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Abstract 

Cancer is one of the leading causes of morbidity and mortality on a global scale. More specifically, 

cancer of the brain, which is one of the rarest forms. One of the major challenges is that of timely 

diagnoses. In the ongoing fight against cancer early and accurate detection in combination with 

effective treatment strategy planning remains one of the best tools for improved patient outcomes 

and success. Emphasis has been placed on the identification and classification of brain lesions 

in patients - that is, either the absence or presence of brain tumours. In the case of malignant 

brain tumours it is critical to classify patients into either high-grade or low-grade brain lesion 

groups: different gradings of brain tumours have different prognoses, thus different survival rates. 

The growth in the availability and accessibility of big data due to digitisation has led individuals in 

the area of bioinformatics in both academia and industry to apply and evaluate artificial 

intelligence techniques. However, one of the most important challenges, not only in the field of 

bioinformatics but also in other realms, is transforming the raw data into valuable insights and 

knowledge. In this research thesis artificial intelligence techniques that can detect vital and 

fundamental underlying patterns in the data are reviewed. The models may provide significant 

predictive performance to assist with decision making. Much artificial intelligence has been 

applied to brain tumour classification and segmentation in the research literature. However, in this 

study the theoretical background of two more traditional machine learning methods, namely 𝑘-

nearest neighbours and support vector machines, is discussed. In recent years, deep learning 

(artificial neural networks) has gained prominence due to its ability to handle copious amounts of 

data. The specialised version of the artificial neural network that is reviewed is convolutional 

neural networks. The rationale behind this particular technique is that it is applied to visual 

imagery. In addition to making use of the convolutional neural network architecture, the study 

reviews the training of neural networks that involves the use of optimisation techniques, 

considered to be one of the most difficult parts. Utilising only one learning algorithm (optimisation 

technique) in the architecture of convolutional neural network models for classification tasks may 

be regarded as insufficient unless there is strong support in the design of the analysis for using a 

particular technique. Nine state-of-the-art optimisation techniques formed part of a comparative 

study to determine if there was any improvement in the classification and segmentation of high-

grade or low-grade brain tumours. These machine learning and deep learning techniques have 

proved to be successful in image classification and - more relevant to this research - brain 

tumours. To supplement the theoretical knowledge, these artificial intelligence methodologies 

(models) are applied through the exploration of magnetic resonance imaging scans of brain 

lesions.  
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Opsomming 

Kanker is wêreldwyd een van die hoofoorsake van morbiditeit en sterftes; veral breinkanker, wat 

een van die mees seldsame soorte is. Een van die groot uitdagings is om dit betyds te diagnoseer. 

In die voortgesette stryd teen kanker is vroeë en akkurate opsporing, in kombinasie met 

doeltreffende beplanning van die behandelingstrategie, een van die beste hulpmiddels vir 

verbeterde pasiëntuitkomste en sukses. Klem word geplaas op die identifikasie en klassifikasie 

van breinletsels in pasiënte – dit wil sê, die teenwoordigheid of afwesigheid van breingewasse. In 

die geval van kwaadaardige breingewasse is dit noodsaaklik om pasiënte in groepe as hetsy 

hoëgraad- of laegraadbreingewasse te klassifiseer: verskillende graderings van breingewasse 

het verskillende prognoses, en dus verskillende oorlewingskoerse. Die toename in die 

beskikbaarheid en toeganklikheid van groot data danksy digitalisering, het daartoe gelei dat 

individue op die gebied van bio-informatika in die akademie en die bedryf begin het om 

kunsmatige-intelligensie-tegnieke toe te pas en te evalueer. Een van die belangrikste uitdagings, 

nie slegs op die gebied van bio-informatika nie, maar ook op ander terreine, is egter die 

omskakeling van rou data na waardevolle insigte en kennis. Hierdie navorsingstesis hersien die 

kunsmatige-intelligensie-tegnieke wat lewensbelangrike en grondliggende onderliggende patrone 

in die data kan opspoor. Die modelle kan beduidende voorspellende prestasie bied om met 

besluitneming te help. Die navorsingsliteratuur dek heelwat toepassings van kunsmatige 

intelligensie op breingewasklassifikasie en -segmentasie. In hierdie studie word die teoretiese 

agtergrond van meer tradisionele masjienleermetodes, naamlik die 𝑘-naaste-bure-algoritme (𝑘-

nearest neighbour algorithm) en steunvektormasjiene, bespreek. Diep leer (kunsmatige neurale 

netwerke) het onlangs op die voorgrond getree weens die vermoë daarvan om groot hoeveelhede 

data te kan hanteer. Die gespesialiseerde weergawe van die kunsmatige neurale netwerk wat 

hersien word, is konvolusionele neurale netwerkargitektuur. Die rasionaal vir hierdie spesifieke 

tegniek is dat dit op visuele beelde toegepas word. Buiten dat dit van konvolusionele neurale 

netwerkargitektuur gebruik maak, hersien die studie ook die afrigting van neurale netwerke met 

behulp van optimaliseringstegnieke, wat as een van die moeilikste dele beskou word. Die 

aanwending van slegs een leeralgoritme (optimaliseringstegniek) in die argitektuur van 

konvolusionele neurale netwerkmodelle vir klassifikasietake, kan as onvoldoende beskou word, 

tensy daar sterk steun vir die gebruik van ŉ spesifieke tegniek in die ontwerp van die ontleding is. 

Nege van die jongste optimaliseringstegnieke was deel van ŉ vergelykende studie om vas te stel 

of daar enige verbetering in die klassifikasie en segmentasie van hoëgraad- en 

laegraadbreingewasse was. Hierdie masjienleer- en diep-leertegnieke was suksesvol met 

beeldklassifikasie en – meer relevant vir hierdie navorsing – breingewasklassifikasie. Ter 

aanvulling van die teoretiese kennis, word hierdie kunsmatige-intelligensie-metodologieë (-

modelle) deur die verkenning van magnetiese resonansbeelding van breingewasse toegepas.  
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Tumours are a group of abnormal cells that develop as the cells in the human body grow and 

subsequently split beyond normal levels and generally result in a mass. Tumours can be 

classified, at the most trivial level, as either benign or malignant (cancerous). When the cells in 

the human body grow uncontrollably and are abnormal, this is an indication that the mass (tumour) 

is cancerous. Furthermore, these cells have the potential to metastasize (invade or spread) 

throughout the body, affecting other organs, et cetera. Cancer is one of the leading causes of 

mortality and morbidity worldwide. In fact, globally it accounts for the second most deaths, with 

approximately 9.6 million deaths attributed to cancer in 2018 (World Health Organization, 2021). 

To put this into perspective: one in six deaths resulted from patients diagnosed with cancer. In 

South Africa alone, in the same year, 57 373 deaths were due to cancer diagnoses (World Health 

Organization, 2020). Cancer has devastating effects on patients - emotionally and physically - 

and also exerts pressure on their financial situation. Additionally, there are burdens on public (and 

private) health care systems in the form of financial costs and medical personnel. This tends to 

be more prevalent in developing countries as the health care system, both physically and 

financially, cannot cope with the burden. The health care system is equipped neither to promptly 

diagnose cancer or even diagnose it at all, nor to provide the necessary and appropriate 

treatment. This means that in these low-middle-income countries (developing countries), the 

prognoses are poor and thus the survival rate is very low. On the contrary, in high-income 

(developed) countries there is accessibility to and availability of early diagnoses, which result in 

more optimistic prognoses. Higher survivability prevails as a result of early detection and the 

necessary treatment planning strategies.  

At present, there are still uncertainties as to what causes cancer. There are indications that certain 

cancer malignancies result from an individual having been exposed to environmental 

carcinogens, namely pollution and ionising radiation. Increased risk of cancer is also due to 

lifestyle factors which may include, but are not limited to, smoking tobacco products and 

consuming alcoholic beverages. Other risk factors of cancer susceptibility are attributed to familial 

genetics - that is, hereditary genes of an individual.  

The highest incidence rates, hence the most common cancers in South Africa for 2018, include 

cancers of the breast, cervix uteri, prostate and lung (in this order) (World Health Organization, 

2020). Of the four listed, lung cancer corresponds to having the highest mortality rate, followed 

by cervix uteri, breast and lastly, prostate. Nonetheless, the focus here is on tumours of the brain. 
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This encompasses both benign and malignant brain lesions. Developing a brain tumour is a rare 

occurrence; however, should the tumour progress to a cancerous stage, malignant brain lesions 

are known to have high morbidity and unfortunately, exceptionally high mortality rates. One of the 

reasons for this poor outlook is that brain lesions are innately problematic to cure. This is due to 

their location, which is protected by the unique characteristics of the brain. It is not always feasible 

to perform surgery and if possible, complete resection is not guaranteed. Treatments including, 

but not limited to, chemotherapy and radiation may not always lead to remission and may have 

lasting effects. Individuals that are diagnosed with high-grade tumours face bleak prognoses and 

thus the chances of survival are somewhat ominous. To put this into perspective: approximately 

five percent of patients will survive for longer than five years.  

With the explosion of big data and therefore the accessibility and availability of data, transforming 

biomedical data (in this case) into meaningful insights and knowledge has gained prominence. 

Being able to perform this task satisfactorily has remained a challenge in many fields, including 

bioinformatics. Copious amounts of biomedical data have been collected in recent years in the 

areas of omics, biomedical imaging and signal data. In particular, biomedical imaging has seen 

exponential improvements and advancements in technology. As a diagnostic tool, biomedical 

imaging has assumed great importance. Consequently, the combination of accumulated data and 

technological advances has attracted the attention of researchers in academia as well as 

individuals in (the health) industry.  

Machine learning (ML) and deep learning (DL) algorithms have been successfully and extensively 

implemented in extracting insights and knowledge from biomedical data. An array of algorithms 

has proven to be useful in solving many research questions, such as the classification of brain 

tumours due to the algorithms’ ability to detect underlying patterns in complex datasets. More 

traditional machine learning algorithms include 𝑘-nearest neighbours (𝑘-NN), support vector 

machines (SVMs), decision trees and random forests, to name but a few. More recently, deep 

learning algorithms have risen to prominence. In practice and academia, these algorithms have 

been successful in answering questions and problems related to cancer research via the 

development of predictive models where the end goal is to assist with more efficient and accurate 

decision making.  

1.2 PROBLEM STATEMENT, OVERVIEW AND OBJECTIVES 

In the ongoing fight against cancer, prevention in the form of early and accurate detection; correct 

prognoses; and the most appropriate course of treatment continue to be amongst the best 

remedies. Brain tumours are responsible for many a fatality globally. Therefore, to lessen the 

incidence rates and (hopefully) increase survivability, an important aspect is reliably diagnosing 

brain tumour malignancies through detection and segmentation. The justification is that better 
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treatment planning strategies, which lead to improved patient outcomes and better chances of 

success, can be devised. Over the years there have been significant improvements in the 

technology of biomedical imaging tools and they have risen to prominence as clinical diagnostic 

machines. However, in developing (low-to-middle income) countries there is a lack of critical 

components as well as delivery issues. The following list gives some examples but is by no means 

exhaustive (Republic of South Africa, Department of Health, 2017): 

i) Delivery of cancer services is not equally distributed; for instance, some provinces have little 

to no access to diagnostic tools (X-ray machines, magnetic resonance imaging machines, et 

cetera), there is no palliative care and there are extended waiting periods from the initial 

screening phase until treatment. 

ii) Within communities, there is a lack of knowledge about cancer with limited information 

regarding the prevention of cancers that are increased through environmental and behavioural 

carcinogens.  

iii) From an information point of view, there are exceptionally limited sources of information 

regarding the statistics of the number of mortalities because of cancer. To put this into context, 

South Africa only has one population-based cancer registry. 

iv) Essential treatment medications that form a critical component of enhancing patients’ 

successful outcomes and increased survivability are not available in South Africa, which is of 

major concern. This is most prominent at public hospitals. In cases where newer and more 

innovative medicines are available, they are unaffordable.  

v) The diagnostic tools that are used in the detection of cancer are old, are not serviced and in 

some circumstances do not function properly. 

vi) In terms of the financial burden, the budget that is set aside for cancer does not meet the 

overwhelming need. 

vii) Lastly (in this list), and relevant to the core objective and research question that apply to this 

research, is the shortage of specialised individuals in the area of cancer. That is, there is a 

lack of individuals that have specialised in oncology as well as those that are associated with 

oncology. Furthermore, the training that is received is suboptimal. Finally, there is a very low 

retention and recruitment rate of personnel in the field of oncology.  

Hence, as mentioned, the aim and aspiration of this research is to find automated, or at the very 

least semi-automated, methods to assist radiographers and physicians. The expertise of 

radiographers and physicians is heavily relied on for diagnosing brain tumours and the grade; 

however, this momentous task remains exceptionally labour-intensive and time-consuming. As is 

generally known, medicine is a very complicated field and to become an expert in a specialised 

field takes upward of ten years. Advances in technology and techniques have led to surgeries, 

diagnostic scans, et cetera, becoming more complex, making it almost impossible for one 
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individual to be completely proficient in the field, even if it is a constricted speciality (Mueller & 

Massaron, 2018). As the authors state, “… an irreplaceable human requires consistent, logical, 

and unbiased help in the form of an artificial intelligence (AI)” (Mueller & Massaron, 2018). 

Thankfully, the prominence and emergence of technological advancements in biomedical imaging 

and the era of ‘big data’ have created the opportunity for these more automated systems. 

Nevertheless, one of the persistent central challenges is transforming the copious amounts of 

data into beneficial knowledge and insights. AI has come to the forefront as a result of imaging 

modalities that yield ‘big data’ (large quantities of data) along with having the added benefit of 

high performance, thus producing significantly accurate results that are satisfactory. As far as 

solving imaging technique applications go, DL and ML methodologies that can handle pattern 

recognition are becoming the go-to algorithms of choice. ML and DL algorithms have had a 

reasonable influence in the area of bioinformatics; the focus of this particular research is 

biomedical imaging as a means to solving the research question of complementing (and 

supplementing) the expertise of physicians.  

Hence, the methods used to solve the research question and the objective of the research are 

firstly, to utilise magnetic resonance imaging (MRI) scans to identify and classify either the 

absence or the presence of brain tumours and secondly, to explore high-grade gliomas versus 

low-grade gliomas through the manual segmentation of the different gradings of tumours. To 

achieve this, an AI approach is taken through more traditional ML techniques, namely 𝑘-NN and 

SVMs. Lastly, the specialised DL technique of convolutional neural networks (CNNs) is applied. 

Hence, through this research assistance is offered to specialists as their expertise and experience 

can in no way, shape or form be replaced but their load can be eased. 

The importance of this research and the rationale behind it are that brain tumours, and more 

specifically malignant brain lesions, are amongst the rarest forms of cancer; they also happen to 

be amongst the least funded - that is, they are heavily underfunded (Cure Brain Cancer 

Foundation, 2021). Along with this, the research conducted on brain tumours and cancer is not 

as prominent as in the case of other cancers where there is more visibility. For society, the benefit 

is derived from attempting to improve patients’ outcomes and success rates, as brain lesions have 

one of the lowest expected survival rates and in some instances can even go undetected. 

1.3 RESEARCH METHODOLOGY 

The methodological approach applied in the investigation of the research problem, id est, to assist 

medical specialists with the diagnoses of brain lesions, is one of mixed methods, as both 

quantitative and qualitative methods are incorporated. The mixed methodology offers the 

opportunity to integrate multiple findings from the analyses as well as other elements into the 

research task. Or to elaborate on this: the quantitative method involves the use of statistical 
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means whilst the qualitative method suggests that the data that have been gathered and analysed 

will be interpreted and the context to the data will be reviewed. 

As mentioned, this research thesis is a combination of quantitative methods, as in solving the 

research problem (and objective) statistical techniques are applied as a means to analyse the 

data. Furthermore, the output, that is, the level of predictive accuracy of the models, assists with 

the interpretation of the datasets.  

The data that are to be explored and analysed derive from two comparative studies. The data are 

part of archival research, hence existing data are analysed. In the first study, binary classification 

is looked at, meaning that there are two groups. Patients are segmented based on their MRI 

scans. In this instance, there is a cohort of patients that present with brain tumours whilst the rest 

of the data reflect an absence of brain lesions in the patients. Ideally, what is aimed at is to build 

satisfactory predictive models that generalise the data well enough for an unseen scan of a patient 

to be identified with some level of confidence - in other words, whether the new instance (patient) 

is labelled as having a brain lesion or not having a brain lesion.  

The data consist of a collection of MRI scans of patients, where 155 cases indicate that the 

patients were diagnosed with a brain tumour whereas 98 showed no presence of a brain lesion. 

Thus, in total there are 253 patients in this study and the data are available via Kaggle1.  

The second comparative study is the analysis and classification of brain lesions that have been 

graded accordingly; that is, the identification and classification of patients that have been 

diagnosed with either low-grade (LGG) or high-grade (HGG) gliomas. The data have been 

gathered, described and proposed in three research articles, namely firstly, ‘The Multimodal Brain 

Tumor Image Segmentation Benchmark (BraTS)’ by Menze et al. (2014); secondly, ‘Advancing 

The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic 

features’ by Bakas et al. (2017); and thirdly, the description and use of the data by Bakas et al. 

(2018) titled ‘Identifying the best machine learning algorithms for brain tumor segmentation, 

progression assessment, and overall survival prediction in the BraTS challenge’. Unless 

otherwise stated, the following paragraphs in this section discussing the imaging dataset have 

been adapted from these articles. 

The data encompass scans from multi-institutional organisations. The imaging data used are from 

the Multimodal Brain Tumor Image Segmentation Benchmark (BraTS) challenges of 2012, 2013 

along with images that have been collected from the National Institutes of Health (NIH) Cancer 

Imaging Archive (TCIA). Heidelberg University also contributed to the dataset. These imaging 

databases were combined for the 2015 BraTS challenge and are publicly available via the Swiss 

 

1 www.kaggle.com 
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Medical Image Repository (SMIR)2 or Kaggle. The BraTS challenges take place jointly with a 

medical imaging international conference, known as the Medical Image Computing and Computer 

Assisted Interventions (MICCAI). 

In the 2015 BraTS challenge, the imaging database consisted of 220 patients that presented with 

high-grade gliomas, whilst 54 patients (cases) were diagnosed with low-grade gliomas. The MRI 

images of the brain lesions were manually segmented and labelled based on human expertise. 

In order to allow for more consistency and compliance, the final labels were determined by a 

highly experienced board-certified neuro-radiologist. The rationale behind this is that due to the 

images being obtained and provided by a number of institutions, there can be differences: diverse 

equipment is used and institutions have and adhere to their own imaging protocols. Hence, the 

images must be standardised to uniformity to be able to analyse them.  

Pattern recognition tasks are required, as the data consist of images, hence the need to use 

techniques that can handle this type of data. A statistical approach is taken, applying AI 

methodologies to explain and support the interpretation of the data. Two subsections of AI that 

are used in this research are DL and ML. In brief, ML is a branch of AI and is a method whereby 

data are analysed through models that require very limited human intervention. In other words, 

the model (computer algorithm) learns through the experience of the data and is able to detect 

patterns and then make a decision. On the other hand, DL is where multiple layers are used to 

extract features from the raw input. Only three techniques that can be used in pattern recognition 

are focused on, but these are by no means the only three techniques. More methods are available 

in the literature, both from a statistical point of view and from those that have been applied to 

brain lesions in particular in literature. Time constraints are one of the reasons for only focusing 

on three. 𝑘-NN and SVMs are more traditional machine learning approaches, whilst CNNs form 

part of DL. DL has in recent years become the more favoured approach, as neural networks (NNs) 

have been proven to produce successful results in the realm of image classification. Moreover, 

DL techniques try to mimic the human brain. With the increase of computational power 

(hardware), the application of tasks that can be solved using ML and more specifically DL 

methodologies has become possible. In addition to the processing power, the innovation of 

smarter algorithms and digitisation, which has resulted in colossal databases that are available 

and accessible, have allowed for tackling image classification tasks.  

What AI cannot accomplish is replacing humans. It can in no way replace the creativity or the 

imagination of humans or their patterns of thought. Moreover, AI is somewhat limited and cannot 

come up with original ideas (Mueller & Massaron, 2018). More accurate, efficient and effective 

diagnoses can be made in the medical field with the help of AI technology. In line with the objective 

 

2 www.smir.ch 
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of this research, (malignant) brain lesions can be detected much earlier with the assistance of AI 

technology. Hence, AI speeds up the process and analysis of brain tumours. Nevertheless, the 

expertise and experience of medical specialists cannot be replaced and are still required to 

confirm the diagnosis.  

All the models have been developed and trained using Python3 software. Within the software 

many different libraries (packages) exist for the implementation of the ML and DL techniques. 

However, it was decided to use the NumPy4 library, more specifically the scikit-learn5 library, for 

the execution of the 𝑘-NN model and SVM model. According to the scikit-learn website, the library 

is open source and is built on NumPy where there are “simple and efficient tools for predictive 

data analysis” (scikit-learn, 2021). These tools are used for ML and statistical modelling including, 

but not limited to, tasks involving classification, regression and clustering. This library was decided 

upon based on its ability to perform classification.  

Furthermore, when implementing the DL (CNN) models, the TensorFlow6 library, more precisely 

the Keras7 package, is used. Developed by the Google Brain team, TensorFlow is an open-source 

library that can be used in the process of training and developing ML models. TensorFlow has 

the disadvantage that for beginners that do not have much coding ability it can be difficult to 

master due to its complexity. Conversely, Keras is a library that runs as an add-on to other open-

source software such as TensorFlow. It is a powerful DL library and is much more lenient on an 

individual’s coding ability, in that it is easier to learn and code can be written very quickly. Simply 

put, it is more user-friendly. Supporting documentation and training are available for both libraries.  

All the code that was written and implemented in the exploration of brain lesions can be found in 

the Appendices and was compiled in Jupyter Notebook8. As noted on the website, “Project Jupyter 

exists to develop open-source software, open standards, and services for interactive computing 

across dozens of programming languages” (Jupyter, 2021). Hence, Jupyter Notebook is used and 

then linked to the Python programming software. Moreover, Jupyter Notebook allows for users to 

have a record of what they have done in the session, which includes all code written, any 

additional notes and comments made to the code by the users and any equations that the users 

wished to express along with the output (Jupyter, 2021).  

 

3 www.python.org 
4 www.numpy.org 
5 www.scikit-learn.org/stable 
6 www.tensorflow.org 
7 www.keras.io 
8 www.jupyter.org 
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1.4 FORTHCOMING CHAPTERS’ OVERVIEW 

This subsection offers a preview of what is to be expected in the following chapters of this 

research thesis. It is briefly illustrated by the outline provided in Figure 1.1. The theoretical content 

covered in this thesis is found in Chapters 2 and 3, whilst Chapter 4 is focused on the practical 

applications of the methodologies discussed in Chapter 3. Final remarks are given in the last 

chapter of this thesis.  

Chapter 2 starts with an overview of the medical aspect of this thesis; that is, firstly, how the brain 

functions and the actions it is responsible for. Then the different types of diagnostic tools to help 

detect brain lesions are discussed along with the different grades of brain tumours. Furthermore, 

the susceptibility to brain lesions based on hereditary genes is considered. Chapter 3 is the 

statistical segment of this research thesis. This chapter is an in-depth theoretical discussion of 

three different AI algorithms. Chapter 4 acts as a practical aid to the theoretical algorithms 

reviewed in Chapter 3. A more detailed overview is given in the following paragraphs. 

 

Figure 1.1: Brief outline of research thesis  

Chapter 2 of this research thesis serves as an introduction to conceptual and theoretical medical 

oncology - some knowledge is required and as the topic and the empirical exploration suggest, 

brain lesions form the basis of this research. Starting with section 2.1, an overview is given 

concerning the different functions of the brain and what this organ is capable of. Furthermore, the 

manifestation of brain tumours is introduced; that is, how brain lesions are shaped and whether 

they can be classified as either benign or malignant. This is relevant because the first comparative 

study in Chapter 4 is an analysis of patients that present with brain tumours whilst the other cohort 
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have an absence of brain tumours. Section 2.2 goes on to discuss individuals’ genes and how 

methods and techniques can be used to gain insights into hereditary genes to determine how 

susceptible individuals are to cancer. In other words, is there a link between malignant brain 

tumours and familial genes? Section 2.3 provides an overview of the traditional diagnostic 

techniques of biomedical imaging. This subsection reviews how biomedical imaging (radiology) 

has been subject to exponential developments over time. The more recent advancements in 

technology have consequently allowed for the possibility of many new applications. The main 

focus is on magnetic resonance imaging (MRI) and the machines as an aid in the detection of 

brain tumours. These types of images are used in the practical exploration section (Chapter 4). 

Furthermore, section 2.4 offers insights into the grading of brain tumours based on a few 

characteristics; the World Health Organization (WHO) has determined the main guidelines. The 

grading forms part of the second comparative study, as a cohort of patients were diagnosed with 

low-grade gliomas whilst the rest of the patients were diagnosed with high-grade gliomas. The 

last subsection in Chapter 2 deals with paediatric brain tumours and is included for the benefit of 

future research, as malignant childhood brain lesions remain one of the highest causes of 

childhood morbidity and mortality.  

Chapter 3 highlights the statistical approaches to image classification. This section starts by 

introducing how ML and DL algorithms have influenced bioinformatics both in the field of research 

and in a more practical setting. The explosion of data availability and accessibility has aided this. 

Section 2.3 gives an outline of classification, pattern recognition and then more specifically pattern 

classification. The rationale behind this is once again keeping the type of data and analyses of 

Chapter 4 in mind. The discussion also revolves around certain aspects that have to be taken into 

account specifically for the inherent features that are observed in biomedical imaging data. Some 

of the difficulties that are experienced in the attainment of biomedical images are pointed out. The 

rest of Chapter 3 comprises a theoretical discussion of the three techniques that are used as an 

aid in the practical implementation of the datasets in Chapter 4. These methodologies consist of 

two ML algorithms, namely 𝑘-NN and SVMs. The third and last technique reviewed falls under 

DL, in particular, artificial neural networks (ANNs) and then the specialised version of an ANN 

known as a CNN. Section 3.5 is a literature review of the contributions; that is, papers found in 

the literature are reviewed and investigated to determine how diverse data-driven techniques, in 

the form of machine learning or artificial intelligence, are used in clinical applications. The 

emphasis, however, remains on the three different statistical approach algorithms and brain 

lesions.  

Chapter 4 is the practical aid to the algorithms discussed in Chapter 3 using the MRI as a 

diagnostic tool (Chapter 2). The chapter consists of two comparative studies. In the first study two 

different groups are observed, that is, patients diagnosed with (and therefore, displaying the 
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presence of) a brain tumour, whilst the other cohort have an absence of a brain tumour. In the 

second study, the data consist of a cohort of patients that have been diagnosed with low-grade 

gliomas whilst the remaining patients have high-grade gliomas. The dissection and the guidelines 

of the characteristics for the grading of brain lesions can be found in Chapter 2. Thus, the 

algorithms can be used and the predictive accuracy and how well the two groups can be 

distinguished and compared - that is, whether the models are satisfactory and whether they can 

perform optimally to assist physicians, noting that this is one of the main objectives and the 

research question of this thesis.  

Finally, the last chapter (Chapter 5) provides the reader with a summary of the findings, the 

limitations of the research, what can be applied and what can be looked into in the future, with 

some concluding remarks.  
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CHAPTER 2 

CONCEPTUAL AND THEORETICAL MEDICAL ONCOLOGY 

2.1 INTRODUCTION 

The brain is fundamentally the most complex and fascinating organ within the human body. The 

human brain is regarded as having cognitive abilities that are almost without limit (Hofman, 2014). 

The facts of the human brain are somewhat staggering with 100 billion neurons, a storage 

capacity of approximately 1.25 × 1012 bytes and in excess of 100 000 kilometres of 

interconnections (Cherniak, 1990; Hofman, 2012). This impressive organ has the capability of 

taking information as input from its environment, processing it and converting it into meaningful 

output. Macphail and Bolhuis (2001), Roth and Dicke (2012) and Hofman (2015) argue that if the 

brain can rapidly and adequately transcribe the information it receives, it will be better equipped 

to understand and handle any environmental challenges. Moreover, this leads to an increase in 

the brain’s odds of survival.  

The brain interprets and integrates this extraordinary amount of knowledge through sensory 

information, that is, utilising the five senses: touch, smell, taste, sight and hearing.  

Different aspects of our lives are controlled by the brain, amongst others, emotions (and emotional 

intelligence), intelligence or knowledge, creativity and memories. Our life journey, experiences 

(worldly or otherwise), memories, thoughts and dreams all emerge as a result of the firing of the 

neurons in our brains which shapes the infinitesimal characteristics of our brains (Eagleman, 

2015), therefore influencing our thinking, perspective of life and who we are as individuals. This 

encompasses everything from opportunities and location to personal experiences, conversations 

and media to culture. Due to the nature of life, this is a continuous process; thus, with every 

passing moment of your life you are altering your outlook on life and identity which is infinite. Each 

individual has an idiosyncratic experience leading to an intricate configuration of the individual’s 

NN (Eagleman, 2015).  

Even with the impressive ingenuity of the brain from a neural structural stance, it is unfortunately 

vulnerable to neurological diseases, damage and viral infections. Neurodegenerative diseases 

such as Alzheimer’s and Parkinson’s are the deterioration and / or loss of neurons, damaging the 

brain’s tissue and nerves and gradually causing permanent damage (van den Pol, 2009). An 

example of brain infections is Encephalitis which is inflammation that occurs in the brain. 

According to van den Pol (2009), viral infections pose the risk of irreparable or temporary 

neurological disorders, extending to psychiatric impairments. Psychiatric dysfunctions comprise 

a wide range of mental, behavioural and psychotic illnesses, such as clinical depression, 

obsessive-compulsive disorder and schizophrenia.  
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Damage to the brain is caused through either traumatic injury or nontraumatic injury. Car 

accidents or contusion and strokes are examples of traumatic and nontraumatic injuries, 

respectively. McAllister (2011) proposes that traumatic brain injury is a change in the functioning 

of the brain or memory loss or neurological deficits that are experienced by the individual and are 

generally caused by external forces, such as being struck by a foreign object. Strokes are defined 

as an obstruction of blood vessels, that is, clots are formed resulting in a significant depletion of 

oxygen to a section of the brain due to dead brain cells (Kuriakose & Xiao, 2020). 

The focus of this research is investigating tumours that are situated in the brain. From a medical 

perspective, tumours are defined as a multitude of neoplasms that form, each containing its 

distinctive characteristics composed of biology, the treatment that is required and the prognosis 

that it is associated with (DeAngelis, 2001; McKinney, 2004). In other words, tumours are groups 

of abnormal cells that manifest as cells grow and subsequently split beyond normal levels. Hence, 

tumours are collections of cells that undergo uncontrollable growth, often resulting in a mass. 

Tumours can be either benign (noncancerous) or malignant (cancerous) in nature. A critical factor 

of tumour classification as benign or malignant is that of the tumour’s invasive potential. The 

former is indicative of cells that are incapable of metastasizing, that is, not able to invade 

surrounding tissue or spread to the rest of the body. Along with the aforementioned 

characteristics, benign tumours more often than not grow at a slower rate than their malignant 

counterparts and tend to have distinct borders where the features of the tumour cells are generally 

more normal (Patel, 2020). Tumour progression, defined as the final stage in cancer development, 

is distinguished by the rapid growth rate and surrounding tissue invasion; it is seen to be the 

cause of benign tumours becoming cancerous and therefore, life-threatening (Clark, 1991). Most 

benign tumours are not life-threatening; nevertheless, consequential damaging effects on an 

individual’s health may ensue. As a direct result of potential tumour progression and detrimental 

health issues, it is advised that, if possible, benign tumours be surgically removed. 

Notwithstanding, benign tumours that have developed in the brain may be lethal owing to the 

position of the tumour within the brain, tumour progression and the potential of invading the 

surrounding tissue (McKinney, 2004). 

When tumours progress the result is malignancy, that is, the formation of cancerous cells. Cancer 

malignancies are distinguishable through a variety of characteristics. As mentioned previously, 

one of the defining features is that of invasiveness. Metastasis and anaplasia also contribute to 

the characteristics that form malignancies of cancer (Wilkins, 2009). Metastasis is the pathogen’s 

ability to spread and invade surrounding tissue from the primary to a secondary location, whilst 

anaplasia is where cells have deficient cell differentiation, that is, cells are unable to morph from 

one cell type to more specialised other cell types, thus losing structural differentiation along the 

way. Furthermore, Tuna and Amos (2013) suggest that genome instability is considered a 
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characteristic of cancer malignancy, while Swanton (2012) reviews the fact that cancers present 

with tumour heterogeneity. Uncontrollable and rapid malignant tumour growth can be the outcome 

of hereditary defective genetics. The concept of genomics and genes will be reviewed in more 

depth in section 2.2.  

As mentioned in Chapter 1, cancer remains one of the highest causes of mortalities as well as 

morbidities. There is neither a single definitive reason for this, nor a mechanism to prove why 

individuals develop cancer; malignancy is more likely an amalgamation of different rationales. 

However, research has made associations pertaining to the potential causes of cancer 

malignancies. Indications of malignancy development encompass genetics, the individual's 

hereditary history, exposure to environmental carcinogens, behavioural risk factors and infectious 

diseases. According to Anand et al. (2008), approximately 90-95 percent of cases of cancer, 

hence most instances, are due to genetic mutations from exposure to risk and environmental 

factors, whereas the remaining occurrences are due to hereditary genetics. It should be noted 

that risk factors should not be thought of as inherited but rather refer to behavioural, lifestyle and 

economic factors, whilst environmental risks are attributed to pollution and ionising radiation, for 

instance. Consequently, some cancers can be prevented and controlled through lifestyle choices.  

Prevention, early and accurate detection, prognosis and the correct course of treatment remain 

some of the best tools in the fight against cancer. As previously stated, brain tumours account for 

many a fatality worldwide. In order to reduce the incidence rates and increase survivability, it is 

imperative to have accurate and reliable brain tumour segmentation and detection in cancer 

diagnoses. This is a critical component and allows for treatment planning systems which are a 

key component in improved patient outcomes and success. Encouragingly, there are numerous 

biomedical imaging devices available that have undergone expeditious technological 

improvements. This has led to biomedical imaging techniques as an investigational tool becoming 

an integral part of clinical applications (Sun, Ng & Ramli, 2011). Accordingly, X-rays, computed 

tomography (CT) scans, positron emission tomography (PET) scans and magnetic resonance 

imaging (MRI) aid in the detection of brain tumours and if these are present, they can help 

differentiate the characteristics. When these conventional diagnostic imaging techniques are 

unsuccessful, imaging biomarkers are a solution. An example of this failure is in determining the 

margins of a tumour or the changes in the biological structure of the tumour. Hence, biological 

imaging can be used as a remedy to the problem.  

In addition to early detection, classification and grading of tumours form an integral part of the 

prognoses of brain malignancies which have an impact on the survival rates of the individual. This 

assists with treatment and management strategies that are put in place. The guidelines 

documented by the World Health Organization (WHO) constitute one such classification and 

grading system. Brain tumours are categorised by their histological similarities and molecular 
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structure. The grading range is from WHO grade I through WHO grade IV, from low grade to high 

grade, from best prognosis and highest chance of survival to worst prognosis and lowest chance 

of survival. To put this into context, an individual with a grade II (first malignant group) subtype of 

tumour has a median survival rate of anywhere between 5 and 16 years, whilst an individual with 

a grade IV subtype of tumour has a survival rate of between 9 and 12 months. It should be noted 

that there are factors that come to the fore, such as age, general health, the size and location of 

the tumour, response to treatment and full or partial surgical resection of the lesion (tumour).  

Paediatric brain lesions present very different to those in adults. Malignant brain tumours in 

children are considered to be the second-highest leading cause of cancers and one of the 

principal causes of mortality. A more in-depth review is given in section 2.5.     

2.2 THE BRAIN AND GENETIC MAKEUP 

The expanding ability to understand genes on a molecular level through sequencing, such as 

deoxyribonucleic acid (DNA) sequencing, ribonucleic acid (RNA) sequencing and microRNA, 

second-generation sequencing, has facilitated a new understanding of cancer development. 

Briefly, Weinberg (1996) describes the cancer process as when cells start to proliferate at their 

own rate, that is, the cells start to grow and divide uncontrollably in comparison to normal healthy 

cells, which reproduce only when required to ensure the correct number and size. When these 

changes occur when the cell divides and the gene is either lost or damaged, it is referred to as a 

mutation. In instances where the cells pursue their own guidelines, they may grow irrepressibly 

and start to spread from the original position and infiltrate the surrounding tissue (Weinberg, 

1996). In essence, what this means is that sequential mutation in genes because of cancer results 

in the function of the cell changing (Hassanpour & Dehghani, 2017). Furthermore, mutations 

influence the undertakings of proteins, essentially influencing the number; that is, either making 

countless proteins leading to cell division or not making proteins at all, usually indicating to a cell 

to not divide (Weinberg, 1996; Cancer Research UK, 2020).  

An extraordinary occurrence of mutations of the cell lineage (developmental history of cells from 

where they originate) within the genome is known as genome instability. From a cancer 

perspective, the literature offers contradictory perspectives on when genome instability occurs. 

On the one hand, genome instability is a direct repercussion of genetic alterations which lead to 

tumour formation or contrarily, happens during tumour progression (Corcos, 2012). In a paper by 

Aguilera and García-Muse (2013), genome instability signifies the damage to DNA or defects in 

DNA replication and consequently this is linked to chromosome disintegration and loss, genome 

rearrangements and hyper-recombinations. 

Tumour heterogeneity is defined as the profile of tumour cells, that is, comprising morphological 

and physiological aspects (Marusyk & Polyak, 2010). Morphological features are those of the 
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structure of organisms, whereas physiological features are the study of the function of organisms. 

Tumour heterogeneity transpires as intra-tumour heterogeneity (within tumours) as well as inter-

tumour heterogeneity (between tumours). Cancer stem cell (CSC) models can be used to explain 

the heterogeneity of tumours. Scientific evidence shows that cancer evolution is necessitated 

through only a minimal number of tumour cells that have comparable attributes to stem cells 

(Ebben et al., 2010). A study by Singh et al. (2003) provides some evidence of CSC in brain 

tumours where, specifically, the brain tumour stem cell self-renewal (the ability to divide and retain 

the same cell) is lowest in low-grade gliomas versus medulloblastoma (highest stem cell self-

renewal). This provides alternative strategies and potentially more efficacious cancer treatment 

strategies. 

Methodologies can be applied to gain insight into tumours and cancer susceptibility. For instance, 

cognisance of (brain) tumours can be obtained with the assistance of DNA microarray analysis 

through gene expression patterns (Diehn et al., 2008) whilst gene expressions obtained through 

microRNAs, in other words alterations of the microRNA expression profiles, can lead to improved 

cancer classification and how they react (Lujambio & Lowe, 2012). Hence, when cancerous cells 

are dismembered and broken down to their molecular proponents this reveals a great deal about 

the causation of cancer (Hanahan & Weinberg, 2000).  

The scientific community has engaged in discussions on genetic factors compared with epigenetic 

abnormalities and their respective associations with cancer. Concerning brain malignancies, there 

is some evidence that there is a germline mutation that is inherited in the tumour suppressor gene 

(normalises a cell during division) (Reilly, 2009). Furthermore, the paper by Pan and Prados 

(2003) indicate that brain tumours are supplemental to familiar cancers, amongst others Li-

Fraumeni syndrome, neurofibromatosis and von Hippel-Lindau disease. Therefore, there is an 

increased risk of brain tumours in individuals as they carry the initial gene that can then mutate. 

Epigenetics is defined as hereditary changes in gene expression; however, there are no 

alterations in the accompanying DNA sequence (Holliday, 1987). In cancer there are multiple 

epigenetic abnormalities in every genome, therefore modifications that are made to genes as a 

result of epigenetic processes (such as gene silencing) lead to mutations and therefore, 

uncontrolled cell growth and tumour progression (Jones & Baylin, 2007). Jones and Baylin (2007) 

conclude that for insight on how cancer develops and for therapeutic interventions, mechanisms 

of epigenetics and genetics are prevalent at all the phases of cancer.  

2.3 TRADITIONAL DIAGNOSTICS OF BIOMEDICAL IMAGING 

The field of biomedical imaging (radiology) has seen exponential developments over time and 

recent advancements and consequently many a new application is possible. Therefore, it has 

become a critical component that has to lead to interdisciplinary collaboration amongst different 
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speciality fields. Before moving into the imaging techniques available, it should be mentioned that 

biomedical imaging is first and foremost a method and process whereby the interior of the body 

is accessed and visualised in the form of a structural or functional image. With the emphasis on 

the brain, functional images refer to identifying the principal processes of the brain (the 

functionality of the brain), that is, the execution of behavioural or cognition tasks (Le Bihan, 2020). 

Conversely, structural images, as the name implies, refer to obtaining visuals of the structure of 

the brain, that is, if any abnormalities have formed. For instance, blood clots, bleeding or tumours 

which may have developed in the brain, the latter being the primary aim of the analyses of this 

research.  

Obtaining these images serves a three-fold purpose. The first is for therapeutic reasons; this 

entails the process whereby radiation is used in the treatment of cancer. Dependency on MRIs 

for image-guided radiation therapy is on the ascendancy, with the intention of more successful 

and efficient treatment of malignancies (Jordan, 2020).    

The second purpose is for interventional radiology; this is used as support for image-guided 

surgeries, for example resecting a brain tumour in the safest way possible.  

This third purpose is diagnostic: it assists in the screening of ailments (such as tumours) as well 

as not only recommending a treatment plan but also establishing whether the treatment is 

working. There is a broad spectrum of diagnostic imaging tools that are at the disposal of 

radiologists. X-rays, CT scans, PET scans and MRI scans comprise some of the more common 

biomedical imaging tools, but this is by no means an exhaustive list. Confirmation of the colossal 

impact these diagnostic tools have had and continue to have is that their respective inventors 

received Nobel prizes for their contributions to the fields of physics and medicine (Le Bihan, 2020). 

These techniques are considered to be non-invasive as few, if any, surgical incisions are made.  

The discussion below is intended to garner insights into the mechanics and workings, the 

advantages and disadvantages and the impact these diagnostic tools have had on the 

classification, segmentation and detection of brain tumours, in particular. Detecting brain tumours 

early on has the added benefit of not only enhancing the survival odds of patients but also being 

critical for patient treatment options.    

2.3.1 X-rays 

X-rays were the first major discovery in the area of imaging back in 1896 (Le Bihan, 2020), paving 

the way for medical applications capable of visualising the inner body. The mechanism behind X-

rays is a form of radiation through electromagnetic waves (Attwood, 2000) that produces a visual 

of the structure of the inner body. Since X-rays are a type of radiation, they have both positive 

and negative implications for cancer. On the downside, exposure to (low doses) of radiation is 

detrimental to an individual’s health in that it increases the risk of cancer, identified as radiation-
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induced malignancies. Contrariwise, radiation therapy can be used as a treatment strategy and 

therefore, therapy in the treatment of cancer. Another shortcoming of early X-ray imaging was 

that shadows were created on the images and that only bones could be visualised; however, over 

time this has improved significantly (Le Bihan, 2020). 

2.3.2 Computed tomography scans 

To counter the effects of X-rays, CT scans were invented. This solution introduced the idea of 

taking sequences of slices of two-dimensional X-rays that were computed in numerous directions 

(Herman, 2009). Hence, CT scans, as the name suggests, make use of X-rays that can be 

manipulated and adjusted through the use of computers (obtaining the slices as required). The 

advantages of CT scan imaging are that it solved the issue of shadows and secondly, that it 

became the first method of visualising the human brain entirely noninvasively (Le Bihan, 2020). 

As the primary resource is still X-rays, the knock-on effect is that CT scans are also a source of 

increased malignancy risks. According to Hall and Brenner (2008), CT scans are frequently used 

and therefore those exposed to the radiation in the underlying X-rays may have an increased 

chance of developing cancer - X-rays are a proven carcinogen to humans.  

2.3.3 Positron emission tomography scans 

PET scans were next on the timeline of diagnostic radiographic tools. Briefly, the underlying 

mechanisms of PET scans are radioactive decay and the process by which radiotracers 

(radioactive compounds) are injected into the patients' bloodstream (Wong et al., 2003). The 

technicality of physics describing in detail how a PET scanner works (id est, positrons and 

electrons) is not addressed within this section, as the focus is placed on MRI images due to the 

datasets obtained and analysed in Chapter 4.  

PET scans are integral to the field of nuclear medicine and as a diagnostic tool for a host of clinical 

applications. With cancer in general and the brain in particular, PET imaging has contributed to 

cancer diagnosis and management which encompass an extensive list of categories, including 

(Bailey et al., 2005): 

• Malignancy diagnosis: determining whether a tumour is benign or malignant; 

• Malignancy grading: grading of tumours and hence, the garnering of prognosis information; 

• Disease staging: the extent of the cancer and how and where it has spread within the body; 

• Identifying recurrences: if the cancer is not in remission and has returned; 

• Therapy response: determining the efficacy of the treatment, both the initial and adjuvant 

therapy. 
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Anand, Singh and Dash (2009) state that in terms of the points listed above, PET scans in practice 

are less consistent in picking up low-grade gliomas versus high-grade gliomas (refer to section 

2.4); consequently, this is regarded as a shortcoming of PET imaging.      

Concerning the brain, CT scans were only able to reveal lesions in the brain such as tumours but 

information on the structure and functionality of the brain was deficient (Le Bihan, 2020).To 

produce functional images of the brain radiotracers need to be able to pass the blood-brain barrier 

(Berggren et al., 2002) and to secure the image these radiotracers have to stay in the brain for 

the full duration (Wong et al., 2003). 

2.3.4 Magnetic resonance imaging 

Lastly, advancements in technology and the need to solve the issues of all its predecessors led 

to the development of the MRI as a diagnostic tool. Images produced by MRI scanning allow 

meticulous visualisation of the brain due to the interaction of biological tissue and the quantum 

mechanics (applied in physics and chemistry) of MRI machines (Le Bihan, 2020). MRI machines 

entail the use of strong magnetic fields and therefore Jordan (2020) describes the core process 

as being nuclei that contain magnetised moments, that is, the strength of an object’s ability to 

create a magnetic field, to become magnetic and to contain magnetic properties. Hence, the 

nuclei of biological tissue and cells that contain magnetic properties show up on the image that is 

produced. In particular, water molecules (two hydrogen atoms and one oxygen atom) are the first 

components to be magnetised when placed in an MRI machine; that is, the hydrogen nuclei send 

a signal which is processed to form the image based on the density of the nuclei that are enclosed 

in that area of the body. This creates an ideal scenario in the construction of images, as the 

organs in the human body contain more than 70 percent water and even more in the brain (Le 

Bihan, 2020), thus making MRI imaging of the brain a commonly used diagnostic instrument.  
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Figure 2.1: Multimodality MRI images of brain tumours 

Source: Usman and Rajpoot, 2017. 

Figure 2.1 is indicative of multimodal MRI images of brain tumours where independent relaxation 

processes are given in (a) and (b). Panels (a) and (b) represent T1 and T2 relaxation processes, 

respectively. A contrast agent has been added to produce image (c), referred to as T1c and finally, 

image (d) represents a fluid-attenuated inversion recovery (FLAIR). These categories of images 

are analysed in section 4.3 of this research.  

Signals that are produced in the construction of MRI images imply that these nuclei should be in 

phase with one another (Jordan, 2020). When the nuclei are no longer in phase with one another, 

this results in T2 decay (relaxation) whilst when the nuclei return to the state of equilibrium this is 

referred to as T1 relaxation (Jordan, 2020). T1-weight images are generated where the shortest 

repetition time (TR) and time to echo (TE) are used; on the contrary, T2-weighted images are the 

result of using longer TR and TE times (Preston, 2016). The time lapse between when the echo 

receives the signal and when the radio frequency pulse is sent is known as the TE time, whilst 

the TR time is defined as the period that is observed when consecutive pulses are transmitted to 

the same slice (Preston, 2016). T1c depicts a T1 image but where a contrast agent is injected 

during the scan. With regard to medical images, adding a contrast allows for enhancements of 
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the structure of the bodily area under observation (Ruba et al., 2020) by reducing the T1 signals 

through the use of gadolinium, a non-hazardous contrast agent (Preston, 2016). Finally, FLAIR is 

the procedure by which the signals that are produced from fluids is either nullified or significantly 

diminished through inversion recovery (Hajnal et al., 1992). Inversion time (TI) is defined in 

Bernstein, King and Zhou (2004) as being the time lapse observed between a radio frequency 

pulse and the inversion pulse. The nullification of fluids can be decided upon by how the TI time 

is selected, as expressed by the formula (Bernstein, King & Zhou, 2004): 

𝑇𝐼𝑛𝑢𝑙𝑙 = 𝑇1 ln 2    𝑎𝑠 𝑇𝑅 → ∞  (2.1) 

For instance, with brain images attempts are made to nullify the effects of cerebrospinal fluid, 

therefore the aim is to signal fat over water, thus a long TI time is required. 

Table 2.1 represents low and high signals that are obtained using different MRI modalities as 

described above, that is T1-weighted, T2-weighted and inversion recovery (FLAIR) images for 

different tissues, illnesses or how paramagnetic contrast agents react.   

Table 2.1: Signals from different tissues/illnesses/contrast agents on T1-weighted, T2-

weighted and FLAIR MRI images 

Signal T1-weighted T2-weighted Inversion recovery 
(FLAIR) 

Low Bone Bone  

Air Air 

Tissue with more water 
content, such as 
tumours, inflammation 
and infections 

Protein-rich fluids 

High Fat  Tissue with more water 
content, such as 
tumours, inflammation 
and infections 

Multiple sclerosis 

Subacute haemorrhage 

Protein-rich fluids Meningitis 

Contrast agents, id est, 
gadolinium and copper 

Melanin Subarachnoid 
haemorrhage 

Slow-flowing blood 

Source: Johnson, no date; Mamourian, Hoopes and Lewis, 2000; van der Kolk et al., 2013; 

University of Wisconsin, 2017. 

In conclusion, based on the information in Table 2.1 above and Table 2.2 (a list of the advantages 

and disadvantages) below, the promising advancements in MRI imaging have made it a firm 

favourite with physicians. The advancements include the developments in computing power (and 

hardware) to bring MRI image visualisation to the forefront in interdisciplinary research. Therefore, 

MRI imaging as a diagnostic tool addresses multiple analyses in clinical oncological applications, 
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from identifying the existence of tumours and classifying the type of tumour to assessing the 

effectiveness of therapy response (refer to the last bullet point in section 2.3.3) (Louis et al., 2007; 

Cai & Hong, 2018). Furthermore, as Jordan (2020) explains, the progress has made new 

applications possible, for instance using MRI as a tool for image-guided surgeries and 

interventions as well as focused ultrasounds. However, certain tumour types such as gliomas 

(refer to section 2.4) infiltrate the brain and thus traditional imaging tools are not optimal (Price & 

Gillard, 2011). The authors therefore suggest making use of biomarkers to investigate the 

pathological changes (that is, changes in the nature of the disease) that occur within brain 

tumours. Additionally, this makes allowance for determining the margins of the tumour and 

consequently, for planning the best course of treatment to be followed (Price & Gillard, 2011).  

Table 2.2: Advantages and disadvantages of MRI imaging 

Advantages Disadvantages 

Less of a financial burden (reduction in costs) and 
more readily available 

Burns from energy disposition 

Avoiding exposure to ionising radiation Much louder (auditory loss in patients) than other 
imaging modalities 

Higher spatial resolution in images Patients with medical implants made of metal are 
unfit to undergo an MRI scan without danger 

Segregating soft tissue with more efficacy   

Discriminating between healthy and diseased 
tissue (in malignancy - cancer-related illnesses) 

 

Source:  Sheejakumari and Sankara Gomathi, 2015; Grover et al., 2015;                           

Panych and Madore, 2018; Jordan, 2020. 

2.4 BRAIN TUMOURS DISSECTED 

Classification of brain tumours, with emphasis on malignant cases, reveals information about the 

prognosis and guides a treatment strategy. Depending on the type of tumour, the classification 

also indirectly indicates the 5-year survivability percentage and the chances of remission. It should 

be noted that each case presents unique features and is dependent on many factors (behavioural 

risks, age, comorbidities, et cetera) and as a result each case should be handled on its own 

merits, with the available statistics used as a guideline. As mentioned, brain tumours (benign or 

malignant) are exceptionally rare and due to the protected location in the brain, treatment options 

can result in lasting damage, morbidity and in some instances even mortality. One of the main 

attributes that brain tumours have compared to other tumours is related to the distinctive features 

of the brain as an organ and that is the blood-brain barrier (BBB). Separation of the central 

nervous system (CNS) and the peripheral circulation is created as a result of the BBB composition 

(Obermeier, Daneman & Ransohoff, 2013). Hence, the BBB acts as a mechanism to protect the 
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brain from fluids (pathogens) that carry infectious diseases being circulated through and into the 

CNS. Therefore, brain tumours result from an interference of the BBB (Herholz et al., 2012).  

Brain tumours are diagnosed and classified according to a few characteristics as documented by 

the WHO. In 2016, the revised WHO document indicated that tumours should be classified or 

diagnosed according to molecular parameters in addition to the original criterion of only 

microscopic histological similarities, with supplementary information provided through genetic 

status (Louis, Perry, Reifenberger, von Deimling, Figarella-Branger, Cavenee, Ohgaki, Wiestler, 

Kleihues & Ellison, 2016).  Furthermore, it is imperative that cancerous brain tumours are graded 

according to the associated malignancy. With the 2016 addendum, these grades are categorised 

as WHO grade I through WHO grade IV. The scale indicates that grade I tumours have the best 

prognoses due to being the least advanced (benign) through to grade IV tumours that have the 

worst prognoses as they are the most aggressive (highest malignancy) form of cancer.   

Table 2.3 shows the four grading classes of brain tumours according to the WHO (2016), where 

Grades I and II are described as low-grade tumours whilst Grades III and IV constitute high-grade 

tumours. Moreover, the evaluation of tumours and eventual determination of the grade of the 

tumour are based on the parameters for the differentiating categories listed along with limited 

tumour subtype examples.  

Primary tumours (id est, tumours that originally occur in the brain or surrounds) are grouped 

according to glial (containing glial cells) or nonglial (based more on the structure of the brain such 

as blood vessels and nerves) (American Association of Neurological Surgeons, 2021). The focus 

in future will be placed on brain tumours that originate in the glial cells, more commonly referred 

to as gliomas. Moreover, glial tumours can be subdivided into astrocytic and oligodendroglial 

subtypes (Kleihues & Cavenee, 2000) and this is determined from the histological features’ 

similarities that are detected in particular cells. Deweerdt (2018) states that in adults gliomas are 

the principal form of brain cancer and the existence of two genetic alterations. The first is the 

possibility of a gene mutation which is known for energy production in cells (a phenomenon known 

as enzyme isocitrate dehydrogenase: IDH); the second is the result of co-deletion (loss of part of 

the genome) (Deweerdt, 2018). Gliomas are responsible for 30 percent of all CNS, including brain 

tumours, together with the grim statistic of accounting for 80 percent of malignant tumours 

(Goodenberger & Jenkins, 2012). With regard to genetics and whether there is a link between 

family hereditary risks and cancer, studies have concluded that specified mutations can be 

associated with the disease. In particular, according to Deweerdt (2018), 5-8 percent of gliomas 

are a consequence of family genetics.  

As indicated in Table 2.3, these types of tumours can be either low-grade or high-grade. In the 

case of oligodendroglial tumours, an example of a low-grade tumour is oligodendroglioma, whilst 

a high-grade instance is that of anaplastic oligodendroglioma. As previously mentioned, WHO 
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grade IV tumours have the poorest prognoses and consequently, the lowest survival rate; this is 

confirmed as the survival is approximately 9-12 months in the case of glioblastomas (Maher et 

al., 2001). These survival rates differ from paper to paper. Bleeker, Molenaar and Leenstra (2012) 

show that grade III tumours have a slightly higher survival rate of 3 years but still significantly 

worse than low-grade tumours. There is more optimism about the prognoses and subsequent 

survival rate of low-grade tumours. Varying survival rates are given for low-grade (WHO grade II) 

tumours, ranging from approximately 11-17 years according to different studies. However, this 

said, about 70 percent of low-grade (WHO grade II) gliomas will progress within 5-10 years to 

grades III and IV (Maher et al., 2001). 

Table 2.3: Grading of brain tumours (lesions) according to the WHO (2016) with case 

examples 

Grading  Parameters/Characteristics Tumour examples 

Low-Grade WHO Grade I Least malignant, hence 
actually a benign tumour 

Meningioma 

Low proliferation index: low 
tumour progression; high 
therapy response; higher 
survival rates 

Plastic astrocytoma 

Resection via surgery should 
allow for complete 
rehabilitation 

Ganglioglioma 

Noninfiltrative: does not 
invade surrounding tissue  

Angiocentric glioma 

WHO Grade II Infiltrative to a certain 
degree: usually invades 
surrounding tissue 

Astrocytoma (low-
grade fibrillary 
astrocytoma) 

Low proliferation index Oligodendroglioma 

Tumour progression: 
advance to higher 
malignancy grades 

Extraventricular 
neurocytoma 

High-Grade WHO Grade III Histological evidence and 
obvious malignancy  

Anaplastic 
Oligodendroglioma 

Infiltrative Choroid plexus 
carcinoma 

Exerts tumour progression Anaplastic 
ganglioglioma 

WHO Grade IV Highest malignancy category Glioblastoma  

Extensive infiltration index Pineoblastoma 

Aggressive and rapid growth 
rate 

Medulloepithelioma 

Source:  Louis, Ohgaki, Wiestler, Cavenee, Ellison, Figarella-Branger, Perry, Reifenberger & 

von Deimling, 2016; American Association of Neurological Surgeons, 2021. 
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Figure 2.2 represents the different types of brain tumour per age group associated with the 

number of instances per 100 000 of the population in the United States of America. The incidence 

rates were obtained from the period 1992-1997 and collected via the Central Brain Tumor Registry 

of the United States (CBTRUS). 

 

Figure 2.2: Incidence rates of brain tumours by histological type 

Source: Wrensch et al., 2002. 

The analysis performed in Chapter 4 section 4.3 considers the classification of low-grade gliomas 

versus high-grade gliomas. 

The subsections below will offer some insight into some of the tumour types, their genetic make-

up, prognoses and treatment strategies that can be applied.  

2.4.1 WHO Grade I tumours 

WHO Grade I tumours are defined as mostly benign, slow growing, generally fully resected via 

surgery and seldom showing signs of progress to malignancy. Herholz et al. (2012) suggest that 

Grade I gliomas are more frequent in children than adults. 
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2.4.1.1 Ganglioglioma 

As mentioned before, gangliogliomas are associated with being rare, low-grade tumours that grow 

slowly and do not invade surrounding tissue. Only about 1-2 percent of brain tumours are 

categorised as gangliogliomas, which is indicative of the rarity of the tumour type, with the majority 

of cases found in children (Brain Tumour Research, 2021). 

The structure of gangliogliomas is mixed cell as they contain both glial cells and neuronal cells 

(Boston Children's Hospital, 2005-2021). Treatment is via surgical removal of the tumour and in 

95 percent of the cases this is fully resected and the tumours are inclined to not reappear (Brain 

Tumour Research, 2021). Factors such as location, size and genetic alterations are also 

considered as factors in surgical removal.  

From a genetic point of view, two different mutations are present in gangliogliomas. Firstly, studies 

have shown that roughly 10-60 percent of this type of tumour contains the BRAF V600E genetic 

mutation (Brain Tumour Research, 2021). Furthermore, the mutation of the tumour protein p53 

has also been found in the glial cells of gangliogliomas (Brain Tumour Research, 2021).  

2.4.2 WHO Grade II tumours 

WHO grade II tumours infiltrate surrounding tissue to a certain extent and usually progress to 

WHO grades III and IV. WHO grade ll tumours tend to have higher survival rates than WHO 

grades III and IV.  

Taking genomes into account, IDH mutation, as well as the 1p and 19q co-deletion, is observed 

in oligodendrogliomas, whilst the structure of astrocytoma is the presence of the IDH mutation but 

the 1p and 19q co-deletion remains unbroken (Deweerdt, 2018).  

2.4.2.1 Low-grade fibrillary astrocytoma 

For all intents and purposes, astrocytoma refers to low-grade fibrillary astrocytoma (WHO grade 

II tumours). Astrocytoma brain tumours, at least the low-grade form, are more frequent in young 

adults, whilst the higher-grade astrocytomas are prevalent in more senior individuals.  

From a genetic perspective, astrocytomas have the IDH gene mutation but the 1p and 19q co-

deletion remains intact.  

Treatment is an ongoing source of disagreement amongst neuro-oncologist colleagues; some of 

the literature suggests that surgical intervention improves a patient’s outcome (survival rate) whilst 

other sources are of the opinion that surgical intervention should be postponed or not take place 

if the illness is correctly managed (Bampoe & Bernstein, 1999). Surgery is complicated and may 

not be a viable option due to the vast area these tumours invade within the brain; as a nonsurgical 

intervention radiation therapy has produced the most effective outcomes (DeAngelis, 2001).  

Unfortunately, most astrocytoma brain tumours progress to more malignant gliomas (DeAngelis, 
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2001), that is, WHO grade III and IV tumours result. The literature gives varying percentages for 

survival rates, with the median survival being 5 years; however, in some instances patients pass 

away early on although other patients survive for more than 8 years (Vertosick Jr, Selker & Arena, 

1991). The main reason for early mortality and a low survival rate is tumour progression.   

2.4.2.2 Oligodendroglioma 

In the majority of oligodendroglioma cases that are diagnosed, they can be categorised as low-

grade tumours where there is some doubt in differentiating this type of tumour from astrocytomas 

(DeAngelis, 2001). Hence, due to the difficulty in classification through diagnostic imaging tools, 

biopsies are performed for definitive diagnoses. Thus, the histological parameters (gene 

mutations or molecular changes) are critical when diagnosing these tumour types. 

Notwithstanding, imaging tools are used to determine the location and the size of the tumour. 

Oligodendrogliomas constitute roughly 5 percent of all malignant brain tumours (DeAngelis, 

2001).  

Barbashina et al. (2005) state that there is a 70-85 percent loss in the 1p deletion in combination 

with 19q deletion. Furthermore, a study by these authors shows that in 83 percent of cases there 

is a mutation in the 1p gene, whilst in 72 percent of cases there is a mutation in the 19q gene. 

Hence, the 1p and 19q mutations are a vital criterion when diagnosing, and determining a 

prognosis for, oligodendroglioma tumours.  

Treatment systems for oligodendroglioma tumours are of concern. Some studies show that 

current treatments are not useful and therefore treatment is postponed until serious health issues 

occur in patients or there are signs of tumour progression (DeAngelis, 2001). That is, due to an 

increased risk of morbidity accompanying surgery, chemotherapy or radiation will be deferred and 

only symptoms will be treated. Surgical resection of oligodendroglioma tumours is generally not 

a viable option due to tumours infiltrating surrounding tissue. Traditional treatments do not 

increase the overall survival of patients with this type of tumour. Should the need arise, traditional 

treatment plans can be administered but studies have shown that irrespective of the treatment 

used, the outcome (patient survival) is not affected (DeAngelis, 2001). According to research the 

median survival rate of patients with oligodendroglioma tumours can vary from 10 years to 16 

years (Olson, Riedel & DeAngelis, 2000; DeAngelis, 2001).  

2.4.3 WHO Grade III tumours 

WHO grade III tumours are known to invade surrounding tissue and can result in tumour 

progression to grade IV.  
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2.4.3.1 Anaplastic oligodendroglioma 

Once a patient has been diagnosed with anaplastic oligodendroglioma, a treatment strategy is 

required. The standard procedure is neurosurgical removal of the malignant tumour followed by 

chemotherapy. Surgery is dependent on the location of the tumour. In most cases, oncologists 

will first determine whether the tumour (partial in the case of unsuccessful full resection) is 

responding to the chemotherapy before administering radiation therapy (DeAngelis, 2001). The 

statistics proposed by Liu et al. (2019) indicate that the 5-year survival rate for patients with 

anaplastic oligodendrogliomas is 50.2 percent, whilst the 10-year survival rate is 36.2 percent 

compared to a significantly higher 1-year survival rate of 78.7 percent. 

Anaplastic oligodendrogliomas originate in the glial cells. As mentioned, anaplastic 

oligodendrogliomas have genetic mutations or deletions; these comprise the IDH mutation as well 

as the 1p and 19q co-deletion.  

2.4.4 WHO Grade IV tumours 

These tumours are categorised as the most aggressive and the fastest-growing malignant 

tumours. They present with an extensive ability to infiltrate surrounding tissue and often recur. 

WHO grade IV tumours are also the most malignant, with a dire survival rate and prognosis.  

2.4.4.1 Glioblastoma  

Glioblastoma is the most aggressive form of malignant brain tumours. Of all brain tumours, 15 

percent are glioblastomas, and no less than 80 percent of malignant gliomas are classified as 

glioblastomas (Radhakrishnan et al., 1995; Ostrom et al., 2014). Additionally, glioblastomas 

account for 60-75 percent of all astrocytic tumours as well as approximately 46 percent of primary 

malignant tumours (Ostrom et al., 2014). The prognosis for brain cancer is ominous with an 

extremely low survival rate, even more so if the patient does not receive treatment. To put this 

into context: approximately 5 percent of patients survive for more than five years (Gallego, 2015).  

The prescribed course or standard treatment for patients that have glioblastoma is surgery (partial 

or full resection) followed by adjuvant therapy. This is usually chemotherapy or radiotherapy. 

However, due to the increased chance of reoccurrences, surgical procedures might not be a 

viable option the second time around and therefore nonsurgical options are also considered 

(Gallego, 2015) along with immunotherapy (National Cancer Institute, 2018). The treatment of 

glioblastoma is aggressive and those that do survive for longer than the median survival rate of 1 

year are patients where complete resection of the tumour is possible and the generalisation is 

that these patients are young and in decent health (DeAngelis, 2001).  Treatment may also result 

in lasting damage to the brain and indirectly to the health of the patient. Furthermore, according 

to Gallego (2015), the incidence rate is that 3.19 cases per 100 000 people are susceptible to 

developing glioblastomas per year.  
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The structure of primary glioblastomas (also known as IDH-wildtype glioblastoma) consists of two 

mutations in the genes: firstly, the p16 deletion (associated with the growth factor receptor) and 

secondly, mutations in phosphatase and tensin homologues (DeAngelis, 2001). Furthermore, 

secondary glioblastomas (referred to as IDH-mutant glioblastoma) have mutations in the p53 

gene along with other alterations (DeAngelis, 2001).  

2.5 PAEDIATRIC BRAIN TUMOURS 

Paediatric brain tumours account for the majority of solid tumours in children (Baldwin & Preston-

Martin, 2004; Subramanian & Ahmad, 2020), while being the second-highest source of paediatric 

malignancies after leukaemia (Zahm & Devesa, 1995; Subramanian & Ahmad, 2020). Moreover, 

as mentioned before, paediatric brain tumour malignancies (cancer) are the primary cause of 

mortality amongst children. This continues to be the case although there has been significant 

progress in surgical techniques and adjuvant therapy, that is, cancer treatments administered 

after initial treatment - for instance, chemotherapy, radiation therapy and hormone therapy (Singh 

et al., 2003).  

Globally, the incidence and survival rates of children with paediatric brain tumours are different. 

A study by Johnson et al. (2014) summarises the incidence and survival rates for different nations 

associated with varying periods, breaking down the rates by age, type of brain cancer (histology), 

gender and per 100 000 of the childhood population. Some of the rates are computed with a 95 

percent confidence interval. This means that with 95 percent certainty, the true population mean 

will be contained in the interval. For instance, the overall incidence rate for all central nervous 

system (CNS) paediatric brain malignancy tumours in Europe at the time of the study was 2.99 

cases per 100 000 children, whereas Japan had a slightly higher overall incidence rate of 3.61 

cases per 100 000. The incidence rate for all CNS tumours in the age category 0-4 years 

contributed the greatest number of cases per 100 000 in Europe, whilst for Japan the age 

category was 5-9 with a rate of 4.09 per 100 000. The same study shows the survivability rates, 

with the prediction often made after 5 years, known as the 5-year survival rate. Conversely, the 

study alludes to different survival periods, such as 1 year, 5 years and 10 years, along with a 

specified confidence interval of 95 percent for some regions. For example, for all CNS tumours in 

the United States of America having a favourable prognosis declines from a 1-year survival rate 

to a 10-year survival rate. That means that the percentage of children with CNS tumours that are 

alive (whether the cancer is in remission or not) after 1 year (85.2 percent) is remarkably higher 

than 10 years (68.2 percent). There is not much difference between the 5-year survival rate (72.3) 

and the 10-year survival rate.  

Prognoses and survival rates vary greatly. Determining the prognoses of paediatric brain cancer 

involves a multitude of factors that include the location of the tumour, the degree to which the 
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tumour has been resected and the classification (referred to as the histological type) of the 

tumour; establishing these is advantageous in terms of survival rates and survival odds. 

Classification (histological type) of brain tumours in children is significantly different to that of 

adults where the categories are usually supratentorial tumours, infratentorial tumours and 

congenital brain tumours (Herholz et al., 2012).  

As pointed out in the introduction of this chapter, there is no direct understanding of why brain 

tumours develop in children, even with all the medical expertise and resources that are available. 

Moreover, it is not a single factor that is at play but a combination of factors, be it genetics and 

environmental carcinogens or infectious diseases.  

Firstly, with regard to infections, research conducted to ascertain whether early childhood 

infectious exposure leads to an increase or a decrease in paediatric brain tumour risk has led to 

opposing views. Harding et al. (2009) theorise that infants who have come into contact with other 

children daily (id est, attended kindergarten) within the first two years do not have a significantly 

increased risk of developing CNS tumours compared to those who have not been around other 

children. Furthermore, the authors conclude that based on their findings there is no evidence to 

support the hypothesis that young children who have been exposed to infections have an 

increased risk of developing brain tumours. On the other hand epidemiological studies (Linet et 

al., 1996; Linos et al., 1998; Dickinson, Nyari & Parker, 2002; McNally et al., 2002) do point to an 

increased risk of paediatric brain tumours and some association between paediatric brain tumours 

and infectious diseases that young infants (within the first few months of life) have been exposed 

to. 

Children exposed to environmental factors are at increased risk of paediatric brain tumours. The 

environmental factors that are responsible for malignancies in adults are identical to those in 

children. Exposure to high-dose radiation is associated with being the most frequent reason for 

augmented childhood cancers, such as leukaemia and brain cancer (Zahm & Devesa, 1995).  

Lastly, links between genetics (hereditary family history) and the chance of developing a certain 

histological type of brain cancer have been proposed. Hereditary genetic defects are responsible 

for instigating 40 percent of all instances of specific medulloblastomas, one of the most detectable 

cancer malignancies in children (European Molecular Biology Laboratory, 2020). 

The sustained improvements in biomedical imaging (refer to section 2.3) lead to early and efficient 

detection of paediatric brain tumours. Therefore, treatment strategies can be decided upon 

accordingly. There are several traditional treatment options available, amongst others, surgery 

(depending on the location of the brain tumours, full or partial resection is possible), chemotherapy 

and radiation therapy. However, according to Griesinger et al. (2013), there have been limited or 

no improvements in these treatments with detrimental side effects; as a consequence, the 
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researchers’ proposed solution entails the use of immunotherapy. Their lab studies discovered 

that children that had host immunity had improved odds of survival for certain histological brain 

tumours. Immunotherapy is a process where an artificial imitation of the immune system is created 

as a means to allow the natural immune system to fight cancer more effectively. 

2.6 SUMMARY 

Brain tumours are somewhat rare; nonetheless, malignancies in brain tumours remain a cause 

for concern and present challenges due to their high morbidity and mortality rates. Lesions, both 

benign and malignant, as well as the different grades as determined by the WHO guidelines have 

been highlighted in this chapter. Differentiating or classifying tumour types is a fundamental 

aspect of this research in that benign versus malignant tumours, as well as low-grade versus 

high-grade gliomas, are investigated and analysed in Chapter 4. However, questions about the 

causes of brain tumours - and cancer in general - are still unresolved. Due to the advancements 

in the research arena, insights are being gained into the causation, with evidence suggesting 

factors that contribute to malignancies. These range from environmental (including behavioural) 

risks to hereditary features. Exposure to ionising radiation (environmental carcinogen) increases 

the risk of being susceptible to brain tumours that may progress to more malignant stages. 

Hereditary genetic risk factors, such as carrying an initial cell mutation from familial cancer 

syndromes that cause brain tumours, are also a reason for malignant brain tumour vulnerability. 

Moreover, hereditary factors include genome instability - the process of uncontrolled mutation of 

the cell lineage - hence leading to genetic alterations which are associated with damage to the 

DNA or defective DNA replications. Epigenomic studies suggest that genes that undergo 

epigenetic procedures result in alterations to the gene expression which then impacts cell 

mutations and hence uncontrolled growth of tumours occurs. Thus, a predominant property of 

cancer is the alteration of gene expression patterns. Observing the alteration of genes has been 

made possible through sequencing techniques such as DNA sequencing, RNA sequencing, 

mircoRNA sequencing and second-generation sequencing. These methodologies have allowed 

for knowledge to be gained about an individual’s susceptibility to cancer but also the mechanics 

of how tumours develop and behave. Gene expression profiling also contributes to the 

classification of tumours. Genetics and gene expressions have been discussed in this chapter to 

highlight the link between brain cancer and familial conditions and which mutations in genes may 

result in cancer. While not explicitly made use of in this research, it constitutes potential future 

research.  

To devise strategies for the treatment and management of brain lesions, early and accurate 

detection remains a crucial undertaking. This applies to both adults and children, even though the 

appearance of malignant brain tumours varies. Because of the rarity of brain tumours and their 
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protected location in the skull, even with surgery full resection may not be possible and as a result 

patients may suffer long-term effects and permanent damage. Additionally, brain tumours have 

one of the highest mortality and morbidity rates of all the malignancies (cancers). Numerous 

diagnostic imaging tools are available and have gone through exponential advancements to 

produce images with astonishing detail that could be lifesaving. These imaging techniques have 

been discussed in this chapter, with emphasis upon the different multimodalities of MRI images 

owing to the fact that the data containing low-grade versus high-grade gliomas evaluated in 

Chapter 4 rely on the understanding of T1-weighted, T2-weighted, T1c and FLAIR MRI images. 

In addition, the malignant versus benign brain tumour data that are also studied and analysed in 

Chapter 4 make use of MRI images. Unfortunately, even with all the technology and treatments 

available, malignant brain lesions have dire prognoses and survival rates.  

The expertise of radiographers and physicians (oncologists and radiologists) to make these 

diagnoses is heavily relied on, yet it is a labour-intensive, time-consuming and momentous task. 

Fortuitously, with the prominence and emergence of biomedical imaging and the era of ‘big data’, 

advancing the development of more automated, or at the very least semi-automated, analyses 

has been gaining importance. Nevertheless, one of the main persistent challenges, not only in 

the field of bioinformatics but also in other realms, is that of transforming the copious amounts of 

data into knowledge and insights that are of benefit (Min, Lee & Yoon, 2017). AI has risen to 

prominence due to imaging modalities producing ‘big data’ (large quantities of data) but they have 

the added benefit of high performance, thus producing significantly accurate results. As to imaging 

techniques, deep learning and machine learning methodologies that can handle pattern 

recognition are gaining traction and receiving more attention. ML and DL algorithms have been 

influential in the field of bioinformatics; the focus of this research is biomedical imaging as a means 

to solving the research questions as well as complementing the expertise of physicians. The next 

chapter (Chapter 3) delves into the theoretical concepts of image classification in addition to the 

core principles of what AI, ML and DL entail. These techniques are investigated and explored as 

they have shown promising results and high performance in the literature on the classification of 

brain tumours (discussed in the following chapter). Furthermore, these techniques are then 

applied to the biomedical imaging data (benign versus malignant brain tumours as well as low-

grade versus high-grade gliomas discussed in Chapter 4) to distinguish between and classify 

these images with what is hoped will be high levels of accuracy.  

In conclusion, the brief theoretical and conceptual discussion of the differences between benign 

and malignant tumours as well as the different gradings, especially in the realm of brain lesions, 

serves to facilitate the exploration and analysis of the biomedical data in Chapter 4 of this research 

study. In addition, how these images are obtained is useful for understanding the principles for 

their use in the analyses - that is, the inherent features of biomedical images and what procedures 
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should be followed in order to obtain high performing classification results. Furthermore, this 

chapter provides an introduction as to which AI (ML and DL) techniques can be used to classify 

brain tumours, which are theoretically discussed in the next chapter. 
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CHAPTER 3 

STATISTICAL APPROACH TO IMAGE CLASSIFICATION 

3.1 INTRODUCTION 

ML and DL algorithms have been influential in the field of bioinformatics, from genomics to 

biomedical imaging and biomedical signal processing, as a means to solving research questions 

as well as complementing the expertise of physicians. Figure 3.1 is a visual of a keyword co-

occurrence network map. That is, the frequency with which techniques and technologies that are 

related to cancer are used in the research field. Each keyword in the figure is represented by a 

node (circle). Moreover, the magnitude (size) of the node is directly proportionate to the rate of 

occurrence of the keyword. In other words, the bigger the circle, the more prominent the search 

and applied techniques are. Additionally, the connection (lines) between the nodes is indicative 

of the relationship that occurs between the two keywords (in question) in the same article (or 

publications) in which it appears (Wang et al., 2019). Furthermore, Wang et al. (2019) specify that 

the scale of colours within the node represents the keywords appearing in the same year. What 

is evident from Figure 3.1 is that the network is densely populated and the connections between 

the nodes are relatively strong. This means that in this area of research, most articles or 

publications investigate more than one topic. Some concluding remarks include that in cancer 

research, amongst researchers, breast and prostate cancer dominate the field. Additionally, with 

regard to the emerging technologies applied in cancer research, the observation is that 

classification is a significant task that is performed and where ML algorithms, data mining, robotics 

and SVMs come to the fore.  

The techniques that are used in the empirical evaluation of brain lesions (in Chapter 4) and 

theoretically discussed (in this chapter) are those of 𝑘-NN, SVMs and NNs. Furthermore, there is 

a connection that shows that within the ML framework of techniques, SVMs seem to prevail (refer 

to Figure 3.1). In other words, SVMs are the preferred methodology amongst researchers.  

 

Stellenbosch University https://scholar.sun.ac.za



34 

 

 

Figure 3.1: Keywords co-occurrence network 

Source: Wang et al., 2019. 

With the revolution of big data and being able to access unprecedented volumes of data, the 

value of the data is no longer in the raw form but in transforming data into valuable knowledge. 

This chapter delves into the theoretical approach to classification - that is, methods that can be 

applied to the classification of brain lesions in the empirical section (Chapter 4). A focal point is 

pattern recognition, where there are two (in this case) categories. The ideal would be to be able 

to sort the images into particular classes or labels and this is where classification comes in, that 

is, whether the image is a brain lesion or not or whether the patient has a low-grade or a high-

grade glioma. Hence, the classification is of similar objects in the image which are not necessarily 

identical but with some inherent features that can be used to distinguish the classes. For instance, 

the location in the brain of the tumour might not be identical for each patient. These medical 

images form the base of numerous medical decisions and assist to support diagnoses and plan 

treatment systems as well as follow-ups.  

Presently, AI is at the forefront of learning from raw data and transforming it into valuable 

information. DL is said to produce more successful and powerful results than the more traditional 

ML techniques, such as 𝑘-NN and SVMs. Hence, CNNs have gained traction both in terms of 

research applications and in practice. The focus is on CNNs as a specialised type of NN due to 

their ability to handle image data which forms the goal of the analyses section. These 

methodologies have been developed through the imitation of the human brain. One of the major 

issues of these techniques is that in spite of the levels of accuracy that can be achieved they 

suffer from interpretability (explanatory) issues. In the medical field this presents a challenge as 

Stellenbosch University https://scholar.sun.ac.za



35 

 

there is a need to build models that bolster understanding and explanations of the AI model and 

do not merely serve as a means of solving pattern recognition tasks and problems.  

3.2 CLASSIFICATION, PATTERN RECOGNITION AND IMAGE CLASSIFICATION 

Classification in the general sense of the word is a task that encompasses numerous human 

activities. In other words, classification is a process of an individual’s ability to recognise objects 

based on mutual similarities and then classify these objects into different classes based on their 

collective features, traits or some other criterion. This is a practice that is intended to simplify the 

understanding of how and why objects are grouped. As Michie, Spiegelhalter and Taylor (1994) 

put it, classification is a task in which when given a new situation, individuals will make a decision 

or forecast repeatedly via a classification procedure based on current knowledge or information. 

The definition here will be constrained to focus on the meaning of classification in the statistical 

setting. The definition is two-fold. Firstly, for a given set of data points, the goal is to detect and 

then determine the classes or clusters in the data. Secondly, classification in statistics is a method 

whereby a rule (procedure) signifies how new instances are classified or assigned to a pre-defined 

set of classes (Michie, Spiegelhalter & Taylor, 1994). Predicting these new instances is usually 

based on similarities in the features of the appropriate class and the new instance. The former is 

a rule that invokes clustering or unsupervised learning, whilst the latter definition is supervised 

learning. These concepts become clearer in section 3.3.1. In this research the focus is on the 

second definition of statistical classification, namely on predicting which class a new instance 

belongs to. Taking a step back, usually the pre-defined classes are data points (generally the 

training dataset) that are analysed into classes based on having quantifiable properties. For 

example, these measurement scales of data types are nominal, ordinal, interval and ratio. 

Nominal data are classificatory, meaning that the classes are distinguishable from one another; 

eye colour is an example of this data type. Ordinal data are not quantitative data but rather data 

that have some sort of logical order, for example, WHO grade I through WHO grade IV brain 

tumours. Grade I brain lesions have the best prognosis, whilst grade IV tumours have the worst 

prognosis. Interval data are a quantitative data type with emphasis on both the order and the 

difference in measurements, which can be computed on the interval scale; an example is 

temperature (degrees in Celsius). Lastly, ratio scale data have a meaningful zero point, for 

example, height. Additionally, referencing section 3.3.2 (𝑘-NN) makes use of a distance function 

to categorise new instances in pre-defined classes. A classifier is a name given to an algorithm 

that implements classification tasks.  

As mentioned, in this research, in the statistical setting of classification, the focus is on predicting 

new instances using pre-defined classes. The rationale is that in Chapter 4 the two datasets have 

pre-determined classes. The one dataset consists of patients with tumours versus patients without 
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brain lesions. On the other hand, the other dataset essentially is about distinguishing low-grade 

glioma from high-grade glioma. The patients have already been diagnosed accordingly.   

Determining which classifier to use is a fundamental aspect. Some aspects should be considered 

when choosing a classifier, namely (Michie, Spiegelhalter & Taylor, 1994): 

• Accuracy: the performance of the classifier – in some cases, misclassifications can lead to 

disastrous repercussions, thus the need to govern the error rate; 

• Speed: the speed of a classifier can be of importance in practice, when time is of the 

essence and not a luxury – sometimes it might be worth sacrificing accuracy for time; 

• Comprehensibility: the classifier needs to be understood by individuals that need to 

implement it in practice; 

• Time to learn: in practice, in fast-changing environments it might be necessary to adjust the 

classifier in a short space of time. It can also include situations where only limited data are 

available. 

Classifiers in research have been categorised into four main branches, namely classical statistical 

approaches, data mining, ML and NNs (or neural computation) (Michie, Spiegelhalter & Taylor, 

1994; Dougherty, 2013). Naïve Bayes, linear discriminant classifiers, decision tree-based and 

rule-based classifiers, 𝑘-NN, SVMs and NNs, to name but a few, are classifiers that can be applied 

and implemented. This research concentrates on 𝑘-NN, SVMs and NNs. These concepts are 

discussed in more detail, from a conceptual and theoretical perspective to implementation (for 

MRI brain lesions), in the succeeding sections (3.3; 3.4) and Chapter 4. Furthermore, section 3.5 

is indicative of how these classifiers have successfully been employed in the literature. The 

objectives of these classifiers have commonalities in that they (Michie, Spiegelhalter & Taylor, 

1994): 

• At the very least, mimic or even outperform human decision making; 

• Are generalisable, handling large datasets in a wide variety of applications; 

• Have proved to be successful and practical. 

Pattern recognition is considered as the generalisation of classification and clustering problems. 

Briefly, as with classification, humans use patterns as a way to interpret the world. However, from 

a pattern recognition standpoint this is an automated way of interpreting patterns and symmetries 

in a dataset utilising computer algorithms and then proceeding to use this information in 

classifying the data into distinct classes (Bishop, 2006). Pattern recognition’s roots lie in 

engineering, whilst ML branched out from statistics (Bishop, 2006); however, due to the 

interdisciplinary nature of these two fields there is an overlap in their applications. This resulted 

from some of the ‘modern’ (newer) methods of pattern recognition making use of ML 
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methodologies, including SVMs and 𝑘-NN, because of the explosion of data availability and 

accessibility as well as the significant improvement in computational processing power. Figure 

3.2 is an illustration of the intersection of the different fields; even though, as mentioned, they 

were developed or have origins independent of one another, there is a more unified approach 

when applied when solving pattern recognition and classification tasks.  

 

Figure 3.2: Pattern recognition and associated fields 

Source: Dougherty, 2013. 

Thus, pattern recognition and classification solve many central automated electronic systems that 

are currently present (Dougherty, 2013). Pattern recognition has applications in a wide range of 

fields from signal processing to military defence systems, from information retrieval and computer 

graphics to biometrics and from bioinformatics and image analyses to home entertainment. A 

simple example is offered to demonstrate how pattern recognition works. The handwritten digits 

example is illustrated in Figure 3.3. Simply put, the main aim is to take the input (the digits) and 

produce the identity of the digits, zero to nine as output; hence, the nine digits, each having a 

28 × 28 pixel image, which equates to 784 real numbers, are considered as the input vector 

(Bishop, 2006). According to Bishop (2006), this could pose the problem of diverse handwriting 

structures of individuals, where the solution could be using different handwriting rules or heuristics 

based on the shapes of the digits, but this approach could result in poor accuracy. Therefore, a 

more appropriate tactic is using the second definition of classification where the digits are pre-

defined (zero through nine) by inspection. That is, having knowledge of numbers, humans have 

the capacity to manually label the digits and then via an ML algorithm use these manually labelled 

classes of digits (zero-nine) as a training set and classify a new instance based on the prior class 

information. In other words, the algorithm takes the new instance and attempts to make the most 

likely match to the input class labels. 
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Figure 3.3: Handwritten digits 

Source: Bishop, 2006. 

As previously mentioned, contextual image classification is an application within the field of 

pattern recognition. As the name suggests, it is the classification of images founded on the 

information (features) that typify the image, that is, there is a reliance on the information obtained 

from the relationship between the neighbouring pixels in an image and thus allocating a label to 

each pixel of the information (classes) that the image depicts (Bovolo, Bruzzone & Carlin, 2010).  

This research has encapsulated bioinformatics and image analysis as Chapter 4 analyses and 

classifies biomedical (MRI) brain tumour images. This is further discussed in the next section. 

3.2.1 Inherent features of biomedical images 

With biomedical images and the subsequent analyses performed, there needs to be 

comprehension of the process of going from an arbitrary image to interpreting the image analysed, 

that is, to understand the aim of the problem and the procedure on a global scale. There must be 

a shift from image analysis to image understanding and interpretation (González & Romero, 

2010). Image analysis is defined as the procedure of extracting the relevant information from the 

images, for instance, from a diagnostic image where the brain lesion is either absent or present, 

while image understanding and interpretation refer to a diagnostic decision made by physicians’ 

experience and expertise to a point where, ideally, this process can be performed in an automated 

manner without human intervention.  

Aforementioned, biomedical images are a means of providing structural or functional information 

of a specific organ or the interior of the human body. This information can then be analysed as 

part of a diagnosis, for treatment planning systems or re-evaluation (follow-up) measures. There 

are numerous ways to acquire biomedical images: X-rays, CT scans, PET scans and MRIs to 

name but a few – all of which were reviewed comprehensively in section 2.3. However, one of the 

main challenges that arise from biomedical image processing and analysis is that of image quality 

and information content (Rangayyan, 2005; González & Romero, 2010).  

Therefore, image processing techniques need to be designed in such a manner that they remove 

the deterioration of information (Rangayyan, 2005) which occurs in just about every electronic 
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image capture device due to limitations of the device, such as electromagnetic waves and 

emission or detection lights (González & Romero, 2010). Hence, the design needs to improve the 

quality of biomedical imaging. Noise is ever-present in biomedical images. As Rangayyan (2005) 

states, different types of noise affect or taint the quality of biomedical images. Noise in biomedical 

imaging includes random noise: noise that is present from a random process, for example, 

thermal noise that is found in electronic devices (Rangayyan, 2005). Rangayyan (2005) goes on 

to describe another type of noise which is known as salt and pepper noise: this is an impulsive 

noise which means that there is an exaggeration of black and white pixels at the extreme ends of 

the pixelation range.  

Rangayyan (2005) discusses some difficulties in biomedical imaging attainment: 

• Organ accessibility: it is not always easy to acquire images of the organ of interest; for 

instance, the brain is protected through being surrounded by the skull; 

• Variability in information: there is inherent variability that is omnipresent in biological 

systems – there is an overlay of features, for instance, abnormal versus normal patterns; 

• Physiological interference: this is a dynamic feature; for example, someone breathing while 

the electronic imaging device is in operation can lead to tainted or poor quality images. 

Exploring the shift from image analysis to image understanding and interpretation via a 

computational algorithm, the general process that is typically applied in biomedical image pattern 

recognition and classification can be described. Classification of the acquired test data image is 

generally the final step in the process; it is segmented and classified (given a label) based on 

similarities with other images (training data). However, starting at the beginning of the process, 

the flow of the process of a pattern recognition system contains some form of sensor. From that, 

there is a preprocessing mechanism (this occurs before the segmentation), feature extraction and 

selection mechanisms, post-processing and finally, a classification algorithm (Dougherty, 2013). 

Now, delving deeper into this process and these concepts: an image sensor is an electronic 

device that transforms light waves into signals which convey the information that is contained in 

an image. Preprocessing steps involve image enhancement, in the form of contrast enhancement, 

brightness adjustments, detection of regions of interest, analysis of shape and texture and edge 

enhancement. Additionally, image restoration may be required and usually takes place after 

image enhancement but this practice remains quite challenging. Specific to this study’s interest 

is the preprocessing step of skull stripping for brain lesions. This is one of the first steps when 

analysing neurological MRI images. Skull stripping involves removing the extra-meningeal tissue 

that surrounds the head, that is, segmenting brain tissue (cortex and cerebellum) from the 

surrounding areas of the head (skull) (Swiebocka-Wiek, 2016). Skull stripping is used in the 

analysis of low-grade gliomas versus high-grade gliomas in Chapter 4. Moreover, preprocessing 
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applied in Chapter 4 includes ensuring that the images are of the same pixel size along with 

scaling the image pixels before passing the images to the training CNN model. A more detailed 

description of rescaling images is provided in section 3.4.3. 

The next step is feature extraction and selection which make use of techniques such as principal 

component analysis to reduce the dimensionality of the labelled data by only allowing for certain 

characteristics (features) to be included, such as shape, size or texture. Postprocessing is defined 

as having a labelled training dataset. Generally, these training data images are manually labelled 

by experts in the field. Finally, a classification algorithm is applied. In this research, three 

classification algorithms were used, namely from an ML approach: SVMs and 𝑘-NN and from the 

NN (neural computation) methodologies: CNNs. 

3.3 THEORETICAL UNDERSTANDING OF MACHINE LEARNING TECHNIQUES 

3.3.1 Machine learning 

The basis of ML is that computers are taught or programmed to produce accurate outcomes. In 

other words, computer algorithms are programmed to discover valuable patterns in the data as 

well as to improve predictions through experience, that is, through learning and adapting. As 

mentioned, for undertakings that necessitate information to be extracted from enormous datasets, 

the go-to tool of choice has turned out to be ML techniques. Hence, with the eruption of the 

availability of data and the amounts of data, ML has been widely applied in various fields, for 

instance, social media trends, pattern/image recognition and sentiment analysis. Additionally, ML 

has been successfully applied in the scientific areas of bioinformatics and medicine (refer to 

section 3.5).  

The underlying process of ML is to take some input, usually in the form of training data, learn from 

the data (experience) through the appropriate ML technique and then make some prediction, 

usually on the testing data. The success of ML, as with any method, relies on a good rapport with 

the problem that needs to be solved as well as a good understanding of the data: what the set 

contains, what some of the challenges are, et cetera.  As stated by Cruz and Wishart (2006), no 

ML technique can perform miracles and produce sufficient results if the input data are of poor 

quality. In other words, as the saying in the field of computer science goes, garbage in equals 

garbage out. Therefore, once a good foundation has been laid, the most suitable ML technique 

can be chosen and applied to the task. According to Mitchell (1997), even though ML uses the 

principles of statistics and probability, ML is still considered more powerful than classical statistical 

techniques and the main reason for this is that ML can make inferences or decisions that would 

not be possible when using classical statistical techniques. In other words, classical statistical 

techniques have assumptions that restrict their use in solving many problems. Assumptions of 

classical statistics are that the variables are independent and that the variables are linear 
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combinations and can be modelled as such (Cruz & Wishart, 2006). When these assumptions 

hold, ML flounders in performance and vice versa. That is, the opposite also holds: when the 

assumptions are violated, ML proves more powerful, that is, conventional statistical techniques 

do not guarantee successful results.  

ML approaches are generally split into three broad paradigms which are dependent on the nature 

of the learning structure: supervised learning, unsupervised learning and reinforcement learning. 

In supervised learning, the dataset contains both the inputs and the corresponding outcome 

(output or response variable), which is known. This means that the algorithms make use of what 

is referred to as a labelled dataset, id est, label names (information) are known for the input 

variables and response variable. In other words, an algorithm is used to connect the input 

variables to the output variable. Hence, the underlying mechanics are that the algorithm learns 

from the training dataset - it learns a general rule on how to associate the input data to the desired 

outcome. What is wanted is that the algorithm makes accurate predictions, so that when there is 

new input data, the output can be correctly predicted. Simply put, the aim is to predict the outcome 

(response) from the input data. Supervised learning can be applied to classification as well as 

regression problems. It is worth noting that the emphasis will be on supervised classification for 

the purposes of this research. One of the challenges faced in (supervised) ML models is the 

tradeoff between prediction accuracy and interpretability. For instance, SVMs and NNs 

(discussed in sections 3.3.3 and 3.4, respectively) are flexible models but come at the expense 

of interpretability. That is, obtaining high accuracy but interpreting how the results were obtained 

becomes a somewhat grey area. This is especially the case for NNs as they are ‘black box’ 

techniques. In other words, they provide high accuracy but the performance of these models is 

relatively difficult to interpret, as there is little to no understanding of how the different variables 

interact. That is, even with an understanding of the input variables, these predictive models are 

so complex that there is very little knowledge of how these variables interact and thus obtain a 

final prediction.   

The differentiating factor for supervised and unsupervised learning is the response (output) 

variable. As mentioned, in supervised learning the response variable is known and associated 

with input variables; this is, however, not the case for unsupervised learning. With unsupervised 

learning there are input variables but no corresponding outcome (response). Hence, the aim of 

the model changes somewhat in that the model needs to identify structures and inferences and 

detect patterns or associations (in the data) based on learning and modelling the input variables’ 

underlying structure and distribution of the training data - in other words, discovering structure in 

hidden, unlabelled (no response) data. Briefly, according to Sutton and Barto (2018), 

reinforcement learning involves learning what to do, that is, connecting situations to actions.  
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3.3.1.1 Bias-variance tradeoff 

The bias-variance dilemma is a fundamental challenge faced by ML techniques. That is, the 

models that encapsulate the underlying patterns and features that are contained in the data 

should be selected and used, but at the same time the model needs to generalise unseen (new) 

data well. This requires understanding the two sources of error, namely the bias and the variance. 

Understanding this not only allows for more robust models but also avoids models that either 

overfit or underfit the underlying data patterns. Ideally, an ML technique that simultaneously 

produces low variance as well as low (squared) bias would be selected. However, achieving this 

simultaneously is not possible, hence the bias-variance tradeoff. In other words, models that have 

high bias towards the estimation of the parameters of the dataset will result in low variance in the 

estimates of the parameters, over all the samples. Therefore, the opposite also holds true, id est, 

models that have low bias come at the cost of these models having high variance.  

There are two sources of error. Firstly, the bias of a model is defined as the error that comes from 

making incorrect assumptions as determined by the model. In other words, bias is the 

computational difference between the average prediction of the model and the actual (true) value 

that the model is attempting to predict. Models that produce high bias tend to yield simplistic 

models, as little to no awareness is required when fitting the training dataset. That means that the 

model does not adequately represent the underlying patterns in the training data. This is known 

as a model that underfits the data. Secondly, the variance of a model can be defined as the error 

that is produced as a result of the sensitivity of small changes in the training dataset. Hence, a 

small change in the training data can lead to markedly different results. This implies that the model 

is simply learning noise, which is the unexplained variability within the data. Furthermore, the 

variance of the model provides information regarding the spread of the data, that is the variability 

of the model's prediction for a particular data point. Models with high variance, meaning that the 

model encompasses the noise as well as the underlying pattern in the data, are thus known as 

models that overfit the data. That is, the model fits the data precisely (perfectly) or at the very 

least, fits the data exceptionally closely.  

Mathematically, the decomposition of the bias-variance tradeoff can be computed (Vijayakumar, 

2007). Suppose there is a training dataset that consists of a set of points, 𝑥1, 𝑥2, … , 𝑥𝑛, and the 

associated response variable, 𝑦𝑖. Furthermore, it is assumed that there is some function that 

includes an irreducible error (noise) given as: 𝑦 = 𝑓(𝑥) + 휀. The noise has zero mean, that is, 

𝐸[휀] = 0 and a variance of 𝜎2, id est, 𝑣𝑎𝑟[휀] = 𝜎2. Through the use of some ML algorithm based 

on the training dataset, the function (the fitted model): 𝑓 has to be approximated as closely to the 

true function 𝑓(𝑥) as well as possible where 𝐸[𝑓] = 𝑓. Therefore, the bias-variance decomposition 

can be derived by using the squared error loss. That is, the associated test error is given by the 

expected mean squared error (MSE). First recall that for any random variable 𝑋, by definition the 
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variance is given by: 𝑣𝑎𝑟[𝑋] = 𝐸[𝑋2] − 𝐸[𝑋]2. Rearranging this equation gives:                                     

𝐸[𝑋2] = 𝑣𝑎𝑟[𝑋] + 𝐸[𝑋]2.  

Given: 𝑦 = 𝑓(𝑥) + 휀 and 𝐸[휀] = 0, suggests that 𝐸[𝑦] = 𝐸[𝑓 + 휀] = 𝐸[𝑓] = 𝑓. 

Also concerning the variance, it is given that: 𝑣𝑎𝑟[휀] = 𝜎2, therefore:  

𝑣𝑎𝑟[𝑦] = 𝐸[(𝑦 − 𝐸[𝑦])2] (3.1) 

But 𝐸[𝑓] = 𝑓, therefore: 

𝑣𝑎𝑟[𝑦] = 𝐸[(𝑦 − 𝑓)2] (3.2) 

But 𝑦 = 𝑓 + 휀, thus: 

𝑣𝑎𝑟[𝑦] = 𝐸[(𝑓 + 휀 − 𝑓)2] 

= 𝐸[휀2]  

= 𝑣𝑎𝑟[휀] + 𝐸[휀2]  

= 𝜎2 + 0  

= 𝜎2 (3.3) 

Hence, the decomposition of the expected mean squared error is given as follows: 

𝐸 [(𝑦 − 𝑓)
2
] = 𝐸 [(𝑓 + 휀 − 𝑓)

2
] 

∴  𝑀𝑆𝐸 = 𝐸 [(𝑓 + 휀 − 𝑓 + 𝐸[𝑓] − 𝐸[𝑓])
2
] 

= 𝐸 [(𝑓 − 𝐸[𝑓])
2
] + 𝐸[휀2] + 𝐸 [(𝐸[𝑓] − 𝑓)

2
] + 2𝐸[(𝑓 − 𝐸[𝑓])휀]

+ 2𝐸[휀(𝐸[𝑓] − 𝑓)] + 2𝐸[(𝐸[𝑓] − 𝑓)(𝑓 − 𝐸[𝑓])] 

= (𝑓 − 𝐸[𝑓])
2
+ 𝐸[휀2] + 𝐸 [(𝐸[𝑓] − 𝑓)

2
] + 2(𝑓 − 𝐸[𝑓])𝐸[휀]

+ 2𝐸[휀]𝐸[𝐸[𝑓] − 𝑓] + 2𝐸[𝐸[𝑓] − 𝑓](𝑓 − 𝐸[𝑓]) 

= (𝑓 − 𝐸[𝑓])
2
+ 𝐸[휀2] + 𝐸 [(𝐸[𝑓] − 𝑓)

2
] + 0 + 0 + 0 

= (𝑓 − 𝐸[𝑓])
2
+ 𝑣𝑎𝑟[휀] + 𝑣𝑎𝑟[𝑓] 

= 𝑏𝑖𝑎𝑠[𝑓]
2
+ 𝑣𝑎𝑟[𝑓] + 𝜎2 (3.4) 

From Equation 3.4, it can be concluded that the test error is equal to the squared bias and 

variance of the fitted model with some irreducible error (noise) included. James et al. (2013) 

portray this concept visually in Figure 3.4. The orange line is indicative of the model's variance 

whilst the blue line is the variance and lastly, the MSE (test error) is represented by the red line. 

The dashed grey horizontal line is indicative of the irreducible error (noise) which is given as 

𝑣𝑎𝑟[휀] = 𝜎2, whereas the dotted vertical grey line represents the flexibility of the model. Thus, all 
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three panels but mainly the left and centre panels show that more flexible (more complex) models 

have high variance but low bias. From the last panel in Figure 3.4 can be deduced that relative 

change in the variance and bias has an influence and impact on when the MSE starts to decrease 

(James et al., 2013). It is evident that when there is an increase in the flexibility of the model, the 

MSE and the bias decrease. There is an almost exponential decrease in the bias, thus it initially 

decreases more rapidly in comparison to the increase in the variance and consequently the MSE 

decreases as well. Additionally, there is a point where increasing the flexibility of the model starts 

to have negative consequences. Beyond this point the variance and MSE starts to increase 

exponentially, which subsequently means that the test error turns and starts to increase as well. 

Therefore, negative consequences for the MSE and variance, but no impact on the bias as the 

bias reaches a plateau (stagnates). In conclusion, a model is required that still captures the 

underlying patterns in the data, thus is flexible enough, but at the same time can balance the bias-

variance tradeoff - in other words, where the bias and variance are low with an associated test 

error that is kept to a minimum. This is best visualised and the optimal model of choice is the right-

hand panel in Figure 3.4.  

 

Figure 3.4: Bias-variance tradeoff 

Source: James et al., 2013. 

For all intents and purposes, this concept is extended to a classification setting with some slight 

alterations. The only difference is that the response variable is no longer numerical but rather 

qualitative. Hence, for estimating the function, 𝑓, consider the training dataset, 

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)} and as mentioned, 𝑦1, 𝑦2, … , 𝑦𝑛 is qualitative. Thus, the predicted 

accuracy of the estimated function 𝑓 is measured through the training error rate, that is, the 

proportion of misclassified data points (James et al., 2013): 
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1

𝑛
∑𝐼(𝑦𝑖 ≠ �̂�𝑖)

𝑛

𝑖=1

 (3.5) 

From Equation 3.5, �̂�𝑖 is defined as being the predicted class label for the 𝑖𝑡ℎ data point of the 

fitted model (𝑓). Moreover, 𝐼(𝑦𝑖 ≠ �̂�𝑖) is an indicator variable. That is, a value of one is assigned 

if 𝑦𝑖 ≠ �̂�𝑖 which is indicative of a misclassification. On the other hand, a value of zero is assigned 

if the predicted data point is assigned to the correct class label, that is, 𝑦𝑖 = �̂�𝑖.  

Conversely, the test error rate is of more interest. Suppose that the test dataset is given as(𝑥0, 𝑦0), 

then the test error rate can be formally defined as (James et al., 2013): 

𝐴𝑣𝑒(𝐼(𝑦0 ≠ �̂�0)) (3.6) 

By definition, where Equation 3.6 has the smallest value is indicative of the best classifier having 

been applied. Note that �̂�0 is the predicted class label.  

3.3.2 𝒌-Nearest neighbours 

Amongst the most intuitive and the simplest to implement machine learning techniques is nearest 

neighbours (Shalev-Shwartz & Ben-David, 2014). The fundamental underlying principle or aim of 

nearest neighbour paradigms is to take note of the labels of the training dataset and try and predict 

the label of a new instance (or query point: a point’s value to be known or predicted) based upon 

the labels of the closest points or neighbours that are in the training dataset. One of the 

assumptions, as mentioned in Table 3.1, is that depending on the attributes used to describe the 

instances, similar labellings of instances in close proximity will, therefore, have similar 

classifications.  

Furthermore, Figure 3.5 is an illustration of the 𝑘-NN approach. In this example the value of 𝑘 has 

been chosen as three (the choice of 𝑘 will be discussed in more depth later on in the section). In 

the panel on the left, a small training sample of 12 data points have been plotted which comprise 

of six blue and six orange data points (or instances). As mentioned, 𝑘-NN aims to predict a new 

instance, in this case given by the black cross (test data point). As indicated, the value of 𝑘 is 

three and as such, 𝑘-NN will identify the three data points that are closest in proximity to the new 

instance. In the figure, the neighbourhood is indicated by the grey circle which encompasses the 

three closest training data points. Two blue data points (circles) and one orange data instance 

(circle) are encompassed by the neighbourhood. Using Bayes’ rule, 𝑘-NN then assigns the new 

instance to the class that has the highest probability. Hence, the estimated probabilities for the 

blue class are 2/3, whilst for the orange group they are 1/3. Thus, 𝑘-NN will predict that the test 

data point belongs to the blue labelled group. The right panel of Figure 3.5 is indicative of a 

decision boundary. In this example the decision boundary is given by the black line. The blue 
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shaded areas depict the region in which a new instance will be allocated to the blue class. 

Likewise, the orange region indicates that a test observation in that area will be assigned to the 

orange group.     

 

Figure 3.5: Visualisation of the 𝒌-NN approach 

Source: James et al., 2013. 

The explanation of 𝑘-NN in this paragraph is adapted from James et al. (2013). 𝑘-NN, in general, 

attempts to estimate the conditional distribution of Y given X. The new instance is then classified 

according to the group that has the highest estimated probability. Hence, the 𝑘-NN algorithm 

identifies the 𝑘 (a positive integer value) points that are closest to the new instance (test data 

point), say 𝑥0. These 𝑘 points are referred to as being in the neighbourhood of the test data point 

and given symbolically as 𝒩0. Finally, the conditional probability for class 𝑗 is estimated where 

Bayes’ rule is applied and the final prediction of the test data point is that with the highest 

probability. Mathematically (James et al., 2013): 

𝑃𝑟(𝑌 = 𝑗 | 𝑋 = 𝑥0) =
1

𝑘
∑ 𝐼(𝑦𝑖 = 𝑗)

𝑖𝜀𝒩0

 (3.7) 

The focus of 𝑘-NN shifts to a classification setting and 𝑘-NN classifiers. The reason for this is that 

the application of this research is image recognition which equates to a classification problem. 

Therefore, in Chapter 4 the context of the 𝑘-NN application is classification based. Similarly, as 

defined above, even in classification the main aim remains unchanged. That is, for pattern 

recognition the 𝑘-NN algorithm is a methodology that is used for classifying images postulated on 
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the training data labels that are nearest in proximity. Furthermore, 𝑘-NN is considered to be a lazy 

learner, which means that it learns a generalisation of the training data and theoretically the 

computation of the prediction is only made right at the end of the process, id est, at the 

classification stage (Imandoust & Bolandraftar, 2013). Additionally, the simplicity and intuition 

behind 𝑘-NN for classification make it a popular technique for pattern recognition. That is, there 

is little to no a priori information required about the distribution of the data. As indicated by Hastie, 

Tibshirani and Friedman (2009), 𝑘-NN classifiers are memory-based and as such, no model 

needs to be fit. Thus, in mathematical terms, given a new instance (test data point/query point) 

𝑥0, the idea is to obtain the 𝑘 closest points in terms of distance to the new instance, adapted 

from Hastie, Tibshirani and Friedman (2009), that is, 𝑘 training data points, given by               

𝑥(𝑟), 𝑟 = 1,2,… , 𝑘, nearest to 𝑥0. Finally, for 𝑘-NN classification problems the query point is 

classified according to the label via a majority vote amongst the 𝑘 neighbours in the training 

dataset.  

The simplest form of 𝑘-NN is when 𝑘 = 1; this is known as the nearest neighbour rule. Intuitively, 

this means that the classifier assigns the query point to the class label of the nearest neighbour 

in the feature space. The feature space is simply the space where all the training samples are 

enclosed. Mathematically this is given by: 

𝐶𝑛
1𝑛𝑛(𝑥0) = 𝑥(𝑟=1) (3.8) 

where: 

• 𝐶𝑛
1𝑛𝑛(𝑥0) represents the nearest nighbour classifier (𝐶𝑛

1𝑛𝑛) of the query point; 

• 𝑥(𝑟=1) is the training data points where 𝑟 = 1, meaning the nearest training data point. 

The fact that the query point is classified by the training data point nearest it results in the estimate 

of the one-nearest neighbour having low bias but at the expense of having high variance (Hastie, 

Tibshirani & Friedman, 2009). Varying the value of 𝑘, which determines the radius of the local 

neighbourhood around the query point based on distance, results in diverse group conditional 

probabilities which affect the performance of the classifier. The effect is that if a small value of 𝑘 

is chosen, the prediction tends to degrade owing to the fact of data sparsity, and noisy or 

mislabelled training data points (Imandoust & Bolandraftar, 2013). This can be overcome by 

increasing the value of 𝑘. However, once again this presents problems when 𝑘 is too large. When 

𝑘 is too large, the classification prediction can be poor, as outliers from other classes can be 

introduced into the neighbourhood (Imandoust & Bolandraftar, 2013). 

According to Prasatha et al. (2017), the performance of the 𝑘-NN classifier is mainly dependent 

on the distance metric or the similarity between the query point and the training data samples. As 

already stated, 𝑘-NN predicts the outcome of a new instance based on the result of the 𝑘 
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neighbours that are situated nearest to the point in question. However, to be able to make these 

predictions a distance metric needs to be defined. This denotes the distance between the query 

point, that is, the new point to be predicted from the pre-classified groups in the dataset. According 

to Imandoust and Bolandraftar (2013), one of the most popular and therefore frequently chosen 

and used distance metrics (measure) is that of Euclidean distance. Other distance measures 

consist of the Minkowski distance, Manhattan distance and Chebychev distance, to name but a 

few.  

To define a distance function, 𝑋 and 𝑌 are instances or sets of instances that belong to a certain 

class, thus the function represents the similarity between the two instances. A distance function 

(referred to as 𝑑 in this research) is a function that contains real positive values. There are a few 

conditions that a distance metric needs to satisfy (Singh, Yadav & Rana, 2013): 

• The nonnegativity axiom: 𝑑(𝑥, 𝑦) ≥ 0; 

• The triangle axiom: 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧); 

• The identity axiom: 𝑑(𝑥, 𝑦) = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 𝑦; 

• The symmetry axiom: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). 

Euclidean distance 

Euclidean distance measures the length of a line segment between two points that are in the 

Euclidean space. Formally, it is the squared root difference between coordinates or pairs of 

instances. The formula is given as: 

𝑑(𝑿, 𝒀) = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

 (3.9) 

where:  

• 𝑿, 𝒀 are two standard coordinates (points) in the Euclidean 𝑛-space; 

• 𝑥𝑖 , 𝑦𝑖 refers to the coordinates, starting from the initial point; 

• 𝑛 is the Euclidean 𝑛-space. 

Manhattan distance 

The Manhattan distance (commonly known as the city block distance) metric measures the sum 

of the lengths of projections between two points. However, this equates to the sum of the absolute 

differences between coordinates of pairs of points. Mathematically this is represented as: 
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𝑑(𝑿,𝒀) =∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (3.10) 

Minkowski distance 

The Minkowski distance metric is a generalised distance metric. Thus it can be viewed as a 

generalised version of both the Euclidean distance metric and the Manhattan distance metric. 

More formally, let 𝑿 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝒀 = (𝑦1, 𝑦2, … , 𝑦𝑛) be two points in ℝ𝑛 then: 

𝑑(𝑿, 𝒀) = (∑|𝑥𝑖 − 𝑦𝑖|
𝑝

𝑛

𝑖=1

)

1
𝑝

 (3.11) 

where 𝑝 represents the order (and is given as an integer). 

As mentioned, the Minkowski distance metric is a generalised metric and thus it can be proven 

that when 𝑝 = 1 this corresponds to the Manhattan distance. Similarly, it can be shown 

mathematically that when 𝑝 = 2, the resultant is the Euclidean distance. That is, for the Manhattan 

distance, using the Minkowski distance metric from Equation 3.11 and substituting 𝑝 = 1 then: 

𝑑(𝑿,𝒀) = (∑|𝑥𝑖 − 𝑦𝑖|
1

𝑛

𝑖=1

)

1
1

 

=∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 
(3.12) 

which is equivalent to the Manhattan distance metric. 

Likewise, when 𝑝 = 2, using the generalised Minkowski distance metric (Equation 3.11) and 

substituting 𝑝 = 2, results in: 

𝑑(𝑿, 𝒀) = (∑|𝑥𝑖 − 𝑦𝑖|
2

𝑛

𝑖=1

)

1
2

 

= (∑|𝑥𝑖 − 𝑦𝑖|
2

𝑛

𝑖=1

)

1
2

  

= √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

 

(3.13) 

The absolute value symbol can be removed as the resulting answer will be the same. That is, 

taking the square of a value results in a positive answer which is exactly what the absolute value 
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does - it ensures that a value can never be negative. Hence, taking the squared value or the 

absolute value results in a positive value. Secondly, from exponential rules, a term that is taken 

to the power, one and a half is equivalent to taking the square root of that term.  

Finally, when the order of 𝑝 tends to infinity, hence, taking the limiting case of 𝑝 → ∞, the 

Chebychev distance metric is obtained. 

Chebychev distance 

The Chebychev distance metric is also referred to as the maximum (or dominance distance) 

metric. The computation is the maximum magnitude differences between two vectors. Formally, 

the Chebychev distance metric between vectors, 𝑿 and 𝒀 with standard coordinates, 𝑥𝑖 and 𝑦𝑖 

can be written as: 

𝑑𝐶ℎ𝑒𝑏𝑦𝑐ℎ𝑒𝑣(𝑿, 𝒀):= max
𝑖
 |𝑥𝑖 − 𝑦𝑖| (3.14) 

The above formula can be proven from the Minkowski distance metric for 𝑝 → ∞: 

𝑑(𝑿, 𝒀) = (∑|𝑥𝑖 − 𝑦𝑖|
𝑝

𝑛

𝑖=1

)

1
𝑝

= lim
𝑝→∞

(∑|𝑥𝑖 − 𝑦𝑖|
𝑝

𝑛

𝑖=1

)

1
𝑝

 

= max
𝑖
 |𝑥𝑖 − 𝑦𝑖| (3.15) 

where max goes from 𝑖 to 𝑛 of the absolute difference between 𝑥𝑖 and 𝑦𝑖. 

In improving the 𝑘-NN classifier, Dudani introduced a technique known as the distance-weighted 

𝑘-NN rule. The idea is that since 𝑘-NN makes predictions on the assumption that if instances are 

in close proximity to one another, there is a high chance that they are similar, therefore weighting 

training data neighbours that are closer to the query point more heavily. This is done according 

to the distance from the query point. In other words, training data points that are closer to the 

query point have a higher weight, thereby having a greater influence on the outcome of the class 

of the query point. The mathematical representation and explanation of the decision rule as 

introduced by Dudani (1976) follows; however, it should be noted that for consistency, some of 

the notation is adopted from Hastie, Tibshirani and Friedman (2009). Let each data point in the 

training dataset (which is the correctly classified points), given as 𝑥(𝑟) correspond to a class, 𝑛𝑖 

where 𝑛𝑖 𝜖 {1, 2, … , 𝑅}. Thus, when the classification of a new query point 𝑥0 is required, the 

nearest neighbours to 𝑥0 are computed amongst the given training data points. Therefore, let the 

𝑘 nearest neighbours of 𝑥0 and the corresponding class 𝑛𝑖 be written as (𝑥0𝑗 , 𝑛𝑗) for 𝑗 = 1,2, … , 𝑘. 

These neighbours are ordered so that 𝑥0𝑗 is the nearest whilst 𝑥0𝑘 is the furthest from the training 

data points. Additionally, let the associated distances from the training data points be given as 𝑑𝑗 
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for 𝑗 = 1,2, … , 𝑘. Furthermore, a weight (𝑤𝑗) can be assigned to the 𝑗𝑡ℎ nearest neighbour and is 

given by the following formula: 

𝑤𝑗 = {

𝑑𝑘 − 𝑑𝑗

𝑑𝑘 − 𝑑1
   𝑤ℎ𝑒𝑟𝑒  𝑑𝑘 ≠ 𝑑1

1               𝑤ℎ𝑒𝑟𝑒 𝑑𝑘 = 𝑑1

 (3.16) 

Note that the value of the weight can vary, that is, it can range from the maximum value (one: 

nearest training data neighbour) to a minimum value of zero which is representative of the most 

distant training data neighbours from the query point. Thus, this methodology states that once the 

weights have been computed, the query point will be assigned to the class in which the weights 

of the 𝑘 nearest training data points sum up to the highest value. The last remark is that from 

Equation 3.16, weighting should only be considered for values of 𝑘 > 3 (that is, 𝑘 greater than 

three). Furthermore, if the problem is one of binary classification, it is worth taking 𝑘 to be odd 

numbers to avoid ties, that is, two classes achieving the same majority voting score (Lantz, 2013). 

There are several benefits to using 𝑘-NN, but despite all the advantages as given in Table 3.1, 

the machine learning technique is subject to some limitations (refer to Table 3.1). Additionally, the 

assumptions of 𝑘-NN are itemised.  
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Table 3.1: Advantages, limitations and assumptions of 𝒌-NN 

Benefits Limitations  Assumptions 

Can be used to solve both 
classification and regression 
problems 

Sensitive to the local underlying 
structure of the data 

Where instances have similar 
attributes, they should be 
similarly classified 

Simple, effective, intuitive for 
classification tasks 

Computationally slow, especially 
when the dataset is large 

All attributes are equally relevant 

Robust to noisy training data  Sensitive to redundant and/or 
irrelevant attributes, as all the 
attributes in the dataset 
contribute to the similarity and 
eventually to the classification 
group 

 

Useful in classification problems 
that are nonlinear in nature 

Computational cost is high as a 
distance measure is to be 
calculated to each instance in 
the dataset (memory limitation) 

 

Tolerant where there are 
instances of missing attributes 

With distance-based learning, 
such as 𝑘-NN, it’s unclear which 
distance measure to choose to 
produce the best and most 
accurate results 

 

Well suited for multi-modal 
classes 

  

In classification problems: no a 
priori information is required 

  

Source:  Patrick and Fischer, 1970; Aha, 1992; Bhatia, 2010;                                         

Imandoust and Bolandraftar, 2013; Archana and Elangovan. 

3.3.3 Support vector machines 

Within the world of machine learning techniques, many address the objective of classifying data. 

SVMs have gained in popularity (amongst the research and practician communities) and have, 

therefore, been successfully implemented and applied to an extensive range of applications. 

SVMs can be used as a learning algorithm to solve both regression and classification problems. 

It is worth noting that SVMs with respect to regression is beyond the scope of this research. This 

is because emphasis is placed on image recognition, which constitutes a classification problem. 

Simply put, the goal is to classify training data points that belong to one of two categories and 

ideally from this to predict which category a new query point will belong to. SVMs can be used as 

a classifier to achieve the objective. To comprehend the underlying processes and the intuition 

behind how SVMs were developed and thus how they are applied in practice, maximal margin 

classifiers must first be understood. Maximal margin classifiers are simple and intuitive. SVMs are 

a generalisation of maximum margin classifiers, but assume that the two categories are separated 

by a linear boundary. Thus, extending on and solving the problem that can be applied to a variety 

of examples is that of a support vector classifier. The computation (mathematical equations) of 
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the support vector classifier is also reviewed. Finally, the discussion of SVMs is introduced, which 

in theory is an extension of a support vector classifier, as a means to integrate cases whose 

boundaries are nonlinear. Formally, SVMs can be defined as an algorithm that constructs either 

a hyperplane or a collection of hyperplanes that are enclosed in a high-dimensional space. 

Generally, SVMs are explored in a binary classification setting, that is, where there are two 

classes present in the training data. However, as suggested by the literature on SVMs, 

methodologies have been introduced which allow for examples with more than two classes to 

take advantage of being able to apply an SVM. The idea of more than two classes will not be 

reviewed as the datasets analysed in Chapter 4 consist of two classes, making a discussion of 

two or more classes redundant.   

Before giving an overview of the idea of a maximal margin classifier, as mentioned, SVMs 

construct hyperplanes and being a generalisation of the maximal margin classifier, there needs 

to be an understanding of what a hyperplane is. Unless otherwise stated, the definitions, 

explanations and mathematical formulae for the concepts related to support vector machines (in 

the following paragraphs) are adapted and refashioned from Hastie, Tibshirani and Friedman 

(2009) and James et al. (2013).  

A hyperplane can be defined as a (𝑝 − 1)-dimensional plane, which can be defined for any 𝑝 

dimensions by a linear equation between its coordinates. Note that the hyperplane is a subspace 

where the dimension consists of one less dimension than the space surrounding the objects. So, 

for instance, if the space is two-dimensional it implies that the hyperplane subspace is one-

dimensional, thus equating to a straight line. Similarly, if the space is three-dimensional, the 

hyperplane subspace is two-dimensional, which is referred to in mathematics as a plane. Applying 

the same principle, this can be extended to 𝑝 dimensions where the hyperplane flat subspace is 

given by (𝑝 − 1)-dimensions. The challenge is that when the dimensions increase beyond 𝑝 = 3, 

it becomes difficult to almost impossible to visualise what the hyperplane subspace looks like. 

However, the concept remains the same. Mathematically a hyperplane in two dimensions is given 

by the following formula where 𝛽0, 𝛽1 and 𝛽2 are parameters: 

𝛽0 + 𝛽1𝑿1 + 𝛽2𝑿2 = 0 (3.17) 

meaning that 𝑿 = (𝑿1, 𝑿2)
𝑇 represents a point on the hyperplane. It can be noted that Equation 

3.17 is simply the equation of a straight line which holds true given that a hyperplane in a two-

dimensional plane equates to a straight line. That is, when 𝑝 = 2, the hyperplane is given by 

(𝑝 − 1) = (2 − 1) = 1. As mentioned, applying the same principle, Equation 3.17 can be extended 

to the case of a hyperplane subspace in 𝑝 dimensions where the formula is given as: 

𝛽0 + 𝛽1𝑿1 + 𝛽2𝑿2 +⋯+ 𝛽𝑝𝑿𝑝 = 0 (3.18) 
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Once again, if 𝑿 = (𝑿1, 𝑿2, … , 𝑿𝑝)
𝑇
 fulfils the requirements of Equation 3.18, this implies that 𝑿 is 

a point on the hyperplane. If the conditions of Equation 3.18 are not met, it can be deduced that 

𝑿 is not a point on the hyperplane but rather that the point (or points) is (are) on either side of the 

hyperplane. Formally, this can be given as either: 

𝛽0 + 𝛽1𝑿1 + 𝛽2𝑿2 +⋯+ 𝛽𝑝𝑿𝑝 > 0 (3.19) 

or 

𝛽0 + 𝛽1𝑿1 + 𝛽2𝑿2 +⋯+ 𝛽𝑝𝑿𝑝 < 0 (3.20) 

It can be concluded that a hyperplane is a way of splitting the the 𝑝-dimensional space into two. 

This can be visualised by the right panel (and left panel) of Figure 3.6, where points to the right 

(purple region) of the separating hyperplane (indicated by the black line) are given by Equation 

3.19, whilst Equation 3.20 represents points to the left (the blue region) of the separating 

hyperplane. 

 

Figure 3.6: Visualisation of a separating hyperplane of training data points 

Source: James et al., 2013. 

Now that the basis of a hyperplane has been described, the focus shifts to include training data 

and how the data points can be classified by implementing a separating hyperplane. In essence, 

a separating hyperplane is a construct that is used to divide the training data perfectly into their 

class labels (James et al., 2013). Visually, this is shown in Figure 3.6. From the figure can be 

deduced that there are two distinct classes; one class is represented by the blue training data 

points and the other by the purple training points. In the left panel, three possible separating 
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hyperplanes have been constructed which perfectly separate the two groups. It is worth noting 

that an infinite amount of separating hyperplanes can be constructed in cases where the training 

data can be perfectly separated, which leads to remarks such as which one is the most optimal. 

Furthermore, from both panels, especially the one on the right-hand side, based on a decision 

classifier and using the indicated separating hyperplane, a query point that lies in the purple region 

will be assigned to the purple labelled class. In the same fashion, a query point (test data point) 

that falls within the blue area will be classified accordingly. A mathematical solution to the 

classification of a separating hyperplane is also proposed. For example, suppose that in a 𝑝-

dimensional space, there is an 𝑛 × 𝑝 data matrix, given by 𝑿 which contains 𝑛 training data points, 

then formally: 

𝑥1 = (

𝑥11
⋮
𝑥1𝑝

) , … , 𝑥𝑛 = (

𝑥𝑛1
⋮
𝑥𝑛𝑝

) (3.21) 

where the training data points are categorised into one of two classes. In other words, 𝑦1, 𝑦2, … , 𝑦𝑛 

is an element of {−1,1} where −1 and 1 are indicative of the two different classes, respectively. 

Furthermore, if a new test data point arrives, the aim (ideally) is to correctly and accurately predict 

the class to which the point belongs. Suppose that the label of the training data that are associated 

with the blue class (refer to Figure 3.6) is 𝑦𝑖 = 1 and that of the purple class is 𝑦𝑖 = −1, then the 

two postulates of a separating hyperplane are given as follows: 

𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 > 0   𝑖𝑓 𝑦𝑖 = 1 (3.22) 

and 

𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 < 0   𝑖𝑓 𝑦𝑖 = −1 (3.23) 

Thus, from the generalisation of the two properties from Equations 3.22 and 3.23, it can be 

deciphered that the property of a separating hyperplane for all 𝑖 = 1,2,… , 𝑛 as: 

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝) > 0 (3.24) 

Therefore, from Equation 3.24 it is evident that a test data point can be allocated to a class label 

depending on which side of the separating hyperplane the point lies. Furthermore, a closing 

remark is that from the mathematical equations as well as the visuals produced in Figure 3.6 it is 

evident that the decision boundary of a separating hyperplane is linear.  

As mentioned, if the training data can be separated perfectly, there are an infinite number of 

separating hyperplanes that can be constructed, hence the question arises as to which is the 

most optimal hyperplane. The solution to this is the maximal margin classifier, also referred to as 

the optimal separating hyperplane. By definition, the maximal margin hyperplane is the one that 
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is computed that is the most distant from the training data points. As in Figure 3.7, the first step 

is to calculate the perpendicular distance from each training data point to the separating 

hyperplane. Using linear algebra of a hyperplane as in the example of Figure 3.7, the red line 

(given by:  𝛽0 + 𝛽
𝑇𝒙 = 0) is the constructed separating hyperplane; in this case it is simply a linear 

equation as it is a one-dimensional subspace. This equates to a line as 𝑝 = 2, therefore, from the 

definition, the separating hyperplane is equal to (𝑝 − 1) = 1. The green line is perpendicular to 

the separating hyperplane. For any training data point, say 𝑥, the distance to the green line is 

calculated. In other words, that is the distance to the line that is perpendicular to the separating 

hyperplane. The sign (positive or negative) of the query data or on which side of the separating 

hyperplane the query point lies determines the class label of that point.  

 

Figure 3.7: Visualisation of the linear algebra of a hyperplane 

Source: Medical University of South Carolina, 2017. 

Furthermore, after computing all the perpendicular distances to the separating hyperplane, the 

smallest distance forms what is known as the minimal distance, formally known as the margin. 

This is visualised in Figure 3.8 where the margin is the distance from the maximal margin 

hyperplane (the solid black line) to the dashed lines. The margin is computed for both sides of the 

separating hyperplane. In this example there are three training data points, two blue points and 

one purple point that are equidistant (distance is given by the arrows) on either side of the maximal 

margin hyperplane which by definition indicate the width of the margin. That is, these points 

construct the margin and are referred to as support vectors. It should be mentioned that if these 

points are to change and be shifted slightly, by virtue of this there would be a change in the 

maximal margin hyperplane as well. In other words, the maximal margin hyperplane will move as 

well. One thing worth noting though is that the maximal margin hyperplane, or its movement, is 

only reverberated by the support vector data points and none of the other data points that 
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constitute the training dataset. That means that should the other data points change - conditional 

upon only moving within their region (class label) - there is no effect on the maximal margin 

hyperplane. 

 

Figure 3.8: The maximal margin hyperplane 

Source: James et al., 2013. 

With the above knowledge, the correct (optimistically speaking) class label for any new query 

point can be predicted, based on the sign (if using the equations) or more intuitively, depending 

on which side of the maximal margin hyperplane the query point is. Formally, this establishes 

what is otherwise called the maximal margin classifier.  

Next, the theoretical understanding of maximal margin classifiers in mathematical terms is 

implemented, that is, the computation of maximal margin classifiers.  

Suppose there is a set of 𝑛 training data points that are an element of the 𝑝-dimensional real 

space, that is, 𝑥1, 𝑥2, … , 𝑥𝑛 𝜖 ℝ
𝑝 and the corresponding class labels, 𝑦1, 𝑦2, … , 𝑦𝑛 𝜖 {−1,1}. This 

means that the training data point is assigned to either of two classes, −1 or 1. Hence, the 

optimisation problem is solved by the maximal margin hyperplane. The formula of the optimisation 

problem is: 

max
𝛽0,𝛽1,…,𝛽𝑝,𝑀

  𝑀 (3.25) 

which is subject to: 
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∑𝛽𝑗
2 = 1

𝑝

𝑗=1

 (3.26) 

 Then from the generalisation property of a separating hyperplane (Equation 3.24): 

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝) ≥ 𝑀   ∀ 𝑖 = 1,2,… , 𝑛 (3.27) 

The constraint is where the separating hyperplane is greater than the margin of the hyperplane 

(𝑀) for all the training data points (𝑖 = 1,2, … , 𝑛). Thus, the optimisation from Equation 3.25 

chooses the parameters (𝛽0, 𝛽1, … , 𝛽𝑝) in such a way that it maximises the margin of the 

hyperplane (𝑀). This ensures that each training data point is at least the margin width in distance 

away from the maximal margin hyperplane. Additionally, this guarantees that the training data 

point is on the correct side of the maximal margin hyperplane.  

The maximal margin classifier is based on creating a linear boundary and perfectly separating the 

training data instance. However, this is not always possible due to the underlying patterns and 

features in the training data. Now extending upon the maximal margin classifier, the support 

vector classifier which is a generalisation to cases in which the data are nonseparable by a 

hyperplane (that is, cannot be perfectly separated) is introduced. In other words, the data points 

overlap over the hyperplane. Moreover, in some cases the maximal margin hyperplane should 

not be used, for instance, when the support vectors are very close to the hyperplane; as 

mentioned, the hyperplane is sensitive to subtle changes in the support vectors and this may 

result in the training data being overfitted. Overfitting is where the model fits the training 

exceptionally closely if not perfectly and therefore there is no generalisation, so it tends to fail 

when predicting a new query point. In other words, the prediction of the query point tends to be 

incorrect. Thus, in the interests of ensuring high performance and accuracy of test data, it might 

be worth misclassifying some training data points. This implies that there is more robustness 

amongst the individual training data points. Inevitably, this means that some of the training data 

points may lie on the opposite side of the hyperplane from their natural class label as shown in 

Figure 3.9. This is the nonseparable case, id est, support vector classifiers. As is palpable in 

Figure 3.9, there is a red training data point to the right of the hyperplane (given by the solid blue 

line, the maximal hyperplane) from which it can be concluded that it is on the opposite or the 

wrong side of the class label of red points (to the left of the hyperplane). This means that this point 

has been misclassified. Similarly, there is a green point on the wrong side of the hyperplane. 
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Figure 3.9: Nonseparable case: support vector classifiers  

Source: Hastie, Tibshirani and Friedman, 2009. 

The mathematics behind this idea can now be introduced. Suppose there are 𝑛 pairs of training 

data, (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛), where 𝑥𝑖 𝜖 ℝ
𝑝 and the associated class label is defined as 

𝑦𝑖  𝜖 {−1,1}. Recalling maximal margin hyperplanes, however, using slightly different notation to 

that of Equation 3.18 but with equivalent meaning, a hyperplane can be defined as: 

{𝒙: 𝑓(𝑥) = 𝒙𝑇𝛽 + 𝛽0 = 0} (3.28) 

where 𝛽 can be defined as a unit vector which equates to ‖𝛽‖ = 1. 

Through the classification rule, on which side of the hyperplane a point lies can be determined 

based on the sign (a resultant positive or negative value) distance from the training data point (𝑥) 

to the hyperplane via the function. Formally, let the function be defined in terms of 𝐺(𝑥), thus: 

𝐺(𝑥) = 𝑠𝑖𝑔𝑛[𝒙𝑇𝛽 + 𝛽0] (3.29) 

In the case of perfectly separable training data, as explained by the basis of hyperplanes, there 

exists a function, 𝑦𝑖  𝑓(𝑥𝑖) > 0  ∀𝑖. As previously mentioned, the hyperplane that creates the 

largest margin width distanced hyperplane of the training data points that are associated with 

classes −1 and 1 can be computed. Finally, from Equation 3.25 subject to the constraint (Equation 

3.26), the optimisation problem is shown. This means that the margin is 𝑀 units away from the 

hyperplane, thus the total width of the margin is 2𝑀. This equates to a convex optimisation 

problem. Recollecting Equations 3.25-3.27 (using slightly different notation but with equivalent 

meaning), the optimisation problem is given as follows: 
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max
𝛽0,𝛽,‖𝛽‖=1

 𝑀 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝒙𝑖
𝑇𝛽 + 𝛽0) ≥ 𝑀   𝑓𝑜𝑟 𝑖 = 1,2,… ,𝑁 

(3.30) 

For convenience, the optimisation formula can be restated as (recall: this is the formula for 

separated data, id est, the support vector criterion or maximal margin classifier): 

min
𝛽0,𝛽

 ‖𝛽‖ (3.31) 

which is subject to: 

𝑦𝑖(𝒙𝑖
𝑇𝛽 + 𝛽0) ≥ 1   𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 (3.32) 

All the above expression does is remove the norm constraint on 𝛽. Briefly, the norm constraint 

restricts the complexity of a model by reducing the number of parameters. Thus, the margin is 

𝑀 =
1

‖𝛽‖
.  

This is now extended mathematically to the case where classes overlap in the space (as in Figure 

3.9). Solving this problem, the maximisation of 𝑀 is an option, but now some of the training data 

points are allowed to be on the opposite side of the hyperplane. Thus, there are two ways to 

approach this. However, slack variables have to be included; these are data points that are on 

the wrong side of the hyperplane or the margin. These incorrectly classified data points can be 

within the margin or beyond the margin. The slack variables are defined symbolically as 𝜉 =

(𝜉1, 𝜉2, … , 𝜉𝑛). Then altering the constraint of Equation 3.32: 

𝑦𝑖(𝒙𝑖
𝑇𝛽 + 𝛽0) ≥ 𝑀 − 𝜉𝑖 (3.33) 

or 

𝑦𝑖(𝒙𝑖
𝑇𝛽 + 𝛽0) ≥ 𝑀(1 − 𝜉𝑖) (3.34) 

Both Equations 3.33 and 3.34 are subject to: ∀𝑖 (for all 𝑖) and where 𝜉𝑖 ≥ 0 (the slack variable has 

a positive value) as well as ∑ 𝜉𝑖 ≤ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑛
𝑖=1 . The last condition is that the sum of the slack 

variables is smaller than some unknown constant. Equations 3.33 and 3.34 will produce different 

solutions. Equation 3.34 indicates that misclassification of slack variables occurs when 𝜉𝑖 > 1, 

since the 𝑖𝑡ℎ data point is on the incorrect side of the hyperplane. If 𝜉𝑖 > 0, this is an indication 

that the 𝑖𝑡ℎ data point has violated the margin, that is, the data point is on the incorrect side of the 

margin. Furthermore, if 𝜉𝑖 = 0, this is representative of the 𝑖𝑡ℎ data point being precisely on the 

correct side of the margin. Equation 3.33 is a measurement of the overlaps’ actual distance from 

the margin, 𝑀, making it a nonconvex optimisation problem. This is evident from the right-hand 

side of the equation being 𝑀 − 𝜉𝑖 whilst 𝑀(1 − 𝜉𝑖) is a measurement of the relative distance. The 
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relative distance measurement results in a convex optimisation problem. As mentioned, a convex 

optimisation problem lends itself to the support vector criterion. This is of assistance going forward 

to achieve the ultimate goal of SVMs.  

To compute the support vector classifier, Equation 3.32 has to be written equivalent to the formula 

below but incorporating the constraints obtained in Equations 3.33 and 3.34. Hence, this is the 

standard form of a support vector classifier in the nonseparable case. Formally: 

𝑚𝑖𝑛‖𝛽‖   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

{
 
 

 
 
𝑦𝑖(𝒙𝑖

𝑇𝛽 + 𝛽0) ≥ 1 − 𝜉𝑖   ∀𝑖 ;

𝜉𝑖 ≥ 0   ;

∑𝜉𝑖 ≤ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑛

𝑖=1

   (3.35) 

The challenge lies with the fixed value of one in the first constraint, 𝑦𝑖(𝛽𝒙𝑖
𝑇 + 𝛽0) ≥ 1 − 𝜉𝑖. This 

can then be used as the starting point in computing the support vector classifier. From this 

(Equation 3.35) it can be deduced that it is a convex optimisation problem from the quadratic form. 

It contains constraints that are linear inequalities (two of the constraints contain greater than and 

equal signs: ≥ whereas the other constraint is less than and equal: ≤). Linear functions (in this 

case, the inequalities) are always convex. Additionally, quadratic functions with positive 

coefficients result in a convex problem. This can be referred to as a quadratic programming 

problem. Briefly, quadratic programming is having a mathematical optimisation problem; hence, 

the quadratic function that has been subjected to linear constraints has to be minimised or 

maximised. Quadratic programming is solvable but there is a ‘nicer’ method and this is to solve 

the problem using Lagrange multipliers. In mathematics, the methodology of Lagrange multipliers 

is used as a means for minimising or maximising a general function, that is, obtaining the local 

minima or maxima, subject to constraints (Stewart, 2011).  

If errors are allowed, that is, data points that are on the wrong side of the hyperplane or within the 

margin, then ideally the following formula would be minimised (Gretton, 2018): 

min
𝛽,𝛽0

(
1

2
‖𝛽‖2 + 𝐶∑𝕀

𝑛

𝑖=1

[𝑦𝑖(𝒙𝑖
𝑇𝛽 + 𝛽0) < 0]) (3.36) 

where 𝐶 replaces the constant in Equation 3.35 and is known as the cost parameter which is a 

nonnegative value.  

Firstly, the strictness of the violations of the margin that are allowed is controlled by the cost 

parameter. Thus, a few observational remarks regarding the cost parameter: 

• If 𝐶 = 0 implies there are no cost violations to the margin as 𝜉1 = 𝜉2 = ⋯ = 𝜉𝑛 which simply 

results in the maximal margin hyperplane; 
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• If 𝐶 > 0 indicates that at most the number of data points that are misclassified (on the 

incorrect side of the margin) is equal to 𝐶 as 𝜉𝑖 > 1; 

• When the cost parameter is increased it results in a widened margin which is indicative of 

allowing more violations and misclassified observations; 

• From the bullet point above, the opposite holds in that when the cost parameter is 

decreased, the margin becomes smaller (slighter) and therefore data points being 

misclassified are more severe. 

The cost parameter, in practice, is used as a tuning parameter, which means varying this value 

will affect the outcome. Hence, as mentioned, if 𝐶 is small, a narrow margin results, which means 

that the data are close to perfectly fit. In terms of the bias-variance tradeoff, the bias will be low 

but at the expense of having high variance in the model. On the other hand, if 𝐶 is large, the model 

experiences low variance but high bias. Thus, data points are obtained that are more biased as 

more violations have been allowed for and, therefore, more misclassifications.  

For simplicity, Equation 3.36 can be rephrased as follows: 

min
𝛽,𝛽0

 
1

2
‖𝛽‖2 + 𝐶∑𝜉𝑖

𝑛

𝑖=1

 (3.37) 

Using Equation 3.37, the following primal Lagrangian function can be considered along with 

substituting the first constraint of Equation 3.35: 

ℒ(𝛽, 𝛽0, 𝛼, 𝜉, 𝜇) =
1

2
‖𝛽‖2 + 𝐶∑𝜉𝑖 −∑𝛼𝑖[𝑦𝑖(𝒙𝑖

𝑇𝛽 + 𝛽0) − (1 − 𝜉𝑖)]

𝑛

𝑖=1

𝑛

𝑖=1

+∑𝜇𝑖(−𝜉𝑖)

𝑛

𝑖=1

 

=
1

2
‖𝛽‖2 + 𝐶∑𝜉𝑖 +∑𝛼𝑖[1 − 𝑦𝑖(𝒙𝑖

𝑇𝛽 + 𝛽0) − 𝜉𝑖]

𝑛

𝑖=1

𝑛

𝑖=1

−∑𝜇𝑖𝜉𝑖

𝑛

𝑖=1

 
(3.38) 

with dual variable constraints (Lagrange multipliers): 𝛼𝑖 ≥ 0 and 𝜇𝑖 ≥ 0. 

Thus, the principle of duality indicates that the original optimisation problem can be solved by 

minimising the primal variables: 𝛽, 𝛽0, 𝜉 and then maximising with respect to 𝛼 and 𝜇. This concept 

is known as the saddle-point of the Lagrangian (Auria & Moro, 2008). Therefore, the partial 

derivatives of the primal variables have to be computed. 
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The partial derivative of the Lagrangian function (Equation 3.38) with respect to 𝛽 is given by: 

∇𝛽 ℒ(𝛽, 𝛽0, 𝛼, 𝜉, 𝜇) = 𝛽 −∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

𝒙𝑖 = 0 

∴ 𝛽 =∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

𝒙𝑖 
(3.39) 

Formally, the partial derivative of the Lagrangian function (Equation 3.38) with respect to 𝛽0 is: 

∇𝛽0  ℒ(𝛽, 𝛽0, 𝛼, 𝜉, 𝜇) =∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0 (3.40) 

The above becomes a constraint when solving the dual problem, since at the optimal solution this 

condition must be satisfied. 

The partial derivative of the Lagrangian function (Equation 3.38) with respect to 𝜉 can be written 

as: 

∇𝜉  ℒ(𝛽, 𝛽0, 𝛼, 𝜉, 𝜇) = 𝐶 − 𝛼𝑖 − 𝜇𝑖 = 0 

∴ 𝛼𝑖 = 𝐶 − 𝜇𝑖 (3.41) 

with positive constraints, that is, 𝛼𝑖 , 𝜇𝑖 , 𝜉𝑖 ≥ 0  ∀𝑖. 

In order to obtain the Lagrangian dual objective function, the dual has to be maximised. Hence, 

using Equation 3.38 (Gretton, 2018): 

𝑔(𝛼, 𝜇) =
1

2
‖𝛽‖2 + 𝐶∑𝜉𝑖 +∑𝛼𝑖[1 − 𝑦𝑖(𝒙𝑖

𝑇𝛽 + 𝛽0) − 𝜉𝑖]

𝑛

𝑖=1

𝑛

𝑖=1

−∑𝜇𝑖𝜉𝑖

𝑛

𝑖=1

 (3.42) 

subject to the constraint:  

∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0 ; 𝛼𝑖 ≥ 0 (3.43) 

therefore: 

𝑔(𝛼, 𝜇) =
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+ 𝐶∑𝜉𝑖 −

𝑛

𝑖=1

∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖
𝑇𝒙𝑗

𝑛

𝑗=1

𝑛

𝑖=1

− 𝛽0∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

+∑𝛼𝑖

𝑛

𝑖=1

−∑𝛼𝑖𝜉𝑖

𝑛

𝑖=1

−∑(𝐶 − 𝛼𝑖)𝜉𝑖

𝑛

𝑖=1

 
(3.44) 
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But from the partial derivative of Equation 3.40, that is,                                                                                                                  

∇𝛽0  ℒ(𝛽, 𝛽0, 𝛼, 𝜉, 𝜇) = ∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 = 0 and the partial derivative of Equation 3.41, it is known that 

𝐶 − 𝛼𝑖 = 𝜇𝑖. 

therefore: 

𝑔(𝛼, 𝜇) =
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+ 𝐶∑𝜉𝑖 −

𝑛

𝑖=1

∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖
𝑇𝒙𝑗

𝑛

𝑗=1

𝑛

𝑖=1

− 0 +∑𝛼𝑖

𝑛

𝑖=1

−∑𝛼𝑖𝜉𝑖

𝑛

𝑖=1

−∑𝜇𝑖𝜉𝑖

𝑛

𝑖=1

 

=∑𝛼𝑖

𝑛

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

(3.45) 

Thus, the Lagrangian dual objective function is maximised, subject to constraints, ∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 = 0 

and 0 ≤ 𝛼𝑖 ≤ 𝐶: 

𝑔(𝛼) =∑𝛼𝑖

𝑛

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (3.46) 

Furthermore, Equations 3.39-3.41 (the partial derivative of the Lagrangian function with respect 

to the parameters) and 3.46 (the definition of the Lagrangian dual objective function) along with 

the Karush-Kuhn-Tucker (KKT) conditions (given in Equations 3.47-3.49) typify the solution to 

both the primal and the dual problem. The entire task above reduces to a convex quadratic 

programme problem in 𝛼. 

The KKT conditions include the constraints as follows: 

𝛼𝑖[𝑦𝑖(𝒙𝑖
𝑇𝛽 + 𝛽0) − (1 − 𝜉𝑖)] = 0 (3.47) 

𝜇𝑖𝜉𝑖 = 0 (3.48) 

𝑦𝑖(𝒙𝑖
𝑇𝛽 + 𝛽0) − (1 − 𝜉𝑖) ≥ 0 (3.49) 

The optimal solution is based upon a linear combination of the data points. More specifically, only 

the support vector points characterise the solution. In other words, that is a data point that falls 

within the margin or that has been misclassified (a data point that lies on the opposite side of the 

hyperplane from its class label). Thus, a data point that lies stringently on the correct side of the 

margin has no bearing on the support vector classifier.  

Understanding hyperplanes, maximal margin classifiers and support vector classifiers allows for 

expanding upon this, resulting in the final concept to be explained in this section: SVMs. What is 
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still apparent, from the description above, is that support vector classifiers work for the two-class 

setting finding linear boundaries. In practice, this is not always viable as there are many cases 

when the data does not present itself to be determined by linear boundaries, hence the need for 

more flexibility in the determination of the boundaries. Therefore, the idea of classification using 

nonlinear boundaries in the form of the SVM classifier is introduced. In addressing the challenge 

of linearity between the input variables and the outcome (output), enlarging the feature space is 

considered. In other words, the dimensionality of the feature space is increased using basis 

expansions, namely splines or polynomials of high orders (cubic, quadratic or even higher).  

As before, the underlying process is the same as in support vector classifiers with the distinction 

being the decision of the basis function. That is, the basis function is defined as                  

ℎ𝑚(𝑥),𝑚 = 1,2,… ,𝑀. The support vector classifiers are then fitted using input data points,   

ℎ(𝑥𝑖) = ℎ1(𝑥𝑖), ℎ2(𝑥𝑖), … , ℎ𝑀(𝑥𝑖), 𝑖 = 1,2,… , 𝑛 which results in the function 𝑓(𝑥) = ℎ(𝒙)𝑇�̂� + �̂�0. In 

this case, the function is nonlinear. As preliminary in support vector classifiers, the computation 

of the classifier remains unchanged; nonetheless, it is just based on the newly defined nonlinear 

function, id est, 𝐺(𝑥) = 𝑠𝑖𝑔𝑛 (𝑓(𝑥)).  

As mentioned previously, SVMs can be applied in both regression and classification domains. 

However, this research will focus on computing SVMs for classification as the application of brain 

tumour images in Chapter 4 is pattern recognition, hence a classification task.  

The notion here is to start with expressing the optimisation problem along with the solution in a 

slightly different way. Computation is performed by way of inner products. Inner products of two 

𝑟-vectors 𝑎 and 𝑏 are defined as 〈𝒂, 𝒃〉 = ∑ 𝑎𝑖𝑏𝑖
𝑟
𝑖=1 . Therefore, the inner product for two data 

points, 𝑥𝑖 and 𝑥𝑗 can be given as: 

〈𝒙𝑖, 𝒙𝑗〉 = ∑𝑥𝑖𝑘𝑥𝑗𝑘

𝑝

𝑘=1

 (3.50) 

Thus, the dual Lagrange objective function, Equation 3.46, can be rewritten to include the inner 

products as: 

𝑔(𝛼) =∑𝛼𝑖

𝑛

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗〈ℎ(𝒙𝑖

𝑇), ℎ(𝒙𝑗)〉

𝑛

𝑗=1

𝑛

𝑖=1

 (3.51) 
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Then, using the definition of inner products (Equation 3.50) in addition to using Equation 3.51, the 

function can be solved, 𝑓(𝑥): 

𝑓(𝑥) = ℎ(𝒙)𝑇𝛽 + 𝛽0 

=∑𝛼𝑖𝑦𝑖〈ℎ(𝒙), ℎ(𝒙𝑖)〉

𝑛

𝑖=1

+ �̂�0 
(3.52) 

𝛽0 can be computed when 𝛼𝑖 is given by solving 𝑦𝑖𝑓(𝑥𝑖) = 1 in Equation 3.52 for all 𝑥𝑖 but subject 

to the constraint, 0 ≤ 𝛼𝑖 ≤ 𝐶.  

In conclusion, the only impact that ℎ(𝒙) has is via the inner products. Furthermore, this means 

that there is no prerequisite to transform ℎ(𝒙) but the implications of the kernel function need to 

be recognised and understood. By using a kernel approach, the feature space is enlarged, which 

implies that the linearity boundary between the classes has been negated.  

Mathematically, the kernel function can be represented as follows: 

𝐾(𝒙, 𝒙𝑇) = 〈ℎ(𝒙), ℎ(𝒙𝑇)〉 (3.53) 

which equates to the computation of the inner products but in the enlarged feature space.   

There are a multitude of kernels that can be applied in SVMs, but the three most commonly used 

kernels (with their associated equations) in SVM literature include: 

• 𝑑𝑡ℎ Degree polynomial: 𝐾(𝒙, 𝒙𝑇) = (1 + 〈𝒙, 𝒙𝑇〉)𝑑; 

• Radial basis: 𝐾(𝒙, 𝒙𝑇) = 𝑒𝑥𝑝(−𝛾‖𝒙 − 𝒙𝑇‖2); 

• Neural network: 𝐾(𝒙, 𝒙𝑇) = 𝑡𝑎𝑛ℎ(𝜅1〈𝒙, 𝒙
𝑇〉 + 𝜅2). 

The first bullet is referred to as a polynomial of degree 𝑑, where 𝑑 is a positive integer value. If      

𝑑 = 1 the SVM simply reduces back to a support vector classifier, which defeats the objective. 

Thus, any integer needs to be chosen where 𝑑 > 1 leading to more flexibility of the decision 

boundary.  

It should be noted that in the radial basis kernel equation, 𝛾 is a positive constant. Briefly, a radial 

basis kernel exhibits local behaviour. This means that only training data points that are near to a 

query point will influence the predicted class label (of the query point).  

For SVM classifiers some final remarks are made: 

• The cost parameter, 𝐶, has an even greater impact as perfect separation of the data points 

is possible, that is, making the decision boundary as wiggly as needed to ensure that the 

data points are all correctly labelled; 
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• If 𝐶 is chosen to be large this results in a wiggly overfit decision boundary (low bias but at 

the expense of high variance); 

• If the value of 𝐶 is small it leads to a smoother boundary (low variance at the cost of high 

bias). 

Next, the concept of a loss function associated with SVMs is introduced: hinge loss. The 

discussion of this notion is relevant as in the practical implementation section (Chapter 4) one of 

the models is a hybrid CNN with the final (output) layer applying an SVM classifier. Hence, the 

appropriate loss function is that of the hinge loss. Therefore, starting with the optimisation problem 

defined by Equation 3.35, using different notation (but equivalent in the meaning), it can be written 

as follows: 

max
𝛽0,𝛽1,…,𝛽𝑝;𝜀1,…,𝜀𝑛;𝑀

𝑀 (3.54) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝛽𝑗
2 = 1

𝑝

𝑗=1

 (3.55) 

⟹ 𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝) ≥ 𝑀 (3.56) 

𝑤ℎ𝑒𝑟𝑒 휀𝑖 ≥ 0  𝑎𝑛𝑑  ∑휀𝑖 ≤ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑛

𝑖=1

 (3.57) 

But recall that the constant in Equation 3.57 can be replaced by the nonnegative tuning 

parameter, 𝐶 (the cost parameter). Therefore: 

𝑤ℎ𝑒𝑟𝑒 휀𝑖 ≥ 0  𝑎𝑛𝑑  ∑휀𝑖 ≤ 𝐶

𝑛

𝑖=1

 (3.58) 

Once again as with Equation 3.35: 

• 𝐶 is the cost parameter; 

• 𝑀 indicates the width of the margin; 

• 휀1, … , 휀𝑛 represents the slack variables (variables that allow instances to be on the incorrect 

side of the hyperplane (or margin)). 

Now Equations 3.54-3.56 and 3.58 can be rephrased for the support classifier (given by:       

𝑓(𝑿) = 𝛽0 + 𝛽1𝑿1 + 𝛽2𝑿2 +⋯+ 𝛽𝑝𝑿𝑝) as follows: 
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min
𝛽0,𝛽1,…,𝛽𝑝

{∑max[0, 1 − 𝑦𝑖𝑓(𝑥𝑖)] + 𝜆∑𝛽𝑗
2

𝑝

𝑗=1

𝑛

𝑖=1

} (3.59) 

where: 

• 𝜆 is indicative of a nonnegative tuning parameter; 

• 𝜆 ∑ 𝛽𝑗
2𝑝

𝑗=1  is the ridge penalty term and the idea of this term is to control the bias-variance 

tradeoff associated with the support vector classifier. 

Furthermore: 

• If the value of 𝜆 is large it implies that 𝛽0, 𝛽1, … , 𝛽𝑝 are small values, meaning that more 

violations of the margin are allowed. This case results in a classifier that exhibits low 

variance at the expense of having high bias; 

• Conversely, if 𝜆 is small then values of 𝛽0, 𝛽1, … , 𝛽𝑝 are small, hence fewer violations are 

tolerated. Thus, the support vector classifier displays high variance but low bias. 

Therefore, Equation 3.59 can be formally written in the form of a loss function. Written in general 

terms, the loss function is: 

min
𝛽0,𝛽1,…,𝛽𝑝

{𝐿(𝑿, 𝒀, 𝛽) + 𝜆𝑃(𝛽)} (3.60) 

where: 

• 𝐿(𝑿,𝒀, 𝛽) represents a loss function which is based on the data (𝑿, 𝒀) where the 

parameter(s) of interest is (are) 𝛽; 

• 𝑃(𝛽) equates to the penalty term. 

Using Equation 3.60 to rewrite Equation 3.59 in the same format, the following is obtained: 

𝐿(𝑿,𝒀, 𝛽) =∑max[0, 1 − 𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝)]

𝑛

𝑖=1

 (3.61) 

Equation 3.61 is known as the hinge loss and is illustrated in Figure 3.10. The figure refers to the 

SVM loss, but this terminology is the same as being referred to as the hinge loss. From Figure 

3.10 it can be concluded that when 𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝) ≥ 1 then the loss function 

is equal to zero. This infers that the instances are found to be on the correct side of the hyperplane 

(or margin). In other words, if the signs of 𝑦 and 𝛽 are the same, meaning that the correct class 

label has been predicted by 𝑦 and where 𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝) ≥ 1 then the loss is 

equal to zero. Contrariwise, when 𝑦 and 𝛽 have the opposite signs, this then suggests that the 
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loss function increases as 𝑦 increases in a linear fashion. The same conclusion is reached if 

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝) < 1 even if the sign of 𝑦 and 𝛽 are the same. 

 

 

Figure 3.10: Hinge loss (SVM loss)  

Source: James et al., 2013. 

There are numerous validating reasons for why SVMs should be considered, not least the ability 

to produce high accuracy. On the other hand, besides issues in interpretability and difficulty in 

understanding the underlying structure and mechanisms of the SVM algorithm (difficulty in how 

the variables interact), there are other limitations in the implementation and use of SVMs. Table 

3.2 indicates when and when not to apply SVM algorithms to problems in the form of advantages 

and disadvantages.  
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Table 3.2: Advantages and disadvantages of SVMs 

Advantages Disadvantages 

Efficient training algorithm The performance of SVMs relies heavily on the 
choice of kernel 

Can be used to model nonlinear class boundaries Computational speed is a problem in training and 
testing (running time is slower than neural nets, et 
cetera) 

Can compute complex, nonlinear functions  The size of the training dataset: exceptionally 
large training datasets with copious support 
vectors is an unsolved problem 

The complexity of the optimisation problem 
reduces to quadratic programming 

Optimal parameter selection is difficult, especially 
when the training data are nonseparable (linearly 
not separable) and the data are noisy 

Less overfitting  

Source:  Russell and Norvig, 2003; Byun and Lee, 2002; Archana and Elangovan. 

Lastly, SVMs have applications in areas that are used daily to solve real-world problems. As 

referenced in section 3.5, one of these areas is bioinformatics. SVMs have been shown to have 

increased efficacy in cancer segmentation, detection and classification, gene classification, et 

cetera. Furthermore, SVMs assist in text classification, for instance, categorising different 

document types, as well as image classification. Recognising handwritten text is another 

application of SVMs. SVMs have also shown promise in classifying satellite data.   

3.4 ARTIFICIAL INTELLIGENCE: DEEP LEARNING 

3.4.1 Artificial intelligence 

AI in recent times has become a buzz word and the area of AI has gained in popularity through 

its applications. These applications are extensive and in some cases the technology is so 

advanced that AI is in use without humans realising it. However, even with the hype surrounding 

AI it is a somewhat misconstrued concept, due in part to the inability to fully comprehend what AI 

entails - what AI is and what it is not and what it can accomplish and what it cannot accomplish. 

The notions of what AI can achieve are based on what has (falsely or incorrectly) been portrayed 

in movies, television series and books, therefore the misconceptions regarding AI’s potential 

(Mueller & Massaron, 2018). In other words, AI is made out to accomplish more than it actually 

can. 

There are four schools of thought on how AI is to be defined, with diverse perspectives on AI: the 

end goal that one is trying to achieve using AI; the expectations related to what one wants to 

accomplish; and how one implements the technology. If AI is broken down into artificial and 

intelligence, there is consensus on how artificial is defined, namely something that does not occur 

naturally. There is more of a grey area, more ambiguity, when defining intelligence and therefore 
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uncertainty about how intelligence should be defined. Intelligence can be defined in several ways, 

involving various mental activities: learning (how new information is processed); reasoning 

(understanding and then manipulating this new information to make sense of it); understanding 

(making an allowance for what this information means); grasping truths (the validity of new 

information); and seeing relationships (how does this interact with and come together with other 

information) (Mueller & Massaron, 2018).  

Coming back to these four different schools of thought on how to define AI, eight contrasting 

definitions are given in Table 3.3. There are varying criteria in the definitions and these can be 

viewed along two dimensions. Along the horizontal dimension - that is, splitting the upper two 

quadrants’ definitions from those of the lower half - the definitions in the top half concern 

themselves with thought processes and behaviour, whilst those in the bottom half address 

behaviour (Russell & Norvig, 2003). Furthermore, along the vertical dimension (dividing left from 

right), the left-hand side definitions are a measure of success in terms of reliance on and trust in 

human performance, whereas the definitions on the right are more concerned with rationality (a 

measurement against a definitive concept) (Russell & Norvig, 2003).  

Table 3.3: Definitions of AI divided into four categories 

Thinking like humans Thinking rationally 

“The exciting new effort to make computers think 
… machines with minds, in the full and literal 
sense” (Haugeland, 1985) 

“The study of mental faculties through the use of 
computational models” (Charniak & McDermott, 
1985) 

“[The automation of] activities that we associate 
with human thinking, such as decision-making, 
problem-solving, learning…” (Bellman, 1978) 

“The study of the computations that make it 
possible to perceive, reason and act” (Winston, 
1992) 

Acting like humans Acting rationally 

“The act of creating machines that perform 
functions that require intelligence when performed 
by people” (Kurzweil, 1990) 

“Computational intelligence is the study of the 
design of intelligent agents” (Poole, Mackworth & 
Goebel, 1998) 

“The study of how to make computers do things at 
which, at the moment, people are better” (Rich & 
Knight, 1991) 

“AI … is concerned with intelligent behaviour in 
artifacts” (Nilsson, 1998) 

Source:  Russell and Norvig, 2003. 

Decomposing what is meant by thinking like humans, thinking rationally, acting like humans and 

acting rationally is as follows (Russell & Norvig, 2003; Mueller & Massaron, 2018): 

• Acting like humans (the Turning approach): in the instance where a computer acts like a 

human, it means that the computer has successfully been able to not differentiate between 

computer and human; 
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• Acting rationally (rational agent approach): from a human perspective, this is how an 

individual will act in a given circumstance. From the computational side, computers depend 

on a programme or recorded actions based upon data; 

• Thinking rationally (“laws of thought” approach): the main aim of this approach is to solve 

problems logically. Humans are considered rational thinkers when their actions are 

performed according to some form of guidelines. On the other hand, computers that think 

rationally need programmes to create these guidelines based on the available data; 

• Thinking like humans (the cognitive modelling approach): programming a computer using 

the logic of how human thinking processes work requires a deeper understanding of these 

processes. Two approaches can be taken. Firstly, humans think via introspection and 

secondly, psychological experiments can be conducted to determine how humans think and 

to establish the logic behind these processes. 

The above is a brief description of each; for a more detailed understanding, the reader is referred 

to the book on AI by Russell and Norvig (2003). These aforementioned four types give insight into 

how to apply AI in practice. As is evident, the outcome is different when looking at rational versus 

human processes. Rationality is based on performing tasks according to a strict set of guidelines 

(within some deviation, of course); it is generally a strictly-by-the-book method. Conversely, 

human processes are somewhat different in that they rely on instinct and intuition which might not 

always align in every respect with guidelines (this is also dependent on the situation).  

Furthermore, there are divergent opinions about the strength of AI. That is, some research and 

groups in practice describe the term strong AI, which means that in an ever-changing 

environment, AI can generalise and adapt to any given situation (Mueller & Massaron, 2018). 

Contrariwise, weak AI is where the intelligence has been designed in such a way that it performs 

a specific task very well (Mueller & Massaron, 2018). In other words, it is efficient and effective 

but only for that particular specialised task.  

AI has recently been put in the spotlight due to the increase in ML techniques being applied in 

practice. ML technology is a means whereby computers learn from data. In other words, ML is 

not dependent on programmers setting the tasks to be performed, that is, manual intervention at 

every step of the process, but rather derives the tasks from the examples which indicate to the 

machine (computer) how it should behave (Mueller & Massaron, 2018). It is worth pointing out, 

though, that one of the consequences of ML is that these techniques can prove to be unsuccessful 

and then the computer learns the incorrect things through incorrect human programming. For 

instance, as mentioned, garbage in, garbage out – if the task at hand is incorrectly interpreted, 

no ML algorithm can make the adjustments and the results may prove to be inaccurate. Besides 

ML, the currently most spoken-about area in AI that has gained exponentially in popularity is DL. 
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It has been successfully applied with promising results in numerous applications in a variety of 

fields. DL methodology attempts to mimic the human brain. DL methodologies and techniques 

have become possible as a result of an increase in computational power (hardware), smarter  

algorithms (that is, the development of and advancement in AI algorithms) and digitisation which 

have led to enormous databases that are available and accessible. This digitisation has occurred 

from society as well as large investments from companies such as Google, Amazon, Facebook 

and other businesses that have sensed an opportunity in the potential impact that the 

advancements of AI might have on their companies (Mueller & Massaron, 2018).  

Smarter algorithms and data have changed the AI landscape. Algorithms have come a long way; 

when first adopted by computer programming they were simple algorithms. That is, these 

algorithms were only capable of acknowledging mathematical and logical symbols to then 

compute mathematical operations and equations. Following this, expert systems were developed, 

some of which are still somewhat in use today, for example, spelling and grammar checkers 

(Mueller & Massaron, 2018). More recently, due to the increase in the availability and accessibility 

of large databases, ML and DL algorithms have been developed and implemented. Data have 

gone from being a raw material that facilitated the solution to being the key component of the 

solution (Mueller & Massaron, 2018).  

Furthermore, AI from a business perspective can assist in performing tasks in a smarter, more 

efficient and effective way which is essentially easier, for instance by reducing the number of 

trivial tasks. What AI is not and what it cannot accomplish is to replace humans. It cannot replicate 

the creativity or the imagination of humans or their patterns of thought, for instance by creating 

new music; moreover, AI is limited and cannot come up with original ideas (Mueller & Massaron, 

2018). Another prime example of where AI can assist but decidedly not replace humans is the 

medical field. The use of AI technology has made it possible to make more accurate, efficient and 

straight-forward diagnoses. There are many examples, but one which is pertinent to this research 

is that cancer can be detected much sooner with the aid of AI technology than by doctors alone. 

AI assists not only in locating tumours with great precision and accuracy when they are small but 

also in speeding up their analysis (Mueller & Massaron, 2018). But that said, the expertise and 

experience of a doctor are still needed to confirm the diagnosis.  

3.4.2 Neural networks: biological and artificial 

The study of NNs has been advantageous in applications where classical statistical techniques 

may not be applicable or may not produce successful results. The majority of these tasks are in 

the sphere of classification. As mentioned, NNs have secured promising results in image and 

speech classification, text classification and natural language processing (NLP), as well as in 

domains that rely on the proficiency of professionals such as diagnostic medicine.  
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First there is the neurobiological influence that has been the inspiration behind the programming 

prototype, ANNs. The neurobiological paradigm has made allowance for NNs in the sense that 

computers learn from the input data. Figure 3.11 is an illustration of a single neuron in a stylised 

form. It is worth mentioning that the brain consists of approximately 100 billion neurons. The 

diagram depicts how the starting point of how neurons communicate with each other is mediated 

by the synapses, which are electrochemical junctions (Gurney, 1997). These synapses are 

located on the branch of the cell body known as dendrites and inside the cell body is a nucleus. 

In cases where there is enough stimulation of the dendritic tree, it will cause a spike down that 

axon. If these summed spikes or signals are greater than some threshold, the neuron fires; this, 

in turn, transmits signals to further neurons via the axon (Gurney, 1997). Once the neurons have 

fired, they go through what is known as the refractory period when the neuron goes quiet for a 

short period while it builds up strength to fire again. In some cases the strength from the signals 

causes an inhibitory effect, which means that they prevent neurons from firing whilst an excitatory 

effect causes neurons to fire (Gurney, 1997). Hence, the strength and interaction with other 

neurons determine whether a neuron has the ability to fire or not. Figure 3.11 shows that there 

are inputs, computation takes place in the middle and there is an output (firing or nonfiring of 

neurons). From this process it is converted using the same intuition to produce an ANN, 

demonstrated in Figure 3.12.  

 

Figure 3.11: Components of a biological neuron  

Source: Gurney, 1997. 

Figure 3.12 is binary in the inputs, that is, they take on a value of either zero or one and this is to 

imitate the neurobiological network, in that neurons either fire or they do not. First the network is 

fed some inputs given as 𝑥1, 𝑥2, … , 𝑥𝑛 that are binary; they are multiplied by some weights, 

𝑤1, 𝑤2, … , 𝑤𝑛. To describe the collective strength of these inputs they are run through a summation 

(∑). This helps determine whether this collective strength will have enough influence to signify 

whether the neuron fires or not. This is where the activation function (𝜎) is used, that is, the 

activation function has a threshold value. If the summation is greater than the threshold the 

collective input is strong enough to fire, thereby resulting in a one. The output is also binary, that 
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is, obtaining a value of either a zero or a one. Hence the output is determined by whether the 

threshold value of the activation function is exceeded or not.  

 

Figure 3.12: Systematic diagram of a binary classification neural network  

To fully comprehend NNs, the core underlying principles have to be defined and understood, with 

insight into the mechanics of how NNs work. Once the fundamental aspects have been 

comprehended, this idea can be extended to the notion of DL and CNNs.  

3.4.2.1 Perceptrons 

Perceptrons form the first core principle in understanding the global picture of a NN. A perceptron 

is a type of ANN in the simplest form. The initial perceptron algorithm was developed in the 1950s 

and 1960s by Frank Rosenblatt who was inspired by the prior work of Warren McCulloch and 

Walter Pitts (Nielsen, 2015), where the main idea was to classify binary inputs (usually in the form 

of images) and then categorise them into either of two classes (binary in, binary out) via separation 

of a hyperplane. That is, single layer perceptrons (see Figure 3.13) have the ability to only learn 

patterns that are linearly separable. If a step function is used, which is the case in a perceptron, 

then the network has a single hyperplane that divides the data. In other words, and using 

mathematical notation, a perceptron produces a distinct binary output (zero or one) from multiple 

(𝑛) binary inputs (zero or one) given as 𝑥1, 𝑥2, … , 𝑥𝑗. Furthermore, Figure 3.13 is a basic visual 

representation of a perceptron with three binary inputs (𝑥1, 𝑥2, 𝑥3) that then produce a single binary 

output. In theory, though, this is not a fixed number and as such there could be more or fewer 

binary inputs.  
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Figure 3.13: Basic perceptron  

Source: Nielsen, 2015. 

To compute this binary output Rosenblatt introduced a simple rule which is to introduce weights 

as a means to convey the influence that the associated inputs have on the output. The weights 

are expressed mathematically as 𝑤1, 𝑤2, … , 𝑤𝑗. The output of this perceptron, denoted by either a 

zero or a one, is to be determined by the weighted sum (the summation of the inputs multiplied 

by the weights), formally written as ∑ 𝑤𝑗𝑥𝑗𝑗 , is greater than or less than some threshold value 

(Nielsen, 2015). Algebraically, this can be written more formally as: 

𝑜𝑢𝑡𝑝𝑢𝑡 =

{
 
 

 
 0     𝑖𝑓   ∑𝑤𝑗𝑥𝑗

𝑗

≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1     𝑖𝑓   ∑𝑤𝑗𝑥𝑗
𝑗

> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 (3.62) 

Equation 3.62 reads as: the output is classified as a zero (one class) if the weighted sum is less 

than or equal to some threshold value, whereas the output is classified as a one (another class) 

if the weighted sum of the inputs is greater than the threshold value. Hence, a perceptron makes 

decisions based on weighted evidence (the predictive power of the inputs associated with the 

output), taking into account that if the weights and the threshold values are changed this results 

in a different perceptron model (Nielsen, 2015).  

Some notational changes can be made to the definition of a perceptron for convenience (when 

proceeding with further core concepts). The first change is that instead of the weighted sum of 

the inputs, ∑ 𝑤𝑗𝑥𝑗𝑗 , this can be written as the dot product of the vector of weights and the vector 

of inputs, written mathematically as: 𝒘 ∙ 𝒙 = ∑ 𝑤𝑗𝑥𝑗𝑗 . Secondly, the threshold is replaced with what 

is referred to as the bias and taken to the left-hand side of the inequality in Equation 3.62, that is 

the bias is equivalent to the negative of the threshold; mathematically this is: 𝑏𝑖𝑎𝑠 ≡ −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

and the perceptron rule given in Equation 3.62 can be rephrased as (Nielsen, 2015): 

𝑜𝑢𝑡𝑝𝑢𝑡 = {
0     𝑖𝑓   𝒘 ∙ 𝒙 + 𝑏 ≤ 0
1     𝑖𝑓   𝒘 ∙ 𝒙 + 𝑏 > 0

 (3.63) 
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Equation 3.63 is now read as: the output is classified as zero if the dot product of the weights and 

the inputs plus the bias are less than or equal to zero whilst a one is the output classification if 

the dot product of the weights and the inputs plus the bias are greater than zero. One way of 

thinking of the bias is that it is the measure of the likelihood of getting the perceptron to result in 

producing a value of one (Nielsen, 2015). From the neurobiological neuron, this is the likelihood 

of the neuron firing. This is determined as follows: if the bias is really large (a large positive value), 

there is a greater chance of the output being a one and vice versa. That is, if the bias is really 

small (a negative value), the perceptron will not fire and therefore a zero outcome is obtained. 

The bias is responsible for moving the decision boundary of the hyperplane. In the case of binary 

classification tasks, recall that the perceptron uses a step function (refer to Figure 3.14, third 

panel). More specifically, a perceptron uses the Heaviside step function (named after a British 

mathematician) as an activation function. The Heaviside step function simply indicates that for 

negative values a zero is the resultant output value, whilst for positive values the output is given 

as a one. This is the same interpretation and conclusion arrived at from Equation 3.63. It is worth 

mentioning that the step function is not the most effective, for the reason that if the weights and 

the bias are slightly changed, this can result in major changes to the output (Nielsen, 2015). That 

is, the model can completely change around and, for example, a one could now easily be 

misclassified as a zero. For this reason other activation functions are reviewed, including when 

the intended use is most appropriate, in section 3.4.2.3. 

This single layer perceptron with a classical linear classifier is what is considered the simplest 

feedforward network. Feedforward networks are whereby the information only moves in one 

direction; as the name suggests the movement is forward, from the input through the layers (if 

there are any) and finally, towards the output.  
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Figure 3.14: Activation functions  

Source: DuCharme, 2017. 

Figure 3.15 is a systematic diagram of the components of a simple ANN. This can be applied 

going forward and constitutes the underlying mechanics of NNs. That is, the network has inputs 

(𝑥1, 𝑥2, … , 𝑥𝑗); these have corresponding weights (𝑤1, 𝑤2, … , 𝑤𝑗), that is, the inputs are multiplied 

by the weights. The neuron consists of a linear part (𝒘𝒙+ 𝑏 where 𝒘 ∙ 𝒙 = ∑ 𝑤𝑗𝑥𝑗𝑗 ) and an 

activation function (𝜎). The activation functions (as given in Figure 3.14) that are discussed 

include the Heaviside step function, the sigmoid function, the hyperbolic tangent (tanh) and the 

rectified linear unit (ReLU), to name but a few. These are the functions that were reviewed in this 

research with the sigmoid and ReLU applied in the exploration of brain tumour images (Chapter 

4). For the theoretical discussion on the other three activation functions (excluding the step 

function, which was discussed in this section) the reader is referred to section 3.4.2.3. 
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Figure 3.15: Systematic diagram of the components of an artificial neural network  

3.4.2.2 The architecture of artificial neural networks 

Figure 3.16 is indicative of adding more depth to the NN. Complexity entails that more layers have 

been added to the network; in fact, there are an additional four layers. The first column (the 

leftmost column in the diagram) is known as the first layer and contains the input neurons, the 

second column is the second layer, and so forth. The fourth column (rightmost column as depicted 

by the diagram) contains the output, and is, therefore, referred to as the output layer. In other 

words, this layer is directly related to the output. Furthermore, the middle two columns are what 

is known as the hidden layer. A basic understanding of a hidden layer is that it is not directly 

associated with the input or the output, that is, the input and output are hidden from this layer. In 

other words, it is an abstraction of the binary input but not a direct result of the input. Furthermore, 

it cannot be fully comprehended what this layer is going to figure out based on the input from the 

previous layer, but with enough information from the data this layer should start understanding 

more complex information about the input. The deeper (more layers added) the network gets, the 

more complex the information it will start to understand. A layer can be defined as neurons that 

are not connected to one another, that is, they act independently of one another. This, however, 

is a fully connected perceptron network as every input variable is connected to each neuron in 

the first layer. The output from each neuron in the first layer is connected as an input to the second 

layer. The same thinking is followed for the next layer, that is, the output from each perceptron in 

the second layer is connected as an input to the third layer. This process continues until the last 

layer in the network - in this example, the fourth layer - which is indicative of the output, the final 

decision made by the network.  

However, what should be understood is that the first layer is making very simple decisions through 

the weights of evidence of the inputs plus the bias (known as the linear part of the neuron, 

mathematically shown as 𝒘 ∙ 𝒙 + 𝑏) and that has been run through an activation function 

(reviewed in the next section) associated with that neuron. The next layer takes the decisions or 
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results of the first layer and then weighs them up and makes a decision. This invariably means 

(as mentioned) that the neurons that are in the second layer make decisions based on more 

complex and abstract information. The second layer then communicates the decisions it made 

and passes them on as input to the third layer that then understands even more complex 

information and so the process continues until the last layer makes a final decision (the output). 

It is worth noting that per layer generally one type of activation function is used but the different 

layers may contain different activation functions.  

 

Figure 3.16: Architecture of an artificial neural network  

Source: Nielsen, 2015. 

Figure 3.16 is an example of a four-layer NN, with two hidden layers; however, theoretically and 

in practice the network can have multiple hidden layers.  

3.4.2.3 Activation functions 

As previously mentioned, perceptrons have limitations in that a minor change in the values of 

either the weights or the bias can lead to completely different model outputs. This section shows 

that through the use of more effective activation functions this challenge can be overcome. Three 

further activation functions will be reviewed: the sigmoid function, the hyperbolic tangent 

(commonly referred to as tanh) function and lastly, the rectified linear unit (ReLU) function. This 

is by no means an exhaustive list and there are many more that can be found in the literature that 

has been researched for specific applications. In the next chapter on the exploration of brain 

tumour images the two main activation functions that are applied in CNNs are those of sigmoid 

and ReLU. The reasoning behind the use of these two functions will become apparent as they 

are discussed in more depth. One of the main reasons that activation functions are needed and 

therefore implemented is that this is where the complexity of the NN comes from. If no activation 
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function were applied, irrespective of how deep the NN is it is equivalent to having a linear 

regression problem.  

Sigmoid activation function 

The sigmoid activation function, which is a function that makes use of sigmoid neurons, is one of 

the most frequently used activation functions in practice and in the research arena as it has the 

property of being a smoothed-out version of the step function where the mathematics can be dealt 

with quite easily. In other words, sigmoid functions are quite common in feedforward NN due to 

the fact that they are nonlinear and have the additional property of having mathematical simplicity 

of their derivative (Han & Moraga, 1995). Moreover, as the sigmoid function is a smoothed-out 

version of the step function (as illustrated by the topmost panel in Figure 3.14), it means that for 

classification tasks it results in a probability obtained between zero and one. Hence, it means that 

there are not only two outcomes - zero or one - as with perceptrons, but there can be any possible 

probability value between zero and one. This indicates that a sigmoid function is bounded 

between zero and one. The drawback to sigmoid activation functions is that at the extreme ends, 

the gradient is very close to zero, as at the extreme ends the function dwindles and is stagnant. 

In other words, the function is horizontal at these extreme ends (refer to Figure 3.14). This leads 

to an effect known as a vanishing gradient or the saturation of the gradient, which means that it 

is particularly difficult to update parameters that are earlier in the network and that the network 

learns more slowly or not at all.  

However, as mentioned, sigmoid functions have the property of overcoming the challenge posed 

by perceptrons. That is, a small variation or change in the bias or the weights does not have a 

major impact on the outcome of the network (Nielsen, 2015). In other words, only a small change 

in the output is resultant from a small change in the weights or bias.  

The discussion now shifts to the underlying principles of a sigmoid function, including from a 

mathematical perspective. That is, just as was the case with perceptrons, sigmoid functions 

(neurons) have inputs, which are given as 𝑥1, 𝑥2, … , 𝑥𝑗. However, as mentioned, owing to the 

probability of a sigmoid neuron, the input can take on a value between zero and one, for instance, 

0.175 is very much a valid input (Nielsen, 2015). Furthermore, similar to perceptrons, sigmoid 

neurons also have corresponding weights to the inputs and a bias term. Formally, the weights 

and the bias are defined as before, 𝑤1, 𝑤2, … , 𝑤𝑗 and 𝑏, respectively. Another change that is 

observed with sigmoid functions is that the output is no longer a zero or one (as in perceptrons) 

but is given as 𝜎(𝒘𝒙 + 𝑏) where 𝜎 is indicative of the activation function. In this case, the activation 

function, 𝜎, represents the sigmoid function (Nielsen, 2015). The sigmoid function can be written 

as: 

Stellenbosch University https://scholar.sun.ac.za



82 

 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 (3.64) 

Differentiating the sigmoid function, the following is obtained: 

𝜎′(𝑧) = 𝜎(𝑧)(1 − 𝜎(𝑧)) (3.65) 

Additionally, the output expression can be written more explicitly based on Equation 3.64 but with 

weights, 𝑤1, 𝑤2, … , 𝑤𝑗 and 𝑏, the bias. Thus: 

1

1 + exp (−∑ 𝑤𝑗𝑥𝑗 − 𝑏𝑗 )
 (3.66) 

Furthermore, there are similarities between the perceptron and the sigmoid neurons. Firstly, 

suppose that 𝑧 = 𝒘 ∙ 𝒙 + 𝑏 results in a large value (a big positive value), then 𝑒−𝑧 ≈ 0, meaning 

that the sigmoid activation is approximately equal to one (as from Equation 3.64: 𝜎(𝑧) ≈
1

1+0
≈ 1). 

This can then be interpreted as that the output obtained from the sigmoid neuron is approximately 

equal to one. Conversely, suppose that 𝑧 = 𝒘 ∙ 𝒙 + 𝑏 is the resultant of a small value (that is, a 

large negative), then via the exponential value 𝑒−𝑧 → ∞; from the sigmoid function, a value of 

approximately zero is obtained. It is only in the in-between range (that is, not at the extreme ends 

of the function), that there are obvious and significant differences between perceptrons and 

sigmoid functions (Nielsen, 2015). In other words, a perceptron only takes on one of two values, 

whilst a sigmoid function can take on varying values bounded by zero and one.  

Besides the algebraic form given by Equation 3.64, as mentioned the shape where a sigmoid 

function is a smoothed-out step function that is employed by perceptrons is also of interest. 

Furthermore, the use of calculus can show that owing to the smoothed-out activation function a 

small change in the weights (∆𝑤𝑗) or the bias (∆𝑏) results in a small change in the output, that is 

mathematically (Nielsen, 2015): 

∆ 𝑜𝑢𝑡𝑝𝑢𝑡 ≈∑
𝜕 𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑤𝑗
𝑗

 ∆𝑤𝑗 +
𝜕 𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑏
 ∆𝑏 (3.67) 

where: 

• ∆ 𝑜𝑢𝑡𝑝𝑢𝑡 is the change in output; 

• 
𝜕 𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑏
 is the partial derivative of the output with respect to the bias (𝑏); 

• 
𝜕 𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑤𝑗
 is the partial derivative of the output with respect to the 𝑗𝑡ℎ weight (𝑤). 

Equation 3.67 is indicative of a linear function, that is, the change in the output is linearly 

dependent on the changes in the bias and weights (Nielsen, 2015). This implies that the linearity 
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allows for making small changes in the bias and/or the weights that are then associated with a 

small change in the output. Hence, this will not cause major changes in the output, which is 

beneficial. The above equations will be useful when an optimisation technique (learning algorithm) 

is applied and backpropagation performed (in sections 3.4.2.4 and 3.4.2.5, respectively).  

Hyperbolic tangent activation function 

As mentioned, in practice networks that are built on activation functions other than the sigmoid 

function can outperform sigmoid activation functions. One of these frequently used functions is 

key to the discussion in this section and that is the hyperbolic tangent function (tanh). As a matter 

of fact, depending on the type of application and problem tanh functions may learn more quickly 

than sigmoid functions and may better generalise either the training or the test data or in some 

cases, even both (Nielsen, 2015). The tanh activation function - that is, tanh neurons - is a slight 

variation, probably the simplest variation, of the sigmoid function. Figure 3.14, the second (top) 

panel, contains an illustration of the tanh activation function. The most visible variation is that the 

bounds have changed whilst the shape remains the same (still an ‘S’ shape as observed in the 

sigmoid function). The new bounds are minus one to one ([−1; 1]).  

Hence, the hyperbolic tangent is used in the place of the sigmoid function, that is, the output of a 

tanh activation function is given by (Nielsen, 2015): 

𝑡𝑎𝑛ℎ(𝒘 ∙ 𝒙 + 𝑏) (3.68) 

with a given weight vector (𝑤) with associated input vector (𝑥) and bias (𝑏). Note that 𝑡𝑎𝑛ℎ in 

Equation 3.68 refers to the hyperbolic tangent.  

Furthermore, the tanh activation function can be written formally as: 

𝑡𝑎𝑛ℎ(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 (3.69) 

The corresponding derivative of Equation 3.69 is: 

𝑡𝑎𝑛ℎ′(𝑧) = 1 − 𝑡𝑎𝑛ℎ(𝑧)2 (3.70) 

Additionally, to show that the tanh activation function is simply a rescaled version of the sigmoid 

activation function, some algebra can be used (Nielsen, 2015): 

𝜎(𝑧) =
1 + 𝑡𝑎𝑛ℎ (

𝑧
2)

2
 (3.71) 

Thus, as aforementioned, tanh has the same shape as the sigmoid function but with different 

bounds. In other words, the output from the tanh function ranges from −1 to 1, whilst in the sigmoid 
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function the output varies from zero to one (0 to 1). Like sigmoid functions, tanh functions suffer 

from vanishing gradient descent at the extreme ends and this is one of the limitations of tanh.  

One question that needs reviewing is whether tanh activation functions are more effective in terms 

of performance than sigmoid functions. Research by Glorot and Bengio (2010) and LeCun et al. 

(2012) have shown that there is some empirical evidence that advocates using tanh instead of 

sigmoid functions, that is, tanh functions outperform sigmoid functions. However, Nielsen (2015) 

states that there is empirical evidence to suggest that tanh functions provide little to no 

improvement in performance over sigmoid functions for certain application problems.  

Rectified linear unit activation function  

The next activation function to be reviewed is rectified linear unit (ReLU) and once again this 

network can be trained using different optimisation learning algorithms as well as 

backpropagation.  

Mathematically, the output of the ReLU activation function can be given as (Nielsen, 2015): 

max (0,𝒘 ∙ 𝒙 + 𝑏) (3.72) 

for a given input vector (𝑥) with corresponding weights (𝑤) and bias (𝑏). 

For convenience, the ReLU activation function can be written as: 

𝑅𝑒𝐿𝑈(𝑧) = {
0     𝑖𝑓  𝑧 ≤ 0
𝑧     𝑖𝑓  𝑧 > 0

 (3.73) 

It is evident from Figure 3.14, bottom-most panel, that when the ReLU function is less than or 

equal to zero, the output obtained is zero. Otherwise, when the ReLU function is greater than 

zero the maximum of the ReLU function is obtained, which is given by (𝑤 ∙ 𝑥 + 𝑏). 

Furthermore, the derivative of the ReLU activation function is: 

𝑅𝑒𝐿𝑈′(𝑧) = 𝐼𝑛𝑑{𝑧 > 0} (3.74) 

where 𝐼𝑛𝑑 is the indicator function of the activation function.  

According to relatively recent research, when it comes to image classification the ReLU activation 

function has shown promising results in that these networks outperform other activation functions 

(Jarrett et al., 2009; Krizhevsky, Sutskever & Hinton, 2012). The one challenge that remains, as 

with all these activation functions, is that there is no specific theoretical understanding of or reason 

for when and why certain activations are better for certain tasks. Due to both the successful 

implementation of ReLU activation functions and the fact that this research is centred on the 

evaluation of brain tumour image classification, ReLU activation functions are used in the 
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empirical section of this research. Thus, in Chapter 4 the CNNs make use of ReLU and sigmoid 

activation functions.  

With regard to the gradient, ReLU functions have the advantage over both sigmoid and tanh 

activation functions that there is no saturation for positive values. As mentioned, saturation 

happens at the extreme ends of the tanh and sigmoid functions, as at the extreme ends (zero and 

one for sigmoid and minus one and one for tanh) the gradient is very close to zero and thus the 

algorithm stops learning, according to Nielsen (2015). However, increasing the weight of a ReLU 

function will not cause saturation, as the function is linearly increasing from a function value of 

zero onwards (that is, positive values) (refer to Figure 3.14), thus learning does not slow down. In 

fact, for this region the gradient is equal to a value of one. Conversely, there is a problem when 

the function value is negative; the function is a horizontal linear function, meaning that the gradient 

is equal to zero. Thus, there is saturation and this means that the gradient vanishes.  

3.4.2.4 Learning algorithms: optimisation techniques 

So far a term known as the gradient (or gradient descent) has been touched on; most NN, 

including CNN (the applied DL NN in Chapter 4), capitalise on this concept. The aim of gradient 

descent is essentially to lower the error rate over the training processes (Yaqub et al., 2020). 

Furthermore, according to Goodfellow, Bengio and Courville (2016), training NNs that involve the 

use of optimisation techniques is considered the most difficult part. Therefore, state-of-the-art 

optimisation techniques have been developed. One of the main persistent challenges is that they 

are often used as black box optimisers - in other words, it is hard to understand the theoretical 

basis of how they work or their strengths and weaknesses in a practical setting (Ruder, 2016). 

This section contains a theoretical account of the state-of-the-art optimisation techniques; in 

Chapter 4 these are investigated and applied in the exploration of brain tumour images via a CNN 

architecture. Additionally, adapting gradient descent and mini-batch gradient descent to the NN 

case will be considered; however, the generalised versions will also be included.  

Gradient descent 

Starting with an analogy as the definition of gradient descent, the function can be thought of as a 

basin; a ball is rolling down the slope of the hill until the bottom of a basin is reached, as illustrated 

by Figure 3.17. Using the current position, the steepness of the hill where the ball will move in the 

direction of the steepest descent (moving downwards) towards the bottom of the basin needs to 

be taken into account. The steepness of the slope of the hill represents the error to be minimised. 

More formally, gradient descent is a first-order iterative optimisation algorithm where finding the 

local minima via differentiation of the function is attempted (Nielsen, 2015; Yaqub et al., 2020).  
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Figure 3.17: Gradient descent 

Source: Nielsen, 2015. 

In a NN a cost function (also known as a loss function) should be minimised over the weight and 

biases with an activation function in the background. For now, for purposes of understanding 

gradient descent, a more generalised function with multiple variables will be considered, as this 

can then be adapted to any NN cost function. Recall that gradient descent is a means to solve 

minimisation tasks. Suppose that there is a cost function given as 𝐶(𝑣) with multiple variables 

(𝑣1, 𝑣2, … , 𝑣𝑚) where the main strategy is to minimise this function (Nielsen, 2015): calculus can 

be used to show what happens to the change in the cost function (∆𝐶) when there is a small 

change in the variables, in their respective directions - that is, a small change in the cost function 

as a result of a change in the vector of variables (∆𝑣 = (∆𝑣1, ∆𝑣2, … , ∆𝑣𝑚)
𝑇) (Nielsen, 2015). The 

gradient of the cost function, 𝐶, is a vector of partial derivatives (note that ∇ in this context is not 

the partial derivative), written as:  

∇𝐶 = (
𝜕𝐶

𝜕𝑣1
,
𝜕𝐶

𝜕𝑣2
, … ,

𝜕𝐶

𝜕𝑣𝑚
)
𝑇

 (3.75) 

Formally, the gradient of the cost function is given as (note that ∇ in this context is not the partial 

derivative): 

∆𝐶 ≈ ∇𝐶∆𝑣 (3.76) 

Recall that the cost function needs to be minimised, so this should be a negative value if the cost 

function is negative, therefore the following is chosen (Nielsen, 2015): 

∆𝑣 = −𝜂∇𝐶 (3.77) 

where 𝜂 represents the learning rate of the optimisation algorithm and is a small positive 

parameter value.  
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From Equation 3.77 it is known that ∆𝐶 ≈ −𝜂∇𝐶∇𝐶 = 𝜂‖∇𝐶‖2 and because ‖∇𝐶‖2 ≥ 0 it means 

that ∆𝐶 ≤ 0 (Nielsen, 2015). 

Furthermore, a value for ∆𝑣 can be computed that moves the point in that direction; this is known 

as the update rule. The update rule allows for small changes in the direction of the minima, whilst 

decreasing the cost function and (hopefully) reaching the global minima (for convex surfaces) or 

the local minimum (in the case of nonconvex surfaces); the update rule is given formally as 

(Nielsen, 2015):  

𝑣 → 𝑣′ = 𝑣 − 𝜂∇𝐶 (3.78) 

This generalised form of gradient descent can now be adapted and the form altered to incorporate 

NN. 

Suppose that there is a cost function as described below (Equation 3.79): there must be weights 

(𝑤𝑘 represents all the weights in the network) and biases (𝑏𝑙 is the symbol used to indicate all the 

biases in the network) that will minimise the cost function (Nielsen, 2015):  

𝐶(𝑤, 𝑏) =
1

2𝑛
∑‖𝑦(𝑥) − 𝒂‖2

𝑥

 (3.79) 

where: 

• 𝑤 represents all the weights in the network; 

• 𝑏 is indicative of all the biases in the network; 

• 𝑛 is the total number of training data inputs that are found in the network; 

• 𝑎 equates to the outputs (a vector) obtained from the network when 𝑥 are the corresponding 

inputs; 

• 𝑦(𝑥) is the approximation of the output to the training data inputs; 

• The summation takes place over all the inputs, 𝑥. 

Therefore, the gradient and update functions need to be redefined to include all the weights and 

biases in the network. Thus, the gradient vector is rephrased as: 

∇𝐶 = (
𝜕𝐶

𝜕𝑤𝑘
,
𝜕𝐶

𝜕𝑏𝑙
)
𝑇

 (3.80) 

Equation 3.80 can be read as the partial derivative of the cost function with respect to all the 

weights in the network as well as the partial derivative of the cost function with respect to all the 

biases in the network.  

Furthermore, the update rules are refashioned to incorporate the weights and biases components 

in the network: 
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𝑤𝑘 → 𝑤𝑘
′ = 𝑤𝑘 − 𝜂

𝜕𝐶

𝜕𝑤𝑘
 (3.81) 

𝑏𝑙 → 𝑏𝑙
′ = 𝑏𝑙 − 𝜂

𝜕𝐶

𝜕𝑏𝑙
 (3.82) 

As before, utilising these updates of the gradient descent in the network will lead to decreasing, 

thus minimising the cost function and hopefully reaching the global or, at the very least, the local 

minima. How the network learns is resultant of these updates of the weights and biases (Nielsen, 

2015). Gradient descent makes use of the complete batch of training data before computing the 

gradient value, meaning that the gradient is very precise and leads one in the correct direction of 

the maxima but the limitation is that if the input training data consist of millions of values, this 

method is computationally very slow (Yaqub et al., 2020). Stochastic gradient descent is a solution 

to this very problem and is discussed in the next section.  

In conclusion: as mentioned, gradient descent has the aim of minimising some objective (cost) 

function. A generalised version is where the objective function, here the notation, has been slightly 

changed and therefore can be written as 𝐽(𝜃) where 𝜃 is the model's parameters which are 

elements in the 𝑝𝑡ℎ real space, 𝜃 ∈  ℝ𝑝. Recall that the parameters are updated by moving in the 

opposite direction to that of the gradient with respect to the parameters of the objective function, 

∇𝜃𝐽(𝜃) (Ruder, 2016). Moreover, the learning rate (𝜂) represents the size of the step that is taken 

to reach the minima.  

Equation 3.78 can be generalised, where the gradient is computed after an entire input training 

data: 

𝜃 = 𝜃 − 𝜂∇𝜃𝐽(𝜃) (3.83) 

It should be noted that the gradient descent as discussed here is also known as batch gradient 

descent or vanilla gradient descent. The recommended value for the hyperparameters for batch 

gradient descent is a learning rate of 0.01, that is, 𝜂 = 0.01 and since batch gradient descent has 

no momentum, the momentum hyperparameter is set equal to zero. These values are also known 

as the default values and applied as is (without tweaking) in the empirical section of Chapter 4. It 

is worth noting that these default values are what the optimiser defaults to in the Keras package 

in the Python programming language. 
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Stochastic gradient descent 

As mentioned, gradient descent is computationally slow and therefore stochastic gradient descent 

(SGD) can be seen as a computationally faster implementation of the same idea. Simplistically, 

SGD parameter updates after every single input training example (𝑥(𝑗)) with the associated output 

(𝑦(𝑗)). Formally: 

𝜃 = 𝜃 − 𝜂∇𝜃𝐽(𝜃; 𝑥
(𝑗); 𝑦(𝑗)) (3.84) 

SGD compared to batch gradient descent takes different strides to reaching the local minima. 

What this entails is that based on the parameters of the batch gradient descent model, it 

converges well to the exact minima, whereas SGD tends to exceed the minimum value (Ruder, 

2016). The solution to this problem is to slowly decrease the learning rate (𝜂); this allows for the 

same convergence as observed with batch gradient descent (Ruder, 2016). In other words, by 

reducing the learning rate the model will converge to the local minimum for nonconvex surfaces 

and in the case of convex surfaces, convergence will be the global minima.  

Mini-batch gradient descent 

Mini-batch gradient descent is a happy medium between batch gradient descent and SGD. The 

idea is that the weights and biases update after every mini-batch example. The disadvantage of 

this approach is that because it only uses a subset of the training data, it is not fully representative 

of the entire batch. Thus the best option is to obtain an estimate of the true gradient (Nielsen, 

2015).  

Note that in Equation 3.79 the cost function is of the form 𝐶 =
1

𝑛
∑ 𝐶𝑥𝑥  which means that the cost 

function is essentially an average over all the costs, hence 𝐶𝑥 ≡
‖𝑦(𝑥)−𝒂‖2

2
 (Nielsen, 2015). Recall 

that mini-batch gradient descent randomly chooses a subset of the input training data to compute 

the gradient. More formally, the subset can be defined as 𝑠, associated with inputs given as 

𝑋1, 𝑋2, … , 𝑋𝑠, therefore concluding that if 𝑚 is large enough it can be assumed that the average of 

the cost function of the different subsets (∇𝐶𝑋𝑗) is approximately equivalent to the average over 

all the costs (∇𝐶𝑥), that is (Nielsen, 2015): 

∑ ∇𝐶𝑋𝑗
𝑠
𝑗=1

𝑠
≈
∑ ∇𝐶𝑥𝑥

𝑛
≈ ∇𝐶 (3.85) 

where the second term (second sum) is over the whole input training data and not the subset. 

Thus the overall gradient can be determined through only using a subset; formally that is: 

Stellenbosch University https://scholar.sun.ac.za



90 

 

∇𝐶 ≈
1

𝑠
∑∇𝐶𝑋𝑗

𝑠

𝑗=1

 (3.86) 

Therefore, the update rule of the weight and bias components in the algorithm can be rephrased: 

𝑤𝑘 → 𝑤𝑘
′ = 𝑤𝑘 −

𝜂

𝑠
∑

𝜕𝐶𝑋𝑗

𝜕𝑤𝑘
𝑗

 (3.87) 

𝑏𝑙 → 𝑏𝑙
′ = 𝑏𝑙 −

𝜂

𝑠
∑

𝜕𝐶𝑋𝑗

𝜕𝑏𝑙
𝑗

 (3.88) 

The summation is an indication of all the training examples (𝑋𝑗) that are in the current subset. As 

mini-batch gradient descent is an iterative process, it means that once the gradient is computed 

for that subset, another subset of training inputs is chosen and the gradient is then computed. 

This process continues until convergence in the sense that all the training input data examples 

have been used; in NN terms this refers to the completion of an epoch (Nielsen, 2015). In other 

words, one epoch is representative of when the entire training input data have been passed in 

both directions (forwards and backwards) through the network. Hence, once one epoch has been 

trained, another one is trained until all epochs that have been indicated and chosen in the 

architecture of the network have been trained.  

The cost function is generalised with respect to the parameters in the function; recall, that the 

update takes place after every subset, 𝑠 (Ruder, 2016) (there are slight notational changes): 

𝜃 = 𝜃 − 𝜂∇𝜃𝐽(𝜃; 𝑥
(𝑗:𝑗+𝑠); 𝑦(𝑗:𝑗+𝑠)) (3.89) 

The advantage of mini-batch gradient descent is that that there is a reduction of the variance with 

regard to updating the parameters which results in more stable convergence (Ruder, 2016). 

Momentum-based gradient descent 

Even though SGD remains a popular optimisation technique that is used in NN, the limitation is 

that learning remains reasonably slow. Thus the method of momentum (Polyak, 1964) is 

introduced; this is intended to speed up the learning process, especially when high curvature is 

present along with noisy gradients and slight but consistent gradients. The algorithm continues to 

move in the direction of exponential decaying of past gradients (Goodfellow, Bengio & Courville, 

2016). Momentum derives from Newton’s laws of motion, meaning that in the world of physics 

momentum is equal to velocity times the mass. Formally, for the momentum algorithm new terms 

are introduced, namely momentum (𝛾) and velocity (𝑣). The velocity is defined as the exponential 

decay in the negative (opposite) direction (Goodfellow, Bengio & Courville, 2016).  
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The procedure of the algorithm is that when updating the weights, the algorithm adds momentum 

to the previous time steps to obtain the current step which then allows for quicker convergence, 

where the gradient decays exponentially, that is (Duchi, Hazan & Singer, 2011): 

𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜂∇𝜃𝐽(𝜃) 

⇒ 𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜂∇𝐽(𝜃; 𝑥, 𝑦) (3.90) 

⇒ 𝜃 = 𝜃 − 𝑣𝑡 (3.91) 

where: 

• 𝑣𝑡 represents the velocity at the current time step; 

• 𝑣𝑡−1 are the contributions of the velocity at the previous time step; 

• 𝛾 is indicative of the momentum; 

• 𝜂 is once again the learning rate; 

• 𝐽(𝜃) is a representation of the cost (loss) function; 

• 𝜃; 𝑥 is the predicted output when the input is 𝑥; 

• 𝑦 is the target (desired) output. 

A suggested value for the momentum term is 0.9, hence, 𝛾 = 0.9 or somewhere in an appropriate 

range. The learning rate is set equal to 0.01 (𝜂 = 0.01) as seen in the previous optimiser (batch 

or stochastic gradient descent). Once again, this is the default value when programming using 

Keras.  

Momentum is considered to be an optimal choice of optimiser in instances where the NN is not 

well defined (Yaqub et al., 2020). Going back to the analogy of a ball going down a hill, the ball 

will gain momentum as it moves downwards, that is, it moves faster and faster. In other words, 

the momentum term (𝛾) increases when the gradient is in the same direction, whereas the 

updates are somewhat slower when the gradient is in opposing directions (Ruder, 2016). Thus, 

the convergence is much quicker when faced with tasks that have curved surfaces.  

Nesterov accelerated gradient (NAG) 

Furthering the analogy of the ball moving down a hill is knowing that there needs to be a reduction 

of the speed of the ball before the hill slopes up again. Nesterov acceleration (Nesterov, 1983) 

was developed to make the necessary adaptations just alluded to. Therefore, the gradient is 

computed not with regard to the current position (using the current parameters) but with regard to 

the approximation of the future position of the parameters. The descent is a slightly better 

optimiser of standard momentum as it sheds light on one step ahead into the future (Yaqub et al., 

2020). 
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Therefore, the gradient is updated with an approximate position of the future parameters (𝜃) and 

not using the current position of the parameters, 𝜃 (Ruder, 2016): 

𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜂∇𝜃𝐽(𝜃 − 𝛾𝑣𝑡−1) (3.92) 

⇒ 𝜃 = 𝜃 − 𝑣𝑡 (3.93) 

where: 

• 𝑣𝑡 is a representation of the velocity at the current time step; 

• 𝑣𝑡−1 represents the contributions of the velocity at the previous time step; 

• 𝛾 is suggestive of the momentum; 

• 𝜂 is indicative of the learning rate; 

• 𝛾𝑣𝑡−1 is used as a means to update the parameters, 𝜃; 

• The computation of the quantity, 𝜃 − 𝛾𝑣𝑡−1, is an approximation of the next position with 

regard to the parameters, 𝜃. 

As with standard momentum, a value of 0.9 is applied, hence 𝛾 = 0.9; the learning rate remains 

the same as with batch gradient descent or stochastic gradient descent (id est, 𝜂 = 0.01). 

However, what is different now is that the ‘Nesterov’ parameter option in Keras has been set equal 

to true. 

The difference between standard momentum (discussed in the previous section) and Nesterov 

moment is that standard momentum first calculates the gradient and then takes a large step in 

that direction whereas Nesterov moment does the opposite: it first makes a large jump in the 

direction of the accumulated gradient and then compensates by making corrections once it has 

computed the gradient (Ruder, 2016). 

The next few state-of-the-art algorithms (reviewed below) are algorithms that have adaptive 

learning rates. The advantage of these methods over the classical SGD descent methods 

discussed until now is that they do not require manual hyperparameter tuning of the learning rate. 

Adaptive gradient (Adagrad) 

Adaptive gradient (Adagrad) (Duchi, Hazan & Singer, 2011) is an optimisation algorithm that uses 

adaptive learning rates while the aim of Adagrad is an algorithm whereby all the parameters are 

updated individually via a scaling methodology. Thus, the learning rates are modified and adjusted 

according to the parameters in the model. That is, for infrequent, inconsistent parameters the 

algorithm (in terms of the learning rates) makes large updates, while the opposite holds as well: 

when the parameters are consistent and frequent only small updates are needed (Kingma & Ba, 

2014; Goodfellow, Bengio & Courville, 2016; Ruder, 2016). In essence, for each parameter (𝜃𝑗) 
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with a corresponding time step (𝑡), the Adagrad algorithm makes use of a dissimilar learning rate 

(𝜂), formally (with some notational modifications) (Ruder, 2016): 

𝑔𝑡,𝑗 = ∇𝜃𝑡  𝐽(𝜃𝑡,𝑗) (3.94) 

where 𝑔𝑡,𝑗 is representative of the gradient at the time step (𝑡) over each parameter (𝜃𝑗) and this 

is with respect to the cost function (𝐽). 

Next, the SGD rule (refer to Equation 3.84) is computed and updated at each time step for every 

parameter and this can be given as: 

𝜃𝑡+1,𝑗 = 𝜃𝑡,𝑗 − 𝜂𝑔𝑡,𝑗 (3.95) 

Finally, the Adagrad update rule is as follows (keeping in mind that the algorithm adjusts the 

learning rate established on the computed past gradients) (Ruder, 2016): 

𝜃𝑡+1,𝑗 = 𝜃𝑡,𝑗 −
𝜂

√𝐺𝑡,𝑗𝑗 + 휀
 𝑔𝑡,𝑗 (3.96) 

where: 

• 휀 is indicative of a smoothing term and the reason for the term is that division by zero is 

circumvented; 

• 𝐺𝑡,𝑗𝑗 represents the diagonal matrix (𝐺𝑡 ∈  ℝ
𝑝×𝑝); 

• 𝑗𝑗 is a representation of the elements on the diagonal 𝐺 matrix and are simply the gradients 

of the parameters at every time step. 

For the Adagrad update rule, the element-wise matrix-vector multiplication (⊙) has to be taken 

into account, therefore (Ruder, 2016): 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝐺𝑡 + 휀
 ⊙ 𝑔𝑡 (3.97) 

One of the limitations of Adagrad is that the gradients are accumulated squared values and this 

occurs from the start when training the model, which can lead to ineffective and decreasing 

learning rates (Goodfellow, Bengio & Courville, 2016). This is the case when training deep NNs. 

Adaptive delta (AdaDelta), discussed in the next section, was developed as a solution to 

overcome the limitation of Adagrad. 

When applying Adagrad the learning rate is generally set to the default value of 0.01 (𝜂 = 0.01), 

whilst for the smoothing term there is a suggestive value of 1𝑒−8, that is, 휀 = 1𝑒−8 (Ruder, 2016). 

This is of a slightly different order to that of the default in Keras which is 1𝑒−7. Nonetheless, in the 

empirical section the suggested values as indicated by Ruder (2016) are applied and followed. 
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Adaptive delta (AdaDelta) 

Adaptive delta (Zeiler, 2012) is another adaptive learning rate method. As mentioned, it is 

regarded as the solution to the limitations posed by Adagrad. Hence, AdaDelta is an extension of 

the core principles of Adagrad. Therefore, AdaDelta recursively defines the past accumulated 

squared gradients as a decaying averaging instead of ineffectively stored past accumulated 

gradients (Ruder, 2016). Formally: 

𝐸[𝑔2]𝑡 = 𝛾[𝑔
2]𝑡−1 + (1 − 𝛾)𝑔𝑡

2 (3.98) 

where: 

• 𝐸[𝑔2]𝑡 is representative of the average at the current time step – note that this equation is 

only reliant on the current and previous time steps’ gradients; 

• 𝛾 is indicative of the momentum term. 

Thus, the batch gradient descent algorithm can be refashioned to accommodate the update of 

the parameter vector (Ruder, 2016): 

∆𝜃𝑡 = −𝜂𝑔𝑡,𝑗 (3.99) 

⇒ 𝜃𝑡+1 = 𝜃𝑡 + ∆𝜃𝑡 (3.100) 

Furthermore, using Equation 3.97, the update rule for Adagrad can be rewritten to incorporate the 

parameter vector, that is: 

∆𝜃𝑡 = −
𝜂

√𝐺𝑡 + 휀
 ⊙ 𝑔𝑡 (3.101) 

In the next step, the diagonal matrix (𝐺𝑡) is substituted with the past steps decaying average 

squared gradients (𝐸[𝑔2]𝑡), therefore Equation 3.101 becomes (Ruder, 2016): 

∆𝜃𝑡 = −
𝜂

√𝐸[𝑔2]𝑡 + 휀
 𝑔𝑡 (3.102) 

In essence, the denominator is simply the root mean square (RMS) criteria regarding the gradient; 

thus, the denominator can be replaced with RMS of the gradient where the new equation can be 

given as: 

∆𝜃𝑡 = −
𝜂

√𝑅𝑀𝑆[𝑔]𝑡
 𝑔𝑡 (3.103) 

The next issue is that the units are not in the same scale, that is, the parameter should contain 

the same units as the gradient and that is not the case (Ruder, 2016). Thus, another update 
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function for the exponentially decaying average has to be expressed first, so instead of expressing 

the squared gradients, this new update function is defined in terms of the squared parameter 

updates (Ruder, 2016). Similar to Equation 3.102, just using the squared parameters instead of 

the squared gradients, this can formally be written as: 

𝐸[∆𝜃2]𝑡 = 𝛾𝐸[∆𝜃
2]𝑡−1 + (1 − 𝛾)∆𝜃𝑡

2 (3.104) 

Next, the new RMS for the parameter updates is defined: 

𝑅𝑀𝑆[∆𝜃]𝑡 = √𝐸[∆𝜃
2]𝑡 + 휀 (3.105) 

The 𝑅𝑀𝑆[∆𝜃]𝑡 value in Equation 3.105 is an unknown quantity, therefore in an attempt to obtain 

a value it can be approximated to the RMS of the parameter updates (Ruder, 2016). 

Finally, the AdaDelta update rule is obtained where the previous steps RMS value (𝑅𝑀𝑆[∆𝜃]𝑡−1) 

is substituted in place of the learning rate (𝜂): 

∆𝜃𝑡 = −
𝑅𝑀𝑆[∆𝜃]𝑡−1
𝑅𝑀𝑆[𝑔]𝑡

 𝑔𝑡 (3.106) 

⇒ 𝜃𝑡+1 = 𝜃𝑡 + ∆𝜃𝑡 (3.107) 

Due to the nature of the AdaDelta update rule, one does not need to explicitly state a learning 

rate as it has been replaced, as shown in Equation 3.106 (Ruder, 2016; Yaqub et al., 2020). 

The values of the hyperparameters for AdaDelta are slightly different to the default values that 

are given in the Keras documentation. The learning rate is set to a value equal to one (𝜂 = 1.0) 

as proposed in the paper by Zeiler (2012), the developer of the method. Furthermore, the decay 

rate is set to 0.95 which is the default value in the Keras documentation. The epsilon value is 

once again equal to 1𝑒−8.  

Root mean square propagation (RMSProp) 

Root mean square propagation (RMSProp) is an adaptive learning methodology and is an 

unpublished optimisation algorithm. It was first proposed by Geoff Hinton in the online Coursera 

lecture 6e on ‘Neural Networks for Machine Learning’. The main idea behind RMSProp is a 

resolution to the fast-diminishing learning rate that is experienced by Adagrad (Ruder, 2016; 

Yaqub et al., 2020). Therefore, RMSProp utilises the squared gradient. If the steps taken for the 

update are large in the horizontal direction, convergence happens at a much quicker rate (Yaqub 

et al., 2020). 

Formally, RMSProp has the same derivation of the first update of AdaDelta in Equation 3.98; 

however, the momentum is replaced with a value of 0.9 as proposed by Hinton (that is, 𝛾 = 0.9, 

therefore, (1 − 𝛾) = (1 − 0.9) = 0.1) (Ruder, 2016): 
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𝐸[𝑔2]𝑡 = 0.9𝐸[𝑔
2]𝑡−1 + 0.1𝑔𝑡

2 (3.108) 

⇒ 𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝐸[𝑔2]𝑡 + 휀
 𝑔𝑡 (3.109) 

The recommended value for the learning rate is 0.001 (𝜂 = 0.001). Moreover, as suggested by 

Kingma and Ba (2014) and Dozat (2016) in the experiments section of their respective papers, 

the epsilon (휀) value should be 1𝑒−8. This approach is followed in this study’s practical section. 

Adaptive moment estimation (Adam) 

Adaptive moment estimation (Adam) (Kingma & Ba, 2014) is considered as an adaptive learning 

rate algorithm. That is, for each parameter the Adam algorithm computes the learning rates. Adam 

stores the exponentially decaying past squared gradients (observed in RMSProp and AdaDelta) 

as well as the past gradients, as was the case in momentum (Ruder, 2016). Thus, Adam is a 

combination of RMSProp and momentum; however, there are a few discrepancies. Firstly, the 

gradient is a first order moment and this is how momentum is incorporated; secondly, bias 

includes bias-corrections (Goodfellow, Bengio & Courville, 2016). These are outlined in more 

detail in the following paragraphs. 

Formally:  

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (3.110) 

and 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (3.111) 

where: 

• 𝑚𝑡 represents the first moment; simply put, it is the mean of the gradient; 

• 𝑣𝑡 is indicative of the second moment which is the uncentred variance of the gradient. 

Kingma and Ba (2014) advise that because 𝑚𝑡 and 𝑣𝑡 are initialised as vectors containing zeros, 

it implies that 𝑚𝑡 and 𝑣𝑡 are biased toward the value of zero; this is especially evident in the initial 

time iterations and when small values of decay are observed, that is, the values of 𝛽1 and 𝛽2 are 

exceptionally close to one. 

Hence, Kingma and Ba (2014) counter the bias observed by computing bias-corrected 

computations for the first and second moments as: 

�̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 (3.112) 
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and 

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 (3.113) 

Finally, the Adam update rule can formally be written as: 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 휀
 �̂�𝑡 (3.114) 

The authors of Adam present evidence that the Adam optimisation algorithm performs well in 

practice. Furthermore, the computational costs of Adam are significantly decreased, therefore the 

implementation of a task using an Adam optimisation algorithm the memory necessitated is much 

less (Yaqub et al., 2020).   

As a standard for the default values for the parameters of the Adam optimisation technique, 

Kingma and Ba (2014) suggest the following: 

• Learning rate (𝜂) equal to 0.001; 

• 𝛽1 = 0.9; 

• 𝛽2 = 0.999; 

• 휀 = 1𝑒−8. 

Adaptive maximum pooling (Adamax) 

Adaptive maximum pooling (Adamax) (Kingma & Ba, 2014) drew inspiration from the Adam 

algorithm. The exponentially decaying gradients term (𝑣𝑡) in the Adam update rule is indicative 

that the gradient is scaled to be inversely proportional to the regularisation term (the 𝑙2 norm) of 

the previous steps gradients; this is computed through the 𝑣𝑡−1 term as well as the gradient that 

is currently observed, |𝑔𝑡|
2 (Ruder, 2016): 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)|𝑔𝑡|
2 (3.115) 

Note that the update can be generalised to the 𝑙𝑝 norm; likewise the 𝛽2 parameter can also be 

parameterised as 𝛽2
𝑝
 (Kingma & Ba, 2014), therefore Equation 3.115 can be given as: 

𝑣𝑡 = 𝛽2
𝑝
𝑣𝑡−1 + (1 − 𝛽2

𝑝
)|𝑔𝑡|

𝑝 (3.116) 

Furthermore, in the literature 𝑙1 and 𝑙2 norms produce stable behaviour and for this reason 𝑙∞ 

captures this same stable behaviour. The authors, Kingma and Ba (2014), provide evidence that 

𝑣𝑡 (currently velocity) with a 𝑙∞ norm converges to a more stable value and is given formally in 

Equation 3.117. The notation of 𝑣𝑡 is replaced with 𝑢𝑡 and this is done to be able to distinguish 

the Adam algorithm equations from Adamax.  
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Thus: 

𝑢𝑡 = 𝛽2
∞𝑣𝑡−1 + (1 − 𝛽2

∞)|𝑔𝑡|
∞ 

= 𝑚𝑎𝑥(𝛽2𝑣𝑡−1, |𝑔𝑡|) (3.117) 

Moreover, this result can be substituted into the Adam update equation; however, √𝑣𝑡 + 휀 is 

replaced with 𝑢𝑡 which results in the Adamax update rule (Ruder, 2016): 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

𝑢𝑡
�̂�𝑡 (3.118) 

Because 𝑢𝑡 is dependent on the maximum (𝑚𝑎𝑥) operation, there is no need to compute the bias 

correction of this term (Ruder, 2016).  

Recommended values to use for the parameters, in addition to an epsilon value of 1𝑒−8 (Kingma 

& Ba, 2014; Dozat, 2016), are given as follows: 

• 𝛽1 = 0.9; 

• 𝛽2 = 0.999; 

• 𝜂 = 0.002. 

Nesterov-accelerated adaptive moment estimation (Nadam) 

Nesterov-accelerated adaptive moment estimation (Nadam) (Dozat, 2016) was developed with 

the inspiration of NAG. Moreover, Nadam optimisation is a combination of NAG and Adam. NAG 

needs to be incorporated into the Adam optimisation algorithm; thus, the momentum term needs 

to be altered (Ruder, 2016).  

Recall the momentum update rule: 

𝑔𝑡 = ∇𝜃𝐽(𝜃𝑡) (3.119) 

𝑚𝑡 = 𝛾𝑚𝑡−1 + 𝜂𝑔𝑡 (3.120) 

𝜃𝑡+1 = 𝜃𝑡 −𝑚𝑡 (3.121) 

where: 

• 𝐽 represents the cost (objective) function; 

• 𝜂 is indicative of the learning rate (step size of the gradient); 

• 𝛾 is a representation of the momentum decay. 
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Thus, substituting Equation 3.120 into Equation 3.121, the following is obtained: 

𝜃𝑡+1 = 𝜃𝑡 − (𝛾𝑚𝑡−1 + 𝜂𝑔𝑡) (3.122) 

This illustrates that the gradient moves in the direction of both the current step and the previous 

step. 

Therefore, Nadam has the advantage that the momentum is updated before computing the 

gradient (Ruder, 2016). Thus, in obtaining the NAG algorithm only the gradient (𝑔𝑡) in Equation 

3.119 needs to be altered whilst Equations 3.120 and 3.121 remain unchanged:  

𝑔𝑡 = ∇𝜃𝑡𝐽(𝜃𝑡 − 𝛾𝑚𝑡−1) (3.123) 

𝑚𝑡 = 𝛾𝑚𝑡−1 + 𝜂𝑔𝑡 (3.124) 

𝜃𝑡+1 = 𝜃𝑡 −𝑚𝑡 (3.125) 

According to Dozat (2016), NAG should be changed by applying a future momentum vector as a 

means to update the current parameters, therefore foregoing applying a double momentum step. 

Thus, substituting Equation 3.124 into Equation 3.125 yields:  

𝜃𝑡+1 = 𝜃𝑡 − (𝛾𝑚𝑡−1 + 𝜂𝑔𝑡) (3.126) 

The next step in the process is that Nesterov moment has to be added to the Adam optimisation 

algorithm. To achieve this, the current momentum vector is used in place of the previous steps 

momentum vector, remembering that the first moment (mean of the gradient) of the Adam 

optimisation algorithm (Equation 3.110); the bias-corrected first moment (Equation 3.112); and 

the Adam update (Equation 3.114) are given as (Ruder, 2016): 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (3.127) 

�̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 (3.128) 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 휀
 �̂�𝑡 (3.129) 

Using these Equations gives:  

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 휀
(
𝛽1𝑚𝑡−1

1 − 𝛽1
𝑡 +

(1 − 𝛽1)𝑔𝑡

1 − 𝛽1
𝑡 ) (3.130) 

But 
𝛽1𝑚𝑡−1

1−𝛽1
𝑡  is equivalent to the previous steps bias-corrected estimate of momentum (Ruder, 

2016). 
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Therefore: 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 휀
(𝛽1�̂�𝑡−1 +

(1 − 𝛽1)𝑔𝑡

1 − 𝛽1
𝑡 ) (3.131) 

Finally, the Nadam update rule is obtained as: 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 휀
(𝛽1�̂�𝑡 +

(1 − 𝛽1)𝑔𝑡

1 − 𝛽1
𝑡 ) (3.132) 

That is, the estimate of the momentum of the current step is used rather than the previous step. 

The following values were used (some of which are given as the default values in the Keras 

documentation9): 

• 𝜂 = 0.002; 

• 𝛽1 = 0.9; 

• 𝛽2 = 0.999; 

• 휀 = 1𝑒−8; 

• 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑑𝑒𝑐𝑎𝑦 = 0.004. 

Figure 3.18 illustrates the behaviour of the different state-of-the-art optimisation learning 

algorithms. The left panel is the optimisation techniques based on a loss surface with contours 

(known as the Beale function) (Ruder, 2016), whilst the right panel is the optimisation landscape 

of the saddle point. Starting with the left panel, all the optimisation algorithms commenced at the 

same point; however, it is evident that they took different paths to get to the endpoint, more 

correctly the minimum point (indicated by the star). It is palpable that momentum (the green line) 

and NAG (the purple) set off in the wrong direction but were able to correct themselves to head 

in the direction of the minimum. NAG was able to make this change much more quickly than 

momentum. Conversely, the rest of the techniques headed in the correct direction of the minimum 

from the get-go. Adadelta, the yellow line (in the animation) got to the minimum much more quickly 

than the rest of the algorithms, whilst stochastic gradient descent was the slowest to reach the 

minimum.  

The right panel (the saddle point) in Figure 3.18 simply means that the curvature of the surface is 

along two different dimensions. One dimension curves upward (a positive slope) whereas the 

other dimension curves downward (a negative slope) (Ruder, 2016; Stanford University, n.d.). 

Due to this, it is evident that SGD (the red line) got stuck on the top as there was difficulty breaking 

 

9 https://faroit.com/keras-docs/2.0.8/optimizers/ 
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the symmetry. Furthermore, while momentum and NAG also struggled with breaking this 

symmetry, these two algorithms did ultimately succeed in breaking the saddle point. On the 

contrary, Adadelta headed down the negative slope from the very beginning.  

  

Figure 3.18: State-of-the-art optimisation algorithms’ behaviour 

Source: Image credits and full animations: Alec Radford. 

3.4.2.5 Backpropagation 

Even though the technique of backpropagation was developed in the 1960s it only rose to 

prominence after a paper written by Rumelhart, Hinton and Williams in 1986. The main idea is to 

measure the change of the cost function in a backward direction in order to compute the gradient 

via the weights in the NN. According to Rumelhart, Hinton and Williams (1986), the more 

comprehensive definition of backpropagation is a process whereby the weights and their 

associated connections are continuously updated and adjusted with the rationale being to 

minimise the difference between the target (desired) output and the obtained (actual) output. The 

authors provided empirical evidence that implementing backpropagation accelerates the speed 

of learning of NNs. Additionally, as backpropagation is a key driver of learning in NNs, more tasks 

that were once difficult or could not be solved can now be done so with ease (Nielsen, 2015). 

To be able to prove the four fundamental backpropagation equations (given as Lemma 1 – 

Lemma 4), some new notation has to be introduced. Firstly, the activation function that is 

associated with the 𝑗𝑡ℎ neuron that is found in the 𝑙𝑡ℎ layer of the network is defined (Nielsen, 

2015): 

𝑎𝑗
𝑙 = 𝜎 (∑𝑤𝑗𝑘

𝑙

𝑘

𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙) (3.133) 
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where: 

• 𝑤𝑗𝑘
𝑙  are the weights that are used as connections to the 𝑙𝑡ℎ layer of the network, with the 

weight being in the 𝑗𝑡ℎ row and 𝑘𝑡ℎ column; 

• 𝑎𝑘
𝑙−1 is indicative of the activations that are related to the (𝑙 − 1)𝑡ℎ layer of the network; 

• 𝑏𝑗
𝑙 is a representation of the bias vector for every layer, 𝑙. 

In vector form, Equation 3.133 can be rewritten as: 

𝒂𝑙 = 𝜎(𝑤𝑙𝒂𝑙−1 + 𝒃𝑙) (3.134) 

Furthermore, Equation 3.134 can be represented as the weighted inputs that are associated with 

the neurons in the 𝑙𝑡ℎ layer of the network (Nielsen, 2015): 

𝒛𝑙 ≡ 𝑤𝑙𝒂𝑙−1 + 𝒃𝑙 (3.135) 

Therefore, substituting the definition of Equation 3.135 into Equation 3.134: 

𝒂𝑙 = 𝜎(𝒛𝑙) (3.136) 

where 𝒛𝑙 is made up of elements, given below (Equation 3.137), which can be defined as the 

weighted inputs to the corresponding activation function in the 𝑙𝑡ℎ layer of the network related to 

the 𝑗𝑡ℎ neuron: 

𝑧𝑗
𝑙 =∑𝑤𝑗𝑘

𝑙

𝑘

𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙 (3.137) 

An assumption about the cost (loss or objective) function is that in order to compute the partial 

derivatives with respect to the weights and the biases the average of all the input training 

examples in the cost function need to be taken (Nielsen, 2015). 

As previously mentioned, the goal of backpropagation is how the weights and biases that are 

present in the NN, when changed, affect the cost function. Mathematically, this equates to 

calculating the partial derivatives of the weights and biases, given as: 
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙  and 

𝜕𝐶

𝜕𝑏𝑗
𝑙, respectively 

(Nielsen, 2015). However, a quantity known as the error has to be introduced: 

𝜹𝑗
𝑙 ≡

𝜕𝐶

𝜕𝑧𝑗
𝑙 (3.138) 

This quantity is the error of the NN, of the 𝑗𝑡ℎ neuron that is in the 𝑙𝑡ℎ layer of the network (Nielsen, 

2015). 
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Unless otherwise stated, these four fundamental equations (Lemma 1 – Lemma 4) are given, 

proved and discussed as per Nielsen (2015). 

Lemma 1 (Backpropagation Equation 1): output layer error: 

𝜹𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿 𝜎

′(𝑧𝑗
𝐿) (3.139) 

Proof: 

Recall that (Nielsen, 2015) 
𝜕𝐶

𝜕𝑎𝑗
𝐿 represents the measurement of the speed at which the cost 

function changes with respect to the 𝑗𝑡ℎ output activation function in the 𝐿𝑡ℎ layer. Additionally, 

the second term in Equation 3.139 is the change in the activation function based upon the 

weighted input (𝑧) to the activation function.  

Formally, recall that: 

𝜹𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿 (3.140) 

Applying the chain rule of calculus: 

𝜹𝑗
𝐿 =∑

𝜕𝐶

𝜕𝑎𝑘
𝐿   
𝜕𝑎𝑘

𝐿

𝜕𝑧𝑗
𝐿

𝑘

 (3.141) 

If 𝑘 ≠ 𝑗 then 
𝜕𝐶

𝜕𝑎𝑘
𝐿 = 0, so: 

𝜹𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿   
𝜕𝑎𝑗

𝐿

𝜕𝑧𝑗
𝐿 (3.142) 

But 𝒂𝑗
𝐿 = 𝜎(𝒛𝑗

𝐿), therefore, 
𝜕𝑎𝑗

𝐿

𝜕𝑧𝑗
𝐿 = 𝜎

′(𝑧𝑗
𝐿). 

Thus: 

𝜹𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿  𝜎

′(𝑧𝑗
𝐿) (3.143) 

which concludes the proof of the first lemma. 
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Lemma 2 (Backpropagation Equation 2): error of the next layer, 𝜹𝑙+1, based on the error of the 

current layer, 𝜹𝑙: 

𝜹𝑙 = ((𝑤𝑙+1)
𝑇
 𝜹𝑙+1)⊙ 𝜎′(𝑧𝑗

𝑙) (3.144) 

where (𝑤𝑙+1)
𝑇
 is indicative of the transposed weight matrix in the (𝑙 + 1)𝑡ℎ layer of the network. 

The idea is that if the error in the (𝑙 + 1)𝑡ℎ layer is known, the transposed weight matrix can be 

applied moving backwards through the network and the error in the 𝑙𝑡ℎ layer of the network is 

obtained (Nielsen, 2015).  

Proof: 

First the error in the 𝑙𝑡ℎ layer, 𝜹𝐿, is computed using Lemma 1; next, to compute 𝜹𝐿−1 Lemma 1 

and Lemma 2 are combined. The process continues in that the error 𝜹𝐿−2 is computed using 

Lemma 2. This procedure continues until the network has been worked through in a backward 

direction. 

First, let 𝜹𝑗
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙 which can then be written as: 

𝜹𝑘
𝑙+1 =

𝜕𝐶

𝜕𝑧𝑘
𝑙+1 (3.145) 

Using the chain rule: 

𝜹𝑗
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙 =∑

𝜕𝐶

𝜕𝑧𝑘
𝑙+1   

𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑗
𝑙

𝑘

 (3.146) 

But from Equation 3.145: 

𝜹𝑘
𝑙+1 =

𝜕𝐶

𝜕𝑧𝑘
𝑙+1 (3.147) 

Therefore:  

𝜹𝑗
𝑙 =∑

𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑗
𝑙   𝜹𝑘

𝑙+1

𝑘

 (3.148) 

However: 

𝑧𝑘
𝑙+1 =∑𝑤𝑘𝑗

𝑙+1 𝑎𝑗
𝑙 +

𝑗

𝑏𝑘
𝑙+1 (3.149) 
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But 𝒂𝑗
𝑙 = 𝜎(𝒛𝑗

𝑙), therefore: 

𝑧𝑘
𝑙+1 =∑𝑤𝑘𝑗

𝑙+1 𝜎(𝒛𝑗
𝑙) +

𝑗

𝑏𝑘
𝑙+1 (3.150) 

Through differentiation of the first term of Equation 3.150: 

𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑗
𝑙 = 𝑤𝑘𝑗

𝑙+1 𝜎′(𝒛𝑗
𝑙) (3.151) 

Substituting Equation 3.151 into Equation 3.148: 

𝜹𝑗
𝑙 =∑𝑤𝑘𝑗

𝑙+1 𝜎′(𝒛𝑗
𝑙)  𝜹𝑘

𝑙+1

𝑘

 (3.152) 

Rewriting the order of the terms: 

𝜹𝑗
𝑙 =∑𝑤𝑘𝑗

𝑙+1  𝜹𝑘
𝑙+1𝜎′(𝒛𝑗

𝑙)

𝑘

 (3.153) 

This concludes the proof of Lemma 2. 

Lemma 3 (Backpropagation Equation 3): the error based on the rate of change in the cost function 

with respect to any bias that is apparent in the network:   

𝜹𝑗
𝑙 =

𝜕𝐶

𝜕𝑏𝑗
𝑙 (3.154) 

Proof: 

Based on Lemmas 1 and 2, the error is being computed for the bias of the same neuron, that is: 

𝜹 =
𝜕𝐶

𝜕𝑏
 (3.155) 

But from the definition: 

𝜕𝐶

𝜕𝑧𝑗
𝑙 = 𝜹𝑗

𝑙 (3.156) 

and 

𝑧𝑗
𝑙 =∑𝑤𝑘𝑗

𝑙  𝑎𝑘
𝑙−1 +

𝑗

𝑏𝑗
𝑙 (3.157) 
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Firstly, applying the chain rule: 

𝜕𝐶

𝜕𝑏𝑗
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙  
𝜕𝑧𝑗

𝑙

𝜕𝑏𝑗
𝑙 (3.158) 

But 

𝜕𝑧𝑗
𝑙

𝜕𝑏𝑗
𝑙 = 1 (3.159) 

and from the definition in Equation 3.156: 

𝜕𝐶

𝜕𝑧𝑗
𝑙 = 𝜹𝑗

𝑙 (3.160) 

Therefore substituting into Equation 3.158: 

𝜕𝐶

𝜕𝑏𝑗
𝑙 = 𝜹𝑗

𝑙 (3.161) 

This concludes the proof of Lemma 3. 

Lemma 4 (Backpropagation Equation 4): the error based on the rate of change in the cost function 

with respect to any weight that is observed in the network:   

𝒂𝑘
𝑙−1𝜹𝑗

𝑙 =
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙  (3.162) 

Proof: 

From the definition, it is known that:  

𝜕𝐶

𝜕𝑧𝑗
𝑙 = 𝜹𝑗

𝑙 (3.163) 

and 

𝑧𝑗
𝑙 =∑𝑤𝑘𝑗

𝑙  𝑎𝑘
𝑙−1 +

𝑗

𝑏𝑗
𝑙 (3.164) 

Utilising the chain rule: 

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙  
𝜕𝑧𝑗

𝑙

𝜕𝑤𝑗𝑘
𝑙  (3.165) 
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Therefore: 

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝜹𝑗

𝑙 1

𝒂𝑘
𝑙−1 (3.166) 

Therefore Equation 3.166 can be written as: 

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝒂𝑘

𝑙−1𝜹𝑗
𝑙 (3.167) 

This completes the proof of Lemma 4. 

As to how these four Lemmas come together: briefly, the algorithm of backpropagation can be 

described and in the process it will become clear why it is known as backpropagation. The reason 

is that the error (𝛿𝑙) is computed in the backward direction where the starting point is the final 

layer in the NN (Nielsen, 2015). The algorithm of backpropagation is given as follows (Nielsen, 

2015; Goodfellow, Bengio & Courville, 2016): 

• Step 1 (input): the input training instances (𝑥) and their associated activation functions (𝒂𝑙); 

• Step 2 (feedforward): compute Equations 3.135 and 3.136, that is,  

𝒛𝑙 = 𝑤𝑙𝒂𝑙−1 + 𝒃𝑙 and 𝒂𝑙 = 𝜎(𝒛𝑙) for every layer in the network, 𝑙 = 2, 3, … , 𝐿; 

• Step 3 (output error, 𝜹𝐿): calculate Lemma 1, Equation 3.139, 𝜹𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿 𝜎

′(𝒛𝑗
𝐿); 

• Step 4 (the error is to be propagated): compute Lemma 2, Equation 3.144, for every layer 

in the network, hence, 𝑙 = 𝐿 − 2, 𝐿 − 1,… ,2; 

• Step 5 (output): compute the gradient of the cost function via Lemmas 3 and 4, that is 

Equations 3.154 and 3.162 of the biases and weights of the network 
𝜕𝐶

𝜕𝑏𝑗
𝑙 = 𝜹𝑗

𝑙  and            

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝒂𝑘

𝑙−1𝜹𝑗
𝑙, respectively. 

As was indicated through the repeated use of the chain rule, the weights and biases that occur 

earlier in the NN, the change in the cost function can be determined through backward information 

that is received (Nielsen, 2015). 

3.4.2.6 Improving neural networks: cross-entropy 

An improved and more effective cost function that can be employed by the NN architecture is that 

of cross-entropy. Goodfellow, Bengio and Courville (2016) state that the use of cross-entropy as 

the cost function has been shown to have enhanced performance in NNs (with sigmoid 

activations), as the models no longer suffer from saturation and slow learning. Cross-entropy can 

be further enhanced when optimising over tasks in NNs that centre around classification (binary 

cross-entropy). The concept of cross-entropy has its origins in information theory. Starting with 

Stellenbosch University https://scholar.sun.ac.za



108 

 

entropy, it can be described as the uncertainty that is associated with the probability distribution 

(Benjaminson, 2020). Moreover, cross-entropy extends this definition in that for a given set of 

random variables, cross-entropy is used as a measure between two distributions and the reason 

is that by minimising this function an enhanced estimate of the labels of the true distribution is 

obtained (Benjaminson, 2020).   

The focus of cross-entropy will be with regard to binary cross-entropy, as the data in the empirical 

section revolve around binary classification. Bishop (2006) advises that using cross-entropy for 

classification tasks results in greater generalisation of the data examples as well as improved 

(quicker) training of the network. As previously mentioned, binary classification means that a data 

instance can be classified (labelled) as one of two classes. For example, in the exploration of MRI 

brain lesions in Chapter 4 this is either the presence of a tumour or the absence of a tumour. In 

NNs, when confronted with a binary classification task binary cross-entropy can be used as an 

improved cost function and therefore the loss or the error of predicted decisions by the NN can 

be measured where large losses (large binary cross-entropy estimates) are an indication of poor 

predictions made by the network whilst, conversely, small losses represent accurate decisions 

made by the network (Benjaminson, 2020).  

Formally the binary cross-entropy cost function can be stated as follows (Nielsen, 2015): 

𝐶 = −
1

𝑛
∑[𝑦 ln 𝑦 + (1 − 𝑦) ln(1 − 𝑦)]

𝑥

 (3.168) 

where: 

• 𝑦 is indicative of obtaining a class label of one (the probability thereof); 

• (1 − 𝑦) is a representation of the class label being a zero (the probability of obtaining a 

zero). 

3.4.2.7 Improving neural networks: overfitting  

In ML and NNs a central issue is that algorithms are built such that they model the training data 

well but are poor at classifying new instances. That is, the techniques do not generalise the 

training data, thus the problem of overfitting is present. To overcome this and to control for 

overfitting, regularisation strategies can be used. NNs, in particular CNNs, result in more flexibility 

when the networks are built exceptionally deep through increasing the number of layers. 

Consequently, in order to capture the complex information and therefore the inherent features in 

the input images, the architecture of the NN starts to contain many layers. That is, the network is 

built very deep but at the risk of the model overfitting. Hence, not enough information (in the 

images) does not necessitate building such deep networks. Regularisation strategies can 

circumvent the input training data from overfitting. 
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In the following section, three such regularisation techniques are discussed, namely L2 

regularisation, dropout and data augmentation. The empirical exploration of MRI brain tumours, 

that is, the analysis performed in Chapter 4, makes use of these regularisation strategies as part 

of the CNN architecture.  

L2 (𝒍𝟐) norm regularisation 

In the context of deep learning the goal is to regularise the estimators (Goodfellow, Bengio & 

Courville, 2016). In other words, similar to ML, the bias-variance tradeoff comes into play whereby 

to regularise the estimators increased bias is traded for a reduction in the variance. Long before 

the dawn of DL in the form of NNs and CNNs et cetera, regularisation was used in linear models. 

In other words, regularisation was applied to linear and logistic regression models. The goal of 

regularisation is to limit the complexity of models through adding a penalty term. The 𝑙2 norm (also 

known as the weight decay penalty) is a common penalty that is applied. In the context of NNs, 

weight decay is a way in which the network is constrained, which subsequently reduces the 

complexity of the network (Krogh & Hertz, 1992). In other words, large weights should be limited 

and prevented to ensure that the weights are closer to zero. Hence, a penalty term that penalises 

large weights can be added to the cost function. The penalty term for the 𝑙2 norm is given as: 

𝑙2(𝑝𝑒𝑛𝑎𝑙𝑡𝑦) =
1

2
𝜆∑𝑤2 (3.169) 

where 𝜆 governs the penalisation of the weights (𝑤), noting that 𝜆 is a positive value. A starting 

point for determining the optimal value of the 𝜆 regularisation parameter can be ascertained in 

the literature. Kuhn and Johnson (2013) suggest that rational values for the weight decay 

(regularisation) parameter range between 0 and 0.1. Furthermore, as the empirical section 

(Chapter 4) applied CNN architecture to the data, the suggestion by the following two papers in 

the literature that a good starting point was to set the regularisation parameter to 0.0005 was 

implemented. The paper titled ‘ImageNet classification with deep convolutional neural networks’ 

authored by Krizhevsky, Sutskever and Hinton (2012) propose a weight decay of 0.0005 and the 

reason for this is that it guarantees that the model still learns and thereby the training models’ 

error rate is decreased. Additionally, Simonyan and Zisserman (2014) in their paper ‘Very deep 

convolutional networks for large-scale image recognition’ concur that the optimal value based on 

their empirical results indicates that the weight decay parameter value is set at 0.0005.  

Dropout 

Dropout is another method that attempts to reduce the effects of overfitting in NNs. It forms part 

of regularisation techniques and is a computationally effective way to regularise the NN 

(Brownlee, 2020b). The main difference between regularisation and the L2 norm (regularisation 

as reviewed in the previous section) is that dropout alters the actual network as opposed to 
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modifying the cost function as is the case with L2 regularisation (Nielsen, 2015). A simplistic way 

to describe what dropout is, is that some neurons (depending on the proportion chosen and 

indicated in the architecture) are ignored (dropped) along with their associated connection in the 

training phase of the network. This is illustrated by Figure 3.19 (Srivastava et al., 2014). The left 

panel in Figure 3.19 is a standard four-layer NN with two hidden layers, while the panel on the 

right is indicative of performing dropout. Furthermore, the neurons that are crossed out are the 

ones that have been left out (dropped) from the network. The left-out neurons are randomly 

chosen and are temporarily absent in the NN in addition to the input and output connections that 

correspond to these neurons (Srivastava et al., 2014).  

 

Figure 3.19: Dropout  

Source: Srivastava et al., 2014. 

Vincent et al. (2008) and Vincent et al. (2010) advise that dropout can be thought of as a 

regularisation technique of an NN through adding noise in the hidden layer neurons. The authors 

made use of this concept in the framework of denoising autoencoders. 

The value of dropout is a tunable hyperparameter but the values are a probability, that is, values 

between zero and one. The optimal probability for dropout is task-related but the literature does 

give some suggestions as to what this value should be. Srivastava et al. (2014) propose that the 

optimal level for the dropout probability rate is 0.2 for visible neurons, that is, neurons in the input 

and output layer, whilst for the hidden layers a value of 0.5 is used. Furthermore, in the paper by 

authors Krizhevsky, Sutskever and Hinton (2012) provides empirical evidence of their state-of-

the-art CNN with a dropout regularisation rate of 0.5 in hidden layers whereas a value of 0.8 was 

employed in the input layer of the NN. These give the same value for the hidden layers to retain 

the output from the neurons in these layers, thus a good starting point in choosing the optimal 

value for the hidden layers is a dropout rate of 0.5. However, there are differing opinions (based 

on these two papers in the literature) on what the optimal dropout rate for the input layer should 

be. 
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Data augmentation  

Data augmentation is an alternative method for improving the NN and reducing overfitting. A NN 

generally uses millions of input data examples that it trains upon; however, in reality and in 

practice, especially in the medical field, this is not always feasible, as is evident in the size of the 

datasets that are used in the exploration of MRI brain tumours in Chapter 4. Therefore, data 

augmentation is the process of artificially increasing (expanding) the size of the training data. 

There is evidence to suggest that there is an improvement in the accuracy of the NN if millions or 

billions of input data examples are available (Nielsen, 2015). In other words, the performance of 

the NN is improved when more input data examples are available.  

The mechanics of data augmentation, as mentioned, artificially expand the size of the training 

data by creating new examples from the existing training data examples. From here on, as the 

core of this research is MRI brain tumour image classification, it is known that the data examples 

are images. Hence, transformations or modifications to the original images are created; 

performing such alterations means that NNs has an enhanced ability to generalise the learned 

information from the training models (Rosebrock, 2017; Brownlee, 2019). Furthermore, in the 

CNN architecture data augmentation can also potentially add noise to the images to allow the 

model to still learn the inherent features of the image (Brownlee, 2020b). There are multiple 

frequently used means to increase the size of the input data images. These include random 

rotation, vertical and horizontal flips about the applicable axis and brightness, to name but a few. 

Starting with shifts, this means that the pixels in the image move in the same direction, either 

horizontally or vertically (Brownlee, 2019). Horizontal or vertical flips mean that the image is 

reflected about the 𝑥-axis or 𝑦-axis, respectively. Random rotation is that the image is rotated 

through 360 degrees (depending on what value has been chosen) in a clockwise direction 

(Brownlee, 2019). Hence, any value ranging from 0 to 360 degrees can be inputted for the rotation 

argument. In Chapter 4, horizontal and vertical flips about the relevant axes have been applied 

as a means of artificially increasing the data size. Next, the brightness augmentation results in 

images that are either lighter or darker, that is, it has to do with the lighting levels of the images. 

Thus, using these techniques allows data augmentation to reduce overfitting by stabilising the 

learning of the NN (Rosebrock, 2017). 

3.4.2.8 Improving neural networks: initialising weights  

Another key aspect when deciding upon the architecture of the network is the choice of weight 

initialisation. As previously mentioned, the weights are multiplied to the corresponding input 

training examples to obtain the weighted sum of the inputs whereby decisions are made. Hence, 

we would like to initialise the weights in such a manner that they have the ability to make decisions 

and predictions that are more efficient and accurate. Briefly, the definition of weight initialisation 
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is where the weights in the network are set as the starting point for the model to start learning or 

training (Brownlee, 2021). These values are usually small and are chosen at random. Goodfellow, 

Bengio and Courville (2016) discuss the difficulty in choosing these initial parameters and indicate 

that the choice made could lead to the failure of the network as it cannot converge or, alternatively, 

convergence of the algorithm takes place. Many studies have proposed using simplistic heuristic 

functions such as the Gaussian or uniform distributions as the initialisation of the weights. 

Goodfellow, Bengio and Courville (2016) validate this by stating that the weights are almost 

always randomly initialised from the Gaussian or uniform distribution. The authors continue by 

substantiating that there is not enough theoretical evidence to then choose between these two 

distributions. In other words, it is irrelevant which distribution is used.  

Conversely, recent research indicates that different weight initialisations can be used for more 

effective learning of the network. These are dependent on the type of activation function that 

forms part of the architecture of the network. If the network employs the tanh or sigmoid activation 

function approach, the literature advocates using the Xavier weight initialisation, also known as 

the Glorot (named after Xavier Glorot). The mathematics and methodologies are not explicitly 

discussed in this research, as the assumption of this weight initialisation method is that the 

activation function is linear and symmetric and is, therefore, not applicable to the ReLU activation 

function. The ReLU is the activation function which is applied in the empirical analysis section of 

the research. For a detailed overview of this method, the reader is referred to the paper by Glorot 

and Bengio (2010).  

The approach followed for ReLU activation functions due to the nonlinearity and asymmetry is a 

method known as the He weight initialisation and is named after the inventor. He weight 

initialisation is frequently used for ReLU activation functions for both perceptron and CNN 

architectures (Brownlee, 2021), hence this is used as the weight initialisation function in the 

empirical analysis of exploring MRI brain lesion images. The detail regarding this method can be 

found in the proceedings by He et al. (2015). The He weights are computed from a Gaussian 

probability distribution where the weights are computed as (Brownlee, 2021): 

𝐻𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (0;√
2

�̂�
) (3.170) 

where the mean and the standard deviation are Gaussian distributed. That is, the mean is equal 

to zero and a standard deviation of √2 �̂�⁄  where �̂� represents the number of inputs to a specific 

neuron.  
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3.4.3 Convolutional neural networks 

CNNs are a subset of ANNs and a specialised version of NNs; the main difference is that these 

networks are applied to visual imagery. The name is derived from the use of mathematical 

operations known as convolution. As with ANNs, CNNs have been inspired by biological 

processes. In terms of classification, CNNs (compared to classification algorithms) make use of 

very little preprocessing. The following sections review the differences between ANNs and 

expansions upon them (as discussed in the preceding sections). This includes the modifications 

that are made to the architecture, with reference to sections 3.4.2.2 (the architecture of an ANN) 

and 3.4.3.2 (CNN architecture). Furthermore, the activation functions are also relevant and 

applied in CNNs. In the exploration of brain lesions (empirical studies), CNNs are applied with the 

ReLU activation function. Optimisation techniques (theoretical concepts discussed in section 

3.4.2.4) are also applicable in CNNs and form the focal point of the empirical study of low-grade 

versus high-grade gliomas. In other words, all the optimisation learning rules are applied and 

compared to one another. 

Additionally, the discussion on the different ways of improving NNs such as cross-entropy, 

reducing overfitting via data augmentation, dropout and 𝑙2 regularisation, still applies to CNNs 

and is used in empirical studies (Chapter 4). The last concept, the initialisation of the weights, is 

also pertinent to this section and the application section (Chapter 4).  

3.4.3.1 Rationale behind CNNs 

CNNs are beneficial in environments (over other ANNs) when faced with computer vision systems 

and when some sort of prediction is called for. That is, only raw visual (images) inputs are 

considered. This is the form of the data encountered within the exploration of brain lesions in the 

empirical study. The visuals are MRI scans taken from patients. Hence, the most appropriate form 

of ANN to apply is that of a CNN. At a basic level, what is in the image needs to be understood, 

but ideally where the object is in the image that is being predicted should be understood. This 

may assist surgeons when resecting the brain lesion. So, to anticipate what will happen next: in 

a medical environment (focusing on brain cancer), this can be done to determine whether 

resection is a viable possibility, whether it will lead to partial or full resection, where and how to 

administer chemotherapy and/or radiation and how likely reoccurrence is.  

CNNs have been successful and continue to be successful in the implementation of biomedical 

images, as they are very good at picking up extremely subtle features, for instance, cancerous 

lesions, or differentiating between cancerous lesions. One of the main benefits of employing DL 

algorithms in the form of CNNs is the ability of the network to learn directly from the raw input 

image. This is achieved explicitly through feature extraction of tonnes of data through observation 

and automation alone, thus requiring no manual hand-engineered selection. This is deemed to 
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be a major advantage, as the network is entirely independent of prior knowledge as determined 

through the learning of the raw visual inputs.  

A computer processes an image based purely on numbers, hence it flattens the three-dimensional 

image into a two-dimensional matrix of numbers where these numbers range from zero to one or 

zero to 255 (the brightness level). Zero means that there is zero light while 255 means there is 

maximum light (id est, the brightest level). Each pixel is represented by a number and there is a 

corresponding number associated with each pixel. For instance, for a colour-scale image there 

are three channels (colour codes): red, green and blue (RGB) and thus each pixel is represented 

by a number. For example, the maroon colour that is visible in the corporate identity of 

Stellenbosch University is represented by (96, 34, 59) along the RGB channel (colour model). 

This is shown in the leftmost panel in Figure 3.20. In addition to the RGB channel as given in 

Figure 3.20, the CMYK colour code (model) is also depicted. The colours depicted in the CMYK 

colour code are cyan, magenta, yellow and key (in other words, black). These four colours make 

up the four ink plates which can occasionally be used in colour printing but more fundamentally 

CMYK used as the description of the printing process. The differentiating aspect of the CMYK 

colour model from the RGB channel (colour model) is that the former is a subtractive model whilst 

the latter is an additive model. Simply put, this means that in the case of the additive model, the 

colour white is an additive component creating an amalgamation of the spectrum of primary 

colours, whereby the colour black is absent. Conversely, for the subtractive model case, the 

colour black results due to the incorporation of colours whilst white is neutral. Neutral in the sense 

that the colour white is either the colour of the paper or some type of background. The process is 

that for the CMYK colour model, on lighter (generally white) backgrounds, colours are partially or 

completely concealed. As the name suggests, subtractive models indicate that the RGB channel 

colours are subtracted from white light. In other words, the CMYK model excluding the key (black) 

are formed as follows: 

• White light minus (the first colour in the RGB channel) red produces the colour cyan; 

• White light less (the second colour in the RGB channel) green results in the colour magenta;  

• White light minus (the third and last colour in the RGB channel) blue generates yellow.  

In the exploration of brain tumours in Chapter 4 the images are rescaled. That is, since 255 is 

known as the maximin pixel value, the pixels are transformed from the 0-255 range to a 0-1. When 

coding, the images are rescaled using a factor of 
1.0

255
. Hence, each pixel is transformed and one 

of the reasons for this is so that all images are treated equally. Depending on the quality, lighting, 

et cetera, some images tend to have a high pixel range whilst others have a low pixel range. In 

terms of training the CNN models, the loss experience by the model is higher (stronger) for the 

high range pixelled images whilst the opposite also holds true. In other words, for the low range 
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pixel images the loss created by the model is weak. Hence, scaling the images in the 0-1 range 

ensures that all the images contribute equally to the total loss suffered by the model. If the images 

are not scaled, images that are considered high range images will have more influence on how 

the weights in the model are updated. For instance, black and white images could potentially have 

a higher pixel range than say a pure colour image, but this does not imply that this image is more 

important during the training phase of the model.  

 

Figure 3.20: Stellenbosch University colour palette – primary brand colours 

Source: Stellenbosch University, 2018. 

As this study focuses on classification, ideally a class label for each input image should be 

accurately predicted. Hence, for maximum classification accuracy the algorithm chosen should 

be able to detect the subtle (unique) features that are present in the image. In order to correctly 

classify a new instance (image), the network needs to leverage all prior knowledge (features in 

the training images) that it has learnt. The training phase is key to the algorithm learning and 

extracting features that consist of valuable information; if the classes can be predicted with 

significantly high levels of confidence in the training phase, the chances of accurately classifying 

new instances should be amplified. The fact that the model needs to be able to perform 

irrespective of the variations that can be present in an image, such as differing brightness, colours, 

fuzziness and what is in the background, should also be considered.  

3.4.3.2 CNN architecture 

CNNs, as aforementioned, differ from a typical ANN in that the structure is built to deal with a 

specific type of data. That is, any given input will be the form of an image. Thus, the architecture 

of a CNN makes provision to exploit this prior knowledge. O'Shea and Nash (2015) indicate that 

one of the main differences between standard ANNs and CNNs is that the neurons within the 

layers of the architecture consist of three dimensions. These three dimensions are known as the 
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spatial dimension, that is, the height and width of the input whilst the third dimension is the 

dimension of the activation volume and is referred to as the depth. Figure 3.21 is an illustration of 

the basic architecture of a CNN, where there are three types of layers. The three layers are 

referred to as the convolutional layer, the pooling layer and lastly, the fully connected layer. The 

architecture of a CNN is complete when these three layers have been stacked.  

 

Figure 3.21: Basic convolutional neural network architecture 

Source: O'Shea and Nash, 2015. 

As mentioned, there are three key concepts to the architecture of CNNs, the three different layers. 

Moreover, O'Shea and Nash (2015) propose that there is an additional key notion in that the input 

is an image. Images are imperative to the functionality of a CNN in that the first layer is the image 

pixel values. Briefly, the convolutional layer aims to compute the output of the neurons that are 

connected to local regions of the input images via weights; this is also known as the local receptive 

fields. Furthermore, the pooling layer is a means of reducing the spatial dimensionality (without 

the loss of information) of the image. As O'Shea and Nash (2015) explain, the benefit of this 

downsampling means that the number of the parameters in the activation function is also reduced. 

Finally, the fully connected layer performs the same function as the output layer as discussed in 

ANNs, in that it will try and classify the image accordingly. These issues will be discussed in more 

detail in the following paragraphs where the architecture of a CNN is applied in the empirical 

exploration analyses (with the modifications as deemed appropriate).  

The convolutional layer 

As this is the first layer in the network, the input is image pixel values. For instance, the input may 

be considered as 28 × 28 pixels, and instead of then connecting every pixel in the input neuron 

layer to the hidden layer, only a local region is looked at (Nielsen, 2015). In other words, the idea 

is to only connect a local region of the input neurons to the hidden layer neuron, hence the hidden 

layer neuron will only see these values (refer to Figure 3.22). The local region can be referred to 

as the local receptive field. It can be deduced from Figure 3.22 that the local region is 5 × 5 which 
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corresponds to 25 pixels that are then fed to the hidden neuron. As before, each input is 

connected to a hidden neuron and learns a weight as well as an overall bias, with the weight and 

overall bias computed via the hidden neuron. Similarly, the process continues by moving one 

pixel to the right and taking another 5 × 5 local receptive field, calculating the weight of the 

connections to the new (second) hidden neuron as well as an overall bias. This process continues 

until all the pixels in the image have been covered. How many pixels are moved to the right to 

cover the whole image is known as the stride length and does not have to be equal to one; this 

value can be altered as needed. In other words, depending on the task at hand the stride length 

can be experimented with.  

 

Figure 3.22: Local receptive field 

Source: Nielsen, 2015. 

It is worth noting that for purposes of explanation all the hidden neurons (that is, every local 

receptive field) make use of the same value for the weights and bias, known as shared weights 

and biases, hence, the output of the 𝑗, 𝑘𝑡ℎ hidden neuron can be given as follows (Nielsen, 2015): 

𝜎 (𝑏 +∑∑ 𝑤𝑙,𝑚𝑎𝑗+1,𝑘+𝑚

4

𝑚=0

4

𝑙=0

) (3.171) 

where: 

• 𝜎 is a representation of the activation function used in the NN; 

• 𝑏 is indicative of the shared bias; 

• 𝑤𝑙,𝑚 represents the shared weights of the 5 × 5 (array) local receptive field; 

• 𝑎𝑗+1,𝑘+𝑚 is the input activation at the specific positional location, that is, position                     

𝑗 + 1, 𝑘 + 𝑚. 

From the above, suppose that the input image is 28 × 28 × 3 and that the three represent the red, 

green, blue channel (that is, a colour image with pixels or dimensionality of 28 × 28), then the 
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number of weights in the convolutional layer with a 5 × 5 (array) local receptive field is 75 

(5 × 5 × 3). Furthermore, the feature map is what is used to connect the input layer to the hidden 

layer where the weights are used to define the shared weights in the feature map; similarly, the 

overall bias in the context of the feature map is referred to as the shared bias (Nielsen, 2015). 

Moreover, the shared weights and bias also describe, within the feature map, a kernel or filter. In 

general, these kernels in terms of their spatial dimensionality are small so as to not lose too much 

information of the input image (O'Shea & Nash, 2015). However, as mentioned, the local receptive 

field is moved by a stride which results in the whole depth of the input image being accounted for. 

The value of the stride is a measurement of the overlap of the local receptive field. If the stride is 

a large value, there will not be much overlap, which results in the output being of lower spatial 

dimension (O'Shea & Nash, 2015). On the other hand, if the stride is a small value, say one, then 

the opposite situation prevails in which there is a large overlap in the local receptive field. 

Furthermore, the NN learns the kernels that fire based on the detection of a specific feature 

(O'Shea & Nash, 2015). Simply put, all the neurons that comprise the first hidden layer detect the 

same features, just at differing locations of the input image (Nielsen, 2015). Convolutional layers 

also make use of a hyperparameter known as zero-padding. Zero-padding can be defined as the 

process in which the border of the input image is padded (O'Shea & Nash, 2015). This 

hyperparameter aims to simply control the dimensionality of the output. Formally, the formula for 

zero-padding is given as follows (O'Shea & Nash, 2015): 

(𝑉 − 𝑅) + 2𝑍

𝑆 + 1
 (3.172) 

where: 

• 𝑉 is indicative of the input volume size of the input image, that is, ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ × 𝑑𝑒𝑝𝑡ℎ; 

• 𝑅 represents the local receptive field (as explained above, the example used was a 5 × 5 

(array); 

• 𝑍 is a representation of the amount of zero-padding that is indicated; 

• 𝑆 is the stride value. 

Note that if Equation 3.172 is unequal to a whole integer, then the value that has been chosen for 

the stride is incorrect, which leads to the neurons being unable to capture the entire input image 

(O'Shea & Nash, 2015).  

Another hyperparameter that can be tuned to control the dimensionality is that of parameter 

sharing. This is simply where the weights and biases are shared, that is, set to be the same across 

all the neurons in a feature map. The benefit of applying this concept in a CNN is to greatly reduce 

the number of parameters that are contained within the convolutional layer (O'Shea & Nash, 

2015). 
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Hence, three hyperparameters can be tuned to control by how much the parameters can be 

reduced, which in turn reduces the dimensionality, considerably reducing the complexity of the 

network. Through optimisation of the abovementioned three hyperparameters, namely the chosen 

stride value, the depth and the idea of zero-padding, complexity is reduced.  

The pooling layer 

In addition to the convolutional layers, CNNs utilise pooling layers. The pooling layer plays an 

important role, as in the feature maps pooling steadily reduces the dimensionality of the network. 

In other words, the number of parameters is lower where the implication is that the computational 

complexity is decreased in the network (O'Shea & Nash, 2015). The complexity in the model is 

reduced through the exclusion of some connections amongst the convolutional layers. 

Furthermore, the pooling layer down-samples the feature maps that are associated with the 

previous layers in the network and therefore a new feature map is generated (Gholamalinezhad 

& Khosravi, 2020). The reason why pooling is applied is two-fold - firstly, as a means to reduce 

the number of weights or parameters that are present in the network, which allows for the 

reduction in the computational cost (Ranzato et al., 2007) and secondly, as a means to control 

for overfitting in the network, though only to a certain degree as it is not sophisticated enough on 

its own (Skourt, El Hassani & Majda, 2021). Hence, other techniques which are more suited may 

be applied, for instance, regularisation and dropout (as previously discussed). Furthermore, as 

several literature papers note: a properly applied pooling mechanism allows for the transformation 

of joint features into information whereby features that are considered to be valuable and useful 

will be kept whilst valueless information is discarded (Suárez-Paniagua & Segura-Bedmar, 2018; 

Gholamalinezhad & Khosravi, 2020). Hence, the spatial and transformation invariance is 

preserved whilst simultaneously reducing the dimensionality.  

Two frequently used pooling layer techniques are those of max pooling and average pooling. 

However, the reader is referred to the paper entitled, ‘Pooling methods in deep NNs, a review’ by 

Gholamalinezhad and Khosravi (2020) for a detailed overview of many other pooling techniques, 

including mixed pooling, 𝐿𝑝 pooling, spectral pooling, weighted pooling and genetic-based 

pooling. In the empirical section of the analysis of brain lesions, max pooling is applied where the 

kernels (filters) have a dimensionality of a 2 × 2 array. This is a popular choice along with a stride 

value of 2, which results in scaling down the original feature map by 25 percent (O'Shea & Nash, 

2015). In the following paragraphs average pooling and max pooling are briefly discussed. 

Figure 3.23 is an illustration of where average pooling is utilised in the pooling layer of the CNN. 

In this diagram the stride is set equal to 2 and the filters (kernels) are a 2 × 2 array of the feature 

map. The concept behind average pooling is to perform downsampling via the dividing of the input 

into local pooling regions. As the name suggests, once these pooling regions have been formed 
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the average of the values that constitute that region is taken. For instance, based on Figure 3.23 

the average of all four regions can be computed, which results in a new (downsampled) pooled 

feature map. What this step achieves is that it adds a small quantity of translation invariance. In 

other words, when the image is translated by a minimal amount, it usually has no substantial 

effect on the values of the pooled outputs. Hence, the pooling layer will still be able to detect the 

class label of the input, irrespective of how the input is shifted or changed.  

 

Figure 3.23: Average pooling 

Max pooling (as illustrated in Figure 3.24) is a method whereby the maximum of the regions is 

selected to produce a new downsampled feature map. In the diagram the input is divided into 

regions corresponding to a 2 × 2 array of adjacent pixels. One of the key features of max pooling 

is that the most dominant pixel within the four neighbouring pixels (in the case of a 2 × 2 array) is 

kept whilst the others are discarded. It is worth noting that these pixels are more representative 

of a feature of the image that has been captured. The rationale is that the pooling layer is an inner 

layer of the CNN and therefore the model starts to add more complexity in terms of learning the 

hierarchy of the features of the input image. In other words, mid-level features are learnt by the 

model. What this means is that, for instance, there is an image of a face: the low-level features in 

the hierarchy consist of edges, lines and dark spots, et cetera. These features are learnt in the 

layers at the beginning of the model (id est, the convolutional layers). With progress to the inner 

layers the model learns the mid-level features; using the same example of an image of a face, 

this would include the model being able to start distinguishing the eyes, ears, nose and mouth. 

The last layers will detect the facial structure and this is then considered to be the high-level 

features.  
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Figure 3.24: Max pooling 

The fully connected layer 

Lastly, the convolutional layers and the pooling layers give way to the fully connected layer. This 

layer is also known as the dense layer. As with the traditional ANN architecture, a fully connected 

layer is a means whereby every neuron in the preceding layers is connected to every neuron in 

the observed layer. Generally, making use of a fully connected layer is considered to be an 

inexpensive way in which the network can learn the nonlinear combinations of high-level 

(hierarchical) features that are outputted from the convolutional layer.  

The input image is flattened in a column vector and fed through the CNN. Upon going through the 

fully connected layer for a given number of epochs, the model starts to distinguish between 

valueless features (which are omitted) and features that are dominant (containing useful 

information) to predict the class label.   

3.4.4 Interpretability versus accuracy  

One of the main limitations of DL (NNs) is that interpretability is forgone in favour of accuracy, as 

illustrated in Figure 3.25. Hence, when models are more accurate the interpretability of that model 

is limited. In other words, as is the case with DL techniques (where the focus of this research is 

applying CNNs), the lower interpretability suggests that the model algorithm displays complexity 

which is indicative of the underlying mechanisms of how the algorithm works and is difficult to 

explain and understand. From a theoretical standpoint (refer to Figure 3.25), ranking the three 

algorithms applied in the empirical review of brain tumours (Chapter 4), the following observations 

are made: 𝑘-NN has the highest level of interpretability but at the expense of accuracy in the 

results. On the other end of the spectrum CNNs produce accurate results but their workings - how 

the model chooses the features to produce the most accurate results - are exceptionally difficult 

to understand. Somewhere in between these two extremes lie SVMs.  
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DL has become one of the leading techniques in AI. Researchers apply these powerful techniques 

and the associated architecture to improve the robustness as well as the computational power of 

the predetermined task or problem (Kowsari et al., 2019). Conversely, as Shwartz-Ziv and Tishby 

(2017) indicate, DL algorithms in the classification setting have limitations and disadvantages, as 

DL (CNNs) does not expedite an extensive theoretical understanding of the learning process. In 

other words, how the DL algorithm proposes the predicted output is not that well understood. This 

phenomenon is more commonly referred to as the “black box” nature of DL algorithms. Another 

limitation to DL algorithms is the amount of data required. That is, DL methods generally require 

databases that are in excess of millions of inputs compared to the more traditional ML techniques. 

For this research purpose, the inputs would be enormous databases of images. In a literature 

study by authors Sordo and Zeng (2005), empirical evidence suggests that classification of small 

datasets may elicit overfitting in the model, therefore large datasets are preferred to obtain more 

accurate results. Hence, there is likely a correlation between performance (accuracy) and 

database size. This can have a critical impact in shaping the performance of the DL technique. 

Furthermore, these excessive amounts of data intensify, during the training phase of the 

algorithm, the computational complexity (Severyn & Moschitti, 2015). 

 

Figure 3.25: Model interpretability versus accuracy between traditional machine learning 

algorithms and deep learning methods 

Source: Kowsari et al., 2019. 

3.5 LITERATURE REVIEW OF BRAIN TUMOURS USING DL/ML 

An active and expanding field amongst the research community is that of biomedical imaging and 

its association with widespread applications. This ranges from malignant tumour segmentation to 

tumour recognition. Moreover, the diagnostic tools mentioned in section 2.3 are used to produce 

the biomedical imaging that is then passed to the AI methodologies in the form of DL or ML 
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techniques. Furthermore, these diagnostic biomedical images (MRI imaging, PET scans, CT 

scans) produced are given as the input for artificial intelligence or machine learning algorithms.  

Figure 3.1 in the introduction of this chapter gives an overview of the research done in the field of 

cancer and the association with emerging technologies. There is an indication that emerging 

technologies and specifically AI and ML techniques are transpiring as key research areas. 

Additionally, Figure 3.26 investigates a similar concept as Figure 3.1, with the key difference being 

that this figure evaluates the AI/ML technique applied to varying cancer types. Before making 

conclusions about the figure, it is worth noting that the bar (category) indicated as ‘other’ refers to 

malignancies of tissues and organs such as brain, leukaemia, head, neck, cervical, ocular, 

osteosarcoma, oesophagal, thoracic, thyroid, pleural mesothelioma and trophoblastic (Cruz & 

Wishart, 2006). It is glaring that the dominant cancer types that are researched are breast and 

prostate cancer. The inclination to study these cancers is that they are more prevalent and thus 

are a reflection of the higher frequency of individuals diagnosed with these cancerous types. This 

once again highlights that brain cancer is a rarer form of cancer and therefore by comparison not 

as comprehensively researched.  

Figure 3.26 is also indicative of the relation between AI/ML algorithms and how they are applied 

in solving biological or clinical applications of cancer. There is a preference for applying these 

techniques in predicting the outcome of different tasks, such as cancer detection, segmentation 

and classification as well as malignancy prognoses. As previously mentioned, deep learning has, 

in particular, progressed insofar as it has become a dominant and popular technique used by the 

research community. Figure 3.26 depicts that approximately 70 percent of the studies that were 

reviewed by Cruz and Wishart (2006) utilised NNs, whilst SVMs were the second most optimised 

technique but significantly lower with only 9 percent. Furthermore, decision trees and clustering 

were applied in 6 percent of the literature studies, while it is apparent from the figure that the 

remaining three methodologies - Naïve Bayes, generic algorithms and fuzzy logic - were barely 

implemented. Unfortunately, due to the grey scale colour coding used in Figure 3.26 the varying 

shades are not as optimally distinguishable for the lesser applied techniques from a visual 

perspective. 

A reason for the upward trend of these techniques is that they produce significant results, in other 

words, high accuracy is achieved, even though the accuracy of NN methods come at the expense 

of explainability and the rationale behind the results. On the contrary, the other techniques (id est, 

decision trees, SVMs, Naïve Bayes) are inherently not as popular but it is much easier to 

understand and explain the underlying rationale and results. 
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Figure 3.26: Percentage of research papers for varying cancer types associated with 

different artificial intelligence and machine learning techniques 

Source: Cruz and Wishart, 2006. 

In the subsections below the literature is reviewed and the question addressed of how data-driven 

techniques in the form of diverse machine learning or artificial intelligence techniques affect a 

variety of clinical image analysis tasks. The emphasis remains on exploring malignant brain 

lesions.  

𝒌-NN and SVMs 

Most articles that refer to brain lesions made use of various statistical machine learning 

techniques for comparison purposes. Hence, in this literature review section the 𝑘-NN and SVM 

methodologies are discussed and overviewed simultaneously.  

The first paper, entitled ‘Brain tumor classification using SVM and 𝑘-NN models for synthetic 

minority over-sampling technique (SMOTE) based MRI images’ and authored by Latha et al. 

(2020), gives an insightful look into the steps of brain tumour image processing. The first step is 

to attain the images through some imaging modality, followed by the preprocessing of these 

images. As the authors suggest through their literature review, this is essentially the removal of 

noise utilising various filters leading to different features that can be extracted from the image. 

The authors discuss this in an informative way by stating which methodologies are best applied 
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in different circumstances. For instance, when extracting features from MRI images wavelet 

transformations are the most appropriate. Finally, model-based approaches are used to perform 

the analysis, indicating how image classification analyses and computing work in conjunction. 

The approaches include 𝑘-NN and SVM algorithms and the classification accuracy is compared. 

The authors’ proposed solution uses a dataset of 3064 T1-weighted contrast-enhanced MRI 

computed images of 233 patients that have either meningiomas, gliomas or pituitary tumours. 

Next, image segmentation is performed using image thresholding. Feature extraction consists of 

discrete wavelet transformation, whilst feature reduction makes use of principle component 

analysis (a technique used for dimensionality reduction). The brain tumour classification is then 

computed using 𝑘-NN and SVM methodologies. Due to the class imbalance of the dataset, 

meaning that each tumour type is not represented an equal number of times, SMOTE is used to 

balance the classes, ensuring that each tumour type has the same number of MRI images. 

Instead of splitting the data via percentages into training and test sets, the authors make use of 

5-fold cross-validation. This approach splits the original data randomly into five equal partitions, 

id est, five equal-sized subsamples (referred to as folds), where the model is then fitted on four of 

the subsamples (four folds are considered as the training set) and predicts on the remaining one 

subsample (one fold is the test set). The cross-validation process is repeated five times, where 

each of the subsamples is used as a test set. The thinking behind this approach is that it is easy 

and simple to understand and implement (reduces computational intensity) but more importantly, 

it encompasses all the information and features contained in the original data. The authors’ results 

indicate that SMOTE improves the classification accuracy by approximately three percent, on 

average. Additionally, their proposed SVM model (90.75 and 93.32 percent) has a higher 

classification accuracy compared to the 𝑘-NN model - 85.2 and 90.75 percent without and with 

the use of SMOTE, respectively.  

The second paper reviewed in this section is by Artzi, Bressler and Ben Bashat (2019), titled 

‘Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis’. 

It describes how statistical techniques can be applied to differentiate between glioblastomas and 

metastasis. The authors’ recommendation addresses the challenges in the distinction process as 

there is an acknowledgement of the importance of its role in planning for different treatment 

strategies, determining prognoses and therapeutic implications. The authors shed light on the 

topic by highlighting the statistics of the incidence rate of high-grade brain lesions and brain 

metastasis, by way of explanation, where the primary site of cancer was in the lungs, breasts and 

other areas (in the data collected by the authors) and then the cancerous cells spread to the brain.  

Furthermore, the authors state that MRI imaging is the conventional imaging modality, yet the 

benchmark for the diagnosis of brain lesions is by taking biopsies of the infected site. However, 
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both these methods have advantages and disadvantages over each other which the authors point 

out in detail.  

As mentioned, the purpose of the authors’ study is to differentiate between glioblastoma and 

metastasis subtypes. The analysis is performed on post-contrast T1-weighted MRI radiomics 

images of 439 patients (radiomics is the study where numerous features are extracted from 

radiographic medical images). These patients presented with either glioblastoma or brain 

metastasis. The assessment process took a similar approach to that in the first paper. That is, 

image preprocessing, such as resizing the images to the same voxel size, skull stripping (in other 

words, extraction of the brain) and intensity normalisation (pixel intensities are scaled) which 

constituted the first step in the process. This was followed by tumour segmentation and extraction 

of the area. The next step involved feature extraction using and including different methodologies. 

Furthermore, the authors conduct an in-depth discussion on why these methods were used. The 

data were split in a ratio of 4:1 for training and testing, respectively. In other words, the data were 

split into 80 percent training data and 20 percent testing data. Finally, statistical tests were 

performed in classifying glioblastomas versus metastasis. Different machine learning techniques 

were applied: SVMs, 𝑘-NN, decision trees and ensemble classifiers. The classification results 

obtained by the authors indicated that the best classifier was SVMs. Henceforth, SVMs could 

classify glioblastomas from metastasis subtypes with higher accuracy.  

The third paper that is associated with brain lesion diagnostic imaging analysis through the use 

of machine learning techniques is ‘Meningiomas: preoperative predictive histological grading 

based on radiomics of MRI’, authored by Han et al. (2021). The authors examine the applications 

of machine learning techniques that have been applied to MRI imaging to grade meningiomas. 

First they explain how these tumours are graded according to the WHO, meaning the 

characteristics that are used to evaluate whether the meningioma is low-grade or high-grade. The 

reason for this is that the prognoses are different and the chances of reoccurrence differ along 

with the survival rates. MRI images are the technique of choice as they can capture the soft tissue 

of meningiomas at high resolution. The authors then elaborate on MRI imaging. This forms the 

basis of this research and results in the main aim of the study.  

The study comprised images from 131 patients diagnosed with either low-grade or high-grade 

meningiomas by pathologists with considerable experience in the field. Multi-modal MRI imaging 

was obtained, that is, T2-weighted, T1 FLAIR and T1 FLAIR with contrast enhancement  (refer to 

section 2.3.4 for a comprehensive discussion). The authors describe, at length, how they went 

about obtaining the feature extractions. Finally, six machine learning classifiers were used  in the 

study, namely logistic regression, random forests, decision trees, boosting (XGboost), SVMs and 

𝑘-NN. In the histological grading of the tumours the authors' results indicated that the highest 

accuracy was achieved by the SVM classifier. Furthermore, the authors thoroughly discuss the 
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construction and stability of the model as well as the relationship between radiomic features and 

the actual tumour, that is, features on MRI scans (such as grey contrasts, depth and textures) 

that are essential in distinguishing between tumours and non-tumour images. Lastly, the authors 

acknowledge the limitations of the study.  

The fourth paper in this section, titled ‘An automatic classification of brain tumors through MRI 

using support vector machine’ by Alfonse and Salem (2016), explores the use of data-driven 

machine learning techniques, specifically SVM classifiers, applied to MRI imaging. The authors 

follow the same methodological processes as in the previous papers, id est, preprocessing, 

segmentation, feature extraction and selection and finally, classification of the images. There are 

a few notable differences: firstly, the dataset that the ML technique is applied to is different; and 

secondly, SVMs is the only classifier used, as opposed to comparing other techniques as was the 

case in literature papers one through three.  

A fifth paper, ‘Image analysis for MRI based brain tumor detection and feature extraction using 

biologically inspired BWT and SVM’ authored by Bahadure, Ray and Thethi (2017), probes a 

slightly different choice of brain lesion segmentation by using the Berkeley wavelet transformation 

(BWT) where SVM is the proposed machine learning classifier. After the authors’ recommended 

process system and the models had been applied, the experimental results were analysed and 

the performance validated based on MRI images. The results were indicative of the proposed 

model being effective in identifying and correctly classifying normal and abnormal tissue seen on 

MRI imaging. The accuracy was compared to state-of-the-art machine learning techniques such 

as adaptive neuro-fuzzy inference systems, backpropagation and 𝑘-NN. The SVM classifier 

outperformed these three methods - the margin of accuracy for SVMs (96.51) was almost ten 

percent higher than that of 𝑘-NN (87.06).   

The sixth paper in this section is titled ‘Investigating brain tumor differentiation with diffusion and 

perfusion metrics at 3T MRI using pattern recognition techniques’ by Svolos et al. (2013). Here 

the authors illustrate the contribution that diffusion and perfusion MRI metrics make to 

differentiation and hence the classification of brain tumours. The authors meticulously discuss the 

MRI metrics along with why they decided to take this approach. In the study 115 patients were 

subject to examination through the different metrics, including conventional MRI which constructs 

T1-weighted, T2-weighted and FLAIR images. Furthermore, diffusion weighted imaging and 

diffusion tensor imaging images were considered in the analysis. The last imaging metric that was 

performed on the patients was dynamic-susceptibility contrast imaging. The latter three methods 

are influential in that they offer substantial information about molecular function and 

microstructure. They are particularly popular amongst researchers and physicians as they can 

provide distinctive insights into the network of the brain. Furthermore, the authors discuss 

controversies and advantages found in the literature as well as alternative options that could be 
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used instead of MRI. According to them biopsies are the gold standard but they conclude that 

biopsies might not be the most viable solution when information about the whole neoplastic tissue 

is required.  

Subsequently, the authors review several pattern recognition techniques that have been applied 

in other studies with the main aim of aiding decision making. The authors opted to make use of 

SVM classification and the more frequently used receiver operating characteristic analysis (based 

on logistic regression) to evaluate the diagnostic contribution of these metrics and parameters in 

the discrimination of brain tumours. Additionally, the authors give reasons for proposing an SVM 

model, for instance, SVM classifiers have high performance for small sample sizes. The patients 

in the study were diagnosed with a range of intracranial brain lesions, for example, low- and high-

grade gliomas, atypical meningiomas and metastatic tumours. The experimental results revealed 

that the highest predictive outcome was achieved through the SVM classifier. Moreover, there 

was evidence that diffusion weighted imaging, diffusion tensor imaging and dynamic-susceptibility 

contrast imaging were beneficial in the grading of intracranial brain lesions.  

The seventh and last paper in this section takes a slightly different approach, in that it forgoes the 

‘traditional’ MRI images and makes use of infrared spectroscopic data samples. However, SVM 

was a classifier used in predicting the outcome which was to discriminate between the different 

types of tissue associated with brain tumours. The contribution is entitled ‘SVM optimization for 

brain tumor identification using infrared spectroscopic samples’ by Fabelo et al. (2018). In this 

approach, the authors apply SVM classifiers to determine the type of brain tissue to assist and 

improve diagnoses. This is achieved through the use of spectroscopy. The authors describe how 

optical techniques have been applied in other literature studies along with the underlying 

principles of spectroscopy. Briefly, infrared (IR) spectroscopy has to do with the interaction of 

matter, that is, the absorption of intensity as a function of the associated wavelength. In this 

context, it means that the intensity varies according to the molecular composition. Furthermore, 

the authors discuss the potential of IR spectroscopy for distinguishing between tissue types and 

grades. This leads to understanding which tissue is altered when it becomes malignant.  

In this study, as mentioned, the authors use a dataset involving 433 patients from which brain 

lesion tissue samples were collected through IR spectroscopic. The aim is to develop a method 

to determine different diagnostic tissue types. This is to be achieved by using the SVM ML 

algorithm which has been proposed by the authors. The authors do review other techniques that 

have been applied to analyse spectroscopical samples, for instance, partial least squares 

regression. However, with their proposed SVM classifier they managed to achieve high 

performance and significant accuracy (approximately 97 percent) in differentiating tumours from 

necrosis from the normal brain. The authors also obtained promising results for distinguishing 

cancerous versus noncancerous samples. Some of the reasons why the authors propose the use 
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of SVM classifiers are reviewed. Essentially, this equates to the advantages over other 

methodologies of SVMs as a classification technique. This includes, but is not limited to, the fact 

that SVM classifiers are able to generalise well, finding optimal solutions even when the sample 

size is small and achieving high performance when datasets are highly unbalanced.  

Deep Learning: CNN 

The first paper in this group, ‘Classification of brain tumors from MRI images using convolutional 

neural network’ authored by Badža and Barjaktarović (2020), addresses the uses of deep learning 

in the area of brain lesion MRI images. MRI imaging has become a go-to procedure when 

differential diagnostics of brain lesions is required. Here the authors discuss the main aim of their 

research, which is classifying three brain tumour types using their proposed CNN architecture. 

They consider how deep learning, specifically CNNs, have achieved significant results in the field 

of image segmentation and classification. Moreover, the authors present literature on AI networks 

that have slightly different modifications of the NN for image classification and segmentation - 

papers that have used different approaches that have been tested on medical databases, be it 

the one they used or other databases that are available.  

The authors’ proposed CNN is considered to be a basic architecture; however, they point out that 

even though a simpler structure is used, it can still compare well with more complex deep learning 

architectures. The dataset that the authors made use of contained 3064 MRI images, substantially 

smaller than the size of datasets used in AI. Furthermore, the dataset contained T1-weighted 

contrast-enhanced imaging of 233 patients diagnosed with one of three types of brain lesions: 

glioma, meningioma or pituitary tumours. Their proposed CNN architecture was applied and the 

authors examined four different methods to test the performance of the network. The authors’ 

proposed methodology outperformed state-of-the-art architectures recommended in the literature. 

The experimental results showed that the authors were able to achieve an accuracy of 

approximately 97 percent in discriminating between the three brain tumour types. 

The second paper associated with image analysis using AI discusses how CNN architectures are 

applied in the segmentation of brain lesions. In ‘Brain tumor segmentation using convolutional 

neural networks in MRI images’ by Pereira et al. (2016), the authors explore and concentrate on 

the capabilities of the recently employed approaches of AI (CNNs) over other successfully 

implemented machine learning techniques. The authors give credit to the execution of classifiers 

such as SVMs and random forests but then discuss the prominence and advantages of using 

deep learning through pointing out how CNNs have shown substantial performance in biological 

pattern recognition competitions. Hence, the objective of the authors’ proposed work is to use an 

automatic segmentation method that will accurately and effectively segment brain tumours. This 

is achieved through the use of CNNs constructed using small 3 × 3 kernels, as this allows for 

Stellenbosch University https://scholar.sun.ac.za



130 

 

deeper architectures. Furthermore, segmenting brain lesions accurately entails the importance of 

not only treatment strategies but also follow-up evaluations. As mentioned in Chapter 2, manual 

segmentation is a laborious task and an automated system gives clinicians a second opinion, 

thereby aiding diagnoses.  

The authors comprehensively discuss the underlying principles and architecture of CNNs. In their 

study, the authors used two different architectures in segmenting low-grade gliomas from high-

grade gliomas. The network was constructed deeper (id est, more layers and weights) for high-

grade gliomas, as such a deep structure for low-grade gliomas did not improve performance. On 

the contrary, it would lead to overfitting, as the size of the low-grade glioma dataset was small. 

The authors’ results proved promising in effectively segmenting MRI images of two different brain 

tumour types.  

The third paper, entitled ‘Classification using deep learning neural networks for brain tumors’ and 

authored by Mohsen et al. (2018), gives an informative overview of how data-intensive techniques 

such as deep learning are applied to diagnostic radiomics images in medical applications. As the 

authors state, deep learning has gained traction in recent years and has been successful in 

solving complex problems. The authors applied various machine learning and feature extractions 

through the different phases of the process. The first step in their study was data acquisition: they 

obtained a database containing 66 brain MRI images which were categorised into four 

subsections. Three comprised patients that had been diagnosed with abnormal lesions, namely 

glioblastoma, metastatic bronchogenic carcinoma and sarcoma tumours. The fourth subsection 

consisted of patients that presented with normal brain images.  

The next step involved image segmentation, in this case separating the different normal tissues 

such as grey matter, white matter and cerebrospinal fluid. The machine learning algorithm that 

achieved this purpose as proposed by the authors was that of fuzzy c-means clustering. Similar 

to the first paper in the previous section (𝑘-NN and SVMs), the authors also proposed using 

discrete wavelet transformation as a feature extraction method followed by principal component 

analysis for feature reduction. Finally, deep NNs were applied to perform the task for the 

classification of the four tumour types. Note that this is viewed as the aim of this research study, 

namely using deep NNs to classify different tumour types. The authors’ proposed model was 

compared to other techniques such as 𝑘-NN and linear discriminant analysis and on the whole 

surpassed these techniques in performance. Thus, the classification accuracy achieved using 

deep NNs was higher.  

Fourth, in a paper by Havaei et al. (2017) on ‘Brain tumor segmentation with deep neural 

networks’, the authors exhaustively describe their CNN approach tailored to classifying 

glioblastomas. Their approach has a slightly different CNN architecture in that it simultaneously 
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utilises local features and global contextual features. This supports the aim of their research, as 

glioblastomas appear in any location in the brain and have various sizes, contrasts and shapes. 

The authors’ solution is a model that is flexible enough yet still performs efficiently. The authors 

explain three different CNN architectures. The first is a network that concurrently makes use of 

local and global features. The second relates to the execution of a fully connected layer in the 

final layer that contributes to a 40-fold speedup. The authors proceed to describe how they handle 

the class imbalance of the dataset, that is, to overcome the imbalance in the tumour classes they 

suggest a two-phase training procedure, exploring the two-pathway architecture which captures 

the local and global details (features) of the brain. Motivation for this approach is that the authors 

want the prediction of the outcome to be influenced by the two pathways. The local pathway is 

the visual details around a specific area of the MRI image pixels, whilst the global pathway is an 

approximation of where the tumour is located in the brain. For the third and final architecture the 

authors propose cascaded CNN models. This means that the output from a basic CNN model is 

used as a supplementary information source for the subsequent CNN models.  

The fifth and final contribution in this section is a paper on ‘Near real-time intraoperative brain 

tumor diagnosis using stimulated Raman histology and deep neural networks’ by Hollon et al. 

(2020). The images that are used as input in this study are somewhat different to the conventional 

MRI imaging that was apparent in the previous papers. The authors indicate that the advances in 

optical imaging techniques and computational techniques such as AI have made it easier for 

intraoperative diagnoses. The authors explain that intraoperative diagnoses play an integral role 

in the safety and care of patients that undergo surgery to remove malignant lesions. Stimulated 

Raman histological (SRH) imaging has provided a solution. Briefly, SRH is defined as an optical 

imaging technique that constructs images of unprocessed biological tissue. The authors describe 

the myriad advantages to using SRH; this includes relying on the expertise of a pathologist which 

is not always readily available. For example, neuropathologists are not necessarily present when 

brain surgery is performed. A solution to this problem, which forms the basis of the authors’ 

research, is to employ AI techniques that can achieve expert-level diagnoses of histological 

images that pathologists would be able to interpret. In other words, a computer-based 

visualisation technique is to be implemented that will take SRH images as input to predict the 

outcome and interpretation of surgical specimens (tissue). This should take place in ‘near real-

time’, according to the authors. The implication of real-time is the time delay from when the tissue 

is removed until a diagnosis can be made. Hence the authors suggest training a CNN model as 

efficiently as possible to obtain the best accuracy.  
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3.6 SUMMARY 

This chapter made significant headway in introducing core principles. From the literature on the 

classification of brain tumours, ML (SVMs and 𝑘-NN) and DL (particularly CNNs) have gained 

traction and are vigorously researched and implemented. Thus, this chapter highlighted the 

theoretical (and mathematical) aspects of these techniques, that is, 𝑘-NN, SVMs and DL. As a 

result of the task being image classification, as analysed in Chapter 4 based on MRI brain 

tumours, with the medical aspect overviewed in the previous chapter (Chapter 2), this chapter 

emphasised the inherent features of biomedical image classification. Preceding biomedical image 

classification there was a simplistic and brief discussion of classification and then more 

specifically, image classification.  

AI, of which DL is a branch, in recent years has become one of the most frequently applied 

techniques in bioinformatics, owing to the improvement in computational power (hardware) as 

well as the digitisation of data leading to massive databases. The main goal and aim are to take 

this raw material and transform it into knowledge and information that can be of assistance to 

physicians. Therefore, this is the aim of this research as put forward in the introduction (Chapter 

1) where two datasets will be analysed and the empirical results discussed in the subsequent 

chapter. In terms of DL, there was a shift from understanding a neurobiological NN as being the 

influence of the computing paradigm, ANNs. The initial artificial neuron, a perceptron, was 

introduced and due to the limitations experienced, the focus transitioned to the development of 

ANNs. Here, the fundamental underlying aspects were reviewed, that is, from the architecture of 

ANNs to how different activation functions can be applied - the mathematical function as well as 

the shape. There is no theoretical basis for which activation function is best to use. However, 

some studies have offered empirical evidence to suggest under which circumstances - that is, for 

the (application) task – a particular activation function should be used. Based on the literature that 

has shown promising results for image classification using the ReLU activation function, this is 

applied in the CNN architecture in the next chapter. Furthermore, the different state-of-the-art 

optimisation techniques were outlined as well as ways in which to improve NNs, through 

implementing regularisation, dropout and data augmentation. The reason is so that the NN can 

train more effectively and efficiently. ANNs served as a predecessor for defining the underlying 

architecture of CNNs. The rationale behind using CNNs instead of ANNs for image analysis was 

stated. Also discussed in this chapter was the problem of interpretability, id est, the black box 

techniques of these methodologies. This poses a challenge in the medical field, as even with the 

growing interest in AI techniques these models need to be built to support explanation and 

understanding rather than just solving the pattern or image classification (Lake et al., 2017).   
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This chapter serves as a precursor to the exploration of brain tumour images in the next chapter. 

Hence these techniques were applied to two brain lesion datasets to classify these images with 

maximum accuracy.  
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CHAPTER 4 

EXPLORATION OF BRAIN TUMOUR IMAGES 

4.1 INTRODUCTION 

Accuracy in the detection and subsequent segmentation of brain lesions, benign or malignant, is 

key to determining the type of cancer and if applicable, resection surgery, treatment planning 

strategies and survival rates (treatment outcomes). As previously mentioned, the process is 

labour-intensive and time-consuming when performed manually and requires the expertise of 

physicians in the appropriate field. In order to alleviate some of this pressure and to obtain the 

same level of accuracy and prediction, there is increasing reliance on automated and semi-

automated methodologies. Hence, this section's main aim is to determine whether the accuracy 

achieved by these models can be of assistance in the oncological field. If so, the task of 

segmentation is somewhat diminished in terms of being less laborious and time-consuming.  

In this empirical section on the exploration of brain lesion images, state-of-the-art ML and DL 

techniques are applied to two separate datasets: more specifically, from the ML point of view, 𝑘-

NN and SVMs, whilst from the perspective of DL, CNNs. The different parameters in the CNN 

architecture will be applied in making use of the different learning algorithms, that is, the state-of-

the-art optimisation techniques as well as the different ways of improving NNs, namely dropout, 

data augmentation, cross-entropy, et cetera, as discussed in Chapter 3. Thus, the accuracy of 

the different methodologies will be compared.  

The two datasets that are utilised both concern brain lesion MRI scans that have been collected. 

The first one consists of images of patients that presented with brain tumours, as well as those 

with an absence of brain lesions. The second dataset relates to patients diagnosed with either 

low-grade gliomas or high-grade gliomas. Gliomas are considered to be one of the most frequent 

primary malignant brain lesions and they have varying levels of aggressiveness and invasiveness, 

different prognoses (especially, high- versus low-grade gliomas), different survival rates and 

different biological properties (Bakas et al., 2018). Gliomas also present with heterogeneous 

(dissimilar) appearances and shapes and therefore remain a challenge in diagnostic medical 

imaging (Bakas et al., 2018). These datasets are described in more detail in the imaging dataset 

sections, 4.2.1 and 4.3.1 respectively, and act as aids to illustrate how ML and DL techniques are 

used in practice. Hence, this constitutes the practical implementation of the AI methodologies.  

As has been mentioned, performing these models generally requires vast amounts of data; 

however, due to the lack of data available in the medical field, this section also aims to establish 

whether smaller-built CNN architectures can produce significant, accurate and satisfactory results 
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on smaller datasets. More specifically, that this is applicable for real-world datasets that have 

been collected through multi-institutional organisations.  

4.2 ABSENCE VERSUS PRESENCE OF BRAIN TUMOURS 

4.2.1 Imaging dataset 

For this study binary classification is required to segment patients into two classes, that is, a 

cohort that present with a brain tumour against those where a brain lesion is absent. In Figure 

4.1, the left panel (a) illustrates nine MRI scans of patients with a brain lesion. On the other hand, 

the right panel shows the absence of brain lesions from the MRI scans of patients.  

 

Figure 4.1: Presence versus absence of brain tumours from the multimodal MRI scans of 

patients 

Data were collected by means of MRI scans of a cohort of patients. In the study there were 98 

cases (patients) where there was an absence of a brain lesion on the MRI scan, while there were 

155 patients’ MRI scans where a brain tumour was present. Hence, in total there are 253 images 

which are available via Kaggle10. There are no specifics regarding whether the tumours are benign 

or are of a malignant nature. 

4.2.2 Methodology and materials 

Preprocessing was applied to the dataset with one of the first steps being to reshape (resize) all 

the images to be of the same size. As is evident in Figure 4.1, all the images are of different sizes. 

In this case, the resultant images were small square images of 350 × 350. The advantage of the 

input images being of a smaller size is that the network trains more quickly. Next, to ensure that 

 

10 www.kaggle.com 
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there was a training set along with a testing set, the data were divided into a training set and a 

test set. A common heuristic for the split, prior to the age of big data, was a 70-30 percent split 

for training and testing, respectively. However, as Ng (2019) points out, in the modern era and 

thus in practice this might not be the most feasible split, especially when the distribution of the 

training data is vastly different from that of the expected future data (the desired set). Additionally, 

depending on the size of the input dataset, this heuristic may not be appropriate: in this era of big 

data the percentage of the data that is allocated to testing sets is being reduced. That is, in cases 

where there are copious amounts of data the test set may be smaller than 30 percent as long as 

the test set is large enough to make provision for confident final predictions (Ng, 2019). 

Conversely, when the input dataset is smaller, a higher split percentage may be advantageous. 

However, one generally wants to train the model on comparatively more data than the data 

contained in the test set. In this study the dataset was small and hence the split made was larger, 

that is, a 60-40 percent split for training and testing, respectively. For the dataset this constitutes 

151 images that form part of the data used to train the model (training set) whilst the remaining 

102 images are used for testing the model. In other words, the test set validates how well the 

model generalises when a new instance is given.  

Following the split, the next step for the DL, specifically the CNN model, was to create a baseline 

model. In other words, a baseline CNN was generated with the purpose of instituting a starting 

point (minimum) for the performance of the model; this allows for a reference model which the 

other models can be compared to. Another advantage of creating such a model is that the 

performance can be studied and improvements attempted (Brownlee, 2020b). Furthermore, 

employing the universal principles of the Visual Geometry Group (VGG) models are 

recommended as a respectable base (Brownlee, 2020b). The VGG models were developed and 

implemented by Karen Simonyan and Andrew Zisserman in the Department of Visual Geometry 

Group at the University of Oxford where the authors’ proposed model solutions achieved excellent 

performance results in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). The 

proposed models in this empirical study made use of the general principles as set out by the 

authors in their VGG models. Hence, the CNN architecture applied the VGG model 

methodologies. The one general principle that Simonyan and Zisserman (2014) discuss in their 

paper is that the depth of the network can be enlarged through the addition of more convolutional 

layers. The authors motivate this principle as the size of the kernels (filters) that are associated 

with the convolutional layer are relatively small. They suggest that the smallest feasible kernel 

size (local receptive field) is 3 × 3, as this ensures that the left/right, up/down and centre are 

captured. In the CNN architecture in the experimental results of this study the local receptive field 

is set to be 3 × 3. In essence, the process is that each input image traverses a stack of 

convolutional layers that utilise a small local receptive field. 
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Furthermore, the CNN architecture is a stack of convolutional layers which is followed by a pooling 

layer. For the purposes of this research, the max pooling method was used. The convolutional 

layers together with the max pooling layer made up a block. Following the stacked convolutional 

layers and pooling layers was a fully connected layer with an output layer. In this case  the problem 

was binary in nature, meaning that the prediction took on one of two values, that is, either a brain 

tumour is present on the MRI scan or brain lesions are absent. Thus, the final (output) layer was 

a sigmoid layer as opposed to softmax. Softmax is used for multi-label classification. Thus, the 

models’ loss (cost) function to be optimised was the binary cross-entropy (function). Moreover, all 

the layers apart from the output layers were furnished with the ReLU activation function. 

Additionally, the weight initialisation was set to be the He uniform distribution as mentioned on 

Page 112. According to Brownlee (2020b), these two parameters are generally best practice. As 

a way to ensure that the output features’ height and width of the image shape matched that of the 

input, the padding hyperparameter was equated to be the same and this took place within each 

convolutional layer.  

The details of the CNN architectures are given by Tables 4.1, 4.2 and 4.3 which describe one 

block, two block and three block VGG CNN models, respectively. This is the naming convention 

for the purposes of this research. The difference between the blocks is that more convolutional 

layers are stacked. Essentially, as mentioned, performing this step increases the depth of the 

network. For the purposes of this study the depth was increased by adding more convolutional 

layers with different depths in the different blocks. For instance, in the one block VGG model the 

number of filters in the convolutional layer was 32. In the two block VGG model the first 

convolutional block was associated with 32 filters in the convolutional layer, whereas in the 

second convolutional block 64 filters were earmarked in the convolutional layer. Increasing the 

depth of the CNN even further was accomplished by adding another block, resulting in what is 

known as the three block VGG model (in this research) where the number of filters in the first two 

convolutional blocks remained the same. However, in the third block the number of filters that  

associated with this convolutional layer was 128.  

As previously mentioned and depicted in Tables 4.1, 4.2 and 4.3, every individual block had a 

solitary convolutional layer corresponding to a different number of filters, using small local 

receptive fields (3 × 3) and followed by a single pooling layer. The stride of the convolutional block 

layers was set to the default value of 1 × 1. Furthermore, the one block VGG model would act as 

the baseline model to which the two block and three block models were compared. Additionally, 

models that are said to improve NNs using the techniques mentioned in section 3.4.2.7 are also 

compared to the baseline (one block VGG model). These are the techniques that reduce 

overfitting, namely the 𝑙2 norm regularisation, dropout and data augmentation. Additionally, the 

dataset was also fit on a hybrid CNN-SVM model. These hybrid models were implemented in the 
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following papers. The first paper is by Niu and Suen (2012) and titled ‘A novel hybrid CNN-SVM 

classifier for recognizing handwritten digits’. The second is titled, ‘Kernel support vector machines 

and convolutional neural networks’ by Jiang, Hartley and Fernando (2018). The last paper that 

discusses the hybrid CNN-SVM model is ‘A new design based-SVM of the CNN classifier 

architecture with dropout for offline Arabic handwritten recognition’ by authors Elleuch, Maalej 

and Kherallah (2016). The main idea behind these proposed models is that it is a combination of 

CNN and SVM structures in one model that is built end to end, in other words, integrating two 

advanced and proven classifiers into one model and deriving the benefits of both; that is, these 

two classifiers identify different types of underlying patterns in the data (Niu & Suen, 2012). In the 

architecture proposed in this research, using the basic CNN architecture as before but making 

use of an SVM classifier layer for the output layer instead of using a sigmoid function is suggested. 

Hence, as an SVM classifier was used in the final output layer, provision had to be made for the 

correct loss function. In this instance, the hinge (SVM) loss function was applicable. The reader 

is referred to Table 4.4 for the details regarding the architecture.  

How the parameters were set in the architecture of the CNNs is indicated for the models that 

make use of the techniques that reduce overfitting, hence (hopefully) improving the NNs. In the 

case of the model that contained the use of the 𝑙2 norm regularisation, the regularisation 

parameter (indicated by 𝜆 in the theoretical section) was set to 0.0005. This is suggested in the 

literature to be a good starting value as well as the optimal value, in some cases. Moreover, for 

the model that included data augmentation to artificially increase the size of the training dataset 

as the original dataset was relatively small, the following techniques were applied: 

• Vertical flips about the 𝑥-axis; 

• Horizontal flips about the 𝑦-axis. 

Finally, for the model that made use of the dropout method to improve the NN, a value of 0.5 was 

applied after the max pooling layer.  
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Table 4.1: Specifics of the proposed architecture of a CNN (one block VGG) of the 

presence or absence of brain tumours in patients  

Block Name Number of filters Kernel size 
Stride or pool 
size 

Input Input image    

Convolutional 
block 1 

Convolutional 
layer 1 

32 3 x 3 

1 x 1 

ReLU activation 
function 

-  

He uniform initial 
weights 

-  

Padding = same -  

Pooling block 1 Max pooling layer 
2 

- - 2 x 2 

Fully connected 
block 

Fully connected 
layer 3 

128 - 

- 

ReLU activation 
function 

- - 

He uniform initial 
weights 

- - 

Output layer: 
sigmoid layer 

- - 

 

All the fit models made use of two of the state-of-the-art optimisation techniques (learning 

algorithms as discussed in section 3.4.2.4), that is, momentum based gradient descent in the form 

of stochastic gradient descent with momentum and the adaptive momentum estimation. For both 

methods, the default hyperparameters were used. As mentioned in section 3.4.2.4 under the 

corresponding optimisation techniques, the default or recommended values for the 

hyperparameters are given. To reiterate these values for the learning algorithm (optimisation 

technique): for SGD with momentum, the default learning rate is 0.01 with a momentum value 

equal to 0.9. Additionally, the recommended values for the Adam optimisation method for the 

various hyperparameters are as follows: 

• Learning rate (𝜂) equal to 0.001; 

• 𝛽1 equal to 0.9; 

• 𝛽2 equal to 0.999; 

• 휀 equal to 1𝑒−8. 

Furthermore, all the models were fit for 20 epochs. This is a relatively small value and the rationale 

for running so few epochs was to see whether the model could learn the problem manually 

(Brownlee, 2020b). A single epoch can be briefly defined as when the full dataset is passed 

through the network, in both directions (id est, forward and backward). Additionally, the batch size 

Stellenbosch University https://scholar.sun.ac.za



140 

 

can be defined in simple terms as the total number of training instances (examples) contained in 

a single batch. For the models in this research, the batch size was set equal to ten.  

Table 4.2: Specifics of the proposed architecture of a CNN (two stacked block VGG) of 

the presence or absence of brain tumours in patients  

Block Name Number of filters Kernel size 
Stride or pool 
size 

Input Input image    

Convolutional 
block 1 

Convolutional 
layer 1 

32 3 x 3 

1 x 1 

ReLU activation 
function 

-  

He uniform initial 
weights 

-  

Padding = same -  

Pooling block 1 Max pooling layer 
2 

- - 2 x 2 

Convolutional 
block 2 

Convolutional 
layer 3 

64 3 x 3 

1 x 1 

ReLU activation 
function 

-  

He uniform initial 
weights 

-  

Padding = same -  

Pooling block 2 Max pooling layer 
4 

- - 2 x 2 

Fully connected 
block  

Fully connected 
layer 5 

128 - 

- 

ReLU activation 
function 

- - 

He uniform initial 
weights 

- - 

Output layer: 
sigmoid layer 

- - 

 

How to evaluate the DL (CNN) models and the rationale behind it now need to be considered. 

Firstly, using the validation/test accuracy can determine how well the model is performing and 

whether this performance is significant or satisfactory, thus, how well the model generalises to 

unseen data and how accurately it will predict a new unseen instance. This said, DL models are 

stochastic in nature; this means that there is a supplementary source of randomness that comes 

into play. There are two additional sources of randomness, namely (Brownlee, 2020a):  

• From the random initial weights; 
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• From when the data are randomly shuffled for the duration of the training phase of an epoch 

using an optimisation (learning) algorithm. 

This additional randomness entails that greater flexibility when learning the data is accompanied 

by greater instability. In other words, when the model is run, using the same data, each experiment 

run produces different results. Two ways to counter this issue are: 

• Firstly, to set a random seed; 

• Secondly, to repeat the evaluation experiment numerous times. 

In the first solution, when one wants to obtain the same results when running the code multiple 

times as with tutorials or demonstrations, setting a random seed is appropriate; however, these 

models tend to be more fragile and are thus not recommended (Brownlee, 2020a). In the second 

solution, more robust models are produced. The question of how many repeat experiment 

evaluations are required arises. Brownlee (2020a) suggests that at least 30 repeats should be 

performed but ultimately one would want to implement hundreds if not thousands. The one 

setback is that in terms of time this might not be possible. Hence, the number of repeats is also 

time dependent.  Brownlee (2020a) adds that the mean of the repeats can be evaluated and other 

statistical test evaluations should be performed, such as obtaining the standard deviation, 

confidence intervals and sensitivity analyses. For the purposes of this research and this particular 

dataset, considering the size, 30 repeat experiment evaluations were performed. The 

validation/test accuracy was evaluated as well as the mean. As the purpose of this exercise was 

to determine whether the accuracy of CNNs (and the ML techniques) was satisfactory for small 

datasets and could be of assistance in the medical field, only the performance of the models was 

of interest. Thus the other statistical evaluations are beyond the scope of this research but can 

be looked into for future research to determine whether the models are stable when run multiple 

times.  

In the experimental results the practical implementation of ML techniques 𝑘-NN and SVM was 

also applied. In the case of the 𝑘-NN and SVM practical application, a seed was set for 

reproducibility, where the chosen seed value was 1234. All the models that were implemented 

are listed and elaborated on in Table 4.5. 
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Table 4.3: Specifics of the proposed architecture of a CNN (three stacked block) of the 

presence or absence of brain tumours in patients  

Block Name Number of filters Kernel size 
Stride or pool 
size 

Input Input image    

Convolutional 
block 1 

Convolutional 
layer 1 

32 3 x 3 

1 x 1 

ReLU activation 
function 

-  

He uniform initial 
weights 

-  

Padding = same -  

Pooling block 1 Max pooling layer 
2 

- - 2 x 2 

Convolutional 
block 2 

Convolutional 
layer 3 

64 3 x 3 

1 x 1 

ReLU activation 
function 

-  

He uniform initial 
weights 

-  

Padding = same -  

 Pooling block 2 Max pooling layer 
4 

- - 2 x 2 

Convolutional 
block 3 

Convolutional 
layer 5 

128 3 x 3 

1 x 1 

ReLU activation 
function 

-  

He uniform initial 
weights 

-  

Padding = same -  

Pooling block 3 Max pooling layer 
6 

- - 2 x 2 

Fully connected 
block  

Fully connected 
layer 7 

128 - 

- 

ReLU activation 
function 

- - 

He uniform initial 
weights 

- - 

Output layer: 
sigmoid layer 

- - 
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Table 4.4: Details of the proposed architecture of a one block VGG hybrid CNN-SVM 

model of the presence or absence of brain tumours in patients  

Block Name Number of filters Kernel size 
Stride or pool 
size 

Input Input image    

Convolutional 
block 1 

Convolutional 
layer 1 

32 3 x 3 

1 x 1 

ReLU activation 
function 

-  

He uniform initial 
weights 

-  

Padding = same -  

Pooling block 1 Max pooling layer 
2 

- - 2 x 2 

Fully connected 
block 

Fully connected 
layer 3 

128 - 

- 

ReLU activation 
function 

- - 

He uniform initial 
weights 

- - 

Output layer: SVM 
layer (linear) 

- - 
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Table 4.5: Details of all the proposed models fit for the dataset containing MRI scans 

where there is an absence or presence of brain lesions 

Artificial 
Intelligence 
technique 

Algorithm 
name 

Block 
name 

Block 
info. 

 

Fully 
connected 
block: 
output 
layer 

Optimisation 
technique 
(Learning 
algorithm) 

Improving 
neural 
network 
(reducing 
overfitting) 

Machine 
learning 

𝑘-Nearest 
neighbours 

     

Support 
vector 
machines 

     

Deep 
learning 

Convolutional 
neural 
network 

One block 
VGG 

Refer to 
Table 4.1* 

Sigmoid SGD with 
momentum 

 

  One block 
VGG 

Refer to 
Table 4.1* 

Sigmoid Adam  

  Two block 
VGG 

Refer to 
Table 4.2* 

Sigmoid SGD with 
momentum 

 

  Two block 
VGG 

Refer to 
Table 4.2* 

Sigmoid Adam  

  Three 
block 
VGG 

Refer to 
Table 4.3* 

Sigmoid SGD with 
momentum 

 

  Three 
block 
VGG 

Refer to 
Table 4.3* 

Sigmoid Adam  

  One block 
VGG 

Refer to 
Table 
4.4** 

SVM 
(linear) 

SGD with 
momentum 

 

  One block 
VGG 

Refer to 
Table 
4.4** 

SVM 
(linear) 

Adam  

  One block 
VGG 

Refer to 
Table 4.1* 

Sigmoid SGD with 
momentum 

𝑙2 norm 
regularisation 

  One block 
VGG 

Refer to 
Table 4.1* 

Sigmoid Adam 𝑙2 norm 
regularisation 

  One block 
VGG 

Refer to 
Table 4.1* 

Sigmoid SGD with 
momentum 

Dropout 

  One block 
VGG 

Refer to 
Table 4.1* 

Sigmoid Adam Dropout 

  One block 
VGG 

Refer to 
Table 4.1* 

Sigmoid SGD with 
momentum 

Data 
augmentation 

  One block 
VGG 

Refer to 
Table 4.1* 

Sigmoid Adam Data 
augmentation 

*Refers to using the binary cross-entropy loss (cost) function 

** Indicative of the hinge (SVM) loss (cost) function 
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4.2.3 Experiment results 

Table 4.6 depicts the validation/testing accuracy of the presence or absence of brain tumours. 

Two ML techniques, namely 𝑘-NN and SVMs, were implemented. From the table it can be 

concluded that the proposed SVM model slightly outperforms the 𝑘-NN model. That is, the 

accuracy achieved by the SVM model is approximately 72 percent, whilst for the 𝑘-NN model the 

accuracy drops marginally to roughly 69 percent. Hence, in the case of the SVM model, the model 

will correctly predict an unseen instance with a 72 percent chance.  

Table 4.6: Segmentation of the presence or absence of brain tumours: machine learning 

techniques, results of the validation/test accuracy 

Machine Learning Algorithm name Validation/test accuracy 

𝑘-nearest neighbours 0.68627 

Support vector machines 0.71569 

 

The validation/test accuracy of the different proposed CNN architectures is given in Table 4.7, 

whilst the corresponding validation/test loss results are shown in Table 4.8. Due to the dataset 

being small, 30 repeat experiment evaluations were run for each of the architectures, as described 

in Table 4.5. In the tables, the highest and lowest accuracies and losses are given as well as the 

average of the 30 repeat runs. The first clear observation when comparing the ML techniques and 

the DL method is that all the proposed CNN models, on average, outperform the two ML models. 

Based on Figure 3.25, this is in line with what one would expect, that is, the accuracy of the CNN 

models is higher but at the expense of interpretability.  

Focusing solely on the different CNN models, in the experiments only two state-of-the-art 

optimisers were used: SGD with momentum as well as Adam. The default or recommended 

hyperparameter settings were applied. The one block VGG model was used as the baseline 

model which all the other proposed architectures were compared to.  

Firstly, when considering only the one block, two block and three block VGG models, an 

interesting observation is that for SGD with momentum, increasing the depth and complexity of 

the models did not yield more accurate predictions. On the contrary, as more blocks (convolutional 

and pooling layers) were added, the validation/test accuracy started to marginally decline. That 

is, the accuracy dropped from approximately 81 percent to 79 percent. When considering the 

Adam optimiser, the two block VGG model outperformed the one block VGG model by the 

slightest of margins. Once again, increasing the depth and complexity did not result in improved 

predictive accuracy. What was apparent was that the two block and three block VGG models took 

longer to run and in practice time is of the essence. Thus, since the more complex CNN 

architectures not only take longer to run, but also do not improve performance, it is evident that 
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the simplest architecture is good enough for this dataset. The size of the dataset could also be a 

potential reason for not requiring a more complex architecture.  

Another distinct observation is that based on the one block VGG models, both the optimisation 

techniques (learning algorithms), namely SGD with momentum and Adam, on average had the 

same predictive performance. Conversely, focusing on the validation/test loss reflected in Table 

4.8, SGD with momentum converged towards the minima much faster than Adam over 20 epochs 

for this particular dataset and split. Over a single experiment evaluation, the one block Adam VGG 

model (with the exception of including dropout in the model) had the highest predictive accuracy 

of approximately 86 percent. This indicates that there is a relatively significant chance of the 

model correctly predicting whether an unseen MRI brain scan fits into either of the two class 

labels: the presence of a brain lesion or the absence of a brain tumour.  

Next, the use of a hybrid CNN-SVM model, meaning that the output layer is linear (SVM) instead 

of sigmoid from a binary classification CNN architecture, was proposed. The other deviation was 

the loss model that was applied. For the hybrid model, resultant from the SVM layer, the hinge 

(SVM) loss as opposed to the binary cross-entropy loss was used. Due to there being little to no 

improvement in building complex CNN models with more depth, the hybrid models were built 

using the simplistic one block VGG model. The idea was to make use of two superior classification 

classifiers. When comparing the accuracy results (Table 4.7) of the hybrid models with the 

baseline one block VGG model, it was clear that the SGD with momentum optimiser did not yield 

more accurate predictive classification. On the other hand, the observation made for the Adam 

optimiser hybrid model was that there was about a one percent difference in comparison to the 

baseline one block VGG model. However, while the predictive accuracy was in favour of the 

baseline model the performance of the hybrid CNN-SVM model was of the same order. In terms 

of a comparison between the two hybrid CNN-SVM models, on average the loss experienced by 

the SGD with momentum was much less than that of Adam. This indicates that SGD with 

momentum converged to the minimum much faster. However, the opposite holds in that the 

accuracy of the Adam optimiser hybrid model was somewhat higher than SGD with momentum. 

Over a single run, the performance of Adam and SGD with momentum was the same, on the 

higher end (id est, the highest accuracy), with an accuracy level of approximately 83 percent. It is 

in the lower range, the lowest accuracy, where SGD with momentum lost pace compared to 

Adam. In a direct comparison, the lowest predictive accuracy of Adam for the hybrid CNN-SVM 

model was roughly 75 percent, whereas SGD with momentum was approximately 71 percent.  

Lastly, introducing techniques that would not only assist with the issue of overfitting but essentially 

also improve the NN and (hopefully) the validation/test accuracy was suggested. Once again, the 

simplest, most basic CNN architecture was implemented since no improvement (in the accuracy) 

was observed for the more complex architectures. Three techniques were used, namely the 𝑙2 
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norm regularisation, dropout and finally, data augmentation to artificially increase the training data 

size due to the small dataset under review. Consider the SGD with momentum optimisation 

technique: of the three methods, the one block VGG CNN model with dropout had on average 

the highest performance accuracy (roughly 81 percent). The 𝑙2 norm regularisation method 

produced similar levels of validation/test accuracy to that of applying dropout, with a slightly less 

accuracy level of about 80 percent. The method that produced the lowest predictive accuracy was 

dropout with a value of approximately 77 percent. When considering the three overfitting 

(improvement) techniques for the Adam optimisation learning algorithm, it is clear that once again 

the dropout method had a minimal higher predictive accuracy compared to the data augmentation 

and 𝑙2 norm regularisation. Hence, it can be deduced that the three overfitting methodologies for 

the Adam optimiser had exceptionally similar validation/test accuracy. For these three techniques, 

Adam once again outperformed its SGD with momentum counterparts. This is applicable for both 

the average over the 30 repeat experiment evaluations and for single runs. On the whole, the 

three Adam overfitting methods had comparable performance accuracy to that of the baseline 

one block Adam VGG model. Besides the SGD with momentum model architectures applying 

dropout and 𝑙2 norm regularisation, the other technique (data augmentation) had relatively weaker 

accuracy when compared to the baseline one block SGD with momentum VGG model.  

Overall, on average, the different Adam optimiser models performed similarly, with the potential 

to correctly classify unseen data reasonably well. The baseline models for both SGD with 

momentum and Adam, based on the average, were the best performing models. 

Table 4.7 depicts that, on average, all the models produced an accuracy in the 80 percent range. 

Taking into account that the size of the dataset was exceptionally small in comparison to the 

millions, if not billions, of images that CNNs are generally built on, these models produced 

satisfactory accuracy levels and performance. With some certainty the absence or presence of 

brain lesions can be correctly classified. 

The predictive accuracy for the validation/test dataset for each single repeat evaluation of the 

experiment is given in the appendices. Additionally, the validation/test loss for every single repeat 

evaluation is also available for perusal in the appendices. In other words, the reader is referred to 

Appendix A for the predictive accuracy and loss of the validation/test dataset in classifying images 

as either having the absence or presence of brain lesions. 
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Table 4.7: Segmentation of the presence or absence of brain tumours: proposed CNN 

architecture models, results of the validation/test accuracy 

Algorithm name Validation/test accuracy 

Minimum Maximum Average 

One block VGG CNN: 
SGD with momentum 

0.76471 (Repeat experiment 
evaluation: 14) 

0.84314 (Repeat experiment 
evaluation: 19) 

0.81144 

Two block VGG CNN: 
SGD with momentum 

0.74510 (Repeat experiment 
evaluation: 13, 28) 

0.83333 (Repeat experiment 
evaluation: 1) 

0.79183 

Three block VGG CNN: 
SGD with momentum 

0.74510 (Repeat experiment 
evaluation: 26) 

0.84314 (Repeat experiment 
evaluation: 9, 13) 

0.78889 

One block VGG CNN: 
Adam 

0.75490 (Repeat experiment 
evaluation: 29) 

0.86275 (Repeat experiment 
evaluation: 26, 27) 

0.81046 

Two block VGG CNN: 
Adam 

0.79412 (Repeat experiment 
evaluation: 3, 7, 9, 10, 12, 16, 
21, 27, 29) 

0.84314 (Repeat experiment 
evaluation: 13, 20, 30) 

0.81307 

Three block VGG CNN: 
Adam 

0.72549 (Repeat experiment 
evaluation: 4) 

0.83333 (Repeat experiment 
evaluation: 13, 16)  

0.79575 

One block VGG CNN: 
SGD with momentum, 
SVM as output layer 

0.70588 (Repeat experiment 
evaluation: 17) 

0.83333 (Repeat experiment 
evaluation: 14) 

0.76895 

One block VGG CNN: 
Adam, SVM as output 
layer 

0.74510 (Repeat experiment 
evaluation: 6) 

0.83333 (Repeat experiment 
evaluation: 10) 

0.80163 

One block VGG CNN: 
SGD with momentum, 
𝑙2 norm regularisation 

0.72549 (Repeat experiment 
evaluation: 3) 

0.83333 (Repeat experiment 
evaluation: 10, 20, 25) 

0.80033 

One block VGG CNN: 
Adam, 𝑙2 norm 
regularisation 

0.75490 (Repeat experiment 
evaluation: 12, 24) 

0.83333 (Repeat experiment 
evaluation: 29) 

0.80131 

One block VGG CNN: 
SGD with momentum, 
dropout 

0.74510 (Repeat experiment 
evaluation: 6) 

0.86275 (Repeat experiment 
evaluation: 10) 

0.80771 

One block VGG CNN: 
Adam, dropout 

0.75490 (Repeat experiment 
evaluation: 26) 

0.84314 (Repeat experiment 
evaluation: 3) 

0.80850 

One block VGG CNN: 
SGD with momentum, 
data augmentation 

0.72549 (Repeat experiment 
evaluation: 1, 8) 

0.83333 (Repeat experiment 
evaluation: 2) 

0.77288 

One block VGG CNN: 
Adam, data 
augmentation 

0.75490 (Repeat experiment 
evaluation: 14) 

0.85294 (Repeat experiment 
evaluation: 2, 3) 

0.80065 
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Table 4.8: Segmentation of the presence or absence of brain tumours: proposed CNN 

architecture models, results of the validation/test loss 

Algorithm name Validation/test loss 

Minimum Maximum Average 

One block VGG CNN: 
SGD with momentum 

0.93771 (Repeat experiment 
evaluation: 5) 

2.64141 (Repeat experiment 
evaluation: 24) 

1.44344 

Two block VGG CNN: 
SGD with momentum 

1.10653 (Repeat experiment 
evaluation: 23) 

2.32407 (Repeat experiment 
evaluation: 15) 

1.57002 

Three block VGG CNN: 
SGD with momentum 

0.94556 (Repeat experiment 
evaluation: 24) 

3.19452 (Repeat experiment 
evaluation: 19) 

1.61398 

One block VGG CNN: 
Adam 

1.80787 (Repeat experiment 
evaluation: 8) 

17.62173 (Repeat 
experiment evaluation: 20) 

7.53439 

Two block VGG CNN: 
Adam 

1.09101 (Repeat experiment 
evaluation: 5) 

1.91204 (Repeat experiment 
evaluation: 24) 

1.50344 

Three block VGG CNN: 
Adam 

1.22499 (Repeat experiment 
evaluation: 18) 

2.43137 (Repeat experiment 
evaluation: 3) 

1.62008 

One block VGG CNN: 
SGD with momentum, 
SVM as output layer 

0.60505 (Repeat experiment 
evaluation: 10) 

2.24381 (Repeat experiment 
evaluation: 28) 

1.21011 

One block VGG CNN: 
Adam, SVM as output 
layer 

2.25833 (Repeat experiment 
evaluation: 13) 

24.43529 (Repeat 
experiment evaluation: 26) 

8.79505 

One block VGG CNN: 
SGD with momentum, 
𝑙2 norm regularisation 

1.18689 (Repeat experiment 
evaluation: 7) 

2.62732 (Repeat experiment 
evaluation: 6) 

1.65576 

One block VGG CNN: 
Adam, 𝑙2 norm 
regularisation 

1.68919 (Repeat experiment 
evaluation: 14) 

21.40545 (Repeat 
experiment evaluation: 12) 

7.53959 

One block VGG CNN: 
SGD with momentum, 
dropout 

1.07154 (Repeat experiment 
evaluation: 28) 

2.89367 (Repeat experiment 
evaluation: 15) 

1.49425 

One block VGG CNN: 
Adam, dropout 

0.88349 (Repeat experiment 
evaluation: 12) 

13.59812 (Repeat 
experiment evaluation: 11) 

5.16198 

One block VGG CNN: 
SGD with momentum, 
data augmentation 

0.75628 (Repeat experiment 
evaluation: 28) 

2.09858 (Repeat experiment 
evaluation: 23) 

1.09315 

One block VGG CNN: 
Adam, data 
augmentation 

0.97409 (Repeat experiment 
evaluation: 30) 

7.36731 (Repeat experiment 
evaluation: 23) 

3.17937 
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Figure 4.2: Cross-entropy loss and classification accuracy of the one block VGG model 

architecture for (left) SDG with momentum and (right) Adam 

Two metrics that may be considered in the training process for how well the models will generalise 

unseen data are the cross-entropy loss and the classification accuracy. Three such graphs, 

essentially the three categories of the proposed models, are evaluated, that is, the best 

performing models, including the one block VGG model as it outperformed the more complex and 

deep CNN VGG block models. Additionally, the hybrid CNN-SVM model is analysed and the 

dropout overfitting is reviewed as out of the three techniques it performed the best. Figures 4.2, 

4.3 and 4.4 are illustrations of the two metrics. For all the figures, the left panel refers to the SGD 

with momentum optimiser whilst the right panel is indicative of the Adam optimisation learning 

algorithm. Each panel can be further split with the top panel representing the cross-entropy loss 

whereas the bottom panel indicates the classification accuracy. The training loss and accuracy 

are given by the solid light blue line, while the solid dark blue line is the validation/test loss and 

accuracy. It should be noted to the reader that the graphs obtained in Figures 4.2, 4.3 and 4.4 

are from one of the 30 repeat evaluation experiments. In fact, it is the last repeat evaluation 

experiment. However, similar curve shapes and patterns for the two metrics were apparent and 

observed for all 30 repeat evaluations, not all 30 graphs are given in this section.  

What is immediately clear is that the behaviour of the curves (the training data curve as well as 

the test data curve) are similar for SDG with momentum, both classification accuracy and cross-

entropy loss, in all three figures. The same conclusion is reached for the Adam optimisation 

learning algorithm in that the behaviour of the curves are similar for both the classification 

accuracy and the cross-entropy loss. Starting with SDG with momentum and considering the 

cross-entropy loss, there is some overfitting in the models due to the increasing nature of the test 

loss curve. This is evident in all three figures. In Figure 4.2, the one block VGG model, this upward 

trend starts around epoch four. The upward trend in Figure 4.3 is delayed slightly and occurs 

around epoch five. This graph is that of SGD with momentum and the hybrid CNN-SVM 
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architecture. Conversely, in Figure 4.4 the upward movement of the curve for cross-entropy loss 

happens much sooner than in the baseline and hybrid model and starts overfitting the data around 

epoch two. This indicates that these models do not generalise well to unseen data. Moreover, 

they have modelled the underlying features in the training dataset exceptionally well. The learning 

rate of these models is very high in that the parameters are unable to resolve into a smooth 

optimisation. As to the classification accuracy, there is some overfitting as there is a substantial 

gap between the training accuracy line and the validation/test accuracy line. Towards epoch 18 

of Figure 4.3 there is even a slight downward turn of the validation/test accuracy line. This is 

another indication of overfitting.  

 

Figure 4.3: Cross-entropy loss and classification accuracy of the one block VGG with 

SVM as the output layer model architecture for (left) SDG with momentum and 

(right) Adam 

Consider the applicable graphs for the Adam learning algorithm, that is, the right panel of Figures 

4.2, 4.3 and 4.4. For the cross-entropy loss the shape of the curves is exponential for all three 

CNN models reported. It could be potentially indicated that the fit looks reasonable and that the 

model generalises the data reasonably well. It might lean towards a high learning rate. That is, if 

the learning rate and the batch size (which might be too small) are changed, a better learning rate 

might be obtained. In terms of accuracy, the conclusion is that the training line follows the test 

training.  
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Figure 4.4: Cross-entropy loss and classification accuracy of the one block VGG model 

with improvements of dropout architecture for (left) SDG with momentum and 

(right) Adam 

4.3 LOW-GRADE VERSUS HIGH-GRADE GLIOMAS   

4.3.1 Imaging dataset 

This empirical study and analysis of the classification of low-grade (LGG) or high-grade (HGG) 

gliomas for which MRI scans have been collected were described and proposed in three articles, 

namely, ‘The Multimodal Brain Tumor Image Segmentation Benchmark (BraTS)’ by Menze et al. 

(2014); ‘Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation 

labels and radiomic features’ by authors Bakas et al. (2017); and lastly, the manuscript on the 

data and description by Bakas et al. (2018) titled ‘Identifying the best machine learning algorithms 

for brain tumor segmentation, progression assessment, and overall survival prediction in the 

BraTS challenge’. Unless otherwise stated, the following paragraphs in this section discussing 

the imaging dataset have been adapted from the aforementioned articles. 

The data comprise scans from multi-institutional organisations. Moreover, for the application of 

this empirical study the imaging data combine the Multimodal Brain Tumor Image Segmentation 

Benchmark (BraTS) challenges of 2012 and 2013 with images from the National Institutes of 

Health (NIH) Cancer Imaging Archive (TCIA). This dataset is still growing and includes images 

contributed by Heidelberg University. The other institutions providing MRI scans are Bern 

University, Debrecen University and Massachusetts General Hospital. These imaging databases 

formed the 2015 BraTS challenge and can be obtained via the Swiss Medical Image Repository 

(SMIR)11 or Kaggle12. The challenges take place in conjunction with an international conference 

based on medical imaging, known as MICCAI.  

 

11 www.smir.ch 
12 www.kaggle.com 
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For this specific challenge (BraTS 2015), the database consisted of 220 patients that presented 

with high-grade gliomas, whilst 54 patients (cases) were diagnosed with low-grade gliomas. In 

the labelling of the MRI images from the prior two BraTS competitions that make up the database 

(id est, 2012 and 2013) the lesions were manually segmented (labelled) through human expertise. 

The panel comprised of four highly experienced raters. In order to label the scans, there were 

certain criteria of the sub-regions of the lesions that needed to be evaluated, including: 

• The active tumour; 

• The tumour core which is also referred to as the gross tumour; 

• The whole tumour - simply, the complete extent of the lesion. 

Furthermore, additional consistency and compliance were achieved through the final labels being 

decided on by a highly experienced board-certified neuro-radiologist. This was also to ensure that 

the correct annotation protocol was adhered to. As mentioned, as the dataset is a collection of 

MRI scans of brain lesions provided by numerous institutions, there is room for diverse 

approaches and image results. In other words, even though the images were taken under 

standard clinical conditions, the equipment used for this purpose differed depending on the 

particular institution; so did the imaging protocol. Hence, the resulting images are of vastly 

different quality; however, this is attributed to the clinical practices that are followed by multi-

institutional organisations. One of the remaining challenges is the definition of the brain tumour 

boundaries for infiltrative tumours. Gliomas are a type of infiltrative tumour. Hence, an attempt 

was made to standardise the MRI images to the extent possible. It is worth noting that the 

standardisation of the tumour sub-regions was not possible to determine through biological means 

but instead are image-based. Moreover, the cases obtained via the TCIA were annotated in line 

with the BraTS 2012 and 2013 challenges segmentations based on the high performing 

segmentation algorithms, after which experts first labelled the brain lesions through visualisation 

and then approved the class labels.  

For each patient, irrespective of brain tumour type, 155 MRI scans were conducted. Additionally, 

for each case (patient), four different multimodal images were taken. In other words, each case 

has T1, T2, T1c and FLAIR MRI volumes (the reader is referred to Figure 2.1 in section 2.3.4). 

Hence, for a single patient, combining the MRI volumes, there are 620 (155 × 4) scans.  

4.3.2 Methodology and materials 

The main objective is to segment brain lesion malignancies into two classes through the use of 

state-of-the-art methods. In other words, to segment gliomas that are inherently heterogeneous 

in many aspects, such as shape, appearance and histology (Bakas et al., 2018). As can be 

deduced from Table 4.9, the original features of the MRI scans were vastly different and thus 

were variable. This is with specific reference to the last two columns in the table, that is, how the 
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MRI scans were obtained and the planes in which the images were acquired. These planes are 

simply the way in which the brain is divided. Axial refers to dividing the brain into a top and bottom 

half whilst sagittal is indicative of the midline view of the brain. Lastly, the coronal view is the 

perpendicular plane that is used to acquire the image. Additionally, from the last column it can be 

concluded that the thickness of the MRI slices is variable. As mentioned, these dissimilarities are 

attributed to differing equipment (scanners) used as well as the clinical practices and protocols 

that are adhered to by the different multi-institutional organisations that have provided data.  

Table 4.9: Features of the original BraTS dataset 

Multimodal type 
(MRI volumes) 

MRI sequence 
Property of 
image 

Acquisition of 
MRI scan 

Thickness of MRI 
slice 

T1 T1-weighted Native image Axial or Sagittal Variable: 1-5mm 

T1c T1-weighted Contrast 
enhancement - 
Gadolinium 

Axial 3D Variable 

T2  T2-weighted Native image Axial 2D Variable: 2-4mm 

FLAIR T2-weighted Native image Axial or Sagittal 
2D or Coronial 

Variable 

Source:  Bakas et al., 2018. 

Before this dataset is made publicly available, it undergoes standardisation to ensure that no 

apparent or valuable information from the MRI image is lost. The only MRI volumes that are 

considered as part of the database are structural MRI scans. This includes the T1, T1c, T2 and 

FLAIR multimodal types (MRI volumes; refer to the first column of Table 4.9). Preprocessing of 

the images takes place in the form of guaranteeing that all the images have the same anatomical 

template co-registration (Rohlfing et al., 2010). Furthermore, all images have been interpolated 

to a common resolution. That is, the images are of a 1𝑚𝑚3 uniform isotropic resolution. Lastly, 

all the images have been skull stripped. As previously mentioned in section 3.2.1, skull stripping 

is a key component and is essentially one of the first steps performed when reviewing and 

analysing neurological MRI images. These three standardisations, namely co-registration, 

uniform isotropic resolution and skull stripping, make up the preprocessing step.  

As previously mentioned, each patient has 155 slices of the brain that make up one volume. In 

other words, each patient has 155 scans of four multimodal MRI images. Due to time constraints, 

the author decided to use 70 scans for each patient, thus giving a total of 76 720 images. Patient 

numbers were chosen at random to form the training (70 980 images) and test (5 740 images) 

datasets. The proposed CNN architecture that was utilised is given in Table 4.10 as a practical 

illustration of the theoretical background of Chapter 3. As indicated, the proposed model 

architecture was a three block VGG model that consisted of three convolutional layers, three max 

pooling layers and a fully connected layer. As before, the output layer was a sigmoid function, as 
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the data were binary in nature, that is, there were two groups: a cohort of patients diagnosed with 

low-grade gliomas and another cohort of patients with prognoses of high-grade gliomas. This is 

used in the analysis in the subsequent section and indicates that the loss function to be optimised 

is the binary cross-entropy loss – because there are two classes, the type of classification task 

involved is binary. Furthermore, the ReLU activation function was made use of in the convolutional 

layers as well as the fully connected block. As previously mentioned, the pooling layer was 

accountable for decreasing the dimensionality of the dataset. The initialising weights were set to 

be He uniform distribution and the padding parameter to be the same.  

In order to determine and compare the accuracy of the models, the nine state-of-the-art learning 

algorithms (optimisation techniques) were used (the reader is referred to section 3.4.2.4 for the 

theoretical background). Furthermore, the values of the hyperparameters of the optimisation 

techniques were set to the default values or the generally accepted values as indicated under the 

respective algorithms in the same section (id est, 3.4.2.4). Validation took place over five epochs, 

with a single batch size of 128 and a target image size of 200 by 200. The images were also 

rescaled to the 0-1 range. Due to the stochastic nature of CNN models, five repeat evaluations of 

the experiment were computed. Ideally, as Brownlee (2020a) mentions, one would like to run at 

least 30 if not hundreds or thousands. However, in practice, as was the case for this research, 

time does not always allow for this.  
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Table 4.10: Details of the proposed architecture of a CNN (three stacked block) of 

diagnosed low-grade gliomas (LGG) or high-grade gliomas (HGG) in patients  

Block Name Number of filters Kernel size 
Stride or pool 
size 

Input Input image    

Convolutional 
block 1 

Convolutional 
layer 1 

32 3 x 3 

1 x 1 

ReLU activation 
function 

-  

He uniform initial 
weights 

-  

Padding = same -  

Pooling block 1 Max pooling layer 
2 

- - 2 x 2 

Convolutional 
block 2 

Convolutional 
layer 3 

64 3 x 3 

1 x 1 

ReLU activation 
function 

-  

He uniform initial 
weights 

-  

Padding = same -  

Pooling block 2 Max pooling layer 
4 

- - 2 x 2 

Convolutional 
block 3 

Convolutional 
layer 5 

128 3 x 3 

1 x 1 

ReLU activation 
function 

-  

He uniform initial 
weights 

-  

Padding = same -  

Pooling block 3 Max pooling layer 
6 

- - 2 x 2 

Fully connected 
block  

Fully connected 
layer 7 

128 - 

- 

ReLU activation 
function 

- - 

He uniform initial 
weights 

- - 

Output layer: 
sigmoid layer 

- - 
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4.3.3 Experiment results 

Tables 4.11 and 4.12 present the empirical results of the segmentation and classification of low-

grade and high-grade gliomas for training and validation/testing, respectively. The comparative 

analyses are for the nine state-of-the-art optimisation techniques (learning algorithms). Five 

repeat evaluation runs were executed and from Table 4.11 it can be deduced that on average the 

lowest training loss was acquired by the Nadam optimiser. The highest and lowest training 

accuracies on average were also obtained by the Nadam and batch stochastic gradient descent 

optimisers, respectively. Over a single repeat evaluation, the NAG optimiser had the highest 

training accuracy whereas the batch SGD optimiser had the lowest. In terms of the training loss, 

over a single repeat evaluation of the experiment the same two optimisation techniques 

accounted for the highest and lowest values, with the highest loss being the batch SGD method 

and the lowest loss being the NAG optimiser.  

Furthermore, the validation/test accuracy of the models is of interest as this helps deduce the 

predictive accuracy that the models can achieve. Table 4.12 shows that the Nadam optimiser on 

average produced the best performing model followed closely by RMSProp. However, 

interestingly, except for batch SGD and Adagrad optimisers, the proposed CNN architectures with 

the default or generally recommended hyperparameter values all produced highly significant 

accuracy results of over 90 percent. This indicates that any of these models have a high 

probability of correctly classifying an unseen MRI scan of either a low-grade or high-grade glioma. 

On average, the most accurate predictive model based on the validation or test accuracy was the 

Nadam optimiser. This was also true for a single repeat evaluation where on run 5, Nadam 

produced a validation accuracy of roughly 97 percent which is considered an exceptional result 

in terms of accuracy and the ability of the model to predict an unseen case. Following suit with 

very little difference, on average, the second-best model was that of RMSProp. Other than these 

two models, Adam, Adamax and AdaDelta also had the potential to achieve high validation 

accuracies. Another observation is that even though batch SGD only realised a validation (test) 

accuracy of approximately 84 percent, this was still a satisfactory result.  

If the validation or test loss in Table 4.12 for the Adam and SGD with momentum optimisers is 

considered, the loss of Adam on average was lower than that of SGD with momentum. A possible 

reason for this is that Adam converges, over five epochs, much faster to the minimum. However, 

in these experiments the fastest convergence to the minima, on average, was that of Nadam. 

Hence, overall it seems that the Nadam optimiser was the best algorithm out of all the state-of-

the-art optimisers discussed and practically implemented.  

For the readers’ perusal, Appendix B contains all the measurements of the 5 repeat evaluations 

of the experiment. That is, the training and validation/test accuracies and losses are separately 

reported for each run in the appendices.  
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Table 4.11: Segmentation of LGG and HGG brain lesions: training accuracy and loss for 

the different state-of-the-art optimisation algorithms 

Optimiser 
Training accuracy 

Minimum Maximum Average 

Adam 0.99358 (Repeat experiment 
evaluation: 4) 

0.99634 (Repeat experiment 
evaluation: 5) 

0.99522 

AdaGrad 0.92489 (Repeat experiment 
evaluation: 4) 

0.93535 (Repeat experiment 
evaluation: 1) 

0.93032 

AdaMax 0.99022 (Repeat experiment 
evaluation: 1) 

0.99593 (Repeat experiment 
evaluation: 5) 

0.99206 

AdaDelta 0.99276 (Repeat experiment 
evaluation: 1) 

0.99653 (Repeat experiment 
evaluation: 4) 

0.99446 

Nadam 0.99424 (Repeat experiment 
evaluation: 2) 

0.99777 (Repeat experiment 
evaluation: 5) 

0.99584 

RMSProp 0.99265 (Repeat experiment 
evaluation: 3) 

0.99463 (Repeat experiment 
evaluation: 1) 

0.99405 

NAG 0.98854 (Repeat experiment 
evaluation: 1) 

0.99853 (Repeat experiment 
evaluation: 4) 

0.99399 

Batch SGD 0.87265 (Repeat experiment 
evaluation: 2) 

0.88722 (Repeat experiment 
evaluation: 4) 

0.87958 

SGD with momentum 0.99103 (Repeat experiment 
evaluation: 2) 

0.99576 (Repeat experiment 
evaluation: 5) 

0.99324 

Optimiser 
Training loss 

Minimum Maximum Average 

Adam 0.01175 (Repeat experiment 
evaluation: 5) 

0.04333 (Repeat experiment 
evaluation: 1) 

0.02059 

AdaGrad 0.16976 (Repeat experiment 
evaluation: 1) 

0.19146 (Repeat experiment 
evaluation: 3) 

0.17952 

AdaMax 0.01551 (Repeat experiment 
evaluation: 5) 

0.03053 (Repeat experiment 
evaluation: 1) 

0.02580 

AdaDelta 0.01510 (Repeat experiment 
evaluation: 4) 

0.02606 (Repeat experiment 
evaluation: 1) 

0.02139 

Nadam 0.00752 (Repeat experiment 
evaluation: 5) 

0.02068 (Repeat experiment 
evaluation: 2) 

0.01375 

RMSProp 0.01915 (Repeat experiment 
evaluation: 1) 

0.03018 (Repeat experiment 
evaluation: 3) 

0.02504 

NAG 0.00662 (Repeat experiment 
evaluation: 1) 

0.03681 (Repeat experiment 
evaluation: 4) 

0.01989 

Batch SGD 0.27053 (Repeat experiment 
evaluation: 4) 

0.29887 (Repeat experiment 
evaluation: 2) 

0.28517 

SGD with momentum 0.01403 (Repeat experiment 
evaluation: 5) 

0.02654 (Repeat experiment 
evaluation: 2) 

0.02078 
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Table 4.12: Segmentation of LGG and HGG brain lesions: validation/test accuracy and 

loss for the different state-of-the-art optimisation algorithms 

Optimiser 
Validation/test accuracy 

Minimum Maximum Average 

Adam 0.92213 (Repeat experiment 
evaluation: 4) 

0.95035 (Repeat experiment 
evaluation: 5) 

0.94108 

AdaGrad 0.87213 (Repeat experiment 
evaluation: 3) 

0.89233 (Repeat experiment 
evaluation: 1) 

0.88174 

AdaMax 0.92056 (Repeat experiment 
evaluation: 1) 

0.93763 (Repeat experiment 
evaluation: 2) 

0.92927 

AdaDelta 0.89599 (Repeat experiment 
evaluation: 2) 

0.93467 (Repeat experiment 
evaluation: 5) 

0.92153 

Nadam 0.93746 (Repeat experiment 
evaluation: 3) 

0.97404 (Repeat experiment 
evaluation: 5) 

0.95425 

RMSProp 0.93537 (Repeat experiment 
evaluation: 5) 

0.95923 (Repeat experiment 
evaluation: 2) 

0.95164 

NAG 0.90801 (Repeat experiment 
evaluation: 4) 

0.93118 (Repeat experiment 
evaluation: 5) 

0.91742 

Batch SGD 0.83206 (Repeat experiment 
evaluation: 5) 

0.84512 (Repeat experiment 
evaluation: 2) 

0.84150 

SGD with momentum 0.90139 (Repeat experiment 
evaluation: 1) 

0.91760 (Repeat experiment 
evaluation: 5) 

0.91143 

Optimiser 
Validation/test loss 

Minimum Maximum Average 

Adam 0.19209 (Repeat experiment 
evaluation: 5) 

0.45568 (Repeat experiment 
evaluation: 4) 

0.28387 

AdaGrad 0.26312 (Repeat experiment 
evaluation: 1) 

0.32811 (Repeat experiment 
evaluation: 3) 

0.29035 

AdaMax 0.19123 (Repeat experiment 
evaluation: 2) 

0.29127 (Repeat experiment 
evaluation: 1) 

0.23099 

AdaDelta 0.21188 (Repeat experiment 
evaluation: 5) 

0.45273 (Repeat experiment 
evaluation: 2) 

0.29922 

Nadam 0.11110 (Repeat experiment 
evaluation: 5) 

0.28251 (Repeat experiment 
evaluation: 1) 

0.20160 

RMSProp 0.16879 (Repeat experiment 
evaluation: 4) 

0.48234 (Repeat experiment 
evaluation: 5) 

0.28117 

NAG 0.29048 (Repeat experiment 
evaluation: 5) 

0.36562 (Repeat experiment 
evaluation: 3) 

0.31663 

Batch SGD 0.35012 (Repeat experiment 
evaluation: 2) 

0.42809 (Repeat experiment 
evaluation: 5) 

0.37372 

SGD with momentum 0.31316 (Repeat experiment 
evaluation: 3) 

0.40394 (Repeat experiment 
evaluation: 5) 

0.35001 
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Figure 4.5: Cross-entropy loss and classification accuracy of the Nadam optimiser 

Figures 4.5 and 4.6 are representative of the cross-entropy loss and classification accuracy of the 

Nadam and RMSProp optimisers, respectively, for the final repeat evaluation of the experiment. 

In both figures, the top panel is indicative of the cross-entropy loss, with the loss given on the 𝑦-

axis and the number of epochs on the 𝑥-axis. The bottom panel shows the classification accuracy, 

where once again the number of epochs is represented on the 𝑥-axis whereas on the 𝑦-axis the 

level of accuracy is given. The training loss and accuracy are given by the solid light blue line, 

whilst the validation or test loss and accuracy are indicated by the dark blue line.  

Only the two top performing models were considered to determine and investigate how well these 

models were able to generalise to unseen data, in other words, the ability of the models to 

generalise in terms of overfitting or underfitting of the data for the proposed CNN architectures 

with different optimisers. With regard to the Nadam optimiser and Figure 4.5: from the loss 

function overall it appears as if the model generalised to the data reasonably well. This is 

determined by the loss function. From epoch number three there might be some concern 

regarding potential (trivial) overfitting based on the increase in the loss curve. The learning rate 

in this instance might be slightly on the high side. With regard to Figure 4.6 and the RMSProp 

optimiser: when evaluating the loss function similar conclusions can be reached in that the model 

seemed to start overfitting the data at a slightly earlier epoch of two compared to the Nadam 

optimiser. This model exhibited a very high learning rate in that the curve looks exponential. That 

is, the loss decayed faster but as is evident the model was worse off, as the parameters were 

vigorous and up and down, meaning that the model was unable to settle into a smooth 

optimisation because the parameters in the model experienced dynamism.  

The potential reasons for this are that the defaults or the recommended values are not appropriate 

for the data. Additionally, the batch size might not be optimal - it might be too small or too large.  
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Figure 4.6: Cross-entropy loss and classification accuracy of the RMSprop optimiser 

The accuracy of the two optimisers is now considered. In Figure 4.5, representing the Nadam 

optimiser, there is some suggestion of a little overfitting and this is due to the validation accuracy 

tracking the training accuracy reasonably well. One solution to this is to increase the model 

capacity, in other words, make the model larger. Conversely, as depicted in Figure 4.6, the model 

experienced overfitting by observing the accuracy curves. The validation or test accuracy curve 

even started to change direction and move downward. In terms of the overfitting of the RMSProp 

model, solutions include introducing dropout or 𝑙2 norm regularisation into the model. It is 

imperative for the reader to take note that these conclusions are made based on the figures 

obtained from the final experiment evaluation. In other words, conclusions may differ as a result 

of the stochastic nature of these models.  

4.4 SUMMARY 

In this chapter, two datasets that pertain to the brain were explored and analysed. One of the 

datasets consisted of MRI scans that revealed the presence of brain lesions as well as scans that 

showed an absence of brain lesions. The second dataset dealt with a topic on which some 

emphasis has been placed and that is the segmentation of patients into two groups depending 

on the grade of brain tumour that they had been diagnosed with. The theoretical background 

described in detail in Chapter 3 was applied. Hence, the practical implementation served as an 

aid for the theoretical ML and DL approaches. In the next chapter, Chapter 5, a summary of the 

main findings from this empirical section is reviewed in depth. Along with this, some 

recommendations are made.   
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CHAPTER 5 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

5.1 INTRODUCTION 

In this final chapter of this research thesis, the main findings from the exploration of brain tumours 

are presented, followed by concluding remarks. The main findings from the empirical analyses of 

the identification and classification of brain lesions are discussed in section 5.2. Section 5.3 

highlights shortcomings and limitations that were experienced in this research and offers 

recommendations on how to best optimise the models. Furthermore, section 5.4 proposes future 

research areas relevant to improvements that could answer some additional research questions 

that were beyond the framework of this research report. The societal benefits and how the work 

in this research report can be of assistance in the medical oncology field are discussed in section 

5.5. The final section in this chapter is section 5.6, which comprises a few concluding remarks.  

5.2 DISCUSSION AND SUMMARY OF MAIN FINDINGS 

In this research two biomedical visual imaging datasets were explored and analysed. More 

specifically, the focus was on brain lesions, either benign or malignant, as well as the grade 

thereof. The first dataset comprised of two separate cohorts of patients, one in which the 

individuals had been diagnosed with a brain tumour, that is, on their MRI scans there was clear 

evidence that a brain tumour was present. The second group of patients had no brain tumour. 

What was evident from the beginning was that the dataset was relatively small, with only 253 MRI 

scans. This, however, is generally the norm in biomedical imaging. Nonetheless, the aim was to 

establish whether the results obtained were satisfactory and of value to medical experts, in other 

words, getting predictive results to assist in the classification of brain lesions versus no brain 

lesions with some level of confidence. With the advances in computational power, data availability 

and accessibility have led to researchers turning their attention to AI techniques in order to 

execute biomedical tasks. As is known, the vast experience and knowledge of medical experts 

will always be relied on; however, the task of diagnosing patients is time-consuming and labour-

intensive. Therefore, more automated or semi-automated processes are of benefit. This is where 

AI methodologies come to the fore.  

In the first comparative study, the first dataset, id est, absence or presence of brain lesions, using 

two specialities within the AI framework, namely ML and DL, was proposed. The two ML methods 

suggested for classification were 𝑘-NN and an SVM. Furthermore, in the realm of DL, different 

CNN model architectures were proposed. These included one block VGG CNN models whereto 

more blocks were added, which was essentially adding more depth and complexity to the 
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structure of the network. Thus, two block and three block VGG CNN architectures were also 

implemented. Additionally, to get the best of both worlds in terms of the different features that 

they could detect, two superior classifiers in an end-to-end model were proposed, that is SVM 

and CNN combined to form one model, hence a hybrid CNN-SVM model. The SVM classifier was 

applied as the output layer of the CNN model.  

Furthermore, it was known that when dealing with a small dataset overfitting becomes an issue, 

as the models cannot generalise patterns in the training dataset. Therefore, three techniques 

were proposed to overcome the issue of overfitting whilst (hopefully) improving the NN: dropout; 

data augmentation which artificially increases the size of the training dataset; and regularisation, 

more specifically, 𝑙2 norm regularisation. The optimisation learning algorithms implemented were 

SGD with momentum and Adam where the default or generally recommended values were used.  

The direct comparison of the ML and DL techniques requires some caution as the ML models are 

based on reproducibility hence, a seed was set so that the same results are obtained when re-

running the code. That is, if the seed were to be modified (changed) different values for the 

predictive accuracy will be observed. This is in contrast to the DL (CNN) model architectures were 

repeat evaluations of the experiment were conducted. The rationale behind this is the additional 

randomness passed to the model resulting from the stochastic nature of CNNs.  

The first observation was that all the proposed CNN models outperformed the two ML methods. 

𝑘-NN had the lowest predictive accuracy of approximately 69 percent, followed by 71 percent  

achieved by the SVM model. This observation is in line with the diagram of the generalisation of 

model interpretability versus accuracy of more traditional ML techniques and DL techniques. The 

diagram indicates that the more traditional ML methods have lower accuracy but more 

interpretability. With DL methods the opposite is true: what is gained in the predictive power of 

the model comes at the expense of interpretability. The proposed models showed this exact trend 

- 𝑘-NN was the worst performing model and the CNN models had the best accuracy with the SVM 

model somewhere in the middle.  

Amongst the proposed CNN model architectures, the simplest models performed the best. That 

is, the one block VGG models (considered the baseline model to which others can be compared), 

with one convolutional layer, one max pooling layer and a fully connected layer were good 

enough. In actual fact, adding more depth and complexity to the models led to worse results. It 

should be noted that due to the stochastic nature of DL models and the additional randomness 

that is introduced, the experiments were evaluated 30 times. This option was decided upon as it 

created more robust models. One issue is that other statistical measures, such as sensitivity 

analyses, would also be needed to ensure that the models were stable. This was beyond the 

scope of this research as one of the objectives was to see if the models produced satisfactory 
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results on small datasets. On average, over the 30 experiment evaluations per proposed CNN 

model architecture, the predictive accuracy was in the region of 80 percent. Given the small 

dataset, there is reasonable confidence that these models will be able to correctly predict unseen 

data. The overfitting techniques did not improve the accuracy, with a marginal difference in 

accuracy for the Adam optimiser. There is, however, still some concern that the models were 

overfitting and learning the underlying patterns of the training data exceptionally well.  

The second dataset implemented as a practical aid to and illustration of the theoretical 

background was that of brain lesion grading. The focus was on the segmentation of patients 

based on the grading of the brain tumours that they had been diagnosed with; this would facilitate 

making a better prognosis, determining the chance of survival and putting the correct treatment 

planning strategies in place. The publicly available dataset that was evaluated in this research 

contained a cohort of patients diagnosed with low-grade glioma and one of patients diagnosed 

with high-grade glioma. For the research purposes of this study 70 scans from four different 

multimodal MRI types were evaluated, that is, T1-weighted, T2-weighted, T1c and FLAIR images. 

These images were collected from many institutions and thus were first standardised, as the 

institutions had diverse equipment and imaging protocols.  

Unless there is a very strong case for applying a specific optimisation learning algorithm, 

comparing the different state-of-the-art optimisation techniques is advised. For this dataset, the 

second comparative study in this research did exactly that. Nine state-of-the-art optimisation 

algorithms were applied, namely batch SGD, SGD with momentum, NAG, Adagrad, AdaDelta, 

RMSProp, Adamax, Adam and Nadam. These formed the nine proposed architectures based on 

the three block VGG CNN model. 

Due to time constraints, both in practice and for this research, and because the dataset is much 

larger, containing approximately 76 000 images, only five repeat experiment evaluations were 

conducted. All the suggested models, on average, produced predictive accuracy levels of over 

90 percent on the validation/test dataset and in some cases well over this mark. The only two 

exceptions were the optimisation techniques of batch SGD and Adagrad with accuracies of 84 

and 88 percent, respectively, on the validation/test dataset. Interestingly, the other seven 

proposed CNN architectures with the default or generally recommended hyperparameter values 

all produced highly significant accuracy results of over 90 percent, as mentioned. This means that 

any one of these models has a significantly high probability of correctly classifying an unseen MRI 

scan as either a low-grade or high-grade glioma. On average, the two best performing models in 

terms of the predictive accuracy of the validation/test dataset were the Nadam and RMSProp 

optimisers, in that order. These two suggested models had accuracy levels of over 95 percent, 

on average.  
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5.3 SHORTCOMINGS AND LIMITATIONS  

For accurate and timely diagnoses in the medical field using more automated AI techniques is 

highly dependent on the obtainability of datasets. Successful implementation and significant 

performance of ML and DL methodologies require large datasets. However, in the biomedical 

imaging field one of the most prominent limitations is the size of the available datasets. This was 

evident in the first comparative study that was investigated and analysed: the dataset only 

contained 253 patients’ MRI scans. There is no standard or general rule or rule of thumb as to 

what constitutes a small or large dataset. Yet compared to the datasets used in the state-of-the-

art CNN architectures such as ConvNet, which made use of 1.3 million images in the training 

phase of the network, as well as other datasets and the millions of images that CNN models 

typically require, this dataset is exceptionally small.  

There are some suggestions in the literature that ML and DL models that are built on large input 

training datasets tend to produce higher performing models. Note that this is based on the task of 

classification, which is the same task encountered in this research. For smaller datasets, these 

models are also prone to overfitting the training data, which proved to be a shortcoming of this 

study’s proposed model. This indicates that the proposed CNN model architectures in the training 

stage detect the underlying features and patterns of the data well and thus do not generalise well 

to unseen instances. Another issue is that these images may have very limited features for the 

model to detect and thus are not able to generalise patterns well. Furthermore, the models that 

perform classification tasks on small datasets tend to be biased.  

In the medical field collecting data remains a challenge for a variety of reasons, including but not 

limited to regulatory requirements, patients’ privacy and rare conditions for which limited data are 

available, as in the case of brain tumours and more specifically, malignant brain tumours which 

constitute a rare but deadly type of cancer. Hence, this has the potential to play a role in the 

restricted availability of medical data.  

In the second comparative study more data were available, but training the proposed CNN models 

required more time as well as computational power and resources, which in practice is not always 

feasible. In this case time constraints rather than computing resources were the issue. For 

instance, instead of running at least 30 if not hundreds of experiment evaluations due to the 

additional randomness that is introduced into the proposed CNN models as they are stochastic 

in nature, only five repeat experiment evaluations per architecture were run, as a result of limited 

time available. This may well be the case in practice where time is not a luxury. However, not 

featured in this research but may well be useful would have been to provide the average run time 

of one repeat evaluation. In line with this thinking, another limitation is that for the purposes of the 

research objective - assisting medical professionals with more automated decision making - no 
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other statistical measures were performed, such as sensitivity analyses to evaluate whether the 

models were stable.  

Finally, the results were based on the specific splits that were made in the empirical section and 

there may be discrepancies when other splits or training and validation/test splits are considered.  

5.4 SUGGESTIONS FOR FUTURE RESEARCH 

Recommendations based on the current research and the practical implementation that 

accompanies the theoretical work would be to test other splits and different values for the 

hyperparameters - more specifically, the learning rate and the number of epochs. Additionally, 

sensitivity analyses can be conducted to determine the stability of the different proposed model 

architectures. Additionally, other ML algorithms may be considered for purposes of comparison. 

Other ML techniques are recommended to answer additional research questions, such as what 

other AI methods may be used to detect brain lesions accurately. Moreover, computing the time 

lapse taken for models can be beneficial in the sense that time is often a constraint in practice.  

When it comes to the evaluation of the CNN models, one of the challenges is that the models are 

considered black box techniques. That is, they lack interpretability, thus there is insufficient 

understanding of the workings and mechanisms of these models, specifically how the model 

chooses the features in producing models with significantly high accuracy. There are areas of 

research that have made this the focus, known as explainable AI, which can be considered for 

future research - models that support the understanding and explanation of the mechanisms of 

these models.  

To address the issue of small datasets, NN models proposed in the literature can be used to 

determine if this is a possible solution to the limitation. These models include Fuzzy ARTMAP 

NNs. A suggestion is also to study the impact that small datasets have on the task of classification.  

Lastly, to answer some supplementary questions on possible links between hereditary genes and 

the increased chances of being diagnosed with malignant brain tumours, DNA microarray data 

may be considered.  

5.5 SOCIETAL BENEFIT 

In the difficult landscape of medicine where there is a shortage of specialised medical 

professionals, assistance with time-consuming and laborious tasks is of benefit. One of the best 

tools in the fight against cancer is that of timely and accurate diagnoses. When cancer is detected 

at an early stage and before it metastasizes throughout the body, there is generally more positive 

prognoses and patient outcomes. The correct execution of treatment planning strategies can lead 
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to higher survivability. When the diagnosis of cancer is delayed, the associated costs of care 

escalate and add to an already strained health sector.  

5.6 CONCLUDING REMARKS 

Due to digitisation and the explosion of big data accessibility and availability in the field of 

bioinformatics, researchers have turned their attention to the implementation of artificial 

intelligence methodologies. Advances in deep learning and the proven track record of these 

models in terms of accuracy have in recent years given them more prominence than the more 

traditional machine learning algorithms. In this research thesis, the theoretical concepts of 

biomedical imaging, brain tumours (including their grading) and the theoretical background of 

three AI methods were researched. More specifically, two ML techniques (𝑘-NN and SVMs) and 

one DL (CNN) technique were discussed. The rationale behind using these models is that they 

have not only been proven successful in the literature but can also handle visual imagery data.  

The research objective was to identify semi-automated methods to assist radiographers and 

physicians, who are over-extended, to make diagnoses of brain tumours. In the case of malignant 

brain lesions, focus is placed on the grade as this has a direct effect on the prognoses and 

survivability rates and thus the correct treatment planning strategies. The issue, however, is that 

diagnoses remain a momentous task as they are exceptionally labour-intensive and time-

consuming. The study of medicine is a very complicated field and even more so when an 

individual specialises in a certain area. AI models will not be able to replace this expertise and 

experience but will be able to assist. In terms of the empirical evaluation results, especially in the 

case of grading brain tumours into low-grade or low-grade gliomas, the proposed models 

achieved highly significant accuracy results of over 90 percent. Thus these models have the 

ability, with a high probability, of correctly classifying an unseen MRI scan of either low-grade or 

high-grade gliomas. The results for differentiating patients with brain tumours from those without 

brain lesions were not as promising but still satisfactory: the level of predictive accuracy was 

approximately 80 percent on a total sample size of 253 patients.  

Accurate and timely diagnoses remain some of the best tools in the ongoing fight against cancer 

and the proposed models were built to aid with the decision making. Decision making is part of 

the research problem and objective and some challenges remain. One major challenge lies in the 

data which are often limited in size, missing, inaccurate or noisy. As mentioned, issues of limited 

data sizes as well as unbalanced class groups were experienced in the empirical exploration. The 

small dataset was apparent in the first comparative study with only 253 patients’ MRI scan images 

available. Unbalanced class groups were also experienced, as the number of patients per group 

is not equal. This is the case for both comparative studies. In the first one, the number of patients 

that had presented with a brain tumour outweighed the number of scans of patients with an 
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absence of a brain tumour. The same can be said of the second comparative study, where the 

cohort of patients with high-grade gliomas was approximately fourfold those that had been 

diagnosed with low-grade gliomas.  

Another such challenge is transforming raw data into valuable insights and knowledge. One of 

the major concerns in the medical field is that even though AI methods have been proven 

successful with significantly accurate results, AI models lack interpretability. AI models need to 

be able to contribute to the understanding of the underlying mechanisms of the models, that is, 

how the model(s) decide which features to use and why. Experts in the medical field require 

explanations, not just on an overall level in terms of giving predictions or the prediction accuracy 

of the models, but in more detail as to why and how the machine made the decision it did. Thus, 

the medical profession needs models that can be interpreted and are dependable and explainable 

along with having great precision and accuracy. What is apparent is that more interpretable 

models, for instance decision trees, tend to have lower performance. Conversely, the 

interpretability and explainability are lost when black box models are implemented, such as CNNs, 

even though they have much greater levels of accuracy. In conclusion, interpretable AI methods 

are required to ensure that medical professionals have a sufficient level of belief in the models.  
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APPENDIX A: 

RESULTS: SEGMENTATION OF PRESENCE OR ABSENCE OF BRAIN 

TUMOURS 

Training accuracy as well as validation/test accuracy for the 30 repeat evaluations for the different 

CNN model architectures. 
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Repeat 
evaluation 
run number 

One block VGG CNN: 
SGD with momentum 

Two block VGG CNN: 
SGD with momentum 

Three block VGG CNN: 
SGD with momentum 

Validation 
accuracy 

Validation 
loss 

Validation 
accuracy 

Validation 
loss 

Validation 
accuracy 

Validation 
loss 

1 0.82353 1.56113 0.83333 1.37367 0.75490 1.33603 

2 0.77451 1.80435 0.80392 1.48386 0.80392 1.43836 

3 0.80392 1.12696 0.80392 1.45184 0.77451 1.66606 

4 0.76471 1.98058 0.77451 1.26724 0.75490 1.21788 

5 0.81373 0.93771 0.77451 1.78949 0.82353 1.70451 

6 0.81373 1.21135 0.79412 1.38265 0.78431 1.47614 

7 0.82353 1.27889 0.79412 2.26797 0.79412 1.56724 

8 0.78431 1.41088 0.78431 1.44490 0.80392 1.84516 

9 0.81373 1.26949 0.79412 1.48663 0.84314 1.17452 

10 0.82353 1.87875 0.78431 1.33864 0.80392 1.17971 

11 0.82353 1.17216 0.78431 1.56773 0.76471 1.75163 

12 0.82353 1.18058 0.78431 1.99478 0.80392 1.61257 

13 0.82353 1.57269 0.74510 1.63806 0.84314 1.43679 

14 0.76471 2.27155 0.78431 1.31034 0.77451 2.09579 

15 0.81373 1.07236 0.78431 2.32407 0.76471 1.45553 

16 0.79412 1.83258 0.77451 1.33787 0.82353 1.91283 

17 0.83333 1.34077 0.79412 1.36583 0.75490 1.60150 

18 0.80392 1.30321 0.78431 1.73820 0.75490 1.62917 

19 0.84314 1.02391 0.82353 1.18596 0.78431 3.19452 

20 0.82353 1.48475 0.82353 1.28743 0.83333 1.31060 

21 0.83333 1.25342 0.76471 1.41051 0.79412 2.20038 

22 0.82353 1.45038 0.80392 1.48342 0.78431 1.99275 

23 0.82353 1.39064 0.82353 1.10653 0.76471 1.78163 

24 0.80392 2.64141 0.78431 1.79418 0.78431 0.94556 

25 0.84314 1.39283 0.81373 1.38765 0.79412 1.08861 

26 0.81373 1.14726 0.79412 1.26424 0.74510 1.70315 

27 0.80392 1.33383 0.82353 1.20640 0.78431 1.21527 

28 0.80392 1.11666 0.74510 1.94755 0.81373 1.79302 

29 0.81373 1.46431 0.76471 2.25732 0.77451 1.76094 

30 0.79412 1.39768 0.81373 2.20564 0.78431 1.33144 
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Repeat 
evaluation 
run number 

One block VGG CNN: 
Adam 

Two block VGG CNN: 
Adam 

Three block VGG CNN: 
Adam 

Validation 
accuracy 

Validation 
loss 

Validation 
accuracy 

Validation 
loss 

Validation 
accuracy 

Validation 
loss 

1 0.80392 10.60552 0.80392 1.44675 0.80392 1.88327 

2 0.79412 4.49378 0.82353 1.57862 0.76471 1.55660 

3 0.82353 3.53276 0.79412 1.35661 0.79412 2.43137 

4 0.81373 5.59168 0.80392 1.40769 0.72549 1.57204 

5 0.81373 10.91014 0.81373 1.09101 0.81373 1.68858 

6 0.79412 6.34731 0.80392 1.61056 0.78431 1.40187 

7 0.82353 9.41915 0.79412 1.64178 0.79412 1.31122 

8 0.82353 1.08787 0.80392 1.68313 0.82353 1.26883 

9 0.80392 11.04048 0.79412 1.51195 0.79412 1.41552 

10 0.80392 9.30972 0.79412 1.72984 0.74510 2.16771 

11 0.83333 12.24852 0.81373 1.58999 0.76471 1.43545 

12 0.79412 13.38060 0.79412 1.52722 0.77451 1.80405 

13 0.80392 11.14115 0.84314 1.28956 0.83333 1.52906 

14 0.78431 5.61118 0.83333 1.42289 0.82353 1.75228 

15 0.79412 3.07401 0.82353 1.87502 0.77451 1.39641 

16 0.82353 9.94776 0.79412 1.12844 0.83333 1.52680 

17 0.77451 6.64168 0.81373 1.72166 0.82353 1.46551 

18 0.81373 2.38487 0.83333 1.52406 0.82353 1.22499 

19 0.81373 3.91493 0.83333 1.39003 0.82353 1.74087 

20 0.78431 17.62173 0.84314 1.58410 0.82353 2.06459 

21 0.81373 8.15062 0.79412 1.25172 0.79412 1.48529 

22 0.80392 5.19469 0.80392 1.67276 0.76471 1.81401 

23 0.82353 8.92450 0.82353 1.56139 0.81373 1.62562 

24 0.80392 2.94949 0.81373 1.91204 0.81373 1.39879 

25 0.83333 5.41627 0.82353 1.34224 0.77451 1.66015 

26 0.81373 7.78147 0.81373 1.34980 0.80392 1.52948 

27 0.86275 6.23505 0.79412 1.44455 0.74510 1.57754 

28 0.86275 5.06026 0.83333 1.50996 0.80392 1.59241 

29 0.75490 7.88652 0.79412 1.52062 0.82353 1.54540 

30 0.82353 9.40786 0.84314 1.42720 0.79412 1.73657 
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Repeat 
evaluation run 
number 

One block VGG CNN: SGD with 
momentum, SVM as output layer 

One block VGG CNN: Adam, SVM as 
output layer 

Validation 
accuracy 

Validation loss Validation 
accuracy 

Validation loss 

1 0.76471 0.87444 0.82353 8.52502 

2 0.82353 0.73140 0.82353 7.14674 

3 0.78431 1.30611 0.82353 8.36277 

4 0.74510 1.14197 0.74510 9.63583 

5 0.72549 1.19560 0.82353 9.39029 

6 0.78431 0.87848 0.78431 6.78511 

7 0.81373 1.94432 0.81373 8.82960 

8 0.77451 1.33025 0.83333 11.44945 

9 0.74510 1.55205 0.80392 11.88258 

10 0.79412 0.60505 0.79412 8.23002 

11 0.74510 1.06473 0.80392 6.00623 

12 0.81373 1.34697 0.77451 5.13232 

13 0.72549 1.47633 0.79412 2.25833 

14 0.83333 1.29337 0.81373 13.17912 

15 0.74510 1.42829 0.77451 5.23786 

16 0.75490 0.77139 0.81373 13.86163 

17 0.70588 1.50385 0.81373 6.50162 

18 0.72549 1.37044 0.76471 7.88832 

19 0.79412 0.74937 0.81373 3.33413 

20 0.82353 1.35669 0.78431 7.44479 

21 0.82353 0.85005 0.76471 17.42644 

22 0.75490 0.85200 0.77451 11.04667 

23 0.77451 1.89570 0.81373 3.53628 

24 0.71569 0.72043 0.81373 3.05274 

25 0.76471 0.71975 0.77451 7.39454 

26 0.79412 1.06848 0.78431 24.43529 

27 0.77451 1.48002 0.83333 11.37784 

28 0.71569 2.24381 0.82353 6.23620 

29 0.76471 1.56748 0.81373 13.32517 

30 0.76471 0.98458 0.83333 4.93871 
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Repeat 
evaluation run 
number 

One block VGG CNN: SGD with 
momentum, 𝒍𝟐 norm regularisation 

One block VGG CNN: Adam, 𝒍𝟐 norm 
regularisation 

Validation 
accuracy 

Validation loss Validation 
accuracy 

Validation loss 

1 0.82353 1.61594 0.76471 11.86559 

2 0.82353 1.41199 0.82353 2.74601 

3 0.72549 1.96884 0.81373 2.17886 

4 0.82353 1.77640 0.80392 3.61536 

5 0.76471 2.30858 0.78431 5.53608 

6 0.78431 2.62732 0.82353 11.11014 

7 0.80392 1.18689 0.81373 5.53532 

8 0.81373 1.34357 0.79412 9.81804 

9 0.75490 1.63416 0.79412 8.61899 

10 0.83333 1.65008 0.81373 4.22934 

11 0.82353 1.87031 0.82353 12.30335 

12 0.81373 1.20983 0.75490 21.40545 

13 0.82353 1.46791 0.81373 7.93604 

14 0.75490 1.50416 0.80392 1.68919 

15 0.74510 1.64205 0.78431 2.35692 

16 0.80392 1.52114 0.79412 2.17170 

17 0.82353 1.70560 0.79412 15.40928 

18 0.81373 1.22855 0.78431 3.55443 

19 0.82353 1.48403 0.80392 14.10367 

20 0.83333 1.23536 0.77451 15.74693 

21 0.80392 2.06458 0.81373 3.06146 

22 0.82353 1.42577 0.80392 2.90173 

23 0.73529 2.14919 0.80392 9.35590 

24 0.82353 1.85377 0.75490 12.78871 

25 0.83333 1.26278 0.78431 2.63273 

26 0.77451 1.73942 0.82353 11.57150 

27 0.80392 1.98207 0.82353 4.66196 

28 0.79412 1.74919 0.82353 5.21886 

29 0.81373 1.59043 0.83333 3.02940 

30 0.79412 1.46275 0.81373 9.03479 
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Repeat 
evaluation run 
number 

One block VGG CNN: SGD with 
momentum, dropout 

One block VGG CNN: Adam, dropout 

Validation 
accuracy 

Validation loss Validation 
accuracy 

Validation loss 

1 0.80392 1.45027 0.82353 4.56772 

2 0.84314 1.08915 0.83333 2.89601 

3 0.84314 1.77639 0.84314 6.97236 

4 0.84314 1.32703 0.83333 7.07466 

5 0.80392 1.31224 0.79412 6.80911 

6 0.74510 1.83541 0.82353 2.81798 

7 0.78431 1.55996 0.77451 2.99878 

8 0.76471 1.46353 0.80392 3.12618 

9 0.80392 1.42824 0.80392 5.38400 

10 0.86275 1.17085 0.80392 6.09369 

11 0.76471 1.45636 0.79412 13.59812 

12 0.79412 1.46060 0.81373 0.88349 

13 0.78431 1.78504 0.79412 3.17046 

14 0.82353 1.36197 0.83333 2.42075 

15 0.78431 2.89367 0.78431 2.81489 

16 0.81373 1.32284 0.82353 8.35884 

17 0.82353 1.10597 0.79412 3.66317 

18 0.80392 1.56575 0.80392 9.72080 

19 0.77451 1.26600 0.78431 4.34990 

20 0.78431 1.71361 0.79412 7.15858 

21 0.82353 1.30060 0.83333 3.78087 

22 0.80392 1.61477 0.79412 5.35112 

23 0.80392 1.11093 0.80392 9.13414 

24 0.85294 1.20083 0.83333 4.62637 

25 0.78431 2.53248 0.78431 10.88906 

26 0.77451 1.76517 0.75490 3.46266 

27 0.83922 1.34747 0.83333 1.08171 

28 0.83333 1.07154 0.81373 6.37854 

29 0.83333 1.25327 0.83333 4.30120 

30 0.79412 2.08668 0.79412 4.35004 
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Repeat 
evaluation run 
number 

One block VGG CNN: SGD with 
momentum, data augmentation 

One block VGG CNN: Adam, data 
augmentation 

Validation 
accuracy 

Validation loss Validation 
accuracy 

Validation loss 

1 0.72549 0.84350 0.78431 2.38373 

2 0.83333 1.27589 0.85294 1.71963 

3 0.74510 1.37959 0.85294 1.22337 

4 0.76471 0.83130 0.83333 3.93185 

5 0.79412 1.00764 0.79412 5.44270 

6 0.77451 1.05043 0.80392 3.96748 

7 0.78431 0.88385 0.77451 3.83373 

8 0.72549 0.95935 0.82353 3.44515 

9 0.76471 1.21195 0.83333 6.64428 

10 0.75490 0.91655 0.81373 2.73839 

11 0.75490 0.91219 0.78431 2.52929 

12 0.76471 0.92467 0.76471 2.12391 

13 0.81373 1.04983 0.76471 3.05697 

14 0.74510 1.13489 0.75490 2.37579 

15 0.77451 1.07841 0.83333 1.06201 

16 0.74510 1.06424 0.80392 5.04084 

17 0.76471 1.25542 0.79412 1.43254 

18 0.79412 1.24159 0.80392 1.38675 

19 0.82353 1.05734 0.79412 2.96670 

20 0.80392 1.15871 0.78431 1.67312 

21 0.80392 0.90306 0.80392 3.56063 

22 0.77451 1.15167 0.76471 3.52898 

23 0.76471 2.09858 0.79412 7.36731 

24 0.75490 0.88299 0.82353 1.63374 

25 0.73529 0.90654 0.78431 4.43175 

26 0.81373 1.13202 0.80392 5.14513 

27 0.79412 1.10482 0.77451 1.88188 

28 0.73529 0.75628 0.80392 3.26709 

29 0.79412 1.26864 0.80392 4.61222 

30 0.76471 1.35252 0.81373 0.97409 
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APPENDIX B: 

RESULTS: SEGMENTATION OF LOW-GRADE OR HIGH-GRADE 

GLIOMAS 

Training accuracy and loss as well as validation/test accuracy and loss for all five runs (five repeat 

evaluations). 

Optimiser 

Training accuracy 

Repeat 
evaluation 
run 1 

Repeat 
evaluation 
run 2 

Repeat 
evaluation 
run 3 

Repeat 
evaluation 
run 4 

Repeat 
evaluation 
run 5 

Adam 0.99536 0.99589 0.99493 0.99358 0.99634 

AdaGrad 0.93535 0.93381 0.92564 0.92489 0.93191 

AdaMax 0.99022 0.99093 0.99119 0.99204 0.99593 

AdaDelta 0.99276 0.99505 0.99459 0.99653 0.99335 

Nadam 0.99601 0.99424 0.99644 0.99476 0.99777 

RMSProp 0.99463 0.99439 0.99265 0.99458 0.99398 

NAG 0.99853 0.98987 0.99496 0.98854 0.99804 

Batch SGD 0.87354 0.87265 0.88401 0.88722 0.88049 

SGD with 
momentum 

0.99224 0.99103 0.99431 0.99284 0.99576 

Optimiser 

Training loss 

Repeat 
evaluation 
run 1 

Repeat 
evaluation 
run 2 

Repeat 
evaluation 
run 3 

Repeat 
evaluation 
run 4 

Repeat 
evaluation 
run 5 

Adam 0.04333 0.01288 0.01669 0.01829 0.01175 

AdaGrad 0.16976 0.17206 0.19146 0.18997 0.17435 

AdaMax 0.03053 0.02873 0.02865 0.02557 0.01551 

AdaDelta 0.02606 0.01961 0.02162 0.01510 0.02457 

Nadam 0.01371 0.02068 0.01074 0.01612 0.00752 

RMSProp 0.01915 0.02785 0.03018 0.02593 0.02211 

NAG 0.00662 0.03186 0.01605 0.03681 0.00813 

Batch SGD 0.29521 0.29887 0.27803 0.27053 0.28320 

SGD with 
momentum 

0.02379 0.02654 0.01808 0.02145 0.01403 
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Optimiser 

Validation/test accuracy 

Repeat 
evaluation 
run 1 

Repeat 
evaluation 
run 2 

Repeat 
evaluation 
run 3 

Repeat 
evaluation 
run 4 

Repeat 
evaluation 
run 5 

Adam 0.94251 0.94477 0.94564 0.92213 0.95035 

AdaGrad 0.89233 0.88589 0.87213 0.87491 0.88345 

AdaMax 0.92056 0.93763 0.93467 0.93031 0.92317 

AdaDelta 0.92160 0.89599 0.93449 0.92091 0.93467 

Nadam 0.94355 0.95331 0.93746 0.96289 0.97404 

RMSProp 0.95348 0.95923 0.95209 0.95801 0.93537 

NAG 0.92247 0.90923 0.91620 0.90801 0.93118 

Batch SGD 0.84460 0.84512 0.84268 0.84303 0.83206 

SGD with 
momentum 

0.90139 0.91150 0.91167 0.91498 0.91760 

Optimiser 

Validation/test loss 

Repeat 
evaluation 
run 1 

Repeat 
evaluation 
run 2 

Repeat 
evaluation 
run 3 

Repeat 
evaluation 
run 4 

Repeat 
evaluation 
run 5 

Adam 0.19677 0.27517 0.29962 0.45568 0.19209 

AdaGrad 0.26312 0.27961 0.32811 0.30584 0.27509 

AdaMax 0.29127 0.19123 0.21465 0.19954 0.25824 

AdaDelta 0.31400 0.45273 0.23051 0.28697 0.21188 

Nadam 0.28251 0.19120 0.27909 0.14410 0.11110 

RMSProp 0.27577 0.27092 0.20801 0.16879 0.48234 

NAG 0.29382 0.31182 0.36562 0.32141 0.29048 

Batch SGD 0.35056 0.35012 0.37891 0.36092 0.42809 

SGD with 
momentum 

0.38691 0.33260 0.31316 0.31344 0.40394 

 

  

Stellenbosch University https://scholar.sun.ac.za



193 

 

APPENDIX C: 

CODE: SEGMENTATION OF PRESENCE OR ABSENCE OF BRAIN 

TUMOURS 

The code, with descriptions, for the first comparative study analysed is an adaption and extension 

of the code (and descriptions of the code) found in Brownlee (2020b). 

Brain Tumour Detection 

This section requires the dataset containing MRI scans of patients that either had a brain 
tumour or not. (Dataset can be accessed through Kaggle). 

Constructing a CNN 

Plotting the tumour vs no tumour dataset 

######################################################################## 
# Plotting the MRI scans for the presence and absence of brain tumours # 
######################################################################## 
 
# importing the required libraries 
from matplotlib import pyplot 
from matplotlib.image import imread 
 
# defining the location of the dataset  
folder = 'C:/Users/crunc/Desktop/train/' 
 
## Plots: MRI presence of a brain tumour 
# plotting the first 9 images 
for i in range(9): 
    # defining the subplot area 
    pyplot.subplot(330 + 1 + i) 
    # defining the filename - containing the image names and type 
    filename = folder + 'yes.' + str(i) + '.jpg' 
    # loading the image pixels 
    image = imread(filename) 
    pyplot.tight_layout() 
    # plotting the raw pixel data 
    pyplot.imshow(image) 
     
# show the figure 
pyplot.show() 
 
## Plots: MRI absence of a brain tumour 
# plotting the first 9 images 
for i in range(9): 
    # defining the subplot area 
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    pyplot.subplot(330 + 1 + i) 
    # defining the filename - containing the image names and type 
    filename = folder + 'no.' + str(i) + '.jpg' 
    # loading the image pixels 
    image = imread(filename) 
    pyplot.tight_layout() 
    # plotting the raw pixel data 
    pyplot.imshow(image) 
     
# show the figure 
pyplot.show() 

Pre-processing Photo Sizes 

Changing all the photos to be of the same image size, that is 350x350x3. 

############################################################# 
# Preprocessing the images to all be of the same pixel size # 
############################################################# 
 
## Aim: load the presence, absence brain tumour dataset; reshape and saving t
o a new file 
 
# importing the required libraries 
from os import listdir 
from numpy import asarray 
from numpy import save 
from keras.preprocessing.image import load_img 
from keras.preprocessing.image import img_to_array 
 
# defining the location of the dataset 
folder = 'C:/Users/crunc/Desktop/train/' 
photos, labels = list(), list() 
 
# placing the files in the directory 
for file in listdir(folder): 
    # determine the class label: yes represence the presence of a brain tumou
r and no indicates the absence of a brain tumour 
    output = 0.0 
    if file.startswith('yes'): 
        output = 1.0 
         
    # loading the images and indicating the new reshaped size: i.e. 350x350x3 
    photo = load_img(folder + file, target_size = (350, 350,)) 
     
    # covert the image into a numpy array 
    photo = img_to_array(photo) 
     
    # storing the images 
    photos.append(photo) 
    labels.append(output) 

Stellenbosch University https://scholar.sun.ac.za



195 

 

     
# convert to numpy arrays, zeros (no) and ones (yes) associated with the clas
s labels 
photos = asarray(photos) 
labels = asarray(labels) 
print(photos.shape, labels.shape) 
 
# saving the reshaped images with their corresponding zero/one class label as 
numpy arrays 
save('tumour_vs_notumour_photos.npy', photos) 
save('tumour_vs_notumour_labels.npy', labels) 

Loading the prepared data 

#############################################################################
##### 
# Loading and confirming that the shape and the labels of the images are corr
ect # 
#############################################################################
##### 
 
# importing the required libraries 
from numpy import load 
 
# ensuring tat the images' shape and labels are correct 
photos = load('tumour_vs_notumour_photos.npy') 
labels = load('tumour_vs_notumour_labels.npy') 
print(photos.shape, labels.shape) 
print(photos.shape, labels) 

Pre-processing the photos into standard directories 

Computing subdirectories in order to assign the different images to. 

Enumerating the image files into the yes/ or no/ subdirectory based on the file name. 

Additionally, holding back 40% of the images as a test/validation set. Fixing the 
psudeorandom number generator so that reproducibilty is actioned when re-running the 
code every time. 

###################################################### 
# Processing the images into standard subdirectories # 
###################################################### 
 
# importing the required libraries 
from os import makedirs 
from os import listdir 
from random import seed 
from random import random 
from shutil import copyfile 

Stellenbosch University https://scholar.sun.ac.za



196 

 

 
# creating the subdirectories from the main directory 
dataset_home = 'C:/Users/crunc/Desktop/dataset_tumour_vs_notumour/' 
subdirs = ['train/', 'test/'] 
for subdir in subdirs: 
    # creating a label for the subdirectories 
    labeldirs = ['no/', 'yes/'] 
    for labldir in labeldirs: 
        newdir = dataset_home + subdir + labldir 
        makedirs(newdir, exist_ok=True) 
 
# setting the random seed number generator for splitting the data into a trai
ning and validation/test set  
seed(123) 
 
# defining the ratio of images that are to be used as validation: when the ne
tworks are run, the validation size is 40% 
val_ratio = 0.37 
 
# copying the training dataset images into the applicable subdirectory 
src_directory = 'C:/Users/crunc/Desktop/train/' 
for file in listdir(src_directory): 
    src = src_directory + '/' + file 
    # training subdirectory 
    dst_dir = 'train/' 
    # validation/test subdirectory 
    if random() < val_ratio: 
        dst_dir = 'test/' 
    # sub-subdirectory of the presence of brain tumours 
    if file.startswith('yes'): 
        dst = dataset_home + dst_dir + 'yes/' + file 
        copyfile(src, dst) 
    # sub-subdirectory of the absence of brain tumours 
    elif file.startswith('no'): 
        dst = dataset_home + dst_dir + 'no/' + file 
        copyfile(src, dst)     

Developing different CNN models 

First model is a one block VGG model using Stochastic Gradient Decent and 20 epochs. The 
kernel is drawn from a limited uniform distribution as well as using the ReLU. 

################################################### 
# One block baseline VGG model: SGD with momentum # 
################################################### 
 
# importing the required libraries 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
from keras.layers import Conv2D 
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from keras.layers import MaxPooling2D 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.optimizers import SGD 
from keras.preprocessing.image import ImageDataGenerator 
 
# defining the cnn model architecture: one convolutional block, 32 filters, 3
x3 kernel size 
# one max pooling layer, after the convolutional layer 
# one fully-connected block 
# final output layer is sigmoid as the data is binary  
def define_model(): 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3))) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Flatten()) 
    model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m')) 
    model.add(Dense(1, activation = 'sigmoid')) 
     
    # compiling the model - stochastic gradient descent with momentum as the 
optimisation technique 
    # using the recommended/default values for the hyperparameters 
    opt = SGD(lr = 0.01, momentum = 0.9) 
    model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy']) 
    return model 
     
# plotting the diagnostic learning curves - the binary cross-entropty loss an
d the accuracy 
def summarize_diagnostics(history): 
     
    # plotting the loss functions: binary cross-entropy loss of the training 
and validation sets 
    pyplot.subplot(211) 
    pyplot.title('Cross Entropy Loss') 
    pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2) 
    pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2) 
    pyplot.legend(loc = 'upper right') 
     
    # plotting the accuracy functions of the training and validation sets 
    pyplot.subplot(212) 
    pyplot.title('Classification Accuracy') 
    pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2) 
    pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label = 
'test', linewidth = 2) 
    pyplot.legend(loc = 'lower right') 
    pyplot.tight_layout() 
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    # saving the plots to file 
    filename = sys.argv[0].split('/')[-1] 
    pyplot.savefig(filename + '_plot1.png') 
    pyplot.close() 
 
# evaluating the model performance 
def run_test_harness(): 
     
    # defining the model 
    model = define_model() 
     
    # creating the data generator, rescaling the image pixels from the 0-255 
to 0-1 range 
    datagen = ImageDataGenerator(rescale = 1.0/255.0) 
     
    # loading the test/train datasets, class_mode is binary as there is eithe
r a presence or absence of brain lesion 
    train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size 
= (350, 350)) 
    test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size = 
(350, 350)) 
     
    # fitting the model 
    history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1) 
     
    # evaluating the model 
    _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0) 
    print('> %.3f' % (acc * 100.0)) 
    print(history.history['accuracy'][-1]) 
    print(history.history['val_accuracy'][-1]) 
    print(history.history['loss'][-1]) 
    print(history.history['val_loss'][-1]) 
     
    # learning curves 
    summarize_diagnostics(history) 
     
# running the test evaluation 
run_test_harness() 

########################################## 
# Two block VGG model: SDG with momentum # 
########################################## 
 
# importing the required libraries 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
from keras.layers import Conv2D 
from keras.layers import MaxPooling2D 
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from keras.layers import Dense 
from keras.layers import Flatten 
from keras.optimizers import SGD 
from keras.preprocessing.image import ImageDataGenerator 
 
# defining the cnn model architecture: two convolutional blocks, 32 and 64 fi
lters, respectively and 3x3 kernel size 
# two max pooling layers, one after each convolutional layer 
# one fully-connected block 
# final output layer is sigmoid as the data is binary  
def define_model(): 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3))) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Conv2D(64, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same')) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Flatten()) 
    model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m')) 
    model.add(Dense(1, activation = 'sigmoid')) 
     
    # compiling the model - stochastic gradient descent with momentum as the 
optimisation technique 
    # using the default/recommended values for the hyperparameters 
    opt = SGD(lr = 0.01, momentum = 0.9) 
    model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy']) 
    return model 
     
# plotting the diagnostic learning curves - the binary cross-entropy loss and 
the accuracy 
def summarize_diagnostics(history): 
     
    # plotting the loss functions: binary cross-entropy loss of the training 
and validation sets 
    pyplot.subplot(211) 
    pyplot.title('Cross Entropy Loss') 
    pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2) 
    pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2) 
    pyplot.legend(loc = 'upper right') 
     
    # plotting the accuracy functions of the training and validation sets 
    pyplot.subplot(212) 
    pyplot.title('Classification Accuracy') 
    pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2) 
    pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label = 
'test', linewidth = 2) 
    pyplot.legend(loc = 'lower right') 
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    pyplot.tight_layout() 
    # saving the plots to file 
    filename = sys.argv[0].split('/')[-1] 
    pyplot.savefig(filename + '_plot2.png') 
    pyplot.close() 
 
# evaluating the model performance 
def run_test_harness(): 
     
    # defining the model 
    model = define_model() 
     
    # creating the data generator, rescaling the image pixels from the 0-255 
to the 0-1 range 
    datagen = ImageDataGenerator(rescale = 1.0/255.0) 
     
    # loading the test/train datasets, class_mode is binary as there is eithe
r the prresence or absence of brain lesions 
    train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size 
= (350, 350)) 
    test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size = 
(350, 350)) 
     
    # fitting the model 
    history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1) 
     
    # evaluating the model 
    _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0) 
    print('> %.3f' % (acc * 100.0)) 
    print(history.history['accuracy'][-1]) 
    print(history.history['val_accuracy'][-1]) 
    print(history.history['loss'][-1]) 
    print(history.history['val_loss'][-1]) 
     
    # learning curves 
    summarize_diagnostics(history) 
     
# running the test evaluation 
run_test_harness() 

############################################ 
# Three block VGG model: SDG with momentum # 
############################################ 
 
# importing the required libraries 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
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from keras.layers import Conv2D 
from keras.layers import MaxPooling2D 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.optimizers import SGD 
from keras.preprocessing.image import ImageDataGenerator 
 
# defining the cnn model architecture: three convolutional blocks: 32, 64 and 
128 filters, respectively  
# 3x3 kernel size 
# three max pooling layers, one after each convolutional layer 
# one fully-connected block 
# final output layer is sigmoid as the data is binary  
def define_model(): 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3))) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Conv2D(64, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same')) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Conv2D(128, (3, 3), activation = 'relu', kernel_initializer = '
he_uniform', padding = 'same')) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Flatten()) 
    model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m')) 
    model.add(Dense(1, activation = 'sigmoid')) 
     
    # compiling the model - stochastic gradient descent with momentum as the 
optimisation technique 
    # using the default/recommended values for the hyperparameters 
    opt = SGD(lr = 0.01, momentum = 0.9) 
    model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy']) 
    return model 
     
# plotting the diagnostic learning curves - the binary cross-entropy loss and 
the accuracy 
def summarize_diagnostics(history): 
     
    # plotting the loss functions: binary cross-entropy loss of the training 
and validation sets 
    pyplot.subplot(211) 
    pyplot.title('Cross Entropy Loss') 
    pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2) 
    pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2) 
    pyplot.legend(loc = 'upper right') 
     
    # plotting the accuracy functions of the training and validation sets 
    pyplot.subplot(212) 
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    pyplot.title('Classification Accuracy') 
    pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2) 
    pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label = 
'test', linewidth = 2) 
    pyplot.legend(loc = 'lower right') 
    pyplot.tight_layout() 
    # saving the plots to file 
    filename = sys.argv[0].split('/')[-1] 
    pyplot.savefig(filename + '_plot3.png') 
    pyplot.close() 
 
# evaluating the model performance 
def run_test_harness(): 
     
    # defining the model 
    model = define_model() 
     
    # creating the data generator, rescaling the image pixels from the 0-255 
to the 0-1 range 
    datagen = ImageDataGenerator(rescale = 1.0/255.0) 
     
    # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or absence of brain lesions 
    train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size 
= (350, 350)) 
    test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size = 
(350, 350)) 
     
    # fitting the model 
    history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1) 
     
    # evaluating the model 
    _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0) 
    print('> %.3f' % (acc * 100.0)) 
    print(history.history['accuracy'][-1]) 
    print(history.history['val_accuracy'][-1]) 
    print(history.history['loss'][-1]) 
    print(history.history['val_loss'][-1]) 
     
    # learning curves 
    summarize_diagnostics(history) 
     
# running the test evaluation 
run_test_harness() 

The next set of model architecures are the one block, two block and three block VGG model 
using Adam as the optimisation technique. Running 20 epochs. The kernel is drawn from a 
He uniform distribution. ReLU and sigmoid activation functions are used. 
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###################################### 
# One block baseline VGG model: Adam # 
###################################### 
 
# importing the required libraries 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
from keras.layers import Conv2D 
from keras.layers import MaxPooling2D 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.optimizers import SGD 
from keras.optimizers import Adam 
from keras.preprocessing.image import ImageDataGenerator 
 
# defining the cnn model architecture: one convolutional block: 32 filters an
d 3x3 kernel size 
# one max pooling layer, after the convolutional layer 
# one fully-connected block 
# final output layer is sigmoid as the data is binary  
def define_model(): 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3))) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Flatten()) 
    model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m')) 
    model.add(Dense(1, activation = 'sigmoid')) 
     
    # compiling the model - adam as the optimisation technique  
    # using the default/recommended values for the hyperparameters 
    opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, dec
ay = 0.0) 
    model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy']) 
    return model 
     
# plotting the diagnostic learning curves - the binary cross-entropy loss and 
the accuracy 
def summarize_diagnostics(history): 
     
    # plotting the loss functions: binary cross entropy loss of the training 
and validation sets 
    pyplot.subplot(211) 
    pyplot.title('Cross Entropy Loss') 
    pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2) 
    pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2) 
    pyplot.legend(loc = 'upper right') 
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    # plotting the accuracy functions of the training and validation sets 
    pyplot.subplot(212) 
    pyplot.title('Classification Accuracy') 
    pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2) 
    pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label = 
'test', linewidth = 2) 
    pyplot.legend(loc = 'lower right') 
     
    pyplot.tight_layout() 
    # saving the plots to file 
    filename = sys.argv[0].split('/')[-1] 
    pyplot.savefig(filename + '_plot1_adam.png') 
    pyplot.close() 
 
# evaluating the model performance 
def run_test_harness(): 
     
    # defining the model 
    model = define_model() 
     
    # creating the data generator, rescaling the image pixels from the 0-255 
to the 0-1 range 
    datagen = ImageDataGenerator(rescale=1.0/255.0) 
     
    # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or absence of brain lesions 
    train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size 
= (350, 350)) 
    test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size = 
(350, 350)) 
     
    # fitting the model 
    history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1) 
     
    # evaluating the model 
    _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0) 
    print('> %.3f' % (acc * 100.0)) 
    print(history.history['accuracy'][-1]) 
    print(history.history['val_accuracy'][-1]) 
    print(history.history['loss'][-1]) 
    print(history.history['val_loss'][-1]) 
     
    # learning curves 
    summarize_diagnostics(history) 
     
# running the test evaluation 
run_test_harness() 
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############################# 
# Two block VGG model: Adam # 
############################# 
 
# importing the required libraries 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
from keras.layers import Conv2D 
from keras.layers import MaxPooling2D 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.optimizers import SGD 
from keras.preprocessing.image import ImageDataGenerator 
 
# defining the cnn model architecture: two convolutional blocks: 32 and 64 fi
lters, respectively  
# 3x3 kernel size 
# two max pooling layers, one after each convolutional layer 
# one fully-connected block 
# final output layer is sigmoid as the data is binary  
def define_model(): 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3))) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Conv2D(64, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same')) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Flatten()) 
    model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m')) 
    model.add(Dense(1, activation = 'sigmoid')) 
     
    # compiling the model - adam as the optimisation technique 
    # using the default/recommended values for the hyperparameters 
    opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, dec
ay = 0.0) 
    model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy']) 
    return model 
     
# plotting the diagnostic learning curves - the binary cross-entropy loss and 
the accuracy 
def summarize_diagnostics(history): 
     
    # plotting the loss functions: binary cross entropy-loss of the training 
and validation sets 
    pyplot.subplot(211) 
    pyplot.title('Cross Entropy Loss') 
    pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2) 

Stellenbosch University https://scholar.sun.ac.za



206 

 

    pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2) 
    pyplot.legend(loc = 'upper right') 
     
    # plotting the accuracy functions of the training and validation sets 
    pyplot.subplot(212) 
    pyplot.title('Classification Accuracy') 
    pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2) 
    pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label = 
'test', linewidth = 2) 
    pyplot.legend(loc = 'lower right') 
    pyplot.tight_layout() 
    # saving the plots to file 
    filename = sys.argv[0].split('/')[-1] 
    pyplot.savefig(filename + '_plot2_adam.png') 
    pyplot.close() 
 
# evaluating the model performance 
def run_test_harness(): 
     
    # defining the model 
    model = define_model() 
     
    # creating the data generator, rescaling the image pixels from the 0-255 
to the 0-1 range 
    datagen = ImageDataGenerator(rescale = 1.0/255.0) 
     
    # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or absence of brain lesions 
    train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size 
= (350, 350)) 
    test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size = 
(350, 350)) 
     
    # fitting the model 
    history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1) 
     
    # evaluating the model 
    _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0) 
    print('> %.3f' % (acc * 100.0)) 
    print(history.history['accuracy'][-1]) 
    print(history.history['val_accuracy'][-1]) 
    print(history.history['loss'][-1]) 
    print(history.history['val_loss'][-1]) 
     
    # learning curves 
    summarize_diagnostics(history) 
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# running the test evaluation 
run_test_harness() 

############################### 
# Three block VGG model: Adam # 
############################### 
 
# importing the required libraries 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
from keras.layers import Conv2D 
from keras.layers import MaxPooling2D 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.optimizers import SGD 
from keras.preprocessing.image import ImageDataGenerator 
 
# defining the cnn model architecture: three convolutional blocks: 32, 64 and 
128 filters, respectively  
# 3x3 kernel size 
# three max pooling layers, one after each convolutional layer 
# one fully-connected block 
# final output layer is sigmoid as the data is binary 
def define_model(): 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3))) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Conv2D(64, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same')) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Conv2D(128, (3, 3), activation = 'relu', kernel_initializer = '
he_uniform', padding = 'same')) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Flatten()) 
    model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m')) 
    model.add(Dense(1, activation = 'sigmoid')) 
     
    # compiling the model - adam as the optimisation technique 
    # using the default/recommended values for the hyperparameters 
    opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, dec
ay = 0.0) 
    model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy']) 
    return model 
     
# plotting the diagnostic learning curves - the binary cross-entropy loss and 
the accuracy 
def summarize_diagnostics(history): 
     
    # plotting the loss functions: binary cross-entropy loss of the training 
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and validation sets 
    pyplot.subplot(211) 
    pyplot.title('Cross Entropy Loss') 
    pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2) 
    pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2) 
    pyplot.legend(loc = 'upper right') 
     
    # plotting the accuracy functions of the training and validation sets 
    pyplot.subplot(212) 
    pyplot.title('Classification Accuracy') 
    pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2) 
    pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label = 
'test', linewidth = 2) 
    pyplot.legend(loc = 'lower right') 
    pyplot.tight_layout() 
    # saving the plots to file 
    filename = sys.argv[0].split('/')[-1] 
    pyplot.savefig(filename + '_plot3_adam.png') 
    pyplot.close() 
 
# evaluating the model performance 
def run_test_harness(): 
     
    # defining the model 
    model = define_model() 
     
    # creating the data generator, rescaling the image pixels from the 0-255 
to the 0-1 range 
    datagen = ImageDataGenerator(rescale = 1.0/255.0) 
     
    # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or absence of brain lesions 
    train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size 
= (350, 350)) 
    test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size = 
(350, 350)) 
     
    # fitting the model 
    history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1) 
     
    # evaluating the model 
    _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0) 
    print('> %.3f' % (acc * 100.0)) 
    print(history.history['accuracy'][-1]) 
    print(history.history['val_accuracy'][-1]) 
    print(history.history['loss'][-1]) 
    print(history.history['val_loss'][-1]) 
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    # learning curves 
    summarize_diagnostics(history) 
     
# running the test evaluation 
run_test_harness() 

The next set of model architecures are the one block VGG model architectures with dropout 
regularisation applied to try and improve the neural network, applying both stochastic 
gradient descent with momentum as well as Adam as the optimisation techniques. Running 
20 epochs. The kernel is drawn from a He uniform distribution. ReLU and sigmoid 
activation functions are used. 

############################################################ 
# One block VGG model: SGD with momentum including dropout # 
############################################################ 
 
# loading the required libraries 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
from keras.layers import Conv2D 
from keras.layers import MaxPooling2D 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.layers import Dropout 
from keras.optimizers import SGD 
from keras.preprocessing.image import ImageDataGenerator 
 
# defining the cnn model architecture: one convolutional block: 32 filters an
d 3x3 kernel size 
# one max pooling layer, after each convolutional layer 
# adding dropout after the convolutional block using a dropout value of 0.5 
# one fully-connected block 
# final output layer is sigmoid as the data is binary 
def define_model(): 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3))) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Dropout(0.5)) 
    model.add(Flatten()) 
    model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m')) 
    model.add(Dense(1, activation = 'sigmoid')) 
     
    # compiling the model - stochastic gradient descent with momentum as the 
optimisation technique 
    # using the default/recommended values for the hyperparameters 
    opt = SGD(lr = 0.01, momentum = 0.9) 
    model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy']) 
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    return model 
     
# plotting the diagnostic learning curves - the binary cross-entropy loss and 
the accuracy 
def summarize_diagnostics(history): 
     
    # plotting the loss functions: binary cross-entropy loss of the training 
and validation sets 
    pyplot.subplot(211) 
    pyplot.title('Cross Entropy Loss') 
    pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2) 
    pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2) 
    pyplot.legend(loc = 'upper right') 
     
    # plotting the accuracy functions of the training and validation sets 
    pyplot.subplot(212) 
    pyplot.title('Classification Accuracy') 
    pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2) 
    pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label = 
'test', linewidth = 2) 
    pyplot.legend(loc = 'lower right') 
    pyplot.tight_layout() 
     
    # saving the plots to file 
    filename = sys.argv[0].split('/')[-1] 
    pyplot.savefig(filename + '_plot1_dropoutsgd.png') 
    pyplot.close() 
 
# evaluating the model performance 
def run_test_harness(): 
     
    # defining the model 
    model = define_model() 
     
    # creating the data generator, rescaling the images pixels from the 0-255 
to the 0-1 range 
    datagen = ImageDataGenerator(rescale = 1.0/255.0) 
     
    #loading the test/train datasets, class_mode is binary as there is either 
the presence or the absence of brain lesions 
    train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size 
= (350, 350)) 
    test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size = 
(350, 350)) 
     
    # fitting the model 
    history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1) 
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    # evaluating the model 
    _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0) 
    print('> %.3f' % (acc * 100.0)) 
    print(history.history['accuracy'][-1]) 
    print(history.history['val_accuracy'][-1]) 
    print(history.history['loss'][-1]) 
    print(history.history['val_loss'][-1]) 
     
    # learning curves 
    summarize_diagnostics(history) 
     
# running the test evaluation 
run_test_harness() 

############################################### 
# One block VGG model: Adam including dropout # 
############################################### 
 
# importing the required libraries 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
from keras.layers import Conv2D 
from keras.layers import MaxPooling2D 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.layers import Dropout 
from keras.optimizers import Adam 
from keras.preprocessing.image import ImageDataGenerator 
 
# defining the cnn model architecture: one convolutional block: 32 filters an
d 3x3 kernel size 
# one max pooling layer, after each convolutional layer 
# adding dropout after the convolutional block using a dropout value of 0.5 
# one fully-connected block 
# final output layer is sigmoid as the data is binary 
def define_model(): 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3))) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Dropout(0.5)) 
    model.add(Flatten()) 
    model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m')) 
    model.add(Dense(1, activation = 'sigmoid')) 
     
    # compiling the model - adam as the optimisation technique 
    # using the default/recommended values for the hyperparameters 
    opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, dec
ay = 0.0) 
    model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
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accuracy']) 
    return model 
     
# plotting the diagnostic learning curves - the binary cross-entropy loss and 
the accuracy 
def summarize_diagnostics(history): 
     
    # plotting the loss functions: binary cross-entropy loss of the training 
and validation sets 
    pyplot.subplot(211) 
    pyplot.title('Cross Entropy Loss') 
    pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2) 
    pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2) 
    pyplot.legend(loc = 'upper right') 
     
    # plotting the accuracy functions of the training and validation sets 
    pyplot.subplot(212) 
    pyplot.title('Classification Accuracy') 
    pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2) 
    pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label = 
'test', linewidth = 2) 
    pyplot.legend(loc = 'lower right') 
    pyplot.tight_layout() 
     
    # saving the plots to file 
    filename = sys.argv[0].split('/')[-1] 
    pyplot.savefig(filename + '_plot1_dropoutadam.png') 
    pyplot.close() 
 
# evaluating the model performance 
def run_test_harness(): 
     
    # defining the model 
    model = define_model() 
     
    # creating the data generator, rescaling the image pixels from the 0-255 
to the 0-1 range 
    datagen = ImageDataGenerator(rescale = 1.0/255.0) 
     
    # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or the absence of brain lesions 
    train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size 
= (350, 350)) 
    test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size = 
(350, 350)) 
     
    # fitting the model 
    history = model.fit(train_it, steps_per_epoch = len(train_it), validation
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_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1) 
     
    # evaluating the model 
    _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0) 
    print('> %.3f' % (acc * 100.0)) 
    print(history.history['accuracy'][-1]) 
    print(history.history['val_accuracy'][-1]) 
    print(history.history['loss'][-1]) 
    print(history.history['val_loss'][-1]) 
     
    # learning curves 
    summarize_diagnostics(history) 
     
# running the test evaluation 
run_test_harness() 

The next set of model architecures are the one block VGG model architectures with data 
augmentation applied to try and improve the neural network, applying both stochastic 
gradient descent with momentum as well as Adam as the optimisation techniques. Running 
20 epochs. The kernel is drawn from a He uniform distribution. ReLU and sigmoid 
activation functions are used. 

###################################################################### 
# One block VGG model: SDG with momentum including data augmentation # 
###################################################################### 
 
#importing the required libraries 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
from keras.layers import Conv2D 
from keras.layers import MaxPooling2D 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.optimizers import SGD 
from keras.preprocessing.image import ImageDataGenerator 
 
# defining the cnn model architecture: one convolutional block: 32 filters an
d 3x3 kernel size 
# one max pooling layer, after each convolutional layer 
# one fully-connected block 
# final output layer is sigmoid as the data is binary 
def define_model(): 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3))) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Flatten()) 
    model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m')) 
    model.add(Dense(1, activation = 'sigmoid')) 
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    # compiling the model - stochastic gradient descent as the optimisation t
echnique 
    # using the recommended/default values for the hyperparameters 
    opt = SGD(lr = 0.01, momentum = 0.9) 
    model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy']) 
    return model 
     
# plotting the diagnostic learning curves - the binary cross-entropy loss and 
the accuracy 
def summarize_diagnostics(history): 
     
    # plotting the loss functions: binary cross-entropy loss of the training 
and validation sets 
    pyplot.subplot(211) 
    pyplot.title('Cross Entropy Loss') 
    pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2) 
    pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2) 
    pyplot.legend(loc = 'upper right') 
     
    # plotting the accuracy functions of the training and validation sets 
    pyplot.subplot(212) 
    pyplot.title('Classification Accuracy') 
    pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2) 
    pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label = 
'test', linewidth = 2) 
    pyplot.legend(loc = 'lower right') 
     
    pyplot.tight_layout() 
    # saving the plots to file 
    filename = sys.argv[0].split('/')[-1] 
    pyplot.savefig(filename + '_plot16_sgddataaug.png') 
    pyplot.close() 
 
# evaluating the model performance 
def run_test_harness(): 
     
    # defining the model 
    model = define_model() 
     
    # creating the data generator, rescaling the image pixels from the 0-255 
to the 0-1 range 
    # adding data augmentation to artifically increase the training dataset: 
flipping the images about the x- and y-axes 
    datagentrain = ImageDataGenerator(rescale = 1.0/255.0, horizontal_flip = 
True, vertical_flip = True) 
    datagentest = ImageDataGenerator(rescale = 1.0/255.0) 
     
    # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or the absence of brain lesions 

Stellenbosch University https://scholar.sun.ac.za



215 

 

    train_it = datagentrain.flow_from_directory('C:/Users/crunc/Desktop/datas
et_tumour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target
_size = (350, 350)) 
    test_it = datagentest.flow_from_directory('C:/Users/crunc/Desktop/dataset
_tumour_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_si
ze = (350, 350)) 
     
    # fitting the model 
    history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1) 
     
    # evaluating the model 
    _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0) 
    print('> %.3f' % (acc * 100.0)) 
    print(history.history['accuracy'][-1]) 
    print(history.history['val_accuracy'][-1]) 
    print(history.history['loss'][-1]) 
    print(history.history['val_loss'][-1]) 
     
    # learning curves 
    summarize_diagnostics(history) 
     
# running the test evaluation 
run_test_harness() 

######################################################### 
# One block VGG model: Adam including data augmentation # 
######################################################### 
 
# importing the required libraries 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
from keras.layers import Conv2D 
from keras.layers import MaxPooling2D 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.optimizers import SGD 
from keras.optimizers import Adam 
from keras.preprocessing.image import ImageDataGenerator 
 
# defining the cnn model architecture: one convolutional block: 32 filters an
d 3x3 kernel size 
# one max pooling layer, after each convolutional layer 
# one fully-connected block 
# final output layer is sigmoid as the data is binary 
def define_model(): 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3))) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Flatten()) 
    model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
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m')) 
    model.add(Dense(1, activation = 'sigmoid')) 
     
    # compiling the model - adam as the optimisation technique 
    # using the default/recommended values for the hyperparamters 
    opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, dec
ay = 0.0) 
    model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy']) 
    return model 
     
# plotting the diagnostic learning curves - the binary cross-entropy loss and 
the accuracy 
def summarize_diagnostics(history): 
     
    # plotting the loss functions: binary cross-entropy loss of the training 
and validation sets 
    pyplot.subplot(211) 
    pyplot.title('Cross Entropy Loss') 
    pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2) 
    pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2) 
    pyplot.legend(loc = 'upper right') 
     
    # plotting the accuracy functions of the training and validation sets 
    pyplot.subplot(212) 
    pyplot.title('Classification Accuracy') 
    pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2) 
    pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label = 
'test', linewidth = 2) 
    pyplot.legend(loc = 'lower right') 
     
    pyplot.tight_layout() 
    # saving the plots to file 
    filename = sys.argv[0].split('/')[-1] 
    pyplot.savefig(filename + '_plot15_adamdataaug.png') 
    pyplot.close() 
 
# evaluating the model performance 
def run_test_harness(): 
     
    # defining the model 
    model = define_model() 
     
    # creating the data generator, rescaling the image pixels from the 0-255 
to the 0-1 range 
    # adding data augmentation to artifically increase the training dataset: 
flipping the images about the x- and y-axes 
    datagentrain = ImageDataGenerator(rescale = 1.0/255.0, horizontal_flip = 
True, vertical_flip = True) 
    datagentest = ImageDataGenerator(rescale = 1.0/255.0) 
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    # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or the absence of brain lesions 
    train_it = datagentrain.flow_from_directory('C:/Users/crunc/Desktop/datas
et_tumour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target
_size = (350, 350)) 
    test_it = datagentest.flow_from_directory('C:/Users/crunc/Desktop/dataset
_tumour_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_si
ze = (350, 350)) 
     
    # fitting the model 
    history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1) 
     
    # evaluating the model 
    _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0) 
    print('> %.3f' % (acc * 100.0)) 
    print(history.history['accuracy'][-1]) 
    print(history.history['val_accuracy'][-1]) 
    print(history.history['loss'][-1]) 
    print(history.history['val_loss'][-1]) 
     
    # learning curves 
    summarize_diagnostics(history) 
     
# running the test evaluation 
run_test_harness() 

The next set of model architecures are the one block VGG model architectures with l2 norm 
regularisation applied to try and improve the neural network, applying both stochastic 
gradient descent with momentum as well as Adam as the optimisation techniques. Running 
20 epochs. The kernel is drawn from a He uniform distribution. ReLU and sigmoid 
activation functions are used. 

########################################################################### 
# One block VGG model: SDG with momentum including l2 norm regularisation # 
########################################################################### 
 
# importing the required libraries 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
from keras.layers import Conv2D 
from keras.layers import MaxPooling2D 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.optimizers import SGD 
from keras.regularizers import l2 
from keras.preprocessing.image import ImageDataGenerator 
 
# defining the cnn model architecture: one convolutional block: 32 filters an
d 3x3 kernel size 
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# adding a penalisation value of 0.0005 using the l2 norm regularisation 
# one max pooling layer, after each convolutional layer 
# one fully-connected block 
# final output layer is sigmoid as the data is binary 
def define_model(): 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', kernel_regularizer = l2(0.0005), padding = 'same', input_shape = 
(350,350,3))) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Flatten()) 
    model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m', kernel_regularizer = l2(0.0005))) 
    model.add(Dense(1, activation = 'sigmoid')) 
     
    # compiling the model - stochastic gradient descent with momentum as the 
optimisation technique 
    # using the default/recommended values for the hyperparameters 
    opt = SGD(lr = 0.01, momentum = 0.9) 
    model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy']) 
    return model 
     
# plotting the diagnostic learning curves - the binary cross-entropy loss and 
the accuracy 
def summarize_diagnostics(history): 
     
    # plotting the loss functions: binary cross-entropy loss of the training 
and validation sets 
    pyplot.subplot(211) 
    pyplot.title('Cross Entropy Loss') 
    pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2) 
    pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2) 
    pyplot.legend(loc = 'upper right') 
     
    # plotting the accuracy functions of the training and validation sets 
    pyplot.subplot(212) 
    pyplot.title('Classification Accuracy') 
    pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2) 
    pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label = 
'test', linewidth = 2) 
    pyplot.legend(loc = 'lower right') 
    pyplot.tight_layout() 
    # saving the plots to file 
    filename = sys.argv[0].split('/')[-1] 
    pyplot.savefig(filename + '_plot10_l2sgd.png') 
    pyplot.close() 
 
# evaluating the model performance  
def run_test_harness(): 

Stellenbosch University https://scholar.sun.ac.za



219 

 

     
    # defining the model 
    model = define_model() 
     
    # creating the data generator, rescaling the image pixels from the 0-255 
to the 0-1 range 
    datagen = ImageDataGenerator(rescale = 1.0/255.0) 
     
    # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or the absence of brain lesions 
    train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size 
= (350, 350)) 
    test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size = 
(350, 350)) 
     
    # fitting the model 
    history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1) 
     
    # evaluating the model 
    _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0) 
    print('> %.3f' % (acc * 100.0)) 
    print(history.history['accuracy'][-1]) 
    print(history.history['val_accuracy'][-1]) 
    print(history.history['loss'][-1]) 
    print(history.history['val_loss'][-1]) 
     
    # learning curves 
    summarize_diagnostics(history) 
     
# running the test evaluation 
run_test_harness() 

############################################################## 
# One block VGG model: Adam including l2 norm regularisation # 
############################################################## 
 
# importing the required libraries 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
from keras.layers import Conv2D 
from keras.layers import MaxPooling2D 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.optimizers import Adam 
from keras.regularizers import l2 
from keras.preprocessing.image import ImageDataGenerator 
 
# defining the cnn model architecture: one convolutional block: 32 filters an

Stellenbosch University https://scholar.sun.ac.za



220 

 

d 3x3 kernel size 
# adding a penalisation value of 0.0005 using the l2 norm regularisation 
# one max pooling layer, after each convolutional layer 
# one fully-connected block 
# final output layer is sigmoid as the data is binary 
def define_model(): 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', kernel_regularizer = l2(0.0005), padding = 'same', input_shape = 
(350,350,3))) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Flatten()) 
    model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m', kernel_regularizer = l2(0.0005))) 
    model.add(Dense(1, activation = 'sigmoid')) 
     
    # compiling the model - Adam as the optimisation technique 
    # using the default/recommended values for the hyperparameters 
    opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, dec
ay = 0.0) 
    model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy']) 
    return model 
     
# plotting the diagnostic learning curves - the binary cross-entropy loss and 
the accuracy 
def summarize_diagnostics(history): 
     
    # plotting the loss functions: binary cross-entropy loss of the training 
and validation sets 
    pyplot.subplot(211) 
    pyplot.title('Cross Entropy Loss') 
    pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2) 
    pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2) 
    pyplot.legend(loc = 'upper right') 
     
    # plotting the accuracy functions of the training and validation sets 
    pyplot.subplot(212) 
    pyplot.title('Classification Accuracy') 
    pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2) 
    pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label = 
'test', linewidth = 2) 
    pyplot.legend(loc = 'lower right') 
    pyplot.tight_layout() 
    # saving the plots to file 
    filename = sys.argv[0].split('/')[-1] 
    pyplot.savefig(filename + '_plot11_l2adam.png') 
    pyplot.close() 
 
# evaluating the model perrformance 
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def run_test_harness(): 
     
    # defining the model 
    model = define_model() 
     
    # creating the data generator, rescaling the image pixels from the 0-255 
to the 0-1 range 
    datagen = ImageDataGenerator(rescale=1.0/255.0) 
     
    # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or the absence of brain lesions 
    train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size 
= (350, 350)) 
    test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size = 
(350, 350)) 
     
    # fitting the model 
    history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1) 
     
    # evaluating the model 
    _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0) 
    print('> %.3f' % (acc * 100.0)) 
    print(history.history['accuracy'][-1]) 
    print(history.history['val_accuracy'][-1]) 
    print(history.history['loss'][-1]) 
    print(history.history['val_loss'][-1]) 
     
    # learning curves 
    summarize_diagnostics(history) 
     
# running the test evaluation 
run_test_harness() 

The last set of model architecures are the one block VGG model hybrid CNN-SVM 
architectures where the final layer is the SVM classifier to make use of the best of both 
worlds, two superior classifiers that pick up different key features, applying both stochastic 
gradient descent with momentum as well as Adam as the optimisation techniques. Running 
20 epochs. The kernel is drawn from a He uniform distribution. ReLU and sigmoid 
activation functions are used. 

################################################################ 
# One block VGG model: hybrid CNN-SVM model: SGD with momentum # 
################################################################ 
 
# importing the required libraries 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
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from keras.layers import Conv2D 
from keras.layers import MaxPooling2D 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.optimizers import SGD 
from keras.preprocessing.image import ImageDataGenerator 
 
# defining the cnn model architecture: one convolutional block: 32 filters an
d 3x3 kernel size 
# one max pooling layer, after each convolutional layer 
# one fully-connected block 
# final output layer is linear as applying the SVM classifier 
def define_model(): 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3))) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Flatten()) 
    model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m')) 
    model.add(Dense(1, activation = 'linear')) 
     
    # compiling the model - stochastic gradient descent with momentum as the 
optimisation technique 
    # using the default/recommended values for the hyperparameters 
    # making use of the hinge/SVM loss as the final output layer uses the SVM 
classifier 
    opt = SGD(lr = 0.01, momentum = 0.9) 
    model.compile(optimizer = opt, loss = 'hinge', metrics = ['accuracy']) 
    return model 
     
# plotting the diagnostic learning curves - the binary cross-entropy loss and 
the accuracy 
def summarize_diagnostics(history): 
     
    # plotting the loss functions: binary cross-entropy loss of the training 
and validation sets 
    pyplot.subplot(211) 
    pyplot.title('Cross Entropy Loss') 
    pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2) 
    pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2) 
    pyplot.legend(loc = 'upper right') 
     
    # plotting the accuracy functions of the training and validation sets 
    pyplot.subplot(212) 
    pyplot.title('Classification Accuracy') 
    pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2) 
    pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label = 
'test', linewidth = 2) 
    pyplot.legend(loc = 'lower right') 
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    pyplot.tight_layout() 
    # saving the plots to file 
    filename = sys.argv[0].split('/')[-1] 
    pyplot.savefig(filename + '_plot3_cnnsvm.png') 
    pyplot.close() 
 
# evaluating the model performance 
def run_test_harness(): 
     
    # defining the model 
    model = define_model() 
     
    # creating the data generator, rescaling the image pixels from the 0-255 
to the 0-1 range 
    datagen = ImageDataGenerator(rescale = 1.0/255.0) 
     
    # loading the test/train datasets, class_mode is binary as there is eithe
r the presence or the absence of brain lesions 
    train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size 
= (350, 350)) 
    test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size = 
(350, 350)) 
     
    # fitting the model 
    history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1) 
     
    # evaluating the model 
    _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0) 
    print('> %.3f' % (acc * 100.0)) 
    print(history.history['accuracy'][-1]) 
    print(history.history['val_accuracy'][-1]) 
    print(history.history['loss'][-1]) 
    print(history.history['val_loss'][-1]) 
     
    # learning curves 
    summarize_diagnostics(history) 
     
# running the test evaluation 
run_test_harness() 

################################################## 
# One block VGG model: hybrid CNN-SVM model: Adam# 
################################################## 
 
# importing the required libraries 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
from keras.layers import Conv2D 
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from keras.layers import MaxPooling2D 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.optimizers import Adam 
from keras.preprocessing.image import ImageDataGenerator 
 
# defining the cnn model architecture: one convolutional block: 32 filters an
d 3x3 kernel size 
# one max pooling layer, after each convolutional layer 
# one fully-connected block 
# final output layer is linear as applying the SVM classifier 
def define_model(): 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_uniform', padding = 'same', input_shape = (350,350,3))) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Flatten()) 
    model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_unifor
m')) 
    model.add(Dense(1, activation = 'linear')) 
     
    # compiling the model - Adam as the optimisation technique 
    # using the default/recommended values for the hyperparameters 
    # making use of the hinge/SVM loss as the final output layer uses the SVM 
classifier 
    opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, dec
ay = 0.0) 
    model.compile(optimizer = opt, loss = 'hinge', metrics = ['accuracy']) 
    return model 
     
# plotting the diagnostic learning curves - the binary cross-entropy loss and 
the accuracy 
def summarize_diagnostics(history): 
     
    # plotting the loss functions: binary cross-entropy loss of the training 
and validation sets 
    pyplot.subplot(211) 
    pyplot.title('Cross Entropy Loss') 
    pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2) 
    pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2) 
    pyplot.legend(loc = 'upper right') 
     
    # plotting the accuracy functions of the training and validation sets 
    pyplot.subplot(212) 
    pyplot.title('Classification Accuracy') 
    pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2) 
    pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label = 
'test', linewidth = 2) 
    pyplot.legend(loc = 'lower right') 
    pyplot.tight_layout() 
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    # saving the plots to file 
    filename = sys.argv[0].split('/')[-1] 
    pyplot.savefig(filename + '_plot4_cnnsvmadam.png') 
    pyplot.close() 
 
# evaluating the model performance 
def run_test_harness(): 
     
    # defining the model 
    model = define_model() 
     
    # creating the data generator, rescaling the image pixels from the 0-255 
to the 0-1 range 
    datagen = ImageDataGenerator(rescale = 1.0/255.0) 
     
    #loading the test/train datasets, class_mode is binary as there is either 
the presence or the absence of brain lesions 
    train_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tu
mour_vs_notumour/train/', class_mode = 'binary', batch_size = 10, target_size 
= (350, 350)) 
    test_it = datagen.flow_from_directory('C:/Users/crunc/Desktop/dataset_tum
our_vs_notumour/test/', class_mode = 'binary', batch_size = 10, target_size = 
(350, 350)) 
     
    # fitting the model 
    history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 20, verbose = 1) 
     
    # evaluating the model 
    _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0) 
    print('> %.3f' % (acc * 100.0)) 
    print(history.history['accuracy'][-1]) 
    print(history.history['val_accuracy'][-1]) 
    print(history.history['loss'][-1]) 
    print(history.history['val_loss'][-1]) 
     
    # learning curves 
    summarize_diagnostics(history) 
     
# running the test evaluation 
run_test_harness() 
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SVM 

Applying the SVM methodology to the presence and absence of brain tumours dataset. 

############# 
# SVM Model # 
############# 
 
# importing the required libraries 
import os 
import numpy as np 
import cv2 
import matplotlib.pyplot as plt 
import pickle 
import random  
from sklearn.model_selection import train_test_split 
from sklearn.svm import SVC 
from random import seed 
import pandas as pd 
import pickle as cPickle 
 
# directory of the images 
dir = 'C:/Users/crunc/Desktop/train2/' 
# indicating the class labels of the images 
categories = ['yes', 'no'] 
data = [] 
 
for category in categories: 
    path = os.path.join(dir, category) 
    label = categories.index(category) 
     
    for img in os.listdir(path): 
        imgpath = os.path.join(path, img) 
        brain_img = cv2.imread(imgpath) 
        try: 
            #resizing the images to a standard form 
            brain_img = cv2.resize(brain_img,(350,350)) 
            image = np.array(brain_img).flatten() 
             
            data.append([image, label]) 
        except Exception as e: 
            pass 
         
print(len(data)) 
pick_new_1 = open('data1.pickle', 'wb') 
pickle.dump(data, pick_new_1) 
pick_new_1.close() 
 
pick_new_1 = open('data1.pickle', 'rb') 
data = pickle.load(pick_new_1) 
pick_new_1.close() 
 
features = [] 
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labels = [] 
 
#appending the label classes, zero or one to the no or yes images 
for feature, label in data: 
    features.append(feature) 
    labels.append(label) 
 
#training the SVM model 
xtrain, xtest, ytrain, ytest = train_test_split(features, labels, test_size = 
0.4, random_state=1234)  
model = SVC(C = 1, gamma = 0.0001, kernel = 'linear') 
model.fit(xtrain, ytrain) 
prediction = model.predict(xtest) 
accuracy = model.score(xtest, ytest) 
print(accuracy) 
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KNN 

Apply the k-nearest neighbours methodology to the dataset containing MRI scans of the 
presence or absence of brain tumours. 

############# 
# KNN model # 
############# 
 
# importing the required libraries 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.metrics import confusion_matrix,accuracy_score 
import os 
import numpy as np 
import cv2 
import matplotlib.pyplot as plt 
import pickle 
import random  
from sklearn.model_selection import train_test_split 
from sklearn.svm import SVC 
from random import seed 
import pandas as pd 
import pickle as cPickle 
 
# directory of the images 
dir = 'C:/Users/crunc/Desktop/train2/' 
 
# indicating the class labels of the images 
categories = ['yes', 'no'] 
data = [] 
 
for category in categories: 
    path = os.path.join(dir, category) 
    label = categories.index(category) 
     
    for img in os.listdir(path): 
        imgpath = os.path.join(path, img) 
        brain_img = cv2.imread(imgpath) 
        try: 
            #resizing the images to a standard form 
            brain_img = cv2.resize(brain_img,(350,350)) 
            image = np.array(brain_img).flatten() 
             
            data.append([image, label]) 
        except Exception as e: 
            pass 
         
print(len(data)) 
pick_new_1 = open('data1.pickle', 'wb') 
pickle.dump(data, pick_new_1) 
pick_new_1.close() 
 
pick_new_1 = open('data1.pickle', 'rb') 
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data = pickle.load(pick_new_1) 
pick_new_1.close() 
 
features = [] 
labels = [] 
 
#appending the label classes, zero or one to the no or yes images 
for feature, label in data: 
    features.append(feature) 
    labels.append(label) 
 
#training the knn model 
xtrain, xtest, ytrain, ytest = train_test_split(features, labels, test_size = 
0.4, random_state=1234) 
classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 
2) 
classifier.fit(xtrain, ytrain) 
y_pred = classifier.predict(xtest) 
 
 
ac = accuracy_score(ytest,y_pred) 
print(ac) 
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APPENDIX D: 

CODE: SEGMENTATION OF LOW-GRADE OR HIGH-GRADE GLIOMAS  

The code, with descriptions, for the second comparative study explored and analysed is an 

adaption and extension of the code (and descriptions of the code) found in Brownlee (2020b). 

Segmentation of low-grade or high-grade gliomas 

In this comparative study, nine state-of-the-art optimisation techniques are applied to the 
dataset where a cohort of patients have been diagnosed with either low-grade or high-
grade gliomas. 

Converting the data from the medical MRI format to jpeg 

Converting the biomedical MRI images from the .mha format into a .jpeg format and saving 
the images into different folders depending on the MRI multimodal type (T1, T2, T1c, 
FLAIR) and the different class labels (low-grade (LGG) or high-grade (HGG) gliomas). 

################################################################## 
# Converting the MRI scans from medical format to jpeg and  
#   saving them in the appropriate folders and subfolders  
################################################################## 
 
# loading the required libraries 
from medpy.io import load 
from matplotlib import pyplot 
import os 
import nibabel as nib 
from nibabel.testing import data_path 
import numpy as np 
import cv2  
from matplotlib import pyplot as plt 
 
# initial .mha MRI scans folder 
## note: need to convert for all patients of the different MRI scan modes 
### run the four different mode types for all the patients, hence,  
###        update the .number.mha file for each patient 
 
# High-grade gliomas (HGG) 
#image_data, image_header = load('C:/Users/crunc/Brats_raw/t1c/hgg/hggt1c.0.m
ha') 
#image_data, image_header = load('C:/Users/crunc/Brats_raw/t2/hgg/hggt2.0.mha
') 
#image_data, image_header = load('C:/Users/crunc/Brats_raw/flair/hgg/hggflair
.0.mha') 
#image_data, image_header = load('C:/Users/crunc/Brats_raw/t1/hgg/hggt1.0.mha
') 
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# Low-grade gliomas (LGG) 
#image_data, image_header = load('C:/Users/crunc/Brats_raw/t1c/lgg/lggt1c.0.m
ha') 
#image_data, image_header = load('C:/Users/crunc/Brats_raw/t2/lgg/lggt2.0.mha
') 
#image_data, image_header = load('C:/Users/crunc/Brats_raw/flair/lgg/lggflair
.0.mha') 
#image_data, image_header = load('C:/Users/crunc/Brats_raw/t1/lgg/lggt1.0.mha
') 
 
#print(image_data.shape) 
#print(image_data) 
 
# scans to be saved for each patient, esnure that the MRI mode type and tumou
r type match 
for i in range(45,115): 
    #print(i) 
    plt.imshow(image_data[:,:,i], cmap = "gray")  
    #plt.show() 
    plt.axis('off') 
     
## run in conjunction with the associated image_data line above and add 70 to 
the i+....  
## to ensure that the image are numbered and saved correctly 
### code below is of the first patient per MRI mode 
     
    # High-grade gliomas (HGG) 
    #plt.savefig('C:/Users/crunc/Brats_Images/t1c/HGG/HGG.%d.jpg'%(i-45), pad
_inches = 0, bbox_inches='tight') 
    #plt.savefig('C:/Users/crunc/Brats_Images/t2/HGG/HGG.%d.jpg'%(i+15355), p
ad_inches = 0, bbox_inches='tight') 
    #plt.savefig('C:/Users/crunc/Brats_Images/flair/HGG/HGG.%d.jpg'%(i+30755)
, pad_inches = 0, bbox_inches='tight') 
    #plt.savefig('C:/Users/crunc/Brats_Images/t1/HGG/HGG.%d.jpg'%(i+46155), p
ad_inches = 0, bbox_inches='tight') 
     
    # Low-grade gliomas (LGG) 
    #plt.savefig('C:/Users/crunc/Brats_Images/t1c/LGG/LGG.%d.jpg'%(i-45), pad
_inches = 0, bbox_inches='tight') 
    #plt.savefig('C:/Users/crunc/Brats_Images/t2/LGG/LGG.%d.jpg'%(i+3735), pa
d_inches = 0, bbox_inches='tight') 
    #plt.savefig('C:/Users/crunc/Brats_Images/flair/LGG/LGG.%d.jpg'%(i+7515), 
pad_inches = 0, bbox_inches='tight') 
    #plt.savefig('C:/Users/crunc/Brats_Images/t1/LGG/LGG.%d.jpg'%(i+11295), p
ad_inches = 0, bbox_inches='tight')   
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Developing the nine state-of-the-art optimisation technique CNN 
architectures 
#############################################################################
#### 
# Three block VGG model: nine different state-of-the-art optimisation techniq
ues# 
#############################################################################
#### 
 
# loading the required libraries 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
from keras.layers import Conv2D 
from keras.layers import MaxPooling2D 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.optimizers import SDG  
from keras.optimizers import Nadam  
from keras.optimizers import Adam  
from keras.optimizers import Adagrad  
from keras.optimizers import Adamax  
from keras.optimizers import Adadelta  
from keras.optimizers import RMSprop  
from keras.preprocessing.image import ImageDataGenerator 
 
# defining the cnn model:  
    # three convolutional blocks, i.e. three convolutional layers with 32, 64 
and 128 filters, respectively. 3x3 kernels 
    # three max pooling layers, one after each convolutional layer 
    # one fully-connected block 
    # final output layer is sigmoid as the data is binary: LGG or HGG 
def define_model(): 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), activation = 'relu', kernel_initializer = 'h
e_normal', padding = 'same', input_shape = (200,200,3))) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Conv2D(64, (3, 3), activation = 'relu', kernel_initializer = 'h
e_normal', padding = 'same')) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Conv2D(128, (3, 3), activation = 'relu', kernel_initializer = '
he_normal', padding = 'same')) 
    model.add(MaxPooling2D((2, 2))) 
    model.add(Flatten()) 
    model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_normal
')) 
    model.add(Dense(1, activation = 'sigmoid')) 
     
    # compiling the model - depending on the optimiser that is being run, unc
omment the applicable one 
     
    ## Batch/vanilla SGD 
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        ### using the recommended/default hyperparameter values 
    #opt = SGD(lr=0.01, momentum = 0.0,  decay=0.0) 
     
    ## SDG with momentum 
        ### using the recommended/default hyperparameter values 
    #opt = SGD(lr=0.01, momentum = 0.9,  decay=0.0) 
     
    ## Nadam 
        ### using the recommended/default hyperparameter values 
    #opt = Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_
decay=0.004) 
         
    ## Adam 
        ### using the recommended/default hyperparameter values 
    #opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, de
cay = 0.0) 
         
    ## Adagrad 
        ### using the recommended/default hyperparameter values 
    #opt = Adagrad(lr = 0.01, epsilon = 1e-08, decay = 0.0) 
         
    ## Adadelta 
        ### using the recommended/default hyperparameter values 
    #opt = Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0) 
     
    ## Adamax 
        ### using the recommended/default hyperparameter values 
    #opt = Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.
0) 
     
    ## RMSProp 
        ### using the recommended/default hyperparameter values 
    #opt = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) 
     
    ## NAG 
        ### using the recommended/default hyperparameter values 
    #opt = SGD(lr=0.01, momentum = 0.9, nesterov=True, decay=0.0) 
     
    model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['
accuracy']) 
    return model 
     
# plotting the diagnostic learning curves - the cross-entropy loss and the pr
edictive accuracy 
def summarize_diagnostics(history): 
     
    # plotting the loss functions: binary cross-entropy loss for the training 
and validation sets 
    pyplot.subplot(211) 
    pyplot.title('Cross Entropy Loss') 
    pyplot.plot(history.history['loss'], color = 'aquamarine', label = 'train
', linewidth = 2) 
    pyplot.plot(history.history['val_loss'], color = 'steelblue', label = 'te
st', linewidth = 2) 
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    pyplot.legend(loc = 'upper right') 
     
    # plotting the accuracy functions for the training and validation sets 
    pyplot.subplot(212) 
    pyplot.title('Classification Accuracy') 
    pyplot.plot(history.history['accuracy'], color = 'aquamarine', label = 't
rain', linewidth = 2) 
    pyplot.plot(history.history['val_accuracy'], color = 'steelblue', label = 
'test', linewidth = 2) 
    pyplot.legend(loc = 'lower right') 
    pyplot.tight_layout() 
    # saving the plots to file - depending on which optimisation technique is 
used 
    # uncomment the applicable plot to be saved: naming convention 
    filename = sys.argv[0].split('/')[-1] 
     
    ## Batch SGD 
    #pyplot.savefig(filename + '_h_l_sgd_no_mom.png') 
     
    ## SGD with momentum 
    #pyplot.savefig(filename + '_h_l_sgd_mom_default.png') 
     
    ## Nadam 
    #pyplot.savefig(filename + '_h_l_nadam_trial.png') 
     
    ## Adam 
    #pyplot.savefig(filename + '_h_l_adam.png') 
     
    ## Adagrad 
    #pyplot.savefig(filename + '_h_l_adagrad.png') 
     
    ## Adadelta 
    # pyplot.savefig(filename + '_h_l_adadelta.png') 
     
    ## Adamax 
    #pyplot.savefig(filename + '_h_l_adamax.png') 
     
    ## RMSProp 
    #pyplot.savefig(filename + '_h_l_rmsprop_trial.png') 
     
    ## NAG 
    #pyplot.savefig(filename + '_h_l_nag.png') 
     
    pyplot.close() 
 
# evaluating the model performance 
def run_test_harness(): 
     
    # defining the model 
    model = define_model() 
     
    # creating the data generator, rescling the image pixels from the 0-255 r
ange to the 0-1 range 
    datagen = ImageDataGenerator(rescale = 1.0/255.0) 
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    # loading the test/train datasets, class_mode is binary as it is either H
GG or LGG tumours 
    train_it = datagen.flow_from_directory('C:/Users/crunc/Brats_Images/train
/', class_mode = 'binary', batch_size = 128, target_size = (200, 200)) 
    test_it = datagen.flow_from_directory('C:/Users/crunc/Brats_Images/test_s
et/', class_mode = 'binary', batch_size = 128, target_size = (200, 200)) 
     
    # fitting the model 
    history = model.fit(train_it, steps_per_epoch = len(train_it), validation
_data = test_it, validation_steps = len(test_it), epochs = 5, verbose = 1) 
     
    # evaluating the model 
    _, acc = model.evaluate(test_it, steps = len(test_it), verbose = 0) 
    print('> %.3f' % (acc * 100.0)) 
    print(history.history['accuracy'][-1]) 
    print(history.history['val_accuracy'][-1]) 
    print(history.history['loss'][-1]) 
    print(history.history['val_loss'][-1]) 
     
    # learning curves 
    summarize_diagnostics(history) 
     
# running the test evaluation 
run_test_harness() 
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