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Abstract
Root rot of citrus trees caused by Phytophthora nicotianae is responsible for severe economic losses in citriculture. Use of
resistant rootstocks is an effective method of managing this problem, however, breeding and selection of new citrus rootstocks is
a time-consuming undertaking. The objective was to develop a method for the rapid assessment of rootstocks for P. nicotianae
tolerance, using a metabolomics approach to identify metabolic markers for the phenotypic trait of tolerance. Sixteen citrus
rootstocks were inoculated with P. nicotianae in the greenhouse for determination of relative tolerance/susceptibility. Healthy
citrus roots from four tolerant and four susceptible rootstocks were used for metabolite analysis with the objective of identifying
potential biomarkers. Organic solvent extractions of the roots were prepared and analysed by mass-spectrometry based liquid
chromatography, which produced 367 ion features (retention time and m/z). Orthogonal partial least squares discriminant
analysis of peak abundance using MarkerLynx software allowed for the identification of ion features that differentiate tolerant
and susceptible rootstocks. Using descriptive and inferential statistics based on the ion features of uninoculated tolerant vs.
susceptible rootstocks, applying logistic regression, 14 top markers were identified and two of them (22.03_259.0975 and
22.21_313.1445: retention time (rt) and mass to charge ratio (m/z) were accepted as potential metabolic markers. A model that
can potentially predict tolerance in citrus rootstocks with >98% accuracy is presented.
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Introduction

Phytophthora species, particularly P. citrophthora, P.
nicotianae, and P. palmivora, remain important soil and water
borne pathogens affecting citrus production worldwide
(Boava et al. 2011; Graham and Feichtenberger 2015;
Panabières et al. 2016), impacting negatively on the profitabil-
ity of citriculture (Matheron et al. 1998; Adaskaveg et al.
2014; Meitz-Hopkins et al. 2014). No commercial citrus root-
stocks are 100% immune to Phytophthora root rot (Castle

1987; Siviero et al. 2006) resulting in rootstocks with varying
tolerance to these pathogens (Boava et al. 2011). Citrus root-
stock tolerance is defined by Graham (1990) as the capacity of
infected rootstocks to withstand infection, however, the innate
mechanisms by which plants defend themselves against path-
ogen invasion is one that is yet to be fully elucidated
(Bednarek 2012; Pérez-Clemente et al. 2013; Matsukawa et
al. 2017). In South Africa Phytophthora nicotianae Breda de
Haan (syn. P. parasitica Dastur) is the predominant causal
agent of fibrous root rot and tree decline of citrus
(Thompson et al. 1995; Meitz-Hopkins et al. 2014).

The use of citrus rootstocks with greater tolerance to P.
nicotianae is considered the most effective and affordable
long-term method of managing citrus root rot (Castle 2010;
Adaskaveg et al. 2014). Citrus breeding programs aim to re-
place existing stocks with rootstocks of increased disease tol-
erance whilst maintaining favourable agronomic qualities
(Grosser et al. 1995; Castle 2010; Schinor et al. 2013;
Adaskaveg et al. 2014). Pathogenicity screening is the com-
mon method used to determine tolerance/susceptibility of
rootstocks. However, the breeding and selection of new citrus
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rootstocks is an arduous, decades long undertaking (Castle
2010; Curtolo et al. 2017). Fernie and Schauer (2008) illus-
trate that metabolomics-based approaches can reduce the time
for development of elite lines in crop improvement strategies.
While metabolomics allows for greater insight into biological
systems (Saito and Matsuda 2010), it is important to remain
aware of the challenges, limitations and bottlenecks associated
with its application (Matsuda 2016; Matsukawa et al. 2017).
Notwithstanding the challenges, it remains essential to explore
what possibilities plant metabolomics technologies can reveal
for the citrus rootstock-P. nicotianae problem. Our objective
was to develop a method for rapid assessment of rootstocks
for P. nicotianae tolerance, using a metabolomics approach to
identify metabolic markers for the phenotypic trait of toler-
ance based on metabolite abundance. Plant metabolomics
tools have been used to demarcate citrus genotypes in pheno-
typing studies (Arbona et al. 2009) and in diagnostic studies,
for example, to identify potential citrus Huanglongbing
(HLB) tolerance biomarkers (Cevallos-Cevallos et al. 2009).
Albrecht et al. (2016) used plant metabolomics applications to
identify metabolic profiles associated with disease response
and disease tolerance while investigating citrus HLB. The
burgeoning prominence of applying metabolomics technolo-
gy in systems biology enables greater capacity to develop
powerful diagnostic and predictive tools for biomarker dis-
covery (Schudoma et al. 2012; Fernandez et al. 2016) as in-
vestigated here.

The identification of resistance related metabolites as
potential biomarkers for tolerance traits was investigated
in barley (Bollina et al. 2011; Kumaraswamy et al. 2011)
and in wheat (Hamzehzarghani et al. 2008; Paranidharan et
al. 2008). Resistance related metabolites are small mole-
cules or secondary metabolites, which are detected in
higher abundance in uninoculated resistant or tolerant
plants as opposed to susceptible plants (Hamzehzarghani
et al. 2008; Kumaraswamy et al. 2011). These metabolites,
in particular from disease free plants are constitutive, and
have potential uses as biomarkers for rapid screening of
plant genotypes for disease tolerance (Kumaraswamy et
al. 2011). Biomarkers are organic indicator compounds that
can be used as tracers of a given biological trait (Simoneit
2005; Schudoma et al. 2012; Menard et al. 2013).
Metabolic markers are therefore sub-categories of bio-
markers and can be either diagnostic, prognostic, or predic-
tive markers (Fernandez et al. 2016; Kumar et al. 2017).

For the study presented here, citrus rootstocks were cate-
gorized as being either tolerant, moderately tolerant or suscep-
tible to P. nicotianae root rot based on greenhouse assess-
ments. Subsequently root extracts of selected tolerant and sus-
ceptible rootstocks were analysed using ultra-high perfor-
mance liquid chromatography-tandem mass spectrometry
(UPLC/MS-MS) aiming to identify metabolites that best dis-
tinguish between the two groups, for use as potential

metabolic markers. Computational statistics yielded potential
biomarkers based on metabolite abundance. The predictive
model was developed by selecting markers corresponding
with tolerance, as identified in MarkerLynx S-plot of orthog-
onal partial least squares discriminant analyses (OPLS-DA)
and verified through descriptive and inferential statistics. We
propose that the current study, on the development of such a
model has the potential application towards the rapid identifi-
cation of tolerant citrus rootstocks based on metabolite abun-
dance. However, necessary follow-up is required to better
satisfy the complexities faced when applying metabolo-
mics approaches to trait discovery and predictive model
formulation (Fernandez et al. 2016; Kumar et al. 2017;
Matsukawa et al. 2017).

Materials and methods

Plants The following citrus rootstocks were included in the
study: Australian trifoliate (Poncirus trifoliata) (AT); Benton
citrange [Citrus sinensis (L.) Osbeck. x P. trifoliata] (BC);
Cairn rough lemon [Citrus jambhiri (Lush.)] (CRL); Carrizo
citrange [C. sinensis (L.) Osbeck. x P. trifoliata] (CC); C35
citrange [C. sinensis (L.) Osbeck. x P. trifoliata] (C35);
Cleopatra mandarin (C. reticulata) x Swingle citrumelo (C.
paradisi Macf. x P. trifoliata) (C + S); Esselen rough lemon
(Citrus spp.) (ERL); Flying dragon (P. trifoliata) (FD);
Minneola tangelo (C. reticulata Blanco x C. paradise Macf.)
x trifoliate orange (P. trifoliata) (MxT); Sunki mandarin and
Benece trifoliate (SxB); Swingle citrumelo (C. paradisiMacf.
x P. trifoliata) (SwC); Terra Bella citrumelo [C. sinensis (L.)
Osbeck. x P. trifoliata] (TB); Troyer citrange [C. sinensis (L.)
Osbeck. X P. trifoliata] (TC); Volkamer lemon (Citrus
volkameriana) (VOLK); X639-hybrid [C. trifoliata x C.
reticulate (Blanco)] (X639); Yuma citrange [C. sinensis (L.)
Osbeck. x P. trifoliata] (YC). Seeds of these rootstocks were
obtained from Citrus Research Internationals’ Citrus
Improvement Scheme (Uitenhage, South Africa). Seeds were
germinated in concrete containers (44 × 190 × 20 cm) filled
with sterile vermiculite at 28 °C with a 12 h light dark cycle
in growth cabinets (Conviron- Winnipeg, Montabo, Canada).
The growth medium was moistened by watering with heat-
sterilized water. After germination, a water-soluble fertilizer
(Folifeed® 6–1-4, N-P-K, 1 g/l, Hygrotech, South Africa) was
applied to the plants fortnightly. Two months post sowing, all
plants were moved from the growth cabinets to a greenhouse.
Seedlings were transplanted singly into 16 cm diameter plastic
pots containing steam pasteurized sand/peat potting mixture
(3:1 v/v) and maintained under greenhouse conditions for use
in pathogenicity experiments. Plants were watered twice
weekly with inclusion of the water-soluble fertilizer once a
fortnight.
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Pathogen inoculum P. nicotianae was isolated from citrus
orchard soils (Mbombela, Limpopo province, South Africa)
by the citrus leaf-disk method (Grimm and Alexander 1973).
Pure cultures were obtained by transferring hyphal tips to
fresh V8 juice media plates and incubating in the dark at
25 °C according toMaseko et al. (2007). Isolate pathogenicity
was confirmed by infecting healthy citrus seedlings and re-
isolating the pathogen, thereby fulfilling Koch’s postulates.
Morphological and molecular characterisation of the isolate
was conducted at the Plant Protection Research Institute,
Pretoria, South Africa. Sequence analysis on the isolate of
the internal transcribed spacer (ITS) spacers 1 and 2 confirmed
the isolate as P. nicotianae. The isolate was grown in pure
culture on clear V8 juice agar plates for 10 to 12 days prior
to bulking to ensure sufficient inoculum quantities to augment
soils for pathogen inoculated treatments. Bulk inoculum was
prepared as previously described by Fourie (2004). Briefly,
autoclave bags containing 200 g millet seed plus 150 ml dis-
tilled water were triple autoclaved, inoculated with twenty,
6 mm diameter P. nicotianae plugs excised fromV8 juice agar
plates and incubated for four weeks at room temperature in the
dark. Mock treatments were prepared in the same way by
excluding the pathogen.

Plant inoculation and experimental design Five greenhouse
experiments were conducted over three seasons to evaluate
the tolerance of citrus rootstocks to P. nicotianae. Two exper-
iments were conducted over two seasons in a sand/peat pot-
ting mixture. In experiment 1, season 1 (2011), and experi-
ment 3, season 2 (2012), seven-month-old seedlings were
used. Three experiments were conducted over three seasons
in a soil/sand potting mixture. In experiment 2, season 1
(2011), nine-month-old seedlings were used, whereas in ex-
periment 4, season 2 (2012), 11-month-old seedlings were
used and in experiment 5, season 3 (2013), nine-month-old
seedlings were used. It was not always possible to acquire
sufficient numbers of seedlings of all rootstocks throughout
all the experiments. However, each of the test rootstocks was
evaluated at least over two seasons. At the time of inoculation,
citrus seedlings were transplanted into either sand/peat (3:1 v/
v) or soil/sand (2:1 v/v) medium augmented with either P.
nicotianaemillet seed inoculum (5% v/v) or sterile millet seed
(5% v/v) i.e. controls. For each rootstock cultivar, an uninoc-
ulated control was included as well as a pathogen inoculated
treatment, with one pot containing one plant representing a
replicate. The experimental design was a completely random-
ized block design laid out in a greenhouse with five replicates
per treatment. Greenhouse temperature was maintained at
±28 °C. Plants were watered twice a week with heat-
sterilised tap water.

Disease assessment Plants were harvested eight weeks after
inoculation by gently removing them from their pots and

rinsing the growth medium from the roots under running tap
water. Root rot was assessed by a rating scale of 0 to 4 where
0 = no root rot; 1 = 25% root rot; 2 = 50% root rot; 3 = 75%
root rot and 4 = 100% root rot (Fourie 2004). Percentage root
rot data were rank transformed prior to one-way analysis of
variance (ANOVA) using JMP Pro 11 (SAS Statistical pack-
age). Post ANOVAmeans separations were madewith Tukey-
Kramer HSD procedure at P < 0.05. Plant roots were excised
from the stems and stored as frozen samples at −20 °C for
biochemical analysis of root extracts.

Metabolite extraction and analysis Five replicates per root-
stocks from Experiment 4 were individually frozen in liquid
nitrogen and crushed to a fine powder using a mortar and
pestle. One gram powdered root material was transferred to
glass tubes and 3 ml cold ethyl acetate-ethanol (1:1) (Merck,
HPLC grade) mixture was added. Tubes were capped,
vortexed for 30 s and allowed to settle for extraction overnight
in the dark at room temperature. After 24 h, extracts were
recovered from the tubes and transferred to clean, labelled
glass tubes before being evaporated to dryness in a fume hood.
Resultant residues were suspended in 0.5 ml methanol
(Merck, HPLC grade) to produce crude extracts. Aliquots of
50 μl for each rootstock extract were then transferred to
Eppendorf tubes and stored at −20 °C until biochemical anal-
yses. UPLC/MS-MS analyses of the 124 samples was per-
formed by the Central Analytical Facility at the University
of Stellenbosch, South Africa. The samples were randomised
in the sample manager and analysed over a period of five
consecutive days to minimize process variance. Two cocktail
mixtures of commercially (Sigma, USA) available flavonoid
standards were prepared. The cocktails were injected at the
beginning and after every eight samples, as technical repeats
to confirm the stability of the UPLC/MS-MS system.
Metabolites were separated using the Central Analytical
Facilities standard procedure, i.e. 0.1% formic acid (solvent
A) to acetonitrile (solvent B) gradient, at flow rate of 0.4 ml/
min on aWaters BEHC18,2. 1 × 100mm column for a 30min
run time. Mass spectrometry readings were generated on a
Waters SYNAPT™ G2 MS (Manchester, UK) instrument
using electron spray ionization (ESI) in positive mode with a
cone voltage of 15 V.

UPLC/MS-MS output processing For the development of a
predictive model data from four uninoculated tolerant
(Benton citrange, Flying dragon, Swingle citrumelo and
Terra Bella citrumelo) and four uninoculated susceptible
(Cairn rough lemon, Carrizo citrange, Volkamer lemon and
X639-hybrid) rootstocks were selected for analysis. This ap-
proach would yield resistance related constitutive metabolites
(Kumaraswamy et al. 2011). After parameter selection for
peak alignment using MarkerLynx software (Waters, MA,
USA), advancedmultivariate algorithms for orthogonal partial
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least squares discriminant analyses (OPLS-DA) were auto-
matically generated. The multivariate analysis was per-
formed using MarkerLynx XS from MassLynx software
version 4.1 to identify markers that clearly distinguish
between tolerant and susceptible rootstocks. MarkerLynx
was used for assignment of putative names for the po-
tential biomarkers through online database searches on
Chemspider (http://www.chemspider.com/).

Data reduction and model development To verify potential
metabolic markers identified through OPLS-DA by signal
strength, i.e. greater abundance in tolerant as opposed to sus-
ceptible rootstocks, m/z data fromMarkerLynx were exported
to MS-Excel. Data were further analysed in SAS (SAS/STAT
software v9.3. SAS Institute) for the calculation of descriptive
and inferential statistics based on a test hypothesis of the ion
features for tolerant vs. susceptible rootstocks using logistic
regression. The markers to enter the model were selected
using a three-step variable reduction method. The rules were:
(1) if the number of missing values for the tolerant group is
less than five in the 20 samples; (2) if the number of missing
values for the susceptible group is less than five in the 19
samples; (3) if the average tolerant signal is 10% higher than
that of the average susceptible signal (fold-change approach;
Kumar et al. 2017). The ion features that met conditions 1 to 3
were accepted as top markers according to signal strength
from the top 10% of the signal strength in rootstock extracts.
Missing values (less than 5) were then imputed by the mini-
mum value observed for particular ion features (variable), per

group, i.e. tolerant/susceptible. The numbers of missing
values per observation were counted, and a weight variable
created so that observations that had fewer missing values
carried more weight. A stepwise logistic regression proce-
dure was performed on 39 samples and top markers in order
to select the best possible variables for a 1, 2, 3, or 4 vari-
able model using Firth’s penalised maximum-likelihood es-
timation method in order to circumvent quasi separation of
the da ta po in t s . The probab i l i ty mode l l ed was
GroupOriginal = BControl-Tolerant^.

Results and discussion

Disease assessment From the results of the greenhouse inoc-
ulation experiments, it was possible to categorize the root-
stocks as tolerant, moderately tolerant or susceptible accord-
ing to percentage root rot (Table 1). Trifoliate orange (P.
trifoliata) cultivars Australian trifoliate (AT) and Flying drag-
on (FD) and the trifoliate orange hybrids Terra Bella citrumelo
(TB) and Yuma citrange (YC) were categorized as tolerant in
all experiments (root rot below 20%), over three seasons.
Swingle citrumelo (SwC) and Benton citrange (BC) also con-
sistently showed tolerant responses (below 20% root rot), but
this increased to 33% root rot for SwC in experiment 3 and to
25% for BC in the same experiment (Table 1). Trifoliate or-
ange and their hybrids are known to be P. nicotianae resistant
rootstocks (Boava et al. 2011; Graham and Feichtenberger
2015). Under greenhouse conditions, Timmer et al. (1991)

Table 1 Response of citrus rootstock seedlings to inoculation with Phytophthora nicotianae in the greenhouse

Rootstocks Expt. 1 Expt. 2 Expt. 3 Expt. 4 Expt. 5 Category
Root rot (%)* Root rot (%) Root rot (%) Root rot (%) Root rot (%)

CC – Carrizo citrange 87.5 a 87.5 a 91.6 a 85 ab – S

TC – Troyer citrange 84.3 a 82.5 a 87.5 a – – S

X639 – X639 hybrid 80 a 85 a 87.5 a 85 ab – S

CRL – Cairn rough lemon 75 a 72.5 ab 83.3 a 87.5 a 72.5 a S

VOLK – Volkamer lemon 75 a 59.5 bc 83.3 a 80 ab – S

SxB – Sunki x Benece 55 b 60 bc 83.3 a 75 ab 62.5 a S

C35 – C35 hybrid 30.5 c 31.5 def 37.5 b 45.8 cd – M

MxT – Minneola x Trifoliate 27.5 c 40 d 33.3 bc 53.1 cd – M

ERL – Esselen rough lemon – 35 de – 35.7 de – M

C+ S – C. mandarin x S. Citrumelo – 18.7 efg – 64.2 bc – M

BC – Benton citrange 20 cd 10 g 25 bcd 21.8 ef 12.5 b T

YC – Yuma citrange 17.5 cd – 16.6 cd – – T

AT – Australian trifoliate 15 cd – 16.6 cd – 15 b T

SwC – Swingle citrumelo 15 cd 17.5 fg 33.3 bc 14.2 f 22.7 b T

TB – Terra Bella citrumelo 10 d 7.5 g 8.3 d 8.3 f 9.3 b T

FD – Flying dragon 8.3 cd 12.5 g – 18.7 ef 7.5 b T

*Root rot (%) determined according to a rating scale of 0–4. Within column mean values followed by the same letter are not significantly different
(Tukey-Kramer test P < 0.05). - = no rootstocks. S = susceptible; M =moderately tolerant; T = tolerant
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documented that Swingle citrumelo was more susceptible to P.
nicotianae root rot than Trifoliate orange rootstocks.
However, in the current study, there was no statistically sig-
nificant difference between these two rootstocks. A moderate-
ly tolerant response was observed for trifoliate hybrids C35
citrange (C35) andMinneola tangelo x trifoliate orange (MxT)
as well as Esselen rough lemon. These rootstocks developed
between 27 and 53% root rot in both potting mixtures across
all experiments (Table 1). Disease severity was highest for
Cairn rough lemon (CRL), Carrizo citrange (CC), Troyer
citrange (TC), Sunki mandarin x Benece trifoliate (SxB),
Volkamer lemon (Volk) and X639 hybrid, developing root
rot of more than 70%. These rootstocks have been document-
ed as susceptible to root rot under greenhouse conditions
(Timmer et al. 1991; Burger 2001). Post ANOVA means sep-
aration indicated a significant difference between the tolerant
and susceptible groups of rootstocks (Table 1). In South
African orchards, the main commercial rootstocks include

Carrizo and Troyer citrange, Cairn rough lemon and Swingle
citrumelo (Meitz-Hopkins et al. 2014). The current study pro-
vides up-to-date information to the citrus industry regarding
tolerant citrus rootstocks that can be considered as replace-
ments for susceptible rootstocks.

Multivariate data analysis MarkerLynx software selected 367
ion features in the 124 citrus root extracts. The selected
markers across the 124 sample injections were aligned by
retention time and base peak m/z. The peak areas of an early,
middle and late eluting peak were plotted against chromato-
gram sequence number to test the reproducibility of the peak
area. No correction was made for peak area of the citrus sam-
ples, as this change, in the standards, was less than 20% for the
late eluting peak and less than 10% for the middle and early
eluting peaks, and the Coefficients of Variance (CV%) were
low. The markers identified by MarkerLynx with OPLS-DA
multivariate analysis are displayed in Fig. 1. The markers at
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Fig. 1 MarkerLynx S-plot for the markers that differentiate tolerant
(lower left quadrant) and susceptible (top right quadrant) cultivars. The
markers at the bottom left and top right of the curve, with p corr[1] < −0.5
and > 0.5, occur predominantly in the tolerant and susceptible cultivars

respectively. Each feature is identified by retention time underscore
accurate mass e.g. 22.03_259.0975. Dash line = highlights top tolerance
markers for MarkerLynx putative identification
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the bottom left and top right of the curve, with p corr[1] < −0.5
and > 0.5, occur predominantly in either the tolerant or sus-
ceptible cultivars, respectively. The circled metabolites (top
markers demarcating for tolerance (Fig. 1) where uploaded
to online metabolite database Chemspider from MarkerLynx
for putative identification of the markers, yielding Wyerone
for marker 22.03_259.0975 and 4′-prenyloxyresveratrol for
marker 22.21_313.1445.

Data reduction and model development Table 2 shows po-
tential markers derived from the three-rule data reduction pro-
cedure developed to accept features with specific characteris-
tics regarding resistance/tolerance related constitutive metab-
olites. The three-rule procedure was based on signal strength
and selected markers that are unique for the two test groups
(tolerant or susceptible). It was valuable to select features on
this basis to exclude features that would provide conflicting
information relating to the overall purpose of the model
(Fernandez et al. 2016). The markers were the same as those
identified through OPLS-DA (Fig. 1). The two features select-
ed were 22.03_259.0975 and 22.21_313.1445 (retention time
and m/z) which appeared as predominant features for tolerant
citrus rootstocks as indicated bymultivariate OPLS-DA (Fig. 1).
A two-variable model was decided upon, since the score χ2

value’s increase flattened out after adding more variables
(Table 3). The combination was decided upon after evaluating
the three- and four-variable models and observing the variables
that appeared most frequently. Firth’s penalized maximum like-
lihood procedure was then employed for fitting a two-variable,
logistic regression model (Table 5). All p-values were less than
0.01 (Table 4; Table 5) for separating the two classes and were
therefore statistically significant.

This yielded the following model:

Ln
p

1−p

� �
¼ −6:2214189þ0:00266var2þ0:01119var24

∴p ¼ 1

1þ e− −6:2214189þ0:00266var 2þ0:01119var 24ð Þ

The decision criterion was therefore:

Decision ¼ Tolerant if p≥0:5
Susceptible if otherwise:

�

Rootstocks with p > 0.5 may thus be classified as P.
nicotianae tolerant. The importance of p value and the fold
change approach make up conventional methods of ranking
influential metabolites (Kumar et al. 2017). Table 6 summa-
rises the fit of the model indicating a 98% concordance with
the predictive capacity of the model to select for tolerant citrus
rootstocks. Biomarkers can be identified through untargeted
metabolite fingerprinting approaches to compare the patterns
between the metabolome of tolerant genotypes versus suscep-
tible genotypes (Kumaraswamy et al. 2011; Monteiro et al.
2013; Wolfender et al. 2013).

Biomarkers are important for their uses in mapping quan-
titative trait loci (QTL) (Fernie and Schauer 2008) and have
significant application as predictive tools in marker-assisted
plant breeding (Steinfath et al. 2010; Falke and Mahone 2013;

Table 2 Potential marker compounds highlighting signal strength of
top 14 tolerance ion features for input in stepwise logistic procedure
(Group Original = "Control Tolerant")

Retention time/mass (Min_m/z) New name Average signal strength

22.03_259.0975 var2 964

22.15_324.1241 var4 548

22.21_313.1445 var24 659

22.21_314.1478 var27 122

22.14_325.1273 var29 102

22.02_260.1008 var30 144

21.97_243.1024 var40 237

21.85_259.0974 var43 727

22.17_354.1347 var49 141

21.85_260.1007 var75 107

21.59_251.0686 var76 110

21.59_229.0868 var79 2783

21.59_230.0901 var82 385

21.81_340.1190 var125 113

Table 3 Best models resultant from stepwise logistic regression

Regression models selected by score criterion

Number of variables Score chi-square Variables included in model

1 12.3027 var24

1 11.8962 var27

1 10.0857 var75

2 27.5811 var24; var30

2 27.5281 var2; var24

2 26.9825 var27; var30

3 29.0697 var2; var24; var27

3 29.0291 var24; var27; var30

3 28.9949 var24; var30; var125

4 30.9668 var24; var30; var49; var125

4 30.8906 var2; var24; var49; var125

4 30.4867 var27; var30; var49; var125

Table 4 Testing global Null hypothesis: BETA = 0

Test Chi-Square DF Pr > ChiSq

Likelihood ratio 29.1262 2 <.0001

Score 27.3772 2 <.0001

Wald 11.5249 2 0.0031
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Monteiro et al. 2013; Ernst et al. 2014; Fernandez et al. 2016).
An advantage in using ion features as metabolic markers for
phenotypic traits is that there is no requirement for annotation
(Arbona et al. 2009; Cevallos-Cevallos et al. 2009). However,
through online metabolite database searches using
MarkerLynx, putative assignments are presented here.
Wyerone is a phytoalexin associated with conferring greater
tolerance in broad beans (Vicia faba L.) following infection by
Botrytis fabae (Letcher et al. 1970; Fawcett et al. 1971). 4′-
prenyloxyresveratrol is a secondary metabolite previously re-
ported to have anti-microbial properties and has been extract-
ed from mulberry (Morus spp.) and bread fruit (Artocarpus
incisus) plants (Likhitwitayawuid and Sritularak 2001). It is
associated with Stilbenoid biosynthesis via the mixed
phenylpropanoid/polyketide biosynthetic pathway
(Likhitwitayawuid and Sritularak 2001). In plants, the defense
response to pathogens is increasingly better linked or associ-
ated with the production and accumulation of phytoalexins,
through activation of the general phenylpropanoid pathway
(shikimate-phenylpropanoids-flavonoids pathways) (Bennett
and Wallsgrove 1994; Shulaev et al. 2008; Pérez-Clemente
et al. 2013). The association of these compounds with plant
self-defense, renders these findings significant, however fur-
ther research is required to confirm the putative annotation of
these compounds.

Upon further investigation, statistical work and annotation
to complement these initial findings, the metabolic markers
and prediction model outlined here have the potential to be
applied as the basis for citrus rootstock breeders to identify P.
nicotianae tolerant rootstocks prior to pathogenicity screen-
ing. This may be achieved by including only those rootstocks
that contain the proposed tolerance biomarkers from breeding
lines. Destructive sampling of a sub-sample of test rootstock
population (root material) analysed for these markers may
shed light on the overall population. In cases where the

markers are prominent, the likelihood of P. nicotianae toler-
ance is high for the whole population. A further advantage is
the constitutive nature of the potential markers, rendering
them functional for tolerance determination in diseased or
healthy plants. Their higher metabolite abundance in the tol-
erant rootstocks opposed to the susceptible rootstocks is con-
comitant with Kumaraswamy et al. (2011) descriptions for
metabolite markers.

In conclusion this has the potential to help plant breeders
assess large numbers of test citrus rootstocks for P.
nicotianae tolerance more rapidly through the proposed
pipeline. The metabolic markers can be used to predict the
selected trait of P. nicotianae tolerance prior to time con-
suming greenhouse screening by including rootstocks
found to constitutively contain these markers (Menard et
al. 2013). Although the model is specific for P. nicotianae
tolerance biomarkers a similar approach may be used to
develop models for other Phytophthora species. In this
study, we report on a metabolomics approach for rapid as-
sessment of citrus rootstocks for tolerance against root rot
caused by P. nicotianae. By identifying ion features that
correspond with the phenotypic trait of tolerance and ap-
plying descriptive and inferential statistics, we were able to
develop a model that can potentially predict for this trait in
citrus rootstocks with >98% accuracy. This model can con-
ceivably speed up the screening of citrus rootstocks for root
rot tolerance if integrated into a rootstock breeding and
selection program. The potential application of such a mod-
el does however require further development and assess-
ment of a wider range of rootstocks. This study is part of
a larger project to utilise plant metabolomics approaches to
better elucidate the biochemical mechanisms of tolerance in
citrus rootstocks against Phytophthora nicotianae.
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