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Abstract

Accurately determining biological asset values is of great importance for forestry

enterprises — the process ought to be characterised by the proper collection of tree

data by means of utilising appropriate enumeration practices conducted at managed

forest compartments. Currently, only between 5–20% of forest areas are enumerated

which serve as a representative sample for the entire enclosing compartment. For

forestry companies, timber volume estimations and future growth projections are

based on these statistics, which may be accompanied by numerous unintentional

errors during the data collection process.

Many alternative methods towards estimating and inferring tree data accurately

are available in the literature — the most popular characteristic is the so-called

diameter at breast height (DBH), which can also be measured by means of remote

sensing techniques. The advancements in laser scanning measurement apparatuses

are significant in recent decades, however, these approaches are notably expensive

and require specialised and technical skills for their operation. One of the main

drawbacks associated with the measurement of DBH by means of laser scanning is

the lack of scalability — equipment setup and data capture are arduous processes

that take a significant amount of time to complete.

Algorithmic breakthroughs in the domain of data science, predominantly spanning

machine learning (ML) and deep learning (DL) approaches, warrant the selection

and practical application of computer vision (CV) procedures. More specifically, an

algorithmic approach towards monocular depth estimation (MDE) techniques was

employed for the extraction of tree data features from video recordings (captured

using no more than an ordinary smartphone device) and are investigated in this

thesis. Towards this end, a suitable forest study area was identified to conduct the

experiment and the industry partner of the project, i.e. the South African Forestry

Company SOC Limited (SAFCOL) granted the necessary plantation access.

The research methodology adopted for this thesis includes fieldwork at the given

site, which involved first performing data collection steps according to accepted and

standardised operating procedures developed for tree enumerations. This data set

is regarded as the “ground truth” and comprises the target feature (i.e. actual DBH
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measurements) later used for modelling purposes. The video files were processed in

a structured manner in order to extract tree segment patterns from the correspond-

ing imagery. Various ML models are then trained and tested in respect of the basic

input feature data file, which produced a relative root mean squared error (RMSE

%) between 14.1 and 18.3% for the study. The relative bias yields a score between

−0.08% and 1.13% indicating that the proposed workflow solution exhibits a consis-

tent prediction result, but at an undesirable error rate (i.e. RMSE) deviation from

the target output.

Additionally, the suggested CV/ML workflow model is capable of generating a dis-

cernibly similar spatial representation upon visual inspection (when compared with

the ground truth data set — i.e. tree coordinates captured during fieldwork). In the

pursuit of precision forestry, the proposed predictive model developed for accurate

tree measurements produce DBH estimations that approximate real-world values

with a fair degree of accuracy.
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Opsomming

Die akkurate bepaling van biologiese batewaardes is baie belangrik vir groot bos-

bou ondernemings — die proses word gekenmerk deur die korrekte versameling van

boomdata, deur gebruik te maak van gepaste opsommingspraktyke wat in bestuurde

bosbou kompartemente uitgevoer word. Tans word slegs tussen 5 en 20% van die

bosareas opgesom wat as ‘n verteenwoordigende steekproef van die hele omhulde

kompartement dien. Vir bosbou ondernemings is die beraming van houtvolumes en

toekomstige groeiprojeksies gebaseer op hierdie statistieke, wat moontlik gepaard

gaan met talle onbedoelde foute tydens die data-insamelingsproses.

Baie alternatiewe metodes om boomdata akkuraat te bereken is in die literatuur

beskikbaar — die gewildste data punt (kenmerkend in bosbou) is die sogenaamde

diameter op borshoogte (DBH), wat selfs ook gemeet kan word deur middel van af-

standswaarnemings tegnieke. Die vooruitgang in meetapparate vir laserskandering

is die afgelope dekades aansienlik verbeter, maar hierdie benaderings is veral duur

en vereis gespesialiseerde en tegniese vaardighede vir die werking daarvan. Een van

die belangrikste nadele verbonde aan die meting van DBH deur middel van hierdie

laserskandering is die gebrek aan skaalbaarheid — die opstel van toerusting en die

opneem van data is moeisame prosesse wat aansienlik baie tyd neem om te voltooi.

Algoritmiese deurbrake op die gebied van data wetenskap, wat oorwegend masjien

leer (ML) en diep leer (DL) benaderings bevat, regverdig die keuse en praktiese

toepassing van rekenaarvisie (CV) prosedures. Meer spesifiek is die algoritmiese

benadering ten opsigte van monokulêre diepte skatting (MDE) tegnieke vir die ont-

trekking van boomdatafunksies vanuit video opnames (met nie meer as ‘n gewone

slimfoonapparaat nie) en word in hierdie tesis deeglik ondersoek. Hiervoor is ‘n

geskikte bosstudiegebied gëıdentifiseer om die eksperiment uit te voer en die bedryfs

vennoot van die projek, South African Forestry Company SOC Limited (SAFCOL)

het die nodige toegang tot die plantasie verleen.

Die navorsingsmetodologie wat vir hierdie proefskrif aangeneem is, bevat veldwerk

op die gegewe terrein en die eerste stap van die uitgevoerde data insameling was

volgens aanvaarde en gestandaardiseerde werkingsprosedures wat vir boomtellings
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ontwikkel is. Hierdie opgawe en datastel word beskou as die “grondwaarheid” en be-

vat die teikenfunksie (werklike DBH metings), wat later vir modelleringsdoeleindes

gebruik is. Die videolêers is op ‘n gestruktureerde manier verwerk om boomseg-

ment patrone uit die ooreenstemmende beelde te onttrek. Verskeie ML modelle

word dan opgelei en getoets ten opsigte van die basiese invoerfunksiedatalêer, wat

‘n relatiewe wortel gemiddelde kwadraatfout (RMSE %) tussen 14.1% en 18.3% vir

die studie opgelewer het. Die relatiewe vooroordeel lewer ‘n telling tussen −0.08%

en 1.13% wat aandui dat die voorgestelde werkstroom oplossing ‘n konstante voor-

spellings resultaat toon, maar met ‘n ongewenste foutkoers (RMSE) afwyking vanaf

die teikenuitset wat verlang word.

Verder kan die voorgestelde CV/ML werkstroom model ook ‘n waarneembare en

soortgelyke ruimtelike voorstelling genereer onder meer visuele inspeksie (in verge-

lyking met die grondwaarheids data stel — m.a.w. boomkoördinate wat tydens veld-

werk vasgelê is). In die strewe na presiese bosbou lewer hierdie voorspellingsmodel

wat ontwikkel is vir boommetings (i.t.m. DBH beramings), die werklike waardes

verteenwoordigend tot ‘n redelike mate van akkuraatheid.
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Chapter 1

Introduction

Recent advancements in mobile storage capacity, information transfer technologies, graphical

processing units and high-performance computing have resulted in improved capabilities for

the collection of an abundance of data in various formats. Increased data availability and the

progress of data-driven algorithmic approaches — i.e. from the domain of ML — present the

broader forestry industry with a significant value proposition. More specifically, the process of

determining biological asset values stand to benefit considerably by this potential automation

(i.e. enabled by improvements in data collection in conjunction with the noteworthy algorithmic

breakthroughs made in the domain of ML).

Performing an inventory of forest compartments is certainly not a new operation within the

forestry domain, however, improving the effectiveness and efficiency of gathering this data in

an automated fashion and scaling the solution for larger areas remains an important challenge.

The aim in this thesis is to investigate a new approach towards estimating basic external tree

dimensions and more specifically DBH which is specified at 1.30m above the base of trees. In

conjunction with this process it is also possible to infer total tree counts at larger scales of entire

landholdings for companies that have forests under management.

The general convention adopted by commercial forestry enterprises in Southern Africa is

to capture location data by means of manually sampling multiple smaller plots from isolated

sub-areas of a designated stand. Statistical modelling methods are applied to the gathered

sample plots, followed by an inferencing step in order to estimate — a posteriori — various

other parameters in respect of the greater enclosed compartment. Even when digitising some

of these aspects, the current standard practice remains markedly tedious, often neglecting key

vital statistics (such as a complete tree count census for the encompassed area or exact DBH-

height pair data), and is considerably labour intensive — which may contribute to recording

inaccurate and/or erroneous data.

1

Stellenbosch University https://scholar.sun.ac.za



1.1 Background

In conjunction with delineating the problem background and detailing the project scope

and objectives, an appropriate literature review is conducted in order to provide a formalised

reference to relevant research and a discussion thereof. The literature review aids the process of

deriving the best practices of design and analysis techniques applicable to solving the problem

addressed in this project — whilst grounding the approach in a good commercial understanding

which takes business goals into account.

The research methodology adopted in the thesis at hand entails extensive fieldwork which

was carried out by means of enumerating a large plot and performing standard measurements in

respect of all the trees. This will represent the “ground truth” data — ultimately, serving as the

training and evaluation sets of a comprehensive CV toolkit developed in this project. The basic

idea is to employ a video recording device that moves above ground, but below tree canopies and

captures observations at breast height. Collecting the data in the proposed structured manner,

in conjunction with suitable processing steps, yields analytical insights and understanding of

the problem at hand.

CV concepts are applied to the generated data sets which take the video feed as input, af-

ter which appropriate processing is performed by utilising artificial neural network (ANN) and

DL based approaches in order to translate the data into information that contains meaningful

insight. Central to this idea is MDE, which enables the virtual measurement of trees — the

project involves devising a predictive model for the objective of generating accurate and reliable

tree data — in pursuit of precision forestry.

1.1 Background

A concise definition of artificial intelligence (AI) as a concept is often described as machines

(i.e. computers) that possess a level of intelligence or cognitive ability that emulates a human

mind (to a limited extent) in respect of carrying out tasks such as learning, reasoning, and

problem solving — a definition proffered by Russell and Norvig (2009) (1).

The aim of AI focussed studies is to enable a computer to “think” as a human would. In

the current era, relevant technology is still considered as weak AI because machines are merely

“acting intelligently” (1) and it is not used for general purpose tasks or activities. In order

to reach the paradigm of strong AI computers will need to reason as people do and this is,

arguably, achievable by “learning” without being explicitly programmed. As with intelligent

human beings we acquire and refine our natural skills with learning from experience as opposed

to clear instructions given to an individual.

2
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1.1 Background

Computational intelligence (CI) is characterised by operations performed within changing

and complex environments — CI facilitates and enables the intelligent behaviour of networks or

systems by means of adaptive mechanisms, as stated by Engelbrecht (2007) (2). The expressed

networks include models that can learn to adapt to new scenarios, discover and classify situa-

tions in order to approximate and generalise the underlying abstraction. In Figure 1.1, a holistic

taxonomy of AI and classification of subfields within the discipline are illustrated graphically.

Arti�icial Intelligence

Computational	Intelligence	(paradigms have their origins in biological systems)

Evolutionary
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Neural
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Deep	
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Fuzzy Systems

Figure 1.1: The taxonomy of artificial intelligence and associated sub-disciplines (2).

Emerging from brain modelling studies, an ANN is inspired by the neuronal structure of a

human’s biological brain (2). In simplified terms, this approach comprises of a large collection

of activation nodes (i.e. neurons) that are inter-connected via an intricate communication net-

work (i.e. synaptic links). DL, regarded as a subset of ML, adopts the architecture of ANNs

comprising multiple layers of abstraction that can process and then functionally approximate

input-output mappings with computational models designed to learn its representations, as

described by LeCun et al. (2015) (3). This generalised approach enables an ANN to “learn”

elaborate structures that have manifested in (big) data sets, according to which parameters of

the network are adjusted in order to closely approximate a functional mapping of the desired

input-to-output representation.

Shalev-Shwartz and Ben-David (2014) (4) report that the process of learning converts ex-

perience into knowledge and expertise — most ML models therefore represent manifestations

of human, animal or environmental behaviours. The availability of a superabundance of data

and significantly increased computational processing power are presenting opportunities for the

application of different algorithms in order to build powerful predictive models which may aid

decision making in various contexts, such as fraud detection, medical diagnosis, and quality

control, to name but a few.
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1.2 Project scope and objectives

The limitations of effective ML models in production systems come at the cost of hidden

technical debt, as reported by Sculley et al. (2015) (5). Even though the final ML code typically

constitute a small part of an overall system, several risk factors need to be considered during the

initial scheme design. In Figure 1.2, the focus is placed on the various supporting components

that can be regarded with proportionate relevance toward an operational ML system — these

aspects where considered during the initiation and development of this thesis.

Data
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Monitoring

Process	
Management	Tools

Machine	
Resource

Management
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Analysis	Tools

Serving	
Infrastructure

Con�iguration

ML	
Code

Figure 1.2: Hidden Technical Debt in ML Systems, as reported by Sculley et al. (2015) (5).

The proposed model in this thesis attempts to reproduce real-world DBH measurements

using techniques in the realm of data science, which include ML and DL algorithms. In order

to ensure data quality, the collection and validation of input features are done independently

and do not rely on extracting the required data from other systems. Appropriate computing

resources are employed which are suitable given the processing and analysis requirements.

1.2 Project scope and objectives

The proposed approach entailed conducting an experiment on a small area of trees, measuring

tree characteristics and investigating whether it is, ultimately, possible to recreate approximately

equal results but via alternative methods (from the realm of ML). The following four objectives

are pursued in this project:

I Conduct an extensive academic review of the literature pertaining to this topic by:

i Exploring algorithmic solutions in the domain of data science that encompasses ML

and DL techniques (more specifically, CV with a keen focus on MDE procedures),

ii study the field of forestry research to develop a clear understanding of the practical

application domain at hand and
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1.2 Project scope and objectives

iii employ the same performance metrics utilised for remote sensing in forestry in order

to evaluate the proposed solution on the same basis of measurement.

II Investigate the appropriate operational procedures for compartment enumerations and

perform the research methodology requirements by means of fieldwork by:

i Gaining access to an appropriate forest compartment which is granted by the industry

partner (SAFCOL) of this project,

ii record accurate tree measurements in-person from a forest compartment by means

of a standard enumeration procedures and

iii in combination with information from the forest management system of the business,

conduct an exploratory data analysis on the collected features.

III Record video files in a structured manner and then model accordingly in order to extract

alternative feature data and tree segment patterns by:

i processing imagery in an ordered sequence through an DL network to produce MDE

mappings,

ii develop bespoke algorithms to extract DBH line pattern data that corresponds to

each picture frame,

iii employ clustering techniques to isolate data patterns that are relevant to single trees

and

iv represent the results visually according to the spatial characteristics of the research

study area.

IV Evaluate the suggested solution approach and report on the findings by means of:

i isolating a training data set proportionately that will be used by various ML models

for an accurate input-output representation on the basis of least error and

ii test these models according to a standard evaluation criteria utilised for remote

sensing proposals in forestry.

This project therefore involves a controlled study with labelled tree data used to identify

only the DBH measurements, and connecting it to output information from the CV toolkit. The

different facets of the project includes employing CV techniques, processing data sets offline and

utilising applied ML practices towards estimating the DBH measurements — the accuracy of

the proposed approach can be obtained by comparing the estimations from the ML approach

with the real-world measurements. Accurate forest data is of upmost importance for good bi-

ological asset management — the value resides within the information that can be utilised for

better decision-making. Proper silviculture, harvesting and transport activities can be derived

from the availability of accurate information for forest compartments.
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1.3 Contributions to data science

1.3 Contributions to data science

The views from Skiena (2017, 2020) (6; 7) are that data science and algorithmic design are

emerging fields of study that amalgamates domain expertise, computer science and statistics

so as to produce a meaningful value proposition. Ultimately, data science as a practice can

help analysts develop intelligent computational models that have been verified and validated

in respect of certain performance measures (6). The process will often lead to programs or

applications that are of value to relevant stakeholders which are useful in respect of informed

and/or automated decision making.

Businesses are currently collecting massive volumes of data and, together with the aid of

analytical tools in the domain of data science, it is possible to utilise the value embedded within

the data — standard analytical techniques are not suitable for extracting value from all the

data. A widely accepted data science process, as reported by Zietsman (2021) (8), begins with

an initiation of data mining, then modelling and its evaluation. Success from this approach

has been proven and the deployment of these models in production systems can provide good

solutions when dealing with data-driven projects.

The report by Zietsman (2021) (8) contains an insightful formula derived from a written

comprehensive overview by Cao (2017) (9) for the process of data-to-knowledge-to-wisdom. This

notion closely reverberates with the stated views of Skiena (2017, 2020) (6; 7) as a definition

for data science. Accordingly, given data availability, suitable environmental factors and an

appropriate high-level approach towards problem thinking, data science can be described as the

combination (or summation) of management, sociology, communication, computing, informat-

ics and statistics.

1.4 Thesis document outline

The Cross-Industry Standard Process for Data Mining (CRISP-DM) is a reference framework

for handling a data project and is illustrated in Figure 1.3. The diagrammatic illustration shows

the phases that constitute a data mining project — the life cycle encapsulates six main phases

and is broken down in the flow diagram, with the directions of arrows in the figure represent-

ing the interaction and interdependence between the distinct phases. The diagram indicates a

process that is continuous in nature, because a particular project might not necessarily be com-

pleted once a solution is deployed. In this case, the project lead might hand over the model to

someone with a basic understanding of its workings in order to continually maintain the product.

The benefits of adopting the widely-known CRISP-DM framework is its independence from

the reviewed industry data or technology, as stated by Wirth and Hipp (2000) (10). The specific
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Figure 1.3: Framework illustration for Cross-Industry Standard Process for Data Mining (CRISP-DM),

as adapted directly from Wirth and Hipp (2000) (10).

user of the process can be of lower skill level and might also not have as much time available as

a dedicated data mining expert (10). Additionally, the suggested methodology is reproducible

for almost any project and remains robust for numerous applications. A description of each of

the different stages in the CRISP-DM approach follows:

� Business understanding — the starting point of the CRISP-DM life cycle involves deter-

mining business objectives and understanding the background of the relevant project or

organisation. From this point, it becomes possible to define the scope into a problem

statement, while using the appropriate terminologies, by formulating the findings into

an initial project plan (10). Aspects that also need to be included are the end goals,

objectives and anticipated milestones of the comprehensive project.

� Data understanding — the next phase involves collecting the initial data as well as pre-

liminary review thereof in order to discover insights, screen for integrity issues and detect

interesting subsets of the isolated metadata (10). There exists a dependency between

“Business Understanding” and “Data Understanding” activities within the CRISP-DM
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1.4 Thesis document outline

project life cycle (10) — accordingly, in order to formulate the initial project plan, a firm

understanding of the available data is required.

� Data preparation — towards obtaining a final data set which serves as “input” for the

modelling approach, the collected data must typically first undergo a data preparation

phase (10). Hence, the bi-directional link between the preparation phase and the modelling

node in the data mining life cycle, as displayed in Figure 1.3. Activities within this phase

are likely to be performed multiple times, and in no particular sequence, which should

enable a user to construct a suitable data set for final use (10). These tasks include data

cleaning, feature selection and transformations so as to ensure the data is in an appropriate

format for algorithmic implementation.

� Modelling — during this phase appropriate modelling techniques should be selected. This

selection process ought to consider the specifications of the project’s problem statement

and objectives (10). In an ML-based project, multiple test designs can be generated on

isolated training data in order to consider preliminary results. There exists a dependence

between the “Data Preparation” and “Modelling” phase as some techniques require spe-

cific data input formats (10) in order to execute correctly. Once these models are assessed,

the user could identify problems in the data and iteratively revise ways to construct the

input set in a different manner to assist the comprehensive model framework.

� Evaluation — in this phase the specific modelling approaches are evaluated in respect of

the relevant data with the aim being to compare how close the produced results are to

the desired results (10). Before ultimately deploying the final model(s) in a production

environment, however, it is essential to closely review the model and execution steps

which led to these outputs — this ensures that the modelling approach achieved the

predefined business objectives. From the data mining life cycle diagram in Figure 1.3

it is also noted that the “Evaluation” phase is connected via a feedback loop to the

“Business Understanding” phase. This interlude is critical for the stakeholders towards

determining if there were any important model issues that might not have been considered

sufficiently — a process usually facilitated by consulting with the relevant domain experts

and stakeholders.

� Deployment — this phase of the data mining endeavour does not necessarily conclude the

project, as the life cycle (or parts thereof) can be repeated multiple times. Typically, this

phase is not performed by the same person who first created the specific project steps, but

rather by the customer or user that can easily reproduce the steps — ascribed to the fact

that the approach is adequately notated during the initial phases (10). The deployment

of said model(s) can be as straightforward as generating a simple report or running entire

data pipelines, depending on the initial project requirements.
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1.5 Problem statement

An enhanced CRISP-DM process model has been studied by Tavares et al. (2018) (11) where

a variability-aware design approach is proposed to the data analysis process. In their study, the

authors attempted to conduct a pre-assessment screening of input variables that compensate

for the variability experienced in downstream models, by means of feature provisioning (11).

The research also suggests the design and definition of a structured process which identifies

data feature variability pre-emptively. Finally, an evaluation of possibilities pertaining to total

process automation was investigated by the research team for the design frameworks.

Kristoffersen et al. (2019) (12) addressed the original CRISP-DM framework and highlighted

issues such as missing phases which loops back to the business level and users not having any

control over value contributed by the process. These problems were seemingly solved by the

research, introducing an additional phase of “Data Validation” in between “Data Preparation”

and “Modelling” steps. This investigation clearly emphasised the importance of re-incorporating

business entities, or its domain experts, to append specific knowledge for the structuring and

validating of data sets prior to modelling.

These aspects in data science suggest the proper approach towards completing projects.

Furthermore, pitfalls are afforded the necessary attention in order to guide the process user in

the correct direction. In this project, the basic CRISP-DM structure is adopted with limited

amendments and compensations at certain stages of each desired milestone — listed as chapters

in the current thesis outline.

1.5 Problem statement

If forestry enterprises harvest outside of an approved annual plan of operations (APO), it may

have negative consequences and cause a chain reaction due to failing to reach a sustainable

cycle of renewable resource management. The most important input variables when it comes

to forestry remains the total tree count, DBH and height distributions or appropriate means

and variances for compartments being surveyed. The reasoning behind tree counts is because a

single tree could hold a lot of volume and if counts are wrong (i.e. limited to only a few), the

effects could have a severe impact on volume predictability.

SAFCOL aims to enumerate between 10–20% of its landholdings because an overall greater

sample size yields better results, but the industry standard is more in line with a lower thresh-

old of 5–10%. More tree data will likely lead to greater precision, bearing in mind that the

sampling design is another huge factor for accurate modelling. A hypothesis is deduced that

there are insufficient measurement operations being conducted within forestry practices on a

continuous basis. Ideally, obtaining 100% enumeration data of all plantation trees at a frequent
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1.5 Problem statement

rate is sought — this approach could avoid many challenges and pitfalls stemming from current

sampling methodology. A complete biological asset census is the ideal if it could be executed

regularly and in a cost-effective manner, the question remains if the informational gain would

be worth the actual expense and to what degree it is beneficial.

As the availability of individual tree data becomes an ever-increasing possibility, enabled

through technology, the way in which making tree-level management decisions for forest stands

will also need to be adapted as reported by Vauhkonen (2020) (13). This research entailed a

simulation that was executed to determine the effects of DBH distribution errors that can im-

pede operational options in a scenario of having the data readily availably. The findings points

to the effect of management decisions based on erroneous information which can potentially

cause losses between of up to 17% of immediate/future income derived from harvesting (13).

Practically, forestry companies in Southern Africa are recording enumeration data from plan-

tations with the organisation’s available resources (i.e. personnel and instrumentation), whilst

considering cost implications and simultaneously being limited by capacity. The quality of these

observations is always under scrutiny and having some form of past reference framework may

be greatly beneficial (e.g. keeping the raw data files such as imagery from video for review if

queries ever came up). It is conjectured that following an approach of recording and storing

video files, indexed in the correct manner, will provide a reference or archive to revert back to,

if the CV or DL modelling accuracy is ever questioned or needs to be recalibrated.

The manner according to which forest compartment data are collected and stored, together

with the structure thereof, forms the basis of investigation and analyses carried out in this

project. By having basic external tree data (i.e. DBH readings and thereby inferring total tree

counts), but covering wide-ranging areas, could have positive benefits serving as input features

for long-term forest management planning objectives.
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Chapter 2

Literature Review

This chapter aims to bridge concepts induced from known challenges experienced by the broader

forestry industry and the data science solutions proffered through findings available in current

literature. Consequently, a practical application domain (i.e. forestry, specifically remote sensing

for precision tree measurements) is identified which can be best served through the progressive

developments in current data science technologies — utilising ML and DL. In the sections that

constitute this chapter, the relevant background information that underpins the analyses carried

out in this project are delineated.

2.1 Data science

Wolpert and Macready (1997) (14) formalised the famous “No Free Lunch” (NFL) theorem

which is based on the principle that no single algorithm will consistently outperform each of its

counterparts in respect of all problems. Across different data sets, and separate problems, the

individual performances achieved by algorithms tend to differ greatly. The average performance,

in terms of computational cost and model accuracy, is often regarded as the desired generalisa-

tion ability of the trained algorithms in respect of a particular problem class. Solutions should

therefore be developed on an ad hoc basis and various ML/DL algorithms must be explored in

order to find the best suited model.

Fundamentally, the notion underpinning NFL asserts that there exists no general-purpose

algorithm that is capable of outperforming all other algorithms in respect of any given problem.

Rather, various incarnations of some modelling approach ought to be fitted to the problem at

hand in order to achieve adequate performance. Therefore, it is the responsibility of a data

scientist (or analyst) to have the knowledge of which of these modelling approaches to use in

order to best solve a certain problem. In the context of ANNs (and DL), this responsibility may

be related to the exploration and investigation of different network architectures in respect of

the particular problem. Additional to implementing the appropriate ML/DL algorithms, the
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2.1 Data science

developer should explore and fine-tune model hyper parameters that may provide the best fit

for mapping input-output abstractions.

2.1.1 Machine learning

The broader field of AI encapsulates ML as a subset which utilises an extensive range of sta-

tistical learning tools to explore and analyse data, as described by Kelleher et al. (2020) (15).

Predominant paradigms of ML include supervised, unsupervised and reinforcement learning, as

reported by Zietsman (2021) (8) and Nel (2021) (16) — they are summarised as follow:

� Supervised learning — the approach maps inputs to known and desired outputs, as stated

by Ayodele (2010) (17), by means of a functional approximation that was generated by

an algorithm typically presented with labelled data.

� Unsupervised learning — the outputs are not known or available beforehand and the model

aims to find informative patterns (or structure) embedded in the data. The approach

therefore involves unlabelled data and aims to employ methods such as dimensionality

reduction and clustering, in order for some analyst to derive meaningful insight from the

unstructured data, as discussed by Maimon and Rokach (2005) (18).

� Semi-supervised learning — a combination of labelled and unlabelled data sets are em-

ployed to conduct either supervised or unsupervised learning tasks (16). The concept is

divided into two distinct learning models, namely transductive (i.e. attempting to infer

accurate labels for unlabelled data) or inductive (i.e. pursuing to improve input-output

mappings by including unlabelled data) learning.

� Reinforcement learning — typically an agent is tasked with navigating an environment

during which different states are observed. An appropriate reward & penalty mechanism is

devised (expressed as a policy) so as to prescribe the program to improve its performance

in respect of achieving some goal (8; 9; 16).

One of the most basic architectures of a neural network is the so-called perceptron which

refers to a single-layer network (i.e. all inputs are directly mapped to an output) as displayed

in Figure 2.1 obtained from Nel (2021) (19). Additionally, a simple perceptron is described by

Nel (2021) (16) as a linear binary classification algorithm.

Within such a network all the nodes (i.e. neurons) have input signals, as denoted by

[x1 ... xi ... xn]T , which are scaled by so-called weights so as to transmit information signals

through the network. Each connection is associated with a weight wi value (considered an

adjustable parameter) for the denoted communication link, with the purpose to scale its input

variable (16). Artificial networks are able to alter these weight values in accordance with the
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target feature, mapping to a pre-determined output in the case of supervised learning — during

a process of training which is regarded as model learning.

𝜂 = 𝑥𝑖𝑤𝑖 + 𝑤0

𝑛

𝑖=1

𝑔(𝜂)
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Figure 2.1: A common mathematical model of an artificial neuron, obtained from Nel (19).

The weighted sum of the input values (which may or may not include a bias value θ), denoted

by η, is simply an aggregation and serves as input to a so-called activation function, denoted

by g(·), which in turn, calculates the final output signal (16). Each input is associated with a

weight value in this simple instantiation (20) and these weights are aggregated by means of an

appropriate activation function — different activation functions are shown in Figure 2.2.
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Figure 2.2: Various activation functions (20).

2.1.2 Deep learning

DL is a type of ML and usually operates with a deep neural network (DNN) which refers to an

ANN architecture that comprises multiple hidden layers of nodes, each containing an activation

function and input connections which generate a single output with its corresponding weight

value. Often a single bias function node is added to each hidden layer which can be adjusted
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either directly or via the corresponding weight value. DL will, throughout its network structure

and processing of data sets, extract higher levels (i.e. dimensions) of features in a progressive

manner. Conversely, a “shallow” network represents a single hidden layer of activation function

nodes, which might include a bias neuron.

According to Goodfellow et al. (21), DL enables computers to program itself (similar to

ML) from training procedures using many millions of examples as parameters. To date, DL

has been proven extremely effective for solving an array of problems when only exposed to the

rules or limits of the given problem and when trained with a large number of examples (21),

as corroborated by Skiena (6). A depiction of a simplified deep network with N hidden layers

is illustrated in Figure 2.3. DL-based approaches represent state-of-the-art solutions toward

solving various classes of problems (e.g. CV or natural language processing).

Input
Layer

Output
Layer

Hidden
Layer 1

Hidden
Layer N

Figure 2.3: A simplified version of a DNN, adapted from Skiena (6).

Gradient descent is a simple, yet powerful, algorithmic approach adopted towards finding

the best local optima of the search space and is employed as an optimisation technique that

adjusts the model weight values by utilising network derivative information obtained using the

method of back-propagation. There are different variations of gradient descent — e.g. stochastic

(22; 23; 24), Adam (25), and AdaGrad (26), to name but a few — each exhibiting different

performance dynamics in respect of various problems.
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As an incarnation of dynamic programming, the method of back-propagation is instrumental

in training ANNs effectively. After the weight values of a network have been established (e.g. by

means of random initialisation), the derivative of a loss function can be computed with known

activation functions at each neuron. The specific outputs are evaluated with respect to all the

weights in the multi-layer network during the forward phase. Subsequently, the backward phase

aims to learn the gradient step of the loss function (i.e. the anticipated degree of influence each

update iteration will have over weight values) by using the chain rule in differential calculus.

This produces an iterative weight update rule that can be used to fine-tune network weights in

order to ensure the network generates an output that coincides with the desired target (19).

2.1.3 Computer vision

Many practical use cases for CV have materialised, as the concept entails utilising DL algo-

rithms to process images or video in order to automate the extraction of useful insights. These

advancements include text recognition (e.g. natural language processing and text analytics),

object detection, photo enhancements and virtual environment reconstruction (i.e. localisation

mapping) to name a few as reported by Szeliski (2021) (27).

Most notable perhaps is the technology’s application towards creating self-driving cars and

autonomous drones with obstacle avoidance capabilities. CV techniques along with applied ML

are also deemed as a viable alternative towards automating data collection processes for mea-

suring inventory accurately within the forestry industry — a matter discussed in more detail

later in this report.

CV algorithms and applications entails mathematical techniques used to emulate the ap-

pearance of objects and represent three-dimensional shapes from imagery (27). This literature

encompasses most of the computing challenges from CV such as geometric transformations

(explaining model fitting and optimisation of scattered data interpolation), instance recogni-

tion/classification, object detection, semantic segmentations and feature matching (using edges,

contours, lines and vanishing points) (27). Furthermore, the author includes a discussion on

computational photography (e.g. super-resolution, texture analysis and synthesis) as well as

motion estimation through translational alignment and optical flow models — leading to geo-

metric intrinsic calibration that generate structure from motion and simultaneous localisation

and mapping (SLAM) models.

Depth estimations are obtained by using epipolar geometry in conjunction with sparse or

dense correspondence mechanisms, and through the utilisation of deep networks and global

optimisation techniques (27). The work in this thesis revolves around a particular interest in

MDE, which suggests that depth maps can be generated successfully from single-lens cameras
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(i.e. monocular) with only input images — thereby avoiding the incorporation of a sequence

flow (i.e. video logic formats). This favourable outcome is achieved by utilising a pre-trained

DL network and its associated structures.

2.1.3.1 Monocular depth estimation

Ming et al. (2021) (28) present an overview of DL-based approaches towards MDE, their research

summarises publications since the topic gained popularity from 2014 onwards. Monocular im-

ages or video does not require complicated equipment or professional operation (compared with

binocular/stereo recording devices). It is noted, however, that because MDE trains with stereo

vision data sets that there is not enough reference examples available for current DL models to

sufficiently produce effective MDE predictions. The same depth results (for monocular imagery)

are obtained by using DL networks trained on multi camera data sets with Recurrent neural

networks (RNNs) (29), generative adversarial networks (GANs) (21) and CNNs which are the

primary architectures utilised to achieve accurate MDE performance metrics when evaluated

against publicly available data sets. The most commonly used data sets are the NYU Depth

V21 or KITTI2 reference data sets.

Regarded as a social media phenomenon, the mannequin challenge (MC) has made available

thousands of viral internet videos during 2016 of people imitating mannequins — i.e. freezing

in diverse, natural poses, while a hand-held camera tours the scene as stated by Li et al. (2019)

(32). Their research catalogued these videos into the MC data set and provided a way to learn

structure from motion and depths of moving people by watching frozen people (32). The study

showed an improvement in performance against other MDE benchmarks and the approach has

provided an alternative for recovering depth from non-rigid or dynamic video with examples of

people contained in the data (an area of MDE that has not enjoyed overwhelming exposure in

terms of training data freely available).

Widely regarded as the initial breakthrough for many subsequent MDE innovations, the

work on single image multi-scale DL from Eigen et al. (2014) (33) has contributed tremendous

value for general depth map predictions. Their research proposes a two-fold stack for delivering

1An indoor data set for MDE based on DL, provided by Silberman et al. (2012) (30) at the New York

University. The repository contains 407 024 frames of red-green-blue (RGB) image pairs in conjunction with the

Microsoft Kinect depth camera.

2An outdoor data set for MDE and object detection and tracking based on DL, jointly developed by the

Karlsruhe Institute of Technology in Germany and Toyota Institute of Technology in the United States by Geiger

et al. (2021) (31). The KITTI data set is captured through a car equipped with 2 greyscale and 2 high-resolution

colour cameras, laser scanner and global positioning system (GPS).
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depth estimations — namely an initial global coarse prediction on the entire image and there-

after another network that refines this output prediction locally. At the time of its publishing

their study achieved state-of-the-art results on benchmark data sets such as NYU Depth and

KITTI. The DL network uses a scale-invariant error loss function and is trained by comparing

relationships between pairs of pixels, denoted in tuple form as (i, j), as output. The objective

function entails finding the smallest error — each pixel pair in the depth prediction must be

different by a magnitude similar to that of the corresponding pair in the ground truth. From

Eigen et al. (2014) (33) the scale-invariant mean squared error (in logarithmic terms) is ex-

pressed as D with the following loss function

D(y, y∗) = 1
n2

∑
i,j((log yi − log yj)− (log y∗i − log y∗j ))

2

where y denotes the predicted depth map, y∗ denotes the ground truth and n is denoted as

data points indexed for pairs of i, j pixels.

The work of Eigen et al. (2014) (33) naturally resulted in significant interest in MDE because

many other authors subsequently attempted to achieve state-of-the-art results using different

model approaches and multi-scale structures — as with the research of Chen et al. (2016, 2019)

(34; 35) where their own DL networks were developed by adding limited stereo vision refer-

ence sets and experimenting with novel network architectures (i.e. modular fusion and residual

decoding). In a similar fashion, Godard et al. (2017, 2019) (36; 37) followed suit with their

studies on proposed CNN structures incorporating epipolar geometry constraints for assisting

their models in terms of generating disparity images. Later, the same authors also suggested

the use of self-supervised methods in order to decrease reliance on increasingly complex archi-

tectures by means of using a minimum re-projection loss, full-resolution multi-scale sampling

and auto-masking (which avoids invalid camera motion assumptions during model training).

Andraghetti et al. (2019) (38) propose an innovative vision odometry algorithm which out-

performed existing approaches at the time of publishing their research. Their framework initially

processes sparse depth predictions using an auto-encoder, then iteratively repeats the process

to produce denser depth mappings. A consolidating algorithm then combines these dense out-

puts with the original RGB images and inserts it into a CNN network. The model employs

self-supervised learning as an error checking mechanism on the ground truth stereo images and

applies its loss function based on re-projection and consistency, the study evaluated results on

the KITTI data set. At the time of writing, Wang et al. (2019) (39) have achieved the best

performance results to date in regards to RMSE (i.e. 2.320) on the KITTI challenge using an

RNN and unsupervised learning approach for MDE.
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Great strides have been made towards improving MDE predictions, as presented in the work

done by Luo et al. (2020) (40) who proposed a method to achieve precision and consistency

for depth mappings. Their algorithm is able to reconstruct dense and geometrically consistent

depth for pixels from monocular video. By means of quantitative validation, the research group

could produce higher accuracies than previously known techniques.

Their approach is notably computationally expensive for the most part, in particular be-

cause of the algorithmic insertion step of sampling frame pairs. With these image pairs they

first attempt to establish equal pixel correspondence using an optical sequence flow to check

for consistency. The resulting deterministic correspondence parameters are then used to ex-

tract geometric constraints as a three-dimensional structure. Disparity and spatial attributes

are used as a multi-objective loss function and the network weights are adjusted via standard

back-propagation. After the fine-tuning stage is completed — ascribed as the network min-

imising geometric inconsistency error over multiple image pairs of the input video — the depth

estimation results are delivered back in the original format (40).

The approach proposed in this thesis has taxing computational requirements because of the

size of video data sets (further explained in the modelling chapter) and therefore literature was

sought that addresses processing capabilities of MDE. Aleotti et al. (2021) (41) present research

on real-time depth perception from single images using handheld devices in everyday settings.

They investigate the resources that are needed to achieve real-time performance and explore

various architecture options of MDE when balancing compute requirements, and reported good

results. Interestingly, their research constantly refers to Ranftl et al. (2020) (42), in turn, as a

solution with the best state-of-the-art performance for robust MDE on most common use cases

(i.e. evaluated against NYU Depth V2 and KITTI).

The research conducted by Ranftl et al. (2020) (42) is called MiDaS and they propose an

algorithm for mixing data sets during a zero-shot evaluation process. Their innovative zero-shot

cross-data set transfer protocol — i.e. testing on data sets separate from training sets rather

than randomly selecting from overall subsets (which conversely permits models to have some

exposure to the final answer). This approach reportedly produced a system that works far bet-

ter for MDE on real-world images and avoids unintended bias. Their impressive performance

findings were also enabled by proportional image augmentation such as the horizontal flipping

of frames during training. Furthermore, their models are freely available in the public domain

(with the hopes to contribute toward practical applications) and these frameworks were used

extensively in this thesis.
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2.1.3.2 Vision transformers

With its origins stemming from natural language processing (NLP), Vaswani et al. (2017) (43)

have devised a simple network architecture called the transformer which is based on a so-called

attention mechanism, thereby disregarding the need for RNNs and CNNs entirely. During re-

cent years, using transformer architectures in CV applications have become a more effective

alternative — ascribed to notable performance improvements and speed of processing time —

as reported by Dosovitskiy et al. (2020) (44).

A pre-trained vision transformer model can obtain the same state-of-the-art results as CNNs,

whilst using significantly fewer computational resources. Reportedly, Dosovitskiy et al. (2020)

(44) adopt the transformer framework from Vaswani et al. (2017) (43) and also disregard the

notion of employing traditional CNNs for CV purposes. The model starts by appropriately

segmenting an image into equal and standardised square patches — these smaller separations

are subjected to positional transfers and linear embeddings throughout its network layers. The

proposed technique solves the inductive bias issue, in proverbial terms, attributable to an overall

improved generalisation performance. In the context of many examples, the proposed network

learns from the training data and performs markedly well on classification tasks. Their model is

most effective when pre-trained at sufficient scales, then transferred and applied to tasks with

fewer data points.

The standard transformer framework (adapted from NLP) (43) takes in a one dimensional

sequence of token1 embeddings. To process two-dimensional images the pictures are reshaped

according to a scope of real numbers (44), as denoted by x being an element of

x ∈ RH×W×C

and serve as a sequence for the flattened two-dimensional patches denoted by xp

xp ∈ RN×(P 2·C)

where (H,W ) denotes the resolution of the original input image (i.e. height and width), C

denotes the number of channels (e.g. RGB). Furthermore, (P, P ) is the resolution of each of the

separated image patches, and N = HW/P 2 is the number of patches (i.e. sequence length of

the transformer).

1In terms of NLP, tokens can be regarded as the individual building blocks of written language. Tokenisation

is common practice in NLP architectures as it is employed to separate a body of text (or corpus) in a format

that makes sense logically. Therefore, tokens can either be combined phrases, characters, words or sub-words.
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The transformer uses a constant latent vector (size D) throughout all of its layers, patches

are flattened and mapped to D dimensions with a trainable linear projection (44). When com-

pared with fully-convolutional networks, a vision transformer (ViT) provides better coherence

for an entire image along with finer-grained detail as reported by Ranftl et al. (2021) (45).

Their proposed dense prediction transformer (DPT) architecture delivers substantial perfor-

mance improvements when evaluated against known benchmarks, especially if large training

data sets are employed. Testing MDE metrics, a relative performance increase of around 28%

is noted compared ot state-of-the-art CNN methods (45). One of the reasons for the superior

performance — as opposed to its convolutional counterparts — is because a ViT avoids explicit

dimensional downsampling (i.e. after initial image embeddings, transformers maintain the con-

stant resolution throughout all processing stages).

Described as set-to-set models based on a self-attention mechanism, ViTs are particularly

effective when constructed as high-capacity instances (i.e. able to ingest large quantities of in-

puts) and trained with an abundance of reference examples (45). The architecture is based on

an encoder-decoder framework which is best suited for dense prediction models (i.e. making

accurate estimations for the entire image frame as opposed to good localised performance of-

ten at the centre of pictures). Other literature has enjoyed similar success in terms of image

analysis when utilising attention mechanisms in this manner (46; 47; 48). In the current thesis,

DPT was selected for comprehensive modelling requirements because of its superior prediction

quality and efficient runtime characteristics.

2.2 Forestry research

The well-known management consulting firm McKinsey & Company published a commercial

report compiled by Choudhry and O’Kelly (2018) (49) concerning precision forestry and innova-

tive technology trends across a holistic silviculture value chain. Their report describes current

forest management practices as outdated, only more recently has the industry started to adapt

to digital technologies.

The slow pace of adoption is attributed to limited private involvement as the majority of

forest ownership resides with public entities — i.e. 76%, as reported in The Global Forest

Resources Assessment (2015) (50). The conservative management style of state forests is

a consequence of balancing diverse objectives around environmental, social and governmental

goals. Nevertheless, with notable productivity improvements in adjacent industries such as agri-

culture (achieved through the adoption of digital technologies) (49), forestry companies have a

renewed focus to implement novel systems in order to enjoy the same benefits.
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A number of promising practices in the landscape of precision forestry include advancements

in genetics, nurseries, silviculture (i.e. forest management), harvesting systems and tools used

for efficient wood delivery. Markedly, mechanised harvesting and digital inventory are two areas

where the most pronounced impact is being experienced when developing/implementing new

technologies in this sector. The measurement of forest inventories, and collection of additional

tree metrics such as species classification, log product mix and volume determination by means

of remote sensing (49) are listed as specific important factors for precision forestry in the near

future.

2.2.1 Enumeration importance

This section considers the various methods in which DBH measurements of trees are obtained

using different instruments or devices. As an industry standard, tree diameters are recorded

at breast height for an average sized person (i.e. 1.30m above ground), as depicted in Figure 2.4.

Calipers are normally employed to take two measurements per tree, rotated perpendicularly

and averaged to compensate for ovality. Another common practice is to use flexible measuring

tape around a tree in order to measure the circumference and then convert it to diameter using

circular geometry. This is often regarded as a better way to generalise for ovality even though

some trees might not represent a perfect circle. Clark et al. (2000) (51) report that foresters

primarily use “contact” diameter tape in the form of measuring bands or rubbery rulers.

The value proposition offered by having precision tree data, mainly entailing external tree

properties, is continually being recognised by commercial forestry enterprises, as reported by

Drew and Downes (2009) (52). Their study explores devices used for tracking diameters histori-

cally, i.e. so-called dendrometers — these instruments are typically fixed at a certain tree height

in order to record expanding ring growth over a long term period. This mechanism collects tem-

poral measurements which can be conjoined with overlapping climate information in order to

correlate growth within an array of environmental factors. Such efforts exemplify the need to

accurately determine external tree features over time, and showcases the value it can add when

combined with other relevant data sets, e.g. climate data. Corresponding spatial information,

recorded periodically, could potentially produce a “template” (52) for growth predictions linked

by surrounding attributes.

DBH is regarded as the industry standard when conducting measurements of tree diameter

or basal area, but this type of estimation across vast landholdings is typically characterised by

notable variance. A number of contributing factors may be ascribed to this phenomenon — e.g.

diameters change as a person would measure the diameters of a tree at varying heights because

of taper and various terrain factors could affect the exact ground level used as starting base.
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Figure 2.4: Tree characteristics and depiction of DBH height relative to an average person.

The aforementioned practices are regarded as “direct” or “contact” measurements because the

data collector would need to physically touch the tree and record the answer. Remote sensing,

however, aims to infer the same measurements without direct contact whilst situated close-by

or at a reasonable distance away from the tree.

2.2.2 Remote sensing

On a markedly bigger scale, above-ground biomass density (AGBD) calibration performed by

means of space satellite imagery in collaboration with the Global Ecosystem Dynamics Inves-

tigation (GEDI) programme sponsored by NASA is a form of remote sensing, as reported by

Kellner et al. (2019) (53). Their study combines GEDI information with high-resolution point

cloud data from flying low-altitude drones that possess light detection and ranging (LiDAR)

scanners. The approach introduces opportunities for remote sensing in forestry through the

22

Stellenbosch University https://scholar.sun.ac.za



2.2 Forestry research

validation and quantification of AGBD data used for demographic tree population analysis.

Similar arguments are made by Guo et al. (2020) (54) according to which the potential of

LiDAR for modelling ecological observations at various spatial extents and 3D resolutions is

reviewed. This research group notes the commencement of a multi-dimensional big data era

which, in conjunction with the consolidation of time-series information, present both challenges

and opportunities for a greater ecological understanding.

Apart from boasting its potential benefits for the calculation of biological asset values, by

means of calibrated quantification of forest plantations, remote and proximal sensing present

even greater utility for operational applications usable in precision forestry, as reported by

Talbot et al. (2017) (55). Forest accessibility, maintenance, infrastructure planning and con-

struction are only a few areas that can enjoy advantages from having individual tree data and

terrain models available. Harvesting systems can also derive value by utilising sensors or CV

for autonomous navigation in forest machines (55). The authors do, however, caution that

proximity or remotely sensed data are still experimental in forest operations and a number of

problems ought to be addressed before wide-ranging adoption of the technology can take place.

Continuous sensor information from forest machines is regarded as big data accessible through

internet of things (IoT) platforms and, in combination with analytical approaches, provides

vast opportunities for operational monitoring which can serve as a basis for decision support

systems and evaluation.

2.2.2.1 Photogrammetry

The importance of valuing biological assets correctly is underscored by Mulverhill et al. (2019)

(56) who state: “Changing resource demands and climatic conditions require quick and inexpen-

sive means of deriving robust and accurate forest inventory measurements.” Their study explores

digital terrestrial photogrammetry as a possible solution for large scale forest enumerations —

especially a good fit for forest environments that exhibit changing and complex natural habitats.

In a study by Wells and Chung (2020) (57), stereo vision was employed and analyses were

carried out by means of overlaying a virtual ground surface on an image of observed trees as

illustrated in Figure 2.5, thereafter elevating the plane to an approximate breast height. Their

method evaluated the RMSE in respect of 560 actual observations of tree data — the results of

their research produced an RMSE on DBH measurements of 10.20cm and 13.36cm from a stereo

camera at distances of 10m and 20m, respectively (57). Their study describes an interesting

approach towards overlaying a flat ground-level plane and then elevating it to DBH level, but

this procedure might be problematic for areas presenting varying slopes (e.g. on mountainous

terrain or obscured with thick vegetation and rocks).
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Figure 2.5: Projected ground planes detected with stereo image pairs by Wells and Chung (2020) (57).

In line with the methodology of the present thesis, and suggested by Marzulli et al. (2020)

(58), cost effective hardware equipment such as smartphones can be used to capture similar tree

data which are normally collected manually. Their research illustrates a working timeline com-

parison between the two methods (i.e. traditional forestry enumeration practices versus data

extraction via photogrammetry) and showed around a 40% reduction in the total time required

to derive the same information (including image acquisition and point cloud data set processing

on 45 trees). They argue that traditional laser scanning technologies are expensive and that

the same point cloud structures can be recreated using motion photography which, in turn,

reconstructs a three dimensional space. The proposed technique achieved good performance

in terms of DBH evaluation with a reported RMSE of 1.90cm (which is in line with industry

best practices). Factors such as point cloud density and image scale, however, are mentioned

as considerations when attempting this approach.

The findings from (58) are supported by Iglhaut et al. (2019) (59) who conducted a similar

review using photogrammetry on aerial and ground-based systems. When evaluated against

outputs from field and terrestrial laser scanners (TLS) in terms of DBH measurements, their

study reported an RMSE ranging from 0.88cm to 6.80cm from sampled areas.

The aforementioned research also refers to Liu et al. (2018) (60) who reported good relative

RMSE (i.e. RMSE %) statistics between 3–4.5% with designed observation instruments when

combining a real-time kinematic (RTK) and charge-coupled device (CCD) through continuous

photography. Similar performance has been reported by Mikita et al. (2016) (61) observing

an RMSE less than 1cm by means of close-range photogrammetry (CRP) techniques for forest

inventories.

Favourable results were achieved by Mokroš et al. (2018) (62) where a process of CRP was

used around a tree at a radius distance of three metres away from trees, at various specified

heights (i.e. 0.8m, 1.3m and 1.8m). The least error was obtained with a fisheye camera lens, stat-

ing the RMSE varied from 0.386cm to 0.596cm on diameter measurements (which is markedly
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good in terms of accuracy). In their study, a scaling and orientation process was employed,

enabled by coded markers which calibrated the reported results — it might not be practical,

however, on a large scale to employ standardised markers across compartments in this fashion

for data collection. The authors also supports the notion of a growing demand for precision

forest information pertaining to individual trees (62).

Unmanned aerial vehicles1 (UAVs) are experiencing greater utility towards measuring for-

est inventory, as reported by Seifert et al. (2019) (63). Their study reviewed changes in video

capture parameters from drones — adjusting optical sensor resolution, image overlap and aerial

vehicle altitude on the same forest compartment. Commercial software was used to extract and

reconstruct a three dimensional point representation in order to understand the effects when

changing these variables. The findings from their report concluded that higher resolution video

data (achieved by flying at lower altitudes), along with setting a greater image overlap, generate

the best reconstruction details and high-quality precision.

Dainelli et al. (2021) (64; 65) have performed extensive research with respect to the current

advancements of UAV utilisation in forest remote sensing. The first part of their report (64)

decomposes the general aspects analytically when using UAV devices in artificial (i.e. planted),

semi-natural and natural forest ecosystems. The second part of their research (65) addresses

the technical challenges of using UAVs for remote sensing in forestry.

A noteworthy observation from their research is that ML techniques are recognised as an

important component necessary when processing markedly large image data sets collected by

means of drones. Part two (65) addresses some research questions in respect of ML techniques

used for remote sensing — particularly employing object detection algorithms and tree crown

segmentation methods. A large part of their bibliography, in turn, reference to ML algorithms

with applied techniques for automatic detection and segmentation of trees, or classification of

plant species. ML regression models are often noted in this research (64; 65), in particular using

random forest (RF) (66; 67), support vector regression (SVR) (68), k-nearest neighbour (k-NN)

(69; 70) modelling and ANNs.

Even though classification of different tree species is of less relevance in the present thesis,

a study by Nevalainen et al. (2017) (71) reported outstanding overall accuracy results (i.e.

95% and an F-score of 0.93) when classifying various species located at the same site. Their

data sets were derived from hyper-spectral imaging and photogrammetric point clouds gathered

from UAVs. The report also attempted individual tree identification across its eleven tested

1Commonly referred to as drones.
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sites (accumulating 4 151 trees) but with less success ranging between 40–95% correctly, subject

to area characteristics. The same results were achieved separately using RF and multilayer

perceptron (MLP) modelling — MLP is considered a specific class of a feed-forward neural

network (FNN). Similar research has been conducted by Briechle et al. (2021) (72) using a

dual-CNN approach for standing tree species classification based on remote sensing data.

2.2.2.2 Laser scanning techniques

In terms of hardware, laser scanning is mainly divided into aerial- and terrestrial laser scanners

(i.e. ALS and TLS), with some other studies referring to personal laser scanners (PLS) which

are smaller devices operated by an individual directly. TLS was first introduced during the

early 2000s as a means of allometric scaling for basic forest measurements, delivering diameter

and tree height as reported by Calders et al. (2020) (73). This domain is described as a greater

interdisciplinary field because of the on-going development of sensors and advancements made

in algorithmic design for automated data processing — in the pursuit of understanding broader

forest ecologies.

Interestingly, the authors mention the possibility of realistic virtual forests when radiative

transfer modelling is employed for the purpose of monitoring large scale forest ecosystems. The

research carried out by Calders (73), in turn, also commend techniques from the realms of CV,

ML, and DL as potential solutions for processing large ALS, TLS, and PLS data sets.

Some promising results are reported by Wang et al. (2021) (74) who carried out a boreal

forest inventory by utilising laser scanning technology on a UAV for close range remote sensing,

and integrating under- and above-canopy point cloud data sets. The study encompasses RMSE

and relative RMSE (i.e. RMSE %) as an accuracy metric on features of DBH and stem curve

estimates. The investigation excluded erroneous estimates for DBH measurements and hence,

the model could produce a RMSE result ranging between 2–4cm on a plot with an average DBH

of 25.41cm (a heterogeneous area with approximately 200 stems/ha).

Hand-held PLS (H-PLS) devices are reviewed by Balenovic et al. (2021) (75) according to

which they investigate the possibilities of utilising these type of systems for forest inventory

applications — i.e. estimating the main attributes of trees such as DBH and height. These

authors compiled a summary of other research on reported performances of various H-PLS and

TLS systems in forest inventory studies, based on inherent bias and RMSE evaluation. They

tabulated some state-of-the-art relative error results from different multi-scan TLS instrument

combinations and tuning parameters, delivering some RMSE percentage results ranging between

3.5–13.4% for observed DBH measurements over a 5cm threshold.
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Lightweight H-PLS devices are typically associated with high efficiency when compared with

traditional TLS systems, and are less expensive to procure and operate than the aforementioned

solutions (75). Even though the quality of data might not meet the high standards of TLS,

attributable to hardware selection or inconsistent walking speeds of operators, H-PLS units

provide a viable alternative to current TLS practices.

The constraints of data acquisition for TLS systems are addressed by Wilkes et al. (2017)

(76) and they formulate a good strategy to follow in order to obtain proper geometric modelling

metrics. Notably, spatial data sets (i.e. point clouds) are effectively derived form a 10m × 10m

sampling grid over forest plots larger than 1 ha and required between 3–6 days in total to collect

for the stated surface area.

Measurement precision also decrease with forest density as lower-quality results are reported

by Wang et al. (2019) (77) for increasingly dense forest areas — stands in their study review

are classified as: Easy (i.e. ±700 trees/ha), Medium (i.e. ±900 trees/ha) and Difficult (i.e.

±2 200 trees/ha). In their study, comparisons were drawn between terrestrial and aerial point

clouds where DBH values were determined during the data processing stage either manually or

automatically — i.e. using algorithms on the basis of individual tree detection (ITD). Vastly dif-

ferent results are reported between the stated terrestrial (better) and aerial (worse) approaches,

heavily influenced by the classification of separate stand densities. Denser plots are noted as the

most challenging, however, manual intervention for terrestrial scans delivered the best overall

performance (77).

Best in-class results are reported by Hyyppä et al. (2020) (78; 79) utilising a backpack mobile

laser scanner (MLS) and UAV separately. At current knowledge, the lowest RMSE evaluation

for DBH using ALS found in literature is 0.60cm (2.20%) in a sparse sample plot of 42 trees

(79), obtained by flying a UAV with an attached laser scanner under-canopy. In an earlier

study by Hyyppä et al. (2018) (80), which focussed on an investigation into frame-based depth

sensors, the researchers compared DBH estimates against tape measurements and reported a

good RMSE of 0.73cm which employed automated circle fitting algorithms — these accuracies

are noted as operationally adequate. Fan et al. (2018) (81) employed the Levenberg-Marquardt1

algorithm for point cloud analysis and achieved an RMSE of 1.26cm (6.39%) for observed DBH

measurements.

1Commonly known as the damped least-squares method, the Levenberg–Marquardt algorithm is employed

to solve least square error for non-linear problems. By fitting a least squares curve, the algorithm will attempt

to produce the smallest error for minimisation problems (82).
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An international benchmarking framework is proposed by Liang et al. (2018) (83) for an

industry standard single- or multi-scan TLS procedure, on the basis of a relative RMSE which

range between 5–10% for easy and medium plot densities. A slew of approaches are mentioned

in this research and most notably the creation of varying algorithms that can be defined as

aggressive, conservative or robust — i.e. the robust principles induces accurate estimations for

parameters such as DBH while maintaining an improved detection rate, however, at the cost of

algorithmic complexities.

The formulas for bias, bias %, RMSE and RMSE % have been adapted from all of the

aforementioned research papers (58; 59; 60; 61; 62; 74; 75; 78; 79; 80; 81; 83) for use throughout

this thesis and are defined as follow

bias = 1
n

∑n
i=1(x̂i − xi)

bias % = bias
1
n

∑n
i=1 xi
× 100% = bias

mean(x) × 100%

RMSE =

√∑n
i=1(x̂i−xi)2

n

RMSE % = RMSE
1
n

∑n
i=1 xi
× 100% = RMSE

mean(x) × 100%

where x̂1, x̂2, x̂3, ... , x̂n is denoted as predicted DBH values, x1, x2, x3, ... , xn is denoted as

actual/observed DBH values and n denotes the number of observations.

Liang et al. (2015) (84) argue that precision from their stereoscopy applications meant for

forest inventories is surpassed by TLS and PLS systems because of additional geometric features

obtained from laser scanning. The report states that image-based point clouds of photographic

measurement are obtained with light-weight, low-cost equipment and is easy to operate but re-

quires additional data processing afterwards. Laser scanning techniques have therefore proven

to be superior when evaluating accuracy metrics between the aforementioned alternatives. The

potential benefits of TLS systems to scan forest inventories effectively with low DBH error

was reiterated by Liang et al. during recent years (2016, 2018, 2019) (85; 86; 87) where these

reports track the progress of laser scanning technologies adapting to mobile and aerial platforms.

Similar work employing different TLS approaches and technologies has been carried out

across forestry academia and industry partnerships as reported by Brolly et al. (2021) (88)

where they used an automated voxel space algorithm for tree feature extraction, achieving

DBH RMSE results in line with state-of-the-art methodologies. Chen et al. (2019) (89) also in-

vestigates PLS devices in combination with SLAM technology and reported an RMSE of 1.58cm
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on their DBH estimations. This research notes increased efficiency when using PLS devices —

the study reports a 30-fold productivity improvement compared to normal field survey practices

when equal surface area is covered within an allotted time-frame.

2.2.2.3 Simultaneous localisation and mapping

A challenging aspect associated with forest enumerations involves establishing the precise geo-

graphical coordinates (i.e. geocodes) of individual trees. This is because of poor global navigation

satellite system (GNSS) coverage under tree canopies as reported by Fan et al. (2018) (81). In

their study, the MLS system was unable to provide globally-consistent point cloud data, how-

ever, a mobile phone with SLAM functionality was utilised in real-time as a viable alternative

for the estimation of positioning attributes.

During execution of fieldwork for the present thesis, exactly the same problem was expe-

rienced — in that the GNSS sensor initially used to record geographic positions of trees was

extremely erratic — ultimately geocode collection was avoided in favour of using an holistic

SLAM approach.

In research performed by Pierzcha la et al. (2018) (90), these authors reported the successful

implementation of a graph-SLAM model in a forest environment. The resulting method could

generate an accurate map of the sample area and produced stand characteristics such as single

tree positions and DBH measurements. Furthermore, the RMSE evaluation on DBH metrics for

this study was reported as 2.38cm (i.e. 9% relative RMSE). From this literature it is noted that

the employment of robust SLAM algorithms is a cost-effective option and permits an acceptable

quality standard for geographical forest mappings.

Chapter summary

The literature review commenced with a discussion covering topics prevalent in the domain

of data science, including briefly discussing concepts utilised in ML, DL and CV. The field of

depth estimation was identified as an area of particular interest for the research objectives pur-

sued. Moreover, specific emphasis was placed on MDE because of the advantages of employing

single lens (i.e. monocular) camera hardware in order to collect and process video imagery.

Transformers for visual processing represent a novel approach towards producing accurate

depth predictions ingesting single image data files. The performance improvements offered from

ViTs are notably better (and computationally less expensive) than other popular CV techniques.
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2.2 Forestry research

The chapter also described the practical application background (i.e. forestry, specifically

remote sensing utilised for accurate tree measurements). The appropriate performance metrics

(i.e. bias and RMSE) in line with industry standards for evaluating the proposed methodology

were also described in detail. The importance of enumerating trees in commercial forest plan-

tations was high-lighted in order to set the stage for the business case of this project.
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Chapter 3

Business Understanding

A good starting point of any data science project is grounded in a firm understanding of the

business practices at hand. As per the CRISP-DM framework, the first step is to establish a

suitable perspective that will enable and facilitate a deeper comprehension of the commercial

domain under investigation. In the following sections, the primary aim is to describe the basic

assumptions that underpin operational procedures when carrying out a forest inventory which

provides further motivation behind the need for the proposed research. The problem statement

addressed in this project is closely related to the requirements set out by the involved company

and, naturally, the contributions made by the research conducted represent a matter of great

importance to the industry partner.

3.1 Company background

SAFCOL was established in 1992 as a state-owned entity, under the Management of State

Forests Act (MSFA) No. 128 of 1992 (91). In terms of the MSFA, the objectives of SAFCOL

represent the long-term development of the national forestry industry according to accepted

commercial management practices. The entity is an integrated forestry business operating in

South Africa and has a smaller footprint in the neighbouring country of Mozambique too.

SAFCOL is controlled by the government of the Republic of South Africa (RSA) and forms

part of the Department of Public Enterprises (DPE) — the organisational structure of the state

owned entity is illustrated in Figure 3.1. SAFCOL conducts business through the sustainable

management of plantation forests and its other assets. Revenue is generated from the sale of

logs and lumber, as well as other non-timber related products. Komatiland Forests (KLF) is

the main operating entity and generator of income within SAFCOL which oversees fifteen prime

timber plantations listed as biological assets across Mpumalanga, Limpopo and KwaZulu Natal.

KLF’s commercial and non-commercial operations cover a land area of 189 747 hectares (ha),

as shown in Table 3.1. The classification of SAFCOL’s total 138 347 ha of plantable plantation
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3.2 Forestry value chain

Figure 3.1: SAFCOL Organisational Structure (92).

area comprises primarily of pine, eucalyptus and wattle tree species (91). KLF also manages a

Research and Development (R&D) facility, nursery and training centre within close proximity

to Sabie, Mpumalanga, South Africa.

Table 3.1: Outline of operational areas managed by SAFCOL.

Operational Region Plantable Area (ha) Conservation Area (ha) Total Area (ha)

South Africa (KLF) 120 870 68 877 189 747

Mozambique (IFLOMA) 17 477 65 070 82 547

Total SAFCOL Group 138 347 133 947 272 294

3.2 Forestry value chain

Upon considering the comprehensive life cycle of forests under management — from its seed to

final products — SAFCOL invests considerable resources into R&D, specifically in the domain

of genetics which, in turn, drives overall tree and log properties (91). These factors have an

impact on the ultimate timber characteristics and wood features in the long term. For continual
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and managed reforestation practices, trees start growing in nurseries where seedlings and cut-

tings are produced, to supply planting activities in compartments being re-established. Even

before the new trees are physically planted, proper silviculture preparations take place (e.g.

clearing and pitting) so as to achieve the correct espacement specifications.

Further important aspects include planning for the optimal species selection beforehand and

plantation logistics to deliver new trees within the appropriate planting windows — i.e. usually

performed during spring and summer months to increase survival rates before being exposed

to colder temperatures in winter. For the duration of a forest management cycle the necessary

biological protection should take place — weed, vegetation, fire and environmental management

as well as control over pests and diseases are essential in order to produce high-quality timber

material (91). Two critical management interventions, which add value to the product, are

pruning and thinning — described respectively as the processes of cutting off branches up to a

certain tree-height and felling selected trees (e.g. smallest trees) before compartment maturity

in order to enable the remaining trees to grow better.

Finally, at the end of a tree’s life cycle (time frames that are specified according to set pre-

defined growing regimes), harvesting operations commence and the timber/biomass is extracted

to roadside positions. The logs produced are directed to clients according to sales orders, by

utilising the appropriate transportation systems suited for forestry operations. As an auxiliary

business model, SAFCOL also permits its clients to pick up logs directly at roadside locations

with the appropriate plantation access permits issued. The process of extraction is commonly

separated into short- and long-hauling activities which facilitate the deliveries from roadside

locations or depots, into saw mills.

3.2.1 Tree enumeration procedures

KLF manages 120 870 ha of plantable area within South Africa — comprising mainly pine tree

species in Mpumalanga through sustainable forestry practices and conducts regular but limited

compartment enumerations. Growth and yield models are used in conjunction with harvesting

schedules to determine long-term sustainable volumes, and the acceptable annual cut volume

available for consumption (i.e. raw material demand) by the broader South African saw-milling

industry.

A comprehensive document that describes best operating procedures (BOP) for enumeration

teams was obtained from SAFCOL and provides the outline for all the technical specifications

necessary to effectively complete compartment enumerations on temporary sample plots (TSPs).

Tree data drives one of the critical functions in forestry management, because it forms the basis

of all current and future volume projections. Therefore, accuracy of measurements is of utmost
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importance and the activity is conducted by specialised teams that are trained to collect tree

measurements correctly, without diminishing the quality of work under various field conditions,

in order to produce proper growing stock figures. Most of the enumerations are performed in

parts of a plantation that are rarely visited by other employees, foresters or contractors. Some

compartments may, for example, be heavily infested with weeds which increases the difficulty

experienced by the enumeration teams when attempting to gain access to and work effectively

in such locations. Essentially, forest inventory needs to be done in a fully randomised manner

(by adhering to properly designed statistical methodologies) and challenges in accessing these

compartments render the overall objective difficult.

Local forestry companies follow set procedures towards collecting and calculating its forest

inventory — operationally, two-person teams are dispatched to pre-determined TSPs located

according to a geographical grid system which pinpoints a centre spot for the unique TSP.

Plantation managers will generate a working plan or instruction from the forest information

system — directing the teams to enumerate only certain necessary compartments. By using

a GNSS/GPS device, temporary plots are found in order to measure all trees within standard

sample radii with approved enumeration apparatus (e.g. calipers for determining diameters).

DBH measurements are recorded for every tree in the plot, after which the sample data are nor-

malised (e.g. producing average DBH values and mean tree heights per TSP), and the practice

is never reconciled on a “tree-by-tree” basis. The stated fixed centre point serves as an approx-

imation for its surrounding trees, rather than the actual tree data that were measured during a

previous enumeration round. Sampled data are therefore relative to the centre of the TSP —

i.e. growth and yield features are tracked as an average dimensionality over time. Currently,

this approach of data generalisation is regarded as a pragmatic solution in forestry because of

the gargantuan scale of plantations which often comprises millions of trees.

The area of a TSP is typically 500m2 (i.e. corresponding to a radius of 12.62m from the

centre point), but plots can also be 300m2 when enumerating smaller compartments. These

aspects are influenced by a number of factors, including stand density and product classes. The

number of TSPs in a certain compartment is dependent on the effective area of a designated

compartment — usually between 5–20% of the total area is surveyed when considering the given

geographical grid system. This standard may be true for SAFCOL but will vary quite markedly

depending on management objectives and statistical design, a good practice would take into

account sampling plans and population variance.

In Figure 3.2, a high resolution aerial photograph of a managed forest compartment (which

was selected for study in the present thesis) is illustrated graphically. Enumeration concepts for

the remainder of this exposition are elucidated using the same location’s corresponding images.

The specific compartment under investigation (shown in Figure 3.2) has an effective area of
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Figure 3.2: High resolution aerial photograph of forest compartment under investigation.

2.82 ha and, upon taking the standard surface area of a sample plot into consideration, the

relative number of TSPs located within the stand is six, as indicated in Figure 3.3. In this

example, the specific compartment which holds six plots is derived from an effective area of

2.82 ha (28 200m2) because 10% of the this area is approximately 3 000m2. Therefore, six units

of 500m2 (i.e. set TSP size) will be a sufficient number of plots to represent an appropriate

proportion from the samples, by standard forestry practices (to subsequently make inference

of figures for the entire location). Generally, statistical theory pertaining to forest sampling

methodology is sound, widely adopted and positive feature relationships can be derived when

analysing data.

Infield enumeration work ultimately yield a data file containing tree counts for the sample

plots — which provides an indication of tree density. The record also states a compartment

identifier as well as a DBH reading for each tree measured. At random, a portion of the enumer-

ated areas are audited by internal personnel as part of forest planner’s responsibilities. Small

deviations from audited data are permitted and are modelled on a sliding scale (e.g. larger

locations are permitted to “absorb” added variances when compared to smaller areas). There is

a difference between (1) percentage sampling area requirements according to the compartment

size and (2) the extent of deviation percentage permitted when reviewing audited sample plots.
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Figure 3.3: High resolution aerial photograph of the total compartment — showing the relative number

of TSPs. The specific stand will hold 6 plots derived from an effective area of 2.82 ha (i.e. 28 200m2)

and 10% of the this area is approximately 3 000m2 therefore 6 units of 500m2 (i.e. standard TSP size).

Practically, however, plots are adjusted toward the middle of a specific stand — i.e. situated

away from boundaries in order to simplify TSP placements in view of radii estimations. Con-

sideration for factors such as the known “edge effect” of compartments are therefore noted, as

reported by Wise (2013) (93). Normally, boundary trees perform better in terms of volume or

biomass growth compared with inner-located trees — attributable to additional sunlight en-

joyed by these trees. Edge trees, however, do not necessarily possess higher quality or strength

properties — these characteristics are derived from the extent of natural resistance trees are

exposed to within the immediate surroundings over its entire lifetime (e.g. plant spacings, wind

exposure, etc.). Trees located on boundaries are often lopsided because of bigger branches to-

ward open spaces, leading to reaction wood which is undesired by processing facilities.

It is important to realise, however, that sample plots can (and should) fall over boundaries

in some cases which cater for an inclusion of edge effect trees. In some practices TSPs are

(incorrectly) moved when they fall over the boundary — the mirage technique discussed by

Kleinn (2007) (94) has been proposed in this regard to avoid systematic error. This principle

allows for border plot corrections and entails “mirroring” the section falling outside of the forest

boundary, then “doubling” the tree data available from the true inclusion area (i.e. observing

36

Stellenbosch University https://scholar.sun.ac.za



3.2 Forestry value chain

the same trees twice). In the current thesis, all trees from the designated compartment are

measured for DBH and therefore avoids the inherent bias that can result from operational TSP

placements which often avoids edge/boundary trees.

3.2.2 Compartment inventory valuation

The accuracy of plantable areas improve through many iterations of re-mapping boundaries

of plantations from detailed data, such as direct ground observations, usually consolidated on

an annual basis (SAFCOL surveys approximately 17% of their total area annually). Forestry

activities are reported on the central management planning system, thereby further enhancing

the reliability of comprehensive growing stock data. It is apparent that the biological asset

data are of utmost importance — as the level of plantation management, degree of harvesting

instruction and direction for logistics is derived from the information at hand.

Compartment information of the site selected for the present thesis, gathered from the for-

est management system, is provided in Table 3.2. According to a set regime, the specified area

has already undergone completion of four pruning activities at ages 3.4, 4.5, 5.6 and 6.6 years

— i.e. cutting off branches up to a height of 2m, 4m, 6m, 7.5m, respectively. Furthermore,

the first thinning operation occurred at age 11.3 years which reduced density to approximately

585 trees/ha. At the time of writing, an upcoming second thinning is planned which aims

to decrease the total remaining trees towards the 450 trees/ha threshold. This silviculture ac-

tivity is a pre-emptive measure towards obtaining optimal expected volumes at clear-felling age.

Table 3.2: Total area information of the selected compartment for the research project.

Compartment Parameter System Value

Species Pinus taeda

Working Circle Pine Sawlogs

Effective Area 2.82 ha

Established Date 2005-01-01

Planted Espacement 3m × 3m

Planted Trees per Hectare 1 111 stems/ha

Utilisable Mean Annual Increment 13.4 m3/ha/year (calculated)

Site Index 27.1 metres (enumerated)

Site index (SI) refers to the average height of the top 20% of the thickest trees (i.e. DBH)

located at a single compartment, gathered from TSP enumeration data. Utilisable mean annual

increment (UMAI) is a system performance indicator and defined as the expected production

volume at the age of measurement — calculated as all the timber that a grower is able to sell,
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which excludes the stump and tip of a tree left over after harvesting. Noteworthy remarks from

the forest management system, which also ties back to the general enumeration procedures of

SAFCOL, indicates an average DBH of 23.87cm for the stand collected from an activity labelled:

“Thinning Control Cruised: 2015-10-12.” A separate observation in respect of the system’s in-

terface is: “Thinning Control Audit Cruised: 2015-10-21 ” (i.e. 9 days apart from the initial

control with an average DBH of 21.57cm).

These activities exemplify the described audit process applied as a control measure for the

operational enumeration teams — the variances in measurement conducted in quick succession

are representative of the variability that can result from variable factors such as TSP centre

spot determinations by separate teams and error in manual measurements.

These phenomena may be regarded as variances that stem from the process of measuring

trees physically and within a short period of time. The corresponding error in this regard is

addressed by McRoberts and Westfall (2016) (95) in their research on propagation of individual

tree volume and models for predicting large-area volumes. Essentially, their study showed error

derived from uncertainty of individual tree data was negligible on large-area volume estimates

during random sampling. Conversely, however, modelling parameters (i.e. stratified estimators)

proved non-negligible and produced significantly different results — thereby reducing sampling

variability effects. Model uncertainties are generally ignored in practical forestry applications,

resulting in optimistic volume expectations for large-area estimates (95). Their findings support

the notion that close attention should be paid during statistical methodology design and model

parameter selection, rather than individual tree measurements from sample plots.

A biological asset valuation study has to represent figures as reliably as possible when com-

piling reports — these statistics are often used by insurance companies and investment firms in

order to evaluate risks and returns of a relevant forestry company. They use high-level valua-

tion methodologies, however, it has little to do with operational enumeration activities on the

ground, but rely heavily on the data produced by these measurement teams for relevant model

inputs. In turn, planning departments should provide accurate information upon requests with

updated data sets. As required by invested stakeholders these valuation reports should outline

timber prices, compartment volumes and costs associated with extracting these logs (i.e. the

three input variables that serve as key drivers of the resulting valuation model). Sales prices

and costs for harvesting are fairly straight-forward but the “volume” is a significant variable in

terms of quantifying an accurate output amount.
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3.3 Research methodology

The aim in this section is to describe the approach adopted towards collecting the necessary data

and information for performing the analyses in this project. A forest area was first identified

which was based on its suitability for executing fieldwork objectives — details pertaining to the

compartment under investigation are provided in Table 3.2. The fieldwork entailed conducting

measurement activities that aligned with those completed by nominal operational enumeration

teams (i.e. tree counts, diameter measurements and height recordings).

Additional data points were gathered which represent the spatial outlay of each tree over

a designed grid-system — serving as a high-resolution standard of measure (i.e. on centimetre

scale). An exploratory data analysis and brief informal time study are reported on later in this

thesis, during which the research findings are illustrated visually and practical considerations

pertaining to the data collection process are described.

3.3.1 Approach

This project centres around a data science approach which involved physical fieldwork at a

suitable forest compartment selected according to ease of access, favourable (i.e. flat) slope

characteristics and other practical factors that contributed towards an effective experimental

design. Appropriate access permissions were obtained from SAFCOL in order to conduct the

proposed experiment at the desired site. In Figure 3.4, the same aerial photograph of the

compartment selected for the study is illustrated graphically and in which the research plot

sub-section is contained — highlighted in red on the right side. The site is located close to

Sabie, Mpumalanga, South Africa.

Even though the total area of the compartment is 2.82 ha, only a smaller sub-section of

the stand was utilised for the project. Interestingly, the sub-sectioned area was surveyed to be

0.70 ha, which represent 24.8% of the bigger enclosing management unit. A fixed road located

between these sections was used as the boundary to separate the workload and informational

spread during the experiment. Only a sub-section of the stand was used for research purposes

(as displayed in Figure 3.4) and the exact records isolated from the forest information system

are unknown for the encompassed study area.

A macro-grid was devised and set up (in-person) at the research site which served as a spatial

identification layer during planning and measuring of tree attributes. The diagrams depicted in

Figures 3.5 and 3.6 illustrate the approach adopted towards isolating the compartment’s sub-

section, and subsequent shape reorientation. Respectively, the two figures indicate the planning

phase of the fieldwork which entailed forming lanes according to parallel lines adjacent to the

39

Stellenbosch University https://scholar.sun.ac.za



3.3 Research methodology

Figure 3.4: High resolution aerial photograph of greater compartment, in which the research plot sub-

section is contained — transparently highlighted in red on the right side.

aforementioned forest road that separates the sub-section from the greater encompassing com-

partment. The lanes were designed to be five metres apart and physically running in parallel,

but smaller micro-grids (i.e. 5 × 5 metres) are contained within these longer lanes as well. The

number of parallel lanes that were able to fit into the research section equated to sixteen —

denoted alphabetically from letters A to P, as displayed in Figure 3.6.

3.3.2 Fieldwork

The data set produced based on the fieldwork carried out represents the ground truth — it is

envisaged that an appropriate algorithmic approach should be able to approximate a functional

representation of the abstractions within the data — recommendations for model deployment

are therefore also addressed in the following discourse.

The virtual lanes were translated to physical lanes — a photograph taken of the research

plot is shown in Figure 3.7 which illustrates the tape (high-lighted transparently red) that was

used to physically demarcate the plot. Upon closer inspection of the pegs that hold up the

demarcation tape, it can be observed that each pin is located squarely every five metres apart
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Figure 3.5: Virtual representations of compartment section under review — isolated and re-orientated,

thereafter vertical lanes are added every five metres apart in parallel and labelled as illustrated.

A B C D E F G
H
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J

K

L

M
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P

Figure 3.6: The research plot is designed such that it comprises virtual lanes — orientated in vertical

formation in parallel at five metres apart and labelled accordingly.
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which permitted the accurate placement of the inner micro-grids in turn (attributable to the

perpendicularity of the pegs in respect of its nearest corners and constantly five meters away

from each other).

Figure 3.7: Demarcated areas and depiction of macro-grid layout in fieldwork plot of research project.

Apart from the designated lanes structured in a vertical formation, as described in Figures

3.5 and 3.6, horizontal rows were also introduced running across the research plot (if the lanes

are regarded as virtual columns). This approach enabled the micro-grid strategy according

to which individual trees were located spatially within a 5 × 5 metre block — these blocks

were also appropriately named and their labels are illustrated in Figure 4.4. According to this

structured approach each block could plot all the trees contained within its own boundaries and

permitted a high-resolution representation of the spatial characteristics of the study area.

During data capture, the horizontal and vertical coordinates of each tree were recorded and

later subjected to an offset (according to the block label) to reconstruct an overall macro-grid

localisation map, which incorporated all trees from the study section. The number of trees that

forms part of the experiment equated to 298 and each tree’s characteristic data points (e.g.

DBH and heights) were connected via the unique labels that were attached to each tree. As

shown in Figure 3.7 each tree has demarcation tape tied around its bark at DBH level, with an

attached tree identification label.

Chapter summary

Ending off the first phase of the CRISP-DM framework (i.e. Business Understanding), this

chapter commenced with a description of the company background of the relevant industry part-

ner involved with the project (SAFCOL). Sections addressing the general forestry value chain,
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BOP for tree enumerations and the inherent commercial problem statement was discussed in

order to provide context for the matter under investigation.

Materials and methods pertaining to the devised research methodology were also discussed

in this chapter. In particular, the approach toward physical fieldwork was delineated and

visually illustrated in an effort to appropriately describe the planned endeavour for collecting

the necessary data points. These data are reviewed and visualised further in the next chapter by

means of an exploratory data analysis, understanding and subsequent preparation (of separate

video files) to serve the modelling phase of the CRISP-DM process.
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Data Understanding and

Preparation

In this chapter, the data understanding and preparation phases of the CRISP-DM framework

are discussed in detail. Recall that the collected data represent the information collected from

physical fieldwork (which is regarded as the ground truth — i.e. the DBH measurements from

individual trees represent the target feature during calibration modelling). Furthermore, the

constructed data set contains video files recorded at the same study area which is to be utilised

in a structured manner in order to derive the same DBH results by means of deploying CV,

DL, and ML techniques available from the domain of data science.

4.1 Data understanding

The aim in this section is to describe the data that were collected during fieldwork from the

designated sub-section of the greater encompassing compartment under consideration. This

particular phase in the CRISP-DM framework is derived from the business understanding step

and needs to be reconfirmed for corrections with the relevant stakeholders and domain experts

before proceeding onwards. Data understanding mainly entails finding some initial insights from

the data sets that were gathered, and it also serves as an intermediate process step towards

the next phase of data preparation, which in turn is necessary for the appropriate modelling

purposes thereafter.

4.1.1 Exploratory data analysis

The DBH measurements for all individual trees located in the study section were recorded —

accordingly, 298 trees were measured twice with a standard caliper (by rotating the apparatus

perpendicularly and later averaging these two measurements for the final feature data entry) as

well as separately with a rubber band (i.e. centimetre tape) in order to collect the circumference
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readings for each unique tree. Theoretically, these two independent methods of enumeration

should closely produce the same measurement result (when the circumference readings are con-

verted to diameter by means of circular geometry). In fact, the correlation was tested between

these similar features and the linear relationship was calculated as exactly one (indicating a per-

fect positive correlation between the separate approaches). For the purposes of exploratory data

analysis, the converted circumference measurements producing DBH readings were selected as

the functional feature because this aspect is a better representation when considering tree oval-

ity, and as a result of the video recordings observing individual trees from multiple perspectives.

Illustrated in Figure 4.1 is the continual DBH density distribution of the 298 trees with a

mean for DBH of 30.59cm (indicated with the vertical dashed line). Rather than using the

normal arithmetic mean DBH as a statistic, the quadratic mean is often calculated in forestry

practices as a better indication of central tendency as reported by Curtis and Marshall (2000)

(96). The formula for quadratic mean diameter (QMD) is expressed as follow

QMD =

√∑n
i=1DBH

2
i

n

where DBHi is the observed DBH values and n is the number of observations. Essentially,

the calculated QMD (i.e. 31.21cm) sets a greater weight on larger DBH values — Figure 4.1

also indicates the QMD value as a vertical dotted line.

Figure 4.1: Density plot of DBH distribution from research area with a normal arithmetic mean of

30.59cm (red dashed line) and QMD of 31.21cm (blue dotted line).
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It should be noted that older forestry procedures typically group DBH readings together

within its closest odd centimetre (e.g. 11cm, 13cm, 15cm, 17cm, 19cm, etc.) for the primary

reason of practical generalisation and simplifying the feature’s cardinality. Modern precision

forestry practices, however, considers the exact measurements from trees on a centimetre scale

or even on a millimetre scale which is aligned with the reviewed literature pertaining to LiDAR

technologies, as reported by Hyyppä et al. (2020) (78; 79).

Even though it is of less relevance in this thesis, the height of each individual tree was

recorded using a vertex device during fieldwork data collection. The correlation between DBH

and heights equates to a positive relationship of 0.60, as shown in Figure 4.2, which is normally

regarded as weak. It is also noted that the height measurements are recorded in metres whereas

the DBH readings are measured on a centimetre unit scale — this type of distinguishing unit

measurements are standard practice in forestry enumeration activities (51). Calculating the

residual standard error (RSE) for the linear regression model between DBH and height data

produced a value of 1.838 as an initial benchmark.

Figure 4.2: Linear regression model scatter plot between DBH and height measurements from the

fieldwork data set.

Using a strict linear model might not necessarily be the best fit for a prediction when evalu-

ating DBH measurements against its associated height readings, as reported by Arabatzis and

Burkhart (1992) (97). Coincidentally, their research also studied Pinus taeda (which is the same

type of tree in the current thesis) and included 175 observations of loblolly pine species. Their

review of model formations estimating DBH-height paired relationships found that utilising a

non-linear model performed the best overall (given that the data set was initially subjected to
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random sampling). Therefore, a local polynomial regression fitting approach was evaluated on

the same DBH and height data, as displayed in Figure 4.3, which delivered a better result with

an RSE of 1.638 — a notable improvement when compared with linear regression. It should

be noted that this sample of 298 trees represent a small fraction of all the trees in plantation

forests. Therefore, the non-linear model cannot be applied for an entire population of trees

because other compartments are different in DBH size, age and species.

Figure 4.3: Polynomial regression of DBH and height measurements from the fieldwork data set.

4.1.2 Spatial characteristics

Finally, spatial characteristics of the research plot were collected by means of recording the

coordinates of each individual tree by using the supporting micro-grid (i.e. labelled blocks)

structure. These measurements were then subjected to an offset parameter according to the

specific block placement over the entire macro-grid.

This enabled an overall reconstruction and visualisation of the top-view spatial diagram of

the study area, as displayed in Figure 4.4. Even though this thesis does not elaborate too much

on spatial aspects, it is conjectured that the CV toolkit would also be able to produce the same

results by way of employing similar data-driven algorithms that can establish the specific tree

positions.

Upon visual inspection of Figure 4.4 it is noticeable that the study area has been exposed

to a first thinning operation — i.e. with some clear pathways running in an oblique direction
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Figure 4.4: Top-view spatial outlay visualisation of all individual trees found in research sub-section.

across the diagram. Furthermore, it does not seem that the original planting of trees occurred

exactly every 3 × 3 metres apart, as described in Table 3.2. Visually the trees are clustering

together more densely at some spots, when compared with other sparsely separated areas.

Nevertheless, having actual and accurate spatial measurements recorded is beneficial because

individual tree areas can be calculated in turn and analysed for growing behaviour according

to the extent of ground space at each tree’s disposal. Geocodes of the individual trees can also

be determined through these spacial features (by reorientation of the localisation diagram and

utilising a superimposed geodesic function) which can provide insightful knowledge, especially

if this type of information is available for wide-ranging areas.
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Figure 4.5: Top-view spatial outlay visualisation of all individual trees found in research sub-section,

scaled relatively to DBH measurements.

Comparably, the same visualisation of spatial tree positions from the macro-grid can be

illustrated with relevant DBH measurements of all trees in the research study area, as displayed

in Figure 4.5. This alternative illustration paints an interesting picture when reviewing clusters

of trees within close proximity of one another, thereby visually noticing a number of “bigger”

trees located at certain positions as well as more predominately around the boundary/edge (on

the right side) of the greater compartment.
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4.2 Data preparation

This section on data preparation adopts an unconventional approach when compared with the

CRISP-DM framework which would normally entail using the very same data sets produced

from the business and data understanding phases. The current project sought to record the

same environment (i.e. fieldwork study area) with a different type of structured data set (i.e.

video files that were labelled according to separate lanes).

Ultimately the end objective is to obtain the same DBH measurements by the utilisation

of CV, DL, and ML techniques which report on the degree of error that was delivered through

this adopted alternative solution.

Video recordings

The observer was walking at an average stride throughout the forest compartment with a

handheld recording device (i.e. smartphone1) storing video files in a structured manner — i.e.

manually labelling the files with its relevant lane names and direction of walking (i.e. moving

forward or backward, in reverse). A supplementary online form was utilised to capture the

different file names and recording timestamps for the purposes of an informal time study.

The smartphone was attached to a so-called gimbal for video frame stabilisation (which

later helped the DPT model during processing). The smartphone’s built-in video recording ap-

plication also had sophisticated stabilisation functionality already incorporated, which in turn

contributed significantly toward smooth video recordings. The aspect ratio of frames favoured

width above height (i.e. shot in landscape mode) which in some instances accounted for other

trees falling outside of the demarcated lane boundaries.

Table 4.1 indicates the video recordings that were made during fieldwork — it shows the

lane and direction of the recording as well as other important file parameters of the data set

(e.g. frame width, height, rate, etc.). Adding the file sizes together yield a total of 4 645 MB

(i.e. approximately 4.6 GB), which can be regarded as the initial storage requirement for the

video recordings.

1The smartphone utilised in this project was a Google Pixel 3a released in 2019 and runs on the Android

operating system. The specific model has 64 GB of storage capacity and possesses a 12 MP front-facing camera.

The device has 4 GB of onboard read access memory and is powered by a 3 000 milliamp hour lithium polymer

battery. The video functionality allows for a horizontal display resolution of approximately 4 000 pixels (i.e.

so-called 4K) recorded at 30 frames per second.
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Furthermore, the total time it took for all the recordings equated to almost 32 minutes,

although neglecting a short set-up time and data label capture step before proceeding to the

next lane in the series. The amount of time spent infield recording video files is an important

indicator when comparing the execution time against normal tree enumerations. A time study

comparison will be concluded later on — between physically measuring trees and the time it

takes to record and process videos needed to collect the same information.

Table 4.1: Parameter descriptions of video data set collected during fieldwork.

Lane Direction File type Frame width Frame height Frame rate File size Duration Frames

A Forward MP4 1 920 1 080 30 frames/sec 186 MB 77 sec 2 340

A Reverse MP4 1 920 1 080 30 frames/sec 190 MB 79 sec 2 394

B Forward MP4 1 920 1 080 30 frames/sec 186 MB 77 sec 2 343

B Reverse MP4 1 920 1 080 30 frames/sec 189 MB 79 sec 2 389

C Forward MP4 1 920 1 080 30 frames/sec 187 MB 78 sec 2 360

C Reverse MP4 1 920 1 080 30 frames/sec 186 MB 77 sec 2 341

D Forward MP4 1 920 1 080 30 frames/sec 182 MB 76 sec 2 299

D Reverse MP4 1 920 1 080 30 frames/sec 180 MB 75 sec 2 272

E Forward MP4 1 920 1 080 30 frames/sec 188 MB 78 sec 2 372

E Reverse MP4 1 920 1 080 30 frames/sec 199 MB 83 sec 2 504

F Forward MP4 1 920 1 080 30 frames/sec 180 MB 75 sec 2 263

F Reverse MP4 1 920 1 080 30 frames/sec 186 MB 78 sec 2 351

G Forward MP4 1 920 1 080 30 frames/sec 181 MB 75 sec 2 280

G Reverse MP4 1 920 1 080 30 frames/sec 174 MB 73 sec 2 197

H Forward MP4 1 920 1 080 30 frames/sec 165 MB 69 sec 2 074

H Reverse MP4 1 920 1 080 30 frames/sec 178 MB 74 sec 2 243

I Forward MP4 1 920 1 080 30 frames/sec 151 MB 63 sec 1 905

I Reverse MP4 1 920 1 080 30 frames/sec 158 MB 66 sec 1 998

J Forward MP4 1 920 1 080 30 frames/sec 146 MB 61 sec 1 841

J Reverse MP4 1 920 1 080 30 frames/sec 139 MB 58 sec 1 746

K Forward MP4 1 920 1 080 30 frames/sec 113 MB 47 sec 1 432

K Reverse MP4 1 920 1 080 30 frames/sec 117 MB 48 sec 1 471

L Forward MP4 1 920 1 080 30 frames/sec 105 MB 44 sec 1 326

L Reverse MP4 1 920 1 080 30 frames/sec 115 MB 48 sec 1 459

M Forward MP4 1 920 1 080 30 frames/sec 109 MB 45 sec 1 373

M Reverse MP4 1 920 1 080 30 frames/sec 105 MB 43 sec 1 321

N Forward MP4 1 920 1 080 30 frames/sec 87 MB 35 sec 1 079

N Reverse MP4 1 920 1 080 30 frames/sec 88 MB 36 sec 1 095

O Forward MP4 1 920 1 080 30 frames/sec 79 MB 32 sec 980

O Reverse MP4 1 920 1 080 30 frames/sec 78 MB 32 sec 976

P Forward MP4 1 920 1 080 30 frames/sec 55 MB 22 sec 669

P Reverse MP4 1 920 1 080 30 frames/sec 63 MB 25 sec 764

It may be argued that the storage requirement is rather taxing when reviewing the total

recording times — attributable to high dimensionality of frame sizes (1 920 pixels horizontally

by 1 080 pixels vertically). The algorithmic process includes a resizing step in order to address

storage issues after extracting picture frames from video files. The combined number of pictures

that were extracted from the video data set equated to 58 457 frames in total.
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Chapter summary

In conclusion of the CRISP-DM phases on data understanding and preparation, this chap-

ter included an explanatory data analysis in which collected fieldwork features were scrutinised.

These attributes included the DBH and height measurements as well as spatial features that

can be considered as the “ground truth” from the study area of the project. Ultimately, the

subsequent modelling phase attempts to reproduce the same measurement results using an al-

ternative data set (i.e. structured video files).

The data preparation phase might be considered unconventional for CRISP-DM projects,

in the sense that it is a totally separate approach in order to gather similar results with the

incorporation of a different data format as an experiment to serve as proof of concept. The

modelling phase endeavours to describe the processes that were followed in order to extract

data features which made it possible to produce predictions close to DBH measurements.
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Chapter 5

Modelling

The following chapter describes the foundational processes for comprehensive system modelling

in order to extract precision tree measurements using concepts and techniques from the domain

of applied ML. The main intuition is to ingest labelled video recordings and then subject the

files to various algorithms in order to extract feature data at sequential modelling stages. These

outputs represent input to subsequent steps which, in turn, drives sub-processes and identifies

single clusters (i.e. tree segment properties) from multiple vantage points (i.e. sequenced picture

frames). Linking these multiple data entries directly to a specific tree allows for an overarching

ML model to train its mapping values toward the fixed actual measurements (i.e. DBH), which

were collected per tree separately during fieldwork.

5.1 Workflow

In general terms, a ML workflow entails data ingestion, cleaning, preprocessing, transforma-

tions, modelling (which might include insight analysis), evaluation, and ultimately deployment

(possibly into production systems). When designing the conceptualised precision tree measure-

ments from video model for the current project, the input files are regarded as semi-structured

(i.e. it cannot be recognised within a relational database, but is labelled in such a manner that

its inherent structure can be inferred). Therefore any cleaning, preprocessing and transfor-

mations were not directly needed for the labelled video files — apart from extracting picture

frames, resizing and staging these output images for the DPT network ingestion.

Standard visual icons used for business process modelling notation (BPMN), as described

by Chinosi and Trombetta (2012) (98) and White (2004) (99), were used and are presented in

Figure 5.1 — it illustrates the entire CV, DL and ML workflow for this project. This mod-

elling notation was selected as the most appropriate visual representation for illustrating the

data workflow of the comprehensive algorithm from start to end. Throughout the project, the

appropriate modelling methods and coding environments — which help to achieve the desired
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Start

Import labelled �ieldwork 
video �iles from main 

working directory.

Extract picture frames for each video �ile 
separately and name in proper sequence.

Resize each picture frame from an original size of 1920 X 1080 pixels into a 
transformed 640 X 360 resolution, keeping uniform aspect ratio (16:9).

Stage pictures for ingestion into Dense Prediction Transformer (DPT) 
model by Ranftl et	al. (2021) which converts monocular images to 

associated depth maps of the same size and presents it as output (Fig. 5.2).

Extract depth pattern values at DBH level (i.e. centre lines across images) 
which represents a normalised depth scale between 0-1, and furthermore 

save data to �lat �iles named according to the original video �iles.

Read �lat �iles for statistical analysis, graphical visualisation and data 
analytics – each row represents a unique depth line on DBH level.

Collect data outputs in the form of summary �iles that contain extracted 
features (i.e. midpoints, mean depths and serial pixel lengths) for each 

“cluster” that inherently represents a single enumerated �ieldwork tree.

Label best cluster �it to corresponding �ieldwork tree in order to connect 
“ground truth” DBH data entries and stage input features for ML model.

Evaluate model performance mapped 
towards the “ground truth” base tree data.

End

Primary ML model that isolates 80% of trees for training, then test on 
remaining 20% unseen trees (i.e. zero-shot) and measure actual DBH 

accuracy performance by way of root mean squared error (RMSE).

Figure 5.1: Flowchart of the ML model workflow that underpins the algorithmic approach adopted.
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objectives best — were used throughout an iterative development process. An initial working

directory is set and utilised as the starting point where the original labelled video files reside

and the appropriate scripts will identify all the files listed within the said directory (according

to its naming convention).

The next step in the algorithm entails a loop procedure which covers the list of files located in

the main working directory and, upon execution, processes each video separately which extracts

picture frames that make up the isolated recording — these images are renamed according to

their numerical sequence in the respected video. At each step of the process a newly created

data set is produced and regarded as the output from the specific step, which in turn serves

as the input for the next step in the algorithmic series. After picture frame extraction of each

video has occurred, these frames are adjusted in size by keeping an uniform aspect ratio of 16:9

and resized to 640× 360 pixels.

An inherent advantage of using ViTs is that it can produce excellent MDE predictions for

any picture frame size or ratio — the architectural nature permits these frameworks to ingest

manageable chunks (i.e. tokens) which are subjected to individual convolutions. The reason

for resizing images in this thesis was purely based on concerns of storage capacity (which also

later assisted model processing speeds). It is conjectured that if the resizing step was skipped it

can possibly provide higher resolution data patterns, but for the objectives of this project (i.e.

concept demonstration) the option of downscaling pictures was selected.

Different architectures for performing MDE were evaluated which included testing the MC

framework proposed by Li et al. (2019) (32) and also MiDaS designed by Ranftl et al. (2020)

(42). These models can both generate depth estimations, however, the MC algorithm (32) was

trained on dynamic videos containing people, as opposed to the better performing MiDaS model

(42) trained on a variety of scenes and also being exposed to image augmentations. In Figures

5.3, 5.4, 5.5, 5.6 and 5.7 examples of these tests at various timestamps are indicated visually,

according to which comparisons are made with the original input images collected during the

project’s fieldwork.

5.1.1 Dense prediction transformer

The forest video data set was processed by the DPT neural network of Ranftl et al. (2021) (45)

which employs ViTs for performing MDE. Significant progress has been made with respect to

MDE experiments — increases in performance of 28% are reported when compared with other

state-of-the-art CNN based networks (45). Attention mechanisms (i.e. derived from a tokenisa-

tion procedure) in the DPT framework, trained on large and relevant data sets, can realise its

full potential for solving depth challenges as well as object segmentation problems separately
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(45). For its architecture, an encoder-decoder structure is utilised — the model incorporates

a multi-objective optimisation algorithm1 with the Adam method (25), during its reassembly

and fusion stages, as illustrated in Figure 5.2.

Figure 5.2: Architecture overview of ViTs by Ranftl et al. (2021) (45), the illustration is an excerpt from

the research paper. Left: Input image being embedded into tokens (orange) and these are extracted linear

projections of flattened representations (DPT) or generated by applying another feature extractor model (e.g.

ResNet-50 and DPT-Hybrid). The embedding process identifies and labels the tokens in an ordered sequence

and augments tokens with its positional attributes. These tokens are patch-independent and subjected to several

transformer stages before it gets reassembled into an image-like representation, generated at various resolutions

(green). Progressively fusion occurs through set modules and upsamples the input representations in order to

generate a fine-grained depth prediction. Center: Transformed tokens are reassembled using sequence labelling,

concatenated and projected to its original structure. Right: Fusion from different resolutions along with residual

convolutions, is upsampled back to an intended depth prediction feature map.

Ultimately the DPT architecture developed by Ranftl et al. (2021) (45) was selected due to

its superior depth estimation quality and noticeable processing performance for image conver-

sions. The programming language Python 3 was used to program some of the procedures of the

algorithmic implementation — Figure 5.1 illustrates the different procedures by means of the

upper dashed border grouping executed solely in Python.

The last step within this aforementioned sub-procedure enclosing is to extract data patterns

according to the vertical middle line from picture frames — described in more detail in the tree

recognition section — i.e. representing DBH pixel width segments because the observer was

holding the smartphone recording device constantly on DBH level. These pattern values are

normalised on a scale ranging from 0 to 1 which represents the horizontal depth estimations

(i.e. side view recording device perspective).

1For multi-task learning, multi-objective optimisation is reported on by Sener and Koltun (2018) (100) in

order to find an optimal Pareto solution as its overall objective. Gradient-based algorithms are employed in their

research as a conventional enumerative technique for optimisation challenges. A local search method is utilised

in this literature for its objective functions, classified for non-linear and continuous problems.

56

Stellenbosch University https://scholar.sun.ac.za



5.1 Workflow

Figure 5.3: Illustration includes video converted to picture frames at t = 0 sec of the original video (top

left) and, then using neural network toolkits, processed by the Mannequin Challenge (top right), MiDaS

(bottom left) and DPT (bottom right) trained data sets.

Figure 5.4: Illustration includes video converted to picture frames at t = 5 sec of the original video (top

left) and, then using neural network toolkits, processed by the Mannequin Challenge (top right), MiDaS

(bottom left) and DPT (bottom right) trained data sets.
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Figure 5.5: Illustration includes video converted to picture frames at t = 10 sec of the original video

(top left) and, then using neural network toolkits, processed by the Mannequin Challenge (top right),

MiDaS (bottom left) and DPT (bottom right) trained data sets.

Figure 5.6: Illustration includes video converted to picture frames at t = 15 sec of the original video

(top left) and, then using neural network toolkits, processed by the Mannequin Challenge (top right),

MiDaS (bottom left) and DPT (bottom right) trained data sets.
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Figure 5.7: Illustration includes video converted to picture frames at t = 20 sec of the original video

(top left) and, then using neural network toolkits, processed by the Mannequin Challenge (top right),

MiDaS (bottom left) and DPT (bottom right) trained data sets.

Finally, the model saves appended data patterns with a file name corresponding to the video

file — i.e. each row in the comma separated format represents the DBH line from individual

pictures in an ordered sequence, whereas the columns are regard as the field of view (FOV) and

constantly derived as 640 pixels in width. In a manner of speaking, each row in the output can

be regarded as the sequential spatial progression of the observer operating the recording device.

It should be noted that Figures 5.3, 5.4, 5.5, 5.6 and 5.7 only display a very limited number

of extracted picture frames for the sake of showcasing the various MDE algorithms in respect

of a single forestry lane (e.g. P in the forward direction). For the entire model, however,

the adopted approach involved processing every image from the complete video data set (i.e.

58 457 frames) by using the DPT framework for MDE prediction. Each image has an associated

filename which indicates the relevant fieldwork lane, combined with its appropriate sequence

number that places the picture at a certain spatial position — i.e. considering the specific offset

parameter, the model can superimpose the localisation back to the devised macro-grid.

After the capturing of video recordings took place, the effect of fluttering demarcation tape

(i.e. tied around trees for unique identification purposes) manifests when inspecting the MDE

output images in Figures 5.3, 5.4, 5.5, 5.6 and 5.7. Even though the tape served a well-intended

purpose to determine the DBH level visually, the practice unintentionally distorted some of the

generated line pattern data. During the subsequent clustering process (described in more detail
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in a succeeding section), it is apparent that some tree segment “circles” are drastically different

in size within close spatial proximity of one another (i.e. basically overlapping) upon review. It

is noted that these anomalies are few for the overall output data set and will therefore not have

a significant impact on comprehensive modelling attempts.

Nevertheless, the issue is recognised as a minor problem in the current project and this lesson

learnt should be considered in possible future work. Under normal field conditions, however,

natural trees will not exhibit any artificial markings such as the plastic demarcation tape tied

around it. The matter will therefore likely be of little to no concern if the concept is applied

to other forest compartments. For this project, an attempt was made to record the video files

in relative quick succession after the collection of tree measurements from fieldwork were com-

pleted. Only a couple of days lapsed between the gathering of the separate data sets, as trees

are always growing wider even if growth happens over very long periods of time.

The aforementioned fact (i.e. growing trees), along with the insight that marking tape at

DBH level did not bode well for model processing, prompted a speculation that the same study

can be executed in a more controlled manner. For future work, it is conjectured that a better

clinical approach, exhibiting an artificial man-made environment with “fake” trees along with

known cylindrical diameters, can be adopted for the purposes of increased accuracy in model

calibration. This approach could also provide stable surroundings (i.e. none of the diameters

growing larger as time passes), which could theoretically be utilised over many iterations in

order to sharpen tree measurement predictions.

Additionally, this proposal could also survey a wider uniform spread of DBH measurements

in order to include more training examples. Conversely, this thesis later describes good perfor-

mance on tree data that had many training examples which centred around the mean diameter

(i.e. approximately between 25–35cm) of the research study area. Worse performance metrics

were evaluated for data points falling outside of this range.

5.1.2 Tree recognition

Inherently, a lot of noise was produced from the raw output data gathered from the DBH line

patterns/strings — e.g. such as distant trees or obscuring landscapes in the immediate back-

ground of picture frames derived from original video files. This challenge is controlled by setting

a fixed threshold parameter (i.e. only accepting depth estimation values larger than 0.5 from

the normalised scale for entire tree segments) in order to only extract sensible information.

This approach renders certain objects “invisible” (proverbially speaking) as the observations

only accepts subjects within a close proximity of the recording device.
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The flat files for forest lanes are read into a programming environment (i.e. R procedures

represented with the second dashed grouping in Figure 5.1) suitable for statistical analysis, visu-

alisations and data analytics. The appropriate indexing matches the row numbers (i.e. picture

frame sequences) and permitted the correct processing of the DBH line patterns which were

extracted from DPT depth estimations. An algorithmic approach was developed in R which

identifies sharp and sudden inclines or declines in the DBH pattern slopes which is regarded

as the tree segments recognition procedure in the overall model, as illustrated in Figure 5.8.

It is noted that incomplete tree segments, such as patterns exiting the FOV on either sides of

frames, will be disregarded as it is not representative of an entire tree.

Figure 5.8: MDE outputs for forest lane “P Forward” of DBH line patterns at various timestamps

(i.e. from top to bottom and left to right representing picture frames at 0 sec, 5 sec, 10 sec, 15 and

20 sec corresponding to Figures 5.3, 5.4, 5.5, 5.6 and 5.7), respectively with all plots indicating the set

acceptance threshold at value 0.5 (i.e. green solid horizontal line) as well as starting tree segments (i.e.

red dashed vertical lines on recognised lefts) and ending tree segments (i.e. blue dashed vertical lines

on recognised rights).
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Even though the data points acceptance threshold is indicated on the plots of Figure 5.8, the

program will first determine the number of pixels that are contained within the segments and

produce a relevant average of its depth estimates, before neglecting the segment in its entirety.

There is a lot of meta data produced during this stage — particularly the picture frame se-

quence number and filename from the relevant video recording (i.e. virtual spatial lane) which

are tied to each DBH line pattern and permits additional dimensionality for the entire model.

These aspects are considered as the driving factors which will dictate the spatial offsets when

positioning multiple data points (i.e. tree segments accepted above the controlled threshold

setting) graphically. The data should be regarded as the most basic features that are necessary

to execute the prediction model — in many ways the required input information is flat in terms

of what is being processed from observations — with some added logic these insights are trans-

formed toward an elevated level of understanding.

Ultimately, the developed model will only consider features relating to segment pixel lengths

(i.e. closely resembling the DBH measurement of a tree, and the midpoint of each segment

record will indicate the observed angle in the FOV). The overarching ML model will incorpo-

rate the aforementioned features, along with the average depth value and train a prediction

algorithm mapping toward the target features (i.e. actual DBH from fieldwork), after clustering

and connection to uniquely identified tree numbers have been executed. Structuring the final

ML model in this manner (i.e. only requiring a small number of input variables as described)

enables dimensionality reduction and generalisation when (in future) new data of a similar for-

mat are inserted in the developed model. It is envisioned that these limited input variables will

be sufficient to predict DBH measurements with a fair degree of accuracy.

5.1.3 Clustering

The next step in the algorithmic process is to establish similar cluster formations (relating to

individual trees) from the recognised MDE segments. This output data set is derived from the

segment properties illustrated in Figure 5.8 and isolated from every forest study area lane for

each separate walking direction. In its most basic form, the data records will produce features

for horizontal DBH lines of batched pixels (i.e. string length of tree segments) and its asso-

ciated midpoint (i.e. centre point of the segment derived from the length of a certain pixel

series and placement in the observing FOV). The mean depth estimates for the specific string

of pixels (i.e. a number ranging from 0.5 to 1.0 which represents an average closeness to the

observer of each tree) will also be included in the penultimate output data set.

By utilising all the data points that were extracted as feature values during tree recognition

and segmentation, along with the relevant spatial offset parameters, it is possible to graphically
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Figure 5.9: From left to right, model outputs for top-view spatial analysis at total depth offsets of

500cm, 1 000cm, 1 500cm, 2 000cm and 2 500cm respectively as illustrated by the red moving arrow

(observer/video recording device) pointing in the walking direction.

illustrate the representations roughly as displayed in Figure 5.9. Essentially, this visualisation

can be regarded as the penultimate step before completing the project’s comprehensive workflow

for modelling — all that remains afterwards is to cluster the same tree data points together (by

means of conventional algorithmic approaches in the literature) and finally linking the clustered

records toward unique tree numbers to create a connection with fieldwork DBH measurements

(producing a many-to-one relationship between thousands of data points from MDE imagery

and a single tree DBH reading respectively).

A combination of applied ML techniques designed for cluster analysis — e.g. interactive

k-means clustering, originally devised by MacQueen (1967) (101), using an euclidean distance

metric on multivariate features in the data set — and manual intervention was utilised in order

to isolate individual tree clusters correctly for this project. This approach proved successful

and it is seemingly evident when inspecting the separating cluster formations visually in Figure

5.10 which illustrates individual trees with different colours. The final step in this process is to

63

Stellenbosch University https://scholar.sun.ac.za



5.2 Output

Figure 5.10: From left to right, model outputs for top-view spatial analysis at total depth offsets

of 500cm, 1 000cm, 1 500cm, 2 000cm and 2 500cm respectively as illustrated by the red moving arrow

(observer/video recording device) pointing in the walking direction, individual tree clusters according to

separate colours.

connect the multiple data points for a single unique tree identified from fieldwork — this task

was performed manually but it is envisaged that under normal field conditions (i.e. dealing with

unlabelled trees) this will not be necessary.

5.2 Output

Once the clustering and linking of actual DBH measurements have been concluded for all 298

trees in the research plot, a final flat file is produced which saves the many data points with

relevant features of data records. This flat file will only include a limited number of features

including midpoints, mean depths, pixel lengths and absolute FOV angle (i.e. an additional

logic field assisting the overall ML model, calculated with the midpoint value positioned over a

total width of 640 pixels). The tree number and its associated DBH measurement is compiled
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in the flat file — the DBH column will serve as the primary target feature and continuing with

the present thesis, be used in conjunction with various data science modelling techniques for

successfully mapping an accurate representation of the findings.

5.2.1 Spatial representation

Additionally, the forest lane name and ordered picture frame sequence numbers are available

in the aforementioned complete flat file which serve as specifications for spatial analysis. With

this insightful information at hand it is possible to represent relative location characteristics of

all the data points graphically. The tree segment data entries are subjected to the appropriate

spatial offset parameters according to lane names (i.e. horizontal placements) and picture frame

sequence numbers (i.e. vertical positioning).

The top-view representation is scaled roughly according to actual distances on a centimetre

unit of measure as illustrated in Figure 5.11. Interestingly, a familiar pattern emerges with this

approach closely resembling the silhouette of physical fieldwork tree positions as described in

Figures 4.4 and 4.5 from the data understanding phase of this project.

From this illustration, it is noted that some tree ring data in Figure 5.11 are much more

prevalent than other clusters. This is not necessarily an indication of the DBH size of a tree,

but rather the total number of data points of individual clustered segments (i.e. tending to

overlap multiple times at the determined placement points upon visual inspection). The reason

for this is because the observer is walking directly toward some trees during video recordings

in the constructed forest lanes, as opposed to trees that were located away from the middle

guiding line. Effectively, tree segment data at the sides of the recording device (i.e. located at

the boundaries of demarcated forest lanes) will be produced less frequently after model work-

flow completion. Even though less examples of these trees are recorded, it can be regarded as a

good generalisation ability of the concept, as the model trains on various examples of placement

angles in the FOV of video files.

The relevant clustering information per unique tree was effectively utilised retroactively in

Figures 5.11 and 5.12 after clusters were already established for all trees. This means that

segment data for individual trees are not exactly aligned on top of a centre placement point as

displayed in these figures. Conversely, the visual spatial data actually appears more similar to

the representations of Figures 5.9 and 5.10 if a close-up review is conducted. An extra logic

algorithm was added in order to centre the same clusters according to its average horizontal

and vertical coordinates. This approach permitted the orderly visual representations for model

outputs serving as spatial analysis, which closely resembles the holistic research study area.
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Figure 5.11: Model Output for Spatial Analysis (All Trees).

5.2.2 Runtime analysis

The computing architecture for this project consisted of an Intel(R) Core(TM) i7-9750H CPU

@ 2.60 GHz processor and 16.0 GB of installed RAM on a 64-bit Microsoft Windows 10 Pro

operation system. A graphics card manufactured by NVIDIA (GeForce GTX 1650) was used

in conjunction with the CUDA parallel computing platform, also developed by NVIDIA (102)

which facilitated parallelisation of the DPT processing network.

Programming environments such as Python 3 and R was used separately for the CV, DL

and ML processing steps for implementing the DPT by Ranftl et al. (2021) (45) along with de-

signed algorithms in R meant for data pattern recognition as well as feature extractions. These
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Figure 5.12: Model Output for Spatial Analysis (All Trees Clustered).

process steps were timed and are indicated sequentially in Table 5.1 for each video recording. Ta-

ble 5.2 indicates the total time required for each process step, converted to minutes and hours.

Referring back to the physical fieldwork done in-person in line with standardised enumera-

tion procedures (i.e. utilising the caliper method), the operational time that lapsed to collect

DBH measurements for 298 trees added up 2 hours 58 minutes (i.e. approximately three hours).

When compared with the approximately 18 hours (Table 5.2) that were required to record infield

videos as well as to process the various algorithmic steps — the digital alternative technique

took 6 times longer to generate the same information.
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Table 5.1: Processing times of each algorithmic component for every file in video data set.

Lane Direction Frame extraction Frame resizing DPT Ranftl et al. (2021) Feature extraction Total processing time

A Forward 202.65 sec 277.43 sec 1 801.10 sec 23.95 sec 2 305.13 sec

A Reverse 212.06 sec 275.14 sec 1 838.14 sec 24.69 sec 2 350.03 sec

B Forward 203.41 sec 272.40 sec 1 786.28 sec 24.88 sec 2 286.97 sec

B Reverse 212.79 sec 265.65 sec 1 825.33 sec 25.21 sec 2 328.98 sec

C Forward 203.28 sec 281.62 sec 1 804.46 sec 24.83 sec 2 314.19 sec

C Reverse 208.59 sec 264.13 sec 1 792.04 sec 24.82 sec 2 289.58 sec

D Forward 198.61 sec 270.58 sec 1 762.19 sec 24.23 sec 2 255.61 sec

D Reverse 203.98 sec 251.01 sec 1 757.86 sec 24.34 sec 2 237.19 sec

E Forward 206.94 sec 277.30 sec 1 809.10 sec 25.40 sec 2 318.74 sec

E Reverse 232.19 sec 284.18 sec 1 910.55 sec 26.75 sec 2 453.67 sec

F Forward 194.68 sec 265.76 sec 1 831.45 sec 24.21 sec 2 316.10 sec

F Reverse 211.69 sec 256.95 sec 1 800.91 sec 25.06 sec 2 294.61 sec

G Forward 195.96 sec 270.63 sec 1 753.90 sec 24.27 sec 2 244.76 sec

G Reverse 198.43 sec 243.98 sec 1 686.32 sec 23.25 sec 2 151.98 sec

H Forward 180.35 sec 241.59 sec 1 591.21 sec 23.73 sec 2 036.88 sec

H Reverse 202.86 sec 250.98 sec 1 717.72 sec 24.32 sec 2 195.88 sec

I Forward 168.64 sec 218.03 sec 1 454.02 sec 20.37 sec 1 861.06 sec

I Reverse 183.19 sec 221.83 sec 1 524.84 sec 21.52 sec 1 951.38 sec

J Forward 159.61 sec 210.99 sec 1 404.87 sec 19.64 sec 1 795.11 sec

J Reverse 157.97 sec 195.96 sec 1 337.37 sec 19.04 sec 1 710.34 sec

K Forward 126.11 sec 157.48 sec 1 092.86 sec 15.58 sec 1 392.03 sec

K Reverse 133.62 sec 160.18 sec 1 124.42 sec 16.34 sec 1 434.56 sec

L Forward 114.88 sec 142.88 sec 1 011.47 sec 14.22 sec 1 283.45 sec

L Reverse 133.57 sec 156.26 sec 1 115.19 sec 15.66 sec 1 420.68 sec

M Forward 118.00 sec 149.69 sec 1 054.52 sec 14.81 sec 1 337.02 sec

M Reverse 120.84 sec 139.14 sec 1 008.76 sec 14.52 sec 1 283.26 sec

N Forward 91.51 sec 116.47 sec 823.83 sec 11.36 sec 1 043.17 sec

N Reverse 100.02 sec 113.54 sec 836.70 sec 11.84 sec 1 062.10 sec

O Forward 82.80 sec 101.93 sec 748.61 sec 10.28 sec 943.62 sec

O Reverse 89.38 sec 100.06 sec 745.88 sec 10.56 sec 945.88 sec

P Forward 55.63 sec 70.50 sec 512.91 sec 4.23 sec 643.27 sec

P Reverse 70.03 sec 79.18 sec 590.91 sec 4.79 sec 744.91 sec

Table 5.2: Total processing times, aggregated for all the individual video files, of each separate algo-

rithmic component in the data set — converted to minutes and hours.

Frame extraction Frame resizing DPT Ranftl et al. (2021) Feature extraction Total processing time

86.24 min 109.72 min 747.60 min 10.31 min 953.87 min

1.44 hrs 1.83 hrs 12.46 hrs 0.17 hrs 15.90 hrs

It is conjectured that the processing requirements can be decreased significantly (i.e. made

faster by many orders of magnitude) through adding more compute capabilities as well as struc-

turing processes in parallel. This improvement might not even be necessary because automated

algorithmic processes can be left to their own devices and executed during periods outside of

normal working hours until completed.

Chapter summary

The modelling phase of the CRISP-DM framework refers to the solution discovery process

for the data sets being analysed. For this project, a comprehensive model workflow is devised
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and was depicted in Figure 5.1 as a proposal for the ingestion and algorithmic processing steps

required to deliver tree segment features. These output data provide multiple perspectives of a

single tree which, in turn, can be linked back to the actual DBH measurement for the relevant

tree (regarded as the target feature for ML modelling).

The chapter also described the programming environments, CV and DL toolkits as well as

developed algorithms that produce MDE predictions and tree recognition methodologies which

extracts the appropriate feature data. From this point, a clustering algorithm was employed to

identify single tree clusters — by means of manual intervention assistance, any misrepresenta-

tions are rectified thereafter which did not make logical sense.

The spatial analysis of the entire research study area was discussed in order to illustrate the

potential of this program to position individual tree coordinates relatively toward its surrounding

counterparts. Upon visual inspection, it was evident that the same plot pattern emerges which

coincides with the spatial attributes collected during fieldwork. Finally, the runtime for the

modelling approach was reported on in order to compare how long the method needed for

processing against normal enumerated data gathering.
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Chapter 6

Evaluation and Deployment

This chapter is devoted to the design and review of working ML models, evaluated on the basis

of common metrics as discussed in the literature review (i.e. calculating bias and RMSE scores),

assessed between actual DBH readings from fieldwork and predicted DBH values gathered from

the CV/MDE toolkit. The proposed evaluation approach, intentionally adopted for the present

thesis objectives, is similar to the “zero-shot cross-dataset transfer” methodology inspired by

Ranftl et al. (2020) (42).

The chapter also describes the last phase of the CRISP-DM framework, namely how the

deployment of such a design model can be instituted. Once all stakeholders of the data project

are in agreement that the suggested architecture has reached a sufficient level of operability,

the workflow can likely be implemented within a production setting. In this scenario, contin-

ual monitoring and management of the model is required for the effective runtime of the system.

6.1 Evaluation

The ML design entails isolating 20% of single tree data records in order for the models not to be

exposed to already incorporated training examples. Afterwards, testing is conducted on these

isolated entries — therefore a good indication for overall generalisation ability and robustness

is obtained. Essentially, the project requires an appropriate ML model that can independently

predict DBH measurements by means of ingesting only a few features (i.e. midpoints, mean

depths and pixel lengths) obtained from the comprehensive CV and MDE framework.

6.1.1 Training

A broad variety of regression ML models were explored, trained and tested but ultimately only

five were selected (attributable to their good performance results) for deeper investigation in

this thesis — namely linear regression (LR), k-nearest neighbours (k-NN), decision tree (DT),
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random forest (RF) and an MLP. These specific ML models are described in more detail in the

next couple of sections, executed through a data science software program called Orange Data

Mining, developed by Demšar el al. (2013) (103).

Before presenting the relevant data to Orange, the original and complete flat input file (with

features for midpoints, pixels, depths, FOV angles and unique tree numbers deriving DBH) are

appropriately separated to produce training and testing subsets that are structured in a similar

format. This entails randomly identifying sixty individual trees (i.e. 20% of the total 298 tree

records) and isolating its associated data entries for the testing data set. The ML models will

train on the remaining 238 trees (i.e. 80%) and prediction performance evaluations are made

on the aforementioned separate testing data set. Furthermore, the models train on thousands

of feature examples for every tree, but these estimations will eventually use the average DBH

prediction per unique tree number. Essentially creating an equal weighting for every data point

prediction, tied back to the individual tree number.

Additionally, the entire experiment was executed ten times — thereby effectively producing

a random testing data set with 600 records in total (independent from training data at each

iteration). These results were analysed on the basis of bias and RMSE along with the relative

performance of the stated metrics (i.e. percentage deviation) against the direct DBH measure-

ment for the unique tree number. Simplified, this multitude of results on bias is visualised by

using box plots, as illustrated in Figures 6.1 and 6.2. Comparatively, the two best performing

ML models were RF and MLP as reported on in Table 6.1 .

6.1.1.1 Linear regression

LR is regarded as the most common modelling approach in statistics for determining relation-

ships between a single target objective and other data features. LR can be defined as either

simple LR (i.e. one explanatory variable) or multiple LR (i.e. two or more explanatory vari-

ables), as reported by Maulud and Abdulazeez (2020) (104). This algorithm can be modified

by means of an L1 (LASSO), L2 (ridge) or L1/L2 (elastic) regularisation technique (104).

For this thesis, an elastic regularisation approach was adopted, therefore a combination of

the alpha value (i.e. regularisation strength) was set to 0.0001 and an equal elastic net mixing

(i.e. 50:50) between L1 and L2 was dictated for training. These hyper parameters were chosen

after sufficiently exploring the range of its inputs, according to which it tended towards better

overall performance. The model produces a learner after the training steps are completed, with

associated coefficients for the multivariate input features needed for mapping to the best fitting

linear relationship.
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6.1.1.2 k-Nearest neighbours

Considered as a simple and supervised ML model, the k-NN algorithm can be utilised to solve

regression (as well as classification) problems — it proved effective in this study. The ingested

data set displays only a few column features but represents thousands of samples which can

slow down the overall process of k-NN training. After execution, the trained data is kept in the

compute memory (as there is no generalisation of data points taking place), as reported by Song

et al. (2017) (105). This ML technique can also employ various distance metrics considering

power models (e.g. Manhattan, Euclidean, Chebyshev to name a few), between numeric feature

values in the case of regression problems.

Nevertheless, the model was capable of structuring nearest neighbour nodes (i.e. predicting

regression outputs according to the available input features) by utilising the particular data set

at hand. Within the Orange environment (103), the k-NN ML model aims to predict values

according to the nearest training instances and continually considered only two of its neighbours

on the basis of a Mahalanobis1 metric as an evaluated distance weight because it resulted in

the best performance delivery.

6.1.1.3 Decision tree

Named appropriately, the DT model in ML builds tree-like structures (with its terminology

stemming from, and describing phrases such as “branches” or “leaves”) for either classification

or regression challenges. Essentially, the DT model breaks up a given dataset into ever smaller

subsets incrementally, according to feature cardinalities — i.e. maximum likelihood classifiers,

as reported by Xu et al. (2005) (107). In the case of regression problems, numeric breakpoints

are established by systematically decreasing the entropy of input feature data (i.e. nominating

the data field with the most explaining power will be divided/split for its succeeding sub-sets).

In the current thesis, the DT was induced as a binary tree with forward pruning and a

minimum number of instances in its leaves set to two. The model was also directed not to split

subsets smaller than five, and to limit the maximum tree depth to one hundred. An additional

criteria was employed so as to stop tree building when the majority of its classifications reaches

a 95% inclusivity threshold.

1For the purpose of good multi-dimensional generalisation ability, the Mahalanobis distance metric considers

correlations between multivariate feature distributions (regarded as the centre point of a principal component

analysis), as report by De Maesschalck et al. (2000) (106) and is calculated with the inverse variance–covariance

matrix. It is conjectured that the Mahalanobis distance metric works better for the data set in the current thesis

as numerous inherent cluster formations are established for multiple feature dimensions.
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6.1.1.4 Random forest

Regarded as a supervised ML algorithm, an RF utilises an ensemble method of building several

randomly induced decision trees, a technique developed by Breiman (2001) (66). The predictive

estimation results are delivered as an average of all the estimated classes from separate trees, or

mean numeric values (in the case of regression problems). Tree predictors will be combined to

form the same distribution of all trees in the forest, such that each tree depends on its randomly

sampled induction. RF is more robust toward data noise and this aspect provides the ML model

with good generalisation capabilities, however, inference error is dependent on the particular

strength of individual trees.

Within the Orange working environment, the basic properties of the RF entailed setting

the number of trees in each forest to 25. The amount of attributes that were considered at

each split was set to three, without a replicable training procedure. On the matter of growth

controls, the limit to various depths of individual trees was set to 25, and a constraint to not

split subsets smaller than five was dictated.

6.1.1.5 Multilayer perceptron

An MLP algorithm together with back-propagation is available as a learning model in Orange

(103), labelled as a neural network (i.e. NN) in Figures 6.1 and 6.2, which only requires an

input data set with an associated target feature field. The number of hidden neurons were

set to one hundred, and the ReLU activation function was utilised for the design. This MLP

incorporated an Adam method optimiser with regularisation rate set to 0.0001, the maximum

number of iterations (with a replicable training method) was set to 200 iterations. These hyper

parameters were initially loaded as program defaults, the performance output from the MLP

proved to be in line with the other ML models and therefore the default settings were selected

for consistency over all the testing experiments.

6.1.2 Testing

The next section refers to an evaluation of the overarching ML model that connects actual

DBH measurements from fieldwork with predictions from the CV/MDE approach. Table 6.1

indicates the five best performing ML models that were selected, trained and tested along with

its associated performance results. Overall the RF ML model performed best with an RMSE

score of 4.365 which is a direct indication of the error distance from target of the DBH readings

that were estimated through MDE. The relative bias is best for the DT model and second best

for an RF instantiation, but overall bias is good for all the trained ML models. When these

two metrics are regarded in combination, as a final means of deciding on model skill, RMSE
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can be viewed as the distance of error away from the actual target observation. Whereas bias

is the degree of error within this predictive scatter placement — therefore the ML models for

this thesis produced a predictive ability which is “tightly” contained (i.e. low bias), but rather

far off from the desired target feature (i.e. RMSE), compared to the reviewed literature.

Table 6.1: Performance metrics tested over applied machine learning models.

Training Model bias Relative bias (%) RMSE Relative RMSE (%)

Linear Regression (LR) 0.349 1.126% 5.664 18.284%

k-Nearest Neighbours (kNN) 0.114 0.370% 4.413 14.245%

Decision Tree (DT) −0.024 −0.078% 4.394 14.184%

Random Forest (RF) 0.052 0.169% 4.365 14.091%

Multilayer Perceptron (MLP) 0.346 1.117% 4.381 14.142%

The bias metric of the different training models is a direct deviation indicator in line with

the actual DBH readings over 600 sampled testing records, as displayed in box plot format in

Figure 6.1. Moreover, these predictions can be represented relatively (i.e. percentage wise) on

DBH measurements as illustrated in Figure 6.2 — visually it is noted that the relative bias of

the RF ML model exhibits smaller variation.

Figure 6.1: Learning Model Results (Bias).

Interestingly, the estimations from predictive learning models largely covers only a close

range (i.e. DBH 25–35cm) with a much better success rate. To test this hypothesis properly

the outlier predictions outside of the aforementioned range was excluded (i.e. removing 249

entries from the available 600 test set). This negatively influences the bias calculations but
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Figure 6.2: Learning Model Results (Relative Bias).

decreases the percentage RMSE scores in a positive manner to an average across all learning

models of 3.026% (i.e. relative bias) and 9.205% (i.e. relative RMSE) respectively. The remain-

ing test samples (i.e. 351 entries) holds a mean DBH of 30.54cm which is closely in line with

the original fieldwork mean DBH. With this finding it is evident that the developed ML models

can properly serve a narrow range of tree DBH data which converges around the mean DBH

of the research plot. This is likely due to many learning examples available within this narrow

range of training, as opposed to additional outlier data from the study.

In similar fashion, the RMSE and relative RMSE results are visualised in box plot format

in Figure 6.3 in order to illustrate the degree of error over the ten experiments that included

60 testing trees each, evaluated against their DBH measurements.

Figure 6.3: Learning Model Results (RMSE and Relative RMSE).
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6.2 Deployment

The final phase of the CRISP-DM framework involves addressing matters around deployment

of the developed models — which should sufficiently comply with the business requirements and

solve the initial problem statement conceived at the start of the project. For the present thesis,

the proposed modelling architecture consists of the complete list of activities that will produce

the desired outputs, intended for insight analysis and decision making by interested stakeholders

or relevant users. The general deployment process entails following the steps in sequential order

as conjectured in Figure 5.1 which broadly explains the conceptualised approach.

The deployment requirements will also entail providing written procedures of the devised

CRISP-DM phases, describing the necessitated processes of several interrelated components and

transitions to achieve objectives effectively. The comprehensive life cycle of the overarching ML

model within a production environment also entails the constant management, monitoring and

evaluation of its results — this is regarded as a form of continuous calibration by means of

retraining models for better accuracies or even encompassing a wider scope of examples.

There is an element of big data with the proposed project — if the solution is ever scaled for

larger forestry areas it is evident that the volume and velocity of data produced from fieldwork

video data sets will be immense. The production system should be ready and have enough

storage capacity to absorb this level of information ingestion — as an example, if the entire

compartment had to be recorded (i.e. 2.82 ha) it would take up four times the space as well as

processing consumption (because the present study area was approximately 25% of the greater

stand). This endeavour would immediately take up about 18 GB of storage capacity for the

video files and would likely result in the total algorithm processing time requiring at least 65

hours to complete (if computing tasks are not parallelised).

Numerous challenges are prevalent in the domain of big data technologies, but fortunately

the appropriate software tools and techniques have been developed to address these issues as

reported by Chen and Zhang (2014) (108). They published an article discussing a survey on

data-intensive applications and techniques for processing information of extensive magnitudes.

Even though the article was published in 2014, considered a long time ago in regards to recent

technological developments, their research discussed many of the known software tools still used

for large distributed file systems, and techniques for processing certain data types for purposes

of insight analysis and visualisation. Furthermore, a general knowledge discovery process is

illustrated in their study and mention is made toward big data which yield major opportunities,

with the caveat of challenging aspects such as storage and compute to consider when actually

constructing such systems.
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The value of big data is described by Erl et al. (2016) (109) as a greater process — starting

with hindsight (i.e. descriptive analysis), then insight (i.e. diagnostic analytics and predictive

analysis) and progressing towards foresight (i.e. prescriptive analytics), which also increases

systemic complexity dramatically. In their book, the authors address the benefits for business

intelligence, which is inherently connected to an organisation’s key performance indicators, as

some of the motivating factors for big data adoption, as it leads companies to acquire valuable

knowledge and ultimately wisdom for competence in business understanding (109).

Similar views are shared by Loshin (2013) (110) of big data analytics used as an impact-

ful tool for enterprise integration and strategic planning. The author considers that “market

conditions (i.e. business drivers) have enabled a broad acceptance of big data analytics, includ-

ing the normalisation of hardware and software, increased data volumes, growing variation in

types of data assets for analysis, different methods for data delivery, and increased expectations

for real-time integration of analytical results into operational processes.” Many of the toolkits

described by Chen and Zhang (2014) (108) is also referred to in this textbook and alludes to

a common approach for configuring big data systems with concepts spanning across various

industries.

The path to production for the current project proposal comprise of varying systematic com-

ponents — i.e. operational data collection, processing algorithms and delivering the information

in such a manner which is regarded as user-friendly and easily accessible via the appropriate

platforms. Toolkits from the domain of data science lies at the core of the conceptualised design,

but model inputs are inevitably dependent on the business insights from relevant stakeholders

as well as data engineering practices that are required for efficient system operability. The

anticipated ML models are likely to be constructed as part of a bigger data pipeline, leading to

training and calibration of the performance of the overall system.

Chapter summary

The final chapter of this thesis can be regarded as the capstone which connects a practi-

cal application in forestry and bridging it towards conceptualised solutions in the domain of

data science. The evaluation phase of the CRISP-DM framework entailed predicting tree DBH

measurements by means of ML models, by incorporating input feature data which maps to a

desired target output (i.e. actual DBH readings from fieldwork).

This section also described numerous ML techniques and high-lighted the best performing

model for achieving DBH estimations on the basis of bias and RMSE scoring. The reviewed

ML models produced very similar results, where the RMSE was off target by 4–6cm compared
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with the actual DBH measurement. The bias, however, performed relatively well which can be

regarded as repeatedly resulting in the same error at an RMSE distance from the target feature.

The chapter further endeavoured to describe the potential for deploying such a solution

for larger forestry areas and addressed the known challenges in terms of big data technologies.

Effectively scaling the conceptualised workflow will require immense storage capacity and com-

pute capabilities, but the necessary tools and programming techniques are available in current

technological offerings to make this approach a reality.
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Chapter 7

Conclusions

The primary objectives of this thesis was to investigate the possibility of collecting tree data and

extracting pertinent information (such as DBH measurements) by means of alternative enumer-

ation practices. The motivation for the current project stems from the fact that compartment

statistics are determined manually and are only conducted on a per sample plot basis which

only represent a fraction of the larger encompassing area. Forest inventories are an important

aspect for wood processing enterprises as the information is used for volume estimations and

future growth projections of biological assets.

Recent progress in technology and novel data-driven algorithmic processes have spurred on

a renaissance for solving practical challenges in new and innovative ways. The physical activity

of capturing tree data through advanced hardware, such as LiDAR and UAVs, has been around

for the last couple of decades but these devices are often expensive and cannot be carried out

effectively in respect of large forest areas. The approach proposed in this thesis focussed on

investigating the viability of adopting an ML-based solution to the problem of collecting tree

compartment data at scale.

An experiment on a smaller sample plot was therefore conducted at an actual forest area

(with access granted by SAFCOL — the industry partner to the project), utilising only the

video recording functionality of an ordinary smartphone device. Based on the findings in this

project it may be proffered that video processing techniques (i.e. CV, DL and MDE using ViT)

can be utilised as a more cost effective alternative towards collecting DBH measurements of trees.

The study commenced with the adoption of the well-known data project reference framework

(CRISP-DM) and the meticulous execution of the constituent phases — a structured approach

toward achieving the proposed research aims was therefore formulated. This document also

includes an appropriate literature review which addressed data science concepts as a solution

for the practical application domain (i.e. remote sensing for tree enumerations in forestry). This

section described the industry standard for evaluating proposed techniques (i.e. metrics such
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bias and RMSE) to measure the accuracy of predictions against actual observations. State-

of-the-art techniques have been developed in the relevant literature (which arguably performs

much better than the proposed method in the present research), but often this reporting lacks

to strike a good balance between its foremost accuracy deliverables and the requirement for

surveying vast forest landholdings, which usually encompasses millions of trees.

Initially, the fieldwork data included aspects of less relevance toward DBH readings such

as the heights of trees and spatial characteristics of the study area (gathered in order to be

thorough during the data exploration stage). The data understanding phase of CRISP-DM in

this thesis described these properties in the data set but could not determine a good linear (or

non-linear) relationship between DBH and heights of all 298 trees. During forest fieldwork and

by carrying out virtual planning, a physical grid outlay was erected — according to which the

spatial coordinates of each tree in the research plot could be established. The discussion on

data preparation addressed the video files that were recorded at the study area, along with the

specifications of each file. By assigning labels to each video recording, an inherent structure

could be inferred which assisted the remainder of the algorithm processing steps.

The following chapter focussed on modelling, in which a workflow for data set ingestion and

iterative transformations was explained visually through BPMN. The devised workflow included

picture frame extraction, resizing of images, and feeding it into a DNN developed by Ranftl et

al. (2021) (45), called DPT. Subsequently the DBH line pattern data features were extracted

by means of script created in the Python programming environment. Furthermore, the DBH

strings associated with each sequentially ordered picture was loaded in the R working directory

for additional exposure to algorithmic steps including tree segment recognition and clustering.

Ultimately, the output derived from these steps produced a flat file with a small number of

data features (i.e. midpoints, mean depths and pixel lengths) which could be connected to ac-

tual tree data and its associated DBH measurements. It was also possible to generate a relative

spatial representation by using the meta data from file names (i.e. forest lanes for horizontal

placements and picture frame sequence number for vertical positioning). A brief description of

the complete runtime for the entire video data set was analysed in order to compare it with the

consumption time of collecting the same measurement through normal enumeration practices.

Finally, model evaluation and deployment phases of the CRISP-DM framework were dis-

cussed as conclusion to this thesis. The evaluation entailed setting up various ML models

which received the same input data — partitioned on the basis of training (80%) and testing

(20%) sub-sets. These data sets where isolated on the notion of “zero-shot” learning — accord-

ingly, performances are evaluated against completely unseen tree data in order to improve its

generalisation capabilities and robustness for related data ingestion and processing. The best
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collective performance was achieved by the RF model in terms of relative bias (i.e. 0.169%) and

RMSE (i.e. 14.091%). Furthermore, it was conjectured that if a narrower range of predicted

DBH measurements were considered (i.e. between 25–35cm), then the RMSE would decrease

to approximately 9.20% which is more in line with industry standards for remote sensing. It

was argued that a controlled recording environment (i.e. artificially constructed) would permit

exposure to outlier DBH sizes if repeated for a large number of iterations.

Nevertheless, the comprehensive study of this thesis was interesting and insightful, espe-

cially in respect of the challenges and limitations of the particular approaches adopted. Similar

future work will build on the foundations that were established in this research. The objectives

initially devised for this project were achieved — it is indeed possible to collect tree data by

means of simple video recordings, thereby offering a cheaper solution for forest enumerations of

larger areas. This can be illustrated in Figure 7.1 which indicates the relative DBH readings of

each tree along with its spatial coordinates from actual fieldwork (left), compared with the out-

puts of the proposed model workflow (right) which showcases the ability to produce relatively

similar results upon visual inspection.

Figure 7.1: Top-view spatial outlay visualisation of all individual trees found in research sub-section

from actual fieldwork data, scaled relatively to DBH measurements (left). Spatial reconstruction from

model outputs, scaled relatively according to DBH predictions produced from ML workflow (right).

It is conjectured that improved accuracy can be achieved through a controlled environment

which should calibrate toward better DBH predictions. Spatial properties could also be deter-

mined through a similar process of error reduction — these perspectives serve as conceptualised

ideals for applications in precision forestry.
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[61] T. Mikita, P. Janata, and P. Surovỳ, “Forest stand inventory based on combined aerial

and terrestrial close-range photogrammetry,” Forests, vol. 7, no. 8, p. 165, 2016. 24, 28
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