
Biomedical Image Analysis of Brain Tumours through the use of

Artificial Intelligence

Claudia Di Santolo

Thesis presented in partial fulfilment

of the requirements for the degree of

Master of Commerce (Statistics)

in the Faculty of Economic and Management Sciences at Stellenbosch University

Supervisor: Dr CJB Muller

April 2022

ii

PLAGIARISM DECLARATION

1. Plagiarism is the use of ideas, material and other intellectual property of another’s work and

to present it as my own.

2. I agree that plagiarism is a punishable offence because it constitutes theft.

3. I also understand that direct translations are plagiarism.

4. Accordingly, all quotations and contributions from any source whatsoever (including the

internet) have been cited fully. I understand that the reproduction of text without quotation

marks (even when the source is cited) is plagiarism.

5. I declare that the work contained in this assignment, except otherwise stated, is my original

work and that I have not previously (in its entirety or in part) submitted it for grading in this

module/assignment or another module/assignment.

April 2022

Copyright © 2022 Stellenbosch University
All rights reserved

Stellenbosch University https://scholar.sun.ac.za

iii

Acknowledgements

This thesis would not have been possible without the encouragement and support of many

individuals throughout the process of this thesis. With my deepest gratitude to these individuals,

I would like to acknowledge their various contributions to the fulfilment of this thesis and helping

me get through my Masters degree.

First and foremost, I am extremely grateful to Dr CJB Muller, my supervisor, for giving me the

opportunity to explore a topic, in the field of bioinformatics, which has been of interest to me.

Without his invaluable advice, insightful suggestions and guidance combined with his unparalleled

support in every step of this thesis process, it is without doubt that this thesis would have never

been accomplished. Thank you again, Dr Muller.

Getting through this thesis necessitates more than just academic support.

I cannot begin to express my thanks to the Terblanche and van Zyl families, who created a home

away from home environment. Thank you for opening your homes and hearts when I first arrived

in the Cape. Many thanks for your warmth and hospitality, as well as your ongoing support even

after I moved back home.

I extend my deepest gratitude to all my friends and family who provided ongoing support and

motivation. I cannot thank you enough for all the messages of support, coffee chats et cetera.

Most importantly, none of this would have been possible without my parents and brother. I would

like to extend my deepest appreciation to you for all your love, support, advice and

encouragement as I embarked on a new journey. Thank you for celebrating the small victories

and accomplishments with me but more crucially helping me get back up when the going got

tough. Every time I simply wanted to give up and quit, you did not let me and for that I am eternally

grateful. This is a testament of your enduring and unconditional love, being my biggest supporters

and encouraging me every step of the way.

To my father, who never saw me finish this journey – I love you and miss you.

Stellenbosch University https://scholar.sun.ac.za

iv

Abstract

Cancer is one of the leading causes of morbidity and mortality on a global scale. More specifically,

cancer of the brain, which is one of the rarest forms. One of the major challenges is that of timely

diagnoses. In the ongoing fight against cancer early and accurate detection in combination with

effective treatment strategy planning remains one of the best tools for improved patient outcomes

and success. Emphasis has been placed on the identification and classification of brain lesions

in patients - that is, either the absence or presence of brain tumours. In the case of malignant

brain tumours it is critical to classify patients into either high-grade or low-grade brain lesion

groups: different gradings of brain tumours have different prognoses, thus different survival rates.

The growth in the availability and accessibility of big data due to digitisation has led individuals in

the area of bioinformatics in both academia and industry to apply and evaluate artificial

intelligence techniques. However, one of the most important challenges, not only in the field of

bioinformatics but also in other realms, is transforming the raw data into valuable insights and

knowledge. In this research thesis artificial intelligence techniques that can detect vital and

fundamental underlying patterns in the data are reviewed. The models may provide significant

predictive performance to assist with decision making. Much artificial intelligence has been

applied to brain tumour classification and segmentation in the research literature. However, in this

study the theoretical background of two more traditional machine learning methods, namely 𝑘-

nearest neighbours and support vector machines, is discussed. In recent years, deep learning

(artificial neural networks) has gained prominence due to its ability to handle copious amounts of

data. The specialised version of the artificial neural network that is reviewed is convolutional

neural networks. The rationale behind this particular technique is that it is applied to visual

imagery. In addition to making use of the convolutional neural network architecture, the study

reviews the training of neural networks that involves the use of optimisation techniques,

considered to be one of the most difficult parts. Utilising only one learning algorithm (optimisation

technique) in the architecture of convolutional neural network models for classification tasks may

be regarded as insufficient unless there is strong support in the design of the analysis for using a

particular technique. Nine state-of-the-art optimisation techniques formed part of a comparative

study to determine if there was any improvement in the classification and segmentation of high-

grade or low-grade brain tumours. These machine learning and deep learning techniques have

proved to be successful in image classification and - more relevant to this research - brain

tumours. To supplement the theoretical knowledge, these artificial intelligence methodologies

(models) are applied through the exploration of magnetic resonance imaging scans of brain

lesions.

Stellenbosch University https://scholar.sun.ac.za

v

Key words:

Artificial Intelligence, Bioinformatics, Biomedical Imaging, Brain Tumours, Cancer, Deep

Learning, Machine Learning

Stellenbosch University https://scholar.sun.ac.za

vi

Opsomming

Kanker is wêreldwyd een van die hoofoorsake van morbiditeit en sterftes; veral breinkanker, wat

een van die mees seldsame soorte is. Een van die groot uitdagings is om dit betyds te diagnoseer.

In die voortgesette stryd teen kanker is vroeë en akkurate opsporing, in kombinasie met

doeltreffende beplanning van die behandelingstrategie, een van die beste hulpmiddels vir

verbeterde pasiëntuitkomste en sukses. Klem word geplaas op die identifikasie en klassifikasie

van breinletsels in pasiënte – dit wil sê, die teenwoordigheid of afwesigheid van breingewasse. In

die geval van kwaadaardige breingewasse is dit noodsaaklik om pasiënte in groepe as hetsy

hoëgraad- of laegraadbreingewasse te klassifiseer: verskillende graderings van breingewasse

het verskillende prognoses, en dus verskillende oorlewingskoerse. Die toename in die

beskikbaarheid en toeganklikheid van groot data danksy digitalisering, het daartoe gelei dat

individue op die gebied van bio-informatika in die akademie en die bedryf begin het om

kunsmatige-intelligensie-tegnieke toe te pas en te evalueer. Een van die belangrikste uitdagings,

nie slegs op die gebied van bio-informatika nie, maar ook op ander terreine, is egter die

omskakeling van rou data na waardevolle insigte en kennis. Hierdie navorsingstesis hersien die

kunsmatige-intelligensie-tegnieke wat lewensbelangrike en grondliggende onderliggende patrone

in die data kan opspoor. Die modelle kan beduidende voorspellende prestasie bied om met

besluitneming te help. Die navorsingsliteratuur dek heelwat toepassings van kunsmatige

intelligensie op breingewasklassifikasie en -segmentasie. In hierdie studie word die teoretiese

agtergrond van meer tradisionele masjienleermetodes, naamlik die 𝑘-naaste-bure-algoritme (𝑘-

nearest neighbour algorithm) en steunvektormasjiene, bespreek. Diep leer (kunsmatige neurale

netwerke) het onlangs op die voorgrond getree weens die vermoë daarvan om groot hoeveelhede

data te kan hanteer. Die gespesialiseerde weergawe van die kunsmatige neurale netwerk wat

hersien word, is konvolusionele neurale netwerkargitektuur. Die rasionaal vir hierdie spesifieke

tegniek is dat dit op visuele beelde toegepas word. Buiten dat dit van konvolusionele neurale

netwerkargitektuur gebruik maak, hersien die studie ook die afrigting van neurale netwerke met

behulp van optimaliseringstegnieke, wat as een van die moeilikste dele beskou word. Die

aanwending van slegs een leeralgoritme (optimaliseringstegniek) in die argitektuur van

konvolusionele neurale netwerkmodelle vir klassifikasietake, kan as onvoldoende beskou word,

tensy daar sterk steun vir die gebruik van ŉ spesifieke tegniek in die ontwerp van die ontleding is.

Nege van die jongste optimaliseringstegnieke was deel van ŉ vergelykende studie om vas te stel

of daar enige verbetering in die klassifikasie en segmentasie van hoëgraad- en

laegraadbreingewasse was. Hierdie masjienleer- en diep-leertegnieke was suksesvol met

beeldklassifikasie en – meer relevant vir hierdie navorsing – breingewasklassifikasie. Ter

aanvulling van die teoretiese kennis, word hierdie kunsmatige-intelligensie-metodologieë (-

modelle) deur die verkenning van magnetiese resonansbeelding van breingewasse toegepas.

Stellenbosch University https://scholar.sun.ac.za

vii

Kernwoorde:

Bio-informatika, Biomediese Beelding, Breingewasse, Diep Leer, Kanker, Kunsmatige

Intelligensie, Masjienleer

Stellenbosch University https://scholar.sun.ac.za

viii

Table of contents

PLAGIARISM DECLARATION ii

Acknowledgements iii

Abstract iv

Opsomming vi

List of figures xi

List of tables xiii

List of appendices xiv

List of abbreviations and/or acronyms xv

CHAPTER 1 INTRODUCTION 1

1.1 BACKGROUND 1

1.2 PROBLEM STATEMENT, OVERVIEW AND OBJECTIVES 2

1.3 RESEARCH METHODOLOGY 4

1.4 FORTHCOMING CHAPTERS’ OVERVIEW 8

CHAPTER 2 CONCEPTUAL AND THEORETICAL MEDICAL ONCOLOGY 11

2.1 INTRODUCTION 11

2.2 THE BRAIN AND GENETIC MAKEUP 14

2.3 TRADITIONAL DIAGNOSTICS OF BIOMEDICAL IMAGING 15

2.3.1 X-rays 16

2.3.2 Computed tomography scans 17

2.3.3 Positron emission tomography scans 17

2.3.4 Magnetic resonance imaging 18

2.4 BRAIN TUMOURS DISSECTED 21

2.4.1 WHO Grade I tumours 24

2.4.1.1 Ganglioglioma 25

2.4.2 WHO Grade II tumours 25

2.4.2.1 Low-grade fibrillary astrocytoma 25

2.4.2.2 Oligodendroglioma 26

2.4.3 WHO Grade III tumours 26

2.4.3.1 Anaplastic oligodendroglioma 27

Stellenbosch University https://scholar.sun.ac.za

ix

2.4.4 WHO Grade IV tumours 27

2.4.4.1 Glioblastoma 27

2.5 PAEDIATRIC BRAIN TUMOURS 28

2.6 SUMMARY 30

CHAPTER 3 STATISTICAL APPROACH TO IMAGE CLASSIFICATION 33

3.1 INTRODUCTION 33

3.2 CLASSIFICATION, PATTERN RECOGNITION AND IMAGE CLASSIFICATION 35

3.2.1 Inherent features of biomedical images 38

3.3 THEORETICAL UNDERSTANDING OF MACHINE LEARNING TECHNIQUES 40

3.3.1 Machine learning 40

3.3.1.1 Bias-variance tradeoff 42

3.3.2 𝑘-Nearest neighbours 45

3.3.3 Support vector machines 52

3.4 ARTIFICIAL INTELLIGENCE: DEEP LEARNING 70

3.4.1 Artifical intelligence 70

3.4.2 Neural networks: biological and artifical 73

3.4.2.1 Perceptrons 75

3.4.2.2 The architecture of artificial neural networks 79

3.4.2.3 Activation functions 80

3.4.2.4 Learning algorithms: optimisation techniques 85

3.4.2.5 Backpropagation 101

3.4.2.6 Improving neural networks: cross-entropy 107

3.4.2.7 Improving neural networks: overfitting 108

3.4.2.8 Improving neural networks: initialising weights 111

3.4.3 Convolutional neural networks 113

3.4.3.1 Rationale behind CNNs 113

3.4.3.2 CNN architecture 115

3.4.4 Interpretability versus accuracy 121

3.5 LITERATURE REVIEW OF BRAIN TUMOURS USING DL/ML 122

3.6 SUMMARY 132

Stellenbosch University https://scholar.sun.ac.za

x

CHAPTER 4 EXPLORATION OF BRAIN TUMOUR IMAGES 134

4.1 INTRODUCTION 134

4.2 ABSENCE VERSUS PRESENCE OF BRAIN TUMOURS 135

4.2.1 Imaging dataset 135

4.2.2 Methodology and materials 135

4.2.3 Experiment results 145

4.3 LOW-GRADE VERSUS HIGH-GRADE GLIOMAS 152

4.3.1 Imaging dataset 152

4.3.2 Methodolgy and materials 153

4.3.3 Experiment results 157

4.4 SUMMARY 161

CHAPTER 5 SUMMARY, CONCLUSION AND RECOMMENDATIONS 162

5.1 INTRODUCTION 162

5.2 DISCUSSION AND SUMMARY OF MAIN FINDINGS 162

5.3 SHORTCOMINGS AND LIMITATIONS 165

5.4 SUGGESTIONS FOR FUTURE RESEARCH 166

5.5 SOCIETAL BENEFIT 166

5.6 CONCLUDING REMARKS 167

REFERENCES 169

APPENDIX A: RESULTS: SEGMENTATION OF PRESENCE OR ABSENCE OF BRAIN
TUMOURS 184

APPENDIX B: RESULTS: SEGMENTATION OF LOW-GRADE OR HIGH-GRADE GLIOMAS
 191

APPENDIX C: CODE: SEGMENTATION OF PRESENCE OR ABSENCE OF BRAIN TUMOURS
 193

APPENDIX D: CODE: SEGMENTATION OF LOW-GRADE OR HIGH-GRADE GLIOMAS 230

Stellenbosch University https://scholar.sun.ac.za

xi

List of figures

Figure 1.1 Brief outline of research thesis

Figure 2.1 Multimodality MRI images of brain tumours

Figure 2.2 Incidence rates of brain tumours by histological type

Figure 3.1 Keywords co-occurrence network

Figure 3.2 Pattern recognition and associated fields

Figure 3.3 Handwritten digits

Figure 3.4 Bias-variance tradeoff

Figure 3.5 Visualisation of the 𝑘-NN approach

Figure 3.6 Visualisation of a separating hyperplane of training data points

Figure 3.7 Visualisation of the linear algebra of a hyperplane

Figure 3.8 The maximal margin hyperplane

Figure 3.9 Nonseparable case: support vector classifiers

Figure 3.10 Hinge loss (SVM loss)

Figure 3.11 Components of a biological neuron

Figure 3.12 Systematic diagram of a binary classification neural network

Figure 3.13 Basic perceptron

Figure 3.14 Activation functions

Figure 3.15 Systematic diagram of the components of an artificial neural network

Figure 3.16 Architecture of an artificial neural network

Figure 3.17 Gradient descent

Figure 3.18 State-of-the-art optimisation algorithms’ behaviour

Figure 3.19 Dropout

Figure 3.20 Stellenbosch University colour palette – primary brand colours

Figure 3.21 Basic convolutional neural network architecture

Figure 3.22 Local receptive field

Figure 3.23 Average pooling

Figure 3.24 Max pooling

Stellenbosch University https://scholar.sun.ac.za

xii

Figure 3.25 Model interpretability versus accuracy between traditional machine learning

algorithms and deep learning methods

Figure 3.26 Percentage of research papers for varying cancer types associated with

different artificial intelligence and machine learning techniques

Figure 4.1 Presence versus absence of brain tumours from the multimodal MRI scans of

patients

Figure 4.2 Cross-entropy loss and classification accuracy of the one block VGG model

architecture for (left) SDG with momentum and (right) Adam

Figure 4.3 Cross-entropy loss and classification accuracy of the one block VGG with SVM

as the output layer model architecture for (left) SDG with momentum and (right)

Adam

Figure 4.4 Cross-entropy loss and classification accuracy of the one block VGG model with

improvements of dropout architecture for (left) SDG with momentum and (right)

Adam

Figure 4.5 Cross-entropy loss and classification accuracy of the Nadam optimiser

Figure 4.6 Cross-entropy loss and classification accuracy of the RMSprop optimiser

Stellenbosch University https://scholar.sun.ac.za

xiii

List of tables

Table 2.1 Signals from different tissues/illnesses/contrast agents on T1-weighted, T2-weighted

and FLAIR MRI images

Table 2.2 Advantages and disadvantages of MRI imaging

Table 2.3 Grading of brain tumours (lesions) according to the WHO (2016) with case examples

Table 3.1 Advantages, limitations and assumptions of 𝑘-NN

Table 3.2 Advantages and disadvantages of SVMs

Table 3.3 Definitions of AI divided into four categories

Table 4.1 Specifics of the proposed architecture of a CNN (one block VGG) of the presence or

absence of brain tumours in patients

Table 4.2 Specifics of the proposed architecture of a CNN (two stacked block VGG) of the

presence or absence of brain tumours in patients

Table 4.3 Specifics of the proposed architecture of a CNN (three stacked block) of the presence

or absence of brain tumours in patients

Table 4.4 Details of the proposed architecture of a one block VGG hybrid CNN-SVM model of

the presence or absence of brain tumours in patients

Table 4.5 Details of all the proposed models fit for the dataset containing MRI scans where there

is an absence or presence of brain lesions

Table 4.6 Segmentation of the presence or absence of brain tumours: machine learning

techniques, results of the validation/test accuracy

Table 4.7 Segmentation of the presence or absence of brain tumours: proposed CNN

architecture models, results of the validation/test accuracy

Table 4.8 Segmentation of the presence or absence of brain tumours: proposed CNN

architecture models, results of the validation/test loss

Table 4.9 Features of the original BraTS dataset

Table 4.10 Details of the proposed architecture of a CNN (three stacked block) of diagnosed low-

grade gliomas (LGG) or high-grade gliomas (HGG) in patients

Table 4.11 Segmentation of LGG and HGG brain lesions: training accuracy and loss for the

different state-of-the-art optimisation algorithms

Table 4.12 Segmentation of LGG and HGG brain lesions: validation/test accuracy and loss for

the different state-of-the-art optimisation algorithms

Stellenbosch University https://scholar.sun.ac.za

xiv

List of appendices

APPENDIX A RESULTS: SEGMENTATION OF PRESENCE OR ABSENCE OF BRAIN

TUMOURS

APPENDIX B RESULTS: SEGMENTATION OF LOW-GRADE OR HIGH-GRADE GLIOMAS

APPENDIX C CODE: SEGMENTATION OF PRESENCE OR ABSENCE OF BRAIN

TUMOURS

APPENDIX D CODE: SEGMENTATION OF LOW-GRADE OR HIGH-GRADE GLIOMAS

Stellenbosch University https://scholar.sun.ac.za

xv

List of abbreviations and/or acronyms

AdaDelta Adaptive delta

Adagrad Adaptive gradient

Adam Adaptive moment estimation

Adamax Adaptive max pooling

AI Artificial intelligence

ANN Artificial neural network

BBB Blood brain barrier

BraTS Multimodal brain tumor image segmentation

BWT Berkeley wavelet transformation

CMYK Cyan, magenta, yellow, key (black)

CNN Convolutional neural network

CSC Cancer stem cell

CT Computed tomography

DL Deep learning

DNA Deoxyribonucleic acid

FLAIR Fluid-attenuated inversion recovery

HGG High-grade glioma

IR infrared

𝑘-NN 𝑘-Nearest neighbours

LGG Low-grade glioma

MICCAI Medical image computing and computer assisted interventions

ML Machine learning

MRI Magnetic resonance imaging

MSE Mean square error

Nadam Nesterov-accelerated adaptive moment estimation

NAG Nesterov accelerated gradient

NIH National Institutes of Health

Stellenbosch University https://scholar.sun.ac.za

xvi

NLP Natural language processing

NN Neural network

PET Positron emission tomography

ReLU Rectified linear unit

RGB Red, green, blue

RMSProp Root mean square propagation

RNA Ribonucleic acid

SGD Stochastic gradient descent

SMIR Swiss Medical Image Repository

SMOTE Synthetic minority over-sampling technique

SRH Stimulated Raman histological (imaging)

SVM Support vector machine

T1c T1-weighted with contrast

tanh Hyperbolic tangent

TCIA Cancer Imaging Archive

TE Time to echo

TI Inversion time

TR Repetition time

WHO World Health Organization

Stellenbosch University https://scholar.sun.ac.za

1

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Tumours are a group of abnormal cells that develop as the cells in the human body grow and

subsequently split beyond normal levels and generally result in a mass. Tumours can be

classified, at the most trivial level, as either benign or malignant (cancerous). When the cells in

the human body grow uncontrollably and are abnormal, this is an indication that the mass (tumour)

is cancerous. Furthermore, these cells have the potential to metastasize (invade or spread)

throughout the body, affecting other organs, et cetera. Cancer is one of the leading causes of

mortality and morbidity worldwide. In fact, globally it accounts for the second most deaths, with

approximately 9.6 million deaths attributed to cancer in 2018 (World Health Organization, 2021).

To put this into perspective: one in six deaths resulted from patients diagnosed with cancer. In

South Africa alone, in the same year, 57 373 deaths were due to cancer diagnoses (World Health

Organization, 2020). Cancer has devastating effects on patients - emotionally and physically -

and also exerts pressure on their financial situation. Additionally, there are burdens on public (and

private) health care systems in the form of financial costs and medical personnel. This tends to

be more prevalent in developing countries as the health care system, both physically and

financially, cannot cope with the burden. The health care system is equipped neither to promptly

diagnose cancer or even diagnose it at all, nor to provide the necessary and appropriate

treatment. This means that in these low-middle-income countries (developing countries), the

prognoses are poor and thus the survival rate is very low. On the contrary, in high-income

(developed) countries there is accessibility to and availability of early diagnoses, which result in

more optimistic prognoses. Higher survivability prevails as a result of early detection and the

necessary treatment planning strategies.

At present, there are still uncertainties as to what causes cancer. There are indications that certain

cancer malignancies result from an individual having been exposed to environmental

carcinogens, namely pollution and ionising radiation. Increased risk of cancer is also due to

lifestyle factors which may include, but are not limited to, smoking tobacco products and

consuming alcoholic beverages. Other risk factors of cancer susceptibility are attributed to familial

genetics - that is, hereditary genes of an individual.

The highest incidence rates, hence the most common cancers in South Africa for 2018, include

cancers of the breast, cervix uteri, prostate and lung (in this order) (World Health Organization,

2020). Of the four listed, lung cancer corresponds to having the highest mortality rate, followed

by cervix uteri, breast and lastly, prostate. Nonetheless, the focus here is on tumours of the brain.

Stellenbosch University https://scholar.sun.ac.za

2

This encompasses both benign and malignant brain lesions. Developing a brain tumour is a rare

occurrence; however, should the tumour progress to a cancerous stage, malignant brain lesions

are known to have high morbidity and unfortunately, exceptionally high mortality rates. One of the

reasons for this poor outlook is that brain lesions are innately problematic to cure. This is due to

their location, which is protected by the unique characteristics of the brain. It is not always feasible

to perform surgery and if possible, complete resection is not guaranteed. Treatments including,

but not limited to, chemotherapy and radiation may not always lead to remission and may have

lasting effects. Individuals that are diagnosed with high-grade tumours face bleak prognoses and

thus the chances of survival are somewhat ominous. To put this into perspective: approximately

five percent of patients will survive for longer than five years.

With the explosion of big data and therefore the accessibility and availability of data, transforming

biomedical data (in this case) into meaningful insights and knowledge has gained prominence.

Being able to perform this task satisfactorily has remained a challenge in many fields, including

bioinformatics. Copious amounts of biomedical data have been collected in recent years in the

areas of omics, biomedical imaging and signal data. In particular, biomedical imaging has seen

exponential improvements and advancements in technology. As a diagnostic tool, biomedical

imaging has assumed great importance. Consequently, the combination of accumulated data and

technological advances has attracted the attention of researchers in academia as well as

individuals in (the health) industry.

Machine learning (ML) and deep learning (DL) algorithms have been successfully and extensively

implemented in extracting insights and knowledge from biomedical data. An array of algorithms

has proven to be useful in solving many research questions, such as the classification of brain

tumours due to the algorithms’ ability to detect underlying patterns in complex datasets. More

traditional machine learning algorithms include 𝑘-nearest neighbours (𝑘-NN), support vector

machines (SVMs), decision trees and random forests, to name but a few. More recently, deep

learning algorithms have risen to prominence. In practice and academia, these algorithms have

been successful in answering questions and problems related to cancer research via the

development of predictive models where the end goal is to assist with more efficient and accurate

decision making.

1.2 PROBLEM STATEMENT, OVERVIEW AND OBJECTIVES

In the ongoing fight against cancer, prevention in the form of early and accurate detection; correct

prognoses; and the most appropriate course of treatment continue to be amongst the best

remedies. Brain tumours are responsible for many a fatality globally. Therefore, to lessen the

incidence rates and (hopefully) increase survivability, an important aspect is reliably diagnosing

brain tumour malignancies through detection and segmentation. The justification is that better

Stellenbosch University https://scholar.sun.ac.za

3

treatment planning strategies, which lead to improved patient outcomes and better chances of

success, can be devised. Over the years there have been significant improvements in the

technology of biomedical imaging tools and they have risen to prominence as clinical diagnostic

machines. However, in developing (low-to-middle income) countries there is a lack of critical

components as well as delivery issues. The following list gives some examples but is by no means

exhaustive (Republic of South Africa, Department of Health, 2017):

i) Delivery of cancer services is not equally distributed; for instance, some provinces have little

to no access to diagnostic tools (X-ray machines, magnetic resonance imaging machines, et

cetera), there is no palliative care and there are extended waiting periods from the initial

screening phase until treatment.

ii) Within communities, there is a lack of knowledge about cancer with limited information

regarding the prevention of cancers that are increased through environmental and behavioural

carcinogens.

iii) From an information point of view, there are exceptionally limited sources of information

regarding the statistics of the number of mortalities because of cancer. To put this into context,

South Africa only has one population-based cancer registry.

iv) Essential treatment medications that form a critical component of enhancing patients’

successful outcomes and increased survivability are not available in South Africa, which is of

major concern. This is most prominent at public hospitals. In cases where newer and more

innovative medicines are available, they are unaffordable.

v) The diagnostic tools that are used in the detection of cancer are old, are not serviced and in

some circumstances do not function properly.

vi) In terms of the financial burden, the budget that is set aside for cancer does not meet the

overwhelming need.

vii) Lastly (in this list), and relevant to the core objective and research question that apply to this

research, is the shortage of specialised individuals in the area of cancer. That is, there is a

lack of individuals that have specialised in oncology as well as those that are associated with

oncology. Furthermore, the training that is received is suboptimal. Finally, there is a very low

retention and recruitment rate of personnel in the field of oncology.

Hence, as mentioned, the aim and aspiration of this research is to find automated, or at the very

least semi-automated, methods to assist radiographers and physicians. The expertise of

radiographers and physicians is heavily relied on for diagnosing brain tumours and the grade;

however, this momentous task remains exceptionally labour-intensive and time-consuming. As is

generally known, medicine is a very complicated field and to become an expert in a specialised

field takes upward of ten years. Advances in technology and techniques have led to surgeries,

diagnostic scans, et cetera, becoming more complex, making it almost impossible for one

Stellenbosch University https://scholar.sun.ac.za

4

individual to be completely proficient in the field, even if it is a constricted speciality (Mueller &

Massaron, 2018). As the authors state, “… an irreplaceable human requires consistent, logical,

and unbiased help in the form of an artificial intelligence (AI)” (Mueller & Massaron, 2018).

Thankfully, the prominence and emergence of technological advancements in biomedical imaging

and the era of ‘big data’ have created the opportunity for these more automated systems.

Nevertheless, one of the persistent central challenges is transforming the copious amounts of

data into beneficial knowledge and insights. AI has come to the forefront as a result of imaging

modalities that yield ‘big data’ (large quantities of data) along with having the added benefit of

high performance, thus producing significantly accurate results that are satisfactory. As far as

solving imaging technique applications go, DL and ML methodologies that can handle pattern

recognition are becoming the go-to algorithms of choice. ML and DL algorithms have had a

reasonable influence in the area of bioinformatics; the focus of this particular research is

biomedical imaging as a means to solving the research question of complementing (and

supplementing) the expertise of physicians.

Hence, the methods used to solve the research question and the objective of the research are

firstly, to utilise magnetic resonance imaging (MRI) scans to identify and classify either the

absence or the presence of brain tumours and secondly, to explore high-grade gliomas versus

low-grade gliomas through the manual segmentation of the different gradings of tumours. To

achieve this, an AI approach is taken through more traditional ML techniques, namely 𝑘-NN and

SVMs. Lastly, the specialised DL technique of convolutional neural networks (CNNs) is applied.

Hence, through this research assistance is offered to specialists as their expertise and experience

can in no way, shape or form be replaced but their load can be eased.

The importance of this research and the rationale behind it are that brain tumours, and more

specifically malignant brain lesions, are amongst the rarest forms of cancer; they also happen to

be amongst the least funded - that is, they are heavily underfunded (Cure Brain Cancer

Foundation, 2021). Along with this, the research conducted on brain tumours and cancer is not

as prominent as in the case of other cancers where there is more visibility. For society, the benefit

is derived from attempting to improve patients’ outcomes and success rates, as brain lesions have

one of the lowest expected survival rates and in some instances can even go undetected.

1.3 RESEARCH METHODOLOGY

The methodological approach applied in the investigation of the research problem, id est, to assist

medical specialists with the diagnoses of brain lesions, is one of mixed methods, as both

quantitative and qualitative methods are incorporated. The mixed methodology offers the

opportunity to integrate multiple findings from the analyses as well as other elements into the

research task. Or to elaborate on this: the quantitative method involves the use of statistical

Stellenbosch University https://scholar.sun.ac.za

5

means whilst the qualitative method suggests that the data that have been gathered and analysed

will be interpreted and the context to the data will be reviewed.

As mentioned, this research thesis is a combination of quantitative methods, as in solving the

research problem (and objective) statistical techniques are applied as a means to analyse the

data. Furthermore, the output, that is, the level of predictive accuracy of the models, assists with

the interpretation of the datasets.

The data that are to be explored and analysed derive from two comparative studies. The data are

part of archival research, hence existing data are analysed. In the first study, binary classification

is looked at, meaning that there are two groups. Patients are segmented based on their MRI

scans. In this instance, there is a cohort of patients that present with brain tumours whilst the rest

of the data reflect an absence of brain lesions in the patients. Ideally, what is aimed at is to build

satisfactory predictive models that generalise the data well enough for an unseen scan of a patient

to be identified with some level of confidence - in other words, whether the new instance (patient)

is labelled as having a brain lesion or not having a brain lesion.

The data consist of a collection of MRI scans of patients, where 155 cases indicate that the

patients were diagnosed with a brain tumour whereas 98 showed no presence of a brain lesion.

Thus, in total there are 253 patients in this study and the data are available via Kaggle1.

The second comparative study is the analysis and classification of brain lesions that have been

graded accordingly; that is, the identification and classification of patients that have been

diagnosed with either low-grade (LGG) or high-grade (HGG) gliomas. The data have been

gathered, described and proposed in three research articles, namely firstly, ‘The Multimodal Brain

Tumor Image Segmentation Benchmark (BraTS)’ by Menze et al. (2014); secondly, ‘Advancing

The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic

features’ by Bakas et al. (2017); and thirdly, the description and use of the data by Bakas et al.

(2018) titled ‘Identifying the best machine learning algorithms for brain tumor segmentation,

progression assessment, and overall survival prediction in the BraTS challenge’. Unless

otherwise stated, the following paragraphs in this section discussing the imaging dataset have

been adapted from these articles.

The data encompass scans from multi-institutional organisations. The imaging data used are from

the Multimodal Brain Tumor Image Segmentation Benchmark (BraTS) challenges of 2012, 2013

along with images that have been collected from the National Institutes of Health (NIH) Cancer

Imaging Archive (TCIA). Heidelberg University also contributed to the dataset. These imaging

databases were combined for the 2015 BraTS challenge and are publicly available via the Swiss

1 www.kaggle.com

Stellenbosch University https://scholar.sun.ac.za

6

Medical Image Repository (SMIR)2 or Kaggle. The BraTS challenges take place jointly with a

medical imaging international conference, known as the Medical Image Computing and Computer

Assisted Interventions (MICCAI).

In the 2015 BraTS challenge, the imaging database consisted of 220 patients that presented with

high-grade gliomas, whilst 54 patients (cases) were diagnosed with low-grade gliomas. The MRI

images of the brain lesions were manually segmented and labelled based on human expertise.

In order to allow for more consistency and compliance, the final labels were determined by a

highly experienced board-certified neuro-radiologist. The rationale behind this is that due to the

images being obtained and provided by a number of institutions, there can be differences: diverse

equipment is used and institutions have and adhere to their own imaging protocols. Hence, the

images must be standardised to uniformity to be able to analyse them.

Pattern recognition tasks are required, as the data consist of images, hence the need to use

techniques that can handle this type of data. A statistical approach is taken, applying AI

methodologies to explain and support the interpretation of the data. Two subsections of AI that

are used in this research are DL and ML. In brief, ML is a branch of AI and is a method whereby

data are analysed through models that require very limited human intervention. In other words,

the model (computer algorithm) learns through the experience of the data and is able to detect

patterns and then make a decision. On the other hand, DL is where multiple layers are used to

extract features from the raw input. Only three techniques that can be used in pattern recognition

are focused on, but these are by no means the only three techniques. More methods are available

in the literature, both from a statistical point of view and from those that have been applied to

brain lesions in particular in literature. Time constraints are one of the reasons for only focusing

on three. 𝑘-NN and SVMs are more traditional machine learning approaches, whilst CNNs form

part of DL. DL has in recent years become the more favoured approach, as neural networks (NNs)

have been proven to produce successful results in the realm of image classification. Moreover,

DL techniques try to mimic the human brain. With the increase of computational power

(hardware), the application of tasks that can be solved using ML and more specifically DL

methodologies has become possible. In addition to the processing power, the innovation of

smarter algorithms and digitisation, which has resulted in colossal databases that are available

and accessible, have allowed for tackling image classification tasks.

What AI cannot accomplish is replacing humans. It can in no way replace the creativity or the

imagination of humans or their patterns of thought. Moreover, AI is somewhat limited and cannot

come up with original ideas (Mueller & Massaron, 2018). More accurate, efficient and effective

diagnoses can be made in the medical field with the help of AI technology. In line with the objective

2 www.smir.ch

Stellenbosch University https://scholar.sun.ac.za

7

of this research, (malignant) brain lesions can be detected much earlier with the assistance of AI

technology. Hence, AI speeds up the process and analysis of brain tumours. Nevertheless, the

expertise and experience of medical specialists cannot be replaced and are still required to

confirm the diagnosis.

All the models have been developed and trained using Python3 software. Within the software

many different libraries (packages) exist for the implementation of the ML and DL techniques.

However, it was decided to use the NumPy4 library, more specifically the scikit-learn5 library, for

the execution of the 𝑘-NN model and SVM model. According to the scikit-learn website, the library

is open source and is built on NumPy where there are “simple and efficient tools for predictive

data analysis” (scikit-learn, 2021). These tools are used for ML and statistical modelling including,

but not limited to, tasks involving classification, regression and clustering. This library was decided

upon based on its ability to perform classification.

Furthermore, when implementing the DL (CNN) models, the TensorFlow6 library, more precisely

the Keras7 package, is used. Developed by the Google Brain team, TensorFlow is an open-source

library that can be used in the process of training and developing ML models. TensorFlow has

the disadvantage that for beginners that do not have much coding ability it can be difficult to

master due to its complexity. Conversely, Keras is a library that runs as an add-on to other open-

source software such as TensorFlow. It is a powerful DL library and is much more lenient on an

individual’s coding ability, in that it is easier to learn and code can be written very quickly. Simply

put, it is more user-friendly. Supporting documentation and training are available for both libraries.

All the code that was written and implemented in the exploration of brain lesions can be found in

the Appendices and was compiled in Jupyter Notebook8. As noted on the website, “Project Jupyter

exists to develop open-source software, open standards, and services for interactive computing

across dozens of programming languages” (Jupyter, 2021). Hence, Jupyter Notebook is used and

then linked to the Python programming software. Moreover, Jupyter Notebook allows for users to

have a record of what they have done in the session, which includes all code written, any

additional notes and comments made to the code by the users and any equations that the users

wished to express along with the output (Jupyter, 2021).

3 www.python.org
4 www.numpy.org
5 www.scikit-learn.org/stable
6 www.tensorflow.org
7 www.keras.io
8 www.jupyter.org

Stellenbosch University https://scholar.sun.ac.za

8

1.4 FORTHCOMING CHAPTERS’ OVERVIEW

This subsection offers a preview of what is to be expected in the following chapters of this

research thesis. It is briefly illustrated by the outline provided in Figure 1.1. The theoretical content

covered in this thesis is found in Chapters 2 and 3, whilst Chapter 4 is focused on the practical

applications of the methodologies discussed in Chapter 3. Final remarks are given in the last

chapter of this thesis.

Chapter 2 starts with an overview of the medical aspect of this thesis; that is, firstly, how the brain

functions and the actions it is responsible for. Then the different types of diagnostic tools to help

detect brain lesions are discussed along with the different grades of brain tumours. Furthermore,

the susceptibility to brain lesions based on hereditary genes is considered. Chapter 3 is the

statistical segment of this research thesis. This chapter is an in-depth theoretical discussion of

three different AI algorithms. Chapter 4 acts as a practical aid to the theoretical algorithms

reviewed in Chapter 3. A more detailed overview is given in the following paragraphs.

Figure 1.1: Brief outline of research thesis

Chapter 2 of this research thesis serves as an introduction to conceptual and theoretical medical

oncology - some knowledge is required and as the topic and the empirical exploration suggest,

brain lesions form the basis of this research. Starting with section 2.1, an overview is given

concerning the different functions of the brain and what this organ is capable of. Furthermore, the

manifestation of brain tumours is introduced; that is, how brain lesions are shaped and whether

they can be classified as either benign or malignant. This is relevant because the first comparative

study in Chapter 4 is an analysis of patients that present with brain tumours whilst the other cohort

Stellenbosch University https://scholar.sun.ac.za

9

have an absence of brain tumours. Section 2.2 goes on to discuss individuals’ genes and how

methods and techniques can be used to gain insights into hereditary genes to determine how

susceptible individuals are to cancer. In other words, is there a link between malignant brain

tumours and familial genes? Section 2.3 provides an overview of the traditional diagnostic

techniques of biomedical imaging. This subsection reviews how biomedical imaging (radiology)

has been subject to exponential developments over time. The more recent advancements in

technology have consequently allowed for the possibility of many new applications. The main

focus is on magnetic resonance imaging (MRI) and the machines as an aid in the detection of

brain tumours. These types of images are used in the practical exploration section (Chapter 4).

Furthermore, section 2.4 offers insights into the grading of brain tumours based on a few

characteristics; the World Health Organization (WHO) has determined the main guidelines. The

grading forms part of the second comparative study, as a cohort of patients were diagnosed with

low-grade gliomas whilst the rest of the patients were diagnosed with high-grade gliomas. The

last subsection in Chapter 2 deals with paediatric brain tumours and is included for the benefit of

future research, as malignant childhood brain lesions remain one of the highest causes of

childhood morbidity and mortality.

Chapter 3 highlights the statistical approaches to image classification. This section starts by

introducing how ML and DL algorithms have influenced bioinformatics both in the field of research

and in a more practical setting. The explosion of data availability and accessibility has aided this.

Section 2.3 gives an outline of classification, pattern recognition and then more specifically pattern

classification. The rationale behind this is once again keeping the type of data and analyses of

Chapter 4 in mind. The discussion also revolves around certain aspects that have to be taken into

account specifically for the inherent features that are observed in biomedical imaging data. Some

of the difficulties that are experienced in the attainment of biomedical images are pointed out. The

rest of Chapter 3 comprises a theoretical discussion of the three techniques that are used as an

aid in the practical implementation of the datasets in Chapter 4. These methodologies consist of

two ML algorithms, namely 𝑘-NN and SVMs. The third and last technique reviewed falls under

DL, in particular, artificial neural networks (ANNs) and then the specialised version of an ANN

known as a CNN. Section 3.5 is a literature review of the contributions; that is, papers found in

the literature are reviewed and investigated to determine how diverse data-driven techniques, in

the form of machine learning or artificial intelligence, are used in clinical applications. The

emphasis, however, remains on the three different statistical approach algorithms and brain

lesions.

Chapter 4 is the practical aid to the algorithms discussed in Chapter 3 using the MRI as a

diagnostic tool (Chapter 2). The chapter consists of two comparative studies. In the first study two

different groups are observed, that is, patients diagnosed with (and therefore, displaying the

Stellenbosch University https://scholar.sun.ac.za

10

presence of) a brain tumour, whilst the other cohort have an absence of a brain tumour. In the

second study, the data consist of a cohort of patients that have been diagnosed with low-grade

gliomas whilst the remaining patients have high-grade gliomas. The dissection and the guidelines

of the characteristics for the grading of brain lesions can be found in Chapter 2. Thus, the

algorithms can be used and the predictive accuracy and how well the two groups can be

distinguished and compared - that is, whether the models are satisfactory and whether they can

perform optimally to assist physicians, noting that this is one of the main objectives and the

research question of this thesis.

Finally, the last chapter (Chapter 5) provides the reader with a summary of the findings, the

limitations of the research, what can be applied and what can be looked into in the future, with

some concluding remarks.

Stellenbosch University https://scholar.sun.ac.za

11

CHAPTER 2

CONCEPTUAL AND THEORETICAL MEDICAL ONCOLOGY

2.1 INTRODUCTION

The brain is fundamentally the most complex and fascinating organ within the human body. The

human brain is regarded as having cognitive abilities that are almost without limit (Hofman, 2014).

The facts of the human brain are somewhat staggering with 100 billion neurons, a storage

capacity of approximately 1.25 × 1012 bytes and in excess of 100 000 kilometres of

interconnections (Cherniak, 1990; Hofman, 2012). This impressive organ has the capability of

taking information as input from its environment, processing it and converting it into meaningful

output. Macphail and Bolhuis (2001), Roth and Dicke (2012) and Hofman (2015) argue that if the

brain can rapidly and adequately transcribe the information it receives, it will be better equipped

to understand and handle any environmental challenges. Moreover, this leads to an increase in

the brain’s odds of survival.

The brain interprets and integrates this extraordinary amount of knowledge through sensory

information, that is, utilising the five senses: touch, smell, taste, sight and hearing.

Different aspects of our lives are controlled by the brain, amongst others, emotions (and emotional

intelligence), intelligence or knowledge, creativity and memories. Our life journey, experiences

(worldly or otherwise), memories, thoughts and dreams all emerge as a result of the firing of the

neurons in our brains which shapes the infinitesimal characteristics of our brains (Eagleman,

2015), therefore influencing our thinking, perspective of life and who we are as individuals. This

encompasses everything from opportunities and location to personal experiences, conversations

and media to culture. Due to the nature of life, this is a continuous process; thus, with every

passing moment of your life you are altering your outlook on life and identity which is infinite. Each

individual has an idiosyncratic experience leading to an intricate configuration of the individual’s

NN (Eagleman, 2015).

Even with the impressive ingenuity of the brain from a neural structural stance, it is unfortunately

vulnerable to neurological diseases, damage and viral infections. Neurodegenerative diseases

such as Alzheimer’s and Parkinson’s are the deterioration and / or loss of neurons, damaging the

brain’s tissue and nerves and gradually causing permanent damage (van den Pol, 2009). An

example of brain infections is Encephalitis which is inflammation that occurs in the brain.

According to van den Pol (2009), viral infections pose the risk of irreparable or temporary

neurological disorders, extending to psychiatric impairments. Psychiatric dysfunctions comprise

a wide range of mental, behavioural and psychotic illnesses, such as clinical depression,

obsessive-compulsive disorder and schizophrenia.

Stellenbosch University https://scholar.sun.ac.za

12

Damage to the brain is caused through either traumatic injury or nontraumatic injury. Car

accidents or contusion and strokes are examples of traumatic and nontraumatic injuries,

respectively. McAllister (2011) proposes that traumatic brain injury is a change in the functioning

of the brain or memory loss or neurological deficits that are experienced by the individual and are

generally caused by external forces, such as being struck by a foreign object. Strokes are defined

as an obstruction of blood vessels, that is, clots are formed resulting in a significant depletion of

oxygen to a section of the brain due to dead brain cells (Kuriakose & Xiao, 2020).

The focus of this research is investigating tumours that are situated in the brain. From a medical

perspective, tumours are defined as a multitude of neoplasms that form, each containing its

distinctive characteristics composed of biology, the treatment that is required and the prognosis

that it is associated with (DeAngelis, 2001; McKinney, 2004). In other words, tumours are groups

of abnormal cells that manifest as cells grow and subsequently split beyond normal levels. Hence,

tumours are collections of cells that undergo uncontrollable growth, often resulting in a mass.

Tumours can be either benign (noncancerous) or malignant (cancerous) in nature. A critical factor

of tumour classification as benign or malignant is that of the tumour’s invasive potential. The

former is indicative of cells that are incapable of metastasizing, that is, not able to invade

surrounding tissue or spread to the rest of the body. Along with the aforementioned

characteristics, benign tumours more often than not grow at a slower rate than their malignant

counterparts and tend to have distinct borders where the features of the tumour cells are generally

more normal (Patel, 2020). Tumour progression, defined as the final stage in cancer development,

is distinguished by the rapid growth rate and surrounding tissue invasion; it is seen to be the

cause of benign tumours becoming cancerous and therefore, life-threatening (Clark, 1991). Most

benign tumours are not life-threatening; nevertheless, consequential damaging effects on an

individual’s health may ensue. As a direct result of potential tumour progression and detrimental

health issues, it is advised that, if possible, benign tumours be surgically removed.

Notwithstanding, benign tumours that have developed in the brain may be lethal owing to the

position of the tumour within the brain, tumour progression and the potential of invading the

surrounding tissue (McKinney, 2004).

When tumours progress the result is malignancy, that is, the formation of cancerous cells. Cancer

malignancies are distinguishable through a variety of characteristics. As mentioned previously,

one of the defining features is that of invasiveness. Metastasis and anaplasia also contribute to

the characteristics that form malignancies of cancer (Wilkins, 2009). Metastasis is the pathogen’s

ability to spread and invade surrounding tissue from the primary to a secondary location, whilst

anaplasia is where cells have deficient cell differentiation, that is, cells are unable to morph from

one cell type to more specialised other cell types, thus losing structural differentiation along the

way. Furthermore, Tuna and Amos (2013) suggest that genome instability is considered a

Stellenbosch University https://scholar.sun.ac.za

13

characteristic of cancer malignancy, while Swanton (2012) reviews the fact that cancers present

with tumour heterogeneity. Uncontrollable and rapid malignant tumour growth can be the outcome

of hereditary defective genetics. The concept of genomics and genes will be reviewed in more

depth in section 2.2.

As mentioned in Chapter 1, cancer remains one of the highest causes of mortalities as well as

morbidities. There is neither a single definitive reason for this, nor a mechanism to prove why

individuals develop cancer; malignancy is more likely an amalgamation of different rationales.

However, research has made associations pertaining to the potential causes of cancer

malignancies. Indications of malignancy development encompass genetics, the individual's

hereditary history, exposure to environmental carcinogens, behavioural risk factors and infectious

diseases. According to Anand et al. (2008), approximately 90-95 percent of cases of cancer,

hence most instances, are due to genetic mutations from exposure to risk and environmental

factors, whereas the remaining occurrences are due to hereditary genetics. It should be noted

that risk factors should not be thought of as inherited but rather refer to behavioural, lifestyle and

economic factors, whilst environmental risks are attributed to pollution and ionising radiation, for

instance. Consequently, some cancers can be prevented and controlled through lifestyle choices.

Prevention, early and accurate detection, prognosis and the correct course of treatment remain

some of the best tools in the fight against cancer. As previously stated, brain tumours account for

many a fatality worldwide. In order to reduce the incidence rates and increase survivability, it is

imperative to have accurate and reliable brain tumour segmentation and detection in cancer

diagnoses. This is a critical component and allows for treatment planning systems which are a

key component in improved patient outcomes and success. Encouragingly, there are numerous

biomedical imaging devices available that have undergone expeditious technological

improvements. This has led to biomedical imaging techniques as an investigational tool becoming

an integral part of clinical applications (Sun, Ng & Ramli, 2011). Accordingly, X-rays, computed

tomography (CT) scans, positron emission tomography (PET) scans and magnetic resonance

imaging (MRI) aid in the detection of brain tumours and if these are present, they can help

differentiate the characteristics. When these conventional diagnostic imaging techniques are

unsuccessful, imaging biomarkers are a solution. An example of this failure is in determining the

margins of a tumour or the changes in the biological structure of the tumour. Hence, biological

imaging can be used as a remedy to the problem.

In addition to early detection, classification and grading of tumours form an integral part of the

prognoses of brain malignancies which have an impact on the survival rates of the individual. This

assists with treatment and management strategies that are put in place. The guidelines

documented by the World Health Organization (WHO) constitute one such classification and

grading system. Brain tumours are categorised by their histological similarities and molecular

Stellenbosch University https://scholar.sun.ac.za

14

structure. The grading range is from WHO grade I through WHO grade IV, from low grade to high

grade, from best prognosis and highest chance of survival to worst prognosis and lowest chance

of survival. To put this into context, an individual with a grade II (first malignant group) subtype of

tumour has a median survival rate of anywhere between 5 and 16 years, whilst an individual with

a grade IV subtype of tumour has a survival rate of between 9 and 12 months. It should be noted

that there are factors that come to the fore, such as age, general health, the size and location of

the tumour, response to treatment and full or partial surgical resection of the lesion (tumour).

Paediatric brain lesions present very different to those in adults. Malignant brain tumours in

children are considered to be the second-highest leading cause of cancers and one of the

principal causes of mortality. A more in-depth review is given in section 2.5.

2.2 THE BRAIN AND GENETIC MAKEUP

The expanding ability to understand genes on a molecular level through sequencing, such as

deoxyribonucleic acid (DNA) sequencing, ribonucleic acid (RNA) sequencing and microRNA,

second-generation sequencing, has facilitated a new understanding of cancer development.

Briefly, Weinberg (1996) describes the cancer process as when cells start to proliferate at their

own rate, that is, the cells start to grow and divide uncontrollably in comparison to normal healthy

cells, which reproduce only when required to ensure the correct number and size. When these

changes occur when the cell divides and the gene is either lost or damaged, it is referred to as a

mutation. In instances where the cells pursue their own guidelines, they may grow irrepressibly

and start to spread from the original position and infiltrate the surrounding tissue (Weinberg,

1996). In essence, what this means is that sequential mutation in genes because of cancer results

in the function of the cell changing (Hassanpour & Dehghani, 2017). Furthermore, mutations

influence the undertakings of proteins, essentially influencing the number; that is, either making

countless proteins leading to cell division or not making proteins at all, usually indicating to a cell

to not divide (Weinberg, 1996; Cancer Research UK, 2020).

An extraordinary occurrence of mutations of the cell lineage (developmental history of cells from

where they originate) within the genome is known as genome instability. From a cancer

perspective, the literature offers contradictory perspectives on when genome instability occurs.

On the one hand, genome instability is a direct repercussion of genetic alterations which lead to

tumour formation or contrarily, happens during tumour progression (Corcos, 2012). In a paper by

Aguilera and García-Muse (2013), genome instability signifies the damage to DNA or defects in

DNA replication and consequently this is linked to chromosome disintegration and loss, genome

rearrangements and hyper-recombinations.

Tumour heterogeneity is defined as the profile of tumour cells, that is, comprising morphological

and physiological aspects (Marusyk & Polyak, 2010). Morphological features are those of the

Stellenbosch University https://scholar.sun.ac.za

15

structure of organisms, whereas physiological features are the study of the function of organisms.

Tumour heterogeneity transpires as intra-tumour heterogeneity (within tumours) as well as inter-

tumour heterogeneity (between tumours). Cancer stem cell (CSC) models can be used to explain

the heterogeneity of tumours. Scientific evidence shows that cancer evolution is necessitated

through only a minimal number of tumour cells that have comparable attributes to stem cells

(Ebben et al., 2010). A study by Singh et al. (2003) provides some evidence of CSC in brain

tumours where, specifically, the brain tumour stem cell self-renewal (the ability to divide and retain

the same cell) is lowest in low-grade gliomas versus medulloblastoma (highest stem cell self-

renewal). This provides alternative strategies and potentially more efficacious cancer treatment

strategies.

Methodologies can be applied to gain insight into tumours and cancer susceptibility. For instance,

cognisance of (brain) tumours can be obtained with the assistance of DNA microarray analysis

through gene expression patterns (Diehn et al., 2008) whilst gene expressions obtained through

microRNAs, in other words alterations of the microRNA expression profiles, can lead to improved

cancer classification and how they react (Lujambio & Lowe, 2012). Hence, when cancerous cells

are dismembered and broken down to their molecular proponents this reveals a great deal about

the causation of cancer (Hanahan & Weinberg, 2000).

The scientific community has engaged in discussions on genetic factors compared with epigenetic

abnormalities and their respective associations with cancer. Concerning brain malignancies, there

is some evidence that there is a germline mutation that is inherited in the tumour suppressor gene

(normalises a cell during division) (Reilly, 2009). Furthermore, the paper by Pan and Prados

(2003) indicate that brain tumours are supplemental to familiar cancers, amongst others Li-

Fraumeni syndrome, neurofibromatosis and von Hippel-Lindau disease. Therefore, there is an

increased risk of brain tumours in individuals as they carry the initial gene that can then mutate.

Epigenetics is defined as hereditary changes in gene expression; however, there are no

alterations in the accompanying DNA sequence (Holliday, 1987). In cancer there are multiple

epigenetic abnormalities in every genome, therefore modifications that are made to genes as a

result of epigenetic processes (such as gene silencing) lead to mutations and therefore,

uncontrolled cell growth and tumour progression (Jones & Baylin, 2007). Jones and Baylin (2007)

conclude that for insight on how cancer develops and for therapeutic interventions, mechanisms

of epigenetics and genetics are prevalent at all the phases of cancer.

2.3 TRADITIONAL DIAGNOSTICS OF BIOMEDICAL IMAGING

The field of biomedical imaging (radiology) has seen exponential developments over time and

recent advancements and consequently many a new application is possible. Therefore, it has

become a critical component that has to lead to interdisciplinary collaboration amongst different

Stellenbosch University https://scholar.sun.ac.za

16

speciality fields. Before moving into the imaging techniques available, it should be mentioned that

biomedical imaging is first and foremost a method and process whereby the interior of the body

is accessed and visualised in the form of a structural or functional image. With the emphasis on

the brain, functional images refer to identifying the principal processes of the brain (the

functionality of the brain), that is, the execution of behavioural or cognition tasks (Le Bihan, 2020).

Conversely, structural images, as the name implies, refer to obtaining visuals of the structure of

the brain, that is, if any abnormalities have formed. For instance, blood clots, bleeding or tumours

which may have developed in the brain, the latter being the primary aim of the analyses of this

research.

Obtaining these images serves a three-fold purpose. The first is for therapeutic reasons; this

entails the process whereby radiation is used in the treatment of cancer. Dependency on MRIs

for image-guided radiation therapy is on the ascendancy, with the intention of more successful

and efficient treatment of malignancies (Jordan, 2020).

The second purpose is for interventional radiology; this is used as support for image-guided

surgeries, for example resecting a brain tumour in the safest way possible.

This third purpose is diagnostic: it assists in the screening of ailments (such as tumours) as well

as not only recommending a treatment plan but also establishing whether the treatment is

working. There is a broad spectrum of diagnostic imaging tools that are at the disposal of

radiologists. X-rays, CT scans, PET scans and MRI scans comprise some of the more common

biomedical imaging tools, but this is by no means an exhaustive list. Confirmation of the colossal

impact these diagnostic tools have had and continue to have is that their respective inventors

received Nobel prizes for their contributions to the fields of physics and medicine (Le Bihan, 2020).

These techniques are considered to be non-invasive as few, if any, surgical incisions are made.

The discussion below is intended to garner insights into the mechanics and workings, the

advantages and disadvantages and the impact these diagnostic tools have had on the

classification, segmentation and detection of brain tumours, in particular. Detecting brain tumours

early on has the added benefit of not only enhancing the survival odds of patients but also being

critical for patient treatment options.

2.3.1 X-rays

X-rays were the first major discovery in the area of imaging back in 1896 (Le Bihan, 2020), paving

the way for medical applications capable of visualising the inner body. The mechanism behind X-

rays is a form of radiation through electromagnetic waves (Attwood, 2000) that produces a visual

of the structure of the inner body. Since X-rays are a type of radiation, they have both positive

and negative implications for cancer. On the downside, exposure to (low doses) of radiation is

detrimental to an individual’s health in that it increases the risk of cancer, identified as radiation-

Stellenbosch University https://scholar.sun.ac.za

17

induced malignancies. Contrariwise, radiation therapy can be used as a treatment strategy and

therefore, therapy in the treatment of cancer. Another shortcoming of early X-ray imaging was

that shadows were created on the images and that only bones could be visualised; however, over

time this has improved significantly (Le Bihan, 2020).

2.3.2 Computed tomography scans

To counter the effects of X-rays, CT scans were invented. This solution introduced the idea of

taking sequences of slices of two-dimensional X-rays that were computed in numerous directions

(Herman, 2009). Hence, CT scans, as the name suggests, make use of X-rays that can be

manipulated and adjusted through the use of computers (obtaining the slices as required). The

advantages of CT scan imaging are that it solved the issue of shadows and secondly, that it

became the first method of visualising the human brain entirely noninvasively (Le Bihan, 2020).

As the primary resource is still X-rays, the knock-on effect is that CT scans are also a source of

increased malignancy risks. According to Hall and Brenner (2008), CT scans are frequently used

and therefore those exposed to the radiation in the underlying X-rays may have an increased

chance of developing cancer - X-rays are a proven carcinogen to humans.

2.3.3 Positron emission tomography scans

PET scans were next on the timeline of diagnostic radiographic tools. Briefly, the underlying

mechanisms of PET scans are radioactive decay and the process by which radiotracers

(radioactive compounds) are injected into the patients' bloodstream (Wong et al., 2003). The

technicality of physics describing in detail how a PET scanner works (id est, positrons and

electrons) is not addressed within this section, as the focus is placed on MRI images due to the

datasets obtained and analysed in Chapter 4.

PET scans are integral to the field of nuclear medicine and as a diagnostic tool for a host of clinical

applications. With cancer in general and the brain in particular, PET imaging has contributed to

cancer diagnosis and management which encompass an extensive list of categories, including

(Bailey et al., 2005):

• Malignancy diagnosis: determining whether a tumour is benign or malignant;

• Malignancy grading: grading of tumours and hence, the garnering of prognosis information;

• Disease staging: the extent of the cancer and how and where it has spread within the body;

• Identifying recurrences: if the cancer is not in remission and has returned;

• Therapy response: determining the efficacy of the treatment, both the initial and adjuvant

therapy.

Stellenbosch University https://scholar.sun.ac.za

18

Anand, Singh and Dash (2009) state that in terms of the points listed above, PET scans in practice

are less consistent in picking up low-grade gliomas versus high-grade gliomas (refer to section

2.4); consequently, this is regarded as a shortcoming of PET imaging.

Concerning the brain, CT scans were only able to reveal lesions in the brain such as tumours but

information on the structure and functionality of the brain was deficient (Le Bihan, 2020).To

produce functional images of the brain radiotracers need to be able to pass the blood-brain barrier

(Berggren et al., 2002) and to secure the image these radiotracers have to stay in the brain for

the full duration (Wong et al., 2003).

2.3.4 Magnetic resonance imaging

Lastly, advancements in technology and the need to solve the issues of all its predecessors led

to the development of the MRI as a diagnostic tool. Images produced by MRI scanning allow

meticulous visualisation of the brain due to the interaction of biological tissue and the quantum

mechanics (applied in physics and chemistry) of MRI machines (Le Bihan, 2020). MRI machines

entail the use of strong magnetic fields and therefore Jordan (2020) describes the core process

as being nuclei that contain magnetised moments, that is, the strength of an object’s ability to

create a magnetic field, to become magnetic and to contain magnetic properties. Hence, the

nuclei of biological tissue and cells that contain magnetic properties show up on the image that is

produced. In particular, water molecules (two hydrogen atoms and one oxygen atom) are the first

components to be magnetised when placed in an MRI machine; that is, the hydrogen nuclei send

a signal which is processed to form the image based on the density of the nuclei that are enclosed

in that area of the body. This creates an ideal scenario in the construction of images, as the

organs in the human body contain more than 70 percent water and even more in the brain (Le

Bihan, 2020), thus making MRI imaging of the brain a commonly used diagnostic instrument.

Stellenbosch University https://scholar.sun.ac.za

19

Figure 2.1: Multimodality MRI images of brain tumours

Source: Usman and Rajpoot, 2017.

Figure 2.1 is indicative of multimodal MRI images of brain tumours where independent relaxation

processes are given in (a) and (b). Panels (a) and (b) represent T1 and T2 relaxation processes,

respectively. A contrast agent has been added to produce image (c), referred to as T1c and finally,

image (d) represents a fluid-attenuated inversion recovery (FLAIR). These categories of images

are analysed in section 4.3 of this research.

Signals that are produced in the construction of MRI images imply that these nuclei should be in

phase with one another (Jordan, 2020). When the nuclei are no longer in phase with one another,

this results in T2 decay (relaxation) whilst when the nuclei return to the state of equilibrium this is

referred to as T1 relaxation (Jordan, 2020). T1-weight images are generated where the shortest

repetition time (TR) and time to echo (TE) are used; on the contrary, T2-weighted images are the

result of using longer TR and TE times (Preston, 2016). The time lapse between when the echo

receives the signal and when the radio frequency pulse is sent is known as the TE time, whilst

the TR time is defined as the period that is observed when consecutive pulses are transmitted to

the same slice (Preston, 2016). T1c depicts a T1 image but where a contrast agent is injected

during the scan. With regard to medical images, adding a contrast allows for enhancements of

Stellenbosch University https://scholar.sun.ac.za

20

the structure of the bodily area under observation (Ruba et al., 2020) by reducing the T1 signals

through the use of gadolinium, a non-hazardous contrast agent (Preston, 2016). Finally, FLAIR is

the procedure by which the signals that are produced from fluids is either nullified or significantly

diminished through inversion recovery (Hajnal et al., 1992). Inversion time (TI) is defined in

Bernstein, King and Zhou (2004) as being the time lapse observed between a radio frequency

pulse and the inversion pulse. The nullification of fluids can be decided upon by how the TI time

is selected, as expressed by the formula (Bernstein, King & Zhou, 2004):

𝑇𝐼𝑛𝑢𝑙𝑙 = 𝑇1 ln 2 𝑎𝑠 𝑇𝑅 → ∞ (2.1)

For instance, with brain images attempts are made to nullify the effects of cerebrospinal fluid,

therefore the aim is to signal fat over water, thus a long TI time is required.

Table 2.1 represents low and high signals that are obtained using different MRI modalities as

described above, that is T1-weighted, T2-weighted and inversion recovery (FLAIR) images for

different tissues, illnesses or how paramagnetic contrast agents react.

Table 2.1: Signals from different tissues/illnesses/contrast agents on T1-weighted, T2-

weighted and FLAIR MRI images

Signal T1-weighted T2-weighted Inversion recovery
(FLAIR)

Low Bone Bone

Air Air

Tissue with more water
content, such as
tumours, inflammation
and infections

Protein-rich fluids

High Fat Tissue with more water
content, such as
tumours, inflammation
and infections

Multiple sclerosis

Subacute haemorrhage

Protein-rich fluids Meningitis

Contrast agents, id est,
gadolinium and copper

Melanin Subarachnoid
haemorrhage

Slow-flowing blood

Source: Johnson, no date; Mamourian, Hoopes and Lewis, 2000; van der Kolk et al., 2013;

University of Wisconsin, 2017.

In conclusion, based on the information in Table 2.1 above and Table 2.2 (a list of the advantages

and disadvantages) below, the promising advancements in MRI imaging have made it a firm

favourite with physicians. The advancements include the developments in computing power (and

hardware) to bring MRI image visualisation to the forefront in interdisciplinary research. Therefore,

MRI imaging as a diagnostic tool addresses multiple analyses in clinical oncological applications,

Stellenbosch University https://scholar.sun.ac.za

21

from identifying the existence of tumours and classifying the type of tumour to assessing the

effectiveness of therapy response (refer to the last bullet point in section 2.3.3) (Louis et al., 2007;

Cai & Hong, 2018). Furthermore, as Jordan (2020) explains, the progress has made new

applications possible, for instance using MRI as a tool for image-guided surgeries and

interventions as well as focused ultrasounds. However, certain tumour types such as gliomas

(refer to section 2.4) infiltrate the brain and thus traditional imaging tools are not optimal (Price &

Gillard, 2011). The authors therefore suggest making use of biomarkers to investigate the

pathological changes (that is, changes in the nature of the disease) that occur within brain

tumours. Additionally, this makes allowance for determining the margins of the tumour and

consequently, for planning the best course of treatment to be followed (Price & Gillard, 2011).

Table 2.2: Advantages and disadvantages of MRI imaging

Advantages Disadvantages

Less of a financial burden (reduction in costs) and
more readily available

Burns from energy disposition

Avoiding exposure to ionising radiation Much louder (auditory loss in patients) than other
imaging modalities

Higher spatial resolution in images Patients with medical implants made of metal are
unfit to undergo an MRI scan without danger

Segregating soft tissue with more efficacy

Discriminating between healthy and diseased
tissue (in malignancy - cancer-related illnesses)

Source: Sheejakumari and Sankara Gomathi, 2015; Grover et al., 2015;

Panych and Madore, 2018; Jordan, 2020.

2.4 BRAIN TUMOURS DISSECTED

Classification of brain tumours, with emphasis on malignant cases, reveals information about the

prognosis and guides a treatment strategy. Depending on the type of tumour, the classification

also indirectly indicates the 5-year survivability percentage and the chances of remission. It should

be noted that each case presents unique features and is dependent on many factors (behavioural

risks, age, comorbidities, et cetera) and as a result each case should be handled on its own

merits, with the available statistics used as a guideline. As mentioned, brain tumours (benign or

malignant) are exceptionally rare and due to the protected location in the brain, treatment options

can result in lasting damage, morbidity and in some instances even mortality. One of the main

attributes that brain tumours have compared to other tumours is related to the distinctive features

of the brain as an organ and that is the blood-brain barrier (BBB). Separation of the central

nervous system (CNS) and the peripheral circulation is created as a result of the BBB composition

(Obermeier, Daneman & Ransohoff, 2013). Hence, the BBB acts as a mechanism to protect the

Stellenbosch University https://scholar.sun.ac.za

22

brain from fluids (pathogens) that carry infectious diseases being circulated through and into the

CNS. Therefore, brain tumours result from an interference of the BBB (Herholz et al., 2012).

Brain tumours are diagnosed and classified according to a few characteristics as documented by

the WHO. In 2016, the revised WHO document indicated that tumours should be classified or

diagnosed according to molecular parameters in addition to the original criterion of only

microscopic histological similarities, with supplementary information provided through genetic

status (Louis, Perry, Reifenberger, von Deimling, Figarella-Branger, Cavenee, Ohgaki, Wiestler,

Kleihues & Ellison, 2016). Furthermore, it is imperative that cancerous brain tumours are graded

according to the associated malignancy. With the 2016 addendum, these grades are categorised

as WHO grade I through WHO grade IV. The scale indicates that grade I tumours have the best

prognoses due to being the least advanced (benign) through to grade IV tumours that have the

worst prognoses as they are the most aggressive (highest malignancy) form of cancer.

Table 2.3 shows the four grading classes of brain tumours according to the WHO (2016), where

Grades I and II are described as low-grade tumours whilst Grades III and IV constitute high-grade

tumours. Moreover, the evaluation of tumours and eventual determination of the grade of the

tumour are based on the parameters for the differentiating categories listed along with limited

tumour subtype examples.

Primary tumours (id est, tumours that originally occur in the brain or surrounds) are grouped

according to glial (containing glial cells) or nonglial (based more on the structure of the brain such

as blood vessels and nerves) (American Association of Neurological Surgeons, 2021). The focus

in future will be placed on brain tumours that originate in the glial cells, more commonly referred

to as gliomas. Moreover, glial tumours can be subdivided into astrocytic and oligodendroglial

subtypes (Kleihues & Cavenee, 2000) and this is determined from the histological features’

similarities that are detected in particular cells. Deweerdt (2018) states that in adults gliomas are

the principal form of brain cancer and the existence of two genetic alterations. The first is the

possibility of a gene mutation which is known for energy production in cells (a phenomenon known

as enzyme isocitrate dehydrogenase: IDH); the second is the result of co-deletion (loss of part of

the genome) (Deweerdt, 2018). Gliomas are responsible for 30 percent of all CNS, including brain

tumours, together with the grim statistic of accounting for 80 percent of malignant tumours

(Goodenberger & Jenkins, 2012). With regard to genetics and whether there is a link between

family hereditary risks and cancer, studies have concluded that specified mutations can be

associated with the disease. In particular, according to Deweerdt (2018), 5-8 percent of gliomas

are a consequence of family genetics.

As indicated in Table 2.3, these types of tumours can be either low-grade or high-grade. In the

case of oligodendroglial tumours, an example of a low-grade tumour is oligodendroglioma, whilst

a high-grade instance is that of anaplastic oligodendroglioma. As previously mentioned, WHO

Stellenbosch University https://scholar.sun.ac.za

23

grade IV tumours have the poorest prognoses and consequently, the lowest survival rate; this is

confirmed as the survival is approximately 9-12 months in the case of glioblastomas (Maher et

al., 2001). These survival rates differ from paper to paper. Bleeker, Molenaar and Leenstra (2012)

show that grade III tumours have a slightly higher survival rate of 3 years but still significantly

worse than low-grade tumours. There is more optimism about the prognoses and subsequent

survival rate of low-grade tumours. Varying survival rates are given for low-grade (WHO grade II)

tumours, ranging from approximately 11-17 years according to different studies. However, this

said, about 70 percent of low-grade (WHO grade II) gliomas will progress within 5-10 years to

grades III and IV (Maher et al., 2001).

Table 2.3: Grading of brain tumours (lesions) according to the WHO (2016) with case

examples

Grading Parameters/Characteristics Tumour examples

Low-Grade WHO Grade I Least malignant, hence
actually a benign tumour

Meningioma

Low proliferation index: low
tumour progression; high
therapy response; higher
survival rates

Plastic astrocytoma

Resection via surgery should
allow for complete
rehabilitation

Ganglioglioma

Noninfiltrative: does not
invade surrounding tissue

Angiocentric glioma

WHO Grade II Infiltrative to a certain
degree: usually invades
surrounding tissue

Astrocytoma (low-
grade fibrillary
astrocytoma)

Low proliferation index Oligodendroglioma

Tumour progression:
advance to higher
malignancy grades

Extraventricular
neurocytoma

High-Grade WHO Grade III Histological evidence and
obvious malignancy

Anaplastic
Oligodendroglioma

Infiltrative Choroid plexus
carcinoma

Exerts tumour progression Anaplastic
ganglioglioma

WHO Grade IV Highest malignancy category Glioblastoma

Extensive infiltration index Pineoblastoma

Aggressive and rapid growth
rate

Medulloepithelioma

Source: Louis, Ohgaki, Wiestler, Cavenee, Ellison, Figarella-Branger, Perry, Reifenberger &

von Deimling, 2016; American Association of Neurological Surgeons, 2021.

Stellenbosch University https://scholar.sun.ac.za

24

Figure 2.2 represents the different types of brain tumour per age group associated with the

number of instances per 100 000 of the population in the United States of America. The incidence

rates were obtained from the period 1992-1997 and collected via the Central Brain Tumor Registry

of the United States (CBTRUS).

Figure 2.2: Incidence rates of brain tumours by histological type

Source: Wrensch et al., 2002.

The analysis performed in Chapter 4 section 4.3 considers the classification of low-grade gliomas

versus high-grade gliomas.

The subsections below will offer some insight into some of the tumour types, their genetic make-

up, prognoses and treatment strategies that can be applied.

2.4.1 WHO Grade I tumours

WHO Grade I tumours are defined as mostly benign, slow growing, generally fully resected via

surgery and seldom showing signs of progress to malignancy. Herholz et al. (2012) suggest that

Grade I gliomas are more frequent in children than adults.

Stellenbosch University https://scholar.sun.ac.za

25

2.4.1.1 Ganglioglioma

As mentioned before, gangliogliomas are associated with being rare, low-grade tumours that grow

slowly and do not invade surrounding tissue. Only about 1-2 percent of brain tumours are

categorised as gangliogliomas, which is indicative of the rarity of the tumour type, with the majority

of cases found in children (Brain Tumour Research, 2021).

The structure of gangliogliomas is mixed cell as they contain both glial cells and neuronal cells

(Boston Children's Hospital, 2005-2021). Treatment is via surgical removal of the tumour and in

95 percent of the cases this is fully resected and the tumours are inclined to not reappear (Brain

Tumour Research, 2021). Factors such as location, size and genetic alterations are also

considered as factors in surgical removal.

From a genetic point of view, two different mutations are present in gangliogliomas. Firstly, studies

have shown that roughly 10-60 percent of this type of tumour contains the BRAF V600E genetic

mutation (Brain Tumour Research, 2021). Furthermore, the mutation of the tumour protein p53

has also been found in the glial cells of gangliogliomas (Brain Tumour Research, 2021).

2.4.2 WHO Grade II tumours

WHO grade II tumours infiltrate surrounding tissue to a certain extent and usually progress to

WHO grades III and IV. WHO grade ll tumours tend to have higher survival rates than WHO

grades III and IV.

Taking genomes into account, IDH mutation, as well as the 1p and 19q co-deletion, is observed

in oligodendrogliomas, whilst the structure of astrocytoma is the presence of the IDH mutation but

the 1p and 19q co-deletion remains unbroken (Deweerdt, 2018).

2.4.2.1 Low-grade fibrillary astrocytoma

For all intents and purposes, astrocytoma refers to low-grade fibrillary astrocytoma (WHO grade

II tumours). Astrocytoma brain tumours, at least the low-grade form, are more frequent in young

adults, whilst the higher-grade astrocytomas are prevalent in more senior individuals.

From a genetic perspective, astrocytomas have the IDH gene mutation but the 1p and 19q co-

deletion remains intact.

Treatment is an ongoing source of disagreement amongst neuro-oncologist colleagues; some of

the literature suggests that surgical intervention improves a patient’s outcome (survival rate) whilst

other sources are of the opinion that surgical intervention should be postponed or not take place

if the illness is correctly managed (Bampoe & Bernstein, 1999). Surgery is complicated and may

not be a viable option due to the vast area these tumours invade within the brain; as a nonsurgical

intervention radiation therapy has produced the most effective outcomes (DeAngelis, 2001).

Unfortunately, most astrocytoma brain tumours progress to more malignant gliomas (DeAngelis,

Stellenbosch University https://scholar.sun.ac.za

26

2001), that is, WHO grade III and IV tumours result. The literature gives varying percentages for

survival rates, with the median survival being 5 years; however, in some instances patients pass

away early on although other patients survive for more than 8 years (Vertosick Jr, Selker & Arena,

1991). The main reason for early mortality and a low survival rate is tumour progression.

2.4.2.2 Oligodendroglioma

In the majority of oligodendroglioma cases that are diagnosed, they can be categorised as low-

grade tumours where there is some doubt in differentiating this type of tumour from astrocytomas

(DeAngelis, 2001). Hence, due to the difficulty in classification through diagnostic imaging tools,

biopsies are performed for definitive diagnoses. Thus, the histological parameters (gene

mutations or molecular changes) are critical when diagnosing these tumour types.

Notwithstanding, imaging tools are used to determine the location and the size of the tumour.

Oligodendrogliomas constitute roughly 5 percent of all malignant brain tumours (DeAngelis,

2001).

Barbashina et al. (2005) state that there is a 70-85 percent loss in the 1p deletion in combination

with 19q deletion. Furthermore, a study by these authors shows that in 83 percent of cases there

is a mutation in the 1p gene, whilst in 72 percent of cases there is a mutation in the 19q gene.

Hence, the 1p and 19q mutations are a vital criterion when diagnosing, and determining a

prognosis for, oligodendroglioma tumours.

Treatment systems for oligodendroglioma tumours are of concern. Some studies show that

current treatments are not useful and therefore treatment is postponed until serious health issues

occur in patients or there are signs of tumour progression (DeAngelis, 2001). That is, due to an

increased risk of morbidity accompanying surgery, chemotherapy or radiation will be deferred and

only symptoms will be treated. Surgical resection of oligodendroglioma tumours is generally not

a viable option due to tumours infiltrating surrounding tissue. Traditional treatments do not

increase the overall survival of patients with this type of tumour. Should the need arise, traditional

treatment plans can be administered but studies have shown that irrespective of the treatment

used, the outcome (patient survival) is not affected (DeAngelis, 2001). According to research the

median survival rate of patients with oligodendroglioma tumours can vary from 10 years to 16

years (Olson, Riedel & DeAngelis, 2000; DeAngelis, 2001).

2.4.3 WHO Grade III tumours

WHO grade III tumours are known to invade surrounding tissue and can result in tumour

progression to grade IV.

Stellenbosch University https://scholar.sun.ac.za

27

2.4.3.1 Anaplastic oligodendroglioma

Once a patient has been diagnosed with anaplastic oligodendroglioma, a treatment strategy is

required. The standard procedure is neurosurgical removal of the malignant tumour followed by

chemotherapy. Surgery is dependent on the location of the tumour. In most cases, oncologists

will first determine whether the tumour (partial in the case of unsuccessful full resection) is

responding to the chemotherapy before administering radiation therapy (DeAngelis, 2001). The

statistics proposed by Liu et al. (2019) indicate that the 5-year survival rate for patients with

anaplastic oligodendrogliomas is 50.2 percent, whilst the 10-year survival rate is 36.2 percent

compared to a significantly higher 1-year survival rate of 78.7 percent.

Anaplastic oligodendrogliomas originate in the glial cells. As mentioned, anaplastic

oligodendrogliomas have genetic mutations or deletions; these comprise the IDH mutation as well

as the 1p and 19q co-deletion.

2.4.4 WHO Grade IV tumours

These tumours are categorised as the most aggressive and the fastest-growing malignant

tumours. They present with an extensive ability to infiltrate surrounding tissue and often recur.

WHO grade IV tumours are also the most malignant, with a dire survival rate and prognosis.

2.4.4.1 Glioblastoma

Glioblastoma is the most aggressive form of malignant brain tumours. Of all brain tumours, 15

percent are glioblastomas, and no less than 80 percent of malignant gliomas are classified as

glioblastomas (Radhakrishnan et al., 1995; Ostrom et al., 2014). Additionally, glioblastomas

account for 60-75 percent of all astrocytic tumours as well as approximately 46 percent of primary

malignant tumours (Ostrom et al., 2014). The prognosis for brain cancer is ominous with an

extremely low survival rate, even more so if the patient does not receive treatment. To put this

into context: approximately 5 percent of patients survive for more than five years (Gallego, 2015).

The prescribed course or standard treatment for patients that have glioblastoma is surgery (partial

or full resection) followed by adjuvant therapy. This is usually chemotherapy or radiotherapy.

However, due to the increased chance of reoccurrences, surgical procedures might not be a

viable option the second time around and therefore nonsurgical options are also considered

(Gallego, 2015) along with immunotherapy (National Cancer Institute, 2018). The treatment of

glioblastoma is aggressive and those that do survive for longer than the median survival rate of 1

year are patients where complete resection of the tumour is possible and the generalisation is

that these patients are young and in decent health (DeAngelis, 2001). Treatment may also result

in lasting damage to the brain and indirectly to the health of the patient. Furthermore, according

to Gallego (2015), the incidence rate is that 3.19 cases per 100 000 people are susceptible to

developing glioblastomas per year.

Stellenbosch University https://scholar.sun.ac.za

28

The structure of primary glioblastomas (also known as IDH-wildtype glioblastoma) consists of two

mutations in the genes: firstly, the p16 deletion (associated with the growth factor receptor) and

secondly, mutations in phosphatase and tensin homologues (DeAngelis, 2001). Furthermore,

secondary glioblastomas (referred to as IDH-mutant glioblastoma) have mutations in the p53

gene along with other alterations (DeAngelis, 2001).

2.5 PAEDIATRIC BRAIN TUMOURS

Paediatric brain tumours account for the majority of solid tumours in children (Baldwin & Preston-

Martin, 2004; Subramanian & Ahmad, 2020), while being the second-highest source of paediatric

malignancies after leukaemia (Zahm & Devesa, 1995; Subramanian & Ahmad, 2020). Moreover,

as mentioned before, paediatric brain tumour malignancies (cancer) are the primary cause of

mortality amongst children. This continues to be the case although there has been significant

progress in surgical techniques and adjuvant therapy, that is, cancer treatments administered

after initial treatment - for instance, chemotherapy, radiation therapy and hormone therapy (Singh

et al., 2003).

Globally, the incidence and survival rates of children with paediatric brain tumours are different.

A study by Johnson et al. (2014) summarises the incidence and survival rates for different nations

associated with varying periods, breaking down the rates by age, type of brain cancer (histology),

gender and per 100 000 of the childhood population. Some of the rates are computed with a 95

percent confidence interval. This means that with 95 percent certainty, the true population mean

will be contained in the interval. For instance, the overall incidence rate for all central nervous

system (CNS) paediatric brain malignancy tumours in Europe at the time of the study was 2.99

cases per 100 000 children, whereas Japan had a slightly higher overall incidence rate of 3.61

cases per 100 000. The incidence rate for all CNS tumours in the age category 0-4 years

contributed the greatest number of cases per 100 000 in Europe, whilst for Japan the age

category was 5-9 with a rate of 4.09 per 100 000. The same study shows the survivability rates,

with the prediction often made after 5 years, known as the 5-year survival rate. Conversely, the

study alludes to different survival periods, such as 1 year, 5 years and 10 years, along with a

specified confidence interval of 95 percent for some regions. For example, for all CNS tumours in

the United States of America having a favourable prognosis declines from a 1-year survival rate

to a 10-year survival rate. That means that the percentage of children with CNS tumours that are

alive (whether the cancer is in remission or not) after 1 year (85.2 percent) is remarkably higher

than 10 years (68.2 percent). There is not much difference between the 5-year survival rate (72.3)

and the 10-year survival rate.

Prognoses and survival rates vary greatly. Determining the prognoses of paediatric brain cancer

involves a multitude of factors that include the location of the tumour, the degree to which the

Stellenbosch University https://scholar.sun.ac.za

29

tumour has been resected and the classification (referred to as the histological type) of the

tumour; establishing these is advantageous in terms of survival rates and survival odds.

Classification (histological type) of brain tumours in children is significantly different to that of

adults where the categories are usually supratentorial tumours, infratentorial tumours and

congenital brain tumours (Herholz et al., 2012).

As pointed out in the introduction of this chapter, there is no direct understanding of why brain

tumours develop in children, even with all the medical expertise and resources that are available.

Moreover, it is not a single factor that is at play but a combination of factors, be it genetics and

environmental carcinogens or infectious diseases.

Firstly, with regard to infections, research conducted to ascertain whether early childhood

infectious exposure leads to an increase or a decrease in paediatric brain tumour risk has led to

opposing views. Harding et al. (2009) theorise that infants who have come into contact with other

children daily (id est, attended kindergarten) within the first two years do not have a significantly

increased risk of developing CNS tumours compared to those who have not been around other

children. Furthermore, the authors conclude that based on their findings there is no evidence to

support the hypothesis that young children who have been exposed to infections have an

increased risk of developing brain tumours. On the other hand epidemiological studies (Linet et

al., 1996; Linos et al., 1998; Dickinson, Nyari & Parker, 2002; McNally et al., 2002) do point to an

increased risk of paediatric brain tumours and some association between paediatric brain tumours

and infectious diseases that young infants (within the first few months of life) have been exposed

to.

Children exposed to environmental factors are at increased risk of paediatric brain tumours. The

environmental factors that are responsible for malignancies in adults are identical to those in

children. Exposure to high-dose radiation is associated with being the most frequent reason for

augmented childhood cancers, such as leukaemia and brain cancer (Zahm & Devesa, 1995).

Lastly, links between genetics (hereditary family history) and the chance of developing a certain

histological type of brain cancer have been proposed. Hereditary genetic defects are responsible

for instigating 40 percent of all instances of specific medulloblastomas, one of the most detectable

cancer malignancies in children (European Molecular Biology Laboratory, 2020).

The sustained improvements in biomedical imaging (refer to section 2.3) lead to early and efficient

detection of paediatric brain tumours. Therefore, treatment strategies can be decided upon

accordingly. There are several traditional treatment options available, amongst others, surgery

(depending on the location of the brain tumours, full or partial resection is possible), chemotherapy

and radiation therapy. However, according to Griesinger et al. (2013), there have been limited or

no improvements in these treatments with detrimental side effects; as a consequence, the

Stellenbosch University https://scholar.sun.ac.za

30

researchers’ proposed solution entails the use of immunotherapy. Their lab studies discovered

that children that had host immunity had improved odds of survival for certain histological brain

tumours. Immunotherapy is a process where an artificial imitation of the immune system is created

as a means to allow the natural immune system to fight cancer more effectively.

2.6 SUMMARY

Brain tumours are somewhat rare; nonetheless, malignancies in brain tumours remain a cause

for concern and present challenges due to their high morbidity and mortality rates. Lesions, both

benign and malignant, as well as the different grades as determined by the WHO guidelines have

been highlighted in this chapter. Differentiating or classifying tumour types is a fundamental

aspect of this research in that benign versus malignant tumours, as well as low-grade versus

high-grade gliomas, are investigated and analysed in Chapter 4. However, questions about the

causes of brain tumours - and cancer in general - are still unresolved. Due to the advancements

in the research arena, insights are being gained into the causation, with evidence suggesting

factors that contribute to malignancies. These range from environmental (including behavioural)

risks to hereditary features. Exposure to ionising radiation (environmental carcinogen) increases

the risk of being susceptible to brain tumours that may progress to more malignant stages.

Hereditary genetic risk factors, such as carrying an initial cell mutation from familial cancer

syndromes that cause brain tumours, are also a reason for malignant brain tumour vulnerability.

Moreover, hereditary factors include genome instability - the process of uncontrolled mutation of

the cell lineage - hence leading to genetic alterations which are associated with damage to the

DNA or defective DNA replications. Epigenomic studies suggest that genes that undergo

epigenetic procedures result in alterations to the gene expression which then impacts cell

mutations and hence uncontrolled growth of tumours occurs. Thus, a predominant property of

cancer is the alteration of gene expression patterns. Observing the alteration of genes has been

made possible through sequencing techniques such as DNA sequencing, RNA sequencing,

mircoRNA sequencing and second-generation sequencing. These methodologies have allowed

for knowledge to be gained about an individual’s susceptibility to cancer but also the mechanics

of how tumours develop and behave. Gene expression profiling also contributes to the

classification of tumours. Genetics and gene expressions have been discussed in this chapter to

highlight the link between brain cancer and familial conditions and which mutations in genes may

result in cancer. While not explicitly made use of in this research, it constitutes potential future

research.

To devise strategies for the treatment and management of brain lesions, early and accurate

detection remains a crucial undertaking. This applies to both adults and children, even though the

appearance of malignant brain tumours varies. Because of the rarity of brain tumours and their

Stellenbosch University https://scholar.sun.ac.za

31

protected location in the skull, even with surgery full resection may not be possible and as a result

patients may suffer long-term effects and permanent damage. Additionally, brain tumours have

one of the highest mortality and morbidity rates of all the malignancies (cancers). Numerous

diagnostic imaging tools are available and have gone through exponential advancements to

produce images with astonishing detail that could be lifesaving. These imaging techniques have

been discussed in this chapter, with emphasis upon the different multimodalities of MRI images

owing to the fact that the data containing low-grade versus high-grade gliomas evaluated in

Chapter 4 rely on the understanding of T1-weighted, T2-weighted, T1c and FLAIR MRI images.

In addition, the malignant versus benign brain tumour data that are also studied and analysed in

Chapter 4 make use of MRI images. Unfortunately, even with all the technology and treatments

available, malignant brain lesions have dire prognoses and survival rates.

The expertise of radiographers and physicians (oncologists and radiologists) to make these

diagnoses is heavily relied on, yet it is a labour-intensive, time-consuming and momentous task.

Fortuitously, with the prominence and emergence of biomedical imaging and the era of ‘big data’,

advancing the development of more automated, or at the very least semi-automated, analyses

has been gaining importance. Nevertheless, one of the main persistent challenges, not only in

the field of bioinformatics but also in other realms, is that of transforming the copious amounts of

data into knowledge and insights that are of benefit (Min, Lee & Yoon, 2017). AI has risen to

prominence due to imaging modalities producing ‘big data’ (large quantities of data) but they have

the added benefit of high performance, thus producing significantly accurate results. As to imaging

techniques, deep learning and machine learning methodologies that can handle pattern

recognition are gaining traction and receiving more attention. ML and DL algorithms have been

influential in the field of bioinformatics; the focus of this research is biomedical imaging as a means

to solving the research questions as well as complementing the expertise of physicians. The next

chapter (Chapter 3) delves into the theoretical concepts of image classification in addition to the

core principles of what AI, ML and DL entail. These techniques are investigated and explored as

they have shown promising results and high performance in the literature on the classification of

brain tumours (discussed in the following chapter). Furthermore, these techniques are then

applied to the biomedical imaging data (benign versus malignant brain tumours as well as low-

grade versus high-grade gliomas discussed in Chapter 4) to distinguish between and classify

these images with what is hoped will be high levels of accuracy.

In conclusion, the brief theoretical and conceptual discussion of the differences between benign

and malignant tumours as well as the different gradings, especially in the realm of brain lesions,

serves to facilitate the exploration and analysis of the biomedical data in Chapter 4 of this research

study. In addition, how these images are obtained is useful for understanding the principles for

their use in the analyses - that is, the inherent features of biomedical images and what procedures

Stellenbosch University https://scholar.sun.ac.za

32

should be followed in order to obtain high performing classification results. Furthermore, this

chapter provides an introduction as to which AI (ML and DL) techniques can be used to classify

brain tumours, which are theoretically discussed in the next chapter.

Stellenbosch University https://scholar.sun.ac.za

33

CHAPTER 3

STATISTICAL APPROACH TO IMAGE CLASSIFICATION

3.1 INTRODUCTION

ML and DL algorithms have been influential in the field of bioinformatics, from genomics to

biomedical imaging and biomedical signal processing, as a means to solving research questions

as well as complementing the expertise of physicians. Figure 3.1 is a visual of a keyword co-

occurrence network map. That is, the frequency with which techniques and technologies that are

related to cancer are used in the research field. Each keyword in the figure is represented by a

node (circle). Moreover, the magnitude (size) of the node is directly proportionate to the rate of

occurrence of the keyword. In other words, the bigger the circle, the more prominent the search

and applied techniques are. Additionally, the connection (lines) between the nodes is indicative

of the relationship that occurs between the two keywords (in question) in the same article (or

publications) in which it appears (Wang et al., 2019). Furthermore, Wang et al. (2019) specify that

the scale of colours within the node represents the keywords appearing in the same year. What

is evident from Figure 3.1 is that the network is densely populated and the connections between

the nodes are relatively strong. This means that in this area of research, most articles or

publications investigate more than one topic. Some concluding remarks include that in cancer

research, amongst researchers, breast and prostate cancer dominate the field. Additionally, with

regard to the emerging technologies applied in cancer research, the observation is that

classification is a significant task that is performed and where ML algorithms, data mining, robotics

and SVMs come to the fore.

The techniques that are used in the empirical evaluation of brain lesions (in Chapter 4) and

theoretically discussed (in this chapter) are those of 𝑘-NN, SVMs and NNs. Furthermore, there is

a connection that shows that within the ML framework of techniques, SVMs seem to prevail (refer

to Figure 3.1). In other words, SVMs are the preferred methodology amongst researchers.

Stellenbosch University https://scholar.sun.ac.za

34

Figure 3.1: Keywords co-occurrence network

Source: Wang et al., 2019.

With the revolution of big data and being able to access unprecedented volumes of data, the

value of the data is no longer in the raw form but in transforming data into valuable knowledge.

This chapter delves into the theoretical approach to classification - that is, methods that can be

applied to the classification of brain lesions in the empirical section (Chapter 4). A focal point is

pattern recognition, where there are two (in this case) categories. The ideal would be to be able

to sort the images into particular classes or labels and this is where classification comes in, that

is, whether the image is a brain lesion or not or whether the patient has a low-grade or a high-

grade glioma. Hence, the classification is of similar objects in the image which are not necessarily

identical but with some inherent features that can be used to distinguish the classes. For instance,

the location in the brain of the tumour might not be identical for each patient. These medical

images form the base of numerous medical decisions and assist to support diagnoses and plan

treatment systems as well as follow-ups.

Presently, AI is at the forefront of learning from raw data and transforming it into valuable

information. DL is said to produce more successful and powerful results than the more traditional

ML techniques, such as 𝑘-NN and SVMs. Hence, CNNs have gained traction both in terms of

research applications and in practice. The focus is on CNNs as a specialised type of NN due to

their ability to handle image data which forms the goal of the analyses section. These

methodologies have been developed through the imitation of the human brain. One of the major

issues of these techniques is that in spite of the levels of accuracy that can be achieved they

suffer from interpretability (explanatory) issues. In the medical field this presents a challenge as

Stellenbosch University https://scholar.sun.ac.za

35

there is a need to build models that bolster understanding and explanations of the AI model and

do not merely serve as a means of solving pattern recognition tasks and problems.

3.2 CLASSIFICATION, PATTERN RECOGNITION AND IMAGE CLASSIFICATION

Classification in the general sense of the word is a task that encompasses numerous human

activities. In other words, classification is a process of an individual’s ability to recognise objects

based on mutual similarities and then classify these objects into different classes based on their

collective features, traits or some other criterion. This is a practice that is intended to simplify the

understanding of how and why objects are grouped. As Michie, Spiegelhalter and Taylor (1994)

put it, classification is a task in which when given a new situation, individuals will make a decision

or forecast repeatedly via a classification procedure based on current knowledge or information.

The definition here will be constrained to focus on the meaning of classification in the statistical

setting. The definition is two-fold. Firstly, for a given set of data points, the goal is to detect and

then determine the classes or clusters in the data. Secondly, classification in statistics is a method

whereby a rule (procedure) signifies how new instances are classified or assigned to a pre-defined

set of classes (Michie, Spiegelhalter & Taylor, 1994). Predicting these new instances is usually

based on similarities in the features of the appropriate class and the new instance. The former is

a rule that invokes clustering or unsupervised learning, whilst the latter definition is supervised

learning. These concepts become clearer in section 3.3.1. In this research the focus is on the

second definition of statistical classification, namely on predicting which class a new instance

belongs to. Taking a step back, usually the pre-defined classes are data points (generally the

training dataset) that are analysed into classes based on having quantifiable properties. For

example, these measurement scales of data types are nominal, ordinal, interval and ratio.

Nominal data are classificatory, meaning that the classes are distinguishable from one another;

eye colour is an example of this data type. Ordinal data are not quantitative data but rather data

that have some sort of logical order, for example, WHO grade I through WHO grade IV brain

tumours. Grade I brain lesions have the best prognosis, whilst grade IV tumours have the worst

prognosis. Interval data are a quantitative data type with emphasis on both the order and the

difference in measurements, which can be computed on the interval scale; an example is

temperature (degrees in Celsius). Lastly, ratio scale data have a meaningful zero point, for

example, height. Additionally, referencing section 3.3.2 (𝑘-NN) makes use of a distance function

to categorise new instances in pre-defined classes. A classifier is a name given to an algorithm

that implements classification tasks.

As mentioned, in this research, in the statistical setting of classification, the focus is on predicting

new instances using pre-defined classes. The rationale is that in Chapter 4 the two datasets have

pre-determined classes. The one dataset consists of patients with tumours versus patients without

Stellenbosch University https://scholar.sun.ac.za

36

brain lesions. On the other hand, the other dataset essentially is about distinguishing low-grade

glioma from high-grade glioma. The patients have already been diagnosed accordingly.

Determining which classifier to use is a fundamental aspect. Some aspects should be considered

when choosing a classifier, namely (Michie, Spiegelhalter & Taylor, 1994):

• Accuracy: the performance of the classifier – in some cases, misclassifications can lead to

disastrous repercussions, thus the need to govern the error rate;

• Speed: the speed of a classifier can be of importance in practice, when time is of the

essence and not a luxury – sometimes it might be worth sacrificing accuracy for time;

• Comprehensibility: the classifier needs to be understood by individuals that need to

implement it in practice;

• Time to learn: in practice, in fast-changing environments it might be necessary to adjust the

classifier in a short space of time. It can also include situations where only limited data are

available.

Classifiers in research have been categorised into four main branches, namely classical statistical

approaches, data mining, ML and NNs (or neural computation) (Michie, Spiegelhalter & Taylor,

1994; Dougherty, 2013). Naïve Bayes, linear discriminant classifiers, decision tree-based and

rule-based classifiers, 𝑘-NN, SVMs and NNs, to name but a few, are classifiers that can be applied

and implemented. This research concentrates on 𝑘-NN, SVMs and NNs. These concepts are

discussed in more detail, from a conceptual and theoretical perspective to implementation (for

MRI brain lesions), in the succeeding sections (3.3; 3.4) and Chapter 4. Furthermore, section 3.5

is indicative of how these classifiers have successfully been employed in the literature. The

objectives of these classifiers have commonalities in that they (Michie, Spiegelhalter & Taylor,

1994):

• At the very least, mimic or even outperform human decision making;

• Are generalisable, handling large datasets in a wide variety of applications;

• Have proved to be successful and practical.

Pattern recognition is considered as the generalisation of classification and clustering problems.

Briefly, as with classification, humans use patterns as a way to interpret the world. However, from

a pattern recognition standpoint this is an automated way of interpreting patterns and symmetries

in a dataset utilising computer algorithms and then proceeding to use this information in

classifying the data into distinct classes (Bishop, 2006). Pattern recognition’s roots lie in

engineering, whilst ML branched out from statistics (Bishop, 2006); however, due to the

interdisciplinary nature of these two fields there is an overlap in their applications. This resulted

from some of the ‘modern’ (newer) methods of pattern recognition making use of ML

Stellenbosch University https://scholar.sun.ac.za

37

methodologies, including SVMs and 𝑘-NN, because of the explosion of data availability and

accessibility as well as the significant improvement in computational processing power. Figure

3.2 is an illustration of the intersection of the different fields; even though, as mentioned, they

were developed or have origins independent of one another, there is a more unified approach

when applied when solving pattern recognition and classification tasks.

Figure 3.2: Pattern recognition and associated fields

Source: Dougherty, 2013.

Thus, pattern recognition and classification solve many central automated electronic systems that

are currently present (Dougherty, 2013). Pattern recognition has applications in a wide range of

fields from signal processing to military defence systems, from information retrieval and computer

graphics to biometrics and from bioinformatics and image analyses to home entertainment. A

simple example is offered to demonstrate how pattern recognition works. The handwritten digits

example is illustrated in Figure 3.3. Simply put, the main aim is to take the input (the digits) and

produce the identity of the digits, zero to nine as output; hence, the nine digits, each having a

28 × 28 pixel image, which equates to 784 real numbers, are considered as the input vector

(Bishop, 2006). According to Bishop (2006), this could pose the problem of diverse handwriting

structures of individuals, where the solution could be using different handwriting rules or heuristics

based on the shapes of the digits, but this approach could result in poor accuracy. Therefore, a

more appropriate tactic is using the second definition of classification where the digits are pre-

defined (zero through nine) by inspection. That is, having knowledge of numbers, humans have

the capacity to manually label the digits and then via an ML algorithm use these manually labelled

classes of digits (zero-nine) as a training set and classify a new instance based on the prior class

information. In other words, the algorithm takes the new instance and attempts to make the most

likely match to the input class labels.

Stellenbosch University https://scholar.sun.ac.za

38

Figure 3.3: Handwritten digits

Source: Bishop, 2006.

As previously mentioned, contextual image classification is an application within the field of

pattern recognition. As the name suggests, it is the classification of images founded on the

information (features) that typify the image, that is, there is a reliance on the information obtained

from the relationship between the neighbouring pixels in an image and thus allocating a label to

each pixel of the information (classes) that the image depicts (Bovolo, Bruzzone & Carlin, 2010).

This research has encapsulated bioinformatics and image analysis as Chapter 4 analyses and

classifies biomedical (MRI) brain tumour images. This is further discussed in the next section.

3.2.1 Inherent features of biomedical images

With biomedical images and the subsequent analyses performed, there needs to be

comprehension of the process of going from an arbitrary image to interpreting the image analysed,

that is, to understand the aim of the problem and the procedure on a global scale. There must be

a shift from image analysis to image understanding and interpretation (González & Romero,

2010). Image analysis is defined as the procedure of extracting the relevant information from the

images, for instance, from a diagnostic image where the brain lesion is either absent or present,

while image understanding and interpretation refer to a diagnostic decision made by physicians’

experience and expertise to a point where, ideally, this process can be performed in an automated

manner without human intervention.

Aforementioned, biomedical images are a means of providing structural or functional information

of a specific organ or the interior of the human body. This information can then be analysed as

part of a diagnosis, for treatment planning systems or re-evaluation (follow-up) measures. There

are numerous ways to acquire biomedical images: X-rays, CT scans, PET scans and MRIs to

name but a few – all of which were reviewed comprehensively in section 2.3. However, one of the

main challenges that arise from biomedical image processing and analysis is that of image quality

and information content (Rangayyan, 2005; González & Romero, 2010).

Therefore, image processing techniques need to be designed in such a manner that they remove

the deterioration of information (Rangayyan, 2005) which occurs in just about every electronic

Stellenbosch University https://scholar.sun.ac.za

39

image capture device due to limitations of the device, such as electromagnetic waves and

emission or detection lights (González & Romero, 2010). Hence, the design needs to improve the

quality of biomedical imaging. Noise is ever-present in biomedical images. As Rangayyan (2005)

states, different types of noise affect or taint the quality of biomedical images. Noise in biomedical

imaging includes random noise: noise that is present from a random process, for example,

thermal noise that is found in electronic devices (Rangayyan, 2005). Rangayyan (2005) goes on

to describe another type of noise which is known as salt and pepper noise: this is an impulsive

noise which means that there is an exaggeration of black and white pixels at the extreme ends of

the pixelation range.

Rangayyan (2005) discusses some difficulties in biomedical imaging attainment:

• Organ accessibility: it is not always easy to acquire images of the organ of interest; for

instance, the brain is protected through being surrounded by the skull;

• Variability in information: there is inherent variability that is omnipresent in biological

systems – there is an overlay of features, for instance, abnormal versus normal patterns;

• Physiological interference: this is a dynamic feature; for example, someone breathing while

the electronic imaging device is in operation can lead to tainted or poor quality images.

Exploring the shift from image analysis to image understanding and interpretation via a

computational algorithm, the general process that is typically applied in biomedical image pattern

recognition and classification can be described. Classification of the acquired test data image is

generally the final step in the process; it is segmented and classified (given a label) based on

similarities with other images (training data). However, starting at the beginning of the process,

the flow of the process of a pattern recognition system contains some form of sensor. From that,

there is a preprocessing mechanism (this occurs before the segmentation), feature extraction and

selection mechanisms, post-processing and finally, a classification algorithm (Dougherty, 2013).

Now, delving deeper into this process and these concepts: an image sensor is an electronic

device that transforms light waves into signals which convey the information that is contained in

an image. Preprocessing steps involve image enhancement, in the form of contrast enhancement,

brightness adjustments, detection of regions of interest, analysis of shape and texture and edge

enhancement. Additionally, image restoration may be required and usually takes place after

image enhancement but this practice remains quite challenging. Specific to this study’s interest

is the preprocessing step of skull stripping for brain lesions. This is one of the first steps when

analysing neurological MRI images. Skull stripping involves removing the extra-meningeal tissue

that surrounds the head, that is, segmenting brain tissue (cortex and cerebellum) from the

surrounding areas of the head (skull) (Swiebocka-Wiek, 2016). Skull stripping is used in the

analysis of low-grade gliomas versus high-grade gliomas in Chapter 4. Moreover, preprocessing

Stellenbosch University https://scholar.sun.ac.za

40

applied in Chapter 4 includes ensuring that the images are of the same pixel size along with

scaling the image pixels before passing the images to the training CNN model. A more detailed

description of rescaling images is provided in section 3.4.3.

The next step is feature extraction and selection which make use of techniques such as principal

component analysis to reduce the dimensionality of the labelled data by only allowing for certain

characteristics (features) to be included, such as shape, size or texture. Postprocessing is defined

as having a labelled training dataset. Generally, these training data images are manually labelled

by experts in the field. Finally, a classification algorithm is applied. In this research, three

classification algorithms were used, namely from an ML approach: SVMs and 𝑘-NN and from the

NN (neural computation) methodologies: CNNs.

3.3 THEORETICAL UNDERSTANDING OF MACHINE LEARNING TECHNIQUES

3.3.1 Machine learning

The basis of ML is that computers are taught or programmed to produce accurate outcomes. In

other words, computer algorithms are programmed to discover valuable patterns in the data as

well as to improve predictions through experience, that is, through learning and adapting. As

mentioned, for undertakings that necessitate information to be extracted from enormous datasets,

the go-to tool of choice has turned out to be ML techniques. Hence, with the eruption of the

availability of data and the amounts of data, ML has been widely applied in various fields, for

instance, social media trends, pattern/image recognition and sentiment analysis. Additionally, ML

has been successfully applied in the scientific areas of bioinformatics and medicine (refer to

section 3.5).

The underlying process of ML is to take some input, usually in the form of training data, learn from

the data (experience) through the appropriate ML technique and then make some prediction,

usually on the testing data. The success of ML, as with any method, relies on a good rapport with

the problem that needs to be solved as well as a good understanding of the data: what the set

contains, what some of the challenges are, et cetera. As stated by Cruz and Wishart (2006), no

ML technique can perform miracles and produce sufficient results if the input data are of poor

quality. In other words, as the saying in the field of computer science goes, garbage in equals

garbage out. Therefore, once a good foundation has been laid, the most suitable ML technique

can be chosen and applied to the task. According to Mitchell (1997), even though ML uses the

principles of statistics and probability, ML is still considered more powerful than classical statistical

techniques and the main reason for this is that ML can make inferences or decisions that would

not be possible when using classical statistical techniques. In other words, classical statistical

techniques have assumptions that restrict their use in solving many problems. Assumptions of

classical statistics are that the variables are independent and that the variables are linear

Stellenbosch University https://scholar.sun.ac.za

41

combinations and can be modelled as such (Cruz & Wishart, 2006). When these assumptions

hold, ML flounders in performance and vice versa. That is, the opposite also holds: when the

assumptions are violated, ML proves more powerful, that is, conventional statistical techniques

do not guarantee successful results.

ML approaches are generally split into three broad paradigms which are dependent on the nature

of the learning structure: supervised learning, unsupervised learning and reinforcement learning.

In supervised learning, the dataset contains both the inputs and the corresponding outcome

(output or response variable), which is known. This means that the algorithms make use of what

is referred to as a labelled dataset, id est, label names (information) are known for the input

variables and response variable. In other words, an algorithm is used to connect the input

variables to the output variable. Hence, the underlying mechanics are that the algorithm learns

from the training dataset - it learns a general rule on how to associate the input data to the desired

outcome. What is wanted is that the algorithm makes accurate predictions, so that when there is

new input data, the output can be correctly predicted. Simply put, the aim is to predict the outcome

(response) from the input data. Supervised learning can be applied to classification as well as

regression problems. It is worth noting that the emphasis will be on supervised classification for

the purposes of this research. One of the challenges faced in (supervised) ML models is the

tradeoff between prediction accuracy and interpretability. For instance, SVMs and NNs

(discussed in sections 3.3.3 and 3.4, respectively) are flexible models but come at the expense

of interpretability. That is, obtaining high accuracy but interpreting how the results were obtained

becomes a somewhat grey area. This is especially the case for NNs as they are ‘black box’

techniques. In other words, they provide high accuracy but the performance of these models is

relatively difficult to interpret, as there is little to no understanding of how the different variables

interact. That is, even with an understanding of the input variables, these predictive models are

so complex that there is very little knowledge of how these variables interact and thus obtain a

final prediction.

The differentiating factor for supervised and unsupervised learning is the response (output)

variable. As mentioned, in supervised learning the response variable is known and associated

with input variables; this is, however, not the case for unsupervised learning. With unsupervised

learning there are input variables but no corresponding outcome (response). Hence, the aim of

the model changes somewhat in that the model needs to identify structures and inferences and

detect patterns or associations (in the data) based on learning and modelling the input variables’

underlying structure and distribution of the training data - in other words, discovering structure in

hidden, unlabelled (no response) data. Briefly, according to Sutton and Barto (2018),

reinforcement learning involves learning what to do, that is, connecting situations to actions.

Stellenbosch University https://scholar.sun.ac.za

42

3.3.1.1 Bias-variance tradeoff

The bias-variance dilemma is a fundamental challenge faced by ML techniques. That is, the

models that encapsulate the underlying patterns and features that are contained in the data

should be selected and used, but at the same time the model needs to generalise unseen (new)

data well. This requires understanding the two sources of error, namely the bias and the variance.

Understanding this not only allows for more robust models but also avoids models that either

overfit or underfit the underlying data patterns. Ideally, an ML technique that simultaneously

produces low variance as well as low (squared) bias would be selected. However, achieving this

simultaneously is not possible, hence the bias-variance tradeoff. In other words, models that have

high bias towards the estimation of the parameters of the dataset will result in low variance in the

estimates of the parameters, over all the samples. Therefore, the opposite also holds true, id est,

models that have low bias come at the cost of these models having high variance.

There are two sources of error. Firstly, the bias of a model is defined as the error that comes from

making incorrect assumptions as determined by the model. In other words, bias is the

computational difference between the average prediction of the model and the actual (true) value

that the model is attempting to predict. Models that produce high bias tend to yield simplistic

models, as little to no awareness is required when fitting the training dataset. That means that the

model does not adequately represent the underlying patterns in the training data. This is known

as a model that underfits the data. Secondly, the variance of a model can be defined as the error

that is produced as a result of the sensitivity of small changes in the training dataset. Hence, a

small change in the training data can lead to markedly different results. This implies that the model

is simply learning noise, which is the unexplained variability within the data. Furthermore, the

variance of the model provides information regarding the spread of the data, that is the variability

of the model's prediction for a particular data point. Models with high variance, meaning that the

model encompasses the noise as well as the underlying pattern in the data, are thus known as

models that overfit the data. That is, the model fits the data precisely (perfectly) or at the very

least, fits the data exceptionally closely.

Mathematically, the decomposition of the bias-variance tradeoff can be computed (Vijayakumar,

2007). Suppose there is a training dataset that consists of a set of points, 𝑥1, 𝑥2, … , 𝑥𝑛, and the

associated response variable, 𝑦𝑖. Furthermore, it is assumed that there is some function that

includes an irreducible error (noise) given as: 𝑦 = 𝑓(𝑥) + 휀. The noise has zero mean, that is,

𝐸[휀] = 0 and a variance of 𝜎2, id est, 𝑣𝑎𝑟[휀] = 𝜎2. Through the use of some ML algorithm based

on the training dataset, the function (the fitted model): 𝑓 has to be approximated as closely to the

true function 𝑓(𝑥) as well as possible where 𝐸[𝑓] = 𝑓. Therefore, the bias-variance decomposition

can be derived by using the squared error loss. That is, the associated test error is given by the

expected mean squared error (MSE). First recall that for any random variable 𝑋, by definition the

Stellenbosch University https://scholar.sun.ac.za

43

variance is given by: 𝑣𝑎𝑟[𝑋] = 𝐸[𝑋2] − 𝐸[𝑋]2. Rearranging this equation gives:

𝐸[𝑋2] = 𝑣𝑎𝑟[𝑋] + 𝐸[𝑋]2.

Given: 𝑦 = 𝑓(𝑥) + 휀 and 𝐸[휀] = 0, suggests that 𝐸[𝑦] = 𝐸[𝑓 + 휀] = 𝐸[𝑓] = 𝑓.

Also concerning the variance, it is given that: 𝑣𝑎𝑟[휀] = 𝜎2, therefore:

𝑣𝑎𝑟[𝑦] = 𝐸[(𝑦 − 𝐸[𝑦])2] (3.1)

But 𝐸[𝑓] = 𝑓, therefore:

𝑣𝑎𝑟[𝑦] = 𝐸[(𝑦 − 𝑓)2] (3.2)

But 𝑦 = 𝑓 + 휀, thus:

𝑣𝑎𝑟[𝑦] = 𝐸[(𝑓 + 휀 − 𝑓)2]

= 𝐸[휀2]

= 𝑣𝑎𝑟[휀] + 𝐸[휀2]

= 𝜎2 + 0

= 𝜎2 (3.3)

Hence, the decomposition of the expected mean squared error is given as follows:

𝐸 [(𝑦 − 𝑓)
2
] = 𝐸 [(𝑓 + 휀 − 𝑓)

2
]

∴ 𝑀𝑆𝐸 = 𝐸 [(𝑓 + 휀 − 𝑓 + 𝐸[𝑓] − 𝐸[𝑓])
2
]

= 𝐸 [(𝑓 − 𝐸[𝑓])
2
] + 𝐸[휀2] + 𝐸 [(𝐸[𝑓] − 𝑓)

2
] + 2𝐸[(𝑓 − 𝐸[𝑓])휀]

+ 2𝐸[휀(𝐸[𝑓] − 𝑓)] + 2𝐸[(𝐸[𝑓] − 𝑓)(𝑓 − 𝐸[𝑓])]

= (𝑓 − 𝐸[𝑓])
2
+ 𝐸[휀2] + 𝐸 [(𝐸[𝑓] − 𝑓)

2
] + 2(𝑓 − 𝐸[𝑓])𝐸[휀]

+ 2𝐸[휀]𝐸[𝐸[𝑓] − 𝑓] + 2𝐸[𝐸[𝑓] − 𝑓](𝑓 − 𝐸[𝑓])

= (𝑓 − 𝐸[𝑓])
2
+ 𝐸[휀2] + 𝐸 [(𝐸[𝑓] − 𝑓)

2
] + 0 + 0 + 0

= (𝑓 − 𝐸[𝑓])
2
+ 𝑣𝑎𝑟[휀] + 𝑣𝑎𝑟[𝑓]

= 𝑏𝑖𝑎𝑠[𝑓]
2
+ 𝑣𝑎𝑟[𝑓] + 𝜎2 (3.4)

From Equation 3.4, it can be concluded that the test error is equal to the squared bias and

variance of the fitted model with some irreducible error (noise) included. James et al. (2013)

portray this concept visually in Figure 3.4. The orange line is indicative of the model's variance

whilst the blue line is the variance and lastly, the MSE (test error) is represented by the red line.

The dashed grey horizontal line is indicative of the irreducible error (noise) which is given as

𝑣𝑎𝑟[휀] = 𝜎2, whereas the dotted vertical grey line represents the flexibility of the model. Thus, all

Stellenbosch University https://scholar.sun.ac.za

44

three panels but mainly the left and centre panels show that more flexible (more complex) models

have high variance but low bias. From the last panel in Figure 3.4 can be deduced that relative

change in the variance and bias has an influence and impact on when the MSE starts to decrease

(James et al., 2013). It is evident that when there is an increase in the flexibility of the model, the

MSE and the bias decrease. There is an almost exponential decrease in the bias, thus it initially

decreases more rapidly in comparison to the increase in the variance and consequently the MSE

decreases as well. Additionally, there is a point where increasing the flexibility of the model starts

to have negative consequences. Beyond this point the variance and MSE starts to increase

exponentially, which subsequently means that the test error turns and starts to increase as well.

Therefore, negative consequences for the MSE and variance, but no impact on the bias as the

bias reaches a plateau (stagnates). In conclusion, a model is required that still captures the

underlying patterns in the data, thus is flexible enough, but at the same time can balance the bias-

variance tradeoff - in other words, where the bias and variance are low with an associated test

error that is kept to a minimum. This is best visualised and the optimal model of choice is the right-

hand panel in Figure 3.4.

Figure 3.4: Bias-variance tradeoff

Source: James et al., 2013.

For all intents and purposes, this concept is extended to a classification setting with some slight

alterations. The only difference is that the response variable is no longer numerical but rather

qualitative. Hence, for estimating the function, 𝑓, consider the training dataset,

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)} and as mentioned, 𝑦1, 𝑦2, … , 𝑦𝑛 is qualitative. Thus, the predicted

accuracy of the estimated function 𝑓 is measured through the training error rate, that is, the

proportion of misclassified data points (James et al., 2013):

Stellenbosch University https://scholar.sun.ac.za

45

1

𝑛
∑𝐼(𝑦𝑖 ≠ �̂�𝑖)

𝑛

𝑖=1

 (3.5)

From Equation 3.5, �̂�𝑖 is defined as being the predicted class label for the 𝑖𝑡ℎ data point of the

fitted model (𝑓). Moreover, 𝐼(𝑦𝑖 ≠ �̂�𝑖) is an indicator variable. That is, a value of one is assigned

if 𝑦𝑖 ≠ �̂�𝑖 which is indicative of a misclassification. On the other hand, a value of zero is assigned

if the predicted data point is assigned to the correct class label, that is, 𝑦𝑖 = �̂�𝑖.

Conversely, the test error rate is of more interest. Suppose that the test dataset is given as(𝑥0, 𝑦0),

then the test error rate can be formally defined as (James et al., 2013):

𝐴𝑣𝑒(𝐼(𝑦0 ≠ �̂�0)) (3.6)

By definition, where Equation 3.6 has the smallest value is indicative of the best classifier having

been applied. Note that �̂�0 is the predicted class label.

3.3.2 𝒌-Nearest neighbours

Amongst the most intuitive and the simplest to implement machine learning techniques is nearest

neighbours (Shalev-Shwartz & Ben-David, 2014). The fundamental underlying principle or aim of

nearest neighbour paradigms is to take note of the labels of the training dataset and try and predict

the label of a new instance (or query point: a point’s value to be known or predicted) based upon

the labels of the closest points or neighbours that are in the training dataset. One of the

assumptions, as mentioned in Table 3.1, is that depending on the attributes used to describe the

instances, similar labellings of instances in close proximity will, therefore, have similar

classifications.

Furthermore, Figure 3.5 is an illustration of the 𝑘-NN approach. In this example the value of 𝑘 has

been chosen as three (the choice of 𝑘 will be discussed in more depth later on in the section). In

the panel on the left, a small training sample of 12 data points have been plotted which comprise

of six blue and six orange data points (or instances). As mentioned, 𝑘-NN aims to predict a new

instance, in this case given by the black cross (test data point). As indicated, the value of 𝑘 is

three and as such, 𝑘-NN will identify the three data points that are closest in proximity to the new

instance. In the figure, the neighbourhood is indicated by the grey circle which encompasses the

three closest training data points. Two blue data points (circles) and one orange data instance

(circle) are encompassed by the neighbourhood. Using Bayes’ rule, 𝑘-NN then assigns the new

instance to the class that has the highest probability. Hence, the estimated probabilities for the

blue class are 2/3, whilst for the orange group they are 1/3. Thus, 𝑘-NN will predict that the test

data point belongs to the blue labelled group. The right panel of Figure 3.5 is indicative of a

decision boundary. In this example the decision boundary is given by the black line. The blue

Stellenbosch University https://scholar.sun.ac.za

46

shaded areas depict the region in which a new instance will be allocated to the blue class.

Likewise, the orange region indicates that a test observation in that area will be assigned to the

orange group.

Figure 3.5: Visualisation of the 𝒌-NN approach

Source: James et al., 2013.

The explanation of 𝑘-NN in this paragraph is adapted from James et al. (2013). 𝑘-NN, in general,

attempts to estimate the conditional distribution of Y given X. The new instance is then classified

according to the group that has the highest estimated probability. Hence, the 𝑘-NN algorithm

identifies the 𝑘 (a positive integer value) points that are closest to the new instance (test data

point), say 𝑥0. These 𝑘 points are referred to as being in the neighbourhood of the test data point

and given symbolically as 𝒩0. Finally, the conditional probability for class 𝑗 is estimated where

Bayes’ rule is applied and the final prediction of the test data point is that with the highest

probability. Mathematically (James et al., 2013):

𝑃𝑟(𝑌 = 𝑗 | 𝑋 = 𝑥0) =
1

𝑘
∑ 𝐼(𝑦𝑖 = 𝑗)

𝑖𝜀𝒩0

 (3.7)

The focus of 𝑘-NN shifts to a classification setting and 𝑘-NN classifiers. The reason for this is that

the application of this research is image recognition which equates to a classification problem.

Therefore, in Chapter 4 the context of the 𝑘-NN application is classification based. Similarly, as

defined above, even in classification the main aim remains unchanged. That is, for pattern

recognition the 𝑘-NN algorithm is a methodology that is used for classifying images postulated on

Stellenbosch University https://scholar.sun.ac.za

47

the training data labels that are nearest in proximity. Furthermore, 𝑘-NN is considered to be a lazy

learner, which means that it learns a generalisation of the training data and theoretically the

computation of the prediction is only made right at the end of the process, id est, at the

classification stage (Imandoust & Bolandraftar, 2013). Additionally, the simplicity and intuition

behind 𝑘-NN for classification make it a popular technique for pattern recognition. That is, there

is little to no a priori information required about the distribution of the data. As indicated by Hastie,

Tibshirani and Friedman (2009), 𝑘-NN classifiers are memory-based and as such, no model

needs to be fit. Thus, in mathematical terms, given a new instance (test data point/query point)

𝑥0, the idea is to obtain the 𝑘 closest points in terms of distance to the new instance, adapted

from Hastie, Tibshirani and Friedman (2009), that is, 𝑘 training data points, given by

𝑥(𝑟), 𝑟 = 1,2,… , 𝑘, nearest to 𝑥0. Finally, for 𝑘-NN classification problems the query point is

classified according to the label via a majority vote amongst the 𝑘 neighbours in the training

dataset.

The simplest form of 𝑘-NN is when 𝑘 = 1; this is known as the nearest neighbour rule. Intuitively,

this means that the classifier assigns the query point to the class label of the nearest neighbour

in the feature space. The feature space is simply the space where all the training samples are

enclosed. Mathematically this is given by:

𝐶𝑛
1𝑛𝑛(𝑥0) = 𝑥(𝑟=1) (3.8)

where:

• 𝐶𝑛
1𝑛𝑛(𝑥0) represents the nearest nighbour classifier (𝐶𝑛

1𝑛𝑛) of the query point;

• 𝑥(𝑟=1) is the training data points where 𝑟 = 1, meaning the nearest training data point.

The fact that the query point is classified by the training data point nearest it results in the estimate

of the one-nearest neighbour having low bias but at the expense of having high variance (Hastie,

Tibshirani & Friedman, 2009). Varying the value of 𝑘, which determines the radius of the local

neighbourhood around the query point based on distance, results in diverse group conditional

probabilities which affect the performance of the classifier. The effect is that if a small value of 𝑘

is chosen, the prediction tends to degrade owing to the fact of data sparsity, and noisy or

mislabelled training data points (Imandoust & Bolandraftar, 2013). This can be overcome by

increasing the value of 𝑘. However, once again this presents problems when 𝑘 is too large. When

𝑘 is too large, the classification prediction can be poor, as outliers from other classes can be

introduced into the neighbourhood (Imandoust & Bolandraftar, 2013).

According to Prasatha et al. (2017), the performance of the 𝑘-NN classifier is mainly dependent

on the distance metric or the similarity between the query point and the training data samples. As

already stated, 𝑘-NN predicts the outcome of a new instance based on the result of the 𝑘

Stellenbosch University https://scholar.sun.ac.za

48

neighbours that are situated nearest to the point in question. However, to be able to make these

predictions a distance metric needs to be defined. This denotes the distance between the query

point, that is, the new point to be predicted from the pre-classified groups in the dataset. According

to Imandoust and Bolandraftar (2013), one of the most popular and therefore frequently chosen

and used distance metrics (measure) is that of Euclidean distance. Other distance measures

consist of the Minkowski distance, Manhattan distance and Chebychev distance, to name but a

few.

To define a distance function, 𝑋 and 𝑌 are instances or sets of instances that belong to a certain

class, thus the function represents the similarity between the two instances. A distance function

(referred to as 𝑑 in this research) is a function that contains real positive values. There are a few

conditions that a distance metric needs to satisfy (Singh, Yadav & Rana, 2013):

• The nonnegativity axiom: 𝑑(𝑥, 𝑦) ≥ 0;

• The triangle axiom: 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧);

• The identity axiom: 𝑑(𝑥, 𝑦) = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 𝑦;

• The symmetry axiom: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥).

Euclidean distance

Euclidean distance measures the length of a line segment between two points that are in the

Euclidean space. Formally, it is the squared root difference between coordinates or pairs of

instances. The formula is given as:

𝑑(𝑿, 𝒀) = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

 (3.9)

where:

• 𝑿, 𝒀 are two standard coordinates (points) in the Euclidean 𝑛-space;

• 𝑥𝑖 , 𝑦𝑖 refers to the coordinates, starting from the initial point;

• 𝑛 is the Euclidean 𝑛-space.

Manhattan distance

The Manhattan distance (commonly known as the city block distance) metric measures the sum

of the lengths of projections between two points. However, this equates to the sum of the absolute

differences between coordinates of pairs of points. Mathematically this is represented as:

Stellenbosch University https://scholar.sun.ac.za

49

𝑑(𝑿,𝒀) =∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (3.10)

Minkowski distance

The Minkowski distance metric is a generalised distance metric. Thus it can be viewed as a

generalised version of both the Euclidean distance metric and the Manhattan distance metric.

More formally, let 𝑿 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝒀 = (𝑦1, 𝑦2, … , 𝑦𝑛) be two points in ℝ𝑛 then:

𝑑(𝑿, 𝒀) = (∑|𝑥𝑖 − 𝑦𝑖|
𝑝

𝑛

𝑖=1

)

1
𝑝

 (3.11)

where 𝑝 represents the order (and is given as an integer).

As mentioned, the Minkowski distance metric is a generalised metric and thus it can be proven

that when 𝑝 = 1 this corresponds to the Manhattan distance. Similarly, it can be shown

mathematically that when 𝑝 = 2, the resultant is the Euclidean distance. That is, for the Manhattan

distance, using the Minkowski distance metric from Equation 3.11 and substituting 𝑝 = 1 then:

𝑑(𝑿,𝒀) = (∑|𝑥𝑖 − 𝑦𝑖|
1

𝑛

𝑖=1

)

1
1

=∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

(3.12)

which is equivalent to the Manhattan distance metric.

Likewise, when 𝑝 = 2, using the generalised Minkowski distance metric (Equation 3.11) and

substituting 𝑝 = 2, results in:

𝑑(𝑿, 𝒀) = (∑|𝑥𝑖 − 𝑦𝑖|
2

𝑛

𝑖=1

)

1
2

= (∑|𝑥𝑖 − 𝑦𝑖|
2

𝑛

𝑖=1

)

1
2

= √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

(3.13)

The absolute value symbol can be removed as the resulting answer will be the same. That is,

taking the square of a value results in a positive answer which is exactly what the absolute value

Stellenbosch University https://scholar.sun.ac.za

50

does - it ensures that a value can never be negative. Hence, taking the squared value or the

absolute value results in a positive value. Secondly, from exponential rules, a term that is taken

to the power, one and a half is equivalent to taking the square root of that term.

Finally, when the order of 𝑝 tends to infinity, hence, taking the limiting case of 𝑝 → ∞, the

Chebychev distance metric is obtained.

Chebychev distance

The Chebychev distance metric is also referred to as the maximum (or dominance distance)

metric. The computation is the maximum magnitude differences between two vectors. Formally,

the Chebychev distance metric between vectors, 𝑿 and 𝒀 with standard coordinates, 𝑥𝑖 and 𝑦𝑖

can be written as:

𝑑𝐶ℎ𝑒𝑏𝑦𝑐ℎ𝑒𝑣(𝑿, 𝒀):= max
𝑖
 |𝑥𝑖 − 𝑦𝑖| (3.14)

The above formula can be proven from the Minkowski distance metric for 𝑝 → ∞:

𝑑(𝑿, 𝒀) = (∑|𝑥𝑖 − 𝑦𝑖|
𝑝

𝑛

𝑖=1

)

1
𝑝

= lim
𝑝→∞

(∑|𝑥𝑖 − 𝑦𝑖|
𝑝

𝑛

𝑖=1

)

1
𝑝

= max
𝑖
 |𝑥𝑖 − 𝑦𝑖| (3.15)

where max goes from 𝑖 to 𝑛 of the absolute difference between 𝑥𝑖 and 𝑦𝑖.

In improving the 𝑘-NN classifier, Dudani introduced a technique known as the distance-weighted

𝑘-NN rule. The idea is that since 𝑘-NN makes predictions on the assumption that if instances are

in close proximity to one another, there is a high chance that they are similar, therefore weighting

training data neighbours that are closer to the query point more heavily. This is done according

to the distance from the query point. In other words, training data points that are closer to the

query point have a higher weight, thereby having a greater influence on the outcome of the class

of the query point. The mathematical representation and explanation of the decision rule as

introduced by Dudani (1976) follows; however, it should be noted that for consistency, some of

the notation is adopted from Hastie, Tibshirani and Friedman (2009). Let each data point in the

training dataset (which is the correctly classified points), given as 𝑥(𝑟) correspond to a class, 𝑛𝑖

where 𝑛𝑖 𝜖 {1, 2, … , 𝑅}. Thus, when the classification of a new query point 𝑥0 is required, the

nearest neighbours to 𝑥0 are computed amongst the given training data points. Therefore, let the

𝑘 nearest neighbours of 𝑥0 and the corresponding class 𝑛𝑖 be written as (𝑥0𝑗 , 𝑛𝑗) for 𝑗 = 1,2, … , 𝑘.

These neighbours are ordered so that 𝑥0𝑗 is the nearest whilst 𝑥0𝑘 is the furthest from the training

data points. Additionally, let the associated distances from the training data points be given as 𝑑𝑗

Stellenbosch University https://scholar.sun.ac.za

51

for 𝑗 = 1,2, … , 𝑘. Furthermore, a weight (𝑤𝑗) can be assigned to the 𝑗𝑡ℎ nearest neighbour and is

given by the following formula:

𝑤𝑗 = {

𝑑𝑘 − 𝑑𝑗

𝑑𝑘 − 𝑑1
 𝑤ℎ𝑒𝑟𝑒 𝑑𝑘 ≠ 𝑑1

1 𝑤ℎ𝑒𝑟𝑒 𝑑𝑘 = 𝑑1

 (3.16)

Note that the value of the weight can vary, that is, it can range from the maximum value (one:

nearest training data neighbour) to a minimum value of zero which is representative of the most

distant training data neighbours from the query point. Thus, this methodology states that once the

weights have been computed, the query point will be assigned to the class in which the weights

of the 𝑘 nearest training data points sum up to the highest value. The last remark is that from

Equation 3.16, weighting should only be considered for values of 𝑘 > 3 (that is, 𝑘 greater than

three). Furthermore, if the problem is one of binary classification, it is worth taking 𝑘 to be odd

numbers to avoid ties, that is, two classes achieving the same majority voting score (Lantz, 2013).

There are several benefits to using 𝑘-NN, but despite all the advantages as given in Table 3.1,

the machine learning technique is subject to some limitations (refer to Table 3.1). Additionally, the

assumptions of 𝑘-NN are itemised.

Stellenbosch University https://scholar.sun.ac.za

52

Table 3.1: Advantages, limitations and assumptions of 𝒌-NN

Benefits Limitations Assumptions

Can be used to solve both
classification and regression
problems

Sensitive to the local underlying
structure of the data

Where instances have similar
attributes, they should be
similarly classified

Simple, effective, intuitive for
classification tasks

Computationally slow, especially
when the dataset is large

All attributes are equally relevant

Robust to noisy training data Sensitive to redundant and/or
irrelevant attributes, as all the
attributes in the dataset
contribute to the similarity and
eventually to the classification
group

Useful in classification problems
that are nonlinear in nature

Computational cost is high as a
distance measure is to be
calculated to each instance in
the dataset (memory limitation)

Tolerant where there are
instances of missing attributes

With distance-based learning,
such as 𝑘-NN, it’s unclear which
distance measure to choose to
produce the best and most
accurate results

Well suited for multi-modal
classes

In classification problems: no a
priori information is required

Source: Patrick and Fischer, 1970; Aha, 1992; Bhatia, 2010;

Imandoust and Bolandraftar, 2013; Archana and Elangovan.

3.3.3 Support vector machines

Within the world of machine learning techniques, many address the objective of classifying data.

SVMs have gained in popularity (amongst the research and practician communities) and have,

therefore, been successfully implemented and applied to an extensive range of applications.

SVMs can be used as a learning algorithm to solve both regression and classification problems.

It is worth noting that SVMs with respect to regression is beyond the scope of this research. This

is because emphasis is placed on image recognition, which constitutes a classification problem.

Simply put, the goal is to classify training data points that belong to one of two categories and

ideally from this to predict which category a new query point will belong to. SVMs can be used as

a classifier to achieve the objective. To comprehend the underlying processes and the intuition

behind how SVMs were developed and thus how they are applied in practice, maximal margin

classifiers must first be understood. Maximal margin classifiers are simple and intuitive. SVMs are

a generalisation of maximum margin classifiers, but assume that the two categories are separated

by a linear boundary. Thus, extending on and solving the problem that can be applied to a variety

of examples is that of a support vector classifier. The computation (mathematical equations) of

Stellenbosch University https://scholar.sun.ac.za

53

the support vector classifier is also reviewed. Finally, the discussion of SVMs is introduced, which

in theory is an extension of a support vector classifier, as a means to integrate cases whose

boundaries are nonlinear. Formally, SVMs can be defined as an algorithm that constructs either

a hyperplane or a collection of hyperplanes that are enclosed in a high-dimensional space.

Generally, SVMs are explored in a binary classification setting, that is, where there are two

classes present in the training data. However, as suggested by the literature on SVMs,

methodologies have been introduced which allow for examples with more than two classes to

take advantage of being able to apply an SVM. The idea of more than two classes will not be

reviewed as the datasets analysed in Chapter 4 consist of two classes, making a discussion of

two or more classes redundant.

Before giving an overview of the idea of a maximal margin classifier, as mentioned, SVMs

construct hyperplanes and being a generalisation of the maximal margin classifier, there needs

to be an understanding of what a hyperplane is. Unless otherwise stated, the definitions,

explanations and mathematical formulae for the concepts related to support vector machines (in

the following paragraphs) are adapted and refashioned from Hastie, Tibshirani and Friedman

(2009) and James et al. (2013).

A hyperplane can be defined as a (𝑝 − 1)-dimensional plane, which can be defined for any 𝑝

dimensions by a linear equation between its coordinates. Note that the hyperplane is a subspace

where the dimension consists of one less dimension than the space surrounding the objects. So,

for instance, if the space is two-dimensional it implies that the hyperplane subspace is one-

dimensional, thus equating to a straight line. Similarly, if the space is three-dimensional, the

hyperplane subspace is two-dimensional, which is referred to in mathematics as a plane. Applying

the same principle, this can be extended to 𝑝 dimensions where the hyperplane flat subspace is

given by (𝑝 − 1)-dimensions. The challenge is that when the dimensions increase beyond 𝑝 = 3,

it becomes difficult to almost impossible to visualise what the hyperplane subspace looks like.

However, the concept remains the same. Mathematically a hyperplane in two dimensions is given

by the following formula where 𝛽0, 𝛽1 and 𝛽2 are parameters:

𝛽0 + 𝛽1𝑿1 + 𝛽2𝑿2 = 0 (3.17)

meaning that 𝑿 = (𝑿1, 𝑿2)
𝑇 represents a point on the hyperplane. It can be noted that Equation

3.17 is simply the equation of a straight line which holds true given that a hyperplane in a two-

dimensional plane equates to a straight line. That is, when 𝑝 = 2, the hyperplane is given by

(𝑝 − 1) = (2 − 1) = 1. As mentioned, applying the same principle, Equation 3.17 can be extended

to the case of a hyperplane subspace in 𝑝 dimensions where the formula is given as:

𝛽0 + 𝛽1𝑿1 + 𝛽2𝑿2 +⋯+ 𝛽𝑝𝑿𝑝 = 0 (3.18)

Stellenbosch University https://scholar.sun.ac.za

54

Once again, if 𝑿 = (𝑿1, 𝑿2, … , 𝑿𝑝)
𝑇
 fulfils the requirements of Equation 3.18, this implies that 𝑿 is

a point on the hyperplane. If the conditions of Equation 3.18 are not met, it can be deduced that

𝑿 is not a point on the hyperplane but rather that the point (or points) is (are) on either side of the

hyperplane. Formally, this can be given as either:

𝛽0 + 𝛽1𝑿1 + 𝛽2𝑿2 +⋯+ 𝛽𝑝𝑿𝑝 > 0 (3.19)

or

𝛽0 + 𝛽1𝑿1 + 𝛽2𝑿2 +⋯+ 𝛽𝑝𝑿𝑝 < 0 (3.20)

It can be concluded that a hyperplane is a way of splitting the the 𝑝-dimensional space into two.

This can be visualised by the right panel (and left panel) of Figure 3.6, where points to the right

(purple region) of the separating hyperplane (indicated by the black line) are given by Equation

3.19, whilst Equation 3.20 represents points to the left (the blue region) of the separating

hyperplane.

Figure 3.6: Visualisation of a separating hyperplane of training data points

Source: James et al., 2013.

Now that the basis of a hyperplane has been described, the focus shifts to include training data

and how the data points can be classified by implementing a separating hyperplane. In essence,

a separating hyperplane is a construct that is used to divide the training data perfectly into their

class labels (James et al., 2013). Visually, this is shown in Figure 3.6. From the figure can be

deduced that there are two distinct classes; one class is represented by the blue training data

points and the other by the purple training points. In the left panel, three possible separating

Stellenbosch University https://scholar.sun.ac.za

55

hyperplanes have been constructed which perfectly separate the two groups. It is worth noting

that an infinite amount of separating hyperplanes can be constructed in cases where the training

data can be perfectly separated, which leads to remarks such as which one is the most optimal.

Furthermore, from both panels, especially the one on the right-hand side, based on a decision

classifier and using the indicated separating hyperplane, a query point that lies in the purple region

will be assigned to the purple labelled class. In the same fashion, a query point (test data point)

that falls within the blue area will be classified accordingly. A mathematical solution to the

classification of a separating hyperplane is also proposed. For example, suppose that in a 𝑝-

dimensional space, there is an 𝑛 × 𝑝 data matrix, given by 𝑿 which contains 𝑛 training data points,

then formally:

𝑥1 = (

𝑥11
⋮
𝑥1𝑝

) , … , 𝑥𝑛 = (

𝑥𝑛1
⋮
𝑥𝑛𝑝

) (3.21)

where the training data points are categorised into one of two classes. In other words, 𝑦1, 𝑦2, … , 𝑦𝑛

is an element of {−1,1} where −1 and 1 are indicative of the two different classes, respectively.

Furthermore, if a new test data point arrives, the aim (ideally) is to correctly and accurately predict

the class to which the point belongs. Suppose that the label of the training data that are associated

with the blue class (refer to Figure 3.6) is 𝑦𝑖 = 1 and that of the purple class is 𝑦𝑖 = −1, then the

two postulates of a separating hyperplane are given as follows:

𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 > 0 𝑖𝑓 𝑦𝑖 = 1 (3.22)

and

𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 < 0 𝑖𝑓 𝑦𝑖 = −1 (3.23)

Thus, from the generalisation of the two properties from Equations 3.22 and 3.23, it can be

deciphered that the property of a separating hyperplane for all 𝑖 = 1,2,… , 𝑛 as:

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝) > 0 (3.24)

Therefore, from Equation 3.24 it is evident that a test data point can be allocated to a class label

depending on which side of the separating hyperplane the point lies. Furthermore, a closing

remark is that from the mathematical equations as well as the visuals produced in Figure 3.6 it is

evident that the decision boundary of a separating hyperplane is linear.

As mentioned, if the training data can be separated perfectly, there are an infinite number of

separating hyperplanes that can be constructed, hence the question arises as to which is the

most optimal hyperplane. The solution to this is the maximal margin classifier, also referred to as

the optimal separating hyperplane. By definition, the maximal margin hyperplane is the one that

Stellenbosch University https://scholar.sun.ac.za

56

is computed that is the most distant from the training data points. As in Figure 3.7, the first step

is to calculate the perpendicular distance from each training data point to the separating

hyperplane. Using linear algebra of a hyperplane as in the example of Figure 3.7, the red line

(given by: 𝛽0 + 𝛽
𝑇𝒙 = 0) is the constructed separating hyperplane; in this case it is simply a linear

equation as it is a one-dimensional subspace. This equates to a line as 𝑝 = 2, therefore, from the

definition, the separating hyperplane is equal to (𝑝 − 1) = 1. The green line is perpendicular to

the separating hyperplane. For any training data point, say 𝑥, the distance to the green line is

calculated. In other words, that is the distance to the line that is perpendicular to the separating

hyperplane. The sign (positive or negative) of the query data or on which side of the separating

hyperplane the query point lies determines the class label of that point.

Figure 3.7: Visualisation of the linear algebra of a hyperplane

Source: Medical University of South Carolina, 2017.

Furthermore, after computing all the perpendicular distances to the separating hyperplane, the

smallest distance forms what is known as the minimal distance, formally known as the margin.

This is visualised in Figure 3.8 where the margin is the distance from the maximal margin

hyperplane (the solid black line) to the dashed lines. The margin is computed for both sides of the

separating hyperplane. In this example there are three training data points, two blue points and

one purple point that are equidistant (distance is given by the arrows) on either side of the maximal

margin hyperplane which by definition indicate the width of the margin. That is, these points

construct the margin and are referred to as support vectors. It should be mentioned that if these

points are to change and be shifted slightly, by virtue of this there would be a change in the

maximal margin hyperplane as well. In other words, the maximal margin hyperplane will move as

well. One thing worth noting though is that the maximal margin hyperplane, or its movement, is

only reverberated by the support vector data points and none of the other data points that

Stellenbosch University https://scholar.sun.ac.za

57

constitute the training dataset. That means that should the other data points change - conditional

upon only moving within their region (class label) - there is no effect on the maximal margin

hyperplane.

Figure 3.8: The maximal margin hyperplane

Source: James et al., 2013.

With the above knowledge, the correct (optimistically speaking) class label for any new query

point can be predicted, based on the sign (if using the equations) or more intuitively, depending

on which side of the maximal margin hyperplane the query point is. Formally, this establishes

what is otherwise called the maximal margin classifier.

Next, the theoretical understanding of maximal margin classifiers in mathematical terms is

implemented, that is, the computation of maximal margin classifiers.

Suppose there is a set of 𝑛 training data points that are an element of the 𝑝-dimensional real

space, that is, 𝑥1, 𝑥2, … , 𝑥𝑛 𝜖 ℝ
𝑝 and the corresponding class labels, 𝑦1, 𝑦2, … , 𝑦𝑛 𝜖 {−1,1}. This

means that the training data point is assigned to either of two classes, −1 or 1. Hence, the

optimisation problem is solved by the maximal margin hyperplane. The formula of the optimisation

problem is:

max
𝛽0,𝛽1,…,𝛽𝑝,𝑀

 𝑀 (3.25)

which is subject to:

Stellenbosch University https://scholar.sun.ac.za

58

∑𝛽𝑗
2 = 1

𝑝

𝑗=1

 (3.26)

 Then from the generalisation property of a separating hyperplane (Equation 3.24):

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝) ≥ 𝑀 ∀ 𝑖 = 1,2,… , 𝑛 (3.27)

The constraint is where the separating hyperplane is greater than the margin of the hyperplane

(𝑀) for all the training data points (𝑖 = 1,2, … , 𝑛). Thus, the optimisation from Equation 3.25

chooses the parameters (𝛽0, 𝛽1, … , 𝛽𝑝) in such a way that it maximises the margin of the

hyperplane (𝑀). This ensures that each training data point is at least the margin width in distance

away from the maximal margin hyperplane. Additionally, this guarantees that the training data

point is on the correct side of the maximal margin hyperplane.

The maximal margin classifier is based on creating a linear boundary and perfectly separating the

training data instance. However, this is not always possible due to the underlying patterns and

features in the training data. Now extending upon the maximal margin classifier, the support

vector classifier which is a generalisation to cases in which the data are nonseparable by a

hyperplane (that is, cannot be perfectly separated) is introduced. In other words, the data points

overlap over the hyperplane. Moreover, in some cases the maximal margin hyperplane should

not be used, for instance, when the support vectors are very close to the hyperplane; as

mentioned, the hyperplane is sensitive to subtle changes in the support vectors and this may

result in the training data being overfitted. Overfitting is where the model fits the training

exceptionally closely if not perfectly and therefore there is no generalisation, so it tends to fail

when predicting a new query point. In other words, the prediction of the query point tends to be

incorrect. Thus, in the interests of ensuring high performance and accuracy of test data, it might

be worth misclassifying some training data points. This implies that there is more robustness

amongst the individual training data points. Inevitably, this means that some of the training data

points may lie on the opposite side of the hyperplane from their natural class label as shown in

Figure 3.9. This is the nonseparable case, id est, support vector classifiers. As is palpable in

Figure 3.9, there is a red training data point to the right of the hyperplane (given by the solid blue

line, the maximal hyperplane) from which it can be concluded that it is on the opposite or the

wrong side of the class label of red points (to the left of the hyperplane). This means that this point

has been misclassified. Similarly, there is a green point on the wrong side of the hyperplane.

Stellenbosch University https://scholar.sun.ac.za

59

Figure 3.9: Nonseparable case: support vector classifiers

Source: Hastie, Tibshirani and Friedman, 2009.

The mathematics behind this idea can now be introduced. Suppose there are 𝑛 pairs of training

data, (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛), where 𝑥𝑖 𝜖 ℝ
𝑝 and the associated class label is defined as

𝑦𝑖 𝜖 {−1,1}. Recalling maximal margin hyperplanes, however, using slightly different notation to

that of Equation 3.18 but with equivalent meaning, a hyperplane can be defined as:

{𝒙: 𝑓(𝑥) = 𝒙𝑇𝛽 + 𝛽0 = 0} (3.28)

where 𝛽 can be defined as a unit vector which equates to ‖𝛽‖ = 1.

Through the classification rule, on which side of the hyperplane a point lies can be determined

based on the sign (a resultant positive or negative value) distance from the training data point (𝑥)

to the hyperplane via the function. Formally, let the function be defined in terms of 𝐺(𝑥), thus:

𝐺(𝑥) = 𝑠𝑖𝑔𝑛[𝒙𝑇𝛽 + 𝛽0] (3.29)

In the case of perfectly separable training data, as explained by the basis of hyperplanes, there

exists a function, 𝑦𝑖 𝑓(𝑥𝑖) > 0 ∀𝑖. As previously mentioned, the hyperplane that creates the

largest margin width distanced hyperplane of the training data points that are associated with

classes −1 and 1 can be computed. Finally, from Equation 3.25 subject to the constraint (Equation

3.26), the optimisation problem is shown. This means that the margin is 𝑀 units away from the

hyperplane, thus the total width of the margin is 2𝑀. This equates to a convex optimisation

problem. Recollecting Equations 3.25-3.27 (using slightly different notation but with equivalent

meaning), the optimisation problem is given as follows:

Stellenbosch University https://scholar.sun.ac.za

60

max
𝛽0,𝛽,‖𝛽‖=1

 𝑀

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝒙𝑖
𝑇𝛽 + 𝛽0) ≥ 𝑀 𝑓𝑜𝑟 𝑖 = 1,2,… ,𝑁

(3.30)

For convenience, the optimisation formula can be restated as (recall: this is the formula for

separated data, id est, the support vector criterion or maximal margin classifier):

min
𝛽0,𝛽

 ‖𝛽‖ (3.31)

which is subject to:

𝑦𝑖(𝒙𝑖
𝑇𝛽 + 𝛽0) ≥ 1 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 (3.32)

All the above expression does is remove the norm constraint on 𝛽. Briefly, the norm constraint

restricts the complexity of a model by reducing the number of parameters. Thus, the margin is

𝑀 =
1

‖𝛽‖
.

This is now extended mathematically to the case where classes overlap in the space (as in Figure

3.9). Solving this problem, the maximisation of 𝑀 is an option, but now some of the training data

points are allowed to be on the opposite side of the hyperplane. Thus, there are two ways to

approach this. However, slack variables have to be included; these are data points that are on

the wrong side of the hyperplane or the margin. These incorrectly classified data points can be

within the margin or beyond the margin. The slack variables are defined symbolically as 𝜉 =

(𝜉1, 𝜉2, … , 𝜉𝑛). Then altering the constraint of Equation 3.32:

𝑦𝑖(𝒙𝑖
𝑇𝛽 + 𝛽0) ≥ 𝑀 − 𝜉𝑖 (3.33)

or

𝑦𝑖(𝒙𝑖
𝑇𝛽 + 𝛽0) ≥ 𝑀(1 − 𝜉𝑖) (3.34)

Both Equations 3.33 and 3.34 are subject to: ∀𝑖 (for all 𝑖) and where 𝜉𝑖 ≥ 0 (the slack variable has

a positive value) as well as ∑ 𝜉𝑖 ≤ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑛
𝑖=1 . The last condition is that the sum of the slack

variables is smaller than some unknown constant. Equations 3.33 and 3.34 will produce different

solutions. Equation 3.34 indicates that misclassification of slack variables occurs when 𝜉𝑖 > 1,

since the 𝑖𝑡ℎ data point is on the incorrect side of the hyperplane. If 𝜉𝑖 > 0, this is an indication

that the 𝑖𝑡ℎ data point has violated the margin, that is, the data point is on the incorrect side of the

margin. Furthermore, if 𝜉𝑖 = 0, this is representative of the 𝑖𝑡ℎ data point being precisely on the

correct side of the margin. Equation 3.33 is a measurement of the overlaps’ actual distance from

the margin, 𝑀, making it a nonconvex optimisation problem. This is evident from the right-hand

side of the equation being 𝑀 − 𝜉𝑖 whilst 𝑀(1 − 𝜉𝑖) is a measurement of the relative distance. The

Stellenbosch University https://scholar.sun.ac.za

61

relative distance measurement results in a convex optimisation problem. As mentioned, a convex

optimisation problem lends itself to the support vector criterion. This is of assistance going forward

to achieve the ultimate goal of SVMs.

To compute the support vector classifier, Equation 3.32 has to be written equivalent to the formula

below but incorporating the constraints obtained in Equations 3.33 and 3.34. Hence, this is the

standard form of a support vector classifier in the nonseparable case. Formally:

𝑚𝑖𝑛‖𝛽‖ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

{

𝑦𝑖(𝒙𝑖

𝑇𝛽 + 𝛽0) ≥ 1 − 𝜉𝑖 ∀𝑖 ;

𝜉𝑖 ≥ 0 ;

∑𝜉𝑖 ≤ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑛

𝑖=1

 (3.35)

The challenge lies with the fixed value of one in the first constraint, 𝑦𝑖(𝛽𝒙𝑖
𝑇 + 𝛽0) ≥ 1 − 𝜉𝑖. This

can then be used as the starting point in computing the support vector classifier. From this

(Equation 3.35) it can be deduced that it is a convex optimisation problem from the quadratic form.

It contains constraints that are linear inequalities (two of the constraints contain greater than and

equal signs: ≥ whereas the other constraint is less than and equal: ≤). Linear functions (in this

case, the inequalities) are always convex. Additionally, quadratic functions with positive

coefficients result in a convex problem. This can be referred to as a quadratic programming

problem. Briefly, quadratic programming is having a mathematical optimisation problem; hence,

the quadratic function that has been subjected to linear constraints has to be minimised or

maximised. Quadratic programming is solvable but there is a ‘nicer’ method and this is to solve

the problem using Lagrange multipliers. In mathematics, the methodology of Lagrange multipliers

is used as a means for minimising or maximising a general function, that is, obtaining the local

minima or maxima, subject to constraints (Stewart, 2011).

If errors are allowed, that is, data points that are on the wrong side of the hyperplane or within the

margin, then ideally the following formula would be minimised (Gretton, 2018):

min
𝛽,𝛽0

(
1

2
‖𝛽‖2 + 𝐶∑𝕀

𝑛

𝑖=1

[𝑦𝑖(𝒙𝑖
𝑇𝛽 + 𝛽0) < 0]) (3.36)

where 𝐶 replaces the constant in Equation 3.35 and is known as the cost parameter which is a

nonnegative value.

Firstly, the strictness of the violations of the margin that are allowed is controlled by the cost

parameter. Thus, a few observational remarks regarding the cost parameter:

• If 𝐶 = 0 implies there are no cost violations to the margin as 𝜉1 = 𝜉2 = ⋯ = 𝜉𝑛 which simply

results in the maximal margin hyperplane;

Stellenbosch University https://scholar.sun.ac.za

62

• If 𝐶 > 0 indicates that at most the number of data points that are misclassified (on the

incorrect side of the margin) is equal to 𝐶 as 𝜉𝑖 > 1;

• When the cost parameter is increased it results in a widened margin which is indicative of

allowing more violations and misclassified observations;

• From the bullet point above, the opposite holds in that when the cost parameter is

decreased, the margin becomes smaller (slighter) and therefore data points being

misclassified are more severe.

The cost parameter, in practice, is used as a tuning parameter, which means varying this value

will affect the outcome. Hence, as mentioned, if 𝐶 is small, a narrow margin results, which means

that the data are close to perfectly fit. In terms of the bias-variance tradeoff, the bias will be low

but at the expense of having high variance in the model. On the other hand, if 𝐶 is large, the model

experiences low variance but high bias. Thus, data points are obtained that are more biased as

more violations have been allowed for and, therefore, more misclassifications.

For simplicity, Equation 3.36 can be rephrased as follows:

min
𝛽,𝛽0

1

2
‖𝛽‖2 + 𝐶∑𝜉𝑖

𝑛

𝑖=1

 (3.37)

Using Equation 3.37, the following primal Lagrangian function can be considered along with

substituting the first constraint of Equation 3.35:

ℒ(𝛽, 𝛽0, 𝛼, 𝜉, 𝜇) =
1

2
‖𝛽‖2 + 𝐶∑𝜉𝑖 −∑𝛼𝑖[𝑦𝑖(𝒙𝑖

𝑇𝛽 + 𝛽0) − (1 − 𝜉𝑖)]

𝑛

𝑖=1

𝑛

𝑖=1

+∑𝜇𝑖(−𝜉𝑖)

𝑛

𝑖=1

=
1

2
‖𝛽‖2 + 𝐶∑𝜉𝑖 +∑𝛼𝑖[1 − 𝑦𝑖(𝒙𝑖

𝑇𝛽 + 𝛽0) − 𝜉𝑖]

𝑛

𝑖=1

𝑛

𝑖=1

−∑𝜇𝑖𝜉𝑖

𝑛

𝑖=1

(3.38)

with dual variable constraints (Lagrange multipliers): 𝛼𝑖 ≥ 0 and 𝜇𝑖 ≥ 0.

Thus, the principle of duality indicates that the original optimisation problem can be solved by

minimising the primal variables: 𝛽, 𝛽0, 𝜉 and then maximising with respect to 𝛼 and 𝜇. This concept

is known as the saddle-point of the Lagrangian (Auria & Moro, 2008). Therefore, the partial

derivatives of the primal variables have to be computed.

Stellenbosch University https://scholar.sun.ac.za

63

The partial derivative of the Lagrangian function (Equation 3.38) with respect to 𝛽 is given by:

∇𝛽 ℒ(𝛽, 𝛽0, 𝛼, 𝜉, 𝜇) = 𝛽 −∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

𝒙𝑖 = 0

∴ 𝛽 =∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

𝒙𝑖
(3.39)

Formally, the partial derivative of the Lagrangian function (Equation 3.38) with respect to 𝛽0 is:

∇𝛽0 ℒ(𝛽, 𝛽0, 𝛼, 𝜉, 𝜇) =∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0 (3.40)

The above becomes a constraint when solving the dual problem, since at the optimal solution this

condition must be satisfied.

The partial derivative of the Lagrangian function (Equation 3.38) with respect to 𝜉 can be written

as:

∇𝜉 ℒ(𝛽, 𝛽0, 𝛼, 𝜉, 𝜇) = 𝐶 − 𝛼𝑖 − 𝜇𝑖 = 0

∴ 𝛼𝑖 = 𝐶 − 𝜇𝑖 (3.41)

with positive constraints, that is, 𝛼𝑖 , 𝜇𝑖 , 𝜉𝑖 ≥ 0 ∀𝑖.

In order to obtain the Lagrangian dual objective function, the dual has to be maximised. Hence,

using Equation 3.38 (Gretton, 2018):

𝑔(𝛼, 𝜇) =
1

2
‖𝛽‖2 + 𝐶∑𝜉𝑖 +∑𝛼𝑖[1 − 𝑦𝑖(𝒙𝑖

𝑇𝛽 + 𝛽0) − 𝜉𝑖]

𝑛

𝑖=1

𝑛

𝑖=1

−∑𝜇𝑖𝜉𝑖

𝑛

𝑖=1

 (3.42)

subject to the constraint:

∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0 ; 𝛼𝑖 ≥ 0 (3.43)

therefore:

𝑔(𝛼, 𝜇) =
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+ 𝐶∑𝜉𝑖 −

𝑛

𝑖=1

∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖
𝑇𝒙𝑗

𝑛

𝑗=1

𝑛

𝑖=1

− 𝛽0∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

+∑𝛼𝑖

𝑛

𝑖=1

−∑𝛼𝑖𝜉𝑖

𝑛

𝑖=1

−∑(𝐶 − 𝛼𝑖)𝜉𝑖

𝑛

𝑖=1

(3.44)

Stellenbosch University https://scholar.sun.ac.za

64

But from the partial derivative of Equation 3.40, that is,

∇𝛽0 ℒ(𝛽, 𝛽0, 𝛼, 𝜉, 𝜇) = ∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 = 0 and the partial derivative of Equation 3.41, it is known that

𝐶 − 𝛼𝑖 = 𝜇𝑖.

therefore:

𝑔(𝛼, 𝜇) =
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+ 𝐶∑𝜉𝑖 −

𝑛

𝑖=1

∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖
𝑇𝒙𝑗

𝑛

𝑗=1

𝑛

𝑖=1

− 0 +∑𝛼𝑖

𝑛

𝑖=1

−∑𝛼𝑖𝜉𝑖

𝑛

𝑖=1

−∑𝜇𝑖𝜉𝑖

𝑛

𝑖=1

=∑𝛼𝑖

𝑛

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗

𝑛

𝑗=1

𝑛

𝑖=1

(3.45)

Thus, the Lagrangian dual objective function is maximised, subject to constraints, ∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 = 0

and 0 ≤ 𝛼𝑖 ≤ 𝐶:

𝑔(𝛼) =∑𝛼𝑖

𝑛

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (3.46)

Furthermore, Equations 3.39-3.41 (the partial derivative of the Lagrangian function with respect

to the parameters) and 3.46 (the definition of the Lagrangian dual objective function) along with

the Karush-Kuhn-Tucker (KKT) conditions (given in Equations 3.47-3.49) typify the solution to

both the primal and the dual problem. The entire task above reduces to a convex quadratic

programme problem in 𝛼.

The KKT conditions include the constraints as follows:

𝛼𝑖[𝑦𝑖(𝒙𝑖
𝑇𝛽 + 𝛽0) − (1 − 𝜉𝑖)] = 0 (3.47)

𝜇𝑖𝜉𝑖 = 0 (3.48)

𝑦𝑖(𝒙𝑖
𝑇𝛽 + 𝛽0) − (1 − 𝜉𝑖) ≥ 0 (3.49)

The optimal solution is based upon a linear combination of the data points. More specifically, only

the support vector points characterise the solution. In other words, that is a data point that falls

within the margin or that has been misclassified (a data point that lies on the opposite side of the

hyperplane from its class label). Thus, a data point that lies stringently on the correct side of the

margin has no bearing on the support vector classifier.

Understanding hyperplanes, maximal margin classifiers and support vector classifiers allows for

expanding upon this, resulting in the final concept to be explained in this section: SVMs. What is

Stellenbosch University https://scholar.sun.ac.za

65

still apparent, from the description above, is that support vector classifiers work for the two-class

setting finding linear boundaries. In practice, this is not always viable as there are many cases

when the data does not present itself to be determined by linear boundaries, hence the need for

more flexibility in the determination of the boundaries. Therefore, the idea of classification using

nonlinear boundaries in the form of the SVM classifier is introduced. In addressing the challenge

of linearity between the input variables and the outcome (output), enlarging the feature space is

considered. In other words, the dimensionality of the feature space is increased using basis

expansions, namely splines or polynomials of high orders (cubic, quadratic or even higher).

As before, the underlying process is the same as in support vector classifiers with the distinction

being the decision of the basis function. That is, the basis function is defined as

ℎ𝑚(𝑥),𝑚 = 1,2,… ,𝑀. The support vector classifiers are then fitted using input data points,

ℎ(𝑥𝑖) = ℎ1(𝑥𝑖), ℎ2(𝑥𝑖), … , ℎ𝑀(𝑥𝑖), 𝑖 = 1,2,… , 𝑛 which results in the function 𝑓(𝑥) = ℎ(𝒙)𝑇�̂� + �̂�0. In

this case, the function is nonlinear. As preliminary in support vector classifiers, the computation

of the classifier remains unchanged; nonetheless, it is just based on the newly defined nonlinear

function, id est, 𝐺(𝑥) = 𝑠𝑖𝑔𝑛 (𝑓(𝑥)).

As mentioned previously, SVMs can be applied in both regression and classification domains.

However, this research will focus on computing SVMs for classification as the application of brain

tumour images in Chapter 4 is pattern recognition, hence a classification task.

The notion here is to start with expressing the optimisation problem along with the solution in a

slightly different way. Computation is performed by way of inner products. Inner products of two

𝑟-vectors 𝑎 and 𝑏 are defined as 〈𝒂, 𝒃〉 = ∑ 𝑎𝑖𝑏𝑖
𝑟
𝑖=1 . Therefore, the inner product for two data

points, 𝑥𝑖 and 𝑥𝑗 can be given as:

〈𝒙𝑖, 𝒙𝑗〉 = ∑𝑥𝑖𝑘𝑥𝑗𝑘

𝑝

𝑘=1

 (3.50)

Thus, the dual Lagrange objective function, Equation 3.46, can be rewritten to include the inner

products as:

𝑔(𝛼) =∑𝛼𝑖

𝑛

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗〈ℎ(𝒙𝑖

𝑇), ℎ(𝒙𝑗)〉

𝑛

𝑗=1

𝑛

𝑖=1

 (3.51)

Stellenbosch University https://scholar.sun.ac.za

66

Then, using the definition of inner products (Equation 3.50) in addition to using Equation 3.51, the

function can be solved, 𝑓(𝑥):

𝑓(𝑥) = ℎ(𝒙)𝑇𝛽 + 𝛽0

=∑𝛼𝑖𝑦𝑖〈ℎ(𝒙), ℎ(𝒙𝑖)〉

𝑛

𝑖=1

+ �̂�0
(3.52)

𝛽0 can be computed when 𝛼𝑖 is given by solving 𝑦𝑖𝑓(𝑥𝑖) = 1 in Equation 3.52 for all 𝑥𝑖 but subject

to the constraint, 0 ≤ 𝛼𝑖 ≤ 𝐶.

In conclusion, the only impact that ℎ(𝒙) has is via the inner products. Furthermore, this means

that there is no prerequisite to transform ℎ(𝒙) but the implications of the kernel function need to

be recognised and understood. By using a kernel approach, the feature space is enlarged, which

implies that the linearity boundary between the classes has been negated.

Mathematically, the kernel function can be represented as follows:

𝐾(𝒙, 𝒙𝑇) = 〈ℎ(𝒙), ℎ(𝒙𝑇)〉 (3.53)

which equates to the computation of the inner products but in the enlarged feature space.

There are a multitude of kernels that can be applied in SVMs, but the three most commonly used

kernels (with their associated equations) in SVM literature include:

• 𝑑𝑡ℎ Degree polynomial: 𝐾(𝒙, 𝒙𝑇) = (1 + 〈𝒙, 𝒙𝑇〉)𝑑;

• Radial basis: 𝐾(𝒙, 𝒙𝑇) = 𝑒𝑥𝑝(−𝛾‖𝒙 − 𝒙𝑇‖2);

• Neural network: 𝐾(𝒙, 𝒙𝑇) = 𝑡𝑎𝑛ℎ(𝜅1〈𝒙, 𝒙
𝑇〉 + 𝜅2).

The first bullet is referred to as a polynomial of degree 𝑑, where 𝑑 is a positive integer value. If

𝑑 = 1 the SVM simply reduces back to a support vector classifier, which defeats the objective.

Thus, any integer needs to be chosen where 𝑑 > 1 leading to more flexibility of the decision

boundary.

It should be noted that in the radial basis kernel equation, 𝛾 is a positive constant. Briefly, a radial

basis kernel exhibits local behaviour. This means that only training data points that are near to a

query point will influence the predicted class label (of the query point).

For SVM classifiers some final remarks are made:

• The cost parameter, 𝐶, has an even greater impact as perfect separation of the data points

is possible, that is, making the decision boundary as wiggly as needed to ensure that the

data points are all correctly labelled;

Stellenbosch University https://scholar.sun.ac.za

67

• If 𝐶 is chosen to be large this results in a wiggly overfit decision boundary (low bias but at

the expense of high variance);

• If the value of 𝐶 is small it leads to a smoother boundary (low variance at the cost of high

bias).

Next, the concept of a loss function associated with SVMs is introduced: hinge loss. The

discussion of this notion is relevant as in the practical implementation section (Chapter 4) one of

the models is a hybrid CNN with the final (output) layer applying an SVM classifier. Hence, the

appropriate loss function is that of the hinge loss. Therefore, starting with the optimisation problem

defined by Equation 3.35, using different notation (but equivalent in the meaning), it can be written

as follows:

max
𝛽0,𝛽1,…,𝛽𝑝;𝜀1,…,𝜀𝑛;𝑀

𝑀 (3.54)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝛽𝑗
2 = 1

𝑝

𝑗=1

 (3.55)

⟹ 𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝) ≥ 𝑀 (3.56)

𝑤ℎ𝑒𝑟𝑒 휀𝑖 ≥ 0 𝑎𝑛𝑑 ∑휀𝑖 ≤ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑛

𝑖=1

 (3.57)

But recall that the constant in Equation 3.57 can be replaced by the nonnegative tuning

parameter, 𝐶 (the cost parameter). Therefore:

𝑤ℎ𝑒𝑟𝑒 휀𝑖 ≥ 0 𝑎𝑛𝑑 ∑휀𝑖 ≤ 𝐶

𝑛

𝑖=1

 (3.58)

Once again as with Equation 3.35:

• 𝐶 is the cost parameter;

• 𝑀 indicates the width of the margin;

• 휀1, … , 휀𝑛 represents the slack variables (variables that allow instances to be on the incorrect

side of the hyperplane (or margin)).

Now Equations 3.54-3.56 and 3.58 can be rephrased for the support classifier (given by:

𝑓(𝑿) = 𝛽0 + 𝛽1𝑿1 + 𝛽2𝑿2 +⋯+ 𝛽𝑝𝑿𝑝) as follows:

Stellenbosch University https://scholar.sun.ac.za

68

min
𝛽0,𝛽1,…,𝛽𝑝

{∑max[0, 1 − 𝑦𝑖𝑓(𝑥𝑖)] + 𝜆∑𝛽𝑗
2

𝑝

𝑗=1

𝑛

𝑖=1

} (3.59)

where:

• 𝜆 is indicative of a nonnegative tuning parameter;

• 𝜆 ∑ 𝛽𝑗
2𝑝

𝑗=1 is the ridge penalty term and the idea of this term is to control the bias-variance

tradeoff associated with the support vector classifier.

Furthermore:

• If the value of 𝜆 is large it implies that 𝛽0, 𝛽1, … , 𝛽𝑝 are small values, meaning that more

violations of the margin are allowed. This case results in a classifier that exhibits low

variance at the expense of having high bias;

• Conversely, if 𝜆 is small then values of 𝛽0, 𝛽1, … , 𝛽𝑝 are small, hence fewer violations are

tolerated. Thus, the support vector classifier displays high variance but low bias.

Therefore, Equation 3.59 can be formally written in the form of a loss function. Written in general

terms, the loss function is:

min
𝛽0,𝛽1,…,𝛽𝑝

{𝐿(𝑿, 𝒀, 𝛽) + 𝜆𝑃(𝛽)} (3.60)

where:

• 𝐿(𝑿,𝒀, 𝛽) represents a loss function which is based on the data (𝑿, 𝒀) where the

parameter(s) of interest is (are) 𝛽;

• 𝑃(𝛽) equates to the penalty term.

Using Equation 3.60 to rewrite Equation 3.59 in the same format, the following is obtained:

𝐿(𝑿,𝒀, 𝛽) =∑max[0, 1 − 𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝)]

𝑛

𝑖=1

 (3.61)

Equation 3.61 is known as the hinge loss and is illustrated in Figure 3.10. The figure refers to the

SVM loss, but this terminology is the same as being referred to as the hinge loss. From Figure

3.10 it can be concluded that when 𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝) ≥ 1 then the loss function

is equal to zero. This infers that the instances are found to be on the correct side of the hyperplane

(or margin). In other words, if the signs of 𝑦 and 𝛽 are the same, meaning that the correct class

label has been predicted by 𝑦 and where 𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝) ≥ 1 then the loss is

equal to zero. Contrariwise, when 𝑦 and 𝛽 have the opposite signs, this then suggests that the

Stellenbosch University https://scholar.sun.ac.za

69

loss function increases as 𝑦 increases in a linear fashion. The same conclusion is reached if

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝) < 1 even if the sign of 𝑦 and 𝛽 are the same.

Figure 3.10: Hinge loss (SVM loss)

Source: James et al., 2013.

There are numerous validating reasons for why SVMs should be considered, not least the ability

to produce high accuracy. On the other hand, besides issues in interpretability and difficulty in

understanding the underlying structure and mechanisms of the SVM algorithm (difficulty in how

the variables interact), there are other limitations in the implementation and use of SVMs. Table

3.2 indicates when and when not to apply SVM algorithms to problems in the form of advantages

and disadvantages.

Stellenbosch University https://scholar.sun.ac.za

70

Table 3.2: Advantages and disadvantages of SVMs

Advantages Disadvantages

Efficient training algorithm The performance of SVMs relies heavily on the
choice of kernel

Can be used to model nonlinear class boundaries Computational speed is a problem in training and
testing (running time is slower than neural nets, et
cetera)

Can compute complex, nonlinear functions The size of the training dataset: exceptionally
large training datasets with copious support
vectors is an unsolved problem

The complexity of the optimisation problem
reduces to quadratic programming

Optimal parameter selection is difficult, especially
when the training data are nonseparable (linearly
not separable) and the data are noisy

Less overfitting

Source: Russell and Norvig, 2003; Byun and Lee, 2002; Archana and Elangovan.

Lastly, SVMs have applications in areas that are used daily to solve real-world problems. As

referenced in section 3.5, one of these areas is bioinformatics. SVMs have been shown to have

increased efficacy in cancer segmentation, detection and classification, gene classification, et

cetera. Furthermore, SVMs assist in text classification, for instance, categorising different

document types, as well as image classification. Recognising handwritten text is another

application of SVMs. SVMs have also shown promise in classifying satellite data.

3.4 ARTIFICIAL INTELLIGENCE: DEEP LEARNING

3.4.1 Artificial intelligence

AI in recent times has become a buzz word and the area of AI has gained in popularity through

its applications. These applications are extensive and in some cases the technology is so

advanced that AI is in use without humans realising it. However, even with the hype surrounding

AI it is a somewhat misconstrued concept, due in part to the inability to fully comprehend what AI

entails - what AI is and what it is not and what it can accomplish and what it cannot accomplish.

The notions of what AI can achieve are based on what has (falsely or incorrectly) been portrayed

in movies, television series and books, therefore the misconceptions regarding AI’s potential

(Mueller & Massaron, 2018). In other words, AI is made out to accomplish more than it actually

can.

There are four schools of thought on how AI is to be defined, with diverse perspectives on AI: the

end goal that one is trying to achieve using AI; the expectations related to what one wants to

accomplish; and how one implements the technology. If AI is broken down into artificial and

intelligence, there is consensus on how artificial is defined, namely something that does not occur

naturally. There is more of a grey area, more ambiguity, when defining intelligence and therefore

Stellenbosch University https://scholar.sun.ac.za

71

uncertainty about how intelligence should be defined. Intelligence can be defined in several ways,

involving various mental activities: learning (how new information is processed); reasoning

(understanding and then manipulating this new information to make sense of it); understanding

(making an allowance for what this information means); grasping truths (the validity of new

information); and seeing relationships (how does this interact with and come together with other

information) (Mueller & Massaron, 2018).

Coming back to these four different schools of thought on how to define AI, eight contrasting

definitions are given in Table 3.3. There are varying criteria in the definitions and these can be

viewed along two dimensions. Along the horizontal dimension - that is, splitting the upper two

quadrants’ definitions from those of the lower half - the definitions in the top half concern

themselves with thought processes and behaviour, whilst those in the bottom half address

behaviour (Russell & Norvig, 2003). Furthermore, along the vertical dimension (dividing left from

right), the left-hand side definitions are a measure of success in terms of reliance on and trust in

human performance, whereas the definitions on the right are more concerned with rationality (a

measurement against a definitive concept) (Russell & Norvig, 2003).

Table 3.3: Definitions of AI divided into four categories

Thinking like humans Thinking rationally

“The exciting new effort to make computers think
… machines with minds, in the full and literal
sense” (Haugeland, 1985)

“The study of mental faculties through the use of
computational models” (Charniak & McDermott,
1985)

“[The automation of] activities that we associate
with human thinking, such as decision-making,
problem-solving, learning…” (Bellman, 1978)

“The study of the computations that make it
possible to perceive, reason and act” (Winston,
1992)

Acting like humans Acting rationally

“The act of creating machines that perform
functions that require intelligence when performed
by people” (Kurzweil, 1990)

“Computational intelligence is the study of the
design of intelligent agents” (Poole, Mackworth &
Goebel, 1998)

“The study of how to make computers do things at
which, at the moment, people are better” (Rich &
Knight, 1991)

“AI … is concerned with intelligent behaviour in
artifacts” (Nilsson, 1998)

Source: Russell and Norvig, 2003.

Decomposing what is meant by thinking like humans, thinking rationally, acting like humans and

acting rationally is as follows (Russell & Norvig, 2003; Mueller & Massaron, 2018):

• Acting like humans (the Turning approach): in the instance where a computer acts like a

human, it means that the computer has successfully been able to not differentiate between

computer and human;

Stellenbosch University https://scholar.sun.ac.za

72

• Acting rationally (rational agent approach): from a human perspective, this is how an

individual will act in a given circumstance. From the computational side, computers depend

on a programme or recorded actions based upon data;

• Thinking rationally (“laws of thought” approach): the main aim of this approach is to solve

problems logically. Humans are considered rational thinkers when their actions are

performed according to some form of guidelines. On the other hand, computers that think

rationally need programmes to create these guidelines based on the available data;

• Thinking like humans (the cognitive modelling approach): programming a computer using

the logic of how human thinking processes work requires a deeper understanding of these

processes. Two approaches can be taken. Firstly, humans think via introspection and

secondly, psychological experiments can be conducted to determine how humans think and

to establish the logic behind these processes.

The above is a brief description of each; for a more detailed understanding, the reader is referred

to the book on AI by Russell and Norvig (2003). These aforementioned four types give insight into

how to apply AI in practice. As is evident, the outcome is different when looking at rational versus

human processes. Rationality is based on performing tasks according to a strict set of guidelines

(within some deviation, of course); it is generally a strictly-by-the-book method. Conversely,

human processes are somewhat different in that they rely on instinct and intuition which might not

always align in every respect with guidelines (this is also dependent on the situation).

Furthermore, there are divergent opinions about the strength of AI. That is, some research and

groups in practice describe the term strong AI, which means that in an ever-changing

environment, AI can generalise and adapt to any given situation (Mueller & Massaron, 2018).

Contrariwise, weak AI is where the intelligence has been designed in such a way that it performs

a specific task very well (Mueller & Massaron, 2018). In other words, it is efficient and effective

but only for that particular specialised task.

AI has recently been put in the spotlight due to the increase in ML techniques being applied in

practice. ML technology is a means whereby computers learn from data. In other words, ML is

not dependent on programmers setting the tasks to be performed, that is, manual intervention at

every step of the process, but rather derives the tasks from the examples which indicate to the

machine (computer) how it should behave (Mueller & Massaron, 2018). It is worth pointing out,

though, that one of the consequences of ML is that these techniques can prove to be unsuccessful

and then the computer learns the incorrect things through incorrect human programming. For

instance, as mentioned, garbage in, garbage out – if the task at hand is incorrectly interpreted,

no ML algorithm can make the adjustments and the results may prove to be inaccurate. Besides

ML, the currently most spoken-about area in AI that has gained exponentially in popularity is DL.

Stellenbosch University https://scholar.sun.ac.za

73

It has been successfully applied with promising results in numerous applications in a variety of

fields. DL methodology attempts to mimic the human brain. DL methodologies and techniques

have become possible as a result of an increase in computational power (hardware), smarter

algorithms (that is, the development of and advancement in AI algorithms) and digitisation which

have led to enormous databases that are available and accessible. This digitisation has occurred

from society as well as large investments from companies such as Google, Amazon, Facebook

and other businesses that have sensed an opportunity in the potential impact that the

advancements of AI might have on their companies (Mueller & Massaron, 2018).

Smarter algorithms and data have changed the AI landscape. Algorithms have come a long way;

when first adopted by computer programming they were simple algorithms. That is, these

algorithms were only capable of acknowledging mathematical and logical symbols to then

compute mathematical operations and equations. Following this, expert systems were developed,

some of which are still somewhat in use today, for example, spelling and grammar checkers

(Mueller & Massaron, 2018). More recently, due to the increase in the availability and accessibility

of large databases, ML and DL algorithms have been developed and implemented. Data have

gone from being a raw material that facilitated the solution to being the key component of the

solution (Mueller & Massaron, 2018).

Furthermore, AI from a business perspective can assist in performing tasks in a smarter, more

efficient and effective way which is essentially easier, for instance by reducing the number of

trivial tasks. What AI is not and what it cannot accomplish is to replace humans. It cannot replicate

the creativity or the imagination of humans or their patterns of thought, for instance by creating

new music; moreover, AI is limited and cannot come up with original ideas (Mueller & Massaron,

2018). Another prime example of where AI can assist but decidedly not replace humans is the

medical field. The use of AI technology has made it possible to make more accurate, efficient and

straight-forward diagnoses. There are many examples, but one which is pertinent to this research

is that cancer can be detected much sooner with the aid of AI technology than by doctors alone.

AI assists not only in locating tumours with great precision and accuracy when they are small but

also in speeding up their analysis (Mueller & Massaron, 2018). But that said, the expertise and

experience of a doctor are still needed to confirm the diagnosis.

3.4.2 Neural networks: biological and artificial

The study of NNs has been advantageous in applications where classical statistical techniques

may not be applicable or may not produce successful results. The majority of these tasks are in

the sphere of classification. As mentioned, NNs have secured promising results in image and

speech classification, text classification and natural language processing (NLP), as well as in

domains that rely on the proficiency of professionals such as diagnostic medicine.

Stellenbosch University https://scholar.sun.ac.za

74

First there is the neurobiological influence that has been the inspiration behind the programming

prototype, ANNs. The neurobiological paradigm has made allowance for NNs in the sense that

computers learn from the input data. Figure 3.11 is an illustration of a single neuron in a stylised

form. It is worth mentioning that the brain consists of approximately 100 billion neurons. The

diagram depicts how the starting point of how neurons communicate with each other is mediated

by the synapses, which are electrochemical junctions (Gurney, 1997). These synapses are

located on the branch of the cell body known as dendrites and inside the cell body is a nucleus.

In cases where there is enough stimulation of the dendritic tree, it will cause a spike down that

axon. If these summed spikes or signals are greater than some threshold, the neuron fires; this,

in turn, transmits signals to further neurons via the axon (Gurney, 1997). Once the neurons have

fired, they go through what is known as the refractory period when the neuron goes quiet for a

short period while it builds up strength to fire again. In some cases the strength from the signals

causes an inhibitory effect, which means that they prevent neurons from firing whilst an excitatory

effect causes neurons to fire (Gurney, 1997). Hence, the strength and interaction with other

neurons determine whether a neuron has the ability to fire or not. Figure 3.11 shows that there

are inputs, computation takes place in the middle and there is an output (firing or nonfiring of

neurons). From this process it is converted using the same intuition to produce an ANN,

demonstrated in Figure 3.12.

Figure 3.11: Components of a biological neuron

Source: Gurney, 1997.

Figure 3.12 is binary in the inputs, that is, they take on a value of either zero or one and this is to

imitate the neurobiological network, in that neurons either fire or they do not. First the network is

fed some inputs given as 𝑥1, 𝑥2, … , 𝑥𝑛 that are binary; they are multiplied by some weights,

𝑤1, 𝑤2, … , 𝑤𝑛. To describe the collective strength of these inputs they are run through a summation

(∑). This helps determine whether this collective strength will have enough influence to signify

whether the neuron fires or not. This is where the activation function (𝜎) is used, that is, the

activation function has a threshold value. If the summation is greater than the threshold the

collective input is strong enough to fire, thereby resulting in a one. The output is also binary, that

Stellenbosch University https://scholar.sun.ac.za

75

is, obtaining a value of either a zero or a one. Hence the output is determined by whether the

threshold value of the activation function is exceeded or not.

Figure 3.12: Systematic diagram of a binary classification neural network

To fully comprehend NNs, the core underlying principles have to be defined and understood, with

insight into the mechanics of how NNs work. Once the fundamental aspects have been

comprehended, this idea can be extended to the notion of DL and CNNs.

3.4.2.1 Perceptrons

Perceptrons form the first core principle in understanding the global picture of a NN. A perceptron

is a type of ANN in the simplest form. The initial perceptron algorithm was developed in the 1950s

and 1960s by Frank Rosenblatt who was inspired by the prior work of Warren McCulloch and

Walter Pitts (Nielsen, 2015), where the main idea was to classify binary inputs (usually in the form

of images) and then categorise them into either of two classes (binary in, binary out) via separation

of a hyperplane. That is, single layer perceptrons (see Figure 3.13) have the ability to only learn

patterns that are linearly separable. If a step function is used, which is the case in a perceptron,

then the network has a single hyperplane that divides the data. In other words, and using

mathematical notation, a perceptron produces a distinct binary output (zero or one) from multiple

(𝑛) binary inputs (zero or one) given as 𝑥1, 𝑥2, … , 𝑥𝑗. Furthermore, Figure 3.13 is a basic visual

representation of a perceptron with three binary inputs (𝑥1, 𝑥2, 𝑥3) that then produce a single binary

output. In theory, though, this is not a fixed number and as such there could be more or fewer

binary inputs.

Stellenbosch University https://scholar.sun.ac.za

76

Figure 3.13: Basic perceptron

Source: Nielsen, 2015.

To compute this binary output Rosenblatt introduced a simple rule which is to introduce weights

as a means to convey the influence that the associated inputs have on the output. The weights

are expressed mathematically as 𝑤1, 𝑤2, … , 𝑤𝑗. The output of this perceptron, denoted by either a

zero or a one, is to be determined by the weighted sum (the summation of the inputs multiplied

by the weights), formally written as ∑ 𝑤𝑗𝑥𝑗𝑗 , is greater than or less than some threshold value

(Nielsen, 2015). Algebraically, this can be written more formally as:

𝑜𝑢𝑡𝑝𝑢𝑡 =

{

 0 𝑖𝑓 ∑𝑤𝑗𝑥𝑗

𝑗

≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1 𝑖𝑓 ∑𝑤𝑗𝑥𝑗
𝑗

> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 (3.62)

Equation 3.62 reads as: the output is classified as a zero (one class) if the weighted sum is less

than or equal to some threshold value, whereas the output is classified as a one (another class)

if the weighted sum of the inputs is greater than the threshold value. Hence, a perceptron makes

decisions based on weighted evidence (the predictive power of the inputs associated with the

output), taking into account that if the weights and the threshold values are changed this results

in a different perceptron model (Nielsen, 2015).

Some notational changes can be made to the definition of a perceptron for convenience (when

proceeding with further core concepts). The first change is that instead of the weighted sum of

the inputs, ∑ 𝑤𝑗𝑥𝑗𝑗 , this can be written as the dot product of the vector of weights and the vector

of inputs, written mathematically as: 𝒘 ∙ 𝒙 = ∑ 𝑤𝑗𝑥𝑗𝑗 . Secondly, the threshold is replaced with what

is referred to as the bias and taken to the left-hand side of the inequality in Equation 3.62, that is

the bias is equivalent to the negative of the threshold; mathematically this is: 𝑏𝑖𝑎𝑠 ≡ −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

and the perceptron rule given in Equation 3.62 can be rephrased as (Nielsen, 2015):

𝑜𝑢𝑡𝑝𝑢𝑡 = {
0 𝑖𝑓 𝒘 ∙ 𝒙 + 𝑏 ≤ 0
1 𝑖𝑓 𝒘 ∙ 𝒙 + 𝑏 > 0

 (3.63)

Stellenbosch University https://scholar.sun.ac.za

77

Equation 3.63 is now read as: the output is classified as zero if the dot product of the weights and

the inputs plus the bias are less than or equal to zero whilst a one is the output classification if

the dot product of the weights and the inputs plus the bias are greater than zero. One way of

thinking of the bias is that it is the measure of the likelihood of getting the perceptron to result in

producing a value of one (Nielsen, 2015). From the neurobiological neuron, this is the likelihood

of the neuron firing. This is determined as follows: if the bias is really large (a large positive value),

there is a greater chance of the output being a one and vice versa. That is, if the bias is really

small (a negative value), the perceptron will not fire and therefore a zero outcome is obtained.

The bias is responsible for moving the decision boundary of the hyperplane. In the case of binary

classification tasks, recall that the perceptron uses a step function (refer to Figure 3.14, third

panel). More specifically, a perceptron uses the Heaviside step function (named after a British

mathematician) as an activation function. The Heaviside step function simply indicates that for

negative values a zero is the resultant output value, whilst for positive values the output is given

as a one. This is the same interpretation and conclusion arrived at from Equation 3.63. It is worth

mentioning that the step function is not the most effective, for the reason that if the weights and

the bias are slightly changed, this can result in major changes to the output (Nielsen, 2015). That

is, the model can completely change around and, for example, a one could now easily be

misclassified as a zero. For this reason other activation functions are reviewed, including when

the intended use is most appropriate, in section 3.4.2.3.

This single layer perceptron with a classical linear classifier is what is considered the simplest

feedforward network. Feedforward networks are whereby the information only moves in one

direction; as the name suggests the movement is forward, from the input through the layers (if

there are any) and finally, towards the output.

Stellenbosch University https://scholar.sun.ac.za

78

Figure 3.14: Activation functions

Source: DuCharme, 2017.

Figure 3.15 is a systematic diagram of the components of a simple ANN. This can be applied

going forward and constitutes the underlying mechanics of NNs. That is, the network has inputs

(𝑥1, 𝑥2, … , 𝑥𝑗); these have corresponding weights (𝑤1, 𝑤2, … , 𝑤𝑗), that is, the inputs are multiplied

by the weights. The neuron consists of a linear part (𝒘𝒙+ 𝑏 where 𝒘 ∙ 𝒙 = ∑ 𝑤𝑗𝑥𝑗𝑗) and an

activation function (𝜎). The activation functions (as given in Figure 3.14) that are discussed

include the Heaviside step function, the sigmoid function, the hyperbolic tangent (tanh) and the

rectified linear unit (ReLU), to name but a few. These are the functions that were reviewed in this

research with the sigmoid and ReLU applied in the exploration of brain tumour images (Chapter

4). For the theoretical discussion on the other three activation functions (excluding the step

function, which was discussed in this section) the reader is referred to section 3.4.2.3.

Stellenbosch University https://scholar.sun.ac.za

79

Figure 3.15: Systematic diagram of the components of an artificial neural network

3.4.2.2 The architecture of artificial neural networks

Figure 3.16 is indicative of adding more depth to the NN. Complexity entails that more layers have

been added to the network; in fact, there are an additional four layers. The first column (the

leftmost column in the diagram) is known as the first layer and contains the input neurons, the

second column is the second layer, and so forth. The fourth column (rightmost column as depicted

by the diagram) contains the output, and is, therefore, referred to as the output layer. In other

words, this layer is directly related to the output. Furthermore, the middle two columns are what

is known as the hidden layer. A basic understanding of a hidden layer is that it is not directly

associated with the input or the output, that is, the input and output are hidden from this layer. In

other words, it is an abstraction of the binary input but not a direct result of the input. Furthermore,

it cannot be fully comprehended what this layer is going to figure out based on the input from the

previous layer, but with enough information from the data this layer should start understanding

more complex information about the input. The deeper (more layers added) the network gets, the

more complex the information it will start to understand. A layer can be defined as neurons that

are not connected to one another, that is, they act independently of one another. This, however,

is a fully connected perceptron network as every input variable is connected to each neuron in

the first layer. The output from each neuron in the first layer is connected as an input to the second

layer. The same thinking is followed for the next layer, that is, the output from each perceptron in

the second layer is connected as an input to the third layer. This process continues until the last

layer in the network - in this example, the fourth layer - which is indicative of the output, the final

decision made by the network.

However, what should be understood is that the first layer is making very simple decisions through

the weights of evidence of the inputs plus the bias (known as the linear part of the neuron,

mathematically shown as 𝒘 ∙ 𝒙 + 𝑏) and that has been run through an activation function

(reviewed in the next section) associated with that neuron. The next layer takes the decisions or

Stellenbosch University https://scholar.sun.ac.za

80

results of the first layer and then weighs them up and makes a decision. This invariably means

(as mentioned) that the neurons that are in the second layer make decisions based on more

complex and abstract information. The second layer then communicates the decisions it made

and passes them on as input to the third layer that then understands even more complex

information and so the process continues until the last layer makes a final decision (the output).

It is worth noting that per layer generally one type of activation function is used but the different

layers may contain different activation functions.

Figure 3.16: Architecture of an artificial neural network

Source: Nielsen, 2015.

Figure 3.16 is an example of a four-layer NN, with two hidden layers; however, theoretically and

in practice the network can have multiple hidden layers.

3.4.2.3 Activation functions

As previously mentioned, perceptrons have limitations in that a minor change in the values of

either the weights or the bias can lead to completely different model outputs. This section shows

that through the use of more effective activation functions this challenge can be overcome. Three

further activation functions will be reviewed: the sigmoid function, the hyperbolic tangent

(commonly referred to as tanh) function and lastly, the rectified linear unit (ReLU) function. This

is by no means an exhaustive list and there are many more that can be found in the literature that

has been researched for specific applications. In the next chapter on the exploration of brain

tumour images the two main activation functions that are applied in CNNs are those of sigmoid

and ReLU. The reasoning behind the use of these two functions will become apparent as they

are discussed in more depth. One of the main reasons that activation functions are needed and

therefore implemented is that this is where the complexity of the NN comes from. If no activation

Stellenbosch University https://scholar.sun.ac.za

81

function were applied, irrespective of how deep the NN is it is equivalent to having a linear

regression problem.

Sigmoid activation function

The sigmoid activation function, which is a function that makes use of sigmoid neurons, is one of

the most frequently used activation functions in practice and in the research arena as it has the

property of being a smoothed-out version of the step function where the mathematics can be dealt

with quite easily. In other words, sigmoid functions are quite common in feedforward NN due to

the fact that they are nonlinear and have the additional property of having mathematical simplicity

of their derivative (Han & Moraga, 1995). Moreover, as the sigmoid function is a smoothed-out

version of the step function (as illustrated by the topmost panel in Figure 3.14), it means that for

classification tasks it results in a probability obtained between zero and one. Hence, it means that

there are not only two outcomes - zero or one - as with perceptrons, but there can be any possible

probability value between zero and one. This indicates that a sigmoid function is bounded

between zero and one. The drawback to sigmoid activation functions is that at the extreme ends,

the gradient is very close to zero, as at the extreme ends the function dwindles and is stagnant.

In other words, the function is horizontal at these extreme ends (refer to Figure 3.14). This leads

to an effect known as a vanishing gradient or the saturation of the gradient, which means that it

is particularly difficult to update parameters that are earlier in the network and that the network

learns more slowly or not at all.

However, as mentioned, sigmoid functions have the property of overcoming the challenge posed

by perceptrons. That is, a small variation or change in the bias or the weights does not have a

major impact on the outcome of the network (Nielsen, 2015). In other words, only a small change

in the output is resultant from a small change in the weights or bias.

The discussion now shifts to the underlying principles of a sigmoid function, including from a

mathematical perspective. That is, just as was the case with perceptrons, sigmoid functions

(neurons) have inputs, which are given as 𝑥1, 𝑥2, … , 𝑥𝑗. However, as mentioned, owing to the

probability of a sigmoid neuron, the input can take on a value between zero and one, for instance,

0.175 is very much a valid input (Nielsen, 2015). Furthermore, similar to perceptrons, sigmoid

neurons also have corresponding weights to the inputs and a bias term. Formally, the weights

and the bias are defined as before, 𝑤1, 𝑤2, … , 𝑤𝑗 and 𝑏, respectively. Another change that is

observed with sigmoid functions is that the output is no longer a zero or one (as in perceptrons)

but is given as 𝜎(𝒘𝒙 + 𝑏) where 𝜎 is indicative of the activation function. In this case, the activation

function, 𝜎, represents the sigmoid function (Nielsen, 2015). The sigmoid function can be written

as:

Stellenbosch University https://scholar.sun.ac.za

82

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 (3.64)

Differentiating the sigmoid function, the following is obtained:

𝜎′(𝑧) = 𝜎(𝑧)(1 − 𝜎(𝑧)) (3.65)

Additionally, the output expression can be written more explicitly based on Equation 3.64 but with

weights, 𝑤1, 𝑤2, … , 𝑤𝑗 and 𝑏, the bias. Thus:

1

1 + exp (−∑ 𝑤𝑗𝑥𝑗 − 𝑏𝑗)
 (3.66)

Furthermore, there are similarities between the perceptron and the sigmoid neurons. Firstly,

suppose that 𝑧 = 𝒘 ∙ 𝒙 + 𝑏 results in a large value (a big positive value), then 𝑒−𝑧 ≈ 0, meaning

that the sigmoid activation is approximately equal to one (as from Equation 3.64: 𝜎(𝑧) ≈
1

1+0
≈ 1).

This can then be interpreted as that the output obtained from the sigmoid neuron is approximately

equal to one. Conversely, suppose that 𝑧 = 𝒘 ∙ 𝒙 + 𝑏 is the resultant of a small value (that is, a

large negative), then via the exponential value 𝑒−𝑧 → ∞; from the sigmoid function, a value of

approximately zero is obtained. It is only in the in-between range (that is, not at the extreme ends

of the function), that there are obvious and significant differences between perceptrons and

sigmoid functions (Nielsen, 2015). In other words, a perceptron only takes on one of two values,

whilst a sigmoid function can take on varying values bounded by zero and one.

Besides the algebraic form given by Equation 3.64, as mentioned the shape where a sigmoid

function is a smoothed-out step function that is employed by perceptrons is also of interest.

Furthermore, the use of calculus can show that owing to the smoothed-out activation function a

small change in the weights (∆𝑤𝑗) or the bias (∆𝑏) results in a small change in the output, that is

mathematically (Nielsen, 2015):

∆ 𝑜𝑢𝑡𝑝𝑢𝑡 ≈∑
𝜕 𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑤𝑗
𝑗

 ∆𝑤𝑗 +
𝜕 𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑏
 ∆𝑏 (3.67)

where:

• ∆ 𝑜𝑢𝑡𝑝𝑢𝑡 is the change in output;

•
𝜕 𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑏
 is the partial derivative of the output with respect to the bias (𝑏);

•
𝜕 𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑤𝑗
 is the partial derivative of the output with respect to the 𝑗𝑡ℎ weight (𝑤).

Equation 3.67 is indicative of a linear function, that is, the change in the output is linearly

dependent on the changes in the bias and weights (Nielsen, 2015). This implies that the linearity

Stellenbosch University https://scholar.sun.ac.za

83

allows for making small changes in the bias and/or the weights that are then associated with a

small change in the output. Hence, this will not cause major changes in the output, which is

beneficial. The above equations will be useful when an optimisation technique (learning algorithm)

is applied and backpropagation performed (in sections 3.4.2.4 and 3.4.2.5, respectively).

Hyperbolic tangent activation function

As mentioned, in practice networks that are built on activation functions other than the sigmoid

function can outperform sigmoid activation functions. One of these frequently used functions is

key to the discussion in this section and that is the hyperbolic tangent function (tanh). As a matter

of fact, depending on the type of application and problem tanh functions may learn more quickly

than sigmoid functions and may better generalise either the training or the test data or in some

cases, even both (Nielsen, 2015). The tanh activation function - that is, tanh neurons - is a slight

variation, probably the simplest variation, of the sigmoid function. Figure 3.14, the second (top)

panel, contains an illustration of the tanh activation function. The most visible variation is that the

bounds have changed whilst the shape remains the same (still an ‘S’ shape as observed in the

sigmoid function). The new bounds are minus one to one ([−1; 1]).

Hence, the hyperbolic tangent is used in the place of the sigmoid function, that is, the output of a

tanh activation function is given by (Nielsen, 2015):

𝑡𝑎𝑛ℎ(𝒘 ∙ 𝒙 + 𝑏) (3.68)

with a given weight vector (𝑤) with associated input vector (𝑥) and bias (𝑏). Note that 𝑡𝑎𝑛ℎ in

Equation 3.68 refers to the hyperbolic tangent.

Furthermore, the tanh activation function can be written formally as:

𝑡𝑎𝑛ℎ(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 (3.69)

The corresponding derivative of Equation 3.69 is:

𝑡𝑎𝑛ℎ′(𝑧) = 1 − 𝑡𝑎𝑛ℎ(𝑧)2 (3.70)

Additionally, to show that the tanh activation function is simply a rescaled version of the sigmoid

activation function, some algebra can be used (Nielsen, 2015):

𝜎(𝑧) =
1 + 𝑡𝑎𝑛ℎ (

𝑧
2)

2
 (3.71)

Thus, as aforementioned, tanh has the same shape as the sigmoid function but with different

bounds. In other words, the output from the tanh function ranges from −1 to 1, whilst in the sigmoid

Stellenbosch University https://scholar.sun.ac.za

84

function the output varies from zero to one (0 to 1). Like sigmoid functions, tanh functions suffer

from vanishing gradient descent at the extreme ends and this is one of the limitations of tanh.

One question that needs reviewing is whether tanh activation functions are more effective in terms

of performance than sigmoid functions. Research by Glorot and Bengio (2010) and LeCun et al.

(2012) have shown that there is some empirical evidence that advocates using tanh instead of

sigmoid functions, that is, tanh functions outperform sigmoid functions. However, Nielsen (2015)

states that there is empirical evidence to suggest that tanh functions provide little to no

improvement in performance over sigmoid functions for certain application problems.

Rectified linear unit activation function

The next activation function to be reviewed is rectified linear unit (ReLU) and once again this

network can be trained using different optimisation learning algorithms as well as

backpropagation.

Mathematically, the output of the ReLU activation function can be given as (Nielsen, 2015):

max (0,𝒘 ∙ 𝒙 + 𝑏) (3.72)

for a given input vector (𝑥) with corresponding weights (𝑤) and bias (𝑏).

For convenience, the ReLU activation function can be written as:

𝑅𝑒𝐿𝑈(𝑧) = {
0 𝑖𝑓 𝑧 ≤ 0
𝑧 𝑖𝑓 𝑧 > 0

 (3.73)

It is evident from Figure 3.14, bottom-most panel, that when the ReLU function is less than or

equal to zero, the output obtained is zero. Otherwise, when the ReLU function is greater than

zero the maximum of the ReLU function is obtained, which is given by (𝑤 ∙ 𝑥 + 𝑏).

Furthermore, the derivative of the ReLU activation function is:

𝑅𝑒𝐿𝑈′(𝑧) = 𝐼𝑛𝑑{𝑧 > 0} (3.74)

where 𝐼𝑛𝑑 is the indicator function of the activation function.

According to relatively recent research, when it comes to image classification the ReLU activation

function has shown promising results in that these networks outperform other activation functions

(Jarrett et al., 2009; Krizhevsky, Sutskever & Hinton, 2012). The one challenge that remains, as

with all these activation functions, is that there is no specific theoretical understanding of or reason

for when and why certain activations are better for certain tasks. Due to both the successful

implementation of ReLU activation functions and the fact that this research is centred on the

evaluation of brain tumour image classification, ReLU activation functions are used in the

Stellenbosch University https://scholar.sun.ac.za

85

empirical section of this research. Thus, in Chapter 4 the CNNs make use of ReLU and sigmoid

activation functions.

With regard to the gradient, ReLU functions have the advantage over both sigmoid and tanh

activation functions that there is no saturation for positive values. As mentioned, saturation

happens at the extreme ends of the tanh and sigmoid functions, as at the extreme ends (zero and

one for sigmoid and minus one and one for tanh) the gradient is very close to zero and thus the

algorithm stops learning, according to Nielsen (2015). However, increasing the weight of a ReLU

function will not cause saturation, as the function is linearly increasing from a function value of

zero onwards (that is, positive values) (refer to Figure 3.14), thus learning does not slow down. In

fact, for this region the gradient is equal to a value of one. Conversely, there is a problem when

the function value is negative; the function is a horizontal linear function, meaning that the gradient

is equal to zero. Thus, there is saturation and this means that the gradient vanishes.

3.4.2.4 Learning algorithms: optimisation techniques

So far a term known as the gradient (or gradient descent) has been touched on; most NN,

including CNN (the applied DL NN in Chapter 4), capitalise on this concept. The aim of gradient

descent is essentially to lower the error rate over the training processes (Yaqub et al., 2020).

Furthermore, according to Goodfellow, Bengio and Courville (2016), training NNs that involve the

use of optimisation techniques is considered the most difficult part. Therefore, state-of-the-art

optimisation techniques have been developed. One of the main persistent challenges is that they

are often used as black box optimisers - in other words, it is hard to understand the theoretical

basis of how they work or their strengths and weaknesses in a practical setting (Ruder, 2016).

This section contains a theoretical account of the state-of-the-art optimisation techniques; in

Chapter 4 these are investigated and applied in the exploration of brain tumour images via a CNN

architecture. Additionally, adapting gradient descent and mini-batch gradient descent to the NN

case will be considered; however, the generalised versions will also be included.

Gradient descent

Starting with an analogy as the definition of gradient descent, the function can be thought of as a

basin; a ball is rolling down the slope of the hill until the bottom of a basin is reached, as illustrated

by Figure 3.17. Using the current position, the steepness of the hill where the ball will move in the

direction of the steepest descent (moving downwards) towards the bottom of the basin needs to

be taken into account. The steepness of the slope of the hill represents the error to be minimised.

More formally, gradient descent is a first-order iterative optimisation algorithm where finding the

local minima via differentiation of the function is attempted (Nielsen, 2015; Yaqub et al., 2020).

Stellenbosch University https://scholar.sun.ac.za

86

Figure 3.17: Gradient descent

Source: Nielsen, 2015.

In a NN a cost function (also known as a loss function) should be minimised over the weight and

biases with an activation function in the background. For now, for purposes of understanding

gradient descent, a more generalised function with multiple variables will be considered, as this

can then be adapted to any NN cost function. Recall that gradient descent is a means to solve

minimisation tasks. Suppose that there is a cost function given as 𝐶(𝑣) with multiple variables

(𝑣1, 𝑣2, … , 𝑣𝑚) where the main strategy is to minimise this function (Nielsen, 2015): calculus can

be used to show what happens to the change in the cost function (∆𝐶) when there is a small

change in the variables, in their respective directions - that is, a small change in the cost function

as a result of a change in the vector of variables (∆𝑣 = (∆𝑣1, ∆𝑣2, … , ∆𝑣𝑚)
𝑇) (Nielsen, 2015). The

gradient of the cost function, 𝐶, is a vector of partial derivatives (note that ∇ in this context is not

the partial derivative), written as:

∇𝐶 = (
𝜕𝐶

𝜕𝑣1
,
𝜕𝐶

𝜕𝑣2
, … ,

𝜕𝐶

𝜕𝑣𝑚
)
𝑇

 (3.75)

Formally, the gradient of the cost function is given as (note that ∇ in this context is not the partial

derivative):

∆𝐶 ≈ ∇𝐶∆𝑣 (3.76)

Recall that the cost function needs to be minimised, so this should be a negative value if the cost

function is negative, therefore the following is chosen (Nielsen, 2015):

∆𝑣 = −𝜂∇𝐶 (3.77)

where 𝜂 represents the learning rate of the optimisation algorithm and is a small positive

parameter value.

Stellenbosch University https://scholar.sun.ac.za

87

From Equation 3.77 it is known that ∆𝐶 ≈ −𝜂∇𝐶∇𝐶 = 𝜂‖∇𝐶‖2 and because ‖∇𝐶‖2 ≥ 0 it means

that ∆𝐶 ≤ 0 (Nielsen, 2015).

Furthermore, a value for ∆𝑣 can be computed that moves the point in that direction; this is known

as the update rule. The update rule allows for small changes in the direction of the minima, whilst

decreasing the cost function and (hopefully) reaching the global minima (for convex surfaces) or

the local minimum (in the case of nonconvex surfaces); the update rule is given formally as

(Nielsen, 2015):

𝑣 → 𝑣′ = 𝑣 − 𝜂∇𝐶 (3.78)

This generalised form of gradient descent can now be adapted and the form altered to incorporate

NN.

Suppose that there is a cost function as described below (Equation 3.79): there must be weights

(𝑤𝑘 represents all the weights in the network) and biases (𝑏𝑙 is the symbol used to indicate all the

biases in the network) that will minimise the cost function (Nielsen, 2015):

𝐶(𝑤, 𝑏) =
1

2𝑛
∑‖𝑦(𝑥) − 𝒂‖2

𝑥

 (3.79)

where:

• 𝑤 represents all the weights in the network;

• 𝑏 is indicative of all the biases in the network;

• 𝑛 is the total number of training data inputs that are found in the network;

• 𝑎 equates to the outputs (a vector) obtained from the network when 𝑥 are the corresponding

inputs;

• 𝑦(𝑥) is the approximation of the output to the training data inputs;

• The summation takes place over all the inputs, 𝑥.

Therefore, the gradient and update functions need to be redefined to include all the weights and

biases in the network. Thus, the gradient vector is rephrased as:

∇𝐶 = (
𝜕𝐶

𝜕𝑤𝑘
,
𝜕𝐶

𝜕𝑏𝑙
)
𝑇

 (3.80)

Equation 3.80 can be read as the partial derivative of the cost function with respect to all the

weights in the network as well as the partial derivative of the cost function with respect to all the

biases in the network.

Furthermore, the update rules are refashioned to incorporate the weights and biases components

in the network:

Stellenbosch University https://scholar.sun.ac.za

88

𝑤𝑘 → 𝑤𝑘
′ = 𝑤𝑘 − 𝜂

𝜕𝐶

𝜕𝑤𝑘
 (3.81)

𝑏𝑙 → 𝑏𝑙
′ = 𝑏𝑙 − 𝜂

𝜕𝐶

𝜕𝑏𝑙
 (3.82)

As before, utilising these updates of the gradient descent in the network will lead to decreasing,

thus minimising the cost function and hopefully reaching the global or, at the very least, the local

minima. How the network learns is resultant of these updates of the weights and biases (Nielsen,

2015). Gradient descent makes use of the complete batch of training data before computing the

gradient value, meaning that the gradient is very precise and leads one in the correct direction of

the maxima but the limitation is that if the input training data consist of millions of values, this

method is computationally very slow (Yaqub et al., 2020). Stochastic gradient descent is a solution

to this very problem and is discussed in the next section.

In conclusion: as mentioned, gradient descent has the aim of minimising some objective (cost)

function. A generalised version is where the objective function, here the notation, has been slightly

changed and therefore can be written as 𝐽(𝜃) where 𝜃 is the model's parameters which are

elements in the 𝑝𝑡ℎ real space, 𝜃 ∈ ℝ𝑝. Recall that the parameters are updated by moving in the

opposite direction to that of the gradient with respect to the parameters of the objective function,

∇𝜃𝐽(𝜃) (Ruder, 2016). Moreover, the learning rate (𝜂) represents the size of the step that is taken

to reach the minima.

Equation 3.78 can be generalised, where the gradient is computed after an entire input training

data:

𝜃 = 𝜃 − 𝜂∇𝜃𝐽(𝜃) (3.83)

It should be noted that the gradient descent as discussed here is also known as batch gradient

descent or vanilla gradient descent. The recommended value for the hyperparameters for batch

gradient descent is a learning rate of 0.01, that is, 𝜂 = 0.01 and since batch gradient descent has

no momentum, the momentum hyperparameter is set equal to zero. These values are also known

as the default values and applied as is (without tweaking) in the empirical section of Chapter 4. It

is worth noting that these default values are what the optimiser defaults to in the Keras package

in the Python programming language.

Stellenbosch University https://scholar.sun.ac.za

89

Stochastic gradient descent

As mentioned, gradient descent is computationally slow and therefore stochastic gradient descent

(SGD) can be seen as a computationally faster implementation of the same idea. Simplistically,

SGD parameter updates after every single input training example (𝑥(𝑗)) with the associated output

(𝑦(𝑗)). Formally:

𝜃 = 𝜃 − 𝜂∇𝜃𝐽(𝜃; 𝑥
(𝑗); 𝑦(𝑗)) (3.84)

SGD compared to batch gradient descent takes different strides to reaching the local minima.

What this entails is that based on the parameters of the batch gradient descent model, it

converges well to the exact minima, whereas SGD tends to exceed the minimum value (Ruder,

2016). The solution to this problem is to slowly decrease the learning rate (𝜂); this allows for the

same convergence as observed with batch gradient descent (Ruder, 2016). In other words, by

reducing the learning rate the model will converge to the local minimum for nonconvex surfaces

and in the case of convex surfaces, convergence will be the global minima.

Mini-batch gradient descent

Mini-batch gradient descent is a happy medium between batch gradient descent and SGD. The

idea is that the weights and biases update after every mini-batch example. The disadvantage of

this approach is that because it only uses a subset of the training data, it is not fully representative

of the entire batch. Thus the best option is to obtain an estimate of the true gradient (Nielsen,

2015).

Note that in Equation 3.79 the cost function is of the form 𝐶 =
1

𝑛
∑ 𝐶𝑥𝑥 which means that the cost

function is essentially an average over all the costs, hence 𝐶𝑥 ≡
‖𝑦(𝑥)−𝒂‖2

2
 (Nielsen, 2015). Recall

that mini-batch gradient descent randomly chooses a subset of the input training data to compute

the gradient. More formally, the subset can be defined as 𝑠, associated with inputs given as

𝑋1, 𝑋2, … , 𝑋𝑠, therefore concluding that if 𝑚 is large enough it can be assumed that the average of

the cost function of the different subsets (∇𝐶𝑋𝑗) is approximately equivalent to the average over

all the costs (∇𝐶𝑥), that is (Nielsen, 2015):

∑ ∇𝐶𝑋𝑗
𝑠
𝑗=1

𝑠
≈
∑ ∇𝐶𝑥𝑥

𝑛
≈ ∇𝐶 (3.85)

where the second term (second sum) is over the whole input training data and not the subset.

Thus the overall gradient can be determined through only using a subset; formally that is:

Stellenbosch University https://scholar.sun.ac.za

90

∇𝐶 ≈
1

𝑠
∑∇𝐶𝑋𝑗

𝑠

𝑗=1

 (3.86)

Therefore, the update rule of the weight and bias components in the algorithm can be rephrased:

𝑤𝑘 → 𝑤𝑘
′ = 𝑤𝑘 −

𝜂

𝑠
∑

𝜕𝐶𝑋𝑗

𝜕𝑤𝑘
𝑗

 (3.87)

𝑏𝑙 → 𝑏𝑙
′ = 𝑏𝑙 −

𝜂

𝑠
∑

𝜕𝐶𝑋𝑗

𝜕𝑏𝑙
𝑗

 (3.88)

The summation is an indication of all the training examples (𝑋𝑗) that are in the current subset. As

mini-batch gradient descent is an iterative process, it means that once the gradient is computed

for that subset, another subset of training inputs is chosen and the gradient is then computed.

This process continues until convergence in the sense that all the training input data examples

have been used; in NN terms this refers to the completion of an epoch (Nielsen, 2015). In other

words, one epoch is representative of when the entire training input data have been passed in

both directions (forwards and backwards) through the network. Hence, once one epoch has been

trained, another one is trained until all epochs that have been indicated and chosen in the

architecture of the network have been trained.

The cost function is generalised with respect to the parameters in the function; recall, that the

update takes place after every subset, 𝑠 (Ruder, 2016) (there are slight notational changes):

𝜃 = 𝜃 − 𝜂∇𝜃𝐽(𝜃; 𝑥
(𝑗:𝑗+𝑠); 𝑦(𝑗:𝑗+𝑠)) (3.89)

The advantage of mini-batch gradient descent is that that there is a reduction of the variance with

regard to updating the parameters which results in more stable convergence (Ruder, 2016).

Momentum-based gradient descent

Even though SGD remains a popular optimisation technique that is used in NN, the limitation is

that learning remains reasonably slow. Thus the method of momentum (Polyak, 1964) is

introduced; this is intended to speed up the learning process, especially when high curvature is

present along with noisy gradients and slight but consistent gradients. The algorithm continues to

move in the direction of exponential decaying of past gradients (Goodfellow, Bengio & Courville,

2016). Momentum derives from Newton’s laws of motion, meaning that in the world of physics

momentum is equal to velocity times the mass. Formally, for the momentum algorithm new terms

are introduced, namely momentum (𝛾) and velocity (𝑣). The velocity is defined as the exponential

decay in the negative (opposite) direction (Goodfellow, Bengio & Courville, 2016).

Stellenbosch University https://scholar.sun.ac.za

91

The procedure of the algorithm is that when updating the weights, the algorithm adds momentum

to the previous time steps to obtain the current step which then allows for quicker convergence,

where the gradient decays exponentially, that is (Duchi, Hazan & Singer, 2011):

𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜂∇𝜃𝐽(𝜃)

⇒ 𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜂∇𝐽(𝜃; 𝑥, 𝑦) (3.90)

⇒ 𝜃 = 𝜃 − 𝑣𝑡 (3.91)

where:

• 𝑣𝑡 represents the velocity at the current time step;

• 𝑣𝑡−1 are the contributions of the velocity at the previous time step;

• 𝛾 is indicative of the momentum;

• 𝜂 is once again the learning rate;

• 𝐽(𝜃) is a representation of the cost (loss) function;

• 𝜃; 𝑥 is the predicted output when the input is 𝑥;

• 𝑦 is the target (desired) output.

A suggested value for the momentum term is 0.9, hence, 𝛾 = 0.9 or somewhere in an appropriate

range. The learning rate is set equal to 0.01 (𝜂 = 0.01) as seen in the previous optimiser (batch

or stochastic gradient descent). Once again, this is the default value when programming using

Keras.

Momentum is considered to be an optimal choice of optimiser in instances where the NN is not

well defined (Yaqub et al., 2020). Going back to the analogy of a ball going down a hill, the ball

will gain momentum as it moves downwards, that is, it moves faster and faster. In other words,

the momentum term (𝛾) increases when the gradient is in the same direction, whereas the

updates are somewhat slower when the gradient is in opposing directions (Ruder, 2016). Thus,

the convergence is much quicker when faced with tasks that have curved surfaces.

Nesterov accelerated gradient (NAG)

Furthering the analogy of the ball moving down a hill is knowing that there needs to be a reduction

of the speed of the ball before the hill slopes up again. Nesterov acceleration (Nesterov, 1983)

was developed to make the necessary adaptations just alluded to. Therefore, the gradient is

computed not with regard to the current position (using the current parameters) but with regard to

the approximation of the future position of the parameters. The descent is a slightly better

optimiser of standard momentum as it sheds light on one step ahead into the future (Yaqub et al.,

2020).

Stellenbosch University https://scholar.sun.ac.za

92

Therefore, the gradient is updated with an approximate position of the future parameters (𝜃) and

not using the current position of the parameters, 𝜃 (Ruder, 2016):

𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜂∇𝜃𝐽(𝜃 − 𝛾𝑣𝑡−1) (3.92)

⇒ 𝜃 = 𝜃 − 𝑣𝑡 (3.93)

where:

• 𝑣𝑡 is a representation of the velocity at the current time step;

• 𝑣𝑡−1 represents the contributions of the velocity at the previous time step;

• 𝛾 is suggestive of the momentum;

• 𝜂 is indicative of the learning rate;

• 𝛾𝑣𝑡−1 is used as a means to update the parameters, 𝜃;

• The computation of the quantity, 𝜃 − 𝛾𝑣𝑡−1, is an approximation of the next position with

regard to the parameters, 𝜃.

As with standard momentum, a value of 0.9 is applied, hence 𝛾 = 0.9; the learning rate remains

the same as with batch gradient descent or stochastic gradient descent (id est, 𝜂 = 0.01).

However, what is different now is that the ‘Nesterov’ parameter option in Keras has been set equal

to true.

The difference between standard momentum (discussed in the previous section) and Nesterov

moment is that standard momentum first calculates the gradient and then takes a large step in

that direction whereas Nesterov moment does the opposite: it first makes a large jump in the

direction of the accumulated gradient and then compensates by making corrections once it has

computed the gradient (Ruder, 2016).

The next few state-of-the-art algorithms (reviewed below) are algorithms that have adaptive

learning rates. The advantage of these methods over the classical SGD descent methods

discussed until now is that they do not require manual hyperparameter tuning of the learning rate.

Adaptive gradient (Adagrad)

Adaptive gradient (Adagrad) (Duchi, Hazan & Singer, 2011) is an optimisation algorithm that uses

adaptive learning rates while the aim of Adagrad is an algorithm whereby all the parameters are

updated individually via a scaling methodology. Thus, the learning rates are modified and adjusted

according to the parameters in the model. That is, for infrequent, inconsistent parameters the

algorithm (in terms of the learning rates) makes large updates, while the opposite holds as well:

when the parameters are consistent and frequent only small updates are needed (Kingma & Ba,

2014; Goodfellow, Bengio & Courville, 2016; Ruder, 2016). In essence, for each parameter (𝜃𝑗)

Stellenbosch University https://scholar.sun.ac.za

93

with a corresponding time step (𝑡), the Adagrad algorithm makes use of a dissimilar learning rate

(𝜂), formally (with some notational modifications) (Ruder, 2016):

𝑔𝑡,𝑗 = ∇𝜃𝑡 𝐽(𝜃𝑡,𝑗) (3.94)

where 𝑔𝑡,𝑗 is representative of the gradient at the time step (𝑡) over each parameter (𝜃𝑗) and this

is with respect to the cost function (𝐽).

Next, the SGD rule (refer to Equation 3.84) is computed and updated at each time step for every

parameter and this can be given as:

𝜃𝑡+1,𝑗 = 𝜃𝑡,𝑗 − 𝜂𝑔𝑡,𝑗 (3.95)

Finally, the Adagrad update rule is as follows (keeping in mind that the algorithm adjusts the

learning rate established on the computed past gradients) (Ruder, 2016):

𝜃𝑡+1,𝑗 = 𝜃𝑡,𝑗 −
𝜂

√𝐺𝑡,𝑗𝑗 + 휀
 𝑔𝑡,𝑗 (3.96)

where:

• 휀 is indicative of a smoothing term and the reason for the term is that division by zero is

circumvented;

• 𝐺𝑡,𝑗𝑗 represents the diagonal matrix (𝐺𝑡 ∈ ℝ
𝑝×𝑝);

• 𝑗𝑗 is a representation of the elements on the diagonal 𝐺 matrix and are simply the gradients

of the parameters at every time step.

For the Adagrad update rule, the element-wise matrix-vector multiplication (⊙) has to be taken

into account, therefore (Ruder, 2016):

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝐺𝑡 + 휀
 ⊙ 𝑔𝑡 (3.97)

One of the limitations of Adagrad is that the gradients are accumulated squared values and this

occurs from the start when training the model, which can lead to ineffective and decreasing

learning rates (Goodfellow, Bengio & Courville, 2016). This is the case when training deep NNs.

Adaptive delta (AdaDelta), discussed in the next section, was developed as a solution to

overcome the limitation of Adagrad.

When applying Adagrad the learning rate is generally set to the default value of 0.01 (𝜂 = 0.01),

whilst for the smoothing term there is a suggestive value of 1𝑒−8, that is, 휀 = 1𝑒−8 (Ruder, 2016).

This is of a slightly different order to that of the default in Keras which is 1𝑒−7. Nonetheless, in the

empirical section the suggested values as indicated by Ruder (2016) are applied and followed.

Stellenbosch University https://scholar.sun.ac.za

94

Adaptive delta (AdaDelta)

Adaptive delta (Zeiler, 2012) is another adaptive learning rate method. As mentioned, it is

regarded as the solution to the limitations posed by Adagrad. Hence, AdaDelta is an extension of

the core principles of Adagrad. Therefore, AdaDelta recursively defines the past accumulated

squared gradients as a decaying averaging instead of ineffectively stored past accumulated

gradients (Ruder, 2016). Formally:

𝐸[𝑔2]𝑡 = 𝛾[𝑔
2]𝑡−1 + (1 − 𝛾)𝑔𝑡

2 (3.98)

where:

• 𝐸[𝑔2]𝑡 is representative of the average at the current time step – note that this equation is

only reliant on the current and previous time steps’ gradients;

• 𝛾 is indicative of the momentum term.

Thus, the batch gradient descent algorithm can be refashioned to accommodate the update of

the parameter vector (Ruder, 2016):

∆𝜃𝑡 = −𝜂𝑔𝑡,𝑗 (3.99)

⇒ 𝜃𝑡+1 = 𝜃𝑡 + ∆𝜃𝑡 (3.100)

Furthermore, using Equation 3.97, the update rule for Adagrad can be rewritten to incorporate the

parameter vector, that is:

∆𝜃𝑡 = −
𝜂

√𝐺𝑡 + 휀
 ⊙ 𝑔𝑡 (3.101)

In the next step, the diagonal matrix (𝐺𝑡) is substituted with the past steps decaying average

squared gradients (𝐸[𝑔2]𝑡), therefore Equation 3.101 becomes (Ruder, 2016):

∆𝜃𝑡 = −
𝜂

√𝐸[𝑔2]𝑡 + 휀
 𝑔𝑡 (3.102)

In essence, the denominator is simply the root mean square (RMS) criteria regarding the gradient;

thus, the denominator can be replaced with RMS of the gradient where the new equation can be

given as:

∆𝜃𝑡 = −
𝜂

√𝑅𝑀𝑆[𝑔]𝑡
 𝑔𝑡 (3.103)

The next issue is that the units are not in the same scale, that is, the parameter should contain

the same units as the gradient and that is not the case (Ruder, 2016). Thus, another update

Stellenbosch University https://scholar.sun.ac.za

95

function for the exponentially decaying average has to be expressed first, so instead of expressing

the squared gradients, this new update function is defined in terms of the squared parameter

updates (Ruder, 2016). Similar to Equation 3.102, just using the squared parameters instead of

the squared gradients, this can formally be written as:

𝐸[∆𝜃2]𝑡 = 𝛾𝐸[∆𝜃
2]𝑡−1 + (1 − 𝛾)∆𝜃𝑡

2 (3.104)

Next, the new RMS for the parameter updates is defined:

𝑅𝑀𝑆[∆𝜃]𝑡 = √𝐸[∆𝜃
2]𝑡 + 휀 (3.105)

The 𝑅𝑀𝑆[∆𝜃]𝑡 value in Equation 3.105 is an unknown quantity, therefore in an attempt to obtain

a value it can be approximated to the RMS of the parameter updates (Ruder, 2016).

Finally, the AdaDelta update rule is obtained where the previous steps RMS value (𝑅𝑀𝑆[∆𝜃]𝑡−1)

is substituted in place of the learning rate (𝜂):

∆𝜃𝑡 = −
𝑅𝑀𝑆[∆𝜃]𝑡−1
𝑅𝑀𝑆[𝑔]𝑡

 𝑔𝑡 (3.106)

⇒ 𝜃𝑡+1 = 𝜃𝑡 + ∆𝜃𝑡 (3.107)

Due to the nature of the AdaDelta update rule, one does not need to explicitly state a learning

rate as it has been replaced, as shown in Equation 3.106 (Ruder, 2016; Yaqub et al., 2020).

The values of the hyperparameters for AdaDelta are slightly different to the default values that

are given in the Keras documentation. The learning rate is set to a value equal to one (𝜂 = 1.0)

as proposed in the paper by Zeiler (2012), the developer of the method. Furthermore, the decay

rate is set to 0.95 which is the default value in the Keras documentation. The epsilon value is

once again equal to 1𝑒−8.

Root mean square propagation (RMSProp)

Root mean square propagation (RMSProp) is an adaptive learning methodology and is an

unpublished optimisation algorithm. It was first proposed by Geoff Hinton in the online Coursera

lecture 6e on ‘Neural Networks for Machine Learning’. The main idea behind RMSProp is a

resolution to the fast-diminishing learning rate that is experienced by Adagrad (Ruder, 2016;

Yaqub et al., 2020). Therefore, RMSProp utilises the squared gradient. If the steps taken for the

update are large in the horizontal direction, convergence happens at a much quicker rate (Yaqub

et al., 2020).

Formally, RMSProp has the same derivation of the first update of AdaDelta in Equation 3.98;

however, the momentum is replaced with a value of 0.9 as proposed by Hinton (that is, 𝛾 = 0.9,

therefore, (1 − 𝛾) = (1 − 0.9) = 0.1) (Ruder, 2016):

Stellenbosch University https://scholar.sun.ac.za

96

𝐸[𝑔2]𝑡 = 0.9𝐸[𝑔
2]𝑡−1 + 0.1𝑔𝑡

2 (3.108)

⇒ 𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝐸[𝑔2]𝑡 + 휀
 𝑔𝑡 (3.109)

The recommended value for the learning rate is 0.001 (𝜂 = 0.001). Moreover, as suggested by

Kingma and Ba (2014) and Dozat (2016) in the experiments section of their respective papers,

the epsilon (휀) value should be 1𝑒−8. This approach is followed in this study’s practical section.

Adaptive moment estimation (Adam)

Adaptive moment estimation (Adam) (Kingma & Ba, 2014) is considered as an adaptive learning

rate algorithm. That is, for each parameter the Adam algorithm computes the learning rates. Adam

stores the exponentially decaying past squared gradients (observed in RMSProp and AdaDelta)

as well as the past gradients, as was the case in momentum (Ruder, 2016). Thus, Adam is a

combination of RMSProp and momentum; however, there are a few discrepancies. Firstly, the

gradient is a first order moment and this is how momentum is incorporated; secondly, bias

includes bias-corrections (Goodfellow, Bengio & Courville, 2016). These are outlined in more

detail in the following paragraphs.

Formally:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (3.110)

and

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (3.111)

where:

• 𝑚𝑡 represents the first moment; simply put, it is the mean of the gradient;

• 𝑣𝑡 is indicative of the second moment which is the uncentred variance of the gradient.

Kingma and Ba (2014) advise that because 𝑚𝑡 and 𝑣𝑡 are initialised as vectors containing zeros,

it implies that 𝑚𝑡 and 𝑣𝑡 are biased toward the value of zero; this is especially evident in the initial

time iterations and when small values of decay are observed, that is, the values of 𝛽1 and 𝛽2 are

exceptionally close to one.

Hence, Kingma and Ba (2014) counter the bias observed by computing bias-corrected

computations for the first and second moments as:

�̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 (3.112)

Stellenbosch University https://scholar.sun.ac.za

97

and

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 (3.113)

Finally, the Adam update rule can formally be written as:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 휀
 �̂�𝑡 (3.114)

The authors of Adam present evidence that the Adam optimisation algorithm performs well in

practice. Furthermore, the computational costs of Adam are significantly decreased, therefore the

implementation of a task using an Adam optimisation algorithm the memory necessitated is much

less (Yaqub et al., 2020).

As a standard for the default values for the parameters of the Adam optimisation technique,

Kingma and Ba (2014) suggest the following:

• Learning rate (𝜂) equal to 0.001;

• 𝛽1 = 0.9;

• 𝛽2 = 0.999;

• 휀 = 1𝑒−8.

Adaptive maximum pooling (Adamax)

Adaptive maximum pooling (Adamax) (Kingma & Ba, 2014) drew inspiration from the Adam

algorithm. The exponentially decaying gradients term (𝑣𝑡) in the Adam update rule is indicative

that the gradient is scaled to be inversely proportional to the regularisation term (the 𝑙2 norm) of

the previous steps gradients; this is computed through the 𝑣𝑡−1 term as well as the gradient that

is currently observed, |𝑔𝑡|
2 (Ruder, 2016):

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)|𝑔𝑡|
2 (3.115)

Note that the update can be generalised to the 𝑙𝑝 norm; likewise the 𝛽2 parameter can also be

parameterised as 𝛽2
𝑝
 (Kingma & Ba, 2014), therefore Equation 3.115 can be given as:

𝑣𝑡 = 𝛽2
𝑝
𝑣𝑡−1 + (1 − 𝛽2

𝑝
)|𝑔𝑡|

𝑝 (3.116)

Furthermore, in the literature 𝑙1 and 𝑙2 norms produce stable behaviour and for this reason 𝑙∞

captures this same stable behaviour. The authors, Kingma and Ba (2014), provide evidence that

𝑣𝑡 (currently velocity) with a 𝑙∞ norm converges to a more stable value and is given formally in

Equation 3.117. The notation of 𝑣𝑡 is replaced with 𝑢𝑡 and this is done to be able to distinguish

the Adam algorithm equations from Adamax.

Stellenbosch University https://scholar.sun.ac.za

98

Thus:

𝑢𝑡 = 𝛽2
∞𝑣𝑡−1 + (1 − 𝛽2

∞)|𝑔𝑡|
∞

= 𝑚𝑎𝑥(𝛽2𝑣𝑡−1, |𝑔𝑡|) (3.117)

Moreover, this result can be substituted into the Adam update equation; however, √𝑣𝑡 + 휀 is

replaced with 𝑢𝑡 which results in the Adamax update rule (Ruder, 2016):

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

𝑢𝑡
�̂�𝑡 (3.118)

Because 𝑢𝑡 is dependent on the maximum (𝑚𝑎𝑥) operation, there is no need to compute the bias

correction of this term (Ruder, 2016).

Recommended values to use for the parameters, in addition to an epsilon value of 1𝑒−8 (Kingma

& Ba, 2014; Dozat, 2016), are given as follows:

• 𝛽1 = 0.9;

• 𝛽2 = 0.999;

• 𝜂 = 0.002.

Nesterov-accelerated adaptive moment estimation (Nadam)

Nesterov-accelerated adaptive moment estimation (Nadam) (Dozat, 2016) was developed with

the inspiration of NAG. Moreover, Nadam optimisation is a combination of NAG and Adam. NAG

needs to be incorporated into the Adam optimisation algorithm; thus, the momentum term needs

to be altered (Ruder, 2016).

Recall the momentum update rule:

𝑔𝑡 = ∇𝜃𝐽(𝜃𝑡) (3.119)

𝑚𝑡 = 𝛾𝑚𝑡−1 + 𝜂𝑔𝑡 (3.120)

𝜃𝑡+1 = 𝜃𝑡 −𝑚𝑡 (3.121)

where:

• 𝐽 represents the cost (objective) function;

• 𝜂 is indicative of the learning rate (step size of the gradient);

• 𝛾 is a representation of the momentum decay.

Stellenbosch University https://scholar.sun.ac.za

99

Thus, substituting Equation 3.120 into Equation 3.121, the following is obtained:

𝜃𝑡+1 = 𝜃𝑡 − (𝛾𝑚𝑡−1 + 𝜂𝑔𝑡) (3.122)

This illustrates that the gradient moves in the direction of both the current step and the previous

step.

Therefore, Nadam has the advantage that the momentum is updated before computing the

gradient (Ruder, 2016). Thus, in obtaining the NAG algorithm only the gradient (𝑔𝑡) in Equation

3.119 needs to be altered whilst Equations 3.120 and 3.121 remain unchanged:

𝑔𝑡 = ∇𝜃𝑡𝐽(𝜃𝑡 − 𝛾𝑚𝑡−1) (3.123)

𝑚𝑡 = 𝛾𝑚𝑡−1 + 𝜂𝑔𝑡 (3.124)

𝜃𝑡+1 = 𝜃𝑡 −𝑚𝑡 (3.125)

According to Dozat (2016), NAG should be changed by applying a future momentum vector as a

means to update the current parameters, therefore foregoing applying a double momentum step.

Thus, substituting Equation 3.124 into Equation 3.125 yields:

𝜃𝑡+1 = 𝜃𝑡 − (𝛾𝑚𝑡−1 + 𝜂𝑔𝑡) (3.126)

The next step in the process is that Nesterov moment has to be added to the Adam optimisation

algorithm. To achieve this, the current momentum vector is used in place of the previous steps

momentum vector, remembering that the first moment (mean of the gradient) of the Adam

optimisation algorithm (Equation 3.110); the bias-corrected first moment (Equation 3.112); and

the Adam update (Equation 3.114) are given as (Ruder, 2016):

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (3.127)

�̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 (3.128)

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 휀
 �̂�𝑡 (3.129)

Using these Equations gives:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 휀
(
𝛽1𝑚𝑡−1

1 − 𝛽1
𝑡 +

(1 − 𝛽1)𝑔𝑡

1 − 𝛽1
𝑡) (3.130)

But
𝛽1𝑚𝑡−1

1−𝛽1
𝑡 is equivalent to the previous steps bias-corrected estimate of momentum (Ruder,

2016).

Stellenbosch University https://scholar.sun.ac.za

100

Therefore:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 휀
(𝛽1�̂�𝑡−1 +

(1 − 𝛽1)𝑔𝑡

1 − 𝛽1
𝑡) (3.131)

Finally, the Nadam update rule is obtained as:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 휀
(𝛽1�̂�𝑡 +

(1 − 𝛽1)𝑔𝑡

1 − 𝛽1
𝑡) (3.132)

That is, the estimate of the momentum of the current step is used rather than the previous step.

The following values were used (some of which are given as the default values in the Keras

documentation9):

• 𝜂 = 0.002;

• 𝛽1 = 0.9;

• 𝛽2 = 0.999;

• 휀 = 1𝑒−8;

• 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑑𝑒𝑐𝑎𝑦 = 0.004.

Figure 3.18 illustrates the behaviour of the different state-of-the-art optimisation learning

algorithms. The left panel is the optimisation techniques based on a loss surface with contours

(known as the Beale function) (Ruder, 2016), whilst the right panel is the optimisation landscape

of the saddle point. Starting with the left panel, all the optimisation algorithms commenced at the

same point; however, it is evident that they took different paths to get to the endpoint, more

correctly the minimum point (indicated by the star). It is palpable that momentum (the green line)

and NAG (the purple) set off in the wrong direction but were able to correct themselves to head

in the direction of the minimum. NAG was able to make this change much more quickly than

momentum. Conversely, the rest of the techniques headed in the correct direction of the minimum

from the get-go. Adadelta, the yellow line (in the animation) got to the minimum much more quickly

than the rest of the algorithms, whilst stochastic gradient descent was the slowest to reach the

minimum.

The right panel (the saddle point) in Figure 3.18 simply means that the curvature of the surface is

along two different dimensions. One dimension curves upward (a positive slope) whereas the

other dimension curves downward (a negative slope) (Ruder, 2016; Stanford University, n.d.).

Due to this, it is evident that SGD (the red line) got stuck on the top as there was difficulty breaking

9 https://faroit.com/keras-docs/2.0.8/optimizers/

Stellenbosch University https://scholar.sun.ac.za

101

the symmetry. Furthermore, while momentum and NAG also struggled with breaking this

symmetry, these two algorithms did ultimately succeed in breaking the saddle point. On the

contrary, Adadelta headed down the negative slope from the very beginning.

Figure 3.18: State-of-the-art optimisation algorithms’ behaviour

Source: Image credits and full animations: Alec Radford.

3.4.2.5 Backpropagation

Even though the technique of backpropagation was developed in the 1960s it only rose to

prominence after a paper written by Rumelhart, Hinton and Williams in 1986. The main idea is to

measure the change of the cost function in a backward direction in order to compute the gradient

via the weights in the NN. According to Rumelhart, Hinton and Williams (1986), the more

comprehensive definition of backpropagation is a process whereby the weights and their

associated connections are continuously updated and adjusted with the rationale being to

minimise the difference between the target (desired) output and the obtained (actual) output. The

authors provided empirical evidence that implementing backpropagation accelerates the speed

of learning of NNs. Additionally, as backpropagation is a key driver of learning in NNs, more tasks

that were once difficult or could not be solved can now be done so with ease (Nielsen, 2015).

To be able to prove the four fundamental backpropagation equations (given as Lemma 1 –

Lemma 4), some new notation has to be introduced. Firstly, the activation function that is

associated with the 𝑗𝑡ℎ neuron that is found in the 𝑙𝑡ℎ layer of the network is defined (Nielsen,

2015):

𝑎𝑗
𝑙 = 𝜎 (∑𝑤𝑗𝑘

𝑙

𝑘

𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙) (3.133)

Stellenbosch University https://scholar.sun.ac.za

102

where:

• 𝑤𝑗𝑘
𝑙 are the weights that are used as connections to the 𝑙𝑡ℎ layer of the network, with the

weight being in the 𝑗𝑡ℎ row and 𝑘𝑡ℎ column;

• 𝑎𝑘
𝑙−1 is indicative of the activations that are related to the (𝑙 − 1)𝑡ℎ layer of the network;

• 𝑏𝑗
𝑙 is a representation of the bias vector for every layer, 𝑙.

In vector form, Equation 3.133 can be rewritten as:

𝒂𝑙 = 𝜎(𝑤𝑙𝒂𝑙−1 + 𝒃𝑙) (3.134)

Furthermore, Equation 3.134 can be represented as the weighted inputs that are associated with

the neurons in the 𝑙𝑡ℎ layer of the network (Nielsen, 2015):

𝒛𝑙 ≡ 𝑤𝑙𝒂𝑙−1 + 𝒃𝑙 (3.135)

Therefore, substituting the definition of Equation 3.135 into Equation 3.134:

𝒂𝑙 = 𝜎(𝒛𝑙) (3.136)

where 𝒛𝑙 is made up of elements, given below (Equation 3.137), which can be defined as the

weighted inputs to the corresponding activation function in the 𝑙𝑡ℎ layer of the network related to

the 𝑗𝑡ℎ neuron:

𝑧𝑗
𝑙 =∑𝑤𝑗𝑘

𝑙

𝑘

𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙 (3.137)

An assumption about the cost (loss or objective) function is that in order to compute the partial

derivatives with respect to the weights and the biases the average of all the input training

examples in the cost function need to be taken (Nielsen, 2015).

As previously mentioned, the goal of backpropagation is how the weights and biases that are

present in the NN, when changed, affect the cost function. Mathematically, this equates to

calculating the partial derivatives of the weights and biases, given as:
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 and

𝜕𝐶

𝜕𝑏𝑗
𝑙, respectively

(Nielsen, 2015). However, a quantity known as the error has to be introduced:

𝜹𝑗
𝑙 ≡

𝜕𝐶

𝜕𝑧𝑗
𝑙 (3.138)

This quantity is the error of the NN, of the 𝑗𝑡ℎ neuron that is in the 𝑙𝑡ℎ layer of the network (Nielsen,

2015).

Stellenbosch University https://scholar.sun.ac.za

103

Unless otherwise stated, these four fundamental equations (Lemma 1 – Lemma 4) are given,

proved and discussed as per Nielsen (2015).

Lemma 1 (Backpropagation Equation 1): output layer error:

𝜹𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿 𝜎

′(𝑧𝑗
𝐿) (3.139)

Proof:

Recall that (Nielsen, 2015)
𝜕𝐶

𝜕𝑎𝑗
𝐿 represents the measurement of the speed at which the cost

function changes with respect to the 𝑗𝑡ℎ output activation function in the 𝐿𝑡ℎ layer. Additionally,

the second term in Equation 3.139 is the change in the activation function based upon the

weighted input (𝑧) to the activation function.

Formally, recall that:

𝜹𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿 (3.140)

Applying the chain rule of calculus:

𝜹𝑗
𝐿 =∑

𝜕𝐶

𝜕𝑎𝑘
𝐿
𝜕𝑎𝑘

𝐿

𝜕𝑧𝑗
𝐿

𝑘

 (3.141)

If 𝑘 ≠ 𝑗 then
𝜕𝐶

𝜕𝑎𝑘
𝐿 = 0, so:

𝜹𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿
𝜕𝑎𝑗

𝐿

𝜕𝑧𝑗
𝐿 (3.142)

But 𝒂𝑗
𝐿 = 𝜎(𝒛𝑗

𝐿), therefore,
𝜕𝑎𝑗

𝐿

𝜕𝑧𝑗
𝐿 = 𝜎

′(𝑧𝑗
𝐿).

Thus:

𝜹𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿 𝜎

′(𝑧𝑗
𝐿) (3.143)

which concludes the proof of the first lemma.

Stellenbosch University https://scholar.sun.ac.za

104

Lemma 2 (Backpropagation Equation 2): error of the next layer, 𝜹𝑙+1, based on the error of the

current layer, 𝜹𝑙:

𝜹𝑙 = ((𝑤𝑙+1)
𝑇
 𝜹𝑙+1)⊙ 𝜎′(𝑧𝑗

𝑙) (3.144)

where (𝑤𝑙+1)
𝑇
 is indicative of the transposed weight matrix in the (𝑙 + 1)𝑡ℎ layer of the network.

The idea is that if the error in the (𝑙 + 1)𝑡ℎ layer is known, the transposed weight matrix can be

applied moving backwards through the network and the error in the 𝑙𝑡ℎ layer of the network is

obtained (Nielsen, 2015).

Proof:

First the error in the 𝑙𝑡ℎ layer, 𝜹𝐿, is computed using Lemma 1; next, to compute 𝜹𝐿−1 Lemma 1

and Lemma 2 are combined. The process continues in that the error 𝜹𝐿−2 is computed using

Lemma 2. This procedure continues until the network has been worked through in a backward

direction.

First, let 𝜹𝑗
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙 which can then be written as:

𝜹𝑘
𝑙+1 =

𝜕𝐶

𝜕𝑧𝑘
𝑙+1 (3.145)

Using the chain rule:

𝜹𝑗
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙 =∑

𝜕𝐶

𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑗
𝑙

𝑘

 (3.146)

But from Equation 3.145:

𝜹𝑘
𝑙+1 =

𝜕𝐶

𝜕𝑧𝑘
𝑙+1 (3.147)

Therefore:

𝜹𝑗
𝑙 =∑

𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑗
𝑙 𝜹𝑘

𝑙+1

𝑘

 (3.148)

However:

𝑧𝑘
𝑙+1 =∑𝑤𝑘𝑗

𝑙+1 𝑎𝑗
𝑙 +

𝑗

𝑏𝑘
𝑙+1 (3.149)

Stellenbosch University https://scholar.sun.ac.za

105

But 𝒂𝑗
𝑙 = 𝜎(𝒛𝑗

𝑙), therefore:

𝑧𝑘
𝑙+1 =∑𝑤𝑘𝑗

𝑙+1 𝜎(𝒛𝑗
𝑙) +

𝑗

𝑏𝑘
𝑙+1 (3.150)

Through differentiation of the first term of Equation 3.150:

𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑗
𝑙 = 𝑤𝑘𝑗

𝑙+1 𝜎′(𝒛𝑗
𝑙) (3.151)

Substituting Equation 3.151 into Equation 3.148:

𝜹𝑗
𝑙 =∑𝑤𝑘𝑗

𝑙+1 𝜎′(𝒛𝑗
𝑙) 𝜹𝑘

𝑙+1

𝑘

 (3.152)

Rewriting the order of the terms:

𝜹𝑗
𝑙 =∑𝑤𝑘𝑗

𝑙+1 𝜹𝑘
𝑙+1𝜎′(𝒛𝑗

𝑙)

𝑘

 (3.153)

This concludes the proof of Lemma 2.

Lemma 3 (Backpropagation Equation 3): the error based on the rate of change in the cost function

with respect to any bias that is apparent in the network:

𝜹𝑗
𝑙 =

𝜕𝐶

𝜕𝑏𝑗
𝑙 (3.154)

Proof:

Based on Lemmas 1 and 2, the error is being computed for the bias of the same neuron, that is:

𝜹 =
𝜕𝐶

𝜕𝑏
 (3.155)

But from the definition:

𝜕𝐶

𝜕𝑧𝑗
𝑙 = 𝜹𝑗

𝑙 (3.156)

and

𝑧𝑗
𝑙 =∑𝑤𝑘𝑗

𝑙 𝑎𝑘
𝑙−1 +

𝑗

𝑏𝑗
𝑙 (3.157)

Stellenbosch University https://scholar.sun.ac.za

106

Firstly, applying the chain rule:

𝜕𝐶

𝜕𝑏𝑗
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙
𝜕𝑧𝑗

𝑙

𝜕𝑏𝑗
𝑙 (3.158)

But

𝜕𝑧𝑗
𝑙

𝜕𝑏𝑗
𝑙 = 1 (3.159)

and from the definition in Equation 3.156:

𝜕𝐶

𝜕𝑧𝑗
𝑙 = 𝜹𝑗

𝑙 (3.160)

Therefore substituting into Equation 3.158:

𝜕𝐶

𝜕𝑏𝑗
𝑙 = 𝜹𝑗

𝑙 (3.161)

This concludes the proof of Lemma 3.

Lemma 4 (Backpropagation Equation 4): the error based on the rate of change in the cost function

with respect to any weight that is observed in the network:

𝒂𝑘
𝑙−1𝜹𝑗

𝑙 =
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 (3.162)

Proof:

From the definition, it is known that:

𝜕𝐶

𝜕𝑧𝑗
𝑙 = 𝜹𝑗

𝑙 (3.163)

and

𝑧𝑗
𝑙 =∑𝑤𝑘𝑗

𝑙 𝑎𝑘
𝑙−1 +

𝑗

𝑏𝑗
𝑙 (3.164)

Utilising the chain rule:

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙
𝜕𝑧𝑗

𝑙

𝜕𝑤𝑗𝑘
𝑙 (3.165)

Stellenbosch University https://scholar.sun.ac.za

107

Therefore:

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝜹𝑗

𝑙 1

𝒂𝑘
𝑙−1 (3.166)

Therefore Equation 3.166 can be written as:

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝒂𝑘

𝑙−1𝜹𝑗
𝑙 (3.167)

This completes the proof of Lemma 4.

As to how these four Lemmas come together: briefly, the algorithm of backpropagation can be

described and in the process it will become clear why it is known as backpropagation. The reason

is that the error (𝛿𝑙) is computed in the backward direction where the starting point is the final

layer in the NN (Nielsen, 2015). The algorithm of backpropagation is given as follows (Nielsen,

2015; Goodfellow, Bengio & Courville, 2016):

• Step 1 (input): the input training instances (𝑥) and their associated activation functions (𝒂𝑙);

• Step 2 (feedforward): compute Equations 3.135 and 3.136, that is,

𝒛𝑙 = 𝑤𝑙𝒂𝑙−1 + 𝒃𝑙 and 𝒂𝑙 = 𝜎(𝒛𝑙) for every layer in the network, 𝑙 = 2, 3, … , 𝐿;

• Step 3 (output error, 𝜹𝐿): calculate Lemma 1, Equation 3.139, 𝜹𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿 𝜎

′(𝒛𝑗
𝐿);

• Step 4 (the error is to be propagated): compute Lemma 2, Equation 3.144, for every layer

in the network, hence, 𝑙 = 𝐿 − 2, 𝐿 − 1,… ,2;

• Step 5 (output): compute the gradient of the cost function via Lemmas 3 and 4, that is

Equations 3.154 and 3.162 of the biases and weights of the network
𝜕𝐶

𝜕𝑏𝑗
𝑙 = 𝜹𝑗

𝑙 and

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝒂𝑘

𝑙−1𝜹𝑗
𝑙, respectively.

As was indicated through the repeated use of the chain rule, the weights and biases that occur

earlier in the NN, the change in the cost function can be determined through backward information

that is received (Nielsen, 2015).

3.4.2.6 Improving neural networks: cross-entropy

An improved and more effective cost function that can be employed by the NN architecture is that

of cross-entropy. Goodfellow, Bengio and Courville (2016) state that the use of cross-entropy as

the cost function has been shown to have enhanced performance in NNs (with sigmoid

activations), as the models no longer suffer from saturation and slow learning. Cross-entropy can

be further enhanced when optimising over tasks in NNs that centre around classification (binary

cross-entropy). The concept of cross-entropy has its origins in information theory. Starting with

Stellenbosch University https://scholar.sun.ac.za

108

entropy, it can be described as the uncertainty that is associated with the probability distribution

(Benjaminson, 2020). Moreover, cross-entropy extends this definition in that for a given set of

random variables, cross-entropy is used as a measure between two distributions and the reason

is that by minimising this function an enhanced estimate of the labels of the true distribution is

obtained (Benjaminson, 2020).

The focus of cross-entropy will be with regard to binary cross-entropy, as the data in the empirical

section revolve around binary classification. Bishop (2006) advises that using cross-entropy for

classification tasks results in greater generalisation of the data examples as well as improved

(quicker) training of the network. As previously mentioned, binary classification means that a data

instance can be classified (labelled) as one of two classes. For example, in the exploration of MRI

brain lesions in Chapter 4 this is either the presence of a tumour or the absence of a tumour. In

NNs, when confronted with a binary classification task binary cross-entropy can be used as an

improved cost function and therefore the loss or the error of predicted decisions by the NN can

be measured where large losses (large binary cross-entropy estimates) are an indication of poor

predictions made by the network whilst, conversely, small losses represent accurate decisions

made by the network (Benjaminson, 2020).

Formally the binary cross-entropy cost function can be stated as follows (Nielsen, 2015):

𝐶 = −
1

𝑛
∑[𝑦 ln 𝑦 + (1 − 𝑦) ln(1 − 𝑦)]

𝑥

 (3.168)

where:

• 𝑦 is indicative of obtaining a class label of one (the probability thereof);

• (1 − 𝑦) is a representation of the class label being a zero (the probability of obtaining a

zero).

3.4.2.7 Improving neural networks: overfitting

In ML and NNs a central issue is that algorithms are built such that they model the training data

well but are poor at classifying new instances. That is, the techniques do not generalise the

training data, thus the problem of overfitting is present. To overcome this and to control for

overfitting, regularisation strategies can be used. NNs, in particular CNNs, result in more flexibility

when the networks are built exceptionally deep through increasing the number of layers.

Consequently, in order to capture the complex information and therefore the inherent features in

the input images, the architecture of the NN starts to contain many layers. That is, the network is

built very deep but at the risk of the model overfitting. Hence, not enough information (in the

images) does not necessitate building such deep networks. Regularisation strategies can

circumvent the input training data from overfitting.

Stellenbosch University https://scholar.sun.ac.za

109

In the following section, three such regularisation techniques are discussed, namely L2

regularisation, dropout and data augmentation. The empirical exploration of MRI brain tumours,

that is, the analysis performed in Chapter 4, makes use of these regularisation strategies as part

of the CNN architecture.

L2 (𝒍𝟐) norm regularisation

In the context of deep learning the goal is to regularise the estimators (Goodfellow, Bengio &

Courville, 2016). In other words, similar to ML, the bias-variance tradeoff comes into play whereby

to regularise the estimators increased bias is traded for a reduction in the variance. Long before

the dawn of DL in the form of NNs and CNNs et cetera, regularisation was used in linear models.

In other words, regularisation was applied to linear and logistic regression models. The goal of

regularisation is to limit the complexity of models through adding a penalty term. The 𝑙2 norm (also

known as the weight decay penalty) is a common penalty that is applied. In the context of NNs,

weight decay is a way in which the network is constrained, which subsequently reduces the

complexity of the network (Krogh & Hertz, 1992). In other words, large weights should be limited

and prevented to ensure that the weights are closer to zero. Hence, a penalty term that penalises

large weights can be added to the cost function. The penalty term for the 𝑙2 norm is given as:

𝑙2(𝑝𝑒𝑛𝑎𝑙𝑡𝑦) =
1

2
𝜆∑𝑤2 (3.169)

where 𝜆 governs the penalisation of the weights (𝑤), noting that 𝜆 is a positive value. A starting

point for determining the optimal value of the 𝜆 regularisation parameter can be ascertained in

the literature. Kuhn and Johnson (2013) suggest that rational values for the weight decay

(regularisation) parameter range between 0 and 0.1. Furthermore, as the empirical section

(Chapter 4) applied CNN architecture to the data, the suggestion by the following two papers in

the literature that a good starting point was to set the regularisation parameter to 0.0005 was

implemented. The paper titled ‘ImageNet classification with deep convolutional neural networks’

authored by Krizhevsky, Sutskever and Hinton (2012) propose a weight decay of 0.0005 and the

reason for this is that it guarantees that the model still learns and thereby the training models’

error rate is decreased. Additionally, Simonyan and Zisserman (2014) in their paper ‘Very deep

convolutional networks for large-scale image recognition’ concur that the optimal value based on

their empirical results indicates that the weight decay parameter value is set at 0.0005.

Dropout

Dropout is another method that attempts to reduce the effects of overfitting in NNs. It forms part

of regularisation techniques and is a computationally effective way to regularise the NN

(Brownlee, 2020b). The main difference between regularisation and the L2 norm (regularisation

as reviewed in the previous section) is that dropout alters the actual network as opposed to

Stellenbosch University https://scholar.sun.ac.za

110

modifying the cost function as is the case with L2 regularisation (Nielsen, 2015). A simplistic way

to describe what dropout is, is that some neurons (depending on the proportion chosen and

indicated in the architecture) are ignored (dropped) along with their associated connection in the

training phase of the network. This is illustrated by Figure 3.19 (Srivastava et al., 2014). The left

panel in Figure 3.19 is a standard four-layer NN with two hidden layers, while the panel on the

right is indicative of performing dropout. Furthermore, the neurons that are crossed out are the

ones that have been left out (dropped) from the network. The left-out neurons are randomly

chosen and are temporarily absent in the NN in addition to the input and output connections that

correspond to these neurons (Srivastava et al., 2014).

Figure 3.19: Dropout

Source: Srivastava et al., 2014.

Vincent et al. (2008) and Vincent et al. (2010) advise that dropout can be thought of as a

regularisation technique of an NN through adding noise in the hidden layer neurons. The authors

made use of this concept in the framework of denoising autoencoders.

The value of dropout is a tunable hyperparameter but the values are a probability, that is, values

between zero and one. The optimal probability for dropout is task-related but the literature does

give some suggestions as to what this value should be. Srivastava et al. (2014) propose that the

optimal level for the dropout probability rate is 0.2 for visible neurons, that is, neurons in the input

and output layer, whilst for the hidden layers a value of 0.5 is used. Furthermore, in the paper by

authors Krizhevsky, Sutskever and Hinton (2012) provides empirical evidence of their state-of-

the-art CNN with a dropout regularisation rate of 0.5 in hidden layers whereas a value of 0.8 was

employed in the input layer of the NN. These give the same value for the hidden layers to retain

the output from the neurons in these layers, thus a good starting point in choosing the optimal

value for the hidden layers is a dropout rate of 0.5. However, there are differing opinions (based

on these two papers in the literature) on what the optimal dropout rate for the input layer should

be.

Stellenbosch University https://scholar.sun.ac.za

111

Data augmentation

Data augmentation is an alternative method for improving the NN and reducing overfitting. A NN

generally uses millions of input data examples that it trains upon; however, in reality and in

practice, especially in the medical field, this is not always feasible, as is evident in the size of the

datasets that are used in the exploration of MRI brain tumours in Chapter 4. Therefore, data

augmentation is the process of artificially increasing (expanding) the size of the training data.

There is evidence to suggest that there is an improvement in the accuracy of the NN if millions or

billions of input data examples are available (Nielsen, 2015). In other words, the performance of

the NN is improved when more input data examples are available.

The mechanics of data augmentation, as mentioned, artificially expand the size of the training

data by creating new examples from the existing training data examples. From here on, as the

core of this research is MRI brain tumour image classification, it is known that the data examples

are images. Hence, transformations or modifications to the original images are created;

performing such alterations means that NNs has an enhanced ability to generalise the learned

information from the training models (Rosebrock, 2017; Brownlee, 2019). Furthermore, in the

CNN architecture data augmentation can also potentially add noise to the images to allow the

model to still learn the inherent features of the image (Brownlee, 2020b). There are multiple

frequently used means to increase the size of the input data images. These include random

rotation, vertical and horizontal flips about the applicable axis and brightness, to name but a few.

Starting with shifts, this means that the pixels in the image move in the same direction, either

horizontally or vertically (Brownlee, 2019). Horizontal or vertical flips mean that the image is

reflected about the 𝑥-axis or 𝑦-axis, respectively. Random rotation is that the image is rotated

through 360 degrees (depending on what value has been chosen) in a clockwise direction

(Brownlee, 2019). Hence, any value ranging from 0 to 360 degrees can be inputted for the rotation

argument. In Chapter 4, horizontal and vertical flips about the relevant axes have been applied

as a means of artificially increasing the data size. Next, the brightness augmentation results in

images that are either lighter or darker, that is, it has to do with the lighting levels of the images.

Thus, using these techniques allows data augmentation to reduce overfitting by stabilising the

learning of the NN (Rosebrock, 2017).

3.4.2.8 Improving neural networks: initialising weights

Another key aspect when deciding upon the architecture of the network is the choice of weight

initialisation. As previously mentioned, the weights are multiplied to the corresponding input

training examples to obtain the weighted sum of the inputs whereby decisions are made. Hence,

we would like to initialise the weights in such a manner that they have the ability to make decisions

and predictions that are more efficient and accurate. Briefly, the definition of weight initialisation

Stellenbosch University https://scholar.sun.ac.za

112

is where the weights in the network are set as the starting point for the model to start learning or

training (Brownlee, 2021). These values are usually small and are chosen at random. Goodfellow,

Bengio and Courville (2016) discuss the difficulty in choosing these initial parameters and indicate

that the choice made could lead to the failure of the network as it cannot converge or, alternatively,

convergence of the algorithm takes place. Many studies have proposed using simplistic heuristic

functions such as the Gaussian or uniform distributions as the initialisation of the weights.

Goodfellow, Bengio and Courville (2016) validate this by stating that the weights are almost

always randomly initialised from the Gaussian or uniform distribution. The authors continue by

substantiating that there is not enough theoretical evidence to then choose between these two

distributions. In other words, it is irrelevant which distribution is used.

Conversely, recent research indicates that different weight initialisations can be used for more

effective learning of the network. These are dependent on the type of activation function that

forms part of the architecture of the network. If the network employs the tanh or sigmoid activation

function approach, the literature advocates using the Xavier weight initialisation, also known as

the Glorot (named after Xavier Glorot). The mathematics and methodologies are not explicitly

discussed in this research, as the assumption of this weight initialisation method is that the

activation function is linear and symmetric and is, therefore, not applicable to the ReLU activation

function. The ReLU is the activation function which is applied in the empirical analysis section of

the research. For a detailed overview of this method, the reader is referred to the paper by Glorot

and Bengio (2010).

The approach followed for ReLU activation functions due to the nonlinearity and asymmetry is a

method known as the He weight initialisation and is named after the inventor. He weight

initialisation is frequently used for ReLU activation functions for both perceptron and CNN

architectures (Brownlee, 2021), hence this is used as the weight initialisation function in the

empirical analysis of exploring MRI brain lesion images. The detail regarding this method can be

found in the proceedings by He et al. (2015). The He weights are computed from a Gaussian

probability distribution where the weights are computed as (Brownlee, 2021):

𝐻𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (0;√
2

�̂�
) (3.170)

where the mean and the standard deviation are Gaussian distributed. That is, the mean is equal

to zero and a standard deviation of √2 �̂�⁄ where �̂� represents the number of inputs to a specific

neuron.

Stellenbosch University https://scholar.sun.ac.za

113

3.4.3 Convolutional neural networks

CNNs are a subset of ANNs and a specialised version of NNs; the main difference is that these

networks are applied to visual imagery. The name is derived from the use of mathematical

operations known as convolution. As with ANNs, CNNs have been inspired by biological

processes. In terms of classification, CNNs (compared to classification algorithms) make use of

very little preprocessing. The following sections review the differences between ANNs and

expansions upon them (as discussed in the preceding sections). This includes the modifications

that are made to the architecture, with reference to sections 3.4.2.2 (the architecture of an ANN)

and 3.4.3.2 (CNN architecture). Furthermore, the activation functions are also relevant and

applied in CNNs. In the exploration of brain lesions (empirical studies), CNNs are applied with the

ReLU activation function. Optimisation techniques (theoretical concepts discussed in section

3.4.2.4) are also applicable in CNNs and form the focal point of the empirical study of low-grade

versus high-grade gliomas. In other words, all the optimisation learning rules are applied and

compared to one another.

Additionally, the discussion on the different ways of improving NNs such as cross-entropy,

reducing overfitting via data augmentation, dropout and 𝑙2 regularisation, still applies to CNNs

and is used in empirical studies (Chapter 4). The last concept, the initialisation of the weights, is

also pertinent to this section and the application section (Chapter 4).

3.4.3.1 Rationale behind CNNs

CNNs are beneficial in environments (over other ANNs) when faced with computer vision systems

and when some sort of prediction is called for. That is, only raw visual (images) inputs are

considered. This is the form of the data encountered within the exploration of brain lesions in the

empirical study. The visuals are MRI scans taken from patients. Hence, the most appropriate form

of ANN to apply is that of a CNN. At a basic level, what is in the image needs to be understood,

but ideally where the object is in the image that is being predicted should be understood. This

may assist surgeons when resecting the brain lesion. So, to anticipate what will happen next: in

a medical environment (focusing on brain cancer), this can be done to determine whether

resection is a viable possibility, whether it will lead to partial or full resection, where and how to

administer chemotherapy and/or radiation and how likely reoccurrence is.

CNNs have been successful and continue to be successful in the implementation of biomedical

images, as they are very good at picking up extremely subtle features, for instance, cancerous

lesions, or differentiating between cancerous lesions. One of the main benefits of employing DL

algorithms in the form of CNNs is the ability of the network to learn directly from the raw input

image. This is achieved explicitly through feature extraction of tonnes of data through observation

and automation alone, thus requiring no manual hand-engineered selection. This is deemed to

Stellenbosch University https://scholar.sun.ac.za

114

be a major advantage, as the network is entirely independent of prior knowledge as determined

through the learning of the raw visual inputs.

A computer processes an image based purely on numbers, hence it flattens the three-dimensional

image into a two-dimensional matrix of numbers where these numbers range from zero to one or

zero to 255 (the brightness level). Zero means that there is zero light while 255 means there is

maximum light (id est, the brightest level). Each pixel is represented by a number and there is a

corresponding number associated with each pixel. For instance, for a colour-scale image there

are three channels (colour codes): red, green and blue (RGB) and thus each pixel is represented

by a number. For example, the maroon colour that is visible in the corporate identity of

Stellenbosch University is represented by (96, 34, 59) along the RGB channel (colour model).

This is shown in the leftmost panel in Figure 3.20. In addition to the RGB channel as given in

Figure 3.20, the CMYK colour code (model) is also depicted. The colours depicted in the CMYK

colour code are cyan, magenta, yellow and key (in other words, black). These four colours make

up the four ink plates which can occasionally be used in colour printing but more fundamentally

CMYK used as the description of the printing process. The differentiating aspect of the CMYK

colour model from the RGB channel (colour model) is that the former is a subtractive model whilst

the latter is an additive model. Simply put, this means that in the case of the additive model, the

colour white is an additive component creating an amalgamation of the spectrum of primary

colours, whereby the colour black is absent. Conversely, for the subtractive model case, the

colour black results due to the incorporation of colours whilst white is neutral. Neutral in the sense

that the colour white is either the colour of the paper or some type of background. The process is

that for the CMYK colour model, on lighter (generally white) backgrounds, colours are partially or

completely concealed. As the name suggests, subtractive models indicate that the RGB channel

colours are subtracted from white light. In other words, the CMYK model excluding the key (black)

are formed as follows:

• White light minus (the first colour in the RGB channel) red produces the colour cyan;

• White light less (the second colour in the RGB channel) green results in the colour magenta;

• White light minus (the third and last colour in the RGB channel) blue generates yellow.

In the exploration of brain tumours in Chapter 4 the images are rescaled. That is, since 255 is

known as the maximin pixel value, the pixels are transformed from the 0-255 range to a 0-1. When

coding, the images are rescaled using a factor of
1.0

255
. Hence, each pixel is transformed and one

of the reasons for this is so that all images are treated equally. Depending on the quality, lighting,

et cetera, some images tend to have a high pixel range whilst others have a low pixel range. In

terms of training the CNN models, the loss experience by the model is higher (stronger) for the

high range pixelled images whilst the opposite also holds true. In other words, for the low range

Stellenbosch University https://scholar.sun.ac.za

115

pixel images the loss created by the model is weak. Hence, scaling the images in the 0-1 range

ensures that all the images contribute equally to the total loss suffered by the model. If the images

are not scaled, images that are considered high range images will have more influence on how

the weights in the model are updated. For instance, black and white images could potentially have

a higher pixel range than say a pure colour image, but this does not imply that this image is more

important during the training phase of the model.

Figure 3.20: Stellenbosch University colour palette – primary brand colours

Source: Stellenbosch University, 2018.

As this study focuses on classification, ideally a class label for each input image should be

accurately predicted. Hence, for maximum classification accuracy the algorithm chosen should

be able to detect the subtle (unique) features that are present in the image. In order to correctly

classify a new instance (image), the network needs to leverage all prior knowledge (features in

the training images) that it has learnt. The training phase is key to the algorithm learning and

extracting features that consist of valuable information; if the classes can be predicted with

significantly high levels of confidence in the training phase, the chances of accurately classifying

new instances should be amplified. The fact that the model needs to be able to perform

irrespective of the variations that can be present in an image, such as differing brightness, colours,

fuzziness and what is in the background, should also be considered.

3.4.3.2 CNN architecture

CNNs, as aforementioned, differ from a typical ANN in that the structure is built to deal with a

specific type of data. That is, any given input will be the form of an image. Thus, the architecture

of a CNN makes provision to exploit this prior knowledge. O'Shea and Nash (2015) indicate that

one of the main differences between standard ANNs and CNNs is that the neurons within the

layers of the architecture consist of three dimensions. These three dimensions are known as the

Stellenbosch University https://scholar.sun.ac.za

116

spatial dimension, that is, the height and width of the input whilst the third dimension is the

dimension of the activation volume and is referred to as the depth. Figure 3.21 is an illustration of

the basic architecture of a CNN, where there are three types of layers. The three layers are

referred to as the convolutional layer, the pooling layer and lastly, the fully connected layer. The

architecture of a CNN is complete when these three layers have been stacked.

Figure 3.21: Basic convolutional neural network architecture

Source: O'Shea and Nash, 2015.

As mentioned, there are three key concepts to the architecture of CNNs, the three different layers.

Moreover, O'Shea and Nash (2015) propose that there is an additional key notion in that the input

is an image. Images are imperative to the functionality of a CNN in that the first layer is the image

pixel values. Briefly, the convolutional layer aims to compute the output of the neurons that are

connected to local regions of the input images via weights; this is also known as the local receptive

fields. Furthermore, the pooling layer is a means of reducing the spatial dimensionality (without

the loss of information) of the image. As O'Shea and Nash (2015) explain, the benefit of this

downsampling means that the number of the parameters in the activation function is also reduced.

Finally, the fully connected layer performs the same function as the output layer as discussed in

ANNs, in that it will try and classify the image accordingly. These issues will be discussed in more

detail in the following paragraphs where the architecture of a CNN is applied in the empirical

exploration analyses (with the modifications as deemed appropriate).

The convolutional layer

As this is the first layer in the network, the input is image pixel values. For instance, the input may

be considered as 28 × 28 pixels, and instead of then connecting every pixel in the input neuron

layer to the hidden layer, only a local region is looked at (Nielsen, 2015). In other words, the idea

is to only connect a local region of the input neurons to the hidden layer neuron, hence the hidden

layer neuron will only see these values (refer to Figure 3.22). The local region can be referred to

as the local receptive field. It can be deduced from Figure 3.22 that the local region is 5 × 5 which

Stellenbosch University https://scholar.sun.ac.za

117

corresponds to 25 pixels that are then fed to the hidden neuron. As before, each input is

connected to a hidden neuron and learns a weight as well as an overall bias, with the weight and

overall bias computed via the hidden neuron. Similarly, the process continues by moving one

pixel to the right and taking another 5 × 5 local receptive field, calculating the weight of the

connections to the new (second) hidden neuron as well as an overall bias. This process continues

until all the pixels in the image have been covered. How many pixels are moved to the right to

cover the whole image is known as the stride length and does not have to be equal to one; this

value can be altered as needed. In other words, depending on the task at hand the stride length

can be experimented with.

Figure 3.22: Local receptive field

Source: Nielsen, 2015.

It is worth noting that for purposes of explanation all the hidden neurons (that is, every local

receptive field) make use of the same value for the weights and bias, known as shared weights

and biases, hence, the output of the 𝑗, 𝑘𝑡ℎ hidden neuron can be given as follows (Nielsen, 2015):

𝜎 (𝑏 +∑∑ 𝑤𝑙,𝑚𝑎𝑗+1,𝑘+𝑚

4

𝑚=0

4

𝑙=0

) (3.171)

where:

• 𝜎 is a representation of the activation function used in the NN;

• 𝑏 is indicative of the shared bias;

• 𝑤𝑙,𝑚 represents the shared weights of the 5 × 5 (array) local receptive field;

• 𝑎𝑗+1,𝑘+𝑚 is the input activation at the specific positional location, that is, position

𝑗 + 1, 𝑘 + 𝑚.

From the above, suppose that the input image is 28 × 28 × 3 and that the three represent the red,

green, blue channel (that is, a colour image with pixels or dimensionality of 28 × 28), then the

Stellenbosch University https://scholar.sun.ac.za

118

number of weights in the convolutional layer with a 5 × 5 (array) local receptive field is 75

(5 × 5 × 3). Furthermore, the feature map is what is used to connect the input layer to the hidden

layer where the weights are used to define the shared weights in the feature map; similarly, the

overall bias in the context of the feature map is referred to as the shared bias (Nielsen, 2015).

Moreover, the shared weights and bias also describe, within the feature map, a kernel or filter. In

general, these kernels in terms of their spatial dimensionality are small so as to not lose too much

information of the input image (O'Shea & Nash, 2015). However, as mentioned, the local receptive

field is moved by a stride which results in the whole depth of the input image being accounted for.

The value of the stride is a measurement of the overlap of the local receptive field. If the stride is

a large value, there will not be much overlap, which results in the output being of lower spatial

dimension (O'Shea & Nash, 2015). On the other hand, if the stride is a small value, say one, then

the opposite situation prevails in which there is a large overlap in the local receptive field.

Furthermore, the NN learns the kernels that fire based on the detection of a specific feature

(O'Shea & Nash, 2015). Simply put, all the neurons that comprise the first hidden layer detect the

same features, just at differing locations of the input image (Nielsen, 2015). Convolutional layers

also make use of a hyperparameter known as zero-padding. Zero-padding can be defined as the

process in which the border of the input image is padded (O'Shea & Nash, 2015). This

hyperparameter aims to simply control the dimensionality of the output. Formally, the formula for

zero-padding is given as follows (O'Shea & Nash, 2015):

(𝑉 − 𝑅) + 2𝑍

𝑆 + 1
 (3.172)

where:

• 𝑉 is indicative of the input volume size of the input image, that is, ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ × 𝑑𝑒𝑝𝑡ℎ;

• 𝑅 represents the local receptive field (as explained above, the example used was a 5 × 5

(array);

• 𝑍 is a representation of the amount of zero-padding that is indicated;

• 𝑆 is the stride value.

Note that if Equation 3.172 is unequal to a whole integer, then the value that has been chosen for

the stride is incorrect, which leads to the neurons being unable to capture the entire input image

(O'Shea & Nash, 2015).

Another hyperparameter that can be tuned to control the dimensionality is that of parameter

sharing. This is simply where the weights and biases are shared, that is, set to be the same across

all the neurons in a feature map. The benefit of applying this concept in a CNN is to greatly reduce

the number of parameters that are contained within the convolutional layer (O'Shea & Nash,

2015).

Stellenbosch University https://scholar.sun.ac.za

119

Hence, three hyperparameters can be tuned to control by how much the parameters can be

reduced, which in turn reduces the dimensionality, considerably reducing the complexity of the

network. Through optimisation of the abovementioned three hyperparameters, namely the chosen

stride value, the depth and the idea of zero-padding, complexity is reduced.

The pooling layer

In addition to the convolutional layers, CNNs utilise pooling layers. The pooling layer plays an

important role, as in the feature maps pooling steadily reduces the dimensionality of the network.

In other words, the number of parameters is lower where the implication is that the computational

complexity is decreased in the network (O'Shea & Nash, 2015). The complexity in the model is

reduced through the exclusion of some connections amongst the convolutional layers.

Furthermore, the pooling layer down-samples the feature maps that are associated with the

previous layers in the network and therefore a new feature map is generated (Gholamalinezhad

& Khosravi, 2020). The reason why pooling is applied is two-fold - firstly, as a means to reduce

the number of weights or parameters that are present in the network, which allows for the

reduction in the computational cost (Ranzato et al., 2007) and secondly, as a means to control

for overfitting in the network, though only to a certain degree as it is not sophisticated enough on

its own (Skourt, El Hassani & Majda, 2021). Hence, other techniques which are more suited may

be applied, for instance, regularisation and dropout (as previously discussed). Furthermore, as

several literature papers note: a properly applied pooling mechanism allows for the transformation

of joint features into information whereby features that are considered to be valuable and useful

will be kept whilst valueless information is discarded (Suárez-Paniagua & Segura-Bedmar, 2018;

Gholamalinezhad & Khosravi, 2020). Hence, the spatial and transformation invariance is

preserved whilst simultaneously reducing the dimensionality.

Two frequently used pooling layer techniques are those of max pooling and average pooling.

However, the reader is referred to the paper entitled, ‘Pooling methods in deep NNs, a review’ by

Gholamalinezhad and Khosravi (2020) for a detailed overview of many other pooling techniques,

including mixed pooling, 𝐿𝑝 pooling, spectral pooling, weighted pooling and genetic-based

pooling. In the empirical section of the analysis of brain lesions, max pooling is applied where the

kernels (filters) have a dimensionality of a 2 × 2 array. This is a popular choice along with a stride

value of 2, which results in scaling down the original feature map by 25 percent (O'Shea & Nash,

2015). In the following paragraphs average pooling and max pooling are briefly discussed.

Figure 3.23 is an illustration of where average pooling is utilised in the pooling layer of the CNN.

In this diagram the stride is set equal to 2 and the filters (kernels) are a 2 × 2 array of the feature

map. The concept behind average pooling is to perform downsampling via the dividing of the input

into local pooling regions. As the name suggests, once these pooling regions have been formed

Stellenbosch University https://scholar.sun.ac.za

120

the average of the values that constitute that region is taken. For instance, based on Figure 3.23

the average of all four regions can be computed, which results in a new (downsampled) pooled

feature map. What this step achieves is that it adds a small quantity of translation invariance. In

other words, when the image is translated by a minimal amount, it usually has no substantial

effect on the values of the pooled outputs. Hence, the pooling layer will still be able to detect the

class label of the input, irrespective of how the input is shifted or changed.

Figure 3.23: Average pooling

Max pooling (as illustrated in Figure 3.24) is a method whereby the maximum of the regions is

selected to produce a new downsampled feature map. In the diagram the input is divided into

regions corresponding to a 2 × 2 array of adjacent pixels. One of the key features of max pooling

is that the most dominant pixel within the four neighbouring pixels (in the case of a 2 × 2 array) is

kept whilst the others are discarded. It is worth noting that these pixels are more representative

of a feature of the image that has been captured. The rationale is that the pooling layer is an inner

layer of the CNN and therefore the model starts to add more complexity in terms of learning the

hierarchy of the features of the input image. In other words, mid-level features are learnt by the

model. What this means is that, for instance, there is an image of a face: the low-level features in

the hierarchy consist of edges, lines and dark spots, et cetera. These features are learnt in the

layers at the beginning of the model (id est, the convolutional layers). With progress to the inner

layers the model learns the mid-level features; using the same example of an image of a face,

this would include the model being able to start distinguishing the eyes, ears, nose and mouth.

The last layers will detect the facial structure and this is then considered to be the high-level

features.

Stellenbosch University https://scholar.sun.ac.za

121

Figure 3.24: Max pooling

The fully connected layer

Lastly, the convolutional layers and the pooling layers give way to the fully connected layer. This

layer is also known as the dense layer. As with the traditional ANN architecture, a fully connected

layer is a means whereby every neuron in the preceding layers is connected to every neuron in

the observed layer. Generally, making use of a fully connected layer is considered to be an

inexpensive way in which the network can learn the nonlinear combinations of high-level

(hierarchical) features that are outputted from the convolutional layer.

The input image is flattened in a column vector and fed through the CNN. Upon going through the

fully connected layer for a given number of epochs, the model starts to distinguish between

valueless features (which are omitted) and features that are dominant (containing useful

information) to predict the class label.

3.4.4 Interpretability versus accuracy

One of the main limitations of DL (NNs) is that interpretability is forgone in favour of accuracy, as

illustrated in Figure 3.25. Hence, when models are more accurate the interpretability of that model

is limited. In other words, as is the case with DL techniques (where the focus of this research is

applying CNNs), the lower interpretability suggests that the model algorithm displays complexity

which is indicative of the underlying mechanisms of how the algorithm works and is difficult to

explain and understand. From a theoretical standpoint (refer to Figure 3.25), ranking the three

algorithms applied in the empirical review of brain tumours (Chapter 4), the following observations

are made: 𝑘-NN has the highest level of interpretability but at the expense of accuracy in the

results. On the other end of the spectrum CNNs produce accurate results but their workings - how

the model chooses the features to produce the most accurate results - are exceptionally difficult

to understand. Somewhere in between these two extremes lie SVMs.

Stellenbosch University https://scholar.sun.ac.za

122

DL has become one of the leading techniques in AI. Researchers apply these powerful techniques

and the associated architecture to improve the robustness as well as the computational power of

the predetermined task or problem (Kowsari et al., 2019). Conversely, as Shwartz-Ziv and Tishby

(2017) indicate, DL algorithms in the classification setting have limitations and disadvantages, as

DL (CNNs) does not expedite an extensive theoretical understanding of the learning process. In

other words, how the DL algorithm proposes the predicted output is not that well understood. This

phenomenon is more commonly referred to as the “black box” nature of DL algorithms. Another

limitation to DL algorithms is the amount of data required. That is, DL methods generally require

databases that are in excess of millions of inputs compared to the more traditional ML techniques.

For this research purpose, the inputs would be enormous databases of images. In a literature

study by authors Sordo and Zeng (2005), empirical evidence suggests that classification of small

datasets may elicit overfitting in the model, therefore large datasets are preferred to obtain more

accurate results. Hence, there is likely a correlation between performance (accuracy) and

database size. This can have a critical impact in shaping the performance of the DL technique.

Furthermore, these excessive amounts of data intensify, during the training phase of the

algorithm, the computational complexity (Severyn & Moschitti, 2015).

Figure 3.25: Model interpretability versus accuracy between traditional machine learning

algorithms and deep learning methods

Source: Kowsari et al., 2019.

3.5 LITERATURE REVIEW OF BRAIN TUMOURS USING DL/ML

An active and expanding field amongst the research community is that of biomedical imaging and

its association with widespread applications. This ranges from malignant tumour segmentation to

tumour recognition. Moreover, the diagnostic tools mentioned in section 2.3 are used to produce

the biomedical imaging that is then passed to the AI methodologies in the form of DL or ML

Stellenbosch University https://scholar.sun.ac.za

123

techniques. Furthermore, these diagnostic biomedical images (MRI imaging, PET scans, CT

scans) produced are given as the input for artificial intelligence or machine learning algorithms.

Figure 3.1 in the introduction of this chapter gives an overview of the research done in the field of

cancer and the association with emerging technologies. There is an indication that emerging

technologies and specifically AI and ML techniques are transpiring as key research areas.

Additionally, Figure 3.26 investigates a similar concept as Figure 3.1, with the key difference being

that this figure evaluates the AI/ML technique applied to varying cancer types. Before making

conclusions about the figure, it is worth noting that the bar (category) indicated as ‘other’ refers to

malignancies of tissues and organs such as brain, leukaemia, head, neck, cervical, ocular,

osteosarcoma, oesophagal, thoracic, thyroid, pleural mesothelioma and trophoblastic (Cruz &

Wishart, 2006). It is glaring that the dominant cancer types that are researched are breast and

prostate cancer. The inclination to study these cancers is that they are more prevalent and thus

are a reflection of the higher frequency of individuals diagnosed with these cancerous types. This

once again highlights that brain cancer is a rarer form of cancer and therefore by comparison not

as comprehensively researched.

Figure 3.26 is also indicative of the relation between AI/ML algorithms and how they are applied

in solving biological or clinical applications of cancer. There is a preference for applying these

techniques in predicting the outcome of different tasks, such as cancer detection, segmentation

and classification as well as malignancy prognoses. As previously mentioned, deep learning has,

in particular, progressed insofar as it has become a dominant and popular technique used by the

research community. Figure 3.26 depicts that approximately 70 percent of the studies that were

reviewed by Cruz and Wishart (2006) utilised NNs, whilst SVMs were the second most optimised

technique but significantly lower with only 9 percent. Furthermore, decision trees and clustering

were applied in 6 percent of the literature studies, while it is apparent from the figure that the

remaining three methodologies - Naïve Bayes, generic algorithms and fuzzy logic - were barely

implemented. Unfortunately, due to the grey scale colour coding used in Figure 3.26 the varying

shades are not as optimally distinguishable for the lesser applied techniques from a visual

perspective.

A reason for the upward trend of these techniques is that they produce significant results, in other

words, high accuracy is achieved, even though the accuracy of NN methods come at the expense

of explainability and the rationale behind the results. On the contrary, the other techniques (id est,

decision trees, SVMs, Naïve Bayes) are inherently not as popular but it is much easier to

understand and explain the underlying rationale and results.

Stellenbosch University https://scholar.sun.ac.za

124

Figure 3.26: Percentage of research papers for varying cancer types associated with

different artificial intelligence and machine learning techniques

Source: Cruz and Wishart, 2006.

In the subsections below the literature is reviewed and the question addressed of how data-driven

techniques in the form of diverse machine learning or artificial intelligence techniques affect a

variety of clinical image analysis tasks. The emphasis remains on exploring malignant brain

lesions.

𝒌-NN and SVMs

Most articles that refer to brain lesions made use of various statistical machine learning

techniques for comparison purposes. Hence, in this literature review section the 𝑘-NN and SVM

methodologies are discussed and overviewed simultaneously.

The first paper, entitled ‘Brain tumor classification using SVM and 𝑘-NN models for synthetic

minority over-sampling technique (SMOTE) based MRI images’ and authored by Latha et al.

(2020), gives an insightful look into the steps of brain tumour image processing. The first step is

to attain the images through some imaging modality, followed by the preprocessing of these

images. As the authors suggest through their literature review, this is essentially the removal of

noise utilising various filters leading to different features that can be extracted from the image.

The authors discuss this in an informative way by stating which methodologies are best applied

Stellenbosch University https://scholar.sun.ac.za

125

in different circumstances. For instance, when extracting features from MRI images wavelet

transformations are the most appropriate. Finally, model-based approaches are used to perform

the analysis, indicating how image classification analyses and computing work in conjunction.

The approaches include 𝑘-NN and SVM algorithms and the classification accuracy is compared.

The authors’ proposed solution uses a dataset of 3064 T1-weighted contrast-enhanced MRI

computed images of 233 patients that have either meningiomas, gliomas or pituitary tumours.

Next, image segmentation is performed using image thresholding. Feature extraction consists of

discrete wavelet transformation, whilst feature reduction makes use of principle component

analysis (a technique used for dimensionality reduction). The brain tumour classification is then

computed using 𝑘-NN and SVM methodologies. Due to the class imbalance of the dataset,

meaning that each tumour type is not represented an equal number of times, SMOTE is used to

balance the classes, ensuring that each tumour type has the same number of MRI images.

Instead of splitting the data via percentages into training and test sets, the authors make use of

5-fold cross-validation. This approach splits the original data randomly into five equal partitions,

id est, five equal-sized subsamples (referred to as folds), where the model is then fitted on four of

the subsamples (four folds are considered as the training set) and predicts on the remaining one

subsample (one fold is the test set). The cross-validation process is repeated five times, where

each of the subsamples is used as a test set. The thinking behind this approach is that it is easy

and simple to understand and implement (reduces computational intensity) but more importantly,

it encompasses all the information and features contained in the original data. The authors’ results

indicate that SMOTE improves the classification accuracy by approximately three percent, on

average. Additionally, their proposed SVM model (90.75 and 93.32 percent) has a higher

classification accuracy compared to the 𝑘-NN model - 85.2 and 90.75 percent without and with

the use of SMOTE, respectively.

The second paper reviewed in this section is by Artzi, Bressler and Ben Bashat (2019), titled

‘Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis’.

It describes how statistical techniques can be applied to differentiate between glioblastomas and

metastasis. The authors’ recommendation addresses the challenges in the distinction process as

there is an acknowledgement of the importance of its role in planning for different treatment

strategies, determining prognoses and therapeutic implications. The authors shed light on the

topic by highlighting the statistics of the incidence rate of high-grade brain lesions and brain

metastasis, by way of explanation, where the primary site of cancer was in the lungs, breasts and

other areas (in the data collected by the authors) and then the cancerous cells spread to the brain.

Furthermore, the authors state that MRI imaging is the conventional imaging modality, yet the

benchmark for the diagnosis of brain lesions is by taking biopsies of the infected site. However,

Stellenbosch University https://scholar.sun.ac.za

126

both these methods have advantages and disadvantages over each other which the authors point

out in detail.

As mentioned, the purpose of the authors’ study is to differentiate between glioblastoma and

metastasis subtypes. The analysis is performed on post-contrast T1-weighted MRI radiomics

images of 439 patients (radiomics is the study where numerous features are extracted from

radiographic medical images). These patients presented with either glioblastoma or brain

metastasis. The assessment process took a similar approach to that in the first paper. That is,

image preprocessing, such as resizing the images to the same voxel size, skull stripping (in other

words, extraction of the brain) and intensity normalisation (pixel intensities are scaled) which

constituted the first step in the process. This was followed by tumour segmentation and extraction

of the area. The next step involved feature extraction using and including different methodologies.

Furthermore, the authors conduct an in-depth discussion on why these methods were used. The

data were split in a ratio of 4:1 for training and testing, respectively. In other words, the data were

split into 80 percent training data and 20 percent testing data. Finally, statistical tests were

performed in classifying glioblastomas versus metastasis. Different machine learning techniques

were applied: SVMs, 𝑘-NN, decision trees and ensemble classifiers. The classification results

obtained by the authors indicated that the best classifier was SVMs. Henceforth, SVMs could

classify glioblastomas from metastasis subtypes with higher accuracy.

The third paper that is associated with brain lesion diagnostic imaging analysis through the use

of machine learning techniques is ‘Meningiomas: preoperative predictive histological grading

based on radiomics of MRI’, authored by Han et al. (2021). The authors examine the applications

of machine learning techniques that have been applied to MRI imaging to grade meningiomas.

First they explain how these tumours are graded according to the WHO, meaning the

characteristics that are used to evaluate whether the meningioma is low-grade or high-grade. The

reason for this is that the prognoses are different and the chances of reoccurrence differ along

with the survival rates. MRI images are the technique of choice as they can capture the soft tissue

of meningiomas at high resolution. The authors then elaborate on MRI imaging. This forms the

basis of this research and results in the main aim of the study.

The study comprised images from 131 patients diagnosed with either low-grade or high-grade

meningiomas by pathologists with considerable experience in the field. Multi-modal MRI imaging

was obtained, that is, T2-weighted, T1 FLAIR and T1 FLAIR with contrast enhancement (refer to

section 2.3.4 for a comprehensive discussion). The authors describe, at length, how they went

about obtaining the feature extractions. Finally, six machine learning classifiers were used in the

study, namely logistic regression, random forests, decision trees, boosting (XGboost), SVMs and

𝑘-NN. In the histological grading of the tumours the authors' results indicated that the highest

accuracy was achieved by the SVM classifier. Furthermore, the authors thoroughly discuss the

Stellenbosch University https://scholar.sun.ac.za

127

construction and stability of the model as well as the relationship between radiomic features and

the actual tumour, that is, features on MRI scans (such as grey contrasts, depth and textures)

that are essential in distinguishing between tumours and non-tumour images. Lastly, the authors

acknowledge the limitations of the study.

The fourth paper in this section, titled ‘An automatic classification of brain tumors through MRI

using support vector machine’ by Alfonse and Salem (2016), explores the use of data-driven

machine learning techniques, specifically SVM classifiers, applied to MRI imaging. The authors

follow the same methodological processes as in the previous papers, id est, preprocessing,

segmentation, feature extraction and selection and finally, classification of the images. There are

a few notable differences: firstly, the dataset that the ML technique is applied to is different; and

secondly, SVMs is the only classifier used, as opposed to comparing other techniques as was the

case in literature papers one through three.

A fifth paper, ‘Image analysis for MRI based brain tumor detection and feature extraction using

biologically inspired BWT and SVM’ authored by Bahadure, Ray and Thethi (2017), probes a

slightly different choice of brain lesion segmentation by using the Berkeley wavelet transformation

(BWT) where SVM is the proposed machine learning classifier. After the authors’ recommended

process system and the models had been applied, the experimental results were analysed and

the performance validated based on MRI images. The results were indicative of the proposed

model being effective in identifying and correctly classifying normal and abnormal tissue seen on

MRI imaging. The accuracy was compared to state-of-the-art machine learning techniques such

as adaptive neuro-fuzzy inference systems, backpropagation and 𝑘-NN. The SVM classifier

outperformed these three methods - the margin of accuracy for SVMs (96.51) was almost ten

percent higher than that of 𝑘-NN (87.06).

The sixth paper in this section is titled ‘Investigating brain tumor differentiation with diffusion and

perfusion metrics at 3T MRI using pattern recognition techniques’ by Svolos et al. (2013). Here

the authors illustrate the contribution that diffusion and perfusion MRI metrics make to

differentiation and hence the classification of brain tumours. The authors meticulously discuss the

MRI metrics along with why they decided to take this approach. In the study 115 patients were

subject to examination through the different metrics, including conventional MRI which constructs

T1-weighted, T2-weighted and FLAIR images. Furthermore, diffusion weighted imaging and

diffusion tensor imaging images were considered in the analysis. The last imaging metric that was

performed on the patients was dynamic-susceptibility contrast imaging. The latter three methods

are influential in that they offer substantial information about molecular function and

microstructure. They are particularly popular amongst researchers and physicians as they can

provide distinctive insights into the network of the brain. Furthermore, the authors discuss

controversies and advantages found in the literature as well as alternative options that could be

Stellenbosch University https://scholar.sun.ac.za

128

used instead of MRI. According to them biopsies are the gold standard but they conclude that

biopsies might not be the most viable solution when information about the whole neoplastic tissue

is required.

Subsequently, the authors review several pattern recognition techniques that have been applied

in other studies with the main aim of aiding decision making. The authors opted to make use of

SVM classification and the more frequently used receiver operating characteristic analysis (based

on logistic regression) to evaluate the diagnostic contribution of these metrics and parameters in

the discrimination of brain tumours. Additionally, the authors give reasons for proposing an SVM

model, for instance, SVM classifiers have high performance for small sample sizes. The patients

in the study were diagnosed with a range of intracranial brain lesions, for example, low- and high-

grade gliomas, atypical meningiomas and metastatic tumours. The experimental results revealed

that the highest predictive outcome was achieved through the SVM classifier. Moreover, there

was evidence that diffusion weighted imaging, diffusion tensor imaging and dynamic-susceptibility

contrast imaging were beneficial in the grading of intracranial brain lesions.

The seventh and last paper in this section takes a slightly different approach, in that it forgoes the

‘traditional’ MRI images and makes use of infrared spectroscopic data samples. However, SVM

was a classifier used in predicting the outcome which was to discriminate between the different

types of tissue associated with brain tumours. The contribution is entitled ‘SVM optimization for

brain tumor identification using infrared spectroscopic samples’ by Fabelo et al. (2018). In this

approach, the authors apply SVM classifiers to determine the type of brain tissue to assist and

improve diagnoses. This is achieved through the use of spectroscopy. The authors describe how

optical techniques have been applied in other literature studies along with the underlying

principles of spectroscopy. Briefly, infrared (IR) spectroscopy has to do with the interaction of

matter, that is, the absorption of intensity as a function of the associated wavelength. In this

context, it means that the intensity varies according to the molecular composition. Furthermore,

the authors discuss the potential of IR spectroscopy for distinguishing between tissue types and

grades. This leads to understanding which tissue is altered when it becomes malignant.

In this study, as mentioned, the authors use a dataset involving 433 patients from which brain

lesion tissue samples were collected through IR spectroscopic. The aim is to develop a method

to determine different diagnostic tissue types. This is to be achieved by using the SVM ML

algorithm which has been proposed by the authors. The authors do review other techniques that

have been applied to analyse spectroscopical samples, for instance, partial least squares

regression. However, with their proposed SVM classifier they managed to achieve high

performance and significant accuracy (approximately 97 percent) in differentiating tumours from

necrosis from the normal brain. The authors also obtained promising results for distinguishing

cancerous versus noncancerous samples. Some of the reasons why the authors propose the use

Stellenbosch University https://scholar.sun.ac.za

129

of SVM classifiers are reviewed. Essentially, this equates to the advantages over other

methodologies of SVMs as a classification technique. This includes, but is not limited to, the fact

that SVM classifiers are able to generalise well, finding optimal solutions even when the sample

size is small and achieving high performance when datasets are highly unbalanced.

Deep Learning: CNN

The first paper in this group, ‘Classification of brain tumors from MRI images using convolutional

neural network’ authored by Badža and Barjaktarović (2020), addresses the uses of deep learning

in the area of brain lesion MRI images. MRI imaging has become a go-to procedure when

differential diagnostics of brain lesions is required. Here the authors discuss the main aim of their

research, which is classifying three brain tumour types using their proposed CNN architecture.

They consider how deep learning, specifically CNNs, have achieved significant results in the field

of image segmentation and classification. Moreover, the authors present literature on AI networks

that have slightly different modifications of the NN for image classification and segmentation -

papers that have used different approaches that have been tested on medical databases, be it

the one they used or other databases that are available.

The authors’ proposed CNN is considered to be a basic architecture; however, they point out that

even though a simpler structure is used, it can still compare well with more complex deep learning

architectures. The dataset that the authors made use of contained 3064 MRI images, substantially

smaller than the size of datasets used in AI. Furthermore, the dataset contained T1-weighted

contrast-enhanced imaging of 233 patients diagnosed with one of three types of brain lesions:

glioma, meningioma or pituitary tumours. Their proposed CNN architecture was applied and the

authors examined four different methods to test the performance of the network. The authors’

proposed methodology outperformed state-of-the-art architectures recommended in the literature.

The experimental results showed that the authors were able to achieve an accuracy of

approximately 97 percent in discriminating between the three brain tumour types.

The second paper associated with image analysis using AI discusses how CNN architectures are

applied in the segmentation of brain lesions. In ‘Brain tumor segmentation using convolutional

neural networks in MRI images’ by Pereira et al. (2016), the authors explore and concentrate on

the capabilities of the recently employed approaches of AI (CNNs) over other successfully

implemented machine learning techniques. The authors give credit to the execution of classifiers

such as SVMs and random forests but then discuss the prominence and advantages of using

deep learning through pointing out how CNNs have shown substantial performance in biological

pattern recognition competitions. Hence, the objective of the authors’ proposed work is to use an

automatic segmentation method that will accurately and effectively segment brain tumours. This

is achieved through the use of CNNs constructed using small 3 × 3 kernels, as this allows for

Stellenbosch University https://scholar.sun.ac.za

130

deeper architectures. Furthermore, segmenting brain lesions accurately entails the importance of

not only treatment strategies but also follow-up evaluations. As mentioned in Chapter 2, manual

segmentation is a laborious task and an automated system gives clinicians a second opinion,

thereby aiding diagnoses.

The authors comprehensively discuss the underlying principles and architecture of CNNs. In their

study, the authors used two different architectures in segmenting low-grade gliomas from high-

grade gliomas. The network was constructed deeper (id est, more layers and weights) for high-

grade gliomas, as such a deep structure for low-grade gliomas did not improve performance. On

the contrary, it would lead to overfitting, as the size of the low-grade glioma dataset was small.

The authors’ results proved promising in effectively segmenting MRI images of two different brain

tumour types.

The third paper, entitled ‘Classification using deep learning neural networks for brain tumors’ and

authored by Mohsen et al. (2018), gives an informative overview of how data-intensive techniques

such as deep learning are applied to diagnostic radiomics images in medical applications. As the

authors state, deep learning has gained traction in recent years and has been successful in

solving complex problems. The authors applied various machine learning and feature extractions

through the different phases of the process. The first step in their study was data acquisition: they

obtained a database containing 66 brain MRI images which were categorised into four

subsections. Three comprised patients that had been diagnosed with abnormal lesions, namely

glioblastoma, metastatic bronchogenic carcinoma and sarcoma tumours. The fourth subsection

consisted of patients that presented with normal brain images.

The next step involved image segmentation, in this case separating the different normal tissues

such as grey matter, white matter and cerebrospinal fluid. The machine learning algorithm that

achieved this purpose as proposed by the authors was that of fuzzy c-means clustering. Similar

to the first paper in the previous section (𝑘-NN and SVMs), the authors also proposed using

discrete wavelet transformation as a feature extraction method followed by principal component

analysis for feature reduction. Finally, deep NNs were applied to perform the task for the

classification of the four tumour types. Note that this is viewed as the aim of this research study,

namely using deep NNs to classify different tumour types. The authors’ proposed model was

compared to other techniques such as 𝑘-NN and linear discriminant analysis and on the whole

surpassed these techniques in performance. Thus, the classification accuracy achieved using

deep NNs was higher.

Fourth, in a paper by Havaei et al. (2017) on ‘Brain tumor segmentation with deep neural

networks’, the authors exhaustively describe their CNN approach tailored to classifying

glioblastomas. Their approach has a slightly different CNN architecture in that it simultaneously

Stellenbosch University https://scholar.sun.ac.za

131

utilises local features and global contextual features. This supports the aim of their research, as

glioblastomas appear in any location in the brain and have various sizes, contrasts and shapes.

The authors’ solution is a model that is flexible enough yet still performs efficiently. The authors

explain three different CNN architectures. The first is a network that concurrently makes use of

local and global features. The second relates to the execution of a fully connected layer in the

final layer that contributes to a 40-fold speedup. The authors proceed to describe how they handle

the class imbalance of the dataset, that is, to overcome the imbalance in the tumour classes they

suggest a two-phase training procedure, exploring the two-pathway architecture which captures

the local and global details (features) of the brain. Motivation for this approach is that the authors

want the prediction of the outcome to be influenced by the two pathways. The local pathway is

the visual details around a specific area of the MRI image pixels, whilst the global pathway is an

approximation of where the tumour is located in the brain. For the third and final architecture the

authors propose cascaded CNN models. This means that the output from a basic CNN model is

used as a supplementary information source for the subsequent CNN models.

The fifth and final contribution in this section is a paper on ‘Near real-time intraoperative brain

tumor diagnosis using stimulated Raman histology and deep neural networks’ by Hollon et al.

(2020). The images that are used as input in this study are somewhat different to the conventional

MRI imaging that was apparent in the previous papers. The authors indicate that the advances in

optical imaging techniques and computational techniques such as AI have made it easier for

intraoperative diagnoses. The authors explain that intraoperative diagnoses play an integral role

in the safety and care of patients that undergo surgery to remove malignant lesions. Stimulated

Raman histological (SRH) imaging has provided a solution. Briefly, SRH is defined as an optical

imaging technique that constructs images of unprocessed biological tissue. The authors describe

the myriad advantages to using SRH; this includes relying on the expertise of a pathologist which

is not always readily available. For example, neuropathologists are not necessarily present when

brain surgery is performed. A solution to this problem, which forms the basis of the authors’

research, is to employ AI techniques that can achieve expert-level diagnoses of histological

images that pathologists would be able to interpret. In other words, a computer-based

visualisation technique is to be implemented that will take SRH images as input to predict the

outcome and interpretation of surgical specimens (tissue). This should take place in ‘near real-

time’, according to the authors. The implication of real-time is the time delay from when the tissue

is removed until a diagnosis can be made. Hence the authors suggest training a CNN model as

efficiently as possible to obtain the best accuracy.

Stellenbosch University https://scholar.sun.ac.za

132

3.6 SUMMARY

This chapter made significant headway in introducing core principles. From the literature on the

classification of brain tumours, ML (SVMs and 𝑘-NN) and DL (particularly CNNs) have gained

traction and are vigorously researched and implemented. Thus, this chapter highlighted the

theoretical (and mathematical) aspects of these techniques, that is, 𝑘-NN, SVMs and DL. As a

result of the task being image classification, as analysed in Chapter 4 based on MRI brain

tumours, with the medical aspect overviewed in the previous chapter (Chapter 2), this chapter

emphasised the inherent features of biomedical image classification. Preceding biomedical image

classification there was a simplistic and brief discussion of classification and then more

specifically, image classification.

AI, of which DL is a branch, in recent years has become one of the most frequently applied

techniques in bioinformatics, owing to the improvement in computational power (hardware) as

well as the digitisation of data leading to massive databases. The main goal and aim are to take

this raw material and transform it into knowledge and information that can be of assistance to

physicians. Therefore, this is the aim of this research as put forward in the introduction (Chapter

1) where two datasets will be analysed and the empirical results discussed in the subsequent

chapter. In terms of DL, there was a shift from understanding a neurobiological NN as being the

influence of the computing paradigm, ANNs. The initial artificial neuron, a perceptron, was

introduced and due to the limitations experienced, the focus transitioned to the development of

ANNs. Here, the fundamental underlying aspects were reviewed, that is, from the architecture of

ANNs to how different activation functions can be applied - the mathematical function as well as

the shape. There is no theoretical basis for which activation function is best to use. However,

some studies have offered empirical evidence to suggest under which circumstances - that is, for

the (application) task – a particular activation function should be used. Based on the literature that

has shown promising results for image classification using the ReLU activation function, this is

applied in the CNN architecture in the next chapter. Furthermore, the different state-of-the-art

optimisation techniques were outlined as well as ways in which to improve NNs, through

implementing regularisation, dropout and data augmentation. The reason is so that the NN can

train more effectively and efficiently. ANNs served as a predecessor for defining the underlying

architecture of CNNs. The rationale behind using CNNs instead of ANNs for image analysis was

stated. Also discussed in this chapter was the problem of interpretability, id est, the black box

techniques of these methodologies. This poses a challenge in the medical field, as even with the

growing interest in AI techniques these models need to be built to support explanation and

understanding rather than just solving the pattern or image classification (Lake et al., 2017).

Stellenbosch University https://scholar.sun.ac.za

133

This chapter serves as a precursor to the exploration of brain tumour images in the next chapter.

Hence these techniques were applied to two brain lesion datasets to classify these images with

maximum accuracy.

Stellenbosch University https://scholar.sun.ac.za

134

CHAPTER 4

EXPLORATION OF BRAIN TUMOUR IMAGES

4.1 INTRODUCTION

Accuracy in the detection and subsequent segmentation of brain lesions, benign or malignant, is

key to determining the type of cancer and if applicable, resection surgery, treatment planning

strategies and survival rates (treatment outcomes). As previously mentioned, the process is

labour-intensive and time-consuming when performed manually and requires the expertise of

physicians in the appropriate field. In order to alleviate some of this pressure and to obtain the

same level of accuracy and prediction, there is increasing reliance on automated and semi-

automated methodologies. Hence, this section's main aim is to determine whether the accuracy

achieved by these models can be of assistance in the oncological field. If so, the task of

segmentation is somewhat diminished in terms of being less laborious and time-consuming.

In this empirical section on the exploration of brain lesion images, state-of-the-art ML and DL

techniques are applied to two separate datasets: more specifically, from the ML point of view, 𝑘-

NN and SVMs, whilst from the perspective of DL, CNNs. The different parameters in the CNN

architecture will be applied in making use of the different learning algorithms, that is, the state-of-

the-art optimisation techniques as well as the different ways of improving NNs, namely dropout,

data augmentation, cross-entropy, et cetera, as discussed in Chapter 3. Thus, the accuracy of

the different methodologies will be compared.

The two datasets that are utilised both concern brain lesion MRI scans that have been collected.

The first one consists of images of patients that presented with brain tumours, as well as those

with an absence of brain lesions. The second dataset relates to patients diagnosed with either

low-grade gliomas or high-grade gliomas. Gliomas are considered to be one of the most frequent

primary malignant brain lesions and they have varying levels of aggressiveness and invasiveness,

different prognoses (especially, high- versus low-grade gliomas), different survival rates and

different biological properties (Bakas et al., 2018). Gliomas also present with heterogeneous

(dissimilar) appearances and shapes and therefore remain a challenge in diagnostic medical

imaging (Bakas et al., 2018). These datasets are described in more detail in the imaging dataset

sections, 4.2.1 and 4.3.1 respectively, and act as aids to illustrate how ML and DL techniques are

used in practice. Hence, this constitutes the practical implementation of the AI methodologies.

As has been mentioned, performing these models generally requires vast amounts of data;

however, due to the lack of data available in the medical field, this section also aims to establish

whether smaller-built CNN architectures can produce significant, accurate and satisfactory results

Stellenbosch University https://scholar.sun.ac.za

135

on smaller datasets. More specifically, that this is applicable for real-world datasets that have

been collected through multi-institutional organisations.

4.2 ABSENCE VERSUS PRESENCE OF BRAIN TUMOURS

4.2.1 Imaging dataset

For this study binary classification is required to segment patients into two classes, that is, a

cohort that present with a brain tumour against those where a brain lesion is absent. In Figure

4.1, the left panel (a) illustrates nine MRI scans of patients with a brain lesion. On the other hand,

the right panel shows the absence of brain lesions from the MRI scans of patients.

Figure 4.1: Presence versus absence of brain tumours from the multimodal MRI scans of

patients

Data were collected by means of MRI scans of a cohort of patients. In the study there were 98

cases (patients) where there was an absence of a brain lesion on the MRI scan, while there were

155 patients’ MRI scans where a brain tumour was present. Hence, in total there are 253 images

which are available via Kaggle10. There are no specifics regarding whether the tumours are benign

or are of a malignant nature.

4.2.2 Methodology and materials

Preprocessing was applied to the dataset with one of the first steps being to reshape (resize) all

the images to be of the same size. As is evident in Figure 4.1, all the images are of different sizes.

In this case, the resultant images were small square images of 350 × 350. The advantage of the

input images being of a smaller size is that the network trains more quickly. Next, to ensure that

10 www.kaggle.com

Stellenbosch University https://scholar.sun.ac.za

136

there was a training set along with a testing set, the data were divided into a training set and a

test set. A common heuristic for the split, prior to the age of big data, was a 70-30 percent split

for training and testing, respectively. However, as Ng (2019) points out, in the modern era and

thus in practice this might not be the most feasible split, especially when the distribution of the

training data is vastly different from that of the expected future data (the desired set). Additionally,

depending on the size of the input dataset, this heuristic may not be appropriate: in this era of big

data the percentage of the data that is allocated to testing sets is being reduced. That is, in cases

where there are copious amounts of data the test set may be smaller than 30 percent as long as

the test set is large enough to make provision for confident final predictions (Ng, 2019).

Conversely, when the input dataset is smaller, a higher split percentage may be advantageous.

However, one generally wants to train the model on comparatively more data than the data

contained in the test set. In this study the dataset was small and hence the split made was larger,

that is, a 60-40 percent split for training and testing, respectively. For the dataset this constitutes

151 images that form part of the data used to train the model (training set) whilst the remaining

102 images are used for testing the model. In other words, the test set validates how well the

model generalises when a new instance is given.

Following the split, the next step for the DL, specifically the CNN model, was to create a baseline

model. In other words, a baseline CNN was generated with the purpose of instituting a starting

point (minimum) for the performance of the model; this allows for a reference model which the

other models can be compared to. Another advantage of creating such a model is that the

performance can be studied and improvements attempted (Brownlee, 2020b). Furthermore,

employing the universal principles of the Visual Geometry Group (VGG) models are

recommended as a respectable base (Brownlee, 2020b). The VGG models were developed and

implemented by Karen Simonyan and Andrew Zisserman in the Department of Visual Geometry

Group at the University of Oxford where the authors’ proposed model solutions achieved excellent

performance results in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). The

proposed models in this empirical study made use of the general principles as set out by the

authors in their VGG models. Hence, the CNN architecture applied the VGG model

methodologies. The one general principle that Simonyan and Zisserman (2014) discuss in their

paper is that the depth of the network can be enlarged through the addition of more convolutional

layers. The authors motivate this principle as the size of the kernels (filters) that are associated

with the convolutional layer are relatively small. They suggest that the smallest feasible kernel

size (local receptive field) is 3 × 3, as this ensures that the left/right, up/down and centre are

captured. In the CNN architecture in the experimental results of this study the local receptive field

is set to be 3 × 3. In essence, the process is that each input image traverses a stack of

convolutional layers that utilise a small local receptive field.

Stellenbosch University https://scholar.sun.ac.za

137

Furthermore, the CNN architecture is a stack of convolutional layers which is followed by a pooling

layer. For the purposes of this research, the max pooling method was used. The convolutional

layers together with the max pooling layer made up a block. Following the stacked convolutional

layers and pooling layers was a fully connected layer with an output layer. In this case the problem

was binary in nature, meaning that the prediction took on one of two values, that is, either a brain

tumour is present on the MRI scan or brain lesions are absent. Thus, the final (output) layer was

a sigmoid layer as opposed to softmax. Softmax is used for multi-label classification. Thus, the

models’ loss (cost) function to be optimised was the binary cross-entropy (function). Moreover, all

the layers apart from the output layers were furnished with the ReLU activation function.

Additionally, the weight initialisation was set to be the He uniform distribution as mentioned on

Page 112. According to Brownlee (2020b), these two parameters are generally best practice. As

a way to ensure that the output features’ height and width of the image shape matched that of the

input, the padding hyperparameter was equated to be the same and this took place within each

convolutional layer.

The details of the CNN architectures are given by Tables 4.1, 4.2 and 4.3 which describe one

block, two block and three block VGG CNN models, respectively. This is the naming convention

for the purposes of this research. The difference between the blocks is that more convolutional

layers are stacked. Essentially, as mentioned, performing this step increases the depth of the

network. For the purposes of this study the depth was increased by adding more convolutional

layers with different depths in the different blocks. For instance, in the one block VGG model the

number of filters in the convolutional layer was 32. In the two block VGG model the first

convolutional block was associated with 32 filters in the convolutional layer, whereas in the

second convolutional block 64 filters were earmarked in the convolutional layer. Increasing the

depth of the CNN even further was accomplished by adding another block, resulting in what is

known as the three block VGG model (in this research) where the number of filters in the first two

convolutional blocks remained the same. However, in the third block the number of filters that

associated with this convolutional layer was 128.

As previously mentioned and depicted in Tables 4.1, 4.2 and 4.3, every individual block had a

solitary convolutional layer corresponding to a different number of filters, using small local

receptive fields (3 × 3) and followed by a single pooling layer. The stride of the convolutional block

layers was set to the default value of 1 × 1. Furthermore, the one block VGG model would act as

the baseline model to which the two block and three block models were compared. Additionally,

models that are said to improve NNs using the techniques mentioned in section 3.4.2.7 are also

compared to the baseline (one block VGG model). These are the techniques that reduce

overfitting, namely the 𝑙2 norm regularisation, dropout and data augmentation. Additionally, the

dataset was also fit on a hybrid CNN-SVM model. These hybrid models were implemented in the

Stellenbosch University https://scholar.sun.ac.za

138

following papers. The first paper is by Niu and Suen (2012) and titled ‘A novel hybrid CNN-SVM

classifier for recognizing handwritten digits’. The second is titled, ‘Kernel support vector machines

and convolutional neural networks’ by Jiang, Hartley and Fernando (2018). The last paper that

discusses the hybrid CNN-SVM model is ‘A new design based-SVM of the CNN classifier

architecture with dropout for offline Arabic handwritten recognition’ by authors Elleuch, Maalej

and Kherallah (2016). The main idea behind these proposed models is that it is a combination of

CNN and SVM structures in one model that is built end to end, in other words, integrating two

advanced and proven classifiers into one model and deriving the benefits of both; that is, these

two classifiers identify different types of underlying patterns in the data (Niu & Suen, 2012). In the

architecture proposed in this research, using the basic CNN architecture as before but making

use of an SVM classifier layer for the output layer instead of using a sigmoid function is suggested.

Hence, as an SVM classifier was used in the final output layer, provision had to be made for the

correct loss function. In this instance, the hinge (SVM) loss function was applicable. The reader

is referred to Table 4.4 for the details regarding the architecture.

How the parameters were set in the architecture of the CNNs is indicated for the models that

make use of the techniques that reduce overfitting, hence (hopefully) improving the NNs. In the

case of the model that contained the use of the 𝑙2 norm regularisation, the regularisation

parameter (indicated by 𝜆 in the theoretical section) was set to 0.0005. This is suggested in the

literature to be a good starting value as well as the optimal value, in some cases. Moreover, for

the model that included data augmentation to artificially increase the size of the training dataset

as the original dataset was relatively small, the following techniques were applied:

• Vertical flips about the 𝑥-axis;

• Horizontal flips about the 𝑦-axis.

Finally, for the model that made use of the dropout method to improve the NN, a value of 0.5 was

applied after the max pooling layer.

Stellenbosch University https://scholar.sun.ac.za

139

Table 4.1: Specifics of the proposed architecture of a CNN (one block VGG) of the

presence or absence of brain tumours in patients

Block Name Number of filters Kernel size
Stride or pool
size

Input Input image

Convolutional
block 1

Convolutional
layer 1

32 3 x 3

1 x 1

ReLU activation
function

-

He uniform initial
weights

-

Padding = same -

Pooling block 1 Max pooling layer
2

- - 2 x 2

Fully connected
block

Fully connected
layer 3

128 -

-

ReLU activation
function

- -

He uniform initial
weights

- -

Output layer:
sigmoid layer

- -

All the fit models made use of two of the state-of-the-art optimisation techniques (learning

algorithms as discussed in section 3.4.2.4), that is, momentum based gradient descent in the form

of stochastic gradient descent with momentum and the adaptive momentum estimation. For both

methods, the default hyperparameters were used. As mentioned in section 3.4.2.4 under the

corresponding optimisation techniques, the default or recommended values for the

hyperparameters are given. To reiterate these values for the learning algorithm (optimisation

technique): for SGD with momentum, the default learning rate is 0.01 with a momentum value

equal to 0.9. Additionally, the recommended values for the Adam optimisation method for the

various hyperparameters are as follows:

• Learning rate (𝜂) equal to 0.001;

• 𝛽1 equal to 0.9;

• 𝛽2 equal to 0.999;

• 휀 equal to 1𝑒−8.

Furthermore, all the models were fit for 20 epochs. This is a relatively small value and the rationale

for running so few epochs was to see whether the model could learn the problem manually

(Brownlee, 2020b). A single epoch can be briefly defined as when the full dataset is passed

through the network, in both directions (id est, forward and backward). Additionally, the batch size

Stellenbosch University https://scholar.sun.ac.za

140

can be defined in simple terms as the total number of training instances (examples) contained in

a single batch. For the models in this research, the batch size was set equal to ten.

Table 4.2: Specifics of the proposed architecture of a CNN (two stacked block VGG) of

the presence or absence of brain tumours in patients

Block Name Number of filters Kernel size
Stride or pool
size

Input Input image

Convolutional
block 1

Convolutional
layer 1

32 3 x 3

1 x 1

ReLU activation
function

-

He uniform initial
weights

-

Padding = same -

Pooling block 1 Max pooling layer
2

- - 2 x 2

Convolutional
block 2

Convolutional
layer 3

64 3 x 3

1 x 1

ReLU activation
function

-

He uniform initial
weights

-

Padding = same -

Pooling block 2 Max pooling layer
4

- - 2 x 2

Fully connected
block

Fully connected
layer 5

128 -

-

ReLU activation
function

- -

He uniform initial
weights

- -

Output layer:
sigmoid layer

- -

How to evaluate the DL (CNN) models and the rationale behind it now need to be considered.

Firstly, using the validation/test accuracy can determine how well the model is performing and

whether this performance is significant or satisfactory, thus, how well the model generalises to

unseen data and how accurately it will predict a new unseen instance. This said, DL models are

stochastic in nature; this means that there is a supplementary source of randomness that comes

into play. There are two additional sources of randomness, namely (Brownlee, 2020a):

• From the random initial weights;

Stellenbosch University https://scholar.sun.ac.za

141

• From when the data are randomly shuffled for the duration of the training phase of an epoch

using an optimisation (learning) algorithm.

This additional randomness entails that greater flexibility when learning the data is accompanied

by greater instability. In other words, when the model is run, using the same data, each experiment

run produces different results. Two ways to counter this issue are:

• Firstly, to set a random seed;

• Secondly, to repeat the evaluation experiment numerous times.

In the first solution, when one wants to obtain the same results when running the code multiple

times as with tutorials or demonstrations, setting a random seed is appropriate; however, these

models tend to be more fragile and are thus not recommended (Brownlee, 2020a). In the second

solution, more robust models are produced. The question of how many repeat experiment

evaluations are required arises. Brownlee (2020a) suggests that at least 30 repeats should be

performed but ultimately one would want to implement hundreds if not thousands. The one

setback is that in terms of time this might not be possible. Hence, the number of repeats is also

time dependent. Brownlee (2020a) adds that the mean of the repeats can be evaluated and other

statistical test evaluations should be performed, such as obtaining the standard deviation,

confidence intervals and sensitivity analyses. For the purposes of this research and this particular

dataset, considering the size, 30 repeat experiment evaluations were performed. The

validation/test accuracy was evaluated as well as the mean. As the purpose of this exercise was

to determine whether the accuracy of CNNs (and the ML techniques) was satisfactory for small

datasets and could be of assistance in the medical field, only the performance of the models was

of interest. Thus the other statistical evaluations are beyond the scope of this research but can

be looked into for future research to determine whether the models are stable when run multiple

times.

In the experimental results the practical implementation of ML techniques 𝑘-NN and SVM was

also applied. In the case of the 𝑘-NN and SVM practical application, a seed was set for

reproducibility, where the chosen seed value was 1234. All the models that were implemented

are listed and elaborated on in Table 4.5.

Stellenbosch University https://scholar.sun.ac.za

142

Table 4.3: Specifics of the proposed architecture of a CNN (three stacked block) of the

presence or absence of brain tumours in patients

Block Name Number of filters Kernel size
Stride or pool
size

Input Input image

Convolutional
block 1

Convolutional
layer 1

32 3 x 3

1 x 1

ReLU activation
function

-

He uniform initial
weights

-

Padding = same -

Pooling block 1 Max pooling layer
2

- - 2 x 2

Convolutional
block 2

Convolutional
layer 3

64 3 x 3

1 x 1

ReLU activation
function

-

He uniform initial
weights

-

Padding = same -

 Pooling block 2 Max pooling layer
4

- - 2 x 2

Convolutional
block 3

Convolutional
layer 5

128 3 x 3

1 x 1

ReLU activation
function

-

He uniform initial
weights

-

Padding = same -

Pooling block 3 Max pooling layer
6

- - 2 x 2

Fully connected
block

Fully connected
layer 7

128 -

-

ReLU activation
function

- -

He uniform initial
weights

- -

Output layer:
sigmoid layer

- -

Stellenbosch University https://scholar.sun.ac.za

143

Table 4.4: Details of the proposed architecture of a one block VGG hybrid CNN-SVM

model of the presence or absence of brain tumours in patients

Block Name Number of filters Kernel size
Stride or pool
size

Input Input image

Convolutional
block 1

Convolutional
layer 1

32 3 x 3

1 x 1

ReLU activation
function

-

He uniform initial
weights

-

Padding = same -

Pooling block 1 Max pooling layer
2

- - 2 x 2

Fully connected
block

Fully connected
layer 3

128 -

-

ReLU activation
function

- -

He uniform initial
weights

- -

Output layer: SVM
layer (linear)

- -

Stellenbosch University https://scholar.sun.ac.za

144

Table 4.5: Details of all the proposed models fit for the dataset containing MRI scans

where there is an absence or presence of brain lesions

Artificial
Intelligence
technique

Algorithm
name

Block
name

Block
info.

Fully
connected
block:
output
layer

Optimisation
technique
(Learning
algorithm)

Improving
neural
network
(reducing
overfitting)

Machine
learning

𝑘-Nearest
neighbours

Support
vector
machines

Deep
learning

Convolutional
neural
network

One block
VGG

Refer to
Table 4.1*

Sigmoid SGD with
momentum

 One block
VGG

Refer to
Table 4.1*

Sigmoid Adam

 Two block
VGG

Refer to
Table 4.2*

Sigmoid SGD with
momentum

 Two block
VGG

Refer to
Table 4.2*

Sigmoid Adam

 Three
block
VGG

Refer to
Table 4.3*

Sigmoid SGD with
momentum

 Three
block
VGG

Refer to
Table 4.3*

Sigmoid Adam

 One block
VGG

Refer to
Table
4.4**

SVM
(linear)

SGD with
momentum

 One block
VGG

Refer to
Table
4.4**

SVM
(linear)

Adam

 One block
VGG

Refer to
Table 4.1*

Sigmoid SGD with
momentum

𝑙2 norm
regularisation

 One block
VGG

Refer to
Table 4.1*

Sigmoid Adam 𝑙2 norm
regularisation

 One block
VGG

Refer to
Table 4.1*

Sigmoid SGD with
momentum

Dropout

 One block
VGG

Refer to
Table 4.1*

Sigmoid Adam Dropout

 One block
VGG

Refer to
Table 4.1*

Sigmoid SGD with
momentum

Data
augmentation

 One block
VGG

Refer to
Table 4.1*

Sigmoid Adam Data
augmentation

*Refers to using the binary cross-entropy loss (cost) function

** Indicative of the hinge (SVM) loss (cost) function

Stellenbosch University https://scholar.sun.ac.za

145

4.2.3 Experiment results

Table 4.6 depicts the validation/testing accuracy of the presence or absence of brain tumours.

Two ML techniques, namely 𝑘-NN and SVMs, were implemented. From the table it can be

concluded that the proposed SVM model slightly outperforms the 𝑘-NN model. That is, the

accuracy achieved by the SVM model is approximately 72 percent, whilst for the 𝑘-NN model the

accuracy drops marginally to roughly 69 percent. Hence, in the case of the SVM model, the model

will correctly predict an unseen instance with a 72 percent chance.

Table 4.6: Segmentation of the presence or absence of brain tumours: machine learning

techniques, results of the validation/test accuracy

Machine Learning Algorithm name Validation/test accuracy

𝑘-nearest neighbours 0.68627

Support vector machines 0.71569

The validation/test accuracy of the different proposed CNN architectures is given in Table 4.7,

whilst the corresponding validation/test loss results are shown in Table 4.8. Due to the dataset

being small, 30 repeat experiment evaluations were run for each of the architectures, as described

in Table 4.5. In the tables, the highest and lowest accuracies and losses are given as well as the

average of the 30 repeat runs. The first clear observation when comparing the ML techniques and

the DL method is that all the proposed CNN models, on average, outperform the two ML models.

Based on Figure 3.25, this is in line with what one would expect, that is, the accuracy of the CNN

models is higher but at the expense of interpretability.

Focusing solely on the different CNN models, in the experiments only two state-of-the-art

optimisers were used: SGD with momentum as well as Adam. The default or recommended

hyperparameter settings were applied. The one block VGG model was used as the baseline

model which all the other proposed architectures were compared to.

Firstly, when considering only the one block, two block and three block VGG models, an

interesting observation is that for SGD with momentum, increasing the depth and complexity of

the models did not yield more accurate predictions. On the contrary, as more blocks (convolutional

and pooling layers) were added, the validation/test accuracy started to marginally decline. That

is, the accuracy dropped from approximately 81 percent to 79 percent. When considering the

Adam optimiser, the two block VGG model outperformed the one block VGG model by the

slightest of margins. Once again, increasing the depth and complexity did not result in improved

predictive accuracy. What was apparent was that the two block and three block VGG models took

longer to run and in practice time is of the essence. Thus, since the more complex CNN

architectures not only take longer to run, but also do not improve performance, it is evident that

Stellenbosch University https://scholar.sun.ac.za

146

the simplest architecture is good enough for this dataset. The size of the dataset could also be a

potential reason for not requiring a more complex architecture.

Another distinct observation is that based on the one block VGG models, both the optimisation

techniques (learning algorithms), namely SGD with momentum and Adam, on average had the

same predictive performance. Conversely, focusing on the validation/test loss reflected in Table

4.8, SGD with momentum converged towards the minima much faster than Adam over 20 epochs

for this particular dataset and split. Over a single experiment evaluation, the one block Adam VGG

model (with the exception of including dropout in the model) had the highest predictive accuracy

of approximately 86 percent. This indicates that there is a relatively significant chance of the

model correctly predicting whether an unseen MRI brain scan fits into either of the two class

labels: the presence of a brain lesion or the absence of a brain tumour.

Next, the use of a hybrid CNN-SVM model, meaning that the output layer is linear (SVM) instead

of sigmoid from a binary classification CNN architecture, was proposed. The other deviation was

the loss model that was applied. For the hybrid model, resultant from the SVM layer, the hinge

(SVM) loss as opposed to the binary cross-entropy loss was used. Due to there being little to no

improvement in building complex CNN models with more depth, the hybrid models were built

using the simplistic one block VGG model. The idea was to make use of two superior classification

classifiers. When comparing the accuracy results (Table 4.7) of the hybrid models with the

baseline one block VGG model, it was clear that the SGD with momentum optimiser did not yield

more accurate predictive classification. On the other hand, the observation made for the Adam

optimiser hybrid model was that there was about a one percent difference in comparison to the

baseline one block VGG model. However, while the predictive accuracy was in favour of the

baseline model the performance of the hybrid CNN-SVM model was of the same order. In terms

of a comparison between the two hybrid CNN-SVM models, on average the loss experienced by

the SGD with momentum was much less than that of Adam. This indicates that SGD with

momentum converged to the minimum much faster. However, the opposite holds in that the

accuracy of the Adam optimiser hybrid model was somewhat higher than SGD with momentum.

Over a single run, the performance of Adam and SGD with momentum was the same, on the

higher end (id est, the highest accuracy), with an accuracy level of approximately 83 percent. It is

in the lower range, the lowest accuracy, where SGD with momentum lost pace compared to

Adam. In a direct comparison, the lowest predictive accuracy of Adam for the hybrid CNN-SVM

model was roughly 75 percent, whereas SGD with momentum was approximately 71 percent.

Lastly, introducing techniques that would not only assist with the issue of overfitting but essentially

also improve the NN and (hopefully) the validation/test accuracy was suggested. Once again, the

simplest, most basic CNN architecture was implemented since no improvement (in the accuracy)

was observed for the more complex architectures. Three techniques were used, namely the 𝑙2

Stellenbosch University https://scholar.sun.ac.za

147

norm regularisation, dropout and finally, data augmentation to artificially increase the training data

size due to the small dataset under review. Consider the SGD with momentum optimisation

technique: of the three methods, the one block VGG CNN model with dropout had on average

the highest performance accuracy (roughly 81 percent). The 𝑙2 norm regularisation method

produced similar levels of validation/test accuracy to that of applying dropout, with a slightly less

accuracy level of about 80 percent. The method that produced the lowest predictive accuracy was

dropout with a value of approximately 77 percent. When considering the three overfitting

(improvement) techniques for the Adam optimisation learning algorithm, it is clear that once again

the dropout method had a minimal higher predictive accuracy compared to the data augmentation

and 𝑙2 norm regularisation. Hence, it can be deduced that the three overfitting methodologies for

the Adam optimiser had exceptionally similar validation/test accuracy. For these three techniques,

Adam once again outperformed its SGD with momentum counterparts. This is applicable for both

the average over the 30 repeat experiment evaluations and for single runs. On the whole, the

three Adam overfitting methods had comparable performance accuracy to that of the baseline

one block Adam VGG model. Besides the SGD with momentum model architectures applying

dropout and 𝑙2 norm regularisation, the other technique (data augmentation) had relatively weaker

accuracy when compared to the baseline one block SGD with momentum VGG model.

Overall, on average, the different Adam optimiser models performed similarly, with the potential

to correctly classify unseen data reasonably well. The baseline models for both SGD with

momentum and Adam, based on the average, were the best performing models.

Table 4.7 depicts that, on average, all the models produced an accuracy in the 80 percent range.

Taking into account that the size of the dataset was exceptionally small in comparison to the

millions, if not billions, of images that CNNs are generally built on, these models produced

satisfactory accuracy levels and performance. With some certainty the absence or presence of

brain lesions can be correctly classified.

The predictive accuracy for the validation/test dataset for each single repeat evaluation of the

experiment is given in the appendices. Additionally, the validation/test loss for every single repeat

evaluation is also available for perusal in the appendices. In other words, the reader is referred to

Appendix A for the predictive accuracy and loss of the validation/test dataset in classifying images

as either having the absence or presence of brain lesions.

Stellenbosch University https://scholar.sun.ac.za

148

Table 4.7: Segmentation of the presence or absence of brain tumours: proposed CNN

architecture models, results of the validation/test accuracy

Algorithm name Validation/test accuracy

Minimum Maximum Average

One block VGG CNN:
SGD with momentum

0.76471 (Repeat experiment
evaluation: 14)

0.84314 (Repeat experiment
evaluation: 19)

0.81144

Two block VGG CNN:
SGD with momentum

0.74510 (Repeat experiment
evaluation: 13, 28)

0.83333 (Repeat experiment
evaluation: 1)

0.79183

Three block VGG CNN:
SGD with momentum

0.74510 (Repeat experiment
evaluation: 26)

0.84314 (Repeat experiment
evaluation: 9, 13)

0.78889

One block VGG CNN:
Adam

0.75490 (Repeat experiment
evaluation: 29)

0.86275 (Repeat experiment
evaluation: 26, 27)

0.81046

Two block VGG CNN:
Adam

0.79412 (Repeat experiment
evaluation: 3, 7, 9, 10, 12, 16,
21, 27, 29)

0.84314 (Repeat experiment
evaluation: 13, 20, 30)

0.81307

Three block VGG CNN:
Adam

0.72549 (Repeat experiment
evaluation: 4)

0.83333 (Repeat experiment
evaluation: 13, 16)

0.79575

One block VGG CNN:
SGD with momentum,
SVM as output layer

0.70588 (Repeat experiment
evaluation: 17)

0.83333 (Repeat experiment
evaluation: 14)

0.76895

One block VGG CNN:
Adam, SVM as output
layer

0.74510 (Repeat experiment
evaluation: 6)

0.83333 (Repeat experiment
evaluation: 10)

0.80163

One block VGG CNN:
SGD with momentum,
𝑙2 norm regularisation

0.72549 (Repeat experiment
evaluation: 3)

0.83333 (Repeat experiment
evaluation: 10, 20, 25)

0.80033

One block VGG CNN:
Adam, 𝑙2 norm
regularisation

0.75490 (Repeat experiment
evaluation: 12, 24)

0.83333 (Repeat experiment
evaluation: 29)

0.80131

One block VGG CNN:
SGD with momentum,
dropout

0.74510 (Repeat experiment
evaluation: 6)

0.86275 (Repeat experiment
evaluation: 10)

0.80771

One block VGG CNN:
Adam, dropout

0.75490 (Repeat experiment
evaluation: 26)

0.84314 (Repeat experiment
evaluation: 3)

0.80850

One block VGG CNN:
SGD with momentum,
data augmentation

0.72549 (Repeat experiment
evaluation: 1, 8)

0.83333 (Repeat experiment
evaluation: 2)

0.77288

One block VGG CNN:
Adam, data
augmentation

0.75490 (Repeat experiment
evaluation: 14)

0.85294 (Repeat experiment
evaluation: 2, 3)

0.80065

Stellenbosch University https://scholar.sun.ac.za

149

Table 4.8: Segmentation of the presence or absence of brain tumours: proposed CNN

architecture models, results of the validation/test loss

Algorithm name Validation/test loss

Minimum Maximum Average

One block VGG CNN:
SGD with momentum

0.93771 (Repeat experiment
evaluation: 5)

2.64141 (Repeat experiment
evaluation: 24)

1.44344

Two block VGG CNN:
SGD with momentum

1.10653 (Repeat experiment
evaluation: 23)

2.32407 (Repeat experiment
evaluation: 15)

1.57002

Three block VGG CNN:
SGD with momentum

0.94556 (Repeat experiment
evaluation: 24)

3.19452 (Repeat experiment
evaluation: 19)

1.61398

One block VGG CNN:
Adam

1.80787 (Repeat experiment
evaluation: 8)

17.62173 (Repeat
experiment evaluation: 20)

7.53439

Two block VGG CNN:
Adam

1.09101 (Repeat experiment
evaluation: 5)

1.91204 (Repeat experiment
evaluation: 24)

1.50344

Three block VGG CNN:
Adam

1.22499 (Repeat experiment
evaluation: 18)

2.43137 (Repeat experiment
evaluation: 3)

1.62008

One block VGG CNN:
SGD with momentum,
SVM as output layer

0.60505 (Repeat experiment
evaluation: 10)

2.24381 (Repeat experiment
evaluation: 28)

1.21011

One block VGG CNN:
Adam, SVM as output
layer

2.25833 (Repeat experiment
evaluation: 13)

24.43529 (Repeat
experiment evaluation: 26)

8.79505

One block VGG CNN:
SGD with momentum,
𝑙2 norm regularisation

1.18689 (Repeat experiment
evaluation: 7)

2.62732 (Repeat experiment
evaluation: 6)

1.65576

One block VGG CNN:
Adam, 𝑙2 norm
regularisation

1.68919 (Repeat experiment
evaluation: 14)

21.40545 (Repeat
experiment evaluation: 12)

7.53959

One block VGG CNN:
SGD with momentum,
dropout

1.07154 (Repeat experiment
evaluation: 28)

2.89367 (Repeat experiment
evaluation: 15)

1.49425

One block VGG CNN:
Adam, dropout

0.88349 (Repeat experiment
evaluation: 12)

13.59812 (Repeat
experiment evaluation: 11)

5.16198

One block VGG CNN:
SGD with momentum,
data augmentation

0.75628 (Repeat experiment
evaluation: 28)

2.09858 (Repeat experiment
evaluation: 23)

1.09315

One block VGG CNN:
Adam, data
augmentation

0.97409 (Repeat experiment
evaluation: 30)

7.36731 (Repeat experiment
evaluation: 23)

3.17937

Stellenbosch University https://scholar.sun.ac.za

150

Figure 4.2: Cross-entropy loss and classification accuracy of the one block VGG model

architecture for (left) SDG with momentum and (right) Adam

Two metrics that may be considered in the training process for how well the models will generalise

unseen data are the cross-entropy loss and the classification accuracy. Three such graphs,

essentially the three categories of the proposed models, are evaluated, that is, the best

performing models, including the one block VGG model as it outperformed the more complex and

deep CNN VGG block models. Additionally, the hybrid CNN-SVM model is analysed and the

dropout overfitting is reviewed as out of the three techniques it performed the best. Figures 4.2,

4.3 and 4.4 are illustrations of the two metrics. For all the figures, the left panel refers to the SGD

with momentum optimiser whilst the right panel is indicative of the Adam optimisation learning

algorithm. Each panel can be further split with the top panel representing the cross-entropy loss

whereas the bottom panel indicates the classification accuracy. The training loss and accuracy

are given by the solid light blue line, while the solid dark blue line is the validation/test loss and

accuracy. It should be noted to the reader that the graphs obtained in Figures 4.2, 4.3 and 4.4

are from one of the 30 repeat evaluation experiments. In fact, it is the last repeat evaluation

experiment. However, similar curve shapes and patterns for the two metrics were apparent and

observed for all 30 repeat evaluations, not all 30 graphs are given in this section.

What is immediately clear is that the behaviour of the curves (the training data curve as well as

the test data curve) are similar for SDG with momentum, both classification accuracy and cross-

entropy loss, in all three figures. The same conclusion is reached for the Adam optimisation

learning algorithm in that the behaviour of the curves are similar for both the classification

accuracy and the cross-entropy loss. Starting with SDG with momentum and considering the

cross-entropy loss, there is some overfitting in the models due to the increasing nature of the test

loss curve. This is evident in all three figures. In Figure 4.2, the one block VGG model, this upward

trend starts around epoch four. The upward trend in Figure 4.3 is delayed slightly and occurs

around epoch five. This graph is that of SGD with momentum and the hybrid CNN-SVM

Stellenbosch University https://scholar.sun.ac.za

151

architecture. Conversely, in Figure 4.4 the upward movement of the curve for cross-entropy loss

happens much sooner than in the baseline and hybrid model and starts overfitting the data around

epoch two. This indicates that these models do not generalise well to unseen data. Moreover,

they have modelled the underlying features in the training dataset exceptionally well. The learning

rate of these models is very high in that the parameters are unable to resolve into a smooth

optimisation. As to the classification accuracy, there is some overfitting as there is a substantial

gap between the training accuracy line and the validation/test accuracy line. Towards epoch 18

of Figure 4.3 there is even a slight downward turn of the validation/test accuracy line. This is

another indication of overfitting.

Figure 4.3: Cross-entropy loss and classification accuracy of the one block VGG with

SVM as the output layer model architecture for (left) SDG with momentum and

(right) Adam

Consider the applicable graphs for the Adam learning algorithm, that is, the right panel of Figures

4.2, 4.3 and 4.4. For the cross-entropy loss the shape of the curves is exponential for all three

CNN models reported. It could be potentially indicated that the fit looks reasonable and that the

model generalises the data reasonably well. It might lean towards a high learning rate. That is, if

the learning rate and the batch size (which might be too small) are changed, a better learning rate

might be obtained. In terms of accuracy, the conclusion is that the training line follows the test

training.

Stellenbosch University https://scholar.sun.ac.za

152

Figure 4.4: Cross-entropy loss and classification accuracy of the one block VGG model

with improvements of dropout architecture for (left) SDG with momentum and

(right) Adam

4.3 LOW-GRADE VERSUS HIGH-GRADE GLIOMAS

4.3.1 Imaging dataset

This empirical study and analysis of the classification of low-grade (LGG) or high-grade (HGG)

gliomas for which MRI scans have been collected were described and proposed in three articles,

namely, ‘The Multimodal Brain Tumor Image Segmentation Benchmark (BraTS)’ by Menze et al.

(2014); ‘Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation

labels and radiomic features’ by authors Bakas et al. (2017); and lastly, the manuscript on the

data and description by Bakas et al. (2018) titled ‘Identifying the best machine learning algorithms

for brain tumor segmentation, progression assessment, and overall survival prediction in the

BraTS challenge’. Unless otherwise stated, the following paragraphs in this section discussing

the imaging dataset have been adapted from the aforementioned articles.

The data comprise scans from multi-institutional organisations. Moreover, for the application of

this empirical study the imaging data combine the Multimodal Brain Tumor Image Segmentation

Benchmark (BraTS) challenges of 2012 and 2013 with images from the National Institutes of

Health (NIH) Cancer Imaging Archive (TCIA). This dataset is still growing and includes images

contributed by Heidelberg University. The other institutions providing MRI scans are Bern

University, Debrecen University and Massachusetts General Hospital. These imaging databases

formed the 2015 BraTS challenge and can be obtained via the Swiss Medical Image Repository

(SMIR)11 or Kaggle12. The challenges take place in conjunction with an international conference

based on medical imaging, known as MICCAI.

11 www.smir.ch
12 www.kaggle.com

Stellenbosch University https://scholar.sun.ac.za

153

For this specific challenge (BraTS 2015), the database consisted of 220 patients that presented

with high-grade gliomas, whilst 54 patients (cases) were diagnosed with low-grade gliomas. In

the labelling of the MRI images from the prior two BraTS competitions that make up the database

(id est, 2012 and 2013) the lesions were manually segmented (labelled) through human expertise.

The panel comprised of four highly experienced raters. In order to label the scans, there were

certain criteria of the sub-regions of the lesions that needed to be evaluated, including:

• The active tumour;

• The tumour core which is also referred to as the gross tumour;

• The whole tumour - simply, the complete extent of the lesion.

Furthermore, additional consistency and compliance were achieved through the final labels being

decided on by a highly experienced board-certified neuro-radiologist. This was also to ensure that

the correct annotation protocol was adhered to. As mentioned, as the dataset is a collection of

MRI scans of brain lesions provided by numerous institutions, there is room for diverse

approaches and image results. In other words, even though the images were taken under

standard clinical conditions, the equipment used for this purpose differed depending on the

particular institution; so did the imaging protocol. Hence, the resulting images are of vastly

different quality; however, this is attributed to the clinical practices that are followed by multi-

institutional organisations. One of the remaining challenges is the definition of the brain tumour

boundaries for infiltrative tumours. Gliomas are a type of infiltrative tumour. Hence, an attempt

was made to standardise the MRI images to the extent possible. It is worth noting that the

standardisation of the tumour sub-regions was not possible to determine through biological means

but instead are image-based. Moreover, the cases obtained via the TCIA were annotated in line

with the BraTS 2012 and 2013 challenges segmentations based on the high performing

segmentation algorithms, after which experts first labelled the brain lesions through visualisation

and then approved the class labels.

For each patient, irrespective of brain tumour type, 155 MRI scans were conducted. Additionally,

for each case (patient), four different multimodal images were taken. In other words, each case

has T1, T2, T1c and FLAIR MRI volumes (the reader is referred to Figure 2.1 in section 2.3.4).

Hence, for a single patient, combining the MRI volumes, there are 620 (155 × 4) scans.

4.3.2 Methodology and materials

The main objective is to segment brain lesion malignancies into two classes through the use of

state-of-the-art methods. In other words, to segment gliomas that are inherently heterogeneous

in many aspects, such as shape, appearance and histology (Bakas et al., 2018). As can be

deduced from Table 4.9, the original features of the MRI scans were vastly different and thus

were variable. This is with specific reference to the last two columns in the table, that is, how the

Stellenbosch University https://scholar.sun.ac.za

154

MRI scans were obtained and the planes in which the images were acquired. These planes are

simply the way in which the brain is divided. Axial refers to dividing the brain into a top and bottom

half whilst sagittal is indicative of the midline view of the brain. Lastly, the coronal view is the

perpendicular plane that is used to acquire the image. Additionally, from the last column it can be

concluded that the thickness of the MRI slices is variable. As mentioned, these dissimilarities are

attributed to differing equipment (scanners) used as well as the clinical practices and protocols

that are adhered to by the different multi-institutional organisations that have provided data.

Table 4.9: Features of the original BraTS dataset

Multimodal type
(MRI volumes)

MRI sequence
Property of
image

Acquisition of
MRI scan

Thickness of MRI
slice

T1 T1-weighted Native image Axial or Sagittal Variable: 1-5mm

T1c T1-weighted Contrast
enhancement -
Gadolinium

Axial 3D Variable

T2 T2-weighted Native image Axial 2D Variable: 2-4mm

FLAIR T2-weighted Native image Axial or Sagittal
2D or Coronial

Variable

Source: Bakas et al., 2018.

Before this dataset is made publicly available, it undergoes standardisation to ensure that no

apparent or valuable information from the MRI image is lost. The only MRI volumes that are

considered as part of the database are structural MRI scans. This includes the T1, T1c, T2 and

FLAIR multimodal types (MRI volumes; refer to the first column of Table 4.9). Preprocessing of

the images takes place in the form of guaranteeing that all the images have the same anatomical

template co-registration (Rohlfing et al., 2010). Furthermore, all images have been interpolated

to a common resolution. That is, the images are of a 1𝑚𝑚3 uniform isotropic resolution. Lastly,

all the images have been skull stripped. As previously mentioned in section 3.2.1, skull stripping

is a key component and is essentially one of the first steps performed when reviewing and

analysing neurological MRI images. These three standardisations, namely co-registration,

uniform isotropic resolution and skull stripping, make up the preprocessing step.

As previously mentioned, each patient has 155 slices of the brain that make up one volume. In

other words, each patient has 155 scans of four multimodal MRI images. Due to time constraints,

the author decided to use 70 scans for each patient, thus giving a total of 76 720 images. Patient

numbers were chosen at random to form the training (70 980 images) and test (5 740 images)

datasets. The proposed CNN architecture that was utilised is given in Table 4.10 as a practical

illustration of the theoretical background of Chapter 3. As indicated, the proposed model

architecture was a three block VGG model that consisted of three convolutional layers, three max

pooling layers and a fully connected layer. As before, the output layer was a sigmoid function, as

Stellenbosch University https://scholar.sun.ac.za

155

the data were binary in nature, that is, there were two groups: a cohort of patients diagnosed with

low-grade gliomas and another cohort of patients with prognoses of high-grade gliomas. This is

used in the analysis in the subsequent section and indicates that the loss function to be optimised

is the binary cross-entropy loss – because there are two classes, the type of classification task

involved is binary. Furthermore, the ReLU activation function was made use of in the convolutional

layers as well as the fully connected block. As previously mentioned, the pooling layer was

accountable for decreasing the dimensionality of the dataset. The initialising weights were set to

be He uniform distribution and the padding parameter to be the same.

In order to determine and compare the accuracy of the models, the nine state-of-the-art learning

algorithms (optimisation techniques) were used (the reader is referred to section 3.4.2.4 for the

theoretical background). Furthermore, the values of the hyperparameters of the optimisation

techniques were set to the default values or the generally accepted values as indicated under the

respective algorithms in the same section (id est, 3.4.2.4). Validation took place over five epochs,

with a single batch size of 128 and a target image size of 200 by 200. The images were also

rescaled to the 0-1 range. Due to the stochastic nature of CNN models, five repeat evaluations of

the experiment were computed. Ideally, as Brownlee (2020a) mentions, one would like to run at

least 30 if not hundreds or thousands. However, in practice, as was the case for this research,

time does not always allow for this.

Stellenbosch University https://scholar.sun.ac.za

156

Table 4.10: Details of the proposed architecture of a CNN (three stacked block) of

diagnosed low-grade gliomas (LGG) or high-grade gliomas (HGG) in patients

Block Name Number of filters Kernel size
Stride or pool
size

Input Input image

Convolutional
block 1

Convolutional
layer 1

32 3 x 3

1 x 1

ReLU activation
function

-

He uniform initial
weights

-

Padding = same -

Pooling block 1 Max pooling layer
2

- - 2 x 2

Convolutional
block 2

Convolutional
layer 3

64 3 x 3

1 x 1

ReLU activation
function

-

He uniform initial
weights

-

Padding = same -

Pooling block 2 Max pooling layer
4

- - 2 x 2

Convolutional
block 3

Convolutional
layer 5

128 3 x 3

1 x 1

ReLU activation
function

-

He uniform initial
weights

-

Padding = same -

Pooling block 3 Max pooling layer
6

- - 2 x 2

Fully connected
block

Fully connected
layer 7

128 -

-

ReLU activation
function

- -

He uniform initial
weights

- -

Output layer:
sigmoid layer

- -

Stellenbosch University https://scholar.sun.ac.za

157

4.3.3 Experiment results

Tables 4.11 and 4.12 present the empirical results of the segmentation and classification of low-

grade and high-grade gliomas for training and validation/testing, respectively. The comparative

analyses are for the nine state-of-the-art optimisation techniques (learning algorithms). Five

repeat evaluation runs were executed and from Table 4.11 it can be deduced that on average the

lowest training loss was acquired by the Nadam optimiser. The highest and lowest training

accuracies on average were also obtained by the Nadam and batch stochastic gradient descent

optimisers, respectively. Over a single repeat evaluation, the NAG optimiser had the highest

training accuracy whereas the batch SGD optimiser had the lowest. In terms of the training loss,

over a single repeat evaluation of the experiment the same two optimisation techniques

accounted for the highest and lowest values, with the highest loss being the batch SGD method

and the lowest loss being the NAG optimiser.

Furthermore, the validation/test accuracy of the models is of interest as this helps deduce the

predictive accuracy that the models can achieve. Table 4.12 shows that the Nadam optimiser on

average produced the best performing model followed closely by RMSProp. However,

interestingly, except for batch SGD and Adagrad optimisers, the proposed CNN architectures with

the default or generally recommended hyperparameter values all produced highly significant

accuracy results of over 90 percent. This indicates that any of these models have a high

probability of correctly classifying an unseen MRI scan of either a low-grade or high-grade glioma.

On average, the most accurate predictive model based on the validation or test accuracy was the

Nadam optimiser. This was also true for a single repeat evaluation where on run 5, Nadam

produced a validation accuracy of roughly 97 percent which is considered an exceptional result

in terms of accuracy and the ability of the model to predict an unseen case. Following suit with

very little difference, on average, the second-best model was that of RMSProp. Other than these

two models, Adam, Adamax and AdaDelta also had the potential to achieve high validation

accuracies. Another observation is that even though batch SGD only realised a validation (test)

accuracy of approximately 84 percent, this was still a satisfactory result.

If the validation or test loss in Table 4.12 for the Adam and SGD with momentum optimisers is

considered, the loss of Adam on average was lower than that of SGD with momentum. A possible

reason for this is that Adam converges, over five epochs, much faster to the minimum. However,

in these experiments the fastest convergence to the minima, on average, was that of Nadam.

Hence, overall it seems that the Nadam optimiser was the best algorithm out of all the state-of-

the-art optimisers discussed and practically implemented.

For the readers’ perusal, Appendix B contains all the measurements of the 5 repeat evaluations

of the experiment. That is, the training and validation/test accuracies and losses are separately

reported for each run in the appendices.

Stellenbosch University https://scholar.sun.ac.za

158

Table 4.11: Segmentation of LGG and HGG brain lesions: training accuracy and loss for

the different state-of-the-art optimisation algorithms

Optimiser
Training accuracy

Minimum Maximum Average

Adam 0.99358 (Repeat experiment
evaluation: 4)

0.99634 (Repeat experiment
evaluation: 5)

0.99522

AdaGrad 0.92489 (Repeat experiment
evaluation: 4)

0.93535 (Repeat experiment
evaluation: 1)

0.93032

AdaMax 0.99022 (Repeat experiment
evaluation: 1)

0.99593 (Repeat experiment
evaluation: 5)

0.99206

AdaDelta 0.99276 (Repeat experiment
evaluation: 1)

0.99653 (Repeat experiment
evaluation: 4)

0.99446

Nadam 0.99424 (Repeat experiment
evaluation: 2)

0.99777 (Repeat experiment
evaluation: 5)

0.99584

RMSProp 0.99265 (Repeat experiment
evaluation: 3)

0.99463 (Repeat experiment
evaluation: 1)

0.99405

NAG 0.98854 (Repeat experiment
evaluation: 1)

0.99853 (Repeat experiment
evaluation: 4)

0.99399

Batch SGD 0.87265 (Repeat experiment
evaluation: 2)

0.88722 (Repeat experiment
evaluation: 4)

0.87958

SGD with momentum 0.99103 (Repeat experiment
evaluation: 2)

0.99576 (Repeat experiment
evaluation: 5)

0.99324

Optimiser
Training loss

Minimum Maximum Average

Adam 0.01175 (Repeat experiment
evaluation: 5)

0.04333 (Repeat experiment
evaluation: 1)

0.02059

AdaGrad 0.16976 (Repeat experiment
evaluation: 1)

0.19146 (Repeat experiment
evaluation: 3)

0.17952

AdaMax 0.01551 (Repeat experiment
evaluation: 5)

0.03053 (Repeat experiment
evaluation: 1)

0.02580

AdaDelta 0.01510 (Repeat experiment
evaluation: 4)

0.02606 (Repeat experiment
evaluation: 1)

0.02139

Nadam 0.00752 (Repeat experiment
evaluation: 5)

0.02068 (Repeat experiment
evaluation: 2)

0.01375

RMSProp 0.01915 (Repeat experiment
evaluation: 1)

0.03018 (Repeat experiment
evaluation: 3)

0.02504

NAG 0.00662 (Repeat experiment
evaluation: 1)

0.03681 (Repeat experiment
evaluation: 4)

0.01989

Batch SGD 0.27053 (Repeat experiment
evaluation: 4)

0.29887 (Repeat experiment
evaluation: 2)

0.28517

SGD with momentum 0.01403 (Repeat experiment
evaluation: 5)

0.02654 (Repeat experiment
evaluation: 2)

0.02078

Stellenbosch University https://scholar.sun.ac.za

159

Table 4.12: Segmentation of LGG and HGG brain lesions: validation/test accuracy and

loss for the different state-of-the-art optimisation algorithms

Optimiser
Validation/test accuracy

Minimum Maximum Average

Adam 0.92213 (Repeat experiment
evaluation: 4)

0.95035 (Repeat experiment
evaluation: 5)

0.94108

AdaGrad 0.87213 (Repeat experiment
evaluation: 3)

0.89233 (Repeat experiment
evaluation: 1)

0.88174

AdaMax 0.92056 (Repeat experiment
evaluation: 1)

0.93763 (Repeat experiment
evaluation: 2)

0.92927

AdaDelta 0.89599 (Repeat experiment
evaluation: 2)

0.93467 (Repeat experiment
evaluation: 5)

0.92153

Nadam 0.93746 (Repeat experiment
evaluation: 3)

0.97404 (Repeat experiment
evaluation: 5)

0.95425

RMSProp 0.93537 (Repeat experiment
evaluation: 5)

0.95923 (Repeat experiment
evaluation: 2)

0.95164

NAG 0.90801 (Repeat experiment
evaluation: 4)

0.93118 (Repeat experiment
evaluation: 5)

0.91742

Batch SGD 0.83206 (Repeat experiment
evaluation: 5)

0.84512 (Repeat experiment
evaluation: 2)

0.84150

SGD with momentum 0.90139 (Repeat experiment
evaluation: 1)

0.91760 (Repeat experiment
evaluation: 5)

0.91143

Optimiser
Validation/test loss

Minimum Maximum Average

Adam 0.19209 (Repeat experiment
evaluation: 5)

0.45568 (Repeat experiment
evaluation: 4)

0.28387

AdaGrad 0.26312 (Repeat experiment
evaluation: 1)

0.32811 (Repeat experiment
evaluation: 3)

0.29035

AdaMax 0.19123 (Repeat experiment
evaluation: 2)

0.29127 (Repeat experiment
evaluation: 1)

0.23099

AdaDelta 0.21188 (Repeat experiment
evaluation: 5)

0.45273 (Repeat experiment
evaluation: 2)

0.29922

Nadam 0.11110 (Repeat experiment
evaluation: 5)

0.28251 (Repeat experiment
evaluation: 1)

0.20160

RMSProp 0.16879 (Repeat experiment
evaluation: 4)

0.48234 (Repeat experiment
evaluation: 5)

0.28117

NAG 0.29048 (Repeat experiment
evaluation: 5)

0.36562 (Repeat experiment
evaluation: 3)

0.31663

Batch SGD 0.35012 (Repeat experiment
evaluation: 2)

0.42809 (Repeat experiment
evaluation: 5)

0.37372

SGD with momentum 0.31316 (Repeat experiment
evaluation: 3)

0.40394 (Repeat experiment
evaluation: 5)

0.35001

Stellenbosch University https://scholar.sun.ac.za

160

Figure 4.5: Cross-entropy loss and classification accuracy of the Nadam optimiser

Figures 4.5 and 4.6 are representative of the cross-entropy loss and classification accuracy of the

Nadam and RMSProp optimisers, respectively, for the final repeat evaluation of the experiment.

In both figures, the top panel is indicative of the cross-entropy loss, with the loss given on the 𝑦-

axis and the number of epochs on the 𝑥-axis. The bottom panel shows the classification accuracy,

where once again the number of epochs is represented on the 𝑥-axis whereas on the 𝑦-axis the

level of accuracy is given. The training loss and accuracy are given by the solid light blue line,

whilst the validation or test loss and accuracy are indicated by the dark blue line.

Only the two top performing models were considered to determine and investigate how well these

models were able to generalise to unseen data, in other words, the ability of the models to

generalise in terms of overfitting or underfitting of the data for the proposed CNN architectures

with different optimisers. With regard to the Nadam optimiser and Figure 4.5: from the loss

function overall it appears as if the model generalised to the data reasonably well. This is

determined by the loss function. From epoch number three there might be some concern

regarding potential (trivial) overfitting based on the increase in the loss curve. The learning rate

in this instance might be slightly on the high side. With regard to Figure 4.6 and the RMSProp

optimiser: when evaluating the loss function similar conclusions can be reached in that the model

seemed to start overfitting the data at a slightly earlier epoch of two compared to the Nadam

optimiser. This model exhibited a very high learning rate in that the curve looks exponential. That

is, the loss decayed faster but as is evident the model was worse off, as the parameters were

vigorous and up and down, meaning that the model was unable to settle into a smooth

optimisation because the parameters in the model experienced dynamism.

The potential reasons for this are that the defaults or the recommended values are not appropriate

for the data. Additionally, the batch size might not be optimal - it might be too small or too large.

Stellenbosch University https://scholar.sun.ac.za

161

Figure 4.6: Cross-entropy loss and classification accuracy of the RMSprop optimiser

The accuracy of the two optimisers is now considered. In Figure 4.5, representing the Nadam

optimiser, there is some suggestion of a little overfitting and this is due to the validation accuracy

tracking the training accuracy reasonably well. One solution to this is to increase the model

capacity, in other words, make the model larger. Conversely, as depicted in Figure 4.6, the model

experienced overfitting by observing the accuracy curves. The validation or test accuracy curve

even started to change direction and move downward. In terms of the overfitting of the RMSProp

model, solutions include introducing dropout or 𝑙2 norm regularisation into the model. It is

imperative for the reader to take note that these conclusions are made based on the figures

obtained from the final experiment evaluation. In other words, conclusions may differ as a result

of the stochastic nature of these models.

4.4 SUMMARY

In this chapter, two datasets that pertain to the brain were explored and analysed. One of the

datasets consisted of MRI scans that revealed the presence of brain lesions as well as scans that

showed an absence of brain lesions. The second dataset dealt with a topic on which some

emphasis has been placed and that is the segmentation of patients into two groups depending

on the grade of brain tumour that they had been diagnosed with. The theoretical background

described in detail in Chapter 3 was applied. Hence, the practical implementation served as an

aid for the theoretical ML and DL approaches. In the next chapter, Chapter 5, a summary of the

main findings from this empirical section is reviewed in depth. Along with this, some

recommendations are made.

Stellenbosch University https://scholar.sun.ac.za

162

CHAPTER 5

SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 INTRODUCTION

In this final chapter of this research thesis, the main findings from the exploration of brain tumours

are presented, followed by concluding remarks. The main findings from the empirical analyses of

the identification and classification of brain lesions are discussed in section 5.2. Section 5.3

highlights shortcomings and limitations that were experienced in this research and offers

recommendations on how to best optimise the models. Furthermore, section 5.4 proposes future

research areas relevant to improvements that could answer some additional research questions

that were beyond the framework of this research report. The societal benefits and how the work

in this research report can be of assistance in the medical oncology field are discussed in section

5.5. The final section in this chapter is section 5.6, which comprises a few concluding remarks.

5.2 DISCUSSION AND SUMMARY OF MAIN FINDINGS

In this research two biomedical visual imaging datasets were explored and analysed. More

specifically, the focus was on brain lesions, either benign or malignant, as well as the grade

thereof. The first dataset comprised of two separate cohorts of patients, one in which the

individuals had been diagnosed with a brain tumour, that is, on their MRI scans there was clear

evidence that a brain tumour was present. The second group of patients had no brain tumour.

What was evident from the beginning was that the dataset was relatively small, with only 253 MRI

scans. This, however, is generally the norm in biomedical imaging. Nonetheless, the aim was to

establish whether the results obtained were satisfactory and of value to medical experts, in other

words, getting predictive results to assist in the classification of brain lesions versus no brain

lesions with some level of confidence. With the advances in computational power, data availability

and accessibility have led to researchers turning their attention to AI techniques in order to

execute biomedical tasks. As is known, the vast experience and knowledge of medical experts

will always be relied on; however, the task of diagnosing patients is time-consuming and labour-

intensive. Therefore, more automated or semi-automated processes are of benefit. This is where

AI methodologies come to the fore.

In the first comparative study, the first dataset, id est, absence or presence of brain lesions, using

two specialities within the AI framework, namely ML and DL, was proposed. The two ML methods

suggested for classification were 𝑘-NN and an SVM. Furthermore, in the realm of DL, different

CNN model architectures were proposed. These included one block VGG CNN models whereto

more blocks were added, which was essentially adding more depth and complexity to the

Stellenbosch University https://scholar.sun.ac.za

163

structure of the network. Thus, two block and three block VGG CNN architectures were also

implemented. Additionally, to get the best of both worlds in terms of the different features that

they could detect, two superior classifiers in an end-to-end model were proposed, that is SVM

and CNN combined to form one model, hence a hybrid CNN-SVM model. The SVM classifier was

applied as the output layer of the CNN model.

Furthermore, it was known that when dealing with a small dataset overfitting becomes an issue,

as the models cannot generalise patterns in the training dataset. Therefore, three techniques

were proposed to overcome the issue of overfitting whilst (hopefully) improving the NN: dropout;

data augmentation which artificially increases the size of the training dataset; and regularisation,

more specifically, 𝑙2 norm regularisation. The optimisation learning algorithms implemented were

SGD with momentum and Adam where the default or generally recommended values were used.

The direct comparison of the ML and DL techniques requires some caution as the ML models are

based on reproducibility hence, a seed was set so that the same results are obtained when re-

running the code. That is, if the seed were to be modified (changed) different values for the

predictive accuracy will be observed. This is in contrast to the DL (CNN) model architectures were

repeat evaluations of the experiment were conducted. The rationale behind this is the additional

randomness passed to the model resulting from the stochastic nature of CNNs.

The first observation was that all the proposed CNN models outperformed the two ML methods.

𝑘-NN had the lowest predictive accuracy of approximately 69 percent, followed by 71 percent

achieved by the SVM model. This observation is in line with the diagram of the generalisation of

model interpretability versus accuracy of more traditional ML techniques and DL techniques. The

diagram indicates that the more traditional ML methods have lower accuracy but more

interpretability. With DL methods the opposite is true: what is gained in the predictive power of

the model comes at the expense of interpretability. The proposed models showed this exact trend

- 𝑘-NN was the worst performing model and the CNN models had the best accuracy with the SVM

model somewhere in the middle.

Amongst the proposed CNN model architectures, the simplest models performed the best. That

is, the one block VGG models (considered the baseline model to which others can be compared),

with one convolutional layer, one max pooling layer and a fully connected layer were good

enough. In actual fact, adding more depth and complexity to the models led to worse results. It

should be noted that due to the stochastic nature of DL models and the additional randomness

that is introduced, the experiments were evaluated 30 times. This option was decided upon as it

created more robust models. One issue is that other statistical measures, such as sensitivity

analyses, would also be needed to ensure that the models were stable. This was beyond the

scope of this research as one of the objectives was to see if the models produced satisfactory

Stellenbosch University https://scholar.sun.ac.za

164

results on small datasets. On average, over the 30 experiment evaluations per proposed CNN

model architecture, the predictive accuracy was in the region of 80 percent. Given the small

dataset, there is reasonable confidence that these models will be able to correctly predict unseen

data. The overfitting techniques did not improve the accuracy, with a marginal difference in

accuracy for the Adam optimiser. There is, however, still some concern that the models were

overfitting and learning the underlying patterns of the training data exceptionally well.

The second dataset implemented as a practical aid to and illustration of the theoretical

background was that of brain lesion grading. The focus was on the segmentation of patients

based on the grading of the brain tumours that they had been diagnosed with; this would facilitate

making a better prognosis, determining the chance of survival and putting the correct treatment

planning strategies in place. The publicly available dataset that was evaluated in this research

contained a cohort of patients diagnosed with low-grade glioma and one of patients diagnosed

with high-grade glioma. For the research purposes of this study 70 scans from four different

multimodal MRI types were evaluated, that is, T1-weighted, T2-weighted, T1c and FLAIR images.

These images were collected from many institutions and thus were first standardised, as the

institutions had diverse equipment and imaging protocols.

Unless there is a very strong case for applying a specific optimisation learning algorithm,

comparing the different state-of-the-art optimisation techniques is advised. For this dataset, the

second comparative study in this research did exactly that. Nine state-of-the-art optimisation

algorithms were applied, namely batch SGD, SGD with momentum, NAG, Adagrad, AdaDelta,

RMSProp, Adamax, Adam and Nadam. These formed the nine proposed architectures based on

the three block VGG CNN model.

Due to time constraints, both in practice and for this research, and because the dataset is much

larger, containing approximately 76 000 images, only five repeat experiment evaluations were

conducted. All the suggested models, on average, produced predictive accuracy levels of over

90 percent on the validation/test dataset and in some cases well over this mark. The only two

exceptions were the optimisation techniques of batch SGD and Adagrad with accuracies of 84

and 88 percent, respectively, on the validation/test dataset. Interestingly, the other seven

proposed CNN architectures with the default or generally recommended hyperparameter values

all produced highly significant accuracy results of over 90 percent, as mentioned. This means that

any one of these models has a significantly high probability of correctly classifying an unseen MRI

scan as either a low-grade or high-grade glioma. On average, the two best performing models in

terms of the predictive accuracy of the validation/test dataset were the Nadam and RMSProp

optimisers, in that order. These two suggested models had accuracy levels of over 95 percent,

on average.

Stellenbosch University https://scholar.sun.ac.za

165

5.3 SHORTCOMINGS AND LIMITATIONS

For accurate and timely diagnoses in the medical field using more automated AI techniques is

highly dependent on the obtainability of datasets. Successful implementation and significant

performance of ML and DL methodologies require large datasets. However, in the biomedical

imaging field one of the most prominent limitations is the size of the available datasets. This was

evident in the first comparative study that was investigated and analysed: the dataset only

contained 253 patients’ MRI scans. There is no standard or general rule or rule of thumb as to

what constitutes a small or large dataset. Yet compared to the datasets used in the state-of-the-

art CNN architectures such as ConvNet, which made use of 1.3 million images in the training

phase of the network, as well as other datasets and the millions of images that CNN models

typically require, this dataset is exceptionally small.

There are some suggestions in the literature that ML and DL models that are built on large input

training datasets tend to produce higher performing models. Note that this is based on the task of

classification, which is the same task encountered in this research. For smaller datasets, these

models are also prone to overfitting the training data, which proved to be a shortcoming of this

study’s proposed model. This indicates that the proposed CNN model architectures in the training

stage detect the underlying features and patterns of the data well and thus do not generalise well

to unseen instances. Another issue is that these images may have very limited features for the

model to detect and thus are not able to generalise patterns well. Furthermore, the models that

perform classification tasks on small datasets tend to be biased.

In the medical field collecting data remains a challenge for a variety of reasons, including but not

limited to regulatory requirements, patients’ privacy and rare conditions for which limited data are

available, as in the case of brain tumours and more specifically, malignant brain tumours which

constitute a rare but deadly type of cancer. Hence, this has the potential to play a role in the

restricted availability of medical data.

In the second comparative study more data were available, but training the proposed CNN models

required more time as well as computational power and resources, which in practice is not always

feasible. In this case time constraints rather than computing resources were the issue. For

instance, instead of running at least 30 if not hundreds of experiment evaluations due to the

additional randomness that is introduced into the proposed CNN models as they are stochastic

in nature, only five repeat experiment evaluations per architecture were run, as a result of limited

time available. This may well be the case in practice where time is not a luxury. However, not

featured in this research but may well be useful would have been to provide the average run time

of one repeat evaluation. In line with this thinking, another limitation is that for the purposes of the

research objective - assisting medical professionals with more automated decision making - no

Stellenbosch University https://scholar.sun.ac.za

166

other statistical measures were performed, such as sensitivity analyses to evaluate whether the

models were stable.

Finally, the results were based on the specific splits that were made in the empirical section and

there may be discrepancies when other splits or training and validation/test splits are considered.

5.4 SUGGESTIONS FOR FUTURE RESEARCH

Recommendations based on the current research and the practical implementation that

accompanies the theoretical work would be to test other splits and different values for the

hyperparameters - more specifically, the learning rate and the number of epochs. Additionally,

sensitivity analyses can be conducted to determine the stability of the different proposed model

architectures. Additionally, other ML algorithms may be considered for purposes of comparison.

Other ML techniques are recommended to answer additional research questions, such as what

other AI methods may be used to detect brain lesions accurately. Moreover, computing the time

lapse taken for models can be beneficial in the sense that time is often a constraint in practice.

When it comes to the evaluation of the CNN models, one of the challenges is that the models are

considered black box techniques. That is, they lack interpretability, thus there is insufficient

understanding of the workings and mechanisms of these models, specifically how the model

chooses the features in producing models with significantly high accuracy. There are areas of

research that have made this the focus, known as explainable AI, which can be considered for

future research - models that support the understanding and explanation of the mechanisms of

these models.

To address the issue of small datasets, NN models proposed in the literature can be used to

determine if this is a possible solution to the limitation. These models include Fuzzy ARTMAP

NNs. A suggestion is also to study the impact that small datasets have on the task of classification.

Lastly, to answer some supplementary questions on possible links between hereditary genes and

the increased chances of being diagnosed with malignant brain tumours, DNA microarray data

may be considered.

5.5 SOCIETAL BENEFIT

In the difficult landscape of medicine where there is a shortage of specialised medical

professionals, assistance with time-consuming and laborious tasks is of benefit. One of the best

tools in the fight against cancer is that of timely and accurate diagnoses. When cancer is detected

at an early stage and before it metastasizes throughout the body, there is generally more positive

prognoses and patient outcomes. The correct execution of treatment planning strategies can lead

Stellenbosch University https://scholar.sun.ac.za

167

to higher survivability. When the diagnosis of cancer is delayed, the associated costs of care

escalate and add to an already strained health sector.

5.6 CONCLUDING REMARKS

Due to digitisation and the explosion of big data accessibility and availability in the field of

bioinformatics, researchers have turned their attention to the implementation of artificial

intelligence methodologies. Advances in deep learning and the proven track record of these

models in terms of accuracy have in recent years given them more prominence than the more

traditional machine learning algorithms. In this research thesis, the theoretical concepts of

biomedical imaging, brain tumours (including their grading) and the theoretical background of

three AI methods were researched. More specifically, two ML techniques (𝑘-NN and SVMs) and

one DL (CNN) technique were discussed. The rationale behind using these models is that they

have not only been proven successful in the literature but can also handle visual imagery data.

The research objective was to identify semi-automated methods to assist radiographers and

physicians, who are over-extended, to make diagnoses of brain tumours. In the case of malignant

brain lesions, focus is placed on the grade as this has a direct effect on the prognoses and

survivability rates and thus the correct treatment planning strategies. The issue, however, is that

diagnoses remain a momentous task as they are exceptionally labour-intensive and time-

consuming. The study of medicine is a very complicated field and even more so when an

individual specialises in a certain area. AI models will not be able to replace this expertise and

experience but will be able to assist. In terms of the empirical evaluation results, especially in the

case of grading brain tumours into low-grade or low-grade gliomas, the proposed models

achieved highly significant accuracy results of over 90 percent. Thus these models have the

ability, with a high probability, of correctly classifying an unseen MRI scan of either low-grade or

high-grade gliomas. The results for differentiating patients with brain tumours from those without

brain lesions were not as promising but still satisfactory: the level of predictive accuracy was

approximately 80 percent on a total sample size of 253 patients.

Accurate and timely diagnoses remain some of the best tools in the ongoing fight against cancer

and the proposed models were built to aid with the decision making. Decision making is part of

the research problem and objective and some challenges remain. One major challenge lies in the

data which are often limited in size, missing, inaccurate or noisy. As mentioned, issues of limited

data sizes as well as unbalanced class groups were experienced in the empirical exploration. The

small dataset was apparent in the first comparative study with only 253 patients’ MRI scan images

available. Unbalanced class groups were also experienced, as the number of patients per group

is not equal. This is the case for both comparative studies. In the first one, the number of patients

that had presented with a brain tumour outweighed the number of scans of patients with an

Stellenbosch University https://scholar.sun.ac.za

168

absence of a brain tumour. The same can be said of the second comparative study, where the

cohort of patients with high-grade gliomas was approximately fourfold those that had been

diagnosed with low-grade gliomas.

Another such challenge is transforming raw data into valuable insights and knowledge. One of

the major concerns in the medical field is that even though AI methods have been proven

successful with significantly accurate results, AI models lack interpretability. AI models need to

be able to contribute to the understanding of the underlying mechanisms of the models, that is,

how the model(s) decide which features to use and why. Experts in the medical field require

explanations, not just on an overall level in terms of giving predictions or the prediction accuracy

of the models, but in more detail as to why and how the machine made the decision it did. Thus,

the medical profession needs models that can be interpreted and are dependable and explainable

along with having great precision and accuracy. What is apparent is that more interpretable

models, for instance decision trees, tend to have lower performance. Conversely, the

interpretability and explainability are lost when black box models are implemented, such as CNNs,

even though they have much greater levels of accuracy. In conclusion, interpretable AI methods

are required to ensure that medical professionals have a sufficient level of belief in the models.

Stellenbosch University https://scholar.sun.ac.za

169

REFERENCES

Aguilera, A. & García-Muse, T. 2013. Causes of genome instability. Annual Review of Genetics,

47:1-32.

Aha, D.W. 1992. Tolerating noisy, irrelevant and novel attributes in instance-based learning

algorithms. International Journal of Man-Machine Studies, 36(2):267-287.

Alfonse, M. & Salem, A.B.M. 2016. An automatic classification of brain tumors through MRI

using support vector machine. Egyptian Computer Science Journal, 40(3):11-21.

American Association of Neurological Surgeons. 2021. Brain tumors: Types of brain tumors

[Online]. Available: https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-

Treatments/Brain-Tumors [2021, June 20].

Anand, P., Kunnumakara, A.B., Sundaram, C., Harikumar, K.B., Tharakan, S.T., Lai, O.S.,

Sung, B. & Aggarwal, B.B. 2008. Cancer is a preventable disease that requires major

lifestyle changes. Pharmaceutical Research, 25(9):2097-2116.

Anand, S.S., Singh, H. & Dash, A.K. 2009. Clinical applications of PET and PET-CT. Medical

Journal Armed Forces India, 65(4):353-358.

Archana, S. & Elangovan, K. 2014. Survey of classification techniques in data mining.

International Journal of Computer Science and Mobile Applications, 2(2):65-71.

Artzi, M., Bressler, I. & Ben Bashat, D. 2019. Differentiation between glioblastoma, brain

metastasis and subtypes using radiomics analysis. Journal of Magnetic Resonance

Imaging, 50(2):519-528.

Attwood, D. 2000. Soft x-rays and extreme ultraviolet radiation: Principles and applications.

Cambridge University Press.

Auria, L. & Moro, R.A. 2008. Support vector machines (SVM) as a technique for solvency

analysis. DIW Berlin discussion paper No. 811.

Badža, M.M. & Barjaktarović, M.Č. 2020. Classification of brain tumors from MRI images using

a convolutional neural network. Applied Sciences, 10(6):1999.

Bahadure, N.B., Ray, A.K. & Thethi, H.P. 2017. Image analysis for MRI based brain tumor

detection and feature extraction using biologically inspired BWT and SVM. International

Journal of Biomedical Imaging, 2017.

Bailey, D.L., Maisey, M.N., Townsend, D.W. & Valk, P.E. 2005. Positron emission tomography.

London: Springer.

Stellenbosch University https://scholar.sun.ac.za

170

Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani,

K. & Davatzikos, C. 2017. Advancing the cancer genome atlas glioma MRI collections

with expert segmentation labels and radiomic features. Scientific Data, 4(1):1-13.

Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R.T., Berger, C.,

Ha, S.M., Rozycki, M. & Prastawa, M. 2018. Identifying the best machine learning

algorithms for brain tumor segmentation, progression assessment, and overall survival

prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629.

Baldwin, R.T. & Preston-Martin, S. 2004. Epidemiology of brain tumors in childhood - a review.

Toxicology and Applied Pharmacology, 199(2):118-131.

Bampoe, J. & Bernstein, M. 1999. The role of surgery in low grade gliomas. Journal of Neuro-

oncology, 42(3):259-269.

Barbashina, V., Salazar, P., Holland, E.C., Rosenblum, M.K. & Ladanyi, M. 2005. Allelic losses

at 1p36 and 19q13 in gliomas: Correlation with histologic classification, definition of a

150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate

tumor suppressor gene. Clinical Cancer Research, 11(3):1119-1128.

Bellman, R. 1978. An introduction to artificial intelligence: Can computers think?. Boyd & Fraser.

Benjaminson, E. 2020. Binary cross-entropy [Online]. Available:

https://sassafras13.github.io/BiCE/ [2021, July 28].

Berggren, U., Eriksson, M., Fahlke, C. & Balldin, J. 2002. Is long-term heavy alcohol

consumption toxic for brain serotonergic neurons? Relationship between years of

excessive alcohol consumption and serotonergic neurotransmission. Drug and Alcohol

Dependence, 65(2):159–165.

Bernstein, M.A., King, K.F. & Zhou, X.J. 2004. Handbook of MRI pulse sequences. Elsevier.

Bhatia, N. 2010. Survey of nearest neighbor techniques. arXiv preprint arXiv:1007.0085.

Bishop, C. 2006. Pattern recognition and machine learning. Springer.

Bleeker, F.E., Molenaar, R.J. & Leenstra, S. 2012. Recent advances in the molecular

understanding of glioblastoma. Journal of Neuro-oncology, 108(1):11-27.

Boston Children's Hospital. 2005-2021. Ganglioglioma [Online]. Available:

https://www.childrenshospital.org/conditionsandtreatments/conditions/g/ganglioglioma

[2021, June 21].

Bovolo, F., Bruzzone, L. & Carlin, L. 2010. A novel technique for subpixel image classification

based on support vector machine. IEEE Transactions on Image Processing,

19(11):2983-2999.

Stellenbosch University https://scholar.sun.ac.za

171

Brain Tumour Research. 2021. Ganglioglioma (GGL) [Online]. Available:

https://www.braintumourresearch.org/info-support/types-of-brain-tumour/ganglioglioma

[2021, June 20].

Brownlee, J. 2019. How to configure image data augmentation in Keras from machine learning

mastery [Online]. Available: https://machinelearningmastery.com/how-to-configure-

image-data-augmentation-when-training-deep-learning-neural-networks/ [2021, July 26].

Brownlee, J. 2020a. How to evaluate the skill of deep learning models from machine learning

mastery [Online]. Available: https://machinelearningmastery.com/evaluate-skill-deep-

learning-models/ [2021, September 7].

Brownlee, J. 2020b. How to classify photos of dogs and cats (with 97% accuracy) from machine

learning mastery [Online]. Available: https://machinelearningmastery.com/how-to-

develop-a-convolutional-neural-network-to-classify-photos-of-dogs-and-cats/ [2021, July

26].

Brownlee, J. 2021. Weight initialization for deep learning neural networks from machine learning

mastery [Online]. Available: https://machinelearningmastery.com/weight-initialization-for-

deep-learning-neural-networks/ [2021, July 27].

Byun, H. & Lee, S.W. 2002. Applications of support vector machines for pattern recognition: A

survey, in International workshop on support vector machines. Berlin, Heidelberg:

Springer: 213-236.

Cai, W.-L. & Hong, G.-B. 2018. Quantitative image analysis for evaluation of tumor response in

clinical oncology. Chronic Diseases and Translational Medicine, 4(1):18-28.

Cancer Research UK. 2020. How cancer starts [Online]. Available:

https://www.cancerresearchuk.org/about-cancer/what-is-cancer/how-cancer-starts

[2021, June 21].

Charniak, E. & McDermott, D. 1985. Introduction to artificial intelligence. Addison-Wesley.

Cherniak, C. 1990. The bounded brain: Toward quantitative neuroanatomy. Journal of Cognitive

Neuroscience, 2(1):58-68.

Clark, W.H. 1991. Tumour progression and the nature of cancer. British Journal of Cancer,

64(4):631-644.

Corcos, D. 2012. Unbalanced replication as a major source of genetic instability in cancer cells.

American Journal of Blood Research, 2(3):160.

Cruz, J.A. & Wishart, D.S. 2006. Applications of machine learning in cancer prediction and

prognosis. Cancer Informatics, 2:59-78.

Stellenbosch University https://scholar.sun.ac.za

172

Cure Brain Cancer Foundation. 2021. Brain cancer facts & stats [Online]. Available:

www.curebraincancer.org.au/page/8/facts-stats [2021, September 25].

DeAngelis, L.M. 2001. Brain tumors. New England Journal of Medicine, 344(2):114-123.

Deweerdt, S. 2018. Below the surface: Cancer-genome analysis has kick-started a revolution in

the diagnosis of glioma. Nature, 561:S54-S55.

Dickinson, H.O., Nyari, T.A. & Parker, L. 2002. Childhood solid tumours in relation to infections

in the community in Cumbria during pregnancy and around the time of birth. British

Journal of Cancer, 87(7):746-750.

Diehn, M., Nardini, C., Wang, D.S., McGovern, S., Jayaraman, M., Liang, Y., Aldape, K., Cha,

S. & Kuo, M.D. 2008. Identification of noninvasive imaging surrogates for brain tumor

gene-expression modules. Proceedings of the National Academy of Sciences,

105(13):5213-5218.

Dougherty, G. 2013. Pattern recognition and classification: An introduction. Springer.

Dozat, T. 2016. Incorporating nesterov momentum into adam. International Conference on

Learning Representations Workshop. Available:

https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ.

DuCharme, B. 2017. Understanding activation functions better [Online]. Available:

http://www.snee.com/bobdc.blog/2017/09/understanding-activation-funct.html [2021,

July 21].

Duchi, J., Hazan, E. & Singer, Y. 2011. Adaptive subgradient methods for online learning and

stochastic optimization. Journal of Machine Learning Research, 12(7).

Dudani, S.A. 1976. The distance-weighted k-nearest-neighbor rule. IEEE Transactions on

Systems, Man, and Cybernetics, (4):325-327.

Eagleman, D. 2015. The brain: The story of you. Pantheon Books.

Ebben, J.D., Treisman, D.M., Zorniak, M., Kutty, R.G., Clark, P.A. & Kuo, J.S. 2010. The cancer

stem cell paradigm: A new understanding of tumor development and treatment. Expert

Opinion on Therapeutic Targets, 14(6):621-632.

Elleuch, M., Maalej, R. & Kherallah, M. 2016. A new design based-SVM of the CNN classifier

architecture with dropout for offline Arabic handwritten recognition. Procedia Computer

Science, 80:1712-1723.

European Molecular Biology Laboratory. 2020. Understanding brain tumors in children:

Hereditary genetic defect destabilizes protein production from ScienceDaily [Online].

Available: www.sciencedaily.com/releases/2020/04/200401130829.htm [2021, June 21].

Stellenbosch University https://scholar.sun.ac.za

173

Fabelo, H., Ortega, S., Casselden, E., Loh, J., Bulstrode, H., Zolnourian, A., Grundy, P., Callico,

G.M., Bulters, D. & Sarmiento, R. 2018. SVM optimization for brain tumor identification

using infrared spectroscopic samples. Sensors, 18(12):4487.

Gallego, O. 2015. Nonsurgical treatment of recurrent glioblastoma. Current Oncology,

22(4):e273-e281.

Gholamalinezhad, H. & Khosravi, H. 2020. Pooling methods in deep neural networks, a review.

arXiv preprint arXiv:2009.07485.

Glorot, X. & Bengio, Y. 2010. Understanding the difficulty of training deep feedforward neural

networks, in Proceedings of the thirteenth international conference on artificial

intelligence and statistics. JMLR Workshop and Conference Proceedings: 249-256.

González, F.A. & Romero, E. 2010. Biomedical image analysis and machine learning

technologies: Applications and techniques. IGI Global.

Goodenberger, M.K.L. & Jenkins, R.B. 2012. Genetics of adult glioma. Cancer Genetics,

205(12):613-621.

Goodfellow, I., Bengio, Y. & Courville, A. 2016. Deep learning. MIT Press.

Gretton, A. 2018. Lecture 9: Support vector machines: Advanced topics in machine learning:

COMPGI13 [Online]. Available:

https://www.gatsby.ucl.ac.uk/~gretton/coursefiles/Slides5A.pdf [2021, July 7].

Griesinger, A.M., Birks, D.K., Donson, A.M., Amani, V., Hoffman, L.M., Waziri, A., Wang, M.,

Handler, M.H. & Foreman, N. 2013. Characterization of distinct immunophenotypes

across pediatric brain tumor types. The Journal of Immunology, 191(9):4880-4888.

Grover, V.P.B., Tognarelli, J.M., Crossey, M.M.E., Cox, I.J., Taylor-Robinson, S.D. & McPhail,

M.J.W. 2015. Magnetic resonance imaging: Principles and techniques: Lessons for

clinicians. Journal of Clinical and Experimental Hepatology, 5(3):246-255.

Gurney, K. 1997. An introduction to neural networks. UCL Press.

Hajnal, J.V., De Coene, B., Lewis, P.D., Baudouin, C.J., Cowan, F.M., Pennock, J.M., Young,

I.R. & Bydder, G. 1992. High signal regions in normal white matter shown by heavily T2-

weighted CSF nulled IR sequences. Journal of Computer Assisted Tomography,

16(4):506-513.

Hall, E.J. & Brenner, D.J. 2008. Cancer risks from diagnostic radiology. The British Journal of

Radiology, 81(965):362-378.

Stellenbosch University https://scholar.sun.ac.za

174

Han, J. & Moraga, C. 1995. The influence of the sigmoid function parameters on the speed of

backpropagation learning, in International workshop on artificial neural networks. Berlin,

Heidelberg: Springer: 195-201.

Han, Y., Wang, T., Wu, P., Zhang, H., Chen, H. & Yang, C. 2021. Meningiomas: Preoperative

predictive histopathological grading based on radiomics of MRI. Magnetic Resonance

Imaging, 77:36-43.

Hanahan, D. & Weinberg, R.A. 2000. The hallmarks of cancer. Cell, 100(1):57-70.

Harding, N.J., Birch, J.M., Hepworth, S.J. & McKinney, P.A. 2009. Infectious exposure in the

first year of life and risk of central nervous system tumors in children: Analysis of day

care, social contact, and overcrowding. Cancer Causes & Control, 20(2):129-136.

Hassanpour, S.H. & Dehghani, M. 2017. Review of cancer from perspective of molecular.

Journal of Cancer Research and Practice, 4(4):127-129.

Hastie, T., Tibshirani, R. & Friedman, J. 2009. The elements of statistical learning: Data mining,

inference and prediction. 2nd ed. New York: Springer.

Haugeland, J. 1985. Artificial intelligence: The very idea. Cambridge, Massachusetts: MIT

Press.

Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M.

& Larochelle, H. 2017. Brain tumor segmentation with deep neural networks. Medical

Image Analysis, 35:18-31.

He, K., Zhang, X., Ren, S. & Sun, J. 2015. Delving deep into rectifiers: Surpassing human-level

performance on ImageNet classification, in Proceedings of the IEEE international

conference on computer vision. 1026-1034.

Herholz, K., Langen, K.-J., Schiepers, C. & Mountz, J.M. 2012. Brain tumors, in Seminars in

nuclear medicine. WB Saunders: 42(6):356-370.

Herman, G.T. 2009. Fundamentals of computerized tomography: Image reconstruction from

projections. Springer Science & Business Media.

Hofman, M.A. 2012. Design principles of the human brain: An evolutionary perspective.

Progress in Brain Research, 195:373-390.

Hofman, M.A. 2014. Evolution of the human brain: When bigger is better. Frontiers in

Neuroanatomy, 8(15).

Hofman, M.A. 2015. Evolution of the human brain: From matter to mind, in S. Goldstein, D.

Princiotta & J.A. Naglieri (eds.). Handbook of intelligence: Evolutionary theory, historical

perspective and current concepts. New York: Springer: 65-82.

Stellenbosch University https://scholar.sun.ac.za

175

Holliday, R. 1987. The inheritance of epigenetic defects. Science, 238(4824):163-170.

Hollon, T.C., Pandian, B., Adapa, A.R., Urias, E., Save, A.V., Khalsa, S.S.S., Eichberg, D.G.,

D’Amico, R.S., Farooq, Z.U., Lewis, S. & Petridis, P.D. 2020. Near real-time

intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural

networks. Nature Medicine, 26(1):52-58.

Imandoust, S.B. & Bolandraftar, M. 2013. Application of k-nearest neighbor (knn) approach for

predicting economic events: Theoretical background. International Journal of

Engineering Research and Applications, 3(5):605-610.

James, G., Witten, D., Hastie, T. & Tibshirani, R. 2013. An introduction to statistical learning.

New York: Springer.

Jarrett, K., Kavukcuoglu, K., Ranzato, M.A. & LeCun, Y. 2009. What is the best multi-stage

architecture for object recognition? in 2009 IEEE 12th international conference on

computer vision. IEEE: 2146-2153.

Jiang, S., Hartley, R. & Fernando, B. 2018. Kernel support vector machines and convolutional

neural networks, in 2018 Digital Image Computing: Techniques and Applications

(DICTA). IEEE: 1-7.

Johnson, K.A. (n.d.). Basic proton MR imaging: Tissue signal characteristics [Online]. Available:

http://www.med.harvard.edu/aanlib/basicsMR.html [2021, June 18].

Johnson, K.J., Cullen, J., Barnholtz-Sloan, J.S., Ostrom, Q.T., Langer, C.E., Turner, M.C.,

McKean-Cowdin, R., Fisher, J.L., Lupo, P.J., Partap, S. & Schwartzbaum, J.A. 2014.

Childhood brain tumor epidemiology: A brain tumor epidemiology consortium review.

Cancer Epidemiology and Prevention Biomarkers, 23(12):2716-2736.

Jones, P.A. & Baylin, S.B. 2007. The epigenomics of cancer. Cell, 128(4):683-692.

Jordan, D. 2020. State of the art in magnetic resonance imaging. Physics Today, 73(2):34-40.

Jupyter (computer software). 2021. [Online]. Available: https://jupyter.org/ [2021, September

26].

Kingma, D.P. & Ba, J. 2014. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kleihues, P. & Cavenee, W.K. 2000. WHO classification of tumours. Pathology & genetics.

Tumors of the nervous system. Lyon, France: IARCpress.

Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L. & Brown, D. 2019.

Text classification algorithms: A survey. Information, 10(4):150.

Stellenbosch University https://scholar.sun.ac.za

176

Krizhevsky, A., Sutskever, I. & Hinton, G.E. 2012. ImageNet classification with deep

convolutional neural networks. Advances in Neural Information Processing Systems,

25:1097-1105.

Krogh, A. & Hertz, J.A. 1992. A simple weight decay can improve generalization. Advances in

Neural Information Processing Systems, 950-957.

Kuhn, M. & Johnson, K. 2013. Applied predictive modeling. New York: Springer.

Kuriakose, D. & Xiao, Z. 2020. Pathophysiology and treatment of stroke: Present status and

future perspectives. International Journal of Molecular Sciences, 21(20):7609.

Kurzweil, R. 1990. The age of intelligent machines. Cambridge, Massachusetts: MIT Press.

Lake, B.M., Ullman, T.D., Tenenbaum, J.B. & Gershman, S.J. 2017. Building machines that

learn and think like people. Behavioral and Brain Sciences, 40.

Lantz, B. 2013. Machine learning with R. Packt Publishing.

Latha, R.S., Sreekanth, G.R., Akash, P. & Dinesh, B. 2020. Brain tumor classification using

SVM and KNN models for SMOTE based MRI images. Journal of Critical Reviews,

7(12):1-4.

Le Bihan, D. 2020. How MRI makes the brain visible, in Make life visible. Singapore: Springer:

201-212.

LeCun, Y.A., Bottou, L., Orr, G.B. & Müller, K.R. 2012. Efficient backprop, in Neural networks:

Tricks of the trade. Springer, Berlin, Heidelberg:9-48.

Linet, M.S., Gridley, G., Cnattingius, S., Nicholson, H.S., Martinsson, U., Glimelius, B., Adami,

H.-O. & Zack, M. 1996. Maternal and perinatal risk factors for childhood brain tumours

(Sweden). Cancer Causes & Controls, 7(4):437-448.

Linos, A., Kardara, M., Kosmidis, H., Katriou, D., Hatzis, C., Kontzoglou, M., Koumandakis, E. &

Tzartzatou-Stathopoulou, F. 1998. Reported influenza in pregnancy and childhood

tumour. European Journal of Epidemiology, 14(5):471-475.

Liu, S., Liu, X., Xiao, Y., Chen, S. & Zhuang, W. 2019. Prognostic factors associated with

survival in patients with anaplastic oligodendroglioma. Plos One, 14(1):e0211513.

Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavenee, W.K., Burger, P.C., Jouvet, A., Scheithauer,

B.W. & Kleihues, P. 2007. The 2007 WHO classification of tumours of the central

nervous system. Acta Neuropathologica, 114(2):97-109.

Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavenee, W.K., Ellison, D.W., Figarella-Branger, D.,

Perry, A., Reifenberger, G. & von Deimling, A. 2016. WHO classification of tumours of

Stellenbosch University https://scholar.sun.ac.za

177

the central nervous system. Revised 4th ed. Lyon: International Agency for Research on

Cancer (IARC).

Louis, D.N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee,

W.K., Ohgaki, H., Wiestler, O.D., Kleihues, P. & Ellison, D.W. 2016. The 2016 World

Health Organization classification of tumors of the central nervous system: A summary.

Acta Neuropathologica, 131(6):803-820.

Lujambio, A. & Lowe, S.W. 2012. The microcosmos of cancer. Nature, 482(7385):347-355.

Macphail, E.M. & Bolhuis, J.J. 2001. The evolution of intelligence: Adaptive specializations

versus general process. Biological Reviews, 76(3):341-364.

Maher, E.A., Furnari, F.B., Bachoo, R.M., Rowitch, D.H., Louis, D.N., Cavenee, W.K. &

DePinho, R.A. 2001. Malignant glioma: Genetics and biology of a grave matter. Genes &

Development, 15(11):1311-1333.

Mamourian, A.C., Hoopes, P.J. & Lewis, L.D. 2000. Visualization of intravenously administered

contrast material in the CSF on fluid-attenuatedInversion-recovery MR images: An in

vitro and animal-model investigation. American Journal of Neuroradiology, 21(1):105-

111.

Marusyk, A. & Polyak, K. 2010. Tumor heterogeneity: Causes and consequences. Biochimica et

Biophysica Acta (BBA)-Reviews on Cancer, 1805(1):105-117.

McAllister, T.W. 2011. Neurobiological consequences of traumatic brain injury. Dialogues in

Clinical Neuroscience, 13(3):287.

McKinney, P.A. 2004. Brain tumours: Incidence, survival, and aetiology. Journal of Neurology,

Neurosurgery & Psychiatry, 75(suppl 2):ii12-ii17.

McNally, R.J., Cairns, D.P., Eden, O.B., Alexander, F.E., Taylor, G.M., Kelsey, A.M. & Birch,

J.M. 2002. An infectious aetiology for childhood brain tumours? Evidence from space–

time clustering and seasonality analyses. British Journal of Cancer, 86(7):1070-1077.

Medical University of South Carolina. 2017. Linear methods for classification: Part 3 [Online].

Available: https://slideplayer.com/slide/13092203/ [2021, July 6].

Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz,

N., Slotboom, J., Wiest, R. & Lanczi, L. 2014. The multimodal brain tumor image

segmentation benchmark (BRATS). IEEE Transactions on Medical Imaging,

34(10):1993-2024.

Michie, D., Spiegelhalter, D.J. & Taylor, C.C. 1994. Machine learning, neural and statistical

classification. Ellis Horwood Limited.

Stellenbosch University https://scholar.sun.ac.za

178

Min, S., Lee, B. & Yoon, S. 2017. Deep learning in bioinformatics. Briefings in Bioinformatics,

18(5):851-869.

Mitchell, T.M. 1997. Machine learning. McGraw-Hill Science/Engineering/Math.

Mohsen, H., El-Dahshan, E.S.A., El-Horbaty, E.S.M. & Salem, A.B.M. 2018. Classification using

deep learning neural networks for brain tumors. Future Computing and Informatics

Journal, 3(1):68-71.

Mueller, J.P. & Massaron, L. 2018. Artificial intelligence for dummies. John Wiley & Sons.

National Cancer Institute. 2018. Can immunotherapy succeed in glioblastoma? [Online].

Available: https://www.cancer.gov/news-events/cancer-currents-

blog/2018/immunotherapy-glioblastoma [2021, June 20].

Nesterov, Y. 1983. A method for unconstrained convex minimization problem with the rate of

convergence o(1/k^2), in Doklady ANSSR, Translated as Soviet.Math.Docl, 269:543-

547.

Ng, A. 2019. Machine learning yearning: Technical strategy for AI engineers in the era of deep

learning [Online]. Available: https://www.mlyearning.org [2021, September 21].

Nielsen, M.A. 2015. Neural networks and deep learning. San Francisco, CA: Determination.

Nilsson, N.J. 1998. Artificial intelligence: A new synthesis. Morgan Kaufmann.

Niu, X.X. & Suen, C.Y. 2012. A novel hybrid CNN-SVM classifier for recognizing handwritten

digits. Pattern Recognition, 45(4):1318-1325.

Obermeier, B., Daneman, R. & Ransohoff, R.M. 2013. Development, maintenance and

disruption of the blood-brain barrier. Nature Medicine, 19(12):1584-1596.

Olson, J.D., Riedel, E. & DeAngelis, L. 2000. Long-term outcome of low-grade

oligodendroglioma and mixed glioma. Neurology, 54(7):1442-1448.

O'Shea, K. & Nash, R. 2015. An introduction to convolutional neural networks. arXiv preprint

arXiv:1511.08458v2.

Ostrom, Q.T., Gittleman, H., Liao, P., Rouse, C., Chen, Y., Dowling, J., Wolinsky, Y., Kruchko,

C. & Barnholtz-Sloan, J. 2014. CBTRUS statistical report: Primary brain and central

nervous system tumors diagnosed in the United States in 2007–2011. Neuro-oncology,

16(suppl 4):iv1-iv63.

Pan, E. & Prados, M.D. 2003. Familial tumors syndromes of the central nervous system.

Holland-Frei Cancer Medicine. Hamilton (ON): BC Decker.

Stellenbosch University https://scholar.sun.ac.za

179

Panych, L.P. & Madore, B. 2018. The physics of MRI safety. Journal of Magnetic Resonance

Imaging, 47(1):28-43.

Patel, A. 2020. Benign vs malignant tumors. JAMA Oncology, 6(9):1488.

Patrick, E.A. & Fischer III, F.P. 1970. A generalized k-nearest neighbor rule. Information and

Control, 16(2):128-152.

Pereira, S., Pinto, A., Alves, V. & Silva, C.A. 2016. Brain tumor segmentation using

convolutional neural networks in MRI images. IEEE Transactions on Medical Imaging,

35(5):1240-1251.

Polyak, B.T. 1964. Some methods of speeding up the convergence of iteration methods. USSR

Computational Mathematics and Mathematical Physics, 4(5):1-17.

Poole, D.L., Mackworth, A. & Goebel, R.G. 1998. Computational intelligence: A logical

approach. Oxford, UK: Oxford University Press.

Prasatha, V.S., Alfeilate, H.A.A., Hassanate, A.B., Lasassmehe, O., Tarawnehf, A.S.,

Alhasanatg, M.B. & Salmane, H.S.E. 2017. Effects of distance measure choice on knn

classifier performance - a review. arXiv preprint arXiv:1708.04321, 56.

Preston, D.C. 2016. Magnetic resonance imaging (MRI) of the brain and spine: Basics [Online].

Available: https://case.edu/med/neurology/NR/MRI%20Basics.htm [2021, June 18].

Price, S.J. & Gillard, J.H. 2011. Imaging biomarkers of brain tumour margin and tumour

invasion. The British Journal of Radiology, 84(special issue 2):S159-S167.

Radhakrishnan, K., Mokri, B., Parisi, J.E., O'Fallon, W.M., Sunku, J. & Kurland, L.T. 1995. The

trends in incidence of primary brain tumors in the population of Rochester, Minnesota.

Annals of Neurology: Official Journal of the American Neurological Association and the

Child Neurology Society, 37(1):67-73.

Rangayyan, R. 2005. Biomedical image analysis. CRC.

Ranzato, M., Poultney, C., Chopra, S. & LeCun, Y. 2007. Efficient learning of sparse

representations with an energy-based model. Advances in Neural Information

Processing Systems, 19:1137.

Reilly, K.M. 2009. Brain tumor susceptibility: The role of genetic factors and uses of mouse

models to unravel risk. Brain Pathology, 19(1):121-131.

Republic of South Africa. Department of Health. 2017. National Cancer Strategic Framework for

South Africa 2017-2022 [Online]. Available: http://www.health.gov.za/wp-

content/uploads/2020/11/national-cancer-strategic-framework-2017-2022-min.pdf [2021,

September 25].

Stellenbosch University https://scholar.sun.ac.za

180

Rich, E. & Knight, K. 1991. Artificial intelligence. 2nd ed. New York: McGraw-Hill.

Rohlfing, T., Zahr, N.M., Sullivan, E.V. & Pfefferbaum, A. 2010. The SRI24 multichannel atlas of

normal adult human brain structure. Human Brain Mapping, 31(5):798-819.

Rosebrock, A. 2017. Deep learning for computer vision with Python: Practitioner bundle.

PyImageSearch.

Roth, G. & Dicke, U. 2012. Evolution of the brain and intelligence in primates. Progress in Brain

Research, 195:413-430.

Ruba, T., Tamilselvi, R., Parisa Beham, M. & Aparna, N. 2020. Accurate classification and

detection of brain cancer cells in MRI and CT images using nano contrast agents.

Biomedical and Pharmacology Journal, 13(3):1227-1237.

Ruder, S. 2016. An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747.

Rumelhart, D.E., Hinton, G.E. & Williams, R.J. 1986. Learning representations by back-

propagating errors. Nature, 323(6088):533-536.

Russell, S. & Norvig, P. 2003. Artificial intelligence: A modern approach. 2nd ed. Pearson

Education.

scikit-learn (computer software). 2021. Machine learning in Python [Online]. Available:

https://scikit-learn.org/stable/ [2021, September 27].

Severyn, A. & Moschitti, A. 2015. Learning to rank short text pairs with convolutional deep

neural networks, in Proceedings of the 38th international ACM SIGIR conference on

research and development in information retrieval. 373-382.

Shalev-Shwartz, S. & Ben-David, S. 2014. Understanding machine learning: From theory to

algorithms. Cambridge University Press.

Sheejakumari, V. & Sankara Gomathi, B. 2015. MRI brain images healthy and pathological

tissues classification with the aid of improved particle swarm optimization and neural

network. Computational and Mathematical Methods in Medicine, 2015.

Shwartz-Ziv, R. & Tishby, N. 2017. Opening the black box of deep neural networks via

information. arXiv preprint arXiv:1703.00810.

Simonyan, K. & Zisserman, A. 2014. Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

Singh, A., Yadav, A. & Rana, A. 2013. K-means with three different distance metrics.

International Journal of Computer Applications, 67(10).

Stellenbosch University https://scholar.sun.ac.za

181

Singh, S.K., Clarke, I.D., Terasaki, M., Bonn, V.E., Hawkins, C., Squire, J. & Dirks, P.B. 2003.

Identification of a cancer stem cell in human brain tumors. Cancer Research,

63(18):5821-5828.

Skourt, B.A., El Hassani, A. & Majda, A. 2021. Mixed-pooling-dropout for convolutional neural

network regularization. Journal of King Saud University - Computer and Information

Sciences.

Sordo, M. & Zeng, Q. 2005. On sample size and classification accuracy: A performance

comparison, in International Symposium on Biological and Medical Data Analysis. Berlin,

Heidelberg: Springer: 193-201.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. 2014. Dropout: A

simple way to prevent neural networks from overfitting. The Journal of Machine Learning

Research, 15(1):1929-1958.

Stanford University. (n.d.). CS231n Convolutional neural networks for visual recognition

[Online]. Available: https://cs231n.github.io/neural-networks-3/ [2021, September 27].

Stellenbosch University. 2018. Brand identity manual and resource templates [Online].

Available: https://www0.sun.ac.za/metanoia/wp-content/uploads/2019/09/Brand-Identity-

Manual-and-Resource-Template.pdf [2021, September 10].

Stewart, J. 2011. Calculus: Early transcendentals. 7th ed. Brooks/Cole Cengage Learning.

Suárez-Paniagua, V. & Segura-Bedmar, I. 2018. Evaluation of pooling operations in

convolutional architectures for drug-drug interaction extraction. BMC Bioinformatics,

19(8):39-47.

Subramanian, S. & Ahmad, T. 2020. Childhood brain tumors from the book: Treasure Island

(FL): StatPearls Publishing [Online]. Available:

https://www.ncbi.nlm.nih.gov/books/NBK535415/ [2021, April 12].

Sun, Z., Ng, K.H. & Ramli, N. 2011. Biomedical imaging research: A fast-emerging area for

interdisciplinary collaboration. Biomedical Imaging and Intervention Journal, 7(3).

Sutton, R.S. & Barto, A.G. 2018. Reinforcement learning: An introduction. MIT Press.

Svolos, P., Tsolaki, E., Kapsalaki, E., Theodorou, K., Fountas, K., Fezoulidis, I. & Tsougos, I.

2013. Investigating brain tumor differentiation with diffusion and perfusion metrics at 3T

MRI using pattern recognition techniques. Magnetic Resonance Imaging, 31(9):1567-

1577.

Swanton, C. 2012. Intratumor heterogeneity: Evolution through space and time. Cancer

Research, 72(19):4875-4882.

Stellenbosch University https://scholar.sun.ac.za

182

Swiebocka-Wiek, J. 2016. Skull stripping for MRI images using morphological operators, in IFIP

International Conference on Computer Information Systems and Industrial Management.

Springer: 172-182.

Tuna, M. & Amos, C.I. 2013. Genomic sequencing in cancer. Cancer Letters, 340(2):161-170.

University of Wisconsin. 2017. Magnetic resonance imaging [Online]. Available:

https://web.archive.org/web/20170510065614/https://www.radiology.wisc.edu/education/

med_students/neuroradiology/NeuroRad/Intro/MRIintro.htm [2021, June 18].

Usman, K. & Rajpoot, K. 2017. Brain tumor classification from multi-modality MRI using

wavelets and machine learning. Pattern Analysis and Applications, 20(3):871-881.

van den Pol, A.N. 2009. Viral infection leading to brain dysfunction: More prevalent than

appreciated? Neuron, 64(1):17-20.

van der Kolk, A.G., Hendrikse, J., Zwanenburg, J.J., Visser, F. & Luijten, P.R. 2013. Clinical

applications of 7 T MRI in the brain. European Journal of Radiology, 82(5):708-718.

Vertosick Jr, F.T., Selker, R.G. & Arena, V.C. 1991. Survival of patients with well-differentiated

astrocytomas diagnosed in the era of computed tomography. Neurosurgery, 28(4):496-

501.

Vijayakumar, S. 2007. The bias-variance tradeoff [Online]. Available:

http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf [2021,

July 8].

Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.A. 2008. Extracting and composing robust

features with denoising autoencoders, in Proceedings of the 25th international

conference on Machine learning. 1096-1103.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A. & Bottou, L. 2010. Stacked

denoising autoencoders: Learning useful representations in a deep network with a local

denoising criterion. Journal of Machine Learning Research, 11(12).

Wang, X., Guo, J., Gu, D., Yang, Y., Yang, X. & Zhu, K. 2019. Tracking knowledge evolution,

hotspots and future directions of emerging technologies in cancers research: A

bibliometrics review. Journal of Cancer, 10(12):2643.

Weinberg, R.A. 1996. How cancer arises. Scientific American, 275(3):62-70.

Wilkins, E.M. 2009. Clinical practice of the dental hygienist. 10th ed. Wolters Kluwer

Health/Lippincott Williams & Wilkins.

Winston, P. 1992. Artificial intelligence. 3rd ed. Addison-Wesley.

Stellenbosch University https://scholar.sun.ac.za

183

Wong, D.F., Maini, A., Rousset, O.G. & Brašić, J.R. 2003. Positron emission tomography: A tool

for identifying the effects of alcohol dependence on the brain. Alcohol Research &

Health, 27(2):161-173.

World Health Organization. 2020. South Africa: Cancer country profile 2020 [Online]. Available:

https://www.who.int/cancer/country-profiles/ZAF_2020.pdf [2021, September 20].

World Health Organization. 2021. Cancer [Online]. Available: https://www.who.int/health-

topics/cancer#tab=tab_1 [2021, September 20].

Wrensch, M., Minn, Y., Chew, T., Bondy, M. & Berger, M.S. 2002. Epidemiology of primary

brain tumors: Current concepts and review of the literature. Neuro-oncology, 4(4):278-

299.

Yaqub, M., Feng, J., Zia, M.S., Arshid, K., Jia, K., Rehman, Z.U. & Mehmood, A. 2020. State-of-

the-art CNN optimizer for brain tumor segmentation in magnetic resonance images.

Brain Sciences, 10(7):427.

Zahm, S.H. & Devesa, S.S. 1995. Childhood cancer: Overview of incidence trends and

environmental carcinogens. Environmental Health Perspectives, 103(suppl 6):177-184.

Zeiler, M.D. 2012. Adadelta: An adaptive learning rate method. arXiv preprint arXiv:1212.5701.

Stellenbosch University https://scholar.sun.ac.za

184

APPENDIX A:

RESULTS: SEGMENTATION OF PRESENCE OR ABSENCE OF BRAIN

TUMOURS

Training accuracy as well as validation/test accuracy for the 30 repeat evaluations for the different

CNN model architectures.

Stellenbosch University https://scholar.sun.ac.za

185

Repeat
evaluation
run number

One block VGG CNN:
SGD with momentum

Two block VGG CNN:
SGD with momentum

Three block VGG CNN:
SGD with momentum

Validation
accuracy

Validation
loss

Validation
accuracy

Validation
loss

Validation
accuracy

Validation
loss

1 0.82353 1.56113 0.83333 1.37367 0.75490 1.33603

2 0.77451 1.80435 0.80392 1.48386 0.80392 1.43836

3 0.80392 1.12696 0.80392 1.45184 0.77451 1.66606

4 0.76471 1.98058 0.77451 1.26724 0.75490 1.21788

5 0.81373 0.93771 0.77451 1.78949 0.82353 1.70451

6 0.81373 1.21135 0.79412 1.38265 0.78431 1.47614

7 0.82353 1.27889 0.79412 2.26797 0.79412 1.56724

8 0.78431 1.41088 0.78431 1.44490 0.80392 1.84516

9 0.81373 1.26949 0.79412 1.48663 0.84314 1.17452

10 0.82353 1.87875 0.78431 1.33864 0.80392 1.17971

11 0.82353 1.17216 0.78431 1.56773 0.76471 1.75163

12 0.82353 1.18058 0.78431 1.99478 0.80392 1.61257

13 0.82353 1.57269 0.74510 1.63806 0.84314 1.43679

14 0.76471 2.27155 0.78431 1.31034 0.77451 2.09579

15 0.81373 1.07236 0.78431 2.32407 0.76471 1.45553

16 0.79412 1.83258 0.77451 1.33787 0.82353 1.91283

17 0.83333 1.34077 0.79412 1.36583 0.75490 1.60150

18 0.80392 1.30321 0.78431 1.73820 0.75490 1.62917

19 0.84314 1.02391 0.82353 1.18596 0.78431 3.19452

20 0.82353 1.48475 0.82353 1.28743 0.83333 1.31060

21 0.83333 1.25342 0.76471 1.41051 0.79412 2.20038

22 0.82353 1.45038 0.80392 1.48342 0.78431 1.99275

23 0.82353 1.39064 0.82353 1.10653 0.76471 1.78163

24 0.80392 2.64141 0.78431 1.79418 0.78431 0.94556

25 0.84314 1.39283 0.81373 1.38765 0.79412 1.08861

26 0.81373 1.14726 0.79412 1.26424 0.74510 1.70315

27 0.80392 1.33383 0.82353 1.20640 0.78431 1.21527

28 0.80392 1.11666 0.74510 1.94755 0.81373 1.79302

29 0.81373 1.46431 0.76471 2.25732 0.77451 1.76094

30 0.79412 1.39768 0.81373 2.20564 0.78431 1.33144

Stellenbosch University https://scholar.sun.ac.za

186

Repeat
evaluation
run number

One block VGG CNN:
Adam

Two block VGG CNN:
Adam

Three block VGG CNN:
Adam

Validation
accuracy

Validation
loss

Validation
accuracy

Validation
loss

Validation
accuracy

Validation
loss

1 0.80392 10.60552 0.80392 1.44675 0.80392 1.88327

2 0.79412 4.49378 0.82353 1.57862 0.76471 1.55660

3 0.82353 3.53276 0.79412 1.35661 0.79412 2.43137

4 0.81373 5.59168 0.80392 1.40769 0.72549 1.57204

5 0.81373 10.91014 0.81373 1.09101 0.81373 1.68858

6 0.79412 6.34731 0.80392 1.61056 0.78431 1.40187

7 0.82353 9.41915 0.79412 1.64178 0.79412 1.31122

8 0.82353 1.08787 0.80392 1.68313 0.82353 1.26883

9 0.80392 11.04048 0.79412 1.51195 0.79412 1.41552

10 0.80392 9.30972 0.79412 1.72984 0.74510 2.16771

11 0.83333 12.24852 0.81373 1.58999 0.76471 1.43545

12 0.79412 13.38060 0.79412 1.52722 0.77451 1.80405

13 0.80392 11.14115 0.84314 1.28956 0.83333 1.52906

14 0.78431 5.61118 0.83333 1.42289 0.82353 1.75228

15 0.79412 3.07401 0.82353 1.87502 0.77451 1.39641

16 0.82353 9.94776 0.79412 1.12844 0.83333 1.52680

17 0.77451 6.64168 0.81373 1.72166 0.82353 1.46551

18 0.81373 2.38487 0.83333 1.52406 0.82353 1.22499

19 0.81373 3.91493 0.83333 1.39003 0.82353 1.74087

20 0.78431 17.62173 0.84314 1.58410 0.82353 2.06459

21 0.81373 8.15062 0.79412 1.25172 0.79412 1.48529

22 0.80392 5.19469 0.80392 1.67276 0.76471 1.81401

23 0.82353 8.92450 0.82353 1.56139 0.81373 1.62562

24 0.80392 2.94949 0.81373 1.91204 0.81373 1.39879

25 0.83333 5.41627 0.82353 1.34224 0.77451 1.66015

26 0.81373 7.78147 0.81373 1.34980 0.80392 1.52948

27 0.86275 6.23505 0.79412 1.44455 0.74510 1.57754

28 0.86275 5.06026 0.83333 1.50996 0.80392 1.59241

29 0.75490 7.88652 0.79412 1.52062 0.82353 1.54540

30 0.82353 9.40786 0.84314 1.42720 0.79412 1.73657

Stellenbosch University https://scholar.sun.ac.za

187

Repeat
evaluation run
number

One block VGG CNN: SGD with
momentum, SVM as output layer

One block VGG CNN: Adam, SVM as
output layer

Validation
accuracy

Validation loss Validation
accuracy

Validation loss

1 0.76471 0.87444 0.82353 8.52502

2 0.82353 0.73140 0.82353 7.14674

3 0.78431 1.30611 0.82353 8.36277

4 0.74510 1.14197 0.74510 9.63583

5 0.72549 1.19560 0.82353 9.39029

6 0.78431 0.87848 0.78431 6.78511

7 0.81373 1.94432 0.81373 8.82960

8 0.77451 1.33025 0.83333 11.44945

9 0.74510 1.55205 0.80392 11.88258

10 0.79412 0.60505 0.79412 8.23002

11 0.74510 1.06473 0.80392 6.00623

12 0.81373 1.34697 0.77451 5.13232

13 0.72549 1.47633 0.79412 2.25833

14 0.83333 1.29337 0.81373 13.17912

15 0.74510 1.42829 0.77451 5.23786

16 0.75490 0.77139 0.81373 13.86163

17 0.70588 1.50385 0.81373 6.50162

18 0.72549 1.37044 0.76471 7.88832

19 0.79412 0.74937 0.81373 3.33413

20 0.82353 1.35669 0.78431 7.44479

21 0.82353 0.85005 0.76471 17.42644

22 0.75490 0.85200 0.77451 11.04667

23 0.77451 1.89570 0.81373 3.53628

24 0.71569 0.72043 0.81373 3.05274

25 0.76471 0.71975 0.77451 7.39454

26 0.79412 1.06848 0.78431 24.43529

27 0.77451 1.48002 0.83333 11.37784

28 0.71569 2.24381 0.82353 6.23620

29 0.76471 1.56748 0.81373 13.32517

30 0.76471 0.98458 0.83333 4.93871

Stellenbosch University https://scholar.sun.ac.za

188

Repeat
evaluation run
number

One block VGG CNN: SGD with
momentum, 𝒍𝟐 norm regularisation

One block VGG CNN: Adam, 𝒍𝟐 norm
regularisation

Validation
accuracy

Validation loss Validation
accuracy

Validation loss

1 0.82353 1.61594 0.76471 11.86559

2 0.82353 1.41199 0.82353 2.74601

3 0.72549 1.96884 0.81373 2.17886

4 0.82353 1.77640 0.80392 3.61536

5 0.76471 2.30858 0.78431 5.53608

6 0.78431 2.62732 0.82353 11.11014

7 0.80392 1.18689 0.81373 5.53532

8 0.81373 1.34357 0.79412 9.81804

9 0.75490 1.63416 0.79412 8.61899

10 0.83333 1.65008 0.81373 4.22934

11 0.82353 1.87031 0.82353 12.30335

12 0.81373 1.20983 0.75490 21.40545

13 0.82353 1.46791 0.81373 7.93604

14 0.75490 1.50416 0.80392 1.68919

15 0.74510 1.64205 0.78431 2.35692

16 0.80392 1.52114 0.79412 2.17170

17 0.82353 1.70560 0.79412 15.40928

18 0.81373 1.22855 0.78431 3.55443

19 0.82353 1.48403 0.80392 14.10367

20 0.83333 1.23536 0.77451 15.74693

21 0.80392 2.06458 0.81373 3.06146

22 0.82353 1.42577 0.80392 2.90173

23 0.73529 2.14919 0.80392 9.35590

24 0.82353 1.85377 0.75490 12.78871

25 0.83333 1.26278 0.78431 2.63273

26 0.77451 1.73942 0.82353 11.57150

27 0.80392 1.98207 0.82353 4.66196

28 0.79412 1.74919 0.82353 5.21886

29 0.81373 1.59043 0.83333 3.02940

30 0.79412 1.46275 0.81373 9.03479

Stellenbosch University https://scholar.sun.ac.za

189

Repeat
evaluation run
number

One block VGG CNN: SGD with
momentum, dropout

One block VGG CNN: Adam, dropout

Validation
accuracy

Validation loss Validation
accuracy

Validation loss

1 0.80392 1.45027 0.82353 4.56772

2 0.84314 1.08915 0.83333 2.89601

3 0.84314 1.77639 0.84314 6.97236

4 0.84314 1.32703 0.83333 7.07466

5 0.80392 1.31224 0.79412 6.80911

6 0.74510 1.83541 0.82353 2.81798

7 0.78431 1.55996 0.77451 2.99878

8 0.76471 1.46353 0.80392 3.12618

9 0.80392 1.42824 0.80392 5.38400

10 0.86275 1.17085 0.80392 6.09369

11 0.76471 1.45636 0.79412 13.59812

12 0.79412 1.46060 0.81373 0.88349

13 0.78431 1.78504 0.79412 3.17046

14 0.82353 1.36197 0.83333 2.42075

15 0.78431 2.89367 0.78431 2.81489

16 0.81373 1.32284 0.82353 8.35884

17 0.82353 1.10597 0.79412 3.66317

18 0.80392 1.56575 0.80392 9.72080

19 0.77451 1.26600 0.78431 4.34990

20 0.78431 1.71361 0.79412 7.15858

21 0.82353 1.30060 0.83333 3.78087

22 0.80392 1.61477 0.79412 5.35112

23 0.80392 1.11093 0.80392 9.13414

24 0.85294 1.20083 0.83333 4.62637

25 0.78431 2.53248 0.78431 10.88906

26 0.77451 1.76517 0.75490 3.46266

27 0.83922 1.34747 0.83333 1.08171

28 0.83333 1.07154 0.81373 6.37854

29 0.83333 1.25327 0.83333 4.30120

30 0.79412 2.08668 0.79412 4.35004

Stellenbosch University https://scholar.sun.ac.za

190

Repeat
evaluation run
number

One block VGG CNN: SGD with
momentum, data augmentation

One block VGG CNN: Adam, data
augmentation

Validation
accuracy

Validation loss Validation
accuracy

Validation loss

1 0.72549 0.84350 0.78431 2.38373

2 0.83333 1.27589 0.85294 1.71963

3 0.74510 1.37959 0.85294 1.22337

4 0.76471 0.83130 0.83333 3.93185

5 0.79412 1.00764 0.79412 5.44270

6 0.77451 1.05043 0.80392 3.96748

7 0.78431 0.88385 0.77451 3.83373

8 0.72549 0.95935 0.82353 3.44515

9 0.76471 1.21195 0.83333 6.64428

10 0.75490 0.91655 0.81373 2.73839

11 0.75490 0.91219 0.78431 2.52929

12 0.76471 0.92467 0.76471 2.12391

13 0.81373 1.04983 0.76471 3.05697

14 0.74510 1.13489 0.75490 2.37579

15 0.77451 1.07841 0.83333 1.06201

16 0.74510 1.06424 0.80392 5.04084

17 0.76471 1.25542 0.79412 1.43254

18 0.79412 1.24159 0.80392 1.38675

19 0.82353 1.05734 0.79412 2.96670

20 0.80392 1.15871 0.78431 1.67312

21 0.80392 0.90306 0.80392 3.56063

22 0.77451 1.15167 0.76471 3.52898

23 0.76471 2.09858 0.79412 7.36731

24 0.75490 0.88299 0.82353 1.63374

25 0.73529 0.90654 0.78431 4.43175

26 0.81373 1.13202 0.80392 5.14513

27 0.79412 1.10482 0.77451 1.88188

28 0.73529 0.75628 0.80392 3.26709

29 0.79412 1.26864 0.80392 4.61222

30 0.76471 1.35252 0.81373 0.97409

Stellenbosch University https://scholar.sun.ac.za

191

APPENDIX B:

RESULTS: SEGMENTATION OF LOW-GRADE OR HIGH-GRADE

GLIOMAS

Training accuracy and loss as well as validation/test accuracy and loss for all five runs (five repeat

evaluations).

Optimiser

Training accuracy

Repeat
evaluation
run 1

Repeat
evaluation
run 2

Repeat
evaluation
run 3

Repeat
evaluation
run 4

Repeat
evaluation
run 5

Adam 0.99536 0.99589 0.99493 0.99358 0.99634

AdaGrad 0.93535 0.93381 0.92564 0.92489 0.93191

AdaMax 0.99022 0.99093 0.99119 0.99204 0.99593

AdaDelta 0.99276 0.99505 0.99459 0.99653 0.99335

Nadam 0.99601 0.99424 0.99644 0.99476 0.99777

RMSProp 0.99463 0.99439 0.99265 0.99458 0.99398

NAG 0.99853 0.98987 0.99496 0.98854 0.99804

Batch SGD 0.87354 0.87265 0.88401 0.88722 0.88049

SGD with
momentum

0.99224 0.99103 0.99431 0.99284 0.99576

Optimiser

Training loss

Repeat
evaluation
run 1

Repeat
evaluation
run 2

Repeat
evaluation
run 3

Repeat
evaluation
run 4

Repeat
evaluation
run 5

Adam 0.04333 0.01288 0.01669 0.01829 0.01175

AdaGrad 0.16976 0.17206 0.19146 0.18997 0.17435

AdaMax 0.03053 0.02873 0.02865 0.02557 0.01551

AdaDelta 0.02606 0.01961 0.02162 0.01510 0.02457

Nadam 0.01371 0.02068 0.01074 0.01612 0.00752

RMSProp 0.01915 0.02785 0.03018 0.02593 0.02211

NAG 0.00662 0.03186 0.01605 0.03681 0.00813

Batch SGD 0.29521 0.29887 0.27803 0.27053 0.28320

SGD with
momentum

0.02379 0.02654 0.01808 0.02145 0.01403

Stellenbosch University https://scholar.sun.ac.za

192

Optimiser

Validation/test accuracy

Repeat
evaluation
run 1

Repeat
evaluation
run 2

Repeat
evaluation
run 3

Repeat
evaluation
run 4

Repeat
evaluation
run 5

Adam 0.94251 0.94477 0.94564 0.92213 0.95035

AdaGrad 0.89233 0.88589 0.87213 0.87491 0.88345

AdaMax 0.92056 0.93763 0.93467 0.93031 0.92317

AdaDelta 0.92160 0.89599 0.93449 0.92091 0.93467

Nadam 0.94355 0.95331 0.93746 0.96289 0.97404

RMSProp 0.95348 0.95923 0.95209 0.95801 0.93537

NAG 0.92247 0.90923 0.91620 0.90801 0.93118

Batch SGD 0.84460 0.84512 0.84268 0.84303 0.83206

SGD with
momentum

0.90139 0.91150 0.91167 0.91498 0.91760

Optimiser

Validation/test loss

Repeat
evaluation
run 1

Repeat
evaluation
run 2

Repeat
evaluation
run 3

Repeat
evaluation
run 4

Repeat
evaluation
run 5

Adam 0.19677 0.27517 0.29962 0.45568 0.19209

AdaGrad 0.26312 0.27961 0.32811 0.30584 0.27509

AdaMax 0.29127 0.19123 0.21465 0.19954 0.25824

AdaDelta 0.31400 0.45273 0.23051 0.28697 0.21188

Nadam 0.28251 0.19120 0.27909 0.14410 0.11110

RMSProp 0.27577 0.27092 0.20801 0.16879 0.48234

NAG 0.29382 0.31182 0.36562 0.32141 0.29048

Batch SGD 0.35056 0.35012 0.37891 0.36092 0.42809

SGD with
momentum

0.38691 0.33260 0.31316 0.31344 0.40394

Stellenbosch University https://scholar.sun.ac.za

193

APPENDIX C:

CODE: SEGMENTATION OF PRESENCE OR ABSENCE OF BRAIN

TUMOURS

The code, with descriptions, for the first comparative study analysed is an adaption and extension

of the code (and descriptions of the code) found in Brownlee (2020b).

Brain Tumour Detection

This section requires the dataset containing MRI scans of patients that either had a brain
tumour or not. (Dataset can be accessed through Kaggle).

Constructing a CNN

Plotting the tumour vs no tumour dataset

Plotting the MRI scans for the presence and absence of brain tumours #

importing the required libraries
from matplotlib import pyplot
from matplotlib.image import imread

defining the location of the dataset
folder = 'C:/Users/crunc/Desktop/train/'

Plots: MRI presence of a brain tumour
plotting the first 9 images
for i in range(9):
 # defining the subplot area
 pyplot.subplot(330 + 1 + i)
 # defining the filename - containing the image names and type
 filename = folder + 'yes.' + str(i) + '.jpg'
 # loading the image pixels
 image = imread(filename)
 pyplot.tight_layout()
 # plotting the raw pixel data
 pyplot.imshow(image)

show the figure
pyplot.show()

Plots: MRI absence of a brain tumour
plotting the first 9 images
for i in range(9):
 # defining the subplot area

Stellenbosch University https://scholar.sun.ac.za

194

 pyplot.subplot(330 + 1 + i)
 # defining the filename - containing the image names and type
 filename = folder + 'no.' + str(i) + '.jpg'
 # loading the image pixels
 image = imread(filename)
 pyplot.tight_layout()
 # plotting the raw pixel data
 pyplot.imshow(image)

show the figure
pyplot.show()

Pre-processing Photo Sizes

Changing all the photos to be of the same image size, that is 350x350x3.

Preprocessing the images to all be of the same pixel size #

Aim: load the presence, absence brain tumour dataset; reshape and saving t
o a new file

importing the required libraries
from os import listdir
from numpy import asarray
from numpy import save
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array

defining the location of the dataset
folder = 'C:/Users/crunc/Desktop/train/'
photos, labels = list(), list()

placing the files in the directory
for file in listdir(folder):
 # determine the class label: yes represence the presence of a brain tumou
r and no indicates the absence of a brain tumour
 output = 0.0
 if file.startswith('yes'):
 output = 1.0

 # loading the images and indicating the new reshaped size: i.e. 350x350x3
 photo = load_img(folder + file, target_size = (350, 350,))

 # covert the image into a numpy array
 photo = img_to_array(photo)

 # storing the images
 photos.append(photo)
 labels.append(output)

Stellenbosch University https://scholar.sun.ac.za

195

convert to numpy arrays, zeros (no) and ones (yes) associated with the clas
s labels
photos = asarray(photos)
labels = asarray(labels)
print(photos.shape, labels.shape)

saving the reshaped images with their corresponding zero/one class label as
numpy arrays
save('tumour_vs_notumour_photos.npy', photos)
save('tumour_vs_notumour_labels.npy', labels)

Loading the prepared data

###

Loading and confirming that the shape and the labels of the images are corr
ect #
###

importing the required libraries
from numpy import load

ensuring tat the images' shape and labels are correct
photos = load('tumour_vs_notumour_photos.npy')
labels = load('tumour_vs_notumour_labels.npy')
print(photos.shape, labels.shape)
print(photos.shape, labels)

Pre-processing the photos into standard directories

Computing subdirectories in order to assign the different images to.

Enumerating the image files into the yes/ or no/ subdirectory based on the file name.

Additionally, holding back 40% of the images as a test/validation set. Fixing the
psudeorandom number generator so that reproducibilty is actioned when re-running the
code every time.

Processing the images into standard subdirectories #

importing the required libraries
from os import makedirs
from os import listdir
from random import seed
from random import random
from shutil import copyfile

Stellenbosch University https://scholar.sun.ac.za

196

creating the subdirectories from the main directory
dataset_home = 'C:/Users/crunc/Desktop/dataset_tumour_vs_notumour/'
subdirs = ['train/', 'test/']
for subdir in subdirs:
 # creating a label for the subdirectories
 labeldirs = ['no/', 'yes/']
 for labldir in labeldirs:
 newdir = dataset_home + subdir + labldir
 makedirs(newdir, exist_ok=True)

setting the random seed number generator for splitting the data into a trai
ning and validation/test set
seed(123)

defining the ratio of images that are to be used as validation: when the ne
tworks are run, the validation size is 40%
val_ratio = 0.37

copying the training dataset images into the applicable subdirectory
src_directory = 'C:/Users/crunc/Desktop/train/'
for file in listdir(src_directory):
 src = src_directory + '/' + file
 # training subdirectory
 dst_dir = 'train/'
 # validation/test subdirectory
 if random() < val_ratio:
 dst_dir = 'test/'
 # sub-subdirectory of the presence of brain tumours
 if file.startswith('yes'):
 dst = dataset_home + dst_dir + 'yes/' + file
 copyfile(src, dst)
 # sub-subdirectory of the absence of brain tumours
 elif file.startswith('no'):
 dst = dataset_home + dst_dir + 'no/' + file
 copyfile(src, dst)

Developing different CNN models

First model is a one block VGG model using Stochastic Gradient Decent and 20 epochs. The
kernel is drawn from a limited uniform distribution as well as using the ReLU.

One block baseline VGG model: SGD with momentum #

importing the required libraries
import sys
from matplotlib import pyplot
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D

Stellenbosch University https://scholar.sun.ac.za

197

from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator

defining the cnn model architecture: one convolutional block, 32 filters, 3
x3 kernel size
one max pooling layer, after the convolutional layer
one fully-connected block
final output layer is sigmoid as the data is binary
def define_model():
 model = Sequential()
 model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3)))
 model.add(MaxPooling2D((2, 2)))
 model.add(Flatten())
 model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m'))
 model.add(Dense(1, activation = 'sigmoid'))

 # compiling the model - stochastic gradient descent with momentum as the
optimisation technique
 # using the recommended/default values for the hyperparameters
 opt = SGD(lr = 0.01, momentum = 0.9)
 model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy'])
 return model

plotting the diagnostic learning curves - the binary cross-entropty loss an
d the accuracy
def summarize_diagnostics(history):

 # plotting the loss functions: binary cross-entropy loss of the training
and validation sets
 pyplot.subplot(211)
 pyplot.title('Cross Entropy Loss')
 pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2)
 pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2)
 pyplot.legend(loc = 'upper right')

 # plotting the accuracy functions of the training and validation sets
 pyplot.subplot(212)
 pyplot.title('Classification Accuracy')
 pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2)
 pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label =
'test', linewidth = 2)
 pyplot.legend(loc = 'lower right')
 pyplot.tight_layout()

Stellenbosch University https://scholar.sun.ac.za

198

 # saving the plots to file
 filename = sys.argv[0].split('/')[-1]
 pyplot.savefig(filename + '_plot1.png')
 pyplot.close()

evaluating the model performance
def run_test_harness():

 # defining the model
 model = define_model()

 # creating the data generator, rescaling the image pixels from the 0-255
to 0-1 range
 datagen = ImageDataGenerator(rescale = 1.0/255.0)

 # loading the test/train datasets, class_mode is binary as there is eithe
r a presence or absence of brain lesion
 train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size
= (350, 350))
 test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size =
(350, 350))

 # fitting the model
 history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1)

 # evaluating the model
 _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0)
 print('> %.3f' % (acc * 100.0))
 print(history.history['accuracy'][-1])
 print(history.history['val_accuracy'][-1])
 print(history.history['loss'][-1])
 print(history.history['val_loss'][-1])

 # learning curves
 summarize_diagnostics(history)

running the test evaluation
run_test_harness()

Two block VGG model: SDG with momentum #

importing the required libraries
import sys
from matplotlib import pyplot
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D

Stellenbosch University https://scholar.sun.ac.za

199

from keras.layers import Dense
from keras.layers import Flatten
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator

defining the cnn model architecture: two convolutional blocks, 32 and 64 fi
lters, respectively and 3x3 kernel size
two max pooling layers, one after each convolutional layer
one fully-connected block
final output layer is sigmoid as the data is binary
def define_model():
 model = Sequential()
 model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3)))
 model.add(MaxPooling2D((2, 2)))
 model.add(Conv2D(64, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same'))
 model.add(MaxPooling2D((2, 2)))
 model.add(Flatten())
 model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m'))
 model.add(Dense(1, activation = 'sigmoid'))

 # compiling the model - stochastic gradient descent with momentum as the
optimisation technique
 # using the default/recommended values for the hyperparameters
 opt = SGD(lr = 0.01, momentum = 0.9)
 model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy'])
 return model

plotting the diagnostic learning curves - the binary cross-entropy loss and
the accuracy
def summarize_diagnostics(history):

 # plotting the loss functions: binary cross-entropy loss of the training
and validation sets
 pyplot.subplot(211)
 pyplot.title('Cross Entropy Loss')
 pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2)
 pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2)
 pyplot.legend(loc = 'upper right')

 # plotting the accuracy functions of the training and validation sets
 pyplot.subplot(212)
 pyplot.title('Classification Accuracy')
 pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2)
 pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label =
'test', linewidth = 2)
 pyplot.legend(loc = 'lower right')

Stellenbosch University https://scholar.sun.ac.za

200

 pyplot.tight_layout()
 # saving the plots to file
 filename = sys.argv[0].split('/')[-1]
 pyplot.savefig(filename + '_plot2.png')
 pyplot.close()

evaluating the model performance
def run_test_harness():

 # defining the model
 model = define_model()

 # creating the data generator, rescaling the image pixels from the 0-255
to the 0-1 range
 datagen = ImageDataGenerator(rescale = 1.0/255.0)

 # loading the test/train datasets, class_mode is binary as there is eithe
r the prresence or absence of brain lesions
 train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size
= (350, 350))
 test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size =
(350, 350))

 # fitting the model
 history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1)

 # evaluating the model
 _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0)
 print('> %.3f' % (acc * 100.0))
 print(history.history['accuracy'][-1])
 print(history.history['val_accuracy'][-1])
 print(history.history['loss'][-1])
 print(history.history['val_loss'][-1])

 # learning curves
 summarize_diagnostics(history)

running the test evaluation
run_test_harness()

Three block VGG model: SDG with momentum #

importing the required libraries
import sys
from matplotlib import pyplot
from keras.utils import to_categorical
from keras.models import Sequential

Stellenbosch University https://scholar.sun.ac.za

201

from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator

defining the cnn model architecture: three convolutional blocks: 32, 64 and
128 filters, respectively
3x3 kernel size
three max pooling layers, one after each convolutional layer
one fully-connected block
final output layer is sigmoid as the data is binary
def define_model():
 model = Sequential()
 model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3)))
 model.add(MaxPooling2D((2, 2)))
 model.add(Conv2D(64, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same'))
 model.add(MaxPooling2D((2, 2)))
 model.add(Conv2D(128, (3, 3), activation = 'relu', kernel_initializer = '
he_uniform', padding = 'same'))
 model.add(MaxPooling2D((2, 2)))
 model.add(Flatten())
 model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m'))
 model.add(Dense(1, activation = 'sigmoid'))

 # compiling the model - stochastic gradient descent with momentum as the
optimisation technique
 # using the default/recommended values for the hyperparameters
 opt = SGD(lr = 0.01, momentum = 0.9)
 model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy'])
 return model

plotting the diagnostic learning curves - the binary cross-entropy loss and
the accuracy
def summarize_diagnostics(history):

 # plotting the loss functions: binary cross-entropy loss of the training
and validation sets
 pyplot.subplot(211)
 pyplot.title('Cross Entropy Loss')
 pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2)
 pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2)
 pyplot.legend(loc = 'upper right')

 # plotting the accuracy functions of the training and validation sets
 pyplot.subplot(212)

Stellenbosch University https://scholar.sun.ac.za

202

 pyplot.title('Classification Accuracy')
 pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2)
 pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label =
'test', linewidth = 2)
 pyplot.legend(loc = 'lower right')
 pyplot.tight_layout()
 # saving the plots to file
 filename = sys.argv[0].split('/')[-1]
 pyplot.savefig(filename + '_plot3.png')
 pyplot.close()

evaluating the model performance
def run_test_harness():

 # defining the model
 model = define_model()

 # creating the data generator, rescaling the image pixels from the 0-255
to the 0-1 range
 datagen = ImageDataGenerator(rescale = 1.0/255.0)

 # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or absence of brain lesions
 train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size
= (350, 350))
 test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size =
(350, 350))

 # fitting the model
 history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1)

 # evaluating the model
 _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0)
 print('> %.3f' % (acc * 100.0))
 print(history.history['accuracy'][-1])
 print(history.history['val_accuracy'][-1])
 print(history.history['loss'][-1])
 print(history.history['val_loss'][-1])

 # learning curves
 summarize_diagnostics(history)

running the test evaluation
run_test_harness()

The next set of model architecures are the one block, two block and three block VGG model
using Adam as the optimisation technique. Running 20 epochs. The kernel is drawn from a
He uniform distribution. ReLU and sigmoid activation functions are used.

Stellenbosch University https://scholar.sun.ac.za

203

######################################
One block baseline VGG model: Adam #
######################################

importing the required libraries
import sys
from matplotlib import pyplot
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
from keras.optimizers import SGD
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator

defining the cnn model architecture: one convolutional block: 32 filters an
d 3x3 kernel size
one max pooling layer, after the convolutional layer
one fully-connected block
final output layer is sigmoid as the data is binary
def define_model():
 model = Sequential()
 model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3)))
 model.add(MaxPooling2D((2, 2)))
 model.add(Flatten())
 model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m'))
 model.add(Dense(1, activation = 'sigmoid'))

 # compiling the model - adam as the optimisation technique
 # using the default/recommended values for the hyperparameters
 opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, dec
ay = 0.0)
 model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy'])
 return model

plotting the diagnostic learning curves - the binary cross-entropy loss and
the accuracy
def summarize_diagnostics(history):

 # plotting the loss functions: binary cross entropy loss of the training
and validation sets
 pyplot.subplot(211)
 pyplot.title('Cross Entropy Loss')
 pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2)
 pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2)
 pyplot.legend(loc = 'upper right')

Stellenbosch University https://scholar.sun.ac.za

204

 # plotting the accuracy functions of the training and validation sets
 pyplot.subplot(212)
 pyplot.title('Classification Accuracy')
 pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2)
 pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label =
'test', linewidth = 2)
 pyplot.legend(loc = 'lower right')

 pyplot.tight_layout()
 # saving the plots to file
 filename = sys.argv[0].split('/')[-1]
 pyplot.savefig(filename + '_plot1_adam.png')
 pyplot.close()

evaluating the model performance
def run_test_harness():

 # defining the model
 model = define_model()

 # creating the data generator, rescaling the image pixels from the 0-255
to the 0-1 range
 datagen = ImageDataGenerator(rescale=1.0/255.0)

 # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or absence of brain lesions
 train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size
= (350, 350))
 test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size =
(350, 350))

 # fitting the model
 history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1)

 # evaluating the model
 _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0)
 print('> %.3f' % (acc * 100.0))
 print(history.history['accuracy'][-1])
 print(history.history['val_accuracy'][-1])
 print(history.history['loss'][-1])
 print(history.history['val_loss'][-1])

 # learning curves
 summarize_diagnostics(history)

running the test evaluation
run_test_harness()

Stellenbosch University https://scholar.sun.ac.za

205

#############################
Two block VGG model: Adam #
#############################

importing the required libraries
import sys
from matplotlib import pyplot
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator

defining the cnn model architecture: two convolutional blocks: 32 and 64 fi
lters, respectively
3x3 kernel size
two max pooling layers, one after each convolutional layer
one fully-connected block
final output layer is sigmoid as the data is binary
def define_model():
 model = Sequential()
 model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3)))
 model.add(MaxPooling2D((2, 2)))
 model.add(Conv2D(64, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same'))
 model.add(MaxPooling2D((2, 2)))
 model.add(Flatten())
 model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m'))
 model.add(Dense(1, activation = 'sigmoid'))

 # compiling the model - adam as the optimisation technique
 # using the default/recommended values for the hyperparameters
 opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, dec
ay = 0.0)
 model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy'])
 return model

plotting the diagnostic learning curves - the binary cross-entropy loss and
the accuracy
def summarize_diagnostics(history):

 # plotting the loss functions: binary cross entropy-loss of the training
and validation sets
 pyplot.subplot(211)
 pyplot.title('Cross Entropy Loss')
 pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2)

Stellenbosch University https://scholar.sun.ac.za

206

 pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2)
 pyplot.legend(loc = 'upper right')

 # plotting the accuracy functions of the training and validation sets
 pyplot.subplot(212)
 pyplot.title('Classification Accuracy')
 pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2)
 pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label =
'test', linewidth = 2)
 pyplot.legend(loc = 'lower right')
 pyplot.tight_layout()
 # saving the plots to file
 filename = sys.argv[0].split('/')[-1]
 pyplot.savefig(filename + '_plot2_adam.png')
 pyplot.close()

evaluating the model performance
def run_test_harness():

 # defining the model
 model = define_model()

 # creating the data generator, rescaling the image pixels from the 0-255
to the 0-1 range
 datagen = ImageDataGenerator(rescale = 1.0/255.0)

 # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or absence of brain lesions
 train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size
= (350, 350))
 test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size =
(350, 350))

 # fitting the model
 history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1)

 # evaluating the model
 _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0)
 print('> %.3f' % (acc * 100.0))
 print(history.history['accuracy'][-1])
 print(history.history['val_accuracy'][-1])
 print(history.history['loss'][-1])
 print(history.history['val_loss'][-1])

 # learning curves
 summarize_diagnostics(history)

Stellenbosch University https://scholar.sun.ac.za

207

running the test evaluation
run_test_harness()

###############################
Three block VGG model: Adam #
###############################

importing the required libraries
import sys
from matplotlib import pyplot
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator

defining the cnn model architecture: three convolutional blocks: 32, 64 and
128 filters, respectively
3x3 kernel size
three max pooling layers, one after each convolutional layer
one fully-connected block
final output layer is sigmoid as the data is binary
def define_model():
 model = Sequential()
 model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3)))
 model.add(MaxPooling2D((2, 2)))
 model.add(Conv2D(64, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same'))
 model.add(MaxPooling2D((2, 2)))
 model.add(Conv2D(128, (3, 3), activation = 'relu', kernel_initializer = '
he_uniform', padding = 'same'))
 model.add(MaxPooling2D((2, 2)))
 model.add(Flatten())
 model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m'))
 model.add(Dense(1, activation = 'sigmoid'))

 # compiling the model - adam as the optimisation technique
 # using the default/recommended values for the hyperparameters
 opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, dec
ay = 0.0)
 model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy'])
 return model

plotting the diagnostic learning curves - the binary cross-entropy loss and
the accuracy
def summarize_diagnostics(history):

 # plotting the loss functions: binary cross-entropy loss of the training

Stellenbosch University https://scholar.sun.ac.za

208

and validation sets
 pyplot.subplot(211)
 pyplot.title('Cross Entropy Loss')
 pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2)
 pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2)
 pyplot.legend(loc = 'upper right')

 # plotting the accuracy functions of the training and validation sets
 pyplot.subplot(212)
 pyplot.title('Classification Accuracy')
 pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2)
 pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label =
'test', linewidth = 2)
 pyplot.legend(loc = 'lower right')
 pyplot.tight_layout()
 # saving the plots to file
 filename = sys.argv[0].split('/')[-1]
 pyplot.savefig(filename + '_plot3_adam.png')
 pyplot.close()

evaluating the model performance
def run_test_harness():

 # defining the model
 model = define_model()

 # creating the data generator, rescaling the image pixels from the 0-255
to the 0-1 range
 datagen = ImageDataGenerator(rescale = 1.0/255.0)

 # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or absence of brain lesions
 train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size
= (350, 350))
 test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size =
(350, 350))

 # fitting the model
 history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1)

 # evaluating the model
 _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0)
 print('> %.3f' % (acc * 100.0))
 print(history.history['accuracy'][-1])
 print(history.history['val_accuracy'][-1])
 print(history.history['loss'][-1])
 print(history.history['val_loss'][-1])

Stellenbosch University https://scholar.sun.ac.za

209

 # learning curves
 summarize_diagnostics(history)

running the test evaluation
run_test_harness()

The next set of model architecures are the one block VGG model architectures with dropout
regularisation applied to try and improve the neural network, applying both stochastic
gradient descent with momentum as well as Adam as the optimisation techniques. Running
20 epochs. The kernel is drawn from a He uniform distribution. ReLU and sigmoid
activation functions are used.

One block VGG model: SGD with momentum including dropout #

loading the required libraries
import sys
from matplotlib import pyplot
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import Dropout
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator

defining the cnn model architecture: one convolutional block: 32 filters an
d 3x3 kernel size
one max pooling layer, after each convolutional layer
adding dropout after the convolutional block using a dropout value of 0.5
one fully-connected block
final output layer is sigmoid as the data is binary
def define_model():
 model = Sequential()
 model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3)))
 model.add(MaxPooling2D((2, 2)))
 model.add(Dropout(0.5))
 model.add(Flatten())
 model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m'))
 model.add(Dense(1, activation = 'sigmoid'))

 # compiling the model - stochastic gradient descent with momentum as the
optimisation technique
 # using the default/recommended values for the hyperparameters
 opt = SGD(lr = 0.01, momentum = 0.9)
 model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy'])

Stellenbosch University https://scholar.sun.ac.za

210

 return model

plotting the diagnostic learning curves - the binary cross-entropy loss and
the accuracy
def summarize_diagnostics(history):

 # plotting the loss functions: binary cross-entropy loss of the training
and validation sets
 pyplot.subplot(211)
 pyplot.title('Cross Entropy Loss')
 pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2)
 pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2)
 pyplot.legend(loc = 'upper right')

 # plotting the accuracy functions of the training and validation sets
 pyplot.subplot(212)
 pyplot.title('Classification Accuracy')
 pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2)
 pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label =
'test', linewidth = 2)
 pyplot.legend(loc = 'lower right')
 pyplot.tight_layout()

 # saving the plots to file
 filename = sys.argv[0].split('/')[-1]
 pyplot.savefig(filename + '_plot1_dropoutsgd.png')
 pyplot.close()

evaluating the model performance
def run_test_harness():

 # defining the model
 model = define_model()

 # creating the data generator, rescaling the images pixels from the 0-255
to the 0-1 range
 datagen = ImageDataGenerator(rescale = 1.0/255.0)

 #loading the test/train datasets, class_mode is binary as there is either
the presence or the absence of brain lesions
 train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size
= (350, 350))
 test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size =
(350, 350))

 # fitting the model
 history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1)

Stellenbosch University https://scholar.sun.ac.za

211

 # evaluating the model
 _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0)
 print('> %.3f' % (acc * 100.0))
 print(history.history['accuracy'][-1])
 print(history.history['val_accuracy'][-1])
 print(history.history['loss'][-1])
 print(history.history['val_loss'][-1])

 # learning curves
 summarize_diagnostics(history)

running the test evaluation
run_test_harness()

One block VGG model: Adam including dropout #

importing the required libraries
import sys
from matplotlib import pyplot
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import Dropout
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator

defining the cnn model architecture: one convolutional block: 32 filters an
d 3x3 kernel size
one max pooling layer, after each convolutional layer
adding dropout after the convolutional block using a dropout value of 0.5
one fully-connected block
final output layer is sigmoid as the data is binary
def define_model():
 model = Sequential()
 model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3)))
 model.add(MaxPooling2D((2, 2)))
 model.add(Dropout(0.5))
 model.add(Flatten())
 model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m'))
 model.add(Dense(1, activation = 'sigmoid'))

 # compiling the model - adam as the optimisation technique
 # using the default/recommended values for the hyperparameters
 opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, dec
ay = 0.0)
 model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['

Stellenbosch University https://scholar.sun.ac.za

212

accuracy'])
 return model

plotting the diagnostic learning curves - the binary cross-entropy loss and
the accuracy
def summarize_diagnostics(history):

 # plotting the loss functions: binary cross-entropy loss of the training
and validation sets
 pyplot.subplot(211)
 pyplot.title('Cross Entropy Loss')
 pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2)
 pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2)
 pyplot.legend(loc = 'upper right')

 # plotting the accuracy functions of the training and validation sets
 pyplot.subplot(212)
 pyplot.title('Classification Accuracy')
 pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2)
 pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label =
'test', linewidth = 2)
 pyplot.legend(loc = 'lower right')
 pyplot.tight_layout()

 # saving the plots to file
 filename = sys.argv[0].split('/')[-1]
 pyplot.savefig(filename + '_plot1_dropoutadam.png')
 pyplot.close()

evaluating the model performance
def run_test_harness():

 # defining the model
 model = define_model()

 # creating the data generator, rescaling the image pixels from the 0-255
to the 0-1 range
 datagen = ImageDataGenerator(rescale = 1.0/255.0)

 # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or the absence of brain lesions
 train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size
= (350, 350))
 test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size =
(350, 350))

 # fitting the model
 history = model.fit(train_it, steps_per_epoch = len(train_it), validation

Stellenbosch University https://scholar.sun.ac.za

213

_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1)

 # evaluating the model
 _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0)
 print('> %.3f' % (acc * 100.0))
 print(history.history['accuracy'][-1])
 print(history.history['val_accuracy'][-1])
 print(history.history['loss'][-1])
 print(history.history['val_loss'][-1])

 # learning curves
 summarize_diagnostics(history)

running the test evaluation
run_test_harness()

The next set of model architecures are the one block VGG model architectures with data
augmentation applied to try and improve the neural network, applying both stochastic
gradient descent with momentum as well as Adam as the optimisation techniques. Running
20 epochs. The kernel is drawn from a He uniform distribution. ReLU and sigmoid
activation functions are used.

One block VGG model: SDG with momentum including data augmentation #

#importing the required libraries
import sys
from matplotlib import pyplot
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator

defining the cnn model architecture: one convolutional block: 32 filters an
d 3x3 kernel size
one max pooling layer, after each convolutional layer
one fully-connected block
final output layer is sigmoid as the data is binary
def define_model():
 model = Sequential()
 model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3)))
 model.add(MaxPooling2D((2, 2)))
 model.add(Flatten())
 model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m'))
 model.add(Dense(1, activation = 'sigmoid'))

Stellenbosch University https://scholar.sun.ac.za

214

 # compiling the model - stochastic gradient descent as the optimisation t
echnique
 # using the recommended/default values for the hyperparameters
 opt = SGD(lr = 0.01, momentum = 0.9)
 model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy'])
 return model

plotting the diagnostic learning curves - the binary cross-entropy loss and
the accuracy
def summarize_diagnostics(history):

 # plotting the loss functions: binary cross-entropy loss of the training
and validation sets
 pyplot.subplot(211)
 pyplot.title('Cross Entropy Loss')
 pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2)
 pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2)
 pyplot.legend(loc = 'upper right')

 # plotting the accuracy functions of the training and validation sets
 pyplot.subplot(212)
 pyplot.title('Classification Accuracy')
 pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2)
 pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label =
'test', linewidth = 2)
 pyplot.legend(loc = 'lower right')

 pyplot.tight_layout()
 # saving the plots to file
 filename = sys.argv[0].split('/')[-1]
 pyplot.savefig(filename + '_plot16_sgddataaug.png')
 pyplot.close()

evaluating the model performance
def run_test_harness():

 # defining the model
 model = define_model()

 # creating the data generator, rescaling the image pixels from the 0-255
to the 0-1 range
 # adding data augmentation to artifically increase the training dataset:
flipping the images about the x- and y-axes
 datagentrain = ImageDataGenerator(rescale = 1.0/255.0, horizontal_flip =
True, vertical_flip = True)
 datagentest = ImageDataGenerator(rescale = 1.0/255.0)

 # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or the absence of brain lesions

Stellenbosch University https://scholar.sun.ac.za

215

 train_it = datagentrain.flow_from_directory('C:/Users/crunc/Desktop/datas
et_tumour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target
_size = (350, 350))
 test_it = datagentest.flow_from_directory('C:/Users/crunc/Desktop/dataset
_tumour_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_si
ze = (350, 350))

 # fitting the model
 history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1)

 # evaluating the model
 _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0)
 print('> %.3f' % (acc * 100.0))
 print(history.history['accuracy'][-1])
 print(history.history['val_accuracy'][-1])
 print(history.history['loss'][-1])
 print(history.history['val_loss'][-1])

 # learning curves
 summarize_diagnostics(history)

running the test evaluation
run_test_harness()

One block VGG model: Adam including data augmentation #

importing the required libraries
import sys
from matplotlib import pyplot
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
from keras.optimizers import SGD
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator

defining the cnn model architecture: one convolutional block: 32 filters an
d 3x3 kernel size
one max pooling layer, after each convolutional layer
one fully-connected block
final output layer is sigmoid as the data is binary
def define_model():
 model = Sequential()
 model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3)))
 model.add(MaxPooling2D((2, 2)))
 model.add(Flatten())
 model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor

Stellenbosch University https://scholar.sun.ac.za

216

m'))
 model.add(Dense(1, activation = 'sigmoid'))

 # compiling the model - adam as the optimisation technique
 # using the default/recommended values for the hyperparamters
 opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, dec
ay = 0.0)
 model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy'])
 return model

plotting the diagnostic learning curves - the binary cross-entropy loss and
the accuracy
def summarize_diagnostics(history):

 # plotting the loss functions: binary cross-entropy loss of the training
and validation sets
 pyplot.subplot(211)
 pyplot.title('Cross Entropy Loss')
 pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2)
 pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2)
 pyplot.legend(loc = 'upper right')

 # plotting the accuracy functions of the training and validation sets
 pyplot.subplot(212)
 pyplot.title('Classification Accuracy')
 pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2)
 pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label =
'test', linewidth = 2)
 pyplot.legend(loc = 'lower right')

 pyplot.tight_layout()
 # saving the plots to file
 filename = sys.argv[0].split('/')[-1]
 pyplot.savefig(filename + '_plot15_adamdataaug.png')
 pyplot.close()

evaluating the model performance
def run_test_harness():

 # defining the model
 model = define_model()

 # creating the data generator, rescaling the image pixels from the 0-255
to the 0-1 range
 # adding data augmentation to artifically increase the training dataset:
flipping the images about the x- and y-axes
 datagentrain = ImageDataGenerator(rescale = 1.0/255.0, horizontal_flip =
True, vertical_flip = True)
 datagentest = ImageDataGenerator(rescale = 1.0/255.0)

Stellenbosch University https://scholar.sun.ac.za

217

 # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or the absence of brain lesions
 train_it = datagentrain.flow_from_directory('C:/Users/crunc/Desktop/datas
et_tumour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target
_size = (350, 350))
 test_it = datagentest.flow_from_directory('C:/Users/crunc/Desktop/dataset
_tumour_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_si
ze = (350, 350))

 # fitting the model
 history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1)

 # evaluating the model
 _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0)
 print('> %.3f' % (acc * 100.0))
 print(history.history['accuracy'][-1])
 print(history.history['val_accuracy'][-1])
 print(history.history['loss'][-1])
 print(history.history['val_loss'][-1])

 # learning curves
 summarize_diagnostics(history)

running the test evaluation
run_test_harness()

The next set of model architecures are the one block VGG model architectures with l2 norm
regularisation applied to try and improve the neural network, applying both stochastic
gradient descent with momentum as well as Adam as the optimisation techniques. Running
20 epochs. The kernel is drawn from a He uniform distribution. ReLU and sigmoid
activation functions are used.

One block VGG model: SDG with momentum including l2 norm regularisation #

importing the required libraries
import sys
from matplotlib import pyplot
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
from keras.optimizers import SGD
from keras.regularizers import l2
from keras.preprocessing.image import ImageDataGenerator

defining the cnn model architecture: one convolutional block: 32 filters an
d 3x3 kernel size

Stellenbosch University https://scholar.sun.ac.za

218

adding a penalisation value of 0.0005 using the l2 norm regularisation
one max pooling layer, after each convolutional layer
one fully-connected block
final output layer is sigmoid as the data is binary
def define_model():
 model = Sequential()
 model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', kernel_regularizer = l2(0.0005), padding = 'same', input_shape =
(350,350,3)))
 model.add(MaxPooling2D((2, 2)))
 model.add(Flatten())
 model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m', kernel_regularizer = l2(0.0005)))
 model.add(Dense(1, activation = 'sigmoid'))

 # compiling the model - stochastic gradient descent with momentum as the
optimisation technique
 # using the default/recommended values for the hyperparameters
 opt = SGD(lr = 0.01, momentum = 0.9)
 model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy'])
 return model

plotting the diagnostic learning curves - the binary cross-entropy loss and
the accuracy
def summarize_diagnostics(history):

 # plotting the loss functions: binary cross-entropy loss of the training
and validation sets
 pyplot.subplot(211)
 pyplot.title('Cross Entropy Loss')
 pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2)
 pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2)
 pyplot.legend(loc = 'upper right')

 # plotting the accuracy functions of the training and validation sets
 pyplot.subplot(212)
 pyplot.title('Classification Accuracy')
 pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2)
 pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label =
'test', linewidth = 2)
 pyplot.legend(loc = 'lower right')
 pyplot.tight_layout()
 # saving the plots to file
 filename = sys.argv[0].split('/')[-1]
 pyplot.savefig(filename + '_plot10_l2sgd.png')
 pyplot.close()

evaluating the model performance
def run_test_harness():

Stellenbosch University https://scholar.sun.ac.za

219

 # defining the model
 model = define_model()

 # creating the data generator, rescaling the image pixels from the 0-255
to the 0-1 range
 datagen = ImageDataGenerator(rescale = 1.0/255.0)

 # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or the absence of brain lesions
 train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size
= (350, 350))
 test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size =
(350, 350))

 # fitting the model
 history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1)

 # evaluating the model
 _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0)
 print('> %.3f' % (acc * 100.0))
 print(history.history['accuracy'][-1])
 print(history.history['val_accuracy'][-1])
 print(history.history['loss'][-1])
 print(history.history['val_loss'][-1])

 # learning curves
 summarize_diagnostics(history)

running the test evaluation
run_test_harness()

One block VGG model: Adam including l2 norm regularisation #

importing the required libraries
import sys
from matplotlib import pyplot
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
from keras.optimizers import Adam
from keras.regularizers import l2
from keras.preprocessing.image import ImageDataGenerator

defining the cnn model architecture: one convolutional block: 32 filters an

Stellenbosch University https://scholar.sun.ac.za

220

d 3x3 kernel size
adding a penalisation value of 0.0005 using the l2 norm regularisation
one max pooling layer, after each convolutional layer
one fully-connected block
final output layer is sigmoid as the data is binary
def define_model():
 model = Sequential()
 model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', kernel_regularizer = l2(0.0005), padding = 'same', input_shape =
(350,350,3)))
 model.add(MaxPooling2D((2, 2)))
 model.add(Flatten())
 model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m', kernel_regularizer = l2(0.0005)))
 model.add(Dense(1, activation = 'sigmoid'))

 # compiling the model - Adam as the optimisation technique
 # using the default/recommended values for the hyperparameters
 opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, dec
ay = 0.0)
 model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy'])
 return model

plotting the diagnostic learning curves - the binary cross-entropy loss and
the accuracy
def summarize_diagnostics(history):

 # plotting the loss functions: binary cross-entropy loss of the training
and validation sets
 pyplot.subplot(211)
 pyplot.title('Cross Entropy Loss')
 pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2)
 pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2)
 pyplot.legend(loc = 'upper right')

 # plotting the accuracy functions of the training and validation sets
 pyplot.subplot(212)
 pyplot.title('Classification Accuracy')
 pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2)
 pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label =
'test', linewidth = 2)
 pyplot.legend(loc = 'lower right')
 pyplot.tight_layout()
 # saving the plots to file
 filename = sys.argv[0].split('/')[-1]
 pyplot.savefig(filename + '_plot11_l2adam.png')
 pyplot.close()

evaluating the model perrformance

Stellenbosch University https://scholar.sun.ac.za

221

def run_test_harness():

 # defining the model
 model = define_model()

 # creating the data generator, rescaling the image pixels from the 0-255
to the 0-1 range
 datagen = ImageDataGenerator(rescale=1.0/255.0)

 # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or the absence of brain lesions
 train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size
= (350, 350))
 test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size =
(350, 350))

 # fitting the model
 history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1)

 # evaluating the model
 _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0)
 print('> %.3f' % (acc * 100.0))
 print(history.history['accuracy'][-1])
 print(history.history['val_accuracy'][-1])
 print(history.history['loss'][-1])
 print(history.history['val_loss'][-1])

 # learning curves
 summarize_diagnostics(history)

running the test evaluation
run_test_harness()

The last set of model architecures are the one block VGG model hybrid CNN-SVM
architectures where the final layer is the SVM classifier to make use of the best of both
worlds, two superior classifiers that pick up different key features, applying both stochastic
gradient descent with momentum as well as Adam as the optimisation techniques. Running
20 epochs. The kernel is drawn from a He uniform distribution. ReLU and sigmoid
activation functions are used.

One block VGG model: hybrid CNN-SVM model: SGD with momentum #

importing the required libraries
import sys
from matplotlib import pyplot
from keras.utils import to_categorical
from keras.models import Sequential

Stellenbosch University https://scholar.sun.ac.za

222

from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator

defining the cnn model architecture: one convolutional block: 32 filters an
d 3x3 kernel size
one max pooling layer, after each convolutional layer
one fully-connected block
final output layer is linear as applying the SVM classifier
def define_model():
 model = Sequential()
 model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3)))
 model.add(MaxPooling2D((2, 2)))
 model.add(Flatten())
 model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m'))
 model.add(Dense(1, activation = 'linear'))

 # compiling the model - stochastic gradient descent with momentum as the
optimisation technique
 # using the default/recommended values for the hyperparameters
 # making use of the hinge/SVM loss as the final output layer uses the SVM
classifier
 opt = SGD(lr = 0.01, momentum = 0.9)
 model.compile(optimizer = opt, loss = 'hinge', metrics = ['accuracy'])
 return model

plotting the diagnostic learning curves - the binary cross-entropy loss and
the accuracy
def summarize_diagnostics(history):

 # plotting the loss functions: binary cross-entropy loss of the training
and validation sets
 pyplot.subplot(211)
 pyplot.title('Cross Entropy Loss')
 pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2)
 pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2)
 pyplot.legend(loc = 'upper right')

 # plotting the accuracy functions of the training and validation sets
 pyplot.subplot(212)
 pyplot.title('Classification Accuracy')
 pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2)
 pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label =
'test', linewidth = 2)
 pyplot.legend(loc = 'lower right')

Stellenbosch University https://scholar.sun.ac.za

223

 pyplot.tight_layout()
 # saving the plots to file
 filename = sys.argv[0].split('/')[-1]
 pyplot.savefig(filename + '_plot3_cnnsvm.png')
 pyplot.close()

evaluating the model performance
def run_test_harness():

 # defining the model
 model = define_model()

 # creating the data generator, rescaling the image pixels from the 0-255
to the 0-1 range
 datagen = ImageDataGenerator(rescale = 1.0/255.0)

 # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or the absence of brain lesions
 train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size
= (350, 350))
 test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size =
(350, 350))

 # fitting the model
 history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1)

 # evaluating the model
 _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0)
 print('> %.3f' % (acc * 100.0))
 print(history.history['accuracy'][-1])
 print(history.history['val_accuracy'][-1])
 print(history.history['loss'][-1])
 print(history.history['val_loss'][-1])

 # learning curves
 summarize_diagnostics(history)

running the test evaluation
run_test_harness()

One block VGG model: hybrid CNN-SVM model: Adam#

importing the required libraries
import sys
from matplotlib import pyplot
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D

Stellenbosch University https://scholar.sun.ac.za

224

from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator

defining the cnn model architecture: one convolutional block: 32 filters an
d 3x3 kernel size
one max pooling layer, after each convolutional layer
one fully-connected block
final output layer is linear as applying the SVM classifier
def define_model():
 model = Sequential()
 model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3)))
 model.add(MaxPooling2D((2, 2)))
 model.add(Flatten())
 model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m'))
 model.add(Dense(1, activation = 'linear'))

 # compiling the model - Adam as the optimisation technique
 # using the default/recommended values for the hyperparameters
 # making use of the hinge/SVM loss as the final output layer uses the SVM
classifier
 opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, dec
ay = 0.0)
 model.compile(optimizer = opt, loss = 'hinge', metrics = ['accuracy'])
 return model

plotting the diagnostic learning curves - the binary cross-entropy loss and
the accuracy
def summarize_diagnostics(history):

 # plotting the loss functions: binary cross-entropy loss of the training
and validation sets
 pyplot.subplot(211)
 pyplot.title('Cross Entropy Loss')
 pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2)
 pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2)
 pyplot.legend(loc = 'upper right')

 # plotting the accuracy functions of the training and validation sets
 pyplot.subplot(212)
 pyplot.title('Classification Accuracy')
 pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2)
 pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label =
'test', linewidth = 2)
 pyplot.legend(loc = 'lower right')
 pyplot.tight_layout()

Stellenbosch University https://scholar.sun.ac.za

225

 # saving the plots to file
 filename = sys.argv[0].split('/')[-1]
 pyplot.savefig(filename + '_plot4_cnnsvmadam.png')
 pyplot.close()

evaluating the model performance
def run_test_harness():

 # defining the model
 model = define_model()

 # creating the data generator, rescaling the image pixels from the 0-255
to the 0-1 range
 datagen = ImageDataGenerator(rescale = 1.0/255.0)

 #loading the test/train datasets, class_mode is binary as there is either
the presence or the absence of brain lesions
 train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size
= (350, 350))
 test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size =
(350, 350))

 # fitting the model
 history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1)

 # evaluating the model
 _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0)
 print('> %.3f' % (acc * 100.0))
 print(history.history['accuracy'][-1])
 print(history.history['val_accuracy'][-1])
 print(history.history['loss'][-1])
 print(history.history['val_loss'][-1])

 # learning curves
 summarize_diagnostics(history)

running the test evaluation
run_test_harness()

Stellenbosch University https://scholar.sun.ac.za

226

SVM

Applying the SVM methodology to the presence and absence of brain tumours dataset.

#############
SVM Model #
#############

importing the required libraries
import os
import numpy as np
import cv2
import matplotlib.pyplot as plt
import pickle
import random
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from random import seed
import pandas as pd
import pickle as cPickle

directory of the images
dir = 'C:/Users/crunc/Desktop/train2/'
indicating the class labels of the images
categories = ['yes', 'no']
data = []

for category in categories:
 path = os.path.join(dir, category)
 label = categories.index(category)

 for img in os.listdir(path):
 imgpath = os.path.join(path, img)
 brain_img = cv2.imread(imgpath)
 try:
 #resizing the images to a standard form
 brain_img = cv2.resize(brain_img,(350,350))
 image = np.array(brain_img).flatten()

 data.append([image, label])
 except Exception as e:
 pass

print(len(data))
pick_new_1 = open('data1.pickle', 'wb')
pickle.dump(data, pick_new_1)
pick_new_1.close()

pick_new_1 = open('data1.pickle', 'rb')
data = pickle.load(pick_new_1)
pick_new_1.close()

features = []

Stellenbosch University https://scholar.sun.ac.za

227

labels = []

#appending the label classes, zero or one to the no or yes images
for feature, label in data:
 features.append(feature)
 labels.append(label)

#training the SVM model
xtrain, xtest, ytrain, ytest = train_test_split(features, labels, test_size =
0.4, random_state=1234)
model = SVC(C = 1, gamma = 0.0001, kernel = 'linear')
model.fit(xtrain, ytrain)
prediction = model.predict(xtest)
accuracy = model.score(xtest, ytest)
print(accuracy)

Stellenbosch University https://scholar.sun.ac.za

228

KNN

Apply the k-nearest neighbours methodology to the dataset containing MRI scans of the
presence or absence of brain tumours.

#############
KNN model #
#############

importing the required libraries
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix,accuracy_score
import os
import numpy as np
import cv2
import matplotlib.pyplot as plt
import pickle
import random
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from random import seed
import pandas as pd
import pickle as cPickle

directory of the images
dir = 'C:/Users/crunc/Desktop/train2/'

indicating the class labels of the images
categories = ['yes', 'no']
data = []

for category in categories:
 path = os.path.join(dir, category)
 label = categories.index(category)

 for img in os.listdir(path):
 imgpath = os.path.join(path, img)
 brain_img = cv2.imread(imgpath)
 try:
 #resizing the images to a standard form
 brain_img = cv2.resize(brain_img,(350,350))
 image = np.array(brain_img).flatten()

 data.append([image, label])
 except Exception as e:
 pass

print(len(data))
pick_new_1 = open('data1.pickle', 'wb')
pickle.dump(data, pick_new_1)
pick_new_1.close()

pick_new_1 = open('data1.pickle', 'rb')

Stellenbosch University https://scholar.sun.ac.za

229

data = pickle.load(pick_new_1)
pick_new_1.close()

features = []
labels = []

#appending the label classes, zero or one to the no or yes images
for feature, label in data:
 features.append(feature)
 labels.append(label)

#training the knn model
xtrain, xtest, ytrain, ytest = train_test_split(features, labels, test_size =
0.4, random_state=1234)
classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p =
2)
classifier.fit(xtrain, ytrain)
y_pred = classifier.predict(xtest)

ac = accuracy_score(ytest,y_pred)
print(ac)

Stellenbosch University https://scholar.sun.ac.za

230

APPENDIX D:

CODE: SEGMENTATION OF LOW-GRADE OR HIGH-GRADE GLIOMAS

The code, with descriptions, for the second comparative study explored and analysed is an

adaption and extension of the code (and descriptions of the code) found in Brownlee (2020b).

Segmentation of low-grade or high-grade gliomas

In this comparative study, nine state-of-the-art optimisation techniques are applied to the
dataset where a cohort of patients have been diagnosed with either low-grade or high-
grade gliomas.

Converting the data from the medical MRI format to jpeg

Converting the biomedical MRI images from the .mha format into a .jpeg format and saving
the images into different folders depending on the MRI multimodal type (T1, T2, T1c,
FLAIR) and the different class labels (low-grade (LGG) or high-grade (HGG) gliomas).

Converting the MRI scans from medical format to jpeg and
saving them in the appropriate folders and subfolders

loading the required libraries
from medpy.io import load
from matplotlib import pyplot
import os
import nibabel as nib
from nibabel.testing import data_path
import numpy as np
import cv2
from matplotlib import pyplot as plt

initial .mha MRI scans folder
note: need to convert for all patients of the different MRI scan modes
run the four different mode types for all the patients, hence,
update the .number.mha file for each patient

High-grade gliomas (HGG)
#image_data, image_header = load('C:/Users/crunc/Brats_raw/t1c/hgg/hggt1c.0.m
ha')
#image_data, image_header = load('C:/Users/crunc/Brats_raw/t2/hgg/hggt2.0.mha
')
#image_data, image_header = load('C:/Users/crunc/Brats_raw/flair/hgg/hggflair
.0.mha')
#image_data, image_header = load('C:/Users/crunc/Brats_raw/t1/hgg/hggt1.0.mha
')

Stellenbosch University https://scholar.sun.ac.za

231

Low-grade gliomas (LGG)
#image_data, image_header = load('C:/Users/crunc/Brats_raw/t1c/lgg/lggt1c.0.m
ha')
#image_data, image_header = load('C:/Users/crunc/Brats_raw/t2/lgg/lggt2.0.mha
')
#image_data, image_header = load('C:/Users/crunc/Brats_raw/flair/lgg/lggflair
.0.mha')
#image_data, image_header = load('C:/Users/crunc/Brats_raw/t1/lgg/lggt1.0.mha
')

#print(image_data.shape)
#print(image_data)

scans to be saved for each patient, esnure that the MRI mode type and tumou
r type match
for i in range(45,115):
 #print(i)
 plt.imshow(image_data[:,:,i], cmap = "gray")
 #plt.show()
 plt.axis('off')

run in conjunction with the associated image_data line above and add 70 to
the i+....
to ensure that the image are numbered and saved correctly
code below is of the first patient per MRI mode

 # High-grade gliomas (HGG)
 #plt.savefig('C:/Users/crunc/Brats_Images/t1c/HGG/HGG.%d.jpg'%(i-45), pad
_inches = 0, bbox_inches='tight')
 #plt.savefig('C:/Users/crunc/Brats_Images/t2/HGG/HGG.%d.jpg'%(i+15355), p
ad_inches = 0, bbox_inches='tight')
 #plt.savefig('C:/Users/crunc/Brats_Images/flair/HGG/HGG.%d.jpg'%(i+30755)
, pad_inches = 0, bbox_inches='tight')
 #plt.savefig('C:/Users/crunc/Brats_Images/t1/HGG/HGG.%d.jpg'%(i+46155), p
ad_inches = 0, bbox_inches='tight')

 # Low-grade gliomas (LGG)
 #plt.savefig('C:/Users/crunc/Brats_Images/t1c/LGG/LGG.%d.jpg'%(i-45), pad
_inches = 0, bbox_inches='tight')
 #plt.savefig('C:/Users/crunc/Brats_Images/t2/LGG/LGG.%d.jpg'%(i+3735), pa
d_inches = 0, bbox_inches='tight')
 #plt.savefig('C:/Users/crunc/Brats_Images/flair/LGG/LGG.%d.jpg'%(i+7515),
pad_inches = 0, bbox_inches='tight')
 #plt.savefig('C:/Users/crunc/Brats_Images/t1/LGG/LGG.%d.jpg'%(i+11295), p
ad_inches = 0, bbox_inches='tight')

Stellenbosch University https://scholar.sun.ac.za

232

Developing the nine state-of-the-art optimisation technique CNN
architectures
###

Three block VGG model: nine different state-of-the-art optimisation techniq
ues#
###

loading the required libraries
import sys
from matplotlib import pyplot
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
from keras.optimizers import SDG
from keras.optimizers import Nadam
from keras.optimizers import Adam
from keras.optimizers import Adagrad
from keras.optimizers import Adamax
from keras.optimizers import Adadelta
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator

defining the cnn model:
 # three convolutional blocks, i.e. three convolutional layers with 32, 64
and 128 filters, respectively. 3x3 kernels
 # three max pooling layers, one after each convolutional layer
 # one fully-connected block
 # final output layer is sigmoid as the data is binary: LGG or HGG
def define_model():
 model = Sequential()
 model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_normal', padding = 'same', input_shape = (200,200,3)))
 model.add(MaxPooling2D((2, 2)))
 model.add(Conv2D(64, (3, 3), activation = 'relu', kernel_initializer = 'h
e_normal', padding = 'same'))
 model.add(MaxPooling2D((2, 2)))
 model.add(Conv2D(128, (3, 3), activation = 'relu', kernel_initializer = '
he_normal', padding = 'same'))
 model.add(MaxPooling2D((2, 2)))
 model.add(Flatten())
 model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_normal
'))
 model.add(Dense(1, activation = 'sigmoid'))

 # compiling the model - depending on the optimiser that is being run, unc
omment the applicable one

 ## Batch/vanilla SGD

Stellenbosch University https://scholar.sun.ac.za

233

 ### using the recommended/default hyperparameter values
 #opt = SGD(lr=0.01, momentum = 0.0, decay=0.0)

 ## SDG with momentum
 ### using the recommended/default hyperparameter values
 #opt = SGD(lr=0.01, momentum = 0.9, decay=0.0)

 ## Nadam
 ### using the recommended/default hyperparameter values
 #opt = Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_
decay=0.004)

 ## Adam
 ### using the recommended/default hyperparameter values
 #opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, de
cay = 0.0)

 ## Adagrad
 ### using the recommended/default hyperparameter values
 #opt = Adagrad(lr = 0.01, epsilon = 1e-08, decay = 0.0)

 ## Adadelta
 ### using the recommended/default hyperparameter values
 #opt = Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0)

 ## Adamax
 ### using the recommended/default hyperparameter values
 #opt = Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.
0)

 ## RMSProp
 ### using the recommended/default hyperparameter values
 #opt = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)

 ## NAG
 ### using the recommended/default hyperparameter values
 #opt = SGD(lr=0.01, momentum = 0.9, nesterov=True, decay=0.0)

 model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy'])
 return model

plotting the diagnostic learning curves - the cross-entropy loss and the pr
edictive accuracy
def summarize_diagnostics(history):

 # plotting the loss functions: binary cross-entropy loss for the training
and validation sets
 pyplot.subplot(211)
 pyplot.title('Cross Entropy Loss')
 pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2)
 pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2)

Stellenbosch University https://scholar.sun.ac.za

234

 pyplot.legend(loc = 'upper right')

 # plotting the accuracy functions for the training and validation sets
 pyplot.subplot(212)
 pyplot.title('Classification Accuracy')
 pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2)
 pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label =
'test', linewidth = 2)
 pyplot.legend(loc = 'lower right')
 pyplot.tight_layout()
 # saving the plots to file - depending on which optimisation technique is
used
 # uncomment the applicable plot to be saved: naming convention
 filename = sys.argv[0].split('/')[-1]

 ## Batch SGD
 #pyplot.savefig(filename + '_h_l_sgd_no_mom.png')

 ## SGD with momentum
 #pyplot.savefig(filename + '_h_l_sgd_mom_default.png')

 ## Nadam
 #pyplot.savefig(filename + '_h_l_nadam_trial.png')

 ## Adam
 #pyplot.savefig(filename + '_h_l_adam.png')

 ## Adagrad
 #pyplot.savefig(filename + '_h_l_adagrad.png')

 ## Adadelta
 # pyplot.savefig(filename + '_h_l_adadelta.png')

 ## Adamax
 #pyplot.savefig(filename + '_h_l_adamax.png')

 ## RMSProp
 #pyplot.savefig(filename + '_h_l_rmsprop_trial.png')

 ## NAG
 #pyplot.savefig(filename + '_h_l_nag.png')

 pyplot.close()

evaluating the model performance
def run_test_harness():

 # defining the model
 model = define_model()

 # creating the data generator, rescling the image pixels from the 0-255 r
ange to the 0-1 range
 datagen = ImageDataGenerator(rescale = 1.0/255.0)

Stellenbosch University https://scholar.sun.ac.za

235

 # loading the test/train datasets, class_mode is binary as it is either H
GG or LGG tumours
 train_it = datagen.flow_from_directory('C:/Users/crunc/Brats_Images/train
/', class_mode = 'binary', batch_size = 128, target_size = (200, 200))
 test_it = datagen.flow_from_directory('C:/Users/crunc/Brats_Images/test_s
et/', class_mode = 'binary', batch_size = 128, target_size = (200, 200))

 # fitting the model
 history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 5, verbose = 1)

 # evaluating the model
 _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0)
 print('> %.3f' % (acc * 100.0))
 print(history.history['accuracy'][-1])
 print(history.history['val_accuracy'][-1])
 print(history.history['loss'][-1])
 print(history.history['val_loss'][-1])

 # learning curves
 summarize_diagnostics(history)

running the test evaluation
run_test_harness()

Stellenbosch University https://scholar.sun.ac.za

