warehouses can be
used for storing raw materials, work-in-progress parts, and finished goods products (Baker and
Canessa, 2009).

Considering the relationship between warehouse costing and customer satisfaction, companies
often explore new possibilities to improve their warehouse efficiency. Automation equipment
like conveyor systems and automated picking and binning equipment is frequently implemented
to improve the efficiency of a warehouse (Baker, 2004).

28

Stellenbosch University https://scholar.sun.ac.za

Implementation of automated warehousing equipment and systems is often the step where
businesses encounter difficulties (Wyland, 2008). Before a business can implement any warehouse
automation processes the following topics have to be well defined: the strategic action, the
organisation’s capabilities and the technologies available for automation. Wyland (2008) created
a list of actions required to obtain the best results when optimising a warehouse:

• Create a constant flow and visualisation methods;

• Connect the workforce to the business requirements; and

• Adopt technological changes.

Moeller (2011) discovered that automatic order picking and binning is mostly advantageous
for product ranges that are fixed and where no flexibility or customisation occurs. The products
must be standard and not change frequently. Andelković and Radosavljević (2018) investigated
the improvement opportunities of using a warehouse management system. Andelković and
Radosavljević (2018) found that there are a number of factors influencing the service quality
level, such as; order delivery time, order integrity, and order accuracy. The quicker the order
can be completed and delivered to the customer, the more satisfied the customer will be and the
company’s cost to serve the customer will decrease. The optimisation of the order picking process
includes the optimisation of the following phases during the order picking process (Broulias et al.,
2005):

• Travelling time required;

• Travelling distance to be travelled by the vehicle;

• Picking or binning time; and

• Return time to transport the products to the dispatch point.

The initial layout design of a warehouse defines the number of aisles, number of racks, width
of aisles, width of racks, number of cross aisles, and the height of the roof. The number of
layout options for a warehouse is endless, though certain options might be more suitable or
more efficient than other options. The layout options for a warehouse have a major impact on
the efficiency of order picking and robot travelling times. Layout design parameters such as the
number of cross aisles and the shape of the warehouse have a more than 60% effect on total
travelling distances in the warehouse (Karásek, 2013). De Koster et al. (2007a) and Heragu
(2008) listed a few characteristics to be considered when designing a new warehouse, which
include: the number of blocks in the warehouse; the length of the warehouse; the width of the
warehouse; number of picking aisles; the number and shape of the cross aisles; the number of
rack levels to be used for storage; the position of the entry gate and the number of entry and
exit gates.

Given all of the characteristics to consider, Karásek (2013) investigated the traditional layouts
as well as a number of newly adapted designs such as the flying V layout, fishbone layout, and
inverted V layout. Gue and Meller (2009) introduced new flying V and fishbone layouts with a
reduction of 10% to 20% in travelling distance. Gue et al. (2012) further improved the flying V
and inverted V layouts, and the improved designs decreased the travelling distance by a further
3%. The illustrations of the layout examples discussed above are shown in Figure 6.

29

Stellenbosch University https://scholar.sun.ac.za

Figure 6: Warehouse configuration examples

A computational system used to solve the warehouse aisle design problem was investigated
by Ozden (2017), who stated that in order to solve the order picking warehouse layout problem,
a few problems needed to be solved simultaneously:

1. Layout design problem;

2. Product allocation;

3. Picker routing;

4. Location allocation;

5. Batching of parts;

6. Centralised vs decentralised;

7. Collision avoidance; and

8. Sequencing of orders.

Li et al. (2017) focused on the batching and picking routing for online retailers and fast-moving
consumer goods. An algorithm was developed for the batching of products and the picking
routes. The similarity coefficient algorithm was the most effective method to batch the orders.
After the batching process, the routing was optimised using ant colony optimisation with a
local search. The algorithm was tested on actual sales data and the results were positive with a
reduction in manpower spent on picking and smaller batch sizes to be picked. For the batching
and picking route optimisation, Li et al. (2017) used integer programming with the objective of
minimising the total travelling distance rather than travelling time.

30

Stellenbosch University https://scholar.sun.ac.za

3.2 The travelling salesman problem and Steiner travelling salesman problem

The travelling salesman (TSP) problem is important for this dissertation because the robot
routing and allocation problem has been described as a special case of the TSP. The TSP is a
problem frequently found in operations research. It can easily be expressed as a graph describing
the servicing of locations made up of a set of nodes, by minimising an objective value. A typical
example is the route a postman has to travel to deliver his letters, using the shortest route. The
methodology used in Kim et al. (2003) included a simple sorting based heuristic and an efficient
clustering-based algorithm. Han et al. (1987) also investigated the block sequencing approach
and concluded that the problem of sequencing a number of products for picking and binning
was similar to the TSP.

Burkard et al. (1998) describe the TSP as a salesman that needs to visit each city on a given
list once, starting at the salesman’s house, visiting all the cities and then ending the route at
his house again. He can choose in which order he visits the cities but all cities must be visited.
He certainly wants to minimise the distance travelled. As the salesman attempts to find the
shortest route, he finds himself solving the travelling salesman problem. Dantzig et al. (1954)
formulated the TSP by labelling the cities 1, ..., b and defined the following:

ude =
{

1 if the path goes from city d to city e
0 otherwise

}
(31)

Take distancede > 0 to be the distance from a city d to city e. The objective for the model
is:

Min
b∑

d=1

b∑
e̸=d,d=1

distancede × ude (32)

Subject to,

b∑
d=1,d̸=e

ude = 1 e = 1, ..., b, (33)

b∑
e=1,e̸=d

ude = 1 d = 1, ..., b, (34)

∑
d∈H

∑
e̸=d,e∈H

ude ≤ |H| − 1 ∀H ̸⊆ 1, ..., b, |H| ≥ 2 (35)

The constraint shown in Equation (35) ensures no proper subset H can form a sub-tour. The
TSP has many applications in routing and production schedules with job-dependent set-up times
(Burkard et al., 1998). Because of the difficulty of solving a TSP problem, a need grew for good
suboptimal solution methods. Burkard et al. (1998) studied the research on solvable special
cases for the TSP by Gilmore (1985) and turned their focus to collecting and summarising new
results obtained since the release of Gilmore (1985) to complement that work.

The travelling salesman problem has been well researched in the past by numerous researchers.
Karásek (2013) used a self-developed algorithm based on the basic TSP to solve an order picking
problem. Roodbergen and Koster (2001) used the branch and bound procedure for the travelling
salesman problem to obtain the shortest order picking routes. The branch and bound algorithm
was also used as the benchmark in the performance analysis of Roodbergen and Koster (2001).

31

Stellenbosch University https://scholar.sun.ac.za

Molnar and Lipovszki (2005) used a special case of the travelling salesman problem along
with a genetic algorithm to solve the problem of routing and scheduling of order vehicles in
a warehouse. Wu et al. (2002) investigated the different heuristic strategies on a multi-depot
location routing problem. Burkard et al. (1998) solved a special case of the TSP by developing
a combinatorial optimisation algorithm.

The graphical TSP is a relaxation of the TSP which allows the travelling agent to visit each
city on multiple occasions and use an edge more than once. For the specialised case of order
picking, Burkard et al. (1998) considered the Steiner TSP, a related problem.

The Steiner TSP problem constructs a graph G = (V : E) and P ⊆ V , where V is the
vertices set and E is the edge set. It is the elements of V and P that are called Steiner points.
A closed walk that visits all the vertices of P at least once is called a Steiner tour of G. An
example of graph G can be seen in Figure 7.

Figure 7: Warehouse configuration graph G

The main differences between a TSP and the Steiner tour are:

• In a Steiner tour the Steiner points do not have to be visited, whereas in a TSP all points
must be visited; and

• The Steiner tour may visit some vertices on multiple occasions.

It is for the above reasons that the Steiner TSP can be used to formulate the real-world
problem of finding a minimum length order picking route. In order to solve the order picking
problem efficiently, some assumptions have to be made on the layout configuration. An example
of such a layout is the graph of a rectangular warehouse (see Figure 1). The rectangular
configuration is the one most frequently encountered in practice.

32

Stellenbosch University https://scholar.sun.ac.za

The points of interest (vertices) in V and P , the Steiner points, represent the intersections of
aisles. The distance between any two vertices is the length of the shortest path between the two
vertices. In order to classify a Steiner TSP as a Graphical TSP, the condition of P = V must
be true, which means that all vertices must be visited and some vertices or edges can be used
multiple times. Although these rules differ from the classical TSP problem, Fonlupt and Naddef
(1992) proved that it is possible to characterise those graphs and find an optimal solution to
the relaxation problem of the graphical TSP. Given an n × n distance matrix C = (cij). All
S ⊂ {1, ..., n} : S ̸= ∅ (these graphs are called TSP-perfect graphs), find a cyclic permutation
of π of the set i ∈ {1, 2, 3, ..., n} that minimises the function:

n∑
i=1

n∑
j>i

cijxij (36)

subject to:
xij ≥ 0, i, j = 1 : ... : n : i < j (37)

and ∑
i∈S

∑
j /∈S:j>i

xij +
∑
i/∈S

∑
j∈S:j>i

xij ≥ 2 (38)

xij ∈ {0, 1}∀i, j

Kim et al. (2003) addressed the order picking sequence problem in an automated warehouse
where sections of the travelling route are fixed. The length of the warehouse is significantly
longer than the width and the vehicle can only hold one part at a time. Kim et al. (2003)
compared the problem with a special type of TSP.

Molnar and Lipovszki (2005) also classified the automated warehouse routing problem to be
a special case of the TSP. Molnar and Lipovszki (2005) used a genetic algorithm with Pareto
elitist based selection to solve the multi-criteria optimisation problem. Molnar and Lipovszki
(2005) defined the genetic algorithm parameters as follows: warehouse blocks, warehouse aisles,
size of the population, number of generations, and the probability of permutation. The genetic
algorithm had multiple objectives, including:

• Determining the optimal number of vehicles;

• Determining the picking sequence with minimum cost;

• Minimising labour costs;

• Minimising earliness and tardiness; and

• Minimising resource utilisation.

Ratliff and Rosenthal (1983) developed an algorithm that was fast enough to be used in a
realistic warehouse and it could be run on a general computer. The experimental algorithm
code was developed and tested on a 50-aisle warehouse without collision avoidance. Ratliff
and Rosenthal (1983) noted that the number of items in the warehouse had little effect on the
solution time.

33

Stellenbosch University https://scholar.sun.ac.za

The methodology used by Ratliff and Rosenthal (1983) to solve the order picking problem and
minimise the travelling time and distance can be explained as follows: Consider a warehouse
with m number of parts to be picked. The warehouse configuration can be related to a graph
G. The graph G consists of vertices v0a for Gate 1 and v0b for Gate 2 respectively, a vertex vi

between each product i ∈ {0, 1, 2, 3, ..., m}, and vertices aj and bj at the end of each aisle. In
the graph G, there are connections between any two vertices and an adjacent location in the
warehouse by an unlimited number of arcs, with the length of the direct distance between the
two locations. For an order picking tour to be feasible in graph G, it must include at least one
vi ∈ {0, 1, 2, 3, ..., m}.

Ratliff and Rosenthal (1983) proved the theory behind the minimum length tour using
sub-graphs of G. Ratliff and Rosenthal (1983) discussed the tour sub-graph as a specialisation
of the theorem on Eulerian graphs (Christofides, 1975). Details regarding the theory and proofs
can be seen in Ratliff and Rosenthal (1983).

3.3 Automated routing robots and automated guided vehicles

An automated warehousing system consists of a variety of computer-controlled systems and
processes that can make decisions without human interference. Such systems are used to
eliminate human error and for expediting processes. Some commonly found elements used
in an automated warehouse include automated guided vehicles (AGVs), a mobile vehicle that
can follow a set route using radio waves, cameras, magnets and lasers for navigation.

Research about automated guided vehicles (AGVs) focuses more on addressing network
optimisation problems and less on developing methodological approaches to make it more
sustainable in an economic and social environment. The application of AGVs can be found
throughout all branches of industry, including automotive, printing, pharmaceutical, metal,
food, aerospace industries and port facilities. The interest in AGVs is reflected in the sales
figures of automated guided vehicle system (AGVS) sales which peaked in 2006 (Schulze et al.,
2008).

The purpose of implementing AGVs is to increase the efficiency of warehouse operations and
reduce warehouse costs. In order to achieve an efficient flow of AGVs, path planning is crucial
as path planning will determine the time it takes for AGVs to move from one point to another.
Path planning also aids in avoiding unnecessary congestion and collisions.

Schulze et al. (2008) mentioned that automation of transportation in the production, trades
and service industries is critical when optimising logistic processes. Automated guided vehicles
provide several benefits when implemented, costs and reliability being two of the main advantages.
Vivaldini et al. (2009) studied the use of vehicle automation using forklifts and found that the
use of automation improves both cost and time. AGVs also provide unmatched flexibility when
integrated into an existing or changing environment. Vivaldini et al. (2009) also highlighted the
significant success of AGVs regarding the repeatability of tasks.

Schulze et al. (2008) introduced the main components of an AGVS. A visual representation
of an AGVS can be seen in Figure 8:

• Vehicles. Vehicles form the heart of an AGVS. Vehicles perform the actual activities
in the system. Vehicles have to be designed specifically for the purpose of the system.
Vehicles can differ in payloads, equipment, navigation systems, drive configuration, size
and other aspects;

34

Stellenbosch University https://scholar.sun.ac.za

• Stationary control system. The task of the stationary control system is to administrate
the transportation orders, optimise the schedules and communicate with other control
systems. The stationary control system also provides auxiliary functions such as graphical
visualisations and statistical analyses to the customer;

• Peripheral system components. The peripheral system components represent the
counterparts to various items of on-board equipment of vehicles e.g. battery loading
stations; and

• On-site system components. Aspects of the site’s structural design that affect the
AGVs, e.g. gates.

Figure 8: Automated guided vehicle system

Vivaldini et al. (2016) presented the methodology of estimating the minimum number of
AGVs required to satisfy a number of tasks in a given time window. In order to achieve
the minimum number of AGVs, typically the objective is to minimise the travel times of
AGVs. Different algorithms were tested including the shortest job first algorithm and the tabu
search metaheuristic. In order to obtain a collision-free system an enhanced Dijkstra algorithm
was used for conflict-free routes. The methodology was tested on two examples of industry
warehouses and the results can be seen in more depth in Vivaldini et al. (2016).

AGVs have matured to such an extent that they can add great value to a supply chain with
the focus on sustainability (Bechtsis et al., 2017). Some AGVs are capable of planning their
own movements to execute a picking or binning process. The planning of their movements takes
into account the sharing of aisle space with other manual or automated vehicles (Jacobus et al.,
2015). AGVs keep to planned speed limits; they are able to stabilise their loads using stability
control and they can determine when to stop or move. AGVs are able to make human-like
decisions at intersections to merge into the traffic flow. AGVs use sensors to identify static and
dynamic obstacles, and given the feedback from the sensors, the AGV can determine whether
to stop and wait until the obstacle is removed or avoid the detected obstacle (Jacobus et al.,
2015).

De Ryck et al. (2020) provided an overview of the most recent AGV control algorithms
and techniques. They divide AGV control tasks into five main areas; namely, task allocation,
localisation, path planning, motion planning, and vehicle management. This dissertation focuses
mainly on task allocation and path planning.

35

Stellenbosch University https://scholar.sun.ac.za

Task allocation (Khamis et al., 2015) is concerned with determining which robot performs
which tasks, e.g. the picking and binning of parts at certain locations. Path planning is
concerned with generating the shortest obstacle-free path from the point of origin to destination
and back (Jabbarpour et al., 2017; Lee et al., 2018; López-González et al., 2020).

Another important distinction to make is the difference between centralised and decentralised
AGV architectures. Centralised systems make use of global information to find an optimal or
near optimal solution for the AGV system. This optimisation is typically performed before
initiation of the first tasks and is static in nature. An example is allocating tasks and planning
the best paths for all robots in the system. A decentralised system makes use of local information
and the individual robots have built-in intelligence to make their own decisions as the system
changes dynamically (De Ryck et al., 2020; Draganjac et al., 2020; Chen et al., 2018). This
dissertation focuses on the centralised case where the system needs to be re-optimised each
time a significant change occurs.

An investigation into existing research related to centralised AGV architectures showed that
the requirement for collision avoidance and multiple objectives adds significant complexity
to the problem. In a warehouse the aisle and shelf layout need to be considered and collisions
between multiple robots need to be avoided.

Collision-avoidance systems and strategies are used to predict the risks of a collision happening
and a strategy to avoid the possible collision. These strategies include the guidance for vehicles
to wait, decelerate, or avoid a path. Collision-avoidance systems are able to perform actions
autonomously by applying a set of predefined rules and restrictions.

3.4 Single objective robot path planning and task allocation literature

This section discusses task allocation and path planning strategies and approaches found in
literature. Han et al. (1987) defined two main approaches for sequencing picking and binning
processes, namely:

1. Define the high turnover products, sequence the products that are more frequently required
first, and only after the frequent products have been sequenced, select the rest of the
products.

2. Allow for re-sequencing. Every time a new product is required to be sequenced, apply
heuristics according to due dates or priorities.

The two approaches have different goals when solving the sequencing problem. Defining the
high turnover products will allow the model to assign a priority to these items. The benefit
of using priorities can be to ensure that the more frequently bought products always meet
their requirements. The downside of priorities is that it sometimes neglects the products that
do not have as high priorities. The second approach of re-sequencing allows the algorithm
to re-sequence products if a better solution is found, but on the other hand it also creates
an exponentially larger solution space to be solved. Solving large solution spaces tends to be
computationally expensive and it is practically infeasible, thus limiting the number of times
re-sequencing will ensure the solution space does not grow too large to solve.

Fanti et al. (2015) considered a zone controlling guide path network for assigning tasks to
multiple AGVs. The controlling network guided the AGVs on respective paths to avoid collisions
and deadlocks. All vehicles in the system applied a discrete consensus algorithm to locally
minimise the global cost of reaching their destination. The consensus protocol was solved using
local integer linear programming.

36

Stellenbosch University https://scholar.sun.ac.za

The AGVs moved along the network to reach their respective destinations using a decentralised
coordination algorithm to avoid collisions and deadlocks. Fanti et al. (2015) showed that the
coordination procedure can guarantee the avoidance of collisions and deadlocks.

A simultaneous task allocation and motion coordination (STAMC) approach was presented by
Liu and Kulatunga (2007), Liu and Kulatunga (2007) who applied two metaheuristics; namely,
simulated annealing and an auction algorithm. The proposed approach was able to solve the
scheduling, planning, and collision-avoidance problems simultaneously. Additional benefits of
the STAMC approach is the improvement to use bottleneck areas, the ability to handle dynamic
traffic-rules, and to avoid a deadlock. The effectiveness and efficiency of the STAMC approach
was demonstrated using simulation results.

Draganjac et al. (2020) presented a method that can be used to coordinate free-ranging AGVs
in real-world scenarios. The primary aim of the study was to enhance current multi-vehicle
transportation systems. The presented method relies on a centralised controller which has a
predetermined network of available paths. The improvements Draganjac et al. (2020) addressed
include; better scalability, a more flexible system and the introduction of a decentralised
controlling algorithm. The algorithm proposed by Draganjac et al. (2020) integrates path
planning and navigation. Each vehicle was responsible for planning its own shortest feasible
route towards the destination location. The vehicle followed the shortest route until there was
a conflict with another vehicle; the first vehicle then resolved the conflict situation with the
other vehicle and continued on the shortest path. The navigation strategy relied on a private
zone mechanism, ensuring reliable collision avoidance. The scalability was improved by allowing
negotiations with other vehicles in a limited communication radius. The experimental results
confirmed that the method was highly scalable and the coordination method was highly flexible
with changes in the environment.

Vivaldini et al. (2010) presented research on robotic forklifts for an intelligent warehouse
system. The focus was on the three key routines that determined the behaviour of the AGV;
namely, the algorithm used for the overall routing of the AGV through the typographically
mapped warehouse for the objective of minimum time or distance, the local path-planning
algorithm for the node-specific route planning and optimisation, and lastly an auto localisation
algorithm to estimate the AGV’s actual position. The algorithm was able to resolve the traffic
congestion and avoid collisions before the AGVs started travelling.

Kim et al. (2003) introduced a clustering-based sequencing algorithm to solve the automated
warehouse routing problem. The clustering-based sequence algorithm has three steps: clustering
locations based on their horizontal positions, solving each cluster individually, and combining
the sub-tours. The three steps of the clustering algorithm developed were:

Step 0: Sort locations in increasing order of x-coordinates
Step 1: Set current index cluster = 1. Select location with smallest x-coordinate and place

into current cluster.
Step 2: From the remaining unselected locations check that the horizontal movement time

between that location and any other from the current cluster, is less than the vertical
movement times of the locations. If so, place the location into the current cluster.
Repeat Step 2 until there are no more such locations.

Step 3: If there are no more locations remaining to select, STOP.
Otherwise set the current index cluster = current index cluster +1 and go to Step 1.

37

Stellenbosch University https://scholar.sun.ac.za

Vivaldini et al. (2009) proposed an algorithm that produced the optimal routes for AGVs.
The algorithm was able to solve real-world scenarios with conflict-free paths amidst the presence
of obstacles. The algorithm proposed by Vivaldini et al. (2009) was based on Dijkstra’s shortest
path method. The algorithm allowed AGVs to execute tasks by starting at an initial position and
travelling to a pre-established position using a minimum path methodology. The path, however,
formed a continuous sequence of positions that the AGV travelled along. The continuity of the
path allowed for real-world decision-making to overcome obstacles and congestion. Vivaldini
et al. (2009) validated the efficiency of the proposed algorithm using computer simulations on
different real-world scenarios.

Traditional routing algorithms typically use static methods for calculating the most optimal
routes. In a real-world scenario static calculations can only be adjusted slightly to accommodate
unplanned occurrences (Klaas et al., 2011). Klaas et al. (2011) aimed to develop a routing
algorithm that would be more reactive to real-world scenarios. It needed to plan routes in smaller
steps, creating the routing path incrementally rather than holistically. The incremental steps
made the algorithm more likely to find a feasible solution in real-world scenarios like collision
avoidance and deadlocks. Machine learning was also used in a discrete simulation process to
learn from experiments. The algorithm was tested and the results yielded an algorithm that
was naturally robust against delays and failures.

Fuzzy logic control combined with a potential field were used for AGVs’ path planning by Wu
et al. (1999). The potential field was created using the top view of an environment. The chamfer
distance transform was used to build the imaginary potential field required. The potential field
method was used to calculate the force between the vehicle and the closest obstacle (Wu et al.,
1999). The resultant forces then guided the AGV to the destination position. In a deadlock
situation (where no vehicle is able to move in the desired direction), a fuzzy logic controller was
proposed to adjust the direction of the AGV. Wu et al. (1999) performed a series of simulations
and the results show that the fuzzy logic controller was able to successfully navigate the AGV
out of deadlock situations.

Chen et al. (2018) used the artificial potential function (APF) method to provide a solution
to the path planning problem for multi-robot systems. The improved APF method was able to
solve the following problems: obstacle avoidance, falling into a local minimum, not reaching the
target fitness value, collision avoidance and avoiding traffic congestion. The following methods
were used to solve the listed problems; the wall-following method was used to eliminate the risk
of falling into a local minimum, the APF method was used to ensure that the target fitness
value was reached, and the priority strategy along with a collision-avoidance algorithm were
used to solve congestions and collisions. Multiple simulations were performed and the results
confirmed the validity and feasibility of the methods used.

Zhang et al. (2018b) proposed a collision-free routing method for AGVs based on collision
classification. The warehouse was divided into areas. After the areas were defined the algorithm
performed route planning for each AGV. The initial route of each task was determined using the
improved Dijkstra’s algorithm. The initial routes were shared and interpreted by the centralised
controller. The centralised controller detected potential collisions by comparing the locations of
the AGVs at each time interval. The collisions were then classified using the following criteria:

• Head-on collision: a head-on collision happened when two AGVs travelled on the same
path, at the same time but in opposite directions.

• Cross collision: a cross collision happened when two AGVs wanted to enter the same
intersection at the same time.

38

Stellenbosch University https://scholar.sun.ac.za

• Node-occupancy collision: the node-occupancy collision happened when an AGV was
occupying a node and another AGV wanted to pass through that node or use the same
node.

• Shelf-occupancy collision: the shelf-occupancy collision could happen when multiple AGVs
attempted to service the same picking location but from different directions.

After the collisions had been identified and classified, the centralised controller provided a
collision-free solution.

Pamosoaji and Hong (2011) presented an algorithm that was able to generate collision-free
routes in a multi-vehicle system. Three-degree Bezier curves were used to form the basic pattern
of the routes. The presence of known static obstacles and collisions with another vehicle were
considered in the solution. The PSO algorithm was used to optimise the routes, as the minimum
time required.

Juntao et al. (2016) proposed a path planning method with collision avoidance for AGVs. The
improved ant colony algorithm combined with the grid method with time windows was used
to determine the optimal path for the AGVs. Simulation results indicated that the proposed
method and algorithm can identify the optimal solution for the path planning problem. The
solution was able to plan the routes of multiple AGVs without any collisions.

While solving the path planning problem, Yuan et al. (2016) also focused on the reduction
of traffic congestion as well. A collision-free path planning method based on the A* improved
algorithm was presented. The method to avoid collisions and congestion was to add a penalty
value when multiple AGVs shared the same path. The penalties were set according to the
different types of traffic congestion and collisions. The collision-free path was then constructed
by combining the improved A* algorithm and collision resolution heuristics. Simulation results
showed that the method presented can improve the warehouse’s activity efficiency and bring
relief to the traffic congestion in the system.

Zhang et al. (2018a) developed a time window method to find the optimal paths for a multiple
AGV system. The A* algorithm was used to find the optimal paths for the multi-AGV system.
The algorithm developed was tested in a simulation experiment and the results showed that the
algorithm can effectively solve conflicts between AGVs and that the algorithm was reliable in a
real-world environment.

Zhang et al. (2017) proposed a conflict-free route planning approach for AGVs in a warehouse
system. Dijkstra’s algorithm was used to determine the candidate routes for the proposed
algorithm. Zhang et al. (2017) used the method of conflict classification to resolve the potential
conflicts. These classifications include the cross-conflict when two AGVs want to enter the same
intersection, the path-occupancy conflict where one AGV is occupying the path which another
AGV wants to occupy, and the head-on conflict where two AGVs meet on the same path but
are heading in opposite directions. After the conflict was classified, a self-adaptive strategy was
used to resolve the conflict. The efficiency of the proposed conflict-free route planning approach
was verified using simulation techniques.

Jabbarpour et al. (2017) proposed an ant-based path planning approach. The objective was
to find the shortest collision-free path. The method was validated using simulation tools and the
performance was compared to the ant colony optimisation, genetic algorithm, and the particle
swarm optimisation algorithm. The results showed that the ant-based path planning approach
outperformed the existing methods.

39

Stellenbosch University https://scholar.sun.ac.za

Jacobus et al. (2015) developed an algorithm where each AGV received their current or
starting position and their final destination. The path for each AGV was calculated incrementally
using three steps (see Figure 9):

1. The Euclidean shortest path from starting position to destination was calculated for each
AGV. Each path was cut off at the point where a collision would occur. The AGV moved
along this shortest path at a constant speed until the cut-off point was reached, minus an
offset.

2. Rerouting was used to avoid the collision according to predefined rules. The rules were
determined for the current system state by accessing the knowledge base. The knowledge
base consists of situations previously encountered during the offline simulation. The
scenarios encountered in the offline simulation have best option rules given to each of
them, thus the rule used in the algorithm’s scenario received the optimal re-routing rule
from the knowledge base.

3. If the rerouting was successful, return to Step 1.

Figure 9: Incremental path planning for AGV

Because of the incremental calculation, the algorithm was dynamic. Additional stops on
route, modifications to routes, and unforeseen delays could be accommodated.

Vis et al. (2001) developed a minimum flow algorithm to determine the number of AGVs
required at a semi-automated container terminal. Vis et al. (2001) categorised the two main
activities of the AGVs as loading and unloading of containers. The algorithm developed by
Vis et al. (2001) was a strongly polynomial time algorithm which was able to solve a scenario
where the containers were available for transport at known time instances. The model and
algorithm were developed to determine the number of AGVs needed to move all the containers
within a given time frame. The model did not allocate containers to specific vehicles, which was
done by operational personnel. The problem was relaxed to an extent where the availability of
containers was at predetermined time instances.

Menon et al. (1988) presented the problem of mobile robot navigation and planning in an
automated warehouse. A generalised layout was considered and the objective of the path
planning algorithm was to find the shortest distance while avoiding any collisions. The developed
algorithm’s process flow was closely related to the part sequencing and allocation problem.

40

Stellenbosch University https://scholar.sun.ac.za

The process flow was as follows:

1. Create a global map of the warehouse and the nodes that can be used for movement.

2. Assign the warehouse tasks to the number of robots available in the system.

3. Introduce static constraints (if they exist).

4. Path planning from current node to destination node.

5. Create node arrival time charts for each robot. Alter the arrival times to avoid collisions.

6. Initiate movement and scan the next node’s status.

7. Is there a risk of collision or obstacle? If yes, update constraints and return to step 4.

8. Move towards destination node and after each movement re-evaluate from step 6 onwards.

9. Stop when destination node is reached.

Kovács and Kóczy (1999) investigated the use of fuzzy logic algorithms as guidance systems,
path tracking, and collision-avoidance strategies. The main purpose of the guidance control
system was to keep record of the paths used. Secondly, the strategy had to avoid any type of
collision without risking the chance of losing the guided path. The strategies were developed
using the actual operator’s control actions. The control actions translated to heuristics which
formed the fuzzy rule database. Kovács and Kóczy (1999) concluded that the approximate fuzzy
reasoning method was an efficient approach for designing a direct fuzzy logic control system.

Lee and Wang (1994) also applied the fuzzy logic approach as a collision-avoidance strategy for
AGVs. Static obstacles as well as dynamic obstacles with unknown velocities were considered.
Human-defined strategies for collision avoidance were modelled as fuzzy logic rules. Fuzzy logic
was used to guide an AGV from the AGV’s initial position to the destination position without
colliding with other vehicles or obstacles. The method proposed by Lee and Wang (1994) can
also be used for the navigation of multiple AGVs. A simulation model was used to show the
feasibility of the proposed fuzzy logic approach.

Collision and deadlock problems that may occur when routing an AGV in real time were
investigated by Möhring et al. (2005). Möhring et al. (2005) developed and presented an
algorithm that was able to avoid collisions and deadlocks at the time of route computation.
The algorithm was able to produce conflict-free solutions. The algorithm’s real-time calculations
were able to determine the shortest route with time windows, followed by a readjustment of
the time windows. Both were done in polynomial time. To decrease the computational time, a
goal-orientated search technique was used (Möhring et al., 2005). The algorithm’s performance
was compared to a static routing approach. It was notable that the algorithm proposed was
easy to implement and it was not computationally complex.

Watanabe et al. (2001) proposed two methods to provide intelligence to AGVs. For an AGV
to drive autonomously, two problems need to be solved; namely, the navigation of multiple AGVs
and collision avoidance. Watanabe et al. (2001) considered a new method based on the feature
scene recognition and acquisition for solving the navigation problem. The navigation route of
an AGV was learnt by the use of Q-learning (a reinforcement learning algorithm). Addressing
the second problem, collision avoidance, Watanabe et al. (2001) described the problem as a
mutual understanding of behaviours between multiple AGVs. Combining these two methods
allowed for the routing of multiple AGVs autonomously in a factory.

41

Stellenbosch University https://scholar.sun.ac.za

Digani et al. (2014) attempted to solve the obstacle avoidance problem by proposing an
automated algorithm that was capable of building new obstacle-free trajectories that deviate
from the original path. The newly built path had to comply with the dynamic and kinematic
constraints of the AGV. The new path was generated using polar spline curves, lane change
curves and line segments. The algorithm proposed by Digani et al. (2014) had the following
objectives:

• Computing a path that guaranteed obstacle avoidance;

• Defining a path that was admissible; and

• Guaranteeing that once an obstacle had been passed, the AGV returned to the original
path.

The detailed algorithm can be seen in Digani et al. (2014). Given the objectives above, the
algorithm had a defined sequence of steps to follow:

1. Safety check.

2. Leave the road map.

3. Avoid the obstacle.

4. Return to the original path.

The proposed method was validated by testing various scenarios in a simulation model.

Ganapathy et al. (2010) developed an improved ant colony optimisation algorithm that could
navigate a robot in a warehouse while avoiding any collisions. Systematic testing and simulations
showed that the algorithm was capable of finding feasible solutions to the real-world problem.
Uriol and Moran (2017) also used the ant colony optimisation algorithm to solve the path
planning problem of robots in complex environments. The results also showed that the ant
colony optimisation algorithm was able to find optimal or near-optimal shortest paths with
collision avoidance. A metaheuristic-based ant colony algorithm was also used by Kulatunga
et al. (2006). The results showed that the ant colony optimisation algorithm achieved slightly
better performance than the results of the simulated annealing algorithm.

A summary of collision-avoidance articles with their techniques, objective functions and
constraints is provided in Table 3.4.

42

Stellenbosch University https://scholar.sun.ac.za

T a
bl

e
1:

R
es

ea
rc

h
th

at
in

cl
ud

es
co

lli
sio

n
av

oi
da

nc
e

A
ut

ho
r

A
lg

or
it

hm
O

b j
ec

ti
ve

C
on

st
ra

in
ts

D
ra

ga
nj

ac
et

al
.(

20
20

)
M

ot
io

n
co

or
di

na
tio

n
st

ra
te

gy
al

go
rit

hm
M

in
im

um
co

st
fu

nc
tio

n
O

bs
ta

cl
e

av
oi

da
nc

e

H
ai

m
in

g
et

al
.(

20
19

)
A

*
sh

or
te

st
-p

at
h

m
et

ho
d

w
ith

tim
e

w
in

do
w

s
M

in
im

um
co

st
fu

nc
tio

n
C

ol
lis

io
n

av
oi

da
nc

e

Zh
an

g
et

al
.(

20
18

b)
Im

pr
o v

ed
D

ijk
st

ra
’s

al
go

rit
hm

F e
as

ib
le

so
lu

tio
ns

C
ol

lis
io

n
av

oi
da

nc
e

C
he

n
et

al
.(

20
18

)
Sh

or
te

st
pa

th
th

eo
ry

an
d

al
go

rit
hm

Sh
or

te
st

di
st

an
ce

O
bs

ta
cl

e
av

oi
da

nc
e

Zh
ua

ng
et

al
.(

20
18

)
Ju

m
p

po
in

t
se

ar
ch

(J
PS

)
Sh

or
te

st
di

st
an

ce
C

ol
lis

io
n

av
oi

da
nc

e
D

ha
wa

le
et

al
.(

20
18

)
G

au
ss

ia
n

m
ix

tu
re

m
od

el
(G

M
M

)
M

in
im

um
tim

e
C

ol
lis

io
n

av
oi

da
nc

e

Li
u

et
al

.(
20

17
)

N
o v

el
sw

ar
m

ro
bo

t
sim

ul
at

io
n

pl
at

fo
rm

M
in

im
um

tim
e

an
d

di
st

an
ce

C
ol

lis
io

n
av

oi
da

nc
e

G
o c

he
v

et
al

.(
20

17
)

A
*

sh
or

te
st

-p
at

h
m

et
ho

d
M

in
im

um
tim

e
C

ol
lis

io
n

av
oi

da
nc

e
P a

m
os

oa
ji

an
d

H
on

g
(2

01
1)

P a
rt

ic
le

sw
ar

m
op

tim
isa

tio
n

(P
SO

)
M

in
im

um
tim

e
C

ol
lis

io
n

av
oi

da
nc

e

Li
u

an
d

K
ul

at
un

ga
(2

00
7)

Si
m

ul
ta

ne
ou

s
ta

sk
al

lo
ca

tio
n

an
d

m
ot

io
n

co
or

di
na

tio
n.

M
in

im
um

tim
e

Sc
he

du
lin

g
ve

hi
cl

es
.

T a
n

(2
00

6)
R

ap
id

ly
ex

pl
or

in
g

ra
nd

om
tr

ee
(R

RT
)

al
go

rit
hm

F e
as

ib
le

so
lu

tio
ns

C
ol

lis
io

n
av

oi
da

nc
e

L ó
pe

z-
G

on
zá

le
z

et
al

.(
20

20
)

G
en

et
ic

al
go

rit
hm

F e
as

ib
le

so
lu

tio
ns

C
ol

lis
io

n
av

oi
da

nc
e

C
es

ar
on

e
an

d
Em

an
(1

98
9)

D
yn

am
ic

pr
og

ra
m

m
in

g
Sh

or
te

st
di

st
an

ce
C

ol
lis

io
n

av
oi

da
nc

e
Ju

n t
ao

et
al

.(
20

16
)

A
n t

co
lo

ny
al

go
rit

hm
M

in
im

um
tim

e
C

ol
lis

io
n

av
oi

da
nc

e

Ja
n

et
al

.(
20

08
)

H
ig

he
r

ge
om

et
ry

m
az

e
ro

ut
in

g
al

go
rit

hm
Sh

or
te

st
di

st
an

ce
C

ol
lis

io
n

av
oi

da
nc

e

Y u
an

et
al

.(
20

16
)

A
*

sh
or

te
st

-p
at

h
m

et
ho

d
Sh

or
te

st
di

st
an

ce
C

ol
lis

io
n

av
oi

da
nc

e
V

iv
al

di
ni

et
al

.(
20

16
)

D
ijk

st
ra

’s
sh

or
te

st
pa

th
m

et
ho

d
M

in
im

um
tim

e
C

ol
lis

io
n

av
oi

da
nc

e
H

en
ne

s
et

al
.(

20
12

)
A

da
pt

iv
e

M
on

te
C

ar
lo

M
in

im
um

tim
e

an
d

di
st

an
ce

O
bs

ta
cl

e
av

oi
da

nc
e

Y a
n

et
al

.(
20

17
)

D
ig

ra
ph

m
od

el
F e

as
ib

le
so

lu
tio

n
C

ol
lis

io
n

av
oi

da
nc

e
M

en
on

et
al

.(
19

88
)

P a
th

pl
an

ni
ng

al
go

rit
hm

Sh
or

te
st

di
st

an
ce

C
ol

lis
io

n
av

oi
da

nc
e

Zh
an

g
et

al
.(

20
18

a)
A

*
sh

or
te

st
-p

at
h

m
et

ho
d

M
in

im
um

tim
e

C
ol

lis
io

n
av

oi
da

nc
e

Zh
an

g
et

al
.(

20
17

)
D

ijk
st

ra
’s

sh
or

te
st

pa
th

m
et

ho
d

Sh
or

te
st

di
st

an
ce

C
ol

lis
io

n
av

oi
da

nc
e

T r
uo

ng
et

al
.(

20
18

)
C

on
tin

uo
us

cl
us

te
r

m
et

ho
d

M
in

im
um

tim
e

an
d

di
st

an
ce

C
ol

lis
io

n
av

oi
da

nc
e

43

Stellenbosch University https://scholar.sun.ac.za

T a
bl

e
1:

R
es

ea
rc

h
th

at
in

cl
ud

es
co

lli
sio

n
av

oi
da

nc
e

A
ut

ho
r

A
lg

or
it

hm
O

b j
ec

ti
ve

C
on

st
ra

in
ts

D
on

g
et

al
.(

20
16

)
C

ul
tu

ra
l-g

en
et

ic
al

go
rit

hm
Sh

or
te

st
di

st
an

ce
C

ol
lis

io
n

av
oi

da
nc

e
D

ig
an

i e
t

al
.(

20
19

)
Q

ua
dr

at
ic

pr
og

ra
m

M
in

im
um

tim
e

C
ol

lis
io

n
av

oi
da

nc
e

Li
et

al
.(

20
18

)
D

yn
am

ic
pr

og
ra

m
m

in
g

Sh
or

te
st

di
st

an
ce

C
ol

lis
io

n
av

oi
da

nc
e

Ó
D

ui
nn

(1
99

4)
Le

e’
s

al
go

rit
hm

M
in

im
um

tim
e

an
d

di
st

an
ce

C
ol

lis
io

n
av

oi
da

nc
e

Ja
bb

ar
p o

ur
et

al
.(

20
17

)
G

re
en

an
t

al
go

rit
hm

Sh
or

te
st

di
st

an
ce

C
ol

lis
io

n
av

oi
da

nc
e

C
he

n
an

d
Li

u
(2

01
9)

A
n t

co
lo

ny
al

go
rit

hm
Sh

or
te

st
di

st
an

ce
O

bs
ta

cl
e

av
oi

da
nc

e

Le
e

et
al

.(
20

18
)

G
en

et
ic

al
go

rit
hm

w
ith

a
di

re
ct

io
n

gu
id

ed
fa

ct
or

Sh
or

te
st

di
st

an
ce

C
ol

lis
io

n
av

oi
da

nc
e

G
an

ap
at

h y
et

al
.(

20
10

)
Im

pr
o v

ed
an

t
co

lo
ny

op
tim

isa
tio

n
Sh

or
te

st
di

st
an

ce
O

bs
ta

cl
e

av
oi

da
nc

e
U

rio
l a

nd
M

or
an

(2
01

7)
A

n t
co

lo
ny

op
tim

isa
tio

n
al

go
rit

hm
Sh

or
te

st
di

st
an

ce
O

bs
ta

cl
e

av
oi

da
nc

e

La
rs

en
et

al
.(

20
17

)
Sa

m
pl

in
g-

ba
se

d
an

d
co

m
pu

ta
tio

na
l

in
te

lli
ge

nc
e

m
et

ho
ds

Sh
or

te
st

di
st

an
ce

C
ol

lis
io

n
av

oi
da

nc
e

F a
zl

ol
la

ht
ab

ar
an

d
H

as
sa

nl
i(

20
18

)
N

et
wo

rk
sim

pl
ex

al
go

rit
hm

M
in

im
um

tim
e

C
ol

lis
io

n
av

oi
da

nc
e

W
an

g
an

d
Ba

ni
ta

an
(2

01
8)

A
pa

rt
iti

on
in

g-
ba

se
d

ap
pr

oa
ch

Lo
w

co
st

pa
th

s
C

ol
lis

io
n

av
oi

da
nc

e
Su

ch
ia

nd
V

in
cz

e
(2

01
4)

M
et

ah
eu

ris
tic

se
ar

ch
st

ra
te

gi
es

M
in

im
um

tim
e

C
ol

lis
io

n
av

oi
da

nc
e

K
ul

at
un

ga
et

al
.(

20
06

)
A

n t
co

lo
ny

op
tim

isa
tio

n
M

in
im

um
tim

e
C

ol
lis

io
n

av
oi

da
nc

e
D

ao
et

al
.(

20
16

)
A

m
ul

ti-
ob

je
ct

iv
e

m
od

el
Sh

or
te

st
di

st
an

ce
C

ol
lis

io
n

av
oi

da
nc

e
P a

la
nd

Sh
ar

m
a

(2
01

3)
Sw

ar
m

in
te

lli
ge

nc
e

Sh
or

te
st

di
st

an
ce

C
ol

lis
io

n
av

oi
da

nc
e

Sa
ho

o
et

al
.(

20
11

)
H

on
ey

be
e

m
at

in
g

op
tim

isa
tio

n
al

go
rit

hm
Sh

or
te

st
di

st
an

ce
C

ol
lis

io
n

av
oi

da
nc

e

44

Stellenbosch University https://scholar.sun.ac.za

The article on order picking in a rectangular warehouse by Ratliff and Rosenthal (1983)
defined the fundamental item retrieval problem as the order picking problem. Ratliff and
Rosenthal (1983) described the same type of picking problem addressed in this dissertation:
the collection of parts from a dispatch area and returning to the dispatch area. The objective
function is also very similar. Ratliff and Rosenthal (1983) set the objective to minimise the
time travelled or distance travelled. The assumption of a vehicle only collecting and binning
one item at a time is also mutual. Ratliff and Rosenthal (1983) stated that for an arbitrary
configuration of a warehouse, the order picking problem can easily be recognised as a variant of
the TSP, although it can be very difficult to solve.

The optimisation of both item locations and routing for an order picking vehicle has received
significant attention in literature. Beroule et al. (2017) investigated the order picking problem
in a hospital pharmacy warehouse. The purpose of the article was to simultaneously solve
the routing improvement problem and the location allocation problem. Beroule et al. (2017)
provided the evidence that the problem can be solved using an exact mathematical model. The
solution was obtained by the use of mixed integer programming. The mixed integer model
could be extended to a linear version. The disadvantage was the running time required to
find the optimal solution. Although it was possible to solve the problem exactly, the following
assumptions were made to reduce the problem to an exact solvable case:

• Collisions between robots are not considered in this problem;

• The order robots are never overloaded;

• The picking operations start and end at the same geographical point; and

• Only one class of an item may be placed at any one location.

Because of the running time required by an exact method, a genetic algorithm (GA) and
dedicated heuristic were presented to form a hybrid GA for solving the problem. Other solution
methods worth mentioning from the research by Beroule et al. (2017) include the use of a hybrid
of a dedicated heuristic and the TSP, the hybrid GA, and the sole use of a GA. In order to
understand the working of a GA in this context an example is shown as presented in Beroule
et al. (2017):

• n = number of items (and locations);

• m = number of picking lists;

• Ct = set of items contained in a list t;

• Dk,l = distance between a location k and l;

• xi,k =
{

1 if item i is at location k
0otherwise

• li,j,t =
{

1 if list t implies to go from item i to j when picking
0otherwise

• ui,t = picking order of item i in list t.

45

Stellenbosch University https://scholar.sun.ac.za

The aim of the model developed by Beroule et al. (2017) was to minimise the distance
travelled. Thus the objective function was formulated as:

Minimise Z =
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

m∑
t=1

xi,k × xj,l × li,j,t ×Dk,l (39)

The model was subject to:
n∑

j=1
xi,j = 1 1 ≤ i ≤ n (40)

n∑
i=1

xi,j = 1 1 ≤ j ≤ n (41)

∑
j∈Ct

li,j,t = 1 i ∈ Ct 1 ≤ t ≤ m (42)

∑
i∈Ct

li,j,t = 1 j ∈ Ct 1 ≤ t ≤ m (43)

li,j,t = 1 1 ≤ t ≤ m (44)
u1,t = 1 1 ≤ t ≤ m (45)

ui,t − uj,t + nli,j,t ≤ n− 1 1 ≤ i ≤ n, 2 ≤ j ≤ n, 1 ≤ t ≤ m, i ̸= j (46)
x1,1 = 1 (47)

Equations (40) and (41) force each product to be allocated to a location. In the study of
Beroule et al. (2017), the location number 1 is considered as the start and end of the picking
and binning operation. For this reason, Equation (47) forces the depot to be at location 1.

Equations (42) and (43) ensure that each item is preceded and followed by another item.
Note that each picking list starts and ends with the depot (location 1). Equation (44) is used
to prevent duplicating a picking order. Lastly, Equations (45) and (46) prevent the picking lists
from containing sub-tours.

The equations discussed above can be solved with an exact solver, but the complexity of the
objective function drastically increases the computational time. Beroule et al. (2017) found that
the computation time may reach up to an hour to solve a problem with only ten products.

In order to implement the GA, the solution representation had to be calculated. Beroule
et al. (2017) presented each solution representation as shown in Equation (48):

P =
{

L = {L1, L2, ..., Lm}
X = {X1, X2, ..., Xn}

(48)

Each feasible solution S was composed of a set of order picking lists (L) and locations (X).
A picking list consisted of orders to be picked (i) giving the final list Li of orders to be picked
in the respective list. The location vector X matched the location for item i, giving each item a
location number Xi. The GA in Beroule et al. (2017) started by creating the initial population
composed of randomly created solutions. The initial population evolved by means of crossover
and mutation. The crossover allowed for parent solutions to be merged into a child solution.
During each iteration a portion of the current population was selected (based on the crossover
rate) for crossover. It was performed by two crossing operators; the first operator identified the
robust parts of each list Li and L

′
i from the two parent solutions.

46

Stellenbosch University https://scholar.sun.ac.za

The non-robust items were selected randomly and the location vector X was randomly
selected from either one of the two parents. If two solutions had to be paired, a crossover
operator was randomly chosen. Examples of each operator are shown in Equations (49) and
(50):

{
Li = {2, 5, 8, 6, 7, 4}
L

′
i = {8, 5, 6, 2, 7, 4} →{6, 5, 2, 8, 7, 4} (49){

X = {1, 4, 6, 2, 3, 7, 5, 8}
X

′ = {1, 6, 7, 2, 8, 4, 5, 3} →{1, 7, 3, 2, 4, 6, 5, 8} (50)

The mutation process in the GA was a mechanism that allowed the solution to be modified
by itself. During the iterations of the GA a part of the current population was selected to be
mutated. The part of the population to be mutated was defined by the mutation rate given
as input parameter. As with the crossover process, the mutation process also consisted of two
operators. The first operator randomly selected two items in the list set L. The first operator
then changed the items selected. The second operator randomly selected two elements of the
location vector X and changed them. When the solution had to be mutated a mutation operator
was randomly chosen. Examples of the two operators are shown in Equations (51) and (52):

Li = {2, 5, 8, 6, 7, 4} → {2, 6, 8, 5, 7, 4] (51)
X = {1, 4, 6, 2, 3, 7, 5, 8} → {1, 3, 6, 2, 4, 7, 5, 8} (52)

The ‘new’ solutions were evaluated and the best ones were selected to create a new population
of the same size. The reproduction process continued until the desired outcome had been reached
or the iteration limit had been reached. The best solution of the final generation’s population
was considered to be the output of the GA.

Beroule et al. (2017) improved on the normal GA by creating a hybrid GA. Beroule et al.
(2017) introduced the TSP and a dedicated heuristic (DH) to create the initial population.
Beroule et al. (2017) compared the hybrid GA in terms of solution fitness and computational
time. The size of the warehouse consisted of 400 item locations; the picking lists were numbered
1 to 25, the number of items in a list were 10 to 90 with increments of 10. The GA was given
the following parameters:

• Initial population = 200;

• Number of iterations = 1000;

• Crossover rate = 50%; and

• Mutation rate = 30%.

The improvement of the hybrid GA (HGA) compared to the simple GA (∆ HGA/GA) and
compared to the dedicated heuristic (∆ HGA/DH) were calculated using:

∆HGA/GA =FitHGA− FitGA

FitGA
× 100 (53)

∆HGA/GA =FitHGA− FitDH

FitDH
× 100 (54)

47

Stellenbosch University https://scholar.sun.ac.za

Beroule et al. (2017) observed the following results: the average improvement of the hybrid
GA was 23% and the average improvement in the dedicated heuristic was 30%. Beroule et al.
(2017) concluded by stating that the hybrid GA was very efficient compared to the classic GA
even if no comparison could be made with exact solutions.

3.5 Multi-objective robot path planning and task allocation literature

A number of multi-objective algorithms have already been used to solve a version of the
part sequencing and allocation problem. An investigation into multi-objective multi-robot path
planning and task allocation literature where both static and dynamic collisions need to be
avoided resulted in the following studies being identified as relevant:

• Chen et al. (2020) investigated path planning and task allocation for a parking robot.
An improved genetic algorithm and a time-enhanced A* path planning algorithm were
developed for minimising the parking lot operating cost and time cost functions. A
weighted sum of the objectives was minimised.

• Majumder et al. (2021) made use of an A* path planning algorithm combined with a
multi-objective teaching-learning-based optimisation algorithm for task allocation. Total
completion time and total fuel consumption of a multi-robot plant inspection system were
minimised.

• Majumder and Ghosh (2020) used an A* path planning algorithm combined with a
multi-objective particle swarm optimisation algorithm for task allocation. Total completion
time and total fuel consumption were minimised.

• Majumder and Ghosh (2020) proposed a tailor-made multi-objective GA with alternative
set-up and search operators, and a reinforcement learning approach to minimise the cost
and quality of robot deployment. Collisions are avoided by ensuring that different robots
are sent to different areas of the work space.

• Okumuş et al. (2020) developed a D* lite algorithm for minimising the path length, elapsed
time, and energy expenditure of multiple AGVs employed in a fabric-manufacturing
enterprise. Task allocation was performed using a nearest neighbour algorithm.

• Sullivan et al. (2018) used a NSGA-II to minimise the total time, maximum time and
maximum net gap of a multi-robot system. Network connectivity and energy efficiency
were the most important considerations.

• Biswas et al. (2021) solved a multi-objective mission route planning problem where the
time and cost objectives were considered simultaneously. A vectorised particle swarm
optimisation algorithm was used for path planning and a nearest neighbour algorithm for
task allocation. A neural network-based prediction model was also used to forecast the
mission completion time.

From the limited existing literature, it can be concluded that research into the multi-objective
multi-robot path planning and task allocation problem is still in its infancy. The use of a
weighted sum of objectives to address multiple objectives and local search algorithms such
as the nearest neighbour algorithm for task allocation, highlights significant opportunities for
improvement. Finally, the exact configuration of the problem solved in this dissertation could
not be found in the literature.

48

Stellenbosch University https://scholar.sun.ac.za

It is notable that a multi-objective CMA-ES has never been tested on this specific problem.
Given the research described in this section, the contribution of this research includes the
incorporation of collision avoidance in the robot routing multi-objective problem while using
metaheuristics as solution strategies, thus to the best of the author’s knowledge, this research is
the first where the CMA-ES is benchmarked against the PSO, GA and DE for the multi-objective
problem, given that all collisions must be avoided.

3.6 Summary

This chapter introduced warehousing activities and warehouse layout options with regard to
order picking and binning in Section 3.1. Special cases of the TSP that have similarities to
the robot routing and allocation problem were discussed in Section 3.2. Section 3.3 focused
on the AGVs and AGVS and how warehouse automation can be feasible. The single objective
robot path planning and task allocation literature were discussed in Section 3.4. After that,
the multi-objective literature on the robot path planning and task allocation were discussed in
Section 3.5. The next chapter introduces the single objective mathematical model and algorithm
framework used to solve the single objective part sequencing and allocation problem.

49

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Single objective mathematical model
and algorithm

In order to solve the single objective part sequencing and allocation problem a mathematical
model was developed. The following sections contain a comprehensive description of the problem.
Section 4.1 presents the detailed mathematical model. Section 4.1 also discusses the function
of each constraint and the algorithm’s assumptions and limitations. Section 4.2 describes the
algorithm framework and its workings.

4.1 Single objective part sequencing and allocation model

In a warehouse with N number of parts, all the parts need to be picked and binned on a
daily basis. The picking and binning is done using one of K robots. A robot cannot carry more
than one part at a time. A robot enters the warehouse through the entrance gate, completes
the job (pick or bin), and then leaves through the exit gate. The time it takes a robot to pick
or bin a part is equal to the standard moving time plus the delay time for collision avoidance,
the physical picking or binning time, and the time to travel to the exit gate.

The objective function of the model is to minimise the total time it takes all the robots to
complete their picking and binning processes by changing the sequence and allocation of parts to
be picked and binned. The sequence has a significant influence on the total picking and binning
time. Each sequence has different collision avoidance scenarios that must be incorporated.
Changing the sequence affects the number of collisions to avoid and also influences the total
picking and binning time.

The following symbols need to be denoted:

I
∆= The number of parts in the warehouse; and

K
∆= The number of robots in the system.

This chapter has been published in Croucamp and Grobler (2021).

50

Stellenbosch University https://scholar.sun.ac.za

xijk =

1 if robot k is binning or picking part i immediately before part

j where i, j ∈ {1, ..., I} are the parts to be picked and
i, j ∈ {I + 1, ..., 2I} are the parts to be binned,

0 otherwise

wijk
∆=Time added to avoid collision if part i is picked or binned

immediately before part j by robot k

ti
∆=The transport time without delays of part i from entrance to exit of warehouse

ni
∆=Starting time of new task for part i from the entrance gate

p
∆=Process time for picking or binning incurred for each part

Minimise Z = max
1≤i≤2I

{ni} (55)

The model is subject to:

2I∑
i=1

K∑
k=1

xijk = 1 ∀j ∈ {1, ..., 2I} (56)

2I∑
j=1

K∑
k=1

xijk = 1 ∀i ∈ {1, ..., 2I} (57)

2I∑
i=1

xipk −
2I∑

j=1
xpjk = 0 ∀p ∈ {1, ..., 2I}, k ∈ {1, ..., K} (58)

K∑
k=1

2I∑
i=1,i̸=j

xijk(ni + p + wijk + ti) ≤ nj ∀j ∈ {1, ..., 2I} (59)

ti, ni, p, wijk ∈ {0, R}
xijk ∈ {0, 1}

The objective function of the model (Equation (55)) is to minimise the maximum time it
takes to complete all the picking and binning jobs for all the robots. Equations (56) and (57)
ensure that all parts are picked and binned respectively, ensuring that each robot can only pick
and bin one part at a time, and also that no two robots pick or bin the same part at the same
time.

Equation (58) enforces continuity in the model, ensuring that the next part is picked or
binned. The different delay times that can be incurred, depending on the number of robots on
the same route, are calculated using Equation (59). If there are robots on the route the equation
will add the respective delay time given the position of the other robots. This constraint is used
to avoid collisions in the warehouse.

51

Stellenbosch University https://scholar.sun.ac.za

The limitations and assumptions of the model include:

• The entrance and exit gate, respectively, can only be used for entering and exiting the
warehouse;

• The aisles can only accommodate one-way traffic;

• A robot uses one time step to move from one pickup point to the next;

• The picking and binning time is assumed to be constant;

• If a robot exits the warehouse it is automatically available for the next job inside the
warehouse;

• If there is a waiting period for a robot because of collision avoidance, the wait interval is
constant and is the same as the time interval it takes a robot to move from one pickup
point to the next. After each wait interval, the robot will recalculate and decide on
whether to proceed or wait for another interval, to avoid a collision;

• Robot speed is assumed to be constant;

• A robot can only pick or bin one part at a time;

• No batching is allowed;

• Any robot can pick or bin any part, i.e. there are no restrictions on part size, weight etc.;
and

• The model assumes the parts to be picked and binned are available immediately, all input
data is of a deterministic nature, and the warehouse environment stays constant during
the optimisation run.

4.2 Single objective algorithm framework

The algorithm framework developed for solving the single objective part sequencing and
allocation problem includes determining the actual route of a robot through the warehouse.
Thus, as part of the development of the algorithm framework the subproblem of routing the
robot is solved.

The robot routing problem can be seen as a subproblem of the part sequencing and allocation
problem. A suitable routing heuristic must be selected before it can be used in the part
sequencing and allocation algorithm framework. The framework for solving the single objective
part sequencing and allocation problem can be seen in Figure 10. The part sequencing and
allocation algorithm framework uses the best routing strategy along with the four chosen
metaheuristics to find the best possible solution for the sequencing and allocation problem.

52

Stellenbosch University https://scholar.sun.ac.za

Figure 10: Solution strategies

The actual part picking and sequencing problem consists of a number of parts that need to be
picked and binned by a number of robots in the quickest way possible. Given the sequence and
allocation of parts from the metaheuristic, the path used for picking and binning is determined
by the routing heuristic. The robots must complete all of their picking and binning tasks in
the given sequence in the minimum amount of time. The picking and binning sequences are
allocated in turn to respective robots. The picking and binning sequences and part allocations
are optimised using the four metaheuristics discussed earlier; namely, the CMA-ES, GCPSO,
SaNSDE, and GA. The algorithm framework developed to solve the part picking and sequencing
problem is shown in Algorithm 14:

I
∆= Number of parts in the warehouse

x = Set of continuous variables given by the metaheuristic where x = 3× I

p = Set of parts to be picked per robot
b = Set of parts to be binned per robot
a = Set of parts allocated to a robot

53

Stellenbosch University https://scholar.sun.ac.za

Algorithm 14: Single objective part allocation and sequencing algorithm
1 Initialise a warehouse with I number of storage spaces
2 Divide the nx-dimensional candidate solution into 3 sets
3 for The first set → picking sequence do
4 Arrange the first set in ascending order → part picking sequence (p)
5 end
6 for The second set → binning sequence do
7 Arrange the second set in ascending order → part binning sequence (b)
8 end
9 for The third set → robot allocation do

10 Given the number of robots (K) in the system complete the allocation
11 end
12 Assign each robot → next destination node
13 for All the parts in the warehouse do
14 Route each robot to their destination using the routing heuristic
15 if the next node is occupied then
16 WAIT
17 end
18 else
19 Move along the path
20 end
21 end
22 if robot is done with picking and binning then
23 state = DONE
24 end
25 else
26 state = ACTIVE
27 end
28 if all robot states = DONE then
29 return Fval = Total time for picking and binning
30 end

The algorithm framework initialises a warehouse with I number of parts and the metaheuristic
is initialised with three times the number of parts. The continuous variables are then divided
into three sets for the picking and binning sequences and the robot allocation. After the robot
allocation each robot is assigned a next node. The robots are then routed to their next node.
On the way they wait if a collision must be avoided. If a robot has picked and binned all its
parts, then only can a robot be classified as complete. The algorithm stops to return the fitness
value only if all the robots are classified as complete. The process flow of the algorithm can be
seen in Figure 11.

54

Stellenbosch University https://scholar.sun.ac.za

Figure 11: Process flow of algorithm

4.3 Summary

This chapter described the sequencing and allocation problem. The model was presented
along with the objective function, the assumptions made, and the limitations of the model. The
pseudocode and process flow of the algorithm framework were also presented in this chapter.
The next chapter discusses the data analysis and the robot routing problem.

55

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Data analysis and the robot routing
problem

This chapter describes the data analysis and the experimental setup for solving the robot
routing problem. The results for the robot routing problem are also presented in this chapter.
Section 5.1 describes the data for the parts and their locations within the warehouse. Section 5.2
discusses the robot routing problem, the robot routing algorithm, the experimental setup and
Section 5.3 describes the results of the experiments. The robot routing is the first subproblem
that is solved. The best routing heuristic from this chapter is later used to solve both the
single and multi-objective part sequencing and allocation problem. Section 5.4 summarises this
chapter.

5.1 Data description

The data used in this dissertation are the part location and part names as shown in Table 2.
The data shown in Table 2 are used as input for the algorithm framework to know where each
part is stored.

This chapter has been published in Croucamp and Grobler (2021).

56

Stellenbosch University https://scholar.sun.ac.za

Table 2: Part location ID and name

Location Part name Location Part name
1 Presswasher 21 PIA 03
2 Nut M6 22 PIA 05
3 Washer 23 PIA 22
4 J-Nut 24 PIA 21
5 Nut 4.8X 25 PIA 1
6 Square Nuts 26 14N 139 AC
7 Screw 27 14026 AC
8 PIA 19 28 14N 139 BD
9 Screw 5X16 29 867 BD
10 Clip trim 30 Active
11 EB3B19952 31 Cruise RH
12 EB3B19953 32 Inner
13 541 BD 33 Chrome
14 PAD 885 34 Center
15 PAD 884 35 Bracket
16 Washer jet 36 Bracket LH
17 Scuff 37 Bracket RH
18 867 AD 38 Badge
19 PIA 06 39 Ext RR
20 PIA 20 40 Bumper

5.2 The robot routing problem

The four routing strategies considered are the return, s-shape, midpoint, and largest gap
heuristics. The combined heuristic was not considered, given the fact that a robot is only
allowed to pick or bin one part at a time, meaning that the combined heuristic will give the
same result as the s-shape heuristic. These heuristics were discussed in detail in Section 2.1.1.
These four heuristics were tested using the same sequence to pick and bin in the same warehouse
layout.

The robot routing algorithms require the following data:

• The number of sequences to run. For the problem of routing a robot, 30 random sequences
are generated for five different data sets; namely, 8 parts, 16 parts, 24 parts, 32 parts,
and 40 parts. Each sequence was executed using all of the routing heuristics; namely, the
return, s-shape, midpoint, and largest gap routing heuristics. All 30 random sequences
for the five data sets were used to determine the best routing heuristic.

• The number of robots: a number between one and eight.

• The part name list as seen in Table 2. The part list is used to define the warehouse layout
and determine the number of parts in the warehouse.

• The location ID of each part, which is used by the robots to know where each part is
stored within the facility when binning or picking.

• The entrance gate and exit gate positions.

The pseudocode of the heuristic test procedure is shown in Algorithm 15.

57

Stellenbosch University https://scholar.sun.ac.za

Algorithm 15: Robot routing algorithm
1 Initialise a warehouse with I number of storage spaces per aisle and j number of aisles
2 Distribute parts evenly between the number of robots
3 for each heuristic do
4 for each sequence do
5 Pick and bin parts as per sequence
6 Calculate time used
7 end
8 Return results
9 end

5.3 The robot routing results

The robot routing heuristics were tested with two robots. The results for the five data sets
can be seen in Figures 12 to 16. From the figures, the results favour the return heuristic. The
objective is to minimise the total time required for picking and binning. The return heuristic
outperformed the other heuristics for all of the data sets tested.

Figure 12: 8 parts routing results

58

Stellenbosch University https://scholar.sun.ac.za

Figure 13: 16 parts routing results

Figure 14: 24 parts routing results

59

Stellenbosch University https://scholar.sun.ac.za

Figure 15: 32 parts routing results

Figure 16: 40 parts routing results

The results for the four routing heuristics are summarised in Table 3. The table shows the
average value obtained for all 30 random sequences, over all five data sets. The table also shows
the standard deviation of the minimum values for the 30 sequences. From Table 3 it is clear
that the return routing heuristic outperformed the others by a significant margin.

60

Stellenbosch University https://scholar.sun.ac.za

Table 3: Routing heuristics results

Return S-shape Largest gap Midpoint
heuristic heuristic heuristic heuristic

8 Parts Average 217.97 267.57 267.37 294.83
Standard deviation 7.00 1.98 8.86 12.97

16 Parts Average 439.43 533.17 522.70 582.70
Standard deviation 13.88 2.12 13.11 16.74

24 Parts Average 680.97 797.70 803.30 888.13
Standard deviation 18.51 2.26 11.81 17.80

32 Parts Average 903.33 1062.33 1072.10 1176.13
Standard deviation 27.40 2.37 17.48 24.13

40 Parts Average 1060.23 1328.83 1281.73 1374.90
Standard deviation 27.31 3.41 24.66 31.63

The results of the statistical comparison in Table 4 were obtained by comparing the result of
a heuristic’s performance with each of the other heuristics’ performance, for each data set. For
every comparison, a Mann–Whitney U test at 5% significance was performed (using the two sets
of 30 sequences of the two heuristics under comparison), and if the first heuristic outperformed
the second heuristic statistically significantly, a win was recorded.

If no statistical difference could be observed, a draw was recorded. If the second heuristic
outperformed the first heuristic, a loss was recorded for the first heuristic. The total number
of wins, draws and losses was then recorded for all data sets of the heuristic under evaluation.
As an example, (5-0-0) in row 1 column 2, indicates that the return heuristic significantly
outperformed the s-shape heuristic 5 times over the 5 data sets. No draws and losses were
recorded.

Table 4: Routing heuristic hypothesis testing results

Return S-shape Largest gap Midpoint Total
heuristic heuristic heuristic heuristic

Return heuristic - 5-0-0 5-0-0 5-0-0 15-0-0
S-shape heuristic 0-0-5 - 2-1-2 5-0-0 7-1-7
Largest gap heuristic 0-0-5 2-1-2 - 5-0-0 7-1-7
Midpoint heuristic 0-0-5 0-0-5 0-0-5 - 0-0-15

From the hypothesis test it is clear that the return heuristic outperformed the other heuristics
by a significant margin. From this point forward in the dissertation only the return heuristic
will be considered for the routing of robots when solving the part sequencing and allocation
problem.

5.4 Summary

This chapter discussed the robot routing problem in detail. The experimental setup and
results were discussed and the best performing routing heuristic was determined statistically
using the Mann–Whitney U test. The routing heuristic used for the rest of this document was
concluded to be the return heuristic. The next chapter will discuss the part sequencing and
allocation problem and the results obtained.

61

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Evaluating the single objective part
sequencing and allocation algorithm

The single objective part sequencing and allocation problem requires the solution algorithm to
assign all the parts to their respective robots, and sequence their binning and picking tasks. The
part of the framework addressing the single objective part sequencing and allocation problem is
discussed in Section 6.1. The algorithm parameters are discussed in Section 6.2. Sections 6.3 and
6.4 discuss the results for the single objective part sequencing and allocation problem. Section
6.5 investigates the specific performance of the GCPSO. Section 6.6 presents the hypothesis test
results followed by a sensitivity analysis in Section 6.7. Section 6.8 summarises and concludes
Chapter 6.

6.1 The part sequencing and allocation algorithm

The part sequencing and allocation problem was solved using the best performing routing
heuristic from the robot routing part of the framework. The part sequencing and allocation
problem consists of 40 parts, each part to be picked and binned. Each of the parts has to be
assigned to a number of robots. Each robot is then responsible for the picking and binning of
its assigned parts.

For each possible solution, the respective metaheuristic must create 120 continuous variables
for the largest problem. The 120 variables are divided into three equal-sized sets of continuous
variables. The three sets of continuous variables are used by the developed algorithm framework.
The first set defines the sequence in which the picking takes place. The second set determines
the sequence in which the binning takes place, and the third set is the allocation of parts to a
robot in the system. The total number of variables in the system is then 120: 40 continuous
variables to determine the picking sequence, 40 to determine the binning sequence, and 40 for
the allocation of parts to the robots.

This chapter has been published in Croucamp and Grobler (2021).

62

Stellenbosch University https://scholar.sun.ac.za

The sequencing and allocation part of the algorithm framework requires the following data
as input:

• The number of data sets;

• The data sets as an input;

• The number of robots allowed in the system as an input parameter, which is a number
between one and seven;

• The part name list as seen in Table 2. The part list is used to define the warehouse layout;

• The location ID of each part. The location ID is used by the robots to identify where
each part is stored within the facility when binning or picking;

• The metaheuristic parameters;

• The entrance gate and exit gate positions; and

• The maximum iteration count.

The sequencing and allocation part of the framework was tested using metaheuristics, namely
the CMA-ES, GA, GCPSO, and SaNSDE. Each metaheuristic provides the fitness function with
the number of continuous variables required for the problem size. The algorithm framework
divides the continuous variables into the three sets of equal size as described earlier.

The first and second sets of continuous variables are sorted in ascending order. The index
number of the lowest variable is used to identify the part that is associated with that index
number. This process continues until both sets one and two have been sequenced successfully.
For the third set the same process is followed but the list is divided by the number of robots
available. Each robot will then receive the same number of parts to pick and bin.

Given that the parts are sequenced and allocated to robots, the algorithm framework calculates
the fitness value of the sequences and allocation. The fitness value is returned to the metaheuristic
for it to make an improvement. The metaheuristic run through the sequences until a near-optimal
solution is found or the maximum iterations stopping criterion is reached.

The performance of the five metaheuristics was tested within the algorithm framework on five
different problem sizes, derived from real-world data. Problem one has 8 parts to be sequenced
and allocated. The second problem has 16 parts and the third has 24 parts. Problem number
four has 32 parts to be sequenced and allocated and problem five has 40 parts to sequence and
allocate.

For each problem size there are set parameters for all the metaheuristics. The population size
remains constant over all of the metaheuristics and the different problem sizes. The population
was set to 100 individuals.

The maximum iterations criterion was determined for each problem size. All metaheuristics
were run as part of an empirical analysis on all five problem sizes. For each problem size the
fitness values and diversity values were obtained. A population’s diversity or solution space
diversity (SSD) is defined as:

63

Stellenbosch University https://scholar.sun.ac.za

SSD = 1
ns

ns∑
i=1

√√√√ nx∑
j=1

(xij(t)− x̄j(t))2 (60)

where ns denotes the population size and nx is the number of variables in each individual.
xij(t) is the position of the jth dimension of the ith entity at time t, and x̄j(t) is the mean of the
jth dimension of all the particles at time t (Vesterstrom et al., 2002). Given the fitness values
and the diversity values, the maximum iterations needed for each problem size were determined.
The point of no further improvement was identified using the plot of fitness function value versus
the number of iterations. Given these results the maximum number of iterations was determined
for each problem size respectively.

The problem size of 8 parts and the problem size of 16 parts had the maximum iterations set
to 500. For the 24 parts problem the maximum number of iterations was increased to 750. The
problem solving 32 parts had the iteration maximum parameter set to 900 and for the biggest
problem size, 40 parts, the maximum number of iterations was increased to 1250.

6.2 Single objective algorithm parameters

The metaheuristic parameters are shown in Table 5. The notation x→ y is used to indicate
that the associated parameter is decreasing or increasing linearly from x to y over 95% of the
maximum number of iterations.

Table 5: Metaheuristic parameters

Parameter Value used

General parameters
Population size (constant for all metaheuristics 100
Max iterations (Size = 8) parts 500
Max iterations (Size = 16) parts 500
Max iterations (Size = 24) parts 750
Max iterations (Size = 32) parts 900
Max iterations (Size = 40) parts 1250
Number of independent simulation runs per problem size 30

GCPSO parameters
Acceleration constant (c1) 2.0 → 0.7
Acceleration constant (c2) 0.7 → 2.0
Inertia weight 0.9 → 0.4

SaNSDE parameters
Probability of reproduction 0.75 → 0.25
Scaling factor 0.75 → 0.125

GA parameters
Probability of crossover 0.6 → 0.4
Probability of mutation 0.1
Blend crossover parameter 0.5

CMA-ES parameters As specified in
Auger and Hansen (2005).

64

Stellenbosch University https://scholar.sun.ac.za

6.3 Algorithm framework evaluation results

The experimental runs were completed using the parameters described. The results presented
in this section include the fitness values for the median run of each metaheuristic, as well as the
respective diversity values for the median run. The algorithm framework was able to generate
feasible and usable solutions. The results for all the metaheuristics are shown by problem size.
The figures present the median run (fitness function over time) of thirty runs for the problem
size. Figure 17 shows the results for the sequencing and allocation of 8 parts. Figure 18 shows
the results for 16 parts, Figure 19 shows the results for 24 parts, Figure 20 shows the results
for 32 parts and Figure 21 shows the results for the largest problem of 40 parts to be sequenced
and allocated. The fitness value was calculated as the total time it takes to complete all of the
picking and binning processes. The fitness value represents the number of time intervals it takes
to complete the picking and binning processes.

The best performing metaheuristic for the sequencing and allocation of 8 parts on the median
run was the SaNSDE followed by the GCPSO, CMA-ES and the GA, in that order.

The SaNSDE found the best solution with a fitness value of 185, the GCPSO returned a
value of 187, and both the GA and CMA-ES found the best fitness value to be 188. The results
for sequencing and allocating 16 parts (Shown in Figure 18), show that the CMA-ES, GA, and
SaNSDE found the same minimum value of 375. The GCPSO was not able to find the same
minimum value and ended at a fitness value of 379.

Figure 17: 8 parts fitness value results

65

Stellenbosch University https://scholar.sun.ac.za

Figure 18: 16 parts fitness value results

The results for the sequencing and allocation problem with 24 parts (shown in Figure 19),
shows the best performing metaheuristic for the sequencing and allocation of 24 parts to be the
SaNSDE with a fitness value of 592, followed by the CMA-ES slightly behind, with a fitness
value of 593, The GA was third with a fitness value of 595, while the GCPSO performed the
worst with a fitness value of 600.

Figure 19: 24 parts fitness value results

The results in Figure 20 show the best performing metaheuristic for sequencing and allocation
of 32 parts to be the CMA-ES. The CMA-ES outperformed the GA, SaNSDE, and the GCPSO
with a fitness value of 784 compared to a fitness value of 788 for the GA, 789 for the SaNSDE,
and a fitness value of 803 for the GCPSO.

66

Stellenbosch University https://scholar.sun.ac.za

Figure 20: 32 parts fitness value results

The results for the largest problem of 40 parts are shown in Figure 21. The metaheuristic
that showed the best performance in finding the lowest fitness value was the CMA-ES. The
CMA-ES was able to find a feasible solution with a fitness value of 929. Both the SaNSDE and
the GA performed equally well with a fitness value of 936. The worst performing algorithm was
the GCPSO which found its lowest fitness value to be 965.

Figure 21: 40 parts fitness value results

The results for the five data sets discussed are summarised in Table 6. The table shows the
average minimum value obtained for all 30 runs for each data set. The table also shows the
standard deviation of the minimum values for the 30 runs.

67

Stellenbosch University https://scholar.sun.ac.za

Table 6: Metaheuristics results

CMA-ES GCPSO GA SaNSDE

8 Parts Average 187.37 187.03 187.03 186.23
Standard deviation 1.67 1.52 1.96 1.45

16 Parts Average 374.97 378.27 375.27 375.20
Standard deviation 2.58 3.12 2.55 1.63

24 Parts Average 593.33 602.67 595.60 591.73
Standard deviation 3.28 6.33 4.88 1.95

32 Parts Average 783.47 803.93 787.70 788.43
Standard deviation 3.88 7.88 5.18 3.06

40 Parts Average 929.53 965.37 935.83 936.17
Standard deviation 7.99 7.52 5.41 3.12

6.4 Single objective diversity function results

This section investigates the solution space diversity of each algorithm on each problem.
The population diversity is an indication of the spread of the population through the search
space. If the diversity value increases it means that the population is spread wider and the
search area has been broadened and the algorithm is exploring the search space. When the
diversity value decreases it indicates that the search area has been reduced and the algorithm is
further exploiting good solutions. The diversity results in this section are used to verify that the
metaheuristics do not prematurely converge to local optimal solutions, but continue exploring
the search space throughout the optimisation process. The diversity values presented in Figures
22 to 26 were calculated using Equation 60. The diversity results for all five data sets follow the
same pattern for each metaheuristic. The CMA-ES shows a low diversity value compared to the
other metaheuristics. The diversity value of the CMA-ES grows at a low linear rate over the
duration of the iterations. The CMA-ES’s diversity values show that it does gradually explore
more as the optimisation process progresses.

Figure 22: 8 parts diversity value results

68

Stellenbosch University https://scholar.sun.ac.za

Figure 23: 16 parts diversity value results

The diversity profile for the GCPSO is ideal for an optimisation algorithm. The diversity
of the GCPSO starts off high and then gradually decreases over time, resulting in a desirable
balance between exploration and exploitation.

Figure 24: 24 parts diversity value results

The GA exhibits a relatively high diversity value which decreases quickly. Thereafter, the
diversity remains quite stable with a slight increase towards the end of the algorithm’s run.

69

Stellenbosch University https://scholar.sun.ac.za

Figure 25: 32 parts diversity value results

The profile followed by the diversity values of the SaNSDE is in contrast to the rest of the
metaheuristics in the sense that it starts at a high value and then increases sharply to an even
higher value. After only a couple of iterations the diversity is very high.

Figure 26: 40 parts diversity value results

Although all of the metaheuristics follow similar patterns for each data set, the diversity
values increase as the problem size increases. For the problem of 8 parts the diversity values
range from 0 to 450, whereas with the problem of 40 parts, the diversity values range between
0 and 800. It is positive to note that for all the metaheuristics over all the data sets the
diversity value never decreases to zero. This result shows that none of the algorithms have
prematurely converged to a local optimal solution. The required diversity in a problem is like

70

Stellenbosch University https://scholar.sun.ac.za

algorithm performance; it is problem-specific and can change due to problem size and problem
complexity.

6.5 Single objective metaheuristic results analysis

Figure 27: Single objective metaheuristic results

The first five graphs in the top row of Figure 27 show the overall best-found fitness value
versus iterations for the 8, 16, 24, 32, and 40 part problem. The middle row of graphs in Figure
27 show the diversity of the solution versus iterations and the bottom row of graphs in Figure
27 show the best-found solution per iteration versus iterations for the 8, 16, 24, 32, and 40 part

71

Stellenbosch University https://scholar.sun.ac.za

problems. Interpreting the results, the same algorithm behaviour can be seen for the 16, 24, 32,
and 40 part problem: Significantly worse performance can be seen from the GCPSO algorithm.

It is key to note the nature of each metaheuristic tested for the single objective part sequencing
and allocation model. The SaNSDE and GA has similar characteristics when considering the
generation of the next population. The SaNSDE and GA will keep the best solution found in
the current population (elitism) and include that best solution in the next generation, ensuring
that the best fitness value in the next generation will be either better or equally as good as the
current generation. This characteristic is not the same for the GCPSO and CMA-ES. Although
the CMA-ES and GCPSO keeps memory of the best-found solutions over the iterations, the
CMA-ES and the GCPSO does not include the best solution automatically into the next
generation. This characteristic may have given the advantage to the SaNSDE and GA over
the GCPSO. Although the CMA-ES does not share this characteristic, the CMA-ES was still
able to outperform the SaNSDE and GA due to maintaining a smaller population diversity to
better exploit solutions.

The implementation of linearly adjusting the metaheuristics parameters and specifically the
GCPOS’s parameters c1, c2 and inertia weight gave it a theoretical “ideal” diversity profile i.e.
linearly decreasing from an exploration phase into an exploitation phase. The SaNSDE had
the highest diversity overall which in combination with the characteristic of keeping the best
solution, might have benefited the SaNSDE, exploring larger areas (because of high diversity)
but still having the knowledge to know where the last best solution is.

Considering the best fitness values obtained over the number of iterations, the SaNSDE
and the GA performed well and continually improved on their best solution as the iterations
continued. Due to the characteristic of keeping the previous best solution in the next population
the fitness value decreases in what looks like a step wise manor. The CMA-ES had a much
smaller range in terms of fitness function values over time, compared to the GCPSO which
led to the assumption that the smaller diversity increased the efficiency of the search. Given
the best fitness values obtained per iteration the GCPSO was doing more exploration over the
period of the run than the other metaheuristics (the range of fitness values is much larger than
expected and what is shown by the CMA-ES), however near the end of the run the GCPSO
abruptly stops exploring and rapidly converged to a single solution rather than systematically
exploiting good solutions. It is important to note, however, that the GCPSO did converge to a
solution and that the convergence was not premature.

6.5.1 Investigating the solutions found by the GCPSO

In order to understand the solutions found by the GCPSO all the fitness value results over
one run were analysed. The fitness values were obtained and converted into a histogram to
analyse. The histogram is shown in Figure 28. The histogram shows the frequency that the
GCPSO has found each of the solutions as seen in the median run.

72

Stellenbosch University https://scholar.sun.ac.za

Figure 28: Histogram of fitness values obtained (16 Part problem, GCPSO)

The histogram shows that the GCPSO was exploring the same solutions multiple times during
a run. It is clear that the GCPSO found the same fitness value (415), 2816 times during the
run. The result indicates that in the solution space there are a large number of candidates
that maps to the same part allocation and sequence. This observation can be attributed to the
mapping mechanism used to convert the continuous variables to the objective space, which will
have an impact on the efficiency of search. This behaviour could explain the poor performance
of the GCPSO.

6.5.2 Analysis into the GCPSO’s parameter performance

A number of further experiments were conducted to test the sensitivity of the population size
and main parameters of the GCPSO, versus the originally used parameters of a population size
of 100 and parameters c1, c2, and w linearly adjusting over time. The experiments included
running the GCPSO with:

• A smaller population size: 50

• A larger population size: 150

• An even larger population size: 200, and

• Keeping the acceleration and inertia weight parameters constant (c1 = 2.0, c2 = 0.7,
w = 0.9)

From Figure 29 there is no clear evidence of the GCPSO improving due to the increase
or decrease in population size. Also, when considering a constant c1, c2, and w value the
algorithm maintains a high diversity throughout the optimisation run and does not converge
to as good a solution as obtained with the original parameters. These findings show that
the GCPSO is insensitive to the population size parameter and that higher diversities do not
improve performance.

73

Stellenbosch University https://scholar.sun.ac.za

Figure 29: Analysis into the GCPSO’s parameter performance

The next section discusses the results of the hypothesis tests performed on the results. The
hypothesis test analyses the statistical significance of the results obtained by each metaheuristic.

6.6 Single objective hypothesis test results

The results of the statistical comparison in Table 7 were obtained by comparing the result
of a metaheuristic’s performance with each of the other metaheuristics’ performances, for each
data set. As described earlier in the dissertation, for every comparison a Mann–Whitney U test
at 5% significance was performed (using the two sets of 30 sequences of the two heuristics under
comparison) and if the first metaheuristic statistically significantly outperformed the second
metaheuristic, a win was recorded. If no statistical difference could be observed, a draw was
recorded. If the second metaheuristic outperformed the first metaheuristic, a loss was recorded
for the first metaheuristic.

The total number of wins, draws and losses were then recorded for all data sets of the
metaheuristic under evaluation. As an example, (4-1-0) in row 1 column 2, indicates that the
CMA-ES significantly outperformed the GCPSO algorithm four times over the five data sets.
One draw and no losses were recorded.

Table 7: Hypothesis testing results

CMA-ES GCPSO SaNSDE GA Total
CMA-ES - 4-1-0 2-2-1 2-3-0 8-6-1
GCPSO 0-1-4 - 0-1-4 0-1-4 0-3-12
SaNSDE 1-2-2 4-1-0 - 1-4-0 6-7-2
GA 0-3-2 4-1-0 0-4-1 - 4-8-3

74

Stellenbosch University https://scholar.sun.ac.za

Given the results from the hypothesis test, the best performing metaheuristic can be confirmed.
The results from the hypothesis test conclude that the CMA-ES has outperformed the other
metaheuristics on the sequencing and allocation problem with the greatest number of wins. The
CMA-ES algorithm had a total of eight wins, six draws, and one loss. The metaheuristic that
performed secondbest was the SaNSDE with six wins, seven draws, and two losses.

The GA was the third-best metaheuristic and had a total of four wins, eight draws, and
three losses. The worst performing metaheuristic was the GCPSO with zero recorded wins,
three draws, and twelve losses. From here onward the CMA-ES algorithm is the recommended
algorithm for use in the sequencing and allocation algorithm framework and it is used to evaluate
the sensitivity of the solution. The next section investigates the sensitivity of the model.

6.7 Single objective algorithm framework sensitivity analysis

The purpose of this section is to determine how the framework will behave with a change
in input parameters. As discussed earlier, there are a couple of input parameters that can be
changed to have an impact on the solution.

The sensitivity analysis focused on the increase in the number of robots in the warehouse and
the effect this might have on the fitness function. The sensitivity analysis was conducted using
the same experimental setup as described earlier in this chapter.

The number of robots was increased from two (original setting), to a number where no
significant improvement could be identified. The maximum number of robots identified was
seven. The algorithm was run five times for each of the number of robots considered and the
results of the median run were used to compare the scenarios. The results of the sensitivity
analysis can be seen in Figure 30.

75

Stellenbosch University https://scholar.sun.ac.za

Figure 30: Sensitivity analysis

The benefit of adding more and more robots became smaller and smaller as the number
of robots increased. When increasing the number of robots from two robots to three, an
improvement of 28.2% could be seen on the fitness value. The improvement from three robots to
four showed an improvement of 20.8%. The percentage improvement decreased further to 11.9%
when introducing a fifth robot. Introducing another robot, making a total of six, improved the
fitness value by only 5.2%. The maximum number of seven robots showed a slight improvement
of 1.8%. The maximum number of robots is reached because the workload remains constant.
The robots are eventually able to handle the constant workload, therefore it is not cost-effective
to add any more robots.

76

Stellenbosch University https://scholar.sun.ac.za

6.8 Summary

The aim of this chapter was to evaluate the performance of the algorithm framework through
the application of CMA-ES, GCPSO, GA and SaNSDE as metaheuristics in the part sequencing
and allocation algorithm framework. The four metaheuristics were applied in the sequencing
and allocation algorithm framework as discussed in Chapter 4. The CMA-ES outperformed the
other metaheuristics on the five data sets tested. The CMA-ES, which was the best performing
metaheuristic, was also used in the sensitivity analysis to determine the effect of the number of
robots in the system. The sensitivity analysis showed that there is improvement opportunity
by adding robots to the system.

77

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Data exploration for multi-objective
correlation

The aim of this chapter is to identify different objective functions that can be considered for
the multi-objective part sequencing and allocation problem and determining if there are any
correlations between the identified objective functions. The results from the single objective
part sequencing and allocation problem are used to explore and analyse the possible correlations
between the identified alternative objective functions.

7.1 Objective functions considered for the multi-objective problem

A total of ten objectives can be minimised for the part sequencing and allocation problem. These
objectives were investigated to determine which two were best suited for the multi-objective part
sequencing and allocation problem discussed in the following chapters. The objectives that were
considered include:

• Makespan: Makespan refers to the total time that elapses between the start and completion
of all binning and picking tasks.

• Maximum idle time: Maximum idle time is the maximum time any robot is idle. Idle
time is the time a robot is waiting for other robots to complete their binning and picking
tasks.

• The sum of the idle time: The sum of the idle time is the sum of all the robots’ idle time.

• Average idle time: Average idle time is the average time that all the robots have been
idling.

This chapter was submitted to IEEE Access, Under review.

78

Stellenbosch University https://scholar.sun.ac.za

• Maximum waiting time: Maximum waiting time is the maximum time until any robot has
to stop and wait to avoid collisions. A robot has to wait until it is possible to perform a
task that has been allocated to it. The reason robots have to wait to do certain tasks is
to avoid collisions with other robots since the aisles in the warehouse are not wide enough
for two robots to pass each other. In the example waiting times shown in Table 8, robot
two has the maximum waiting time equal to 35 minutes.

• Sum of the total waiting time: The sum of the total waiting time is simply the sum of each
robot’s total waiting time over the duration of the picking and binning time. In Table 8
it is the sum of all the values in the bottom row which adds up to 147 minutes.

Table 8: Example of total waiting times for three robots (Kleyn, 2020)

Picking robot 1 Picking robot 2 Picking robot 3
5 8 1
6 6 1
9 20 1
8 23 6
15 35 3

Total 43 92 12

• Average waiting time: Average waiting time is the average time for which all robots have
to stop and wait before they are able to perform tasks that have been allocated to them.
In the example in Table 8 the average waiting time will be the average of all the waiting
times in Table 8 above the bottom line, which is equal to 9.8 minutes.

• Number of collisions avoided: Number of collisions avoided is exactly what the name of
the objective suggests. It is the number of times the robots have to avoid a collision with
another robot or an obstacle in their path.

• Maximum waiting time: Maximum total waiting time is the maximum between each
robot’s total waiting time. In the example showing the total waiting times in Table 8,
robot two has the maximum total waiting time equal to 92 minutes.

• Average total waiting time: Average total waiting time is the average of each robot’s
total waiting time. In Table 8 it is the average of all the values in the bottom row
(Average(43, 92, 12)) which is 49 minutes. Note here the difference between average
waiting time and average total waiting time.

7.2 Data analysis evaluation setup and results

Kleyn (2020) considered five similar scenarios. Each scenario had 100 000 possible solutions.
For each scenario, a data matrix had been generated for 8, 16, 24, 32, and 40 parts. The data set
consisted of 100 000 rows and ten columns, one column per identified objective function. Each
row represented a working shift (possible solution) and the columns represented each objective
function listed previously. The data sets were investigated to analyse the correlation between
the different objective functions. From the histogram in Figure 31, it can be seen for the largest
problem of 40 parts that the increase in parts had a significant impact on the makespan. The
rest of the average objective function values for the smaller problems are presented in Appendix
A (Figures 65, 66, 67 and 68).

79

Stellenbosch University https://scholar.sun.ac.za

The rest of the objective functions remained constant with the increase in number of parts.
The makespan, waiting time, and number of collisions increased as expected due to the increase
in tasks. It is interesting to note that idle time stayed constant rather than increasing according
to the number of parts.

Figure 31: Average objective function values for 40 parts

7.3 Correlation coefficient results and interpretations

In order to understand the correlations between objective functions, scatter plot matrices
(SPLOM) were constructed and analysed. From the SPLOM the correlation coefficients of
all objectives with respect to each other were calculated. The correlations between different
objective functions can be seen from the SPLOM. It also provides an indication of whether the
correlation was strong or weak. The correlation plot matrices for the 40 part problem are shown
in Figure 32. The correlation plot matrices for the smaller problems are presented in Appendix
B (Figures 69, 70, 71 and 72).

SPLOMs and correlations were calculated for each problem size; however, they produced
similar results, thus only one problem size is shown in Figure 32. It is notable that there are
six instances of strong positive correlation. A strong correlation is evident when the correlation
coefficient has a value greater than 0.9. The objective functions that showed strong correlation
coefficients were:

• Makespan with respect to the sum of the total waiting time;

• Makespan with respect to the average total waiting time;

• Maximum idle time with respect to the sum of the total idle time;

• Maximum idle time with respect to the average idle time;

• Sum of the total idle time with respect to the average idle time;

• Sum of the total waiting time with respect to average total waiting time.

80

Stellenbosch University https://scholar.sun.ac.za

Figure 32: Correlation plot for 40 parts

Because the objective is to minimise the defined objective functions, the purpose of the
correlation coefficient plots was to identify the correlations that are close to zero. The correlation
coefficient tables for the four smaller problem sizes can be seen in Appendix C (Tables 15, 16,
17 and 18). The correlation coefficient table for the largest problem size can be seen in Table 9.
The strong positive correlation objective functions indicate that there are no significant conflicts
between the two objective functions. For this reason, these objective functions are not further
investigated in this dissertation. Objective functions with correlation coefficients close to zero
for all five data sets were investigated.

81

Stellenbosch University https://scholar.sun.ac.za

Table 9: Correlation coefficients for 40 parts

M
ax

im
um

id
le

tim
e

Su
m

id
le

tim
e

Av
er

ag
e

id
le

tim
e

M
ax

im
um

to
ta

lw
ai

tin
g

tim
e

Su
m

to
ta

lw
ai

tin
g

tim
e

Av
er

ag
e

to
ta

lw
ai

tin
g

tim
e

N
um

be
r

of
co

lli
sio

ns
av

oi
de

d

M
ax

im
um

wa
iti

ng
tim

e

Av
er

ag
e

wa
iti

ng
tim

e

Makespan minimum 0.15 0.15 0.15 0.73 0.98 0.98 0.68 0.21 0.63
Maximum idle time 1.00 1.00 -0.03 -0.03 -0.03 -0.02 0.03 -0.02
Sum idle time 1.00 -0.03 -0.03 -0.03 -0.02 0.03 -0.02
Average idle time -0.03 -0.03 -0.03 -0.02 0.03 -0.02
Maximum total waiting time 0.74 0.74 0.51 0.03 0.47
Sum total waiting time 1.00 0.69 0.21 0.64
Average total waiting time 0.69 0.21 0.64
Number of collisions avoided 0.09 -0.12
Maximum waiting time 0.19

7.4 Objective space analysis for makespan versus number of collisions avoided

In this section the possible solution space was constructed using 100, 000 random sequences
for all five data sets, and are presented in Figures 33, 34, 35, 36, and 37. The plotted fitness
function values indicate the area that can be explored by the EMO algorithms for possible
Pareto fronts of interest. The plotted fitness function values were analysed to determine the
Pareto fronts. The Pareto fronts for each data set are highlighted in red.

82

Stellenbosch University https://scholar.sun.ac.za

Figure 33: Makespan versus number of
collisions objective space analysis for 8
parts

Figure 34: Makespan versus number of
collisions objective space analysis for
16 parts

Figure 35: Makespan versus number of
collisions objective space analysis for
24 parts

Figure 36: Makespan versus number of
collisions objective space analysis for
32 parts

83

Stellenbosch University https://scholar.sun.ac.za

Figure 37: Makespan versus number of collisions objective space analysis for 40 parts

7.5 Summary

From the correlation coefficient analysis described in this chapter it was concluded that the two
objective functions to consider for the multi-objective problem will be minimising makespan and
minimising the sum of idle times. The next chapters focus only on the multi-objective problem,
considering these two objectives.

84

Stellenbosch University https://scholar.sun.ac.za

Chapter 8

The multi-objective mathematical
model and algorithm framework

In order to solve the multi-objective part sequencing and allocation problem a multi-objective
mathematical model was developed. The following sections contain a comprehensive description
of the problem. Section 8.1 presents the detailed mathematical model. Section 8.1 also discusses
the function of each constraint. Section 8.2 describes the algorithm framework and its workings.
Section 8.3 concludes the chapter.

8.1 Multi-objective part sequencing and allocation model

In a warehouse with I number of parts, all the parts need to be picked and binned on a daily
basis. The picking and binning are done using a robot selected from a number of robots, K.
A robot cannot carry more than one part at a time. A robot enters the warehouse through
the entrance gate, completes the job (picking or binning), and then exits through the exit gate.
The time it takes a robot to pick or bin a part is equal to the standard moving time plus the
delay time for collision avoidance, the physical picking or binning time, and the time to travel
to the exit gate.

The objectives of the model are to minimise the total time it takes all the robots to complete
their picking and binning processes and to minimise the sum of idle times of all the robots. The
model is driven by optimising the sequence and allocation of parts to be picked and binned. The
sequence has a significant influence on the total picking and binning time. Each sequence has
different planned path and collision avoidance scenario that must be incorporated. Changing
the sequence affects the number of collisions to avoid and also influences the total picking and
binning time.

This chapter was submitted to IEEE Access, Under review.

85

Stellenbosch University https://scholar.sun.ac.za

The following symbols need to be denoted:

yijk =

1 if robot k is binning or picking part i immediately before part

j where i, j ∈ {1, ..., I} are the parts to be picked and
i, j ∈ {I + 1, ..., 2I} are the parts to be binned,

0 otherwise

wijk
∆=Time added to avoid collision if part i is picked or binned

immediately before part j by robot k

ti
∆=The transport time without delays of part i from entrance to exit

ni
∆=Starting time of new task for part i from the entrance gate

mik
∆=The ending time of the last order picked, at point i for robot k

p
∆=Process time for picking or binning incurred for all parts

The model can be formulated as follows:

Minimise Z1 = max
1≤i≤2I

{ni} (61)

Minimise Z2 =
K∑

k=1
(max
1≤i≤2I

{ni} − max
1≤i,j≤2I

{mik × yijk}) (62)

Subject to:
2I∑

i=1

K∑
k=1

yijk = 1 ∀j ∈ {1, ..., 2I} (63)

2I∑
j=1

K∑
k=1

yijk = 1 ∀i ∈ {1, ..., 2I} (64)

2I∑
i=1

yipk −
2I∑

j=1
ypjk = 0 ∀p ∈ {1, ..., 2I}, k ∈ {1, ..., K} (65)

K∑
k=1

2I∑
i=1,i̸=j

yijk(ni + p + wijk + ti) ≤ nj ∀j ∈ {1, ..., 2I} (66)

ti, ni, mik, p, wijk ∈ R
yijk ∈ {0, 1}

The first objective of the model is to minimise the maximum time it takes to complete all
the picking and binning jobs for all the robots. The minimisation of objective one is done by
taking the maximum ending times for all the robots of their last task iteration. The objective
is to minimise the maximum ending times for the robots. The second objective of the model
is to minimise the collective time that robots are idle. Equations (63) and (64) ensure that all
parts are picked and binned, respectively. Each robot can only pick and bin one part at a time.
This constraint is modelled using the same Equations (63) and (64). Equations (63) and (64)
also assure that no two robots pick or bin the same part at the same time.

86

Stellenbosch University https://scholar.sun.ac.za

Equation (65) enforces continuity in the model, so that the next part is picked or binned.
The different delay times that can be incurred, depending on the number of robots on the same
route, is calculated using Equation (66). If there are robots on the route, Equation (66) will
add the respective delay time given the position of the other robot. This strategy is used to
avoid collisions in the warehouse.

8.2 Multi-objective algorithm

The algorithm framework presented for solving the single objective and multi-objective part
sequencing and allocation problem is similar in structure and process. The same problem
representation and procedure are used as for the multi-objective part sequencing and allocation
problem. The only differences are that different evolutionary multi-objective optimisation
algorithms are used and two objective functions are optimised simultaneously.

For solving the multi-objective part sequencing and allocation problem, four evolutionary
multi-objective algorithms were selected and discussed earlier in this dissertation; namely, the
MO-CMA-ES, MOPSO, MOEAD, and NSGA-III. The algorithm framework used to solve the
multi-objective part sequencing and allocation problem is shown in Algorithm 16:

I
∆= Number of parts in the warehouse

x = Set of continuous variables given by the EMO algorithm framework where x = 3× I

p = Set of parts to be picked per robot
b = Set of parts to be binned per robot
a = Set of parts allocated to a robot

87

Stellenbosch University https://scholar.sun.ac.za

Algorithm 16: Multi-objective part allocation and sequencing algorithm
1 Initialise a warehouse with I number of storage spaces
2 Divide the nx-dimensional candidate solution into 3 sets
3 for The first set → picking sequence do
4 Arrange the first set in ascending order → part picking sequence (p)
5 end
6 for The second set → binning sequence do
7 Arrange the second set in ascending order → part binning sequence (b)
8 end
9 for The third set → robot allocation do

10 Given the number of robots (K) in the system complete the allocation
11 end
12 Assign each robot → next destination node
13 for All the parts in the warehouse do
14 Route each robot to their destination using the routing heuristic
15 if the next node is occupied then
16 WAIT
17 end
18 else
19 Move along the path
20 end
21 end
22 if robot is done with picking and binning then
23 state = DONE
24 end
25 else
26 state = ACTIVE
27 end
28 if all robot states = DONE then
29 return Fval1 = Count time steps used
30 return Fval2 = Sum of idle times
31 end

The EMO algorithm framework is similar to the single objective algorithm framework, the
only difference being that the EMO algorithms are used and that the algorithm framework
returns both objective function values. The algorithm framework only returns both objective
function values if all the robots have completed their tasks. The process flow of the algorithm
can be seen in Figure 38.

88

Stellenbosch University https://scholar.sun.ac.za

Figure 38: Process flow of multi-objective algorithm

8.3 Summary

This chapter discusses the multi-objective mathematical model in detail, with the relevant
constraints. The pseudocode for the EMO algorithm framework for solving the part sequencing
and allocation problem is also presented in this chapter. The next chapter discusses the empirical
evaluation of the multi-objective problem in detail as well as the results of the multi-objective
part sequencing and allocation problem.

89

Stellenbosch University https://scholar.sun.ac.za

Chapter 9

Empirical evaluation of the EMO
algorithm framework

Given the multi-objective algorithm and EMO algorithms the empirical evaluation can be
developed. In order to compare the performance of the EMO algorithms on the multi-objective
part sequencing and allocation problem, performance metrics have to be determined for this
EMO algorithm framework. Four popular EMO algorithms were tested in the multi-objective
algorithm framework to determine whether feasible and promising solutions could be obtained
by the algorithm framework. These algorithms were the NSGA-III, MOEAD, MOPSO, and
MO-CMA-ES. The following sections discuss the EMO algorithm framework in more detail.
Section 9.1 introduces the model parameters and the experimental setup, Section 9.2 presents
the metric results for the defined multi-objective metrics. Section 9.3 explores the fitness values
over iterations, HV, SM and number of Pareto points. Section 9.4 investigates the different
Pareto fronts obtained from all thirty runs. The hypothesis test results are analysed in Section
9.5. The chapter is summarised in Section 9.6.

9.1 Experimental setup

The algorithm control parameters used in the empirical evaluation are provided in Table 10.
The notation x→ y is used to indicate that the associated parameter is decreasing or increasing
linearly from x to y over 95% of the maximum number of iterations.

The EMO algorithm code used in the empirical evaluation includes the MOEAD with the
Tchebycheff decomposition approach as found in Heris (2015a). The code for the MOPSO and
NSGA-III are described in Heris (2015b) and Heris (2016) respectively. The MO-CMA-ES code
that was used in this experimental setup is described in Hadka (2015).

The framework is able to accommodate any two fitness functions, however for this experimental
setup the two objective functions considered are the minimising of makespan and minimising
the sum of idle times.

This chapter was submitted to IEEE Access, Under review.

90

Stellenbosch University https://scholar.sun.ac.za

Table 10: Multi-objective model parameters

Parameter Value used

General parameters
Population size 100
Max iterations 1000
Number of independent simulation runs per problem size 30

MOPSO parameters
Acceleration constant (c1) 2.0 → 0.7
Acceleration constant (c2) 0.7 → 2.0
Inertia weight 0.9 → 0.4

MOEAD parameters
Probability of reproduction 1.0 → 0.0

NSGA-III parameters
Probability of crossover 0.6 → 0.4
Probability of mutation 0.3 → 0.0

MO-CMA-ES parameters
Sigma 0.5
Epsilons 0.05

9.2 Multi-objective metric results

An empirical evaluation of the EMO framework was conducted using the parameters described
in Section 9.1. The results presented in this section include the results for both fitness values.
The results for all the EMO algorithms are shown per performance metric and problem size.

First the average values over the thirty simulation runs for the hypervolume metric are
analysed. From the results in Table 11 it is clear that the NSGA-III performed the best on
average for the two largest data sets with regard to the hypervolume metric results. The
MOPSO performed the best out of the three smaller data sets based on the hypervolume metric
results. The best performing results are emboldened.

Table 11: Hypervolume results for all data sets
EMO Algorithm 8 16 24 32 40

NSGA-III Average 809541 617993 209645 207009 2121741
Standard deviation 2127 3802 5832 6511 14737

MOEAD Average 806307 605604 372206 165821 2009629
Standard deviation 2229 5502 7516 10376 20681

MOPSO Average 811139 618691 394310 190277 2065129
Standard deviation 1664 2868 5742 7010 17930

MO-CMA-ES Average 803365 612398 386590 188738 2077875
Standard deviation 9957 5534 9055 10145 17472

91

Stellenbosch University https://scholar.sun.ac.za

The hypervolume metrics were also plotted over time for one run. The results of the best
HV metric per iteration can be seen in Figures 39 to 43. From the figures it can be noted that
the MOEAD converges the fastest of all the algorithms. NSGA-III converges slightly slower,
but does sometimes converge too quickly and becomes stuck in a local optima, as can be seen
for the 24 parts problem. The MO-CMA-ES is the slowest converging algorithm of the four.
In general, the NSGA-III and MOPSO convergence profiles seem to be the most suitable with
regard to the hypervolume metric.

Figure 39: Hypervolume results for 8 parts over time, for one run

Figure 40: Hypervolume results for 16 parts over time, for one run

92

Stellenbosch University https://scholar.sun.ac.za

Figure 41: Hypervolume results for 24 parts over time, for one run

Figure 42: Hypervolume results for 32 parts over time, for one run

93

Stellenbosch University https://scholar.sun.ac.za

Figure 43: Hypervolume results for 40 parts over time, for one run

After the hypervolume metric results were analysed, the average values over thirty runs for
the spread metric were analysed. From the results in Table 12 it is clear that the MOEAD
performed the best on average for all the data sets with regards to the spread metric results.

Table 12: Spread results for all data sets
EMO Algorithm / Parts 8 16 24 32 40

NSGA-III Average 0.10 0.05 0.27 0.39 0.00
Standard deviation 0.38 0.30 1.06 2.12 0.00

MOEAD Average 0.21 1.09 3.09 1.89 4.63
Standard deviation 0.82 2.80 3.48 3.79 5.05

MOPSO Average 0.05 0.05 0.00 0.13 0.09
Standard deviation 0.20 0.28 0.00 0.53 0.46

MO-CMA-ES Average 0.14 0.44 0.84 0.14 2.53
Standard deviation 0.52 1.39 2.32 0.74 7.34

The SM plots are shown in Figures 44 to 48. The results were less informative. For the
eight part problem there was almost no spread visible; for the sixteen part problem the spread
increased slightly at the start of the run but also faded with no spread at the end of the run. For
the twenty-four part problem there was spread visible at the start of the run, which continued
at a low rate to the end with a slight increase for some EMO algorithms at the end of the run.
The spread observed for the thirty-two part problem was only at the start of the run. The
forty-part problem had the most spread throughout the entire run.

94

Stellenbosch University https://scholar.sun.ac.za

Figure 44: Spread results for 8 parts over time, for one run

Figure 45: Spread results for 16 parts over time, for one run

95

Stellenbosch University https://scholar.sun.ac.za

Figure 46: Spread results for 24 parts over time, for one run

Figure 47: Spread results for 32 parts over time, for one run

96

Stellenbosch University https://scholar.sun.ac.za

Figure 48: Spread results for 40 parts over time, for one run

The last results that were analysed were the average values over thirty runs for the number
of Pareto solutions metric results. From the results in Table 13 it is clear that the MOEAD, on
average, performed the best for all the data sets with regard to the number of Pareto solutions
metric results.

Table 13: Number of Pareto solutions, results for all data sets
EMO Algorithm / Parts 8 16 24 32 40

NSGA-III Average 1.50 1.27 1.23 1.37 1.23
Standard deviation 0.62 0.51 0.56 0.80 0.42

MOEAD Average 1.73 1.47 2.40 1.83 2.67
Standard deviation 0.57 0.81 1.14 0.78 1.30

MOPSO Average 1.60 1.23 1.67 1.37 1.33
Standard deviation 0.61 0.50 0.38 0.60 0.54

MO-CMA-ES Average 1.50 1.37 1.87 1.27 1.57
Standard deviation 0.62 0.66 1.06 0.51 0.72

The number of Pareto solutions plots are shown in Figures 49 to 53. The results for the
number of the Pareto points did not show any pattern or trend, apart from the fact that the
number of Pareto solutions never exceeded six.

97

Stellenbosch University https://scholar.sun.ac.za

Figure 49: Number of Pareto solutions results for 8 parts over time, for one run

Figure 50: Number of pareto solutions results for 16 parts over time, for one run

98

Stellenbosch University https://scholar.sun.ac.za

Figure 51: Number of pareto solutions results for 24 parts over time, for one run

Figure 52: Number of pareto solutions results for 32 parts over time, for one run

99

Stellenbosch University https://scholar.sun.ac.za

Figure 53: Number of pareto solutions results for 40 parts over time, for one run

The first important observation was that feasible and promising results could be obtained by
the EMO algorithm framework. Furthermore, it could be concluded that for the HV metric
there were two algorithms that performed well. For the smaller data sets the MOPSO algorithm
performed the best and for the larger data sets the NSGA-III performed the best. The MOEAD
performed the best on all data sets with regard to the SM and NPS metrics.

9.3 Multi-objective EMO algorithm performance analysis

The top five graphs in Figure 54 show the HV metric versus iterations for all four EMO
algorithm considered. The HV metric was calculated using a reference point that is greater
than both the objective values on the x-axis and y-axis. A higher HV is more desirable for the
multi-objective part sequencing and allocation problem. Given the HV results for the 8 and 16
part problem it can be see that the MO-CMA-ES, NSGA-III and MOPSO performed relatively
well compared to the MOEAD that struggled to achieve a good HV value. As the problem
size increased the algorithms responded differently, in the specific run presented the NSGA-III
struggled to find a good solution for the 24 part problem, but performed very well against the
other EMO algorithms on the 32 and 40 part problem. The MOPSO and MO-CMA-ES kept
on performing well as the problem size increased. The MOPSO performed well with respect to
the HV metric which indicates that the erratic search observed on the single objective problem
might not negatively affect the MOPSO in the multi-objective search space. Also, the number
of duplicate solutions found by the single objective GCPSO did not have such a significant
impact on the MOPSO. The MOEAD was not able to outperform all of the EMO algorithms
on any of the problem sizes.

100

Stellenbosch University https://scholar.sun.ac.za

Figure 54: Multi-objective EMO algorithm results analysis

101

Stellenbosch University https://scholar.sun.ac.za

The spread metric for the five data sets are shown in the middle row of Figure 54. The
spread of the solution gives an indication of the spacing between the pareto points. From the
spread metric results it can be seen that there is a definite trend with regard to problem size
versus solution spread over iterations. As the problem size increased the spread remained higher
for longer during the run. Considering the largest problem, 40 parts, it is noticeable that the
MOEAD has achieved a much greater spread over the iterations than any other EMO algorithm
considered.

The number of pareto solutions versus iterations are depicted for all five data sets in the
bottom five graphs in Figure 54. The number of pareto points metric is the exact number of
pareto points in the pareto front. The number of pareto points are used to determine which
EMO algorithm delivered the most pareto points.

The results obtained from the EMO algorithms are supported by the work presented by Gu
et al. (2021). Gu et al. (2021) investigated the performance of a surrogate-assisted MOPSO
on constrained combinatorial optimisation problems. The results showed that the MOEAD
was not able to match the performance of the NSGA-II and MOPSO with regards to HV. The
same results were observed in this dissertation where the MOEAD was the worst performing
multi-objective algorithm in terms of the HV metric. The same results were observed in Got
et al. (2020), where the results also showed that the MOPSO outperformed the MOEAD on the
HV metric.

The second observation from the results indicated that the MOEAD is good at finding pareto
fronts with larger spreads and number of pareto points, indicating that the MOEAD was better
at finding solutions at the ends of the pareto front. The mechanism that MOEAD uses to
decompose the multiple-objective into single objectives clearly enables the algorithm to find a
pareto front with high spread. This result was also confirmed by Azadeh et al. (2017), where it
was observed that the MOEAD showed superiority for large size problems based on the number
of pareto solutions, spacing, and diversity.

9.4 Multi-objective EMO algorithm Pareto front analysis

In this section one random Pareto front from the 30 runs have been plotted for all five data
sets to illustrate the spread, position and number of Pareto solutions.

102

Stellenbosch University https://scholar.sun.ac.za

Figure 55: Pareto fronts for one run
(8 Parts)

Figure 56: Pareto fronts for one run
(16 Parts)

Figure 57: Pareto fronts for one run
(24 Parts)

Figure 58: Pareto fronts for one run
(32 Parts)

103

Stellenbosch University https://scholar.sun.ac.za

Figure 59: Pareto fronts for one run (40 Parts)

The Pareto solutions presented in Figure 55, for the 8 part problem indicate that between the
NSGA-III and the MO-CMA-ES the best Pareto front were found. The Pareto points for the
MOPSO and MOEAD in this instance were further from the point (0, 0) an would therefor yield
a smaller HV value which is not necessarily desirable. From Figure 56, the 16 part problem, the
MOPSO algorithm performed the best with a Pareto front lower than all the other Pareto fronts
plotted. The 24 part problem does not present an obvious best performing EMO algorithm.
This is the reason why the metrics are calculated based on HV, SM, and NPP to determine
based on each metric, which EMO algorithm performed the best. From the 32 and 40 part
problem it is noticeable that the Pareto fronts from the different EMO algorithms start to
perform differently, indicating that some algorithms are performing better than others. It is
notable in the 40 problem that the MOEAD showed a greater spread with respect to the other
EMO algorithms.

All the Pareto fronts and points for all 30 experimental runs are presented in Figures 60, 61,
62, 63, and 64. The main purpose of these figures are to identify characteristics from the EMO
algorithms such as their Pareto point spread, the number of Pareto points and grouping over
the 30 runs. From Figure 60 it is visible that the MO-CMA-ES and MOEAD had the greatest
spread of Pareto points. For the 16 part problem the MOEAD, MO-CMA-ES and MOPSO
showed more spread of Pareto points. The 24 problem had very similar Pareto points from the
MOEAD, MO-CMA-ES and MOPSO, all with a decent spread. The NSGA-III was not able to
find competitive solutions with respect to the MO-CMA-ES, MOPSO and MOEAD. Looking
at the Pareto solution results for the 32 and 40 part problem, the points were definitely more
spread out than with the smaller problems. One observation that can be made for these two
problems are that the NSGA-III, MOPSO and the MO-CMA-ES had the greatest density of its
Pareto points closest to the point (0, 0).

104

Stellenbosch University https://scholar.sun.ac.za

Figure 60: All Pareto points for 30
runs (8 Parts)

Figure 61: All Pareto points for 30
runs (16 Parts)

Figure 62: All Pareto points for 30
runs (24 Parts)

Figure 63: All Pareto points for 30
runs (32 Parts)

105

Stellenbosch University https://scholar.sun.ac.za

Figure 64: All Pareto points for 30 runs (40 Parts)

9.5 EMO algorithms hypothesis test

The results of a statistical comparison in Table 14 were obtained by comparing the result
of an algorithm’s performance to each of the other algorithms’ performance based on the HV,
SM, and NPS metrics, for each data set. For every comparison, a Mann–Whitney U test
at 5% significance was performed (using the two sets of 30 sequences of the two algorithms
under comparison) and if the first algorithm outperformed the second algorithm statistically
significantly, a win was recorded for the first algorithm. If no statistical difference could be
observed, a draw was recorded. If the second algorithm outperformed the first algorithm, a
loss was recorded for the first algorithm. The total number of wins, draws, and losses was then
recorded for all data sets of the algorithm under evaluation.

Table 14: Hypothesis test results for HV, SM and NPS for each EMO algorithm

HV

MO-CMA-ES MOPSO MOEAD NSGA-III Total
MO-CMA-ES - 1-1-3 4-1-0 1-0-4 6-2-7

MOPSO 3-1-1 - 5-0-0 2-1-2 10-2-3
MOEAD 0-1-4 0-0-5 - 1-0-4 1-1-13

NSGA-III 4-0-1 2-1-2 4-0-1 - 10-1-4

SM

MO-CMA-ES MOPSO MOEAD NSGA-III Total
MO-CMA-ES - 1-4-0 0-2-3 1-4-0 2-10-3

MOPSO 0-4-1 - 0-3-2 0-5-0 0-12-3
MOEAD 3-2-0 2-3-0 - 3-2-0 8-7-0

NSGA-III 0-4-1 0-5-0 0-2-3 - 0-11-4

NPS

MO-CMA-ES MOPSO MOEAD NSGA-III Total
MO-CMA-ES - 1-4-0 0-2-3 1-4-0 2-10-3

MOPSO 0-4-1 - 0-2-3 0-5-0 0-11-4
MOEAD 3-2-0 3-2-0 - 3-2-0 9-6-0

NSGA-III 0-4-1 0-5-0 0-2-3 - 0-11-4

From the hypothesis tests the EMO algorithms can be ranked for each performance metric
over all five data sets. For the HV metric, the MOPSO and NSGA-III algorithms performed
the best with ten wins each; the MO-CMA-ES algorithm was third (six wins); and finally the
MOEAD (one win). For the SM and NPS metrics the order of best performing algorithms
was similar. The best performing algorithm for the SM metric was the MOEAD (eight wins),
followed by MO-CMA-ES (two wins), MOPSO (zero wins), and lastly, the NSGA-III (zero
wins). The NPS metric had similar results, the MOEAD (nine wins), followed by MO-CMA-ES
(two wins), MOPSO (zero wins), and lastly the NSGA-III (zero wins). These results indicate
that if accuracy is the most important concern, MOPSO should be the algorithm of choice and
if spread and number of solutions are more important, the MOEAD algorithm should be used
in the EMO algorithm framework.

106

Stellenbosch University https://scholar.sun.ac.za

9.6 Summary

The aim of this section is to propose an evolutionary multi-objective algorithm framework for
scheduling picking and binning robots in an automated warehouse. The framework was tested
using four popular EMO algorithms; namely, NSGA-III, MOEAD, MOPSO, and MO-CMA-ES.
Five real-world data sets corresponding to different demand scenarios were used for evaluation.
The framework was able to produce feasible trade-off solutions and MOPSO was shown to be
the best EMO algorithm to use for accuracy. If a large spread and number of Pareto solutions
are the most important concern, MOEAD should be used.

107

Stellenbosch University https://scholar.sun.ac.za

Chapter 10

Conclusion

This chapter summarises the main findings of the dissertation’s single objective part sequencing
and allocation problem as well as the multi-objective part sequencing and allocation problem.
Possible future research opportunities are also identified and discussed in this chapter.

10.1 Single objective part sequencing and allocation problem summary

The first aim of this dissertation is to develop a framework for solving the robot routing
and single objective part sequencing and allocation problem. Solving the single objective part
sequencing and allocation problem requires the subproblem, the robot routing problem, to be
solved first. The robot routing solution is used to navigate the robot from point A to a point
B using a set of rules. The routing solution needs to be as efficient as possible to minimise the
total travelling time.

The solution strategies for the robot routing problem consist of the return heuristic, the
s-shape heuristic, the midpoint heuristic and the largest gap heuristic. The four routing
heuristics are analysed for 30 random sequences over five data sets. The results were obtained
and the return heuristic outperformed the s-shape heuristic, the midpoint heuristic and the
largest gap heuristic.

After the best routing heuristic was determined, a framework was developed for solving the
single objective part sequencing and allocation problem. All the parts had to be picked and
binned, and allocated to a robot in order to solve the single objective part sequencing and
allocation problem. Four metaheuristics are tested within the framework to solve the single
objective part sequencing and allocation problem; namely, the covariance matrix adaptation
evolution strategy (CMA-ES) algorithm, the genetic algorithm (GA), the guaranteed convergence
particle swarm optimisation (GCPSO) algorithm, and the self-adaptive differential evolution
algorithm with neighbourhood search (SaNSDE). The framework is responsible for optimising
the sequence in which the binning and picking takes place as well as the allocation to a robot.
The four metaheuristics are tested on five data sets based on real-world data, with 8, 16, 24, 32,
and 40 parts, respectively. Each experiment over the five data sets consists of thirty random
independent runs using the four metaheuristics.

108

Stellenbosch University https://scholar.sun.ac.za

After this the experimental runs were completed the results were obtained and analysed.
The results included the fitness function values and the population diversity values. The
fitness function values gave valuable insight into the performance of each metaheuristic. It was
concluded, statistically, that the CMA-ES statistically outperformed the other metaheuristics
in solving the single objective part sequencing and allocation problem and was thus the best
metaheuristic to use within the framework to solve this specific version of the algorithm.

The population diversity value is an indication of the spread of the population through the
search space. It was positive to note that for all the metaheuristics over all the data sets, the
diversity value never decreased to zero, indicating that an acceptable exploration-exploitation
balance was maintained for all algorithms.

The results obtained from the single objective framework are a valuable contribution to
literature as this is the first time that the four single objective evolutionary algorithms have been
tested in solving the single objective part sequencing and allocation problem in a warehouse
environment with the incorporation of collision avoidance.

After it was determined that the CMA-ES was the best algorithm to use when solving the
single objective part sequencing and allocation problem, a sensitivity analysis was conducted.
The algorithm was tested to see what effect the number of robots might have on the solution.
The results were positive and showed that an increase in robots leads to a decrease in fitness
function value. The algorithm showed an improvement in fitness function value to a limit of
seven robots.

Overall, the framework showed that the CMA-ES, along with the return routing heuristic,
was effective and applicable in generating feasible solutions and optimising the single objective
part sequencing and allocation problem.

10.2 Multi-objective part sequencing and allocation problem summary

The second aim of this dissertation is to develop an EMO framework in order to solve
the multi-objective part sequencing and allocation problem. Solving the multi-objective part
sequencing and allocation problem also requires the best routing heuristic to navigate the robot
through the warehouse.

The same routing heuristic is used for the multi-objective part sequencing and allocation
problem as for the single objective part sequencing and allocation problem; namely, the return
heuristic. All the parts had to be picked and binned, and allocated to a robot in order to solve the
multi-objective part sequencing and allocation problem. Four EMO algorithms are used to test
the EMO framework on the multi-objective part sequencing and allocation problem; namely,
the MO-CMA-ES, the NSGA-III, MOPSO and the MOEAD algorithms. The framework is
again responsible for optimising the sequence in which the binning and picking takes place
as well as the allocation to a robot. The four algorithms are tested on five data sets based
on real-world data, with 8, 16, 24, 32, and 40 parts, respectively. Each experiment over the
five data sets consists of thirty random independent runs using the four metaheuristics. The
framework could generate feasible solutions and optimise the multi-objective part sequencing
and allocation problem.

After the empirical evaluation the results were obtained and analysed. The results included
three metrics; namely, the hypervolume, the spread metric and the number of Pareto solutions
metric. From the iteration average results and hypothesis test results for each metric, the
ranking for the EMO algorithms could be confirmed. For the hypervolume metric the MOPSO

109

Stellenbosch University https://scholar.sun.ac.za

and NSGA-III algorithms performed the best. The spread metric and number of Pareto solutions
metric had the same order of best performing algorithms. The best performing algorithm was
the MOEAD (eight wins), followed by MO-CMA-ES (two wins), MOPSO (zero wins), and lastly
the NSGA-III (zero wins). To conclude the description of the multi-objective part sequencing
and allocation problem, the results confirmed that if accuracy is the highest priority, MOPSO
should be the algorithm of choice and if spread and number of solutions are more important,
then the MOEAD algorithm should be used in the EMO algorithm framework.

The results from the multi-objective framework are a valuable contribution to literature as
this is the first time that the EMO framework with four respective multi-objective evolutionary
algorithms has been tested on solving the multi-objective part sequencing and allocation problem
in a warehouse environment with the incorporation of collision avoidance.

10.3 Future research opportunities

A number of opportunities for future research exist and are described in detail in this section.

1) Introducing stochastic variables:

Currently all time variables are treated as constant variables. In a real-world scenario, as
in the case of this problem, travelling times, picking times, and binning times are stochastic
in nature. The algorithm can be improved to accommodate real-world time instances using
stochastic distributions obtained from time studies and previous data.

2) Allow batching of parts:

The current algorithm does not allow for any parts to be batched together when picking and
binning. Introducing the option to batch parts together will definitely improve the total picking
and binning time. The batching of parts will, however, lead to a drastic increase in the number
of decision variables and the computational power required to solve the problem.

3) Real-time dynamic optimisation:

The problem can also be formulated and solved as a dynamic robot routing problem, where
decisions regarding to routing, sequencing or allocation need to be made in real-time due to
environmental changes.

4) Investigating differentiating problem characteristics:

It was clear in the results presented in this dissertation that no single algorithm is capable
of outperforming all other algorithms for all performance measurements over all data sets. An
investigation into the problem characteristics which drive algorithm performance might indicate
which algorithms are more suitable for solving each specific part sequencing and allocation
problem data set.

5) Warehouse layout design improvement:

This dissertation touched on the subject of layout design. An investigation into the effect
of different warehouse layout designs with the same data sets could prove to have a significant
impact on the solutions found for the routing, part sequencing, and allocation problems.

6) Parameter tuning:

Parameters of test algorithms can be tuned and optimised to perform optimally within the
developed framework.

110

Stellenbosch University https://scholar.sun.ac.za

7) Alternative problem representations:

Alternative problem representations and mapping mechanisms for converting a set of decision
variables into a robot sequencing and allocation problem could be investigated.

10.4 Last words

Given the increase in the number of warehouses and their sizes for various industries, companies
are aiming to optimise their warehouse activities to be as efficient as possible. Most supply chains
in South Africa make use of warehousing facilities. The sequencing and allocation algorithm
framework developed from this research can be utilised in any warehouse environment where a
picking and binning process is present. The research contribution of this work includes the
development of a framework which incorporated collision avoidance to the single objective
and multi-objective part sequencing and allocation problem. The research contributes to the
field of metaheuristics where the four metaheuristics namely the CMA-ES, GA, GCPSO, and
SaNSDE, have been tested for solving the robot picking and binning problem. The research
also contributes to the field of EMO algorithms where the four EMO algorithms; namely, the
MO-CMA-ES, NSGA-III, MOPSO and MOEAD, have been tested for solving the multi-objective
part sequencing and allocation problem. Given the imminence of the fourth industrial revolution,
companies operating warehouses can benefit immensely from automation research into robotic
warehouse picking.

111

Stellenbosch University https://scholar.sun.ac.za

Bibliography

Andelković, A. and Radosavljević, M. (2018). Improving order-picking process through
implementation of warehouse management system. Strategic Management, 23(1):3–10.

Auger, A. and Hansen, N. (2005). A restart cma evolution strategy with increasing population
size. In 2005 IEEE congress on evolutionary computation, volume 2, pages 1769–1776. IEEE.

Azadeh, A., Shafiee, F., Yazdanparast, R., Heydari, J., and Fathabad, A. M. (2017).
Evolutionary multi-objective optimization of environmental indicators of integrated crude
oil supply chain under uncertainty. Journal of cleaner production, 152:295—311.

Baker, P. (2004). The adoption of innovative warehouse equipment. In Logistics Research
Network 2004 Conference Proceedings, pages 25–35.

Baker, P. and Canessa, M. (2009). Warehouse design: A structured approach. European Journal
of Operational Research, 193(2):425–436.

Baker, P. and Halim, Z. (2007). An exploration of warehouse automation implementations:
cost, service and flexibility issues. Supply Chain Management: An International Journal,
12(2):129–138.

Banker, S. (2009). Warehouse 2025. ARC Advisory Group, Tech. Rep.

Bechtsis, D., Tsolakis, N., Vlachos, D., and Iakovou, E. (2017). Sustainable supply chain
management in the digitalisation era: The impact of automated guided vehicles. Journal of
Cleaner Production, 142:3970–3984.

Beroule, B., Grunder, O., Barakat, O., and Aujoulat, O. (2017). Order picking problem in a
warehouse hospital pharmacy. IFAC-PapersOnLine, 50(1):5017–5022.

Biswas, S., Anavatti, S. G., and Garratt, M. A. (2021). Multiobjective mission route planning
problem: A neural network-based forecasting model for mission planning. IEEE Transactions
on Intelligent Transportation Systems, 1:430–422.

Broulias, G., Marcoulaki, E., Chondrocoukis, G., and Laios, L. (2005). Warehouse management
for improved order picking performance: an application case study from the wood industry.
Department of Industrial Management & Technology, University of Piraeus.

Brownlee, J. (2011). Clever algorithms: nature-inspired programming recipes. Jason Brownlee.

Burkard, R. E., Deineko, V. G., van Dal, R., van der Veen, J. A., and Woeginger, G. J.
(1998). Well-solvable special cases of the traveling salesman problem: a survey. SIAM review,
40(3):496–546.

Cesarone, J. and Eman, K. F. (1989). Mobile robot routing with dynamic programming. Journal
of Manufacturing Systems, 8(4):257–266.

Chen, G., Hou, J., Dong, J., Li, Z., Gu, S., Zhang, B., Yu, J., and Knoll, A. (2020).
Multi-objective scheduling strategy with genetic algorithm and time enhanced a* planning
for autonomous parking robotics in high-density unmanned parking lots. IEEE/ASME
Transactions on Mechatronics.

Chen, G. and Liu, J. (2019). Mobile robot path planning using ant colony algorithm and
improved potential field method. Computational intelligence and neuroscience, 2019.

Chen, H., Wang, Q., Yu, M., Cao, J., and Sun, J. (2018). Path planning for multi-robot systems
in intelligent warehouse. In International Conference on Internet and Distributed Computing
Systems, pages 148–159. Springer.

112

Stellenbosch University https://scholar.sun.ac.za

Christofides, N. (1975). Graph theory: An algorithmic approach (Computer science and applied
mathematics). Academic Press, Inc.

Coello, C. A. C., Lamont, G. B., Van Veldhuizen, D. A., et al. (2007). Evolutionary algorithms
for solving multi-objective problems, volume 5. Springer.

Coello, C. C. and Lechuga, M. S. (2002). Mopso: A proposal for multiple objective particle
swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation.
CEC’02 (Cat. No. 02TH8600), volume 2, pages 1051–1056. IEEE.

Croucamp, M. and Grobler, J. (2021). Metaheuristics for the robot part sequencing and
allocation problem with collision avoidance. In EPIA Conference on Artificial Intelligence,
pages 469–481. Springer.

Dantzig, G., Fulkerson, R., and Johnson, S. (1954). Solution of a large-scale traveling-salesman
problem. Journal of the operations research society of America, 2(4):393–410.

Dao, T.-K., Pan, T.-S., and Pan, J.-S. (2016). A multi-objective optimal mobile robot path
planning based on whale optimization algorithm. In 2016 IEEE 13th International Conference
on Signal Processing (ICSP), pages 337–342. IEEE.

De Koster, R., Le-Duc, T., and Roodbergen, K. J. (2007a). Design and control of warehouse
order picking: A literature review. European journal of operational research, 182(2):481–501.

De Koster, R., Le-Duc, T., and Roodbergen, K. J. (2007b). Design and control of warehouse
order picking: A literature review. European journal of operational research, 182(2):481–501.

De Ryck, M., Versteyhe, M., and Debrouwere, F. (2020). Automated guided vehicle systems,
state-of-the-art control algorithms and techniques. Journal of Manufacturing Systems,
54:152–173.

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: Nsga-ii. In International conference on
parallel problem solving from nature, pages 849–858. Springer.

Deb, K. and Jain, H. (2013). An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems with box
constraints. IEEE transactions on evolutionary computation, 18(4):577–601.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197.

Dekker, R., De Koster, M., Roodbergen, K. J., and Van Kalleveen, H. (2004). Improving
order-picking response time at ankor’s warehouse. Interfaces, 34(4):303–313.

Dhawale, A., Yang, X., and Michael, N. (2018). Reactive collision avoidance using real-time local
gaussian mixture model maps. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3545–3550. IEEE.

Digani, V., Caramaschi, F., Sabattini, L., Secchi, C., and Fantuzzi, C. (2014). Obstacle
avoidance for industrial agvs. In 2014 IEEE 10th International Conference on Intelligent
Computer Communication and Processing (ICCP), pages 227–232. IEEE.

Digani, V., Hsieh, M. A., Sabattini, L., and Secchi, C. (2019). Coordination of multiple agvs:
a quadratic optimization method. Autonomous Robots, 43(3):539–555.

Dong, Y.-f., Xia, H.-m., and Zhou, Y.-c. (2016). Disordered and multiple destinations path
planning methods for mobile robot in dynamic environment. Journal of Electrical and
Computer Engineering, 2016.

113

Stellenbosch University https://scholar.sun.ac.za

Draganjac, I., Petrović, T., Miklić, D., Kovačić, Z., and Oršulić, J. (2020). Highly-scalable
traffic management of autonomous industrial transportation systems. Robotics and
Computer-Integrated Manufacturing, 63:101915.

Dukic, G. and Oluic, C. (2007). Order-picking methods: improving order-picking efficiency.
International Journal of Logistics Systems and Management, 3(4):451–460.

Eberhart, R. and Kennedy, J. (1995a). A new optimizer using particle swarm theory. In
MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, pages 39–43. Ieee.

Eberhart, R. and Kennedy, J. (1995b). Particle swarm optimization. In Proceedings of the IEEE
international conference on neural networks, volume 4, pages 1942–1948. Citeseer.

Engelbrecht, A. (2006). Fundamentals of computational swarm intelligence. Hoboken: John
Wiley & Sons, Ltd.

Eshelman, L. J. and Schaffer, J. D. (1993). Real-coded genetic algorithms and interval-schemata.
Foundations of genetic algorithms, 2:187–202.

Fanti, M. P., Mangini, A. M., Pedroncelli, G., and Ukovich, W. (2015). Decentralized
deadlock-free control for agv systems. In 2015 American Control Conference (ACC), pages
2414–2419. IEEE.

Fazlollahtabar, H. and Hassanli, S. (2018). Hybrid cost and time path planning for multiple
autonomous guided vehicles. Applied Intelligence, 48(2):482–498.

Fonlupt, J. and Naddef, D. (1992). The traveling salesman problem in graphs with some
excluded minors. Mathematical Programming, 53(1-3):147–172.

Ganapathy, V., Jie, T. T. J., and Parasuraman, S. (2010). Improved ant colony optimization
for robot navigation. In 7th International Symposium on Mechatronics and its Applications,
pages 1–6. IEEE.

Gilmore, P. C. (1985). Well-solved special cases. The traveling salesman problem, pages 136–138.

Gochev, I., Nadzinski, G., and Stankovski, M. (2017). Path planning and collision avoidance
regime for a multi-agent system in industrial robotics. Machines. Technologies. Materials.,
11(11):519–522.

Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addion
wesley, 1989(102):36.

Goldberg, D. E. and Holland, J. H. (1988). Genetic algorithms and machine learning. Machine
learning, 3(2):95–99.

Got, A., Moussaoui, A., and Zouache, D. (2020). A guided population archive whale
optimization algorithm for solving multiobjective optimization problems. Expert Systems
with Applications, 141:112972.

Grobler, J. (2015). The heterogeneous meta-hyper-heuristic: from low level heuristics to low
level meta-heuristics. PhD thesis, University of Pretoria.

Grobler, J. et al. (2008). Particle swarm optimization and differential evolution for
multi-objective multiple machine scheduling. PhD thesis, University of Pretoria.

Gu, Q., Wang, Q., Li, X., and Li, X. (2021). A surrogate-assisted multi-objective particle swarm
optimization of expensive constrained combinatorial optimization problems. Knowledge-Based
Systems, 223:107049.

114

Stellenbosch University https://scholar.sun.ac.za

Gue, K. R., Ivanović, G., and Meller, R. D. (2012). A unit-load warehouse with multiple pickup
and deposit points and non-traditional aisles. Transportation Research Part E: Logistics and
Transportation Review, 48(4):795–806.

Gue, K. R. and Meller, R. D. (2009). Aisle configurations for unit-load warehouses. IIE
transactions, 41(3):171–182.

Hadka, D. (2015). Platypus.

Haiming, L., Weidong, L., Mei, Z., and An, C. (2019). Algorithm of path planning based on
time window for multiple mobile robots in warehousing system. In 2019 Chinese Control
Conference (CCC), pages 2193–2199. IEEE.

Hall, R. W. (1993). Distance approximations for routing manual pickers in a warehouse. IIE
transactions, 25(4):76–87.

Han, M.-H., McGinnis, L. F., Shieh, J. S., and White, J. A. (1987). On sequencing retrievals
in an automated storage/retrieval system. IIE transactions, 19(1):56–66.

Hansen, N. and Kern, S. (2004). Evaluating the cma evolution strategy on multimodal test
functions. In PPSN, volume 8, pages 282–291. Springer.

Hansen, N., Müller, S. D., and Koumoutsakos, P. (2003). Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary
computation, 11(1):1–18.

Hansen, N. and Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions in
evolution strategies: The covariance matrix adaptation. In Evolutionary Computation, 1996.,
Proceedings of IEEE International Conference on, pages 312–317. IEEE.

Hassan-Pour, H., Mosadegh-Khah, M., and Tavakkoli-Moghaddam, R. (2009). Solving
a multi-objective multi-depot stochastic location-routing problem by a hybrid simulated
annealing algorithm. Proceedings of the Institution of Mechanical Engineers, Part B: Journal
of Engineering Manufacture, 223(8):1045–1054.

Hennes, D., Claes, D., Meeussen, W., and Tuyls, K. (2012). Multi-robot collision avoidance
with localization uncertainty. In AAMAS, pages 147–154.

Heragu, S. S. (2008). Facilities design. Crc Press.

Heris, M. K. (2015a). Moea/d in matlab.

Heris, M. K. (2015b). Multi-objective pso in matlab.

Heris, M. K. (2016). Nsga-iii: Non-dominated sorting genetic algorithm, the third version —
matlab implementation.

Igel, C., Hansen, N., and Roth, S. (2007). Covariance matrix adaptation for multi-objective
optimization. Evolutionary computation, 15(1):1–28.

Jabbarpour, M. R., Zarrabi, H., Jung, J. J., and Kim, P. (2017). A green ant-based method for
path planning of unmanned ground vehicles. IEEE access, 5:1820–1832.

Jacobus, C. J., Beach, G. J., and Rowe, S. (2015). Automated warehousing using robotic
forklifts. US Patent 8,965,561.

Jain, H. and Deb, K. (2013). An improved adaptive approach for elitist nondominated
sorting genetic algorithm for many-objective optimization. In International Conference on
Evolutionary Multi-Criterion Optimization, pages 307–321. Springer.

115

Stellenbosch University https://scholar.sun.ac.za

Jan, G. E., Chang, K. Y., and Parberry, I. (2008). Optimal path planning for mobile robot
navigation. IEEE/ASME transactions on mechatronics, 13(4):451–460.

Juntao, L., Tingting, D., Yuanyuan, L., and Yan, H. (2016). Study on robot path collision
avoidance planning based on the improved ant colony algorithm. In 2016 8th International
Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), volume 2,
pages 540–544. IEEE.

Karásek, J. (2013). An overview of warehouse optimization. International journal of advances
in telecommunications, electrotechnics, signals and systems, 2(3):111–117.

Khamis, A., Hussein, A., and Elmogy, A. (2015). Multi-robot task allocation: A review of the
state-of-the-art. Cooperative Robots and Sensor Networks 2015, pages 31–51.

Kim, B.-I., Heragu, S. S., Graves, R. J., and Onge, A. S. (2003). Clustering-based order-picking
sequence algorithm for an automated warehouse. International Journal of Production
Research, 41(15):3445–3460.

Klaas, A., Laroque, C., Dangelmaier, W., and Fischer, M. (2011). Simulation aided, knowledge
based routing for agvs in a distribution warehouse. Proceedings of the 2011 Winter Simulation
Conference (WSC), pages 1668–1679.

Kleyn, R. (2020). Investigating the conflict in conflicting objectives in the scheduling of picking
and binning robots within a warehouse. University of Stellenbosch. Final year project.

Knowles, J. D. and Corne, D. W. (2000). Approximating the nondominated front using the
pareto archived evolution strategy. Evolutionary computation, 8(2):149–172.

Kovács, S. and Kóczy, L. T. (1999). Application of an approximate fuzzy logic controller in an
agv steering system, path tracking and collision avoidance strategy. Fuzzy Set Theory and
Applications, In Tatra Mountains Mathematical Publications, Mathematical Institute Slovak
Academy of Sciences, 16:456–467.

Kulatunga, A., Liu, D., Dissanayake, G., and Siyambalapitiya, S. (2006). Ant colony
optimization based simultaneous task allocation and path planning of autonomous vehicles.
In 2006 IEEE Conference on Cybernetics and Intelligent Systems, pages 1–6. IEEE.

Larsen, L., Kim, J., Kupke, M., and Schuster, A. (2017). Automatic path planning
of industrial robots comparing sampling-based and computational intelligence methods.
Procedia Manufacturing, 11:241–248.

Lee, H.-Y., Shin, H., and Chae, J. (2018). Path planning for mobile agents using a genetic
algorithm with a direction guided factor. Electronics, 7(10):212.

Lee, P.-S. and Wang, L.-L. (1994). Collision avoidance by fuzzy logic control for automated
guided vehicle navigation. Journal of robotic systems, 11(8):743–760.

Li, J., Huang, R., and Dai, J. B. (2017). Joint optimisation of order batching and picker routing
in the online retailer’s warehouse in china. International Journal of Production Research,
55(2):447–461.

Li, X., Zhang, C., Yang, W., and Qi, M. (2018). Multi-agvs conflict-free routing and dynamic
dispatching strategies for automated warehouses. In International Conference on Mobile and
Wireless Technology, pages 277–286. Springer.

Liu, D. and Kulatunga, A. (2007). Simultaneous planning and scheduling for multi-autonomous
vehicles. In Evolutionary Scheduling, pages 437–464. Springer.

116

Stellenbosch University https://scholar.sun.ac.za

Liu, Y., Wang, L., Huang, H., Liu, M., and Xu, C.-z. (2017). A novel swarm robot simulation
platform for warehousing logistics. In 2017 IEEE International Conference on Robotics and
Biomimetics (ROBIO), pages 2669–2674. IEEE.

López-González, A., Campaña, J. M., Mart́ınez, E. H., and Contro, P. P. (2020). Multi robot
distance based formation using parallel genetic algorithm. Applied Soft Computing, 86:105929.

Majumder, A. and Ghosh, R. (2020). Task allocation and path planning of a multi-robot system
using heuristic coupled particle swarm optimization algorithm. In Handbook of Research on
Developments and Trends in Industrial and Materials Engineering, pages 194–209. IGI Global.

Majumder, A., Majumder, A., and Bhaumik, R. (2021). Teaching–learning-based optimization
algorithm for path planning and task allocation in multi-robot plant inspection system.
Arabian Journal for Science and Engineering, pages 1–23.

Menon, S., Kapoor, S. G., and Blackmon, R. (1988). Navigation planning for mobile robotic
devices in modular warehouses. The International Journal of Advanced Manufacturing
Technology, 3(4):47–62.

Mitchell, M. (1996). An introduction to genetic algorithms mit press. Cambridge,
Massachusetts. London, England.

Moeller, K. (2011). Increasing warehouse order picking performance by sequence optimization.
Procedia-Social and Behavioral Sciences, 20:177–185.

Möhring, R. H., Köhler, E., Gawrilow, E., and Stenzel, B. (2005). Conflict-free real-time agv
routing. In Operations Research Proceedings 2004, pages 18–24. Springer.

Molnar, B. and Lipovszki, G. (2005). Multi-objective routing and scheduling of order pickers
in a warehouse. International Journal of Simulation, 6(5):22–32.

Ó Duinn, J. (1994). Robotic navigation. PhD thesis, Dublin City University.

Okumuş, F., Dönmez, E., and Kocamaz, A. F. (2020). A cloudware architecture for collaboration
of multiple agvs in indoor logistics: Case study in fabric manufacturing enterprises.
Electronics, 9(12):2023.

Olorunda, O. and Engelbrecht, A. P. (2009). An analysis of heterogeneous cooperative
algorithms. 2009 IEEE Congress on Evolutionary Computation, pages 1562–1569.

Ozden, S. G. (2017). A computational system to solve the warehouse aisle design problem. A
dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of
the requirements for the Degree of Doctor of Philosophy.

Pal, N. S. and Sharma, S. (2013). Robot path planning using swarm intelligence: A survey.
International Journal of Computer Applications, 83(12):5–12.

Pamosoaji, A. K. and Hong, K.-S. (2011). Collision-free path and trajectory planning algorithm
for multiple-vehicle systems. In 2011 IEEE 5th International Conference on Robotics,
Automation and Mechatronics (RAM), pages 67–72. IEEE.

Qin, A. K. and Suganthan, P. N. (2005). Self-adaptive differential evolution algorithm for
numerical optimization. 2005 IEEE congress on evolutionary computation, 2:1785–1791.

Rardin, R. L. and Rardin, R. L. (1998). Optimization in operations research, volume 166.
Prentice Hall Upper Saddle River, NJ.

Ratliff, H. D. and Rosenthal, A. S. (1983). Order-picking in a rectangular warehouse: a solvable
case of the traveling salesman problem. Operations Research, 31(3):507–521.

117

Stellenbosch University https://scholar.sun.ac.za

Roodbergen, K. J. and De Koster, R. (2001). Routing order pickers in a warehouse with a
middle aisle. European Journal of Operational Research, 133(1):32–43.

Roodbergen, K. J. and Koster, R. (2001). Routing methods for warehouses with multiple cross
aisles. International Journal of Production Research, 39(9):1865–1883.

Ros, R. and Hansen, N. (2008). A simple modification in cma-es achieving linear time and
space complexity. In International Conference on Parallel Problem Solving from Nature,
pages 296–305. Springer.

Sadeghi, J., Sadeghi, S., and Niaki, S. T. A. (2014). Optimizing a hybrid vendor-managed
inventory and transportation problem with fuzzy demand: an improved particle swarm
optimization algorithm. Information Sciences, 272:126–144.

Sahoo, R. R., Rakshit, P., Haidar, M. T., Swarnalipi, S., Balabantaray, B., and Mohapatra,
S. (2011). Navigational path planning of multi-robot using honey bee mating optimization
algorithm (hbmo). International Journal of Computer Applications, 27(11):1–8.

Schulze, L., Behling, S., and Buhrs, S. (2008). Automated guided vehicle systems: a driver
for increased business performance. In Proceedings of the international multiconference of
engineers and computer scientists, volume 2, pages 1–6.

Shir, O. M., Emmerich, M., and Bäck, T. (2010). Adaptive niche radii and niche shapes
approaches for niching with the cma-es. Evolutionary computation, 18(1):97–126.

Stoean, C., Preuss, M., Stoean, R., and Dumitrescu, D. (2010). Multimodal optimization by
means of a topological species conservation algorithm. IEEE Transactions on Evolutionary
Computation, 14(6):842–864.

Storn, R. (1996). On the usage of differential evolution for function optimization. In Proceedings
of North American Fuzzy Information Processing, pages 519–523. IEEE.

Storn, R. and Price, K. (1997). Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of global optimization, 11(4):341–359.

Suchi, M. M. and Vincze, M. (2014). Meta-heuristic search strategies for local path-planning to
find collision free trajectories. In Proceedings of the Austrian Robotics Workshop (ARW-14),
pages 36–41.

Sullivan, N., Grainger, S., and Cazzolato, B. (2018). A dual genetic algorithm for multi-robot
routing with network connectivity and energy efficiency. In 2018 15th International
Conference on Control, Automation, Robotics and Vision (ICARCV), pages 1647–1652. IEEE.

Tan, C. S. (2006). A collision avoidance system for autonomous underwater vehicles. Research
Theses Main Collection.

Theys, C., Bräysy, O., Dullaert, W., and Raa, B. (2007). Towards a metaheuristic for routing
order pickers in a warehouse. Evolutionary methods for design, optimization and control,
pages 385–390.

Tompkins, J., White, J., Bozer, Y., Frazelle, E., and Tanchoco, J. (1996). Trevino. Facilities
planning, 9.

Truong, N. C., Dang, T. G., and Nguyen, D. A. (2018). Optimizing automated storage and
retrieval algorithm in cold warehouse by combining dynamic routing and continuous cluster
method. In International Conference on Advanced Engineering Theory and Applications,
pages 283–293. Springer.

118

Stellenbosch University https://scholar.sun.ac.za

Uriol, R. and Moran, A. (2017). Mobile robot path planning in complex environments using ant
colony optimization algorithm. In 2017 3rd international conference on control, automation
and robotics (ICCAR), pages 15–21. IEEE.

Van den Bergh, F. and Engelbrecht, A. P. (2002). A new locally convergent particle swarm
optimiser. In IEEE International conference on systems, man and cybernetics, volume 3,
pages 6–pp. IEEE.

Vanderpooten, D. (1990). L’approche interactive dans l’aide multicritère à la décision. These
de doctorat, Université de Paris IX-Dauphine, France.

Vesterstrom, J. S., Riget, J., and Krink, T. (2002). Division of labor in particle swarm
optimisation. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02
(Cat. No. 02TH8600), volume 2, pages 1570–1575. IEEE.

Vis, I. F., De Koster, R., Roodbergen, K. J., and Peeters, L. W. (2001). Determination of
the number of automated guided vehicles required at a semi-automated container terminal.
Journal of the Operational research Society, 52(4):409–417.

Vivaldini, K., Rocha, L. F., Martarelli, N. J., Becker, M., and Moreira, A. P. (2016). Integrated
tasks assignment and routing for the estimation of the optimal number of agvs. The
International Journal of Advanced Manufacturing Technology, 82(1-4):719–736.

Vivaldini, K. C., Galdames, J. P., Bueno, T. S., Araújo, R. C., Sobral, R. M., Becker, M., and
Caurin, G. A. (2010). Robotic forklifts for intelligent warehouses: Routing, path planning,
and auto-localization. In Industrial Technology (ICIT), 2010 IEEE International Conference
on, pages 1463–1468. IEEE.

Vivaldini, K. C. T., Becker, M., and Caurin, G. A. (2009). Automatic routing of forklift robots
in warehouse applications. In Proceedings of the 20th International Congress of Mechanical
Engineering, Gramado-RS, Brazil. Citeseer.

Wang, C.-Y. and Banitaan, S. (2018). A partitioning-based approach for robot path planning
problems. In 2018 18th International Conference on Control, Automation and Systems
(ICCAS), pages 178–182. IEEE.

Watanabe, M., Furukawa, M., and Kakazu, Y. (2001). Intelligent agv driving toward
an autonomous decentralized manufacturing system. Robotics and computer-integrated
manufacturing, 17(1-2):57–64.

Werner, F. (2006). V. t’kindt and jc billaut, multicriteria scheduling. theory, models and
algorithms, springer verlag (2002) isbn 3-540-43617-0. European Journal of Operational
Research, 168(1):275–277.

Wong, K.-C., Leung, K.-S., and Wong, M.-H. (2010). Protein structure prediction on a lattice
model via multimodal optimization techniques. In Proceedings of the 12th annual conference
on Genetic and evolutionary computation, pages 155–162.

Wu, K.-H., Chen, C.-H., Ko, J.-M., and Lee, J.-D. (1999). Path planning and prototype design
of an agv. Mathematical and computer modelling, 30(7-8):147–167.

Wu, T.-H., Low, C., and Bai, J.-W. (2002). Heuristic solutions to multi-depot location-routing
problems. Computers & Operations Research, 29(10):1393–1415.

Wyland, B. (2008). Warehouse automation: How to implement tomorrow’s order fulfillment
system today. Aberdeen Group, Boston Google Scholar.

119

Stellenbosch University https://scholar.sun.ac.za

Yan, X., Zhang, C., and Qi, M. (2017). Multi-agvs collision-avoidance and deadlock-control
for item-to-human automated warehouse. In 2017 International Conference on Industrial
Engineering, Management Science and Application (ICIMSA), pages 1–5. IEEE.

Yang, Z., Tang, K., and Yao, X. (2008). Self-adaptive differential evolution with neighborhood
search. In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on
Computational Intelligence), pages 1110–1116. IEEE.

Yang, Z., Yao, X., and He, J. (2007). Making a difference to differential evolution. Advances in
metaheuristics for hard optimization, pages 397–414.

Yuan, R., Dong, T., and Li, J. (2016). Research on the collision-free path planning of
multi-agvs system based on improved a* algorithm. American Journal of Operations Research,
6(6):442–449.

Zhang, Q. and Li, H. (2007). Moea/d: A multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on evolutionary computation, 11(6):712–731.

Zhang, W., Peng, Y., Wei, W., and Kou, L. (2018a). Real-time conflict-free task assignment and
path planning of multi-agv system in intelligent warehousing. In 2018 37th Chinese Control
Conference (CCC), pages 5311–5316. IEEE.

Zhang, Z., Guo, Q., Chen, J., and Yuan, P. (2018b). Collision-free route planning for multiple
agvs in an automated warehouse based on collision classification. IEEE Access, 6:26022–26035.

Zhang, Z., Guo, Q., and Yuan, P. (2017). Conflict-free route planning of automated guided
vehicles based on conflict classification. In 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 1459–1464. IEEE.

Zhuang, X., Feng, G., Lv, H., Lv, H., Wang, H., Zhang, L., Lin, J., and Tang, M. (2018). A
collision-free path planning approach for multiple robots under warehouse scenarios. In China
Conference on Wireless Sensor Networks, pages 55–63. Springer.

Zitzler, E., Deb, K., and Thiele, L. (1999). Comparison of multiobjective evolutionary
algorithms: Empirical results (revised version). Technical report, Technical Report 70,
Computer Engineering and Networks Laboratory (TIK

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE transactions on Evolutionary Computation,
3(4):257–271.

120

Stellenbosch University https://scholar.sun.ac.za

Appendices
Appendix A

The data sets were investigated to analyse the correlation between the different objective
functions. From the histogram in Figure 65 to Figure 68, it can be seen that the increase in
parts had a significant impact on the makespan, waiting time and number of collisions. It is
interesting to note that idle time stayed constant rather than increasing according to the number
of parts.

Figure 65: Average objective function values for 8 parts

Figure 66: Average objective function values for 16 parts

121

Stellenbosch University https://scholar.sun.ac.za

Figure 67: Average objective function values for 24 parts

Figure 68: Average objective function values for 32 parts

122

Stellenbosch University https://scholar.sun.ac.za

Appendix B

The correlations between different objective functions can be seen from the SPLOM. It also
provides an indication of whether the correlation was strong or weak. The correlation plot
matrices for the for the smaller problems are presented in Figure 69 to Figure 72.

Figure 69: Correlation plot for 8 parts

123

Stellenbosch University https://scholar.sun.ac.za

Figure 70: Correlation plot for 16 parts

124

Stellenbosch University https://scholar.sun.ac.za

Figure 71: Correlation plot for 24 parts

125

Stellenbosch University https://scholar.sun.ac.za

Figure 72: Correlation plot for 32 parts

126

Stellenbosch University https://scholar.sun.ac.za

Appendix C

The correlation coefficient tables for the four smaller problem sizes can be seen in Table 15
to Table 18.

Table 15: Correlation coefficients for 8 parts

M
ax

im
um

id
le

tim
e

Su
m

id
le

tim
e

Av
er

ag
e

id
le

tim
e

M
ax

im
um

to
ta

lw
ai

tin
g

tim
e

Su
m

to
ta

lw
ai

tin
g

tim
e

Av
er

ag
e

to
ta

lw
ai

tin
g

tim
e

N
um

be
r

of
co

lli
sio

ns
av

oi
de

d

M
ax

im
um

wa
iti

ng
tim

e

Av
er

ag
e

wa
iti

ng
tim

e

Makespan minimum 0.34 0.34 0.34 0.73 0.93 0.93 0.65 0.31 0.47
Maximum idle time 1.00 1.00 -0.08 -0.02 -0.02 -0.02 0.11 -0.01
Sum idle time 1.00 -0.08 -0.02 -0.02 -0.02 0.11 -0.01
Average idle time -0.09 -0.03 -0.03 -0.02 0.10 -0.01
Maximum total waiting time 0.81 0.81 0.57 0.10 0.41
Sum total waiting time 1.00 0.70 0.29 0.50
Average total waiting time 0.70 0.29 0.50
Number of collisions avoided 0.10 -0.23
Maximum waiting time 0.30

127

Stellenbosch University https://scholar.sun.ac.za

Table 16: Correlation coefficients for 16 parts
M

ax
im

um
id

le
tim

e

Su
m

id
le

tim
e

Av
er

ag
e

id
le

tim
e

M
ax

im
um

to
ta

lw
ai

tin
g

tim
e

Su
m

to
ta

lw
ai

tin
g

tim
e

A v
er

ag
e

to
ta

lw
ai

tin
g

tim
e

N
um

be
r

of
co

lli
sio

ns
av

oi
de

d

M
ax

im
um

wa
iti

ng
tim

e

Av
er

ag
e

wa
iti

ng
tim

e

Makespan minimum 0.27 0.27 0.26 0.72 0.95 0.95 0.64 0.26 0.47
Maximum idle time 1.00 1.00 -0.05 -0.04 -0.04 -0.03 0.06 -0.01
Sum idle time 1.00 -0.05 -0.04 -0.04 -0.03 0.06 -0.01
Average idle time -0.05 -0.04 -0.04 -0.03 0.06 -0.01
Maximum total waiting time 0.76 0.76 0.54 -0.02 0.34
Sum total waiting time 1.00 0.67 0.25 0.49
Average total waiting time 0.67 0.25 0.49
Number of collisions avoided 0.07 -0.30
Maximum waiting time 0.24

128

Stellenbosch University https://scholar.sun.ac.za

Table 17: Correlation coefficients for 24 parts
M

ax
im

um
id

le
tim

e

Su
m

id
le

tim
e

Av
er

ag
e

id
le

tim
e

M
ax

im
um

to
ta

lw
ai

tin
g

tim
e

Su
m

to
ta

lw
ai

tin
g

tim
e

Av
er

ag
e

to
ta

lw
ai

tin
g

tim
e

N
um

be
r

of
co

lli
sio

ns
av

oi
de

d

M
ax

im
um

wa
iti

ng
tim

e

Av
er

ag
e

wa
iti

ng
tim

e

Makespan minimum 0.21 0.21 0.21 0.77 0.97 0.97 0.67 0.25 0.58
Maximum idle time 1.00 1.00 -0.02 -0.01 -0.01 -0.01 0.05 -0.01
Sum idle time 1.00 -0.02 -0.01 -0.01 -0.01 0.05 -0.01
Average idle time -0.02 -0.01 -0.02 0.00 0.04 -0.02
Maximum total waiting time 0.79 0.79 0.56 0.04 0.46
Sum total waiting time 1.00 0.69 0.25 0.59
Average total waiting time 0.69 0.25 0.59
Number of collisions avoided 0.10 -0.16
Maximum waiting time 0.23

129

Stellenbosch University https://scholar.sun.ac.za

Table 18: Correlation coefficients for 32 parts
M

ax
im

um
id

le
tim

e

Su
m

id
le

tim
e

Av
er

ag
e

id
le

tim
e

M
ax

im
um

to
ta

lw
ai

tin
g

tim
e

Su
m

to
ta

lw
ai

tin
g

tim
e

Av
er

ag
e

to
ta

lw
ai

tin
g

tim
e

N
um

be
r

of
co

lli
sio

ns
av

oi
de

d

M
ax

im
um

wa
iti

ng
tim

e

Av
er

ag
e

wa
iti

ng
tim

e

Makespan minimum 0.19 0.19 0.18 0.76 0.98 0.98 0.67 0.24 0.61
Maximum idle time 1.00 1.00 -0.02 -0.01 -0.01 -0.01 0.03 -0.01
Sum idle time 1.00 -0.02 -0.01 -0.01 -0.01 0.03 -0.01
Average idle time -0.02 -0.01 -0.01 -0.01 0.03 -0.01
Maximum total waiting time 0.78 0.78 0.54 0.05 0.47
Sum total waiting time 1.00 0.68 0.24 0.62
Average total waiting time 0.68 0.24 0.62
Number of collisions avoided 0.10 -0.14
Maximum waiting time 0.22

130

Stellenbosch University https://scholar.sun.ac.za

Appendix D

This appendix lists the paper that has been published and the paper which is currently under
review. The papers listed were derived from the work done in this dissertation.

• Croucamp M., Grobler J. (2021) Metaheuristics for the Robot Part Sequencing and
Allocation Problem with Collision Avoidance. In: Marreiros G., Melo F.S., Lau N., Lopes
Cardoso H., Reis L.P. (eds) Progress in Artificial Intelligence. EPIA 2021. Lecture Notes
in Computer Science, vol 12981 (pp. 469-481). Springer, Cham.

• Croucamp, M. and Grobler, J. An evolutionary multi-objective optimisation algorithm
framework for robot path planning, task allocation, and collision avoidance in an automated
warehouse. Under review, IEEE Access.

131

Stellenbosch University https://scholar.sun.ac.za

	Declaration
	Abstract
	Opsomming
	Acknowledgements
	Table of contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	List of Reserved Symbols
	Introduction and background
	Background
	Contributions
	Research objectives
	Dissertation structure

	Metaheuristic solution strategies for robot picking
	Single objective optimisation algorithms
	Single objective robot routing literature
	Genetic algorithm
	Differential evolution
	CMA-ES
	Particle swarm optimisation
	Summary

	Multi-objective optimisation
	The non-dominated sorting genetic algorithm III
	The multi-objective evolutionary algorithm based on decomposition
	The multiple objective particle swarm optimisation
	The multi-objective covariance matrix adaptation evolution strategy
	Multi-objective performance metrics

	Summary

	Automated warehousing literature review
	Warehousing activities
	The travelling salesman problem and Steiner travelling salesman problem
	Automated routing robots and automated guided vehicles
	Single objective robot path planning and task allocation literature
	Multi-objective robot path planning and task allocation literature
	Summary

	Single objective mathematical model and algorithm framework
	Single objective part sequencing and allocation model
	Single objective algorithm framework
	Summary

	Data analysis and the robot routing problem
	Data description
	The robot routing problem
	The robot routing results
	Summary

	Evaluating the single objective part sequencing and allocation algorithm
	The part sequencing and allocation algorithm
	Single objective algorithm parameters
	Algorithm framework evaluation results
	Single objective diversity function results
	Single objective metaheuristic results analysis
	Investigating the solutions found by the GCPSO
	Analysis into the GCPSO’s parameter performance

	Single objective hypothesis test results
	Single objective algorithm framework sensitivity analysis
	Summary

	Data exploration for multi-objective correlation
	Objective functions considered for the multi-objective problem
	Data analysis evaluation setup and results
	Correlation coefficient results and interpretations
	Objective space analysis for makespan versus number of collisions avoided
	Summary

	The multi-objective mathematical model and algorithm framework
	Multi-objective part sequencing and allocation model
	Multi-objective algorithm
	Summary

	Empirical evaluation of the EMO algorithm framework
	Experimental setup
	Multi-objective metric results
	Multi-objective EMO algorithm performance analysis
	Multi-objective EMO algorithm Pareto front analysis
	EMO algorithms hypothesis test
	Summary

	Conclusion
	Single objective part sequencing and allocation problem summary
	Multi-objective part sequencing and allocation problem summary
	Future research opportunities
	Last words

	Bibliography
	Appendices

