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1. Introduction 

Following the pioneering works of Mandelbrot (1963) and Fama (1965), equity returns 

are widely acknowledged to be non-normally distributed. Newly emerging asset classes pose a 

further challenge for financial modelling. The proliferation of cryptocurrencies, following the 

introduction of Bitcoin in 2010, serves as a perfect example of this new challenge. While 

distributional assumptions are essential for academics and market practitioners for financial 

modelling and investment decision making, little is known about the specific distributions that 

describe returns on this novel asset class.  The primary aim of this study is to fill this lacuna. 

Asset pricing literature offers a limited number of studies on cryptocurrency 

distributions. Existing studies focus on relatively few cryptocurrencies and consider relatively 

few hypothetical distributions. Chan, Chu, Nadarajah and Osterrieder (2017) fit nine 

parametric distributions to seven cryptocurrencies and document that they are best described 

by the generalized hyperbolic, normal inverse Gaussian, generalized t, and Laplace 

distributions. Zhang, Wang, Li and Shen (2018) show that returns on eight cryptocurrencies 

exhibit thick tails. They do not investigate which specific distributions best fit returns. 

Bariviera, Basgall, Hasperué and Naiouf (2017) reject the normality assumption for Bitcoin, 

finding that returns are negatively skewed and highly leptokurtic. Specific distributions are not 

considered. Finally, Phillip, Chan and Peiris (2018) analyse the statistical properties of five 

cryptocurrencies (Bitcoin, Ethereum, Ripple, NEM and Dash) and reject the normality 

assumption for each return series. They report kurtosis coefficients ranging between 7 and 40 

and returns exhibiting positive and negative skewness of varying degrees. 

We are the first to perform a comprehensive examination of cryptocurrency return 

distributions. We fit a total of 58 potential distributions to a sample of 15 cryptocurrencies. 

While the literature cited above decisively suggests that cryptocurrency movements are not 

normally distributed, the question as to which distributions best describe these movements 
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remains open. We resolve this puzzle by applying goodness-of-fit tests to identify the most 

appropriate distributions. 

Our findings demonstrate that there is no single distribution that best represents all 

cryptocurrencies. Specific distributions are definitively identified for a handful of 

cryptocurrencies, namely Cardano, Tron, Chainlink and Iota. For the remainder, no distribution 

is definitive although the most likely and frequent candidate is the Cauchy distribution. The 

best fitting distributions are peaked and thick-tailed, with some possessing variable shape 

parameters. 

Our findings not only provide new insights into the behaviour of cryptocurrency prices. 

They also matter for financial modelling and could be applicable in risk measurement and 

management or asset pricing, including the valuation of potential cryptocurrency derivatives. 

 

2. Data and Methods 

The sample comprises 15 largest cryptocurrencies by market capitalization as of 2 July 

2019: Binance, Bitcoin, Bitcoin Cash, Cardano, Chainlink, Dash, EOS, Ethereum, IOTA, 

Litecoin, Monero, NEO, Ripple, Stellar, and Tron. Data are obtained from 

CoinMarketCap.com. Three cryptocurrencies – Tether, Bitcoin SV and UNUS SED LEO – are 

excluded on account of incomplete data and/or excessively short data series. All prices are in 

U.S. dollars and returns are estimated by taking logarithmic differences. The study period for 

daily returns runs from 28 April 2013 to 1 July 2019 and is dictated by data availability. Table 

A1 in the Online Appendix reports the descriptive statistics of the cryptocurrency returns. 

Notably, it also reports results of the Shapiro-Wilk (SW) test, commonly employed to verify 

the normality assumption when the distribution is unknown (Yap & Sim 2011). All 

distributions are non-normal, highly leptokurtic with excess kurtosis ranging between 3.33  
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(Chainlink) and 68.11 (Ethereum). Most series are positively skewed, with the exception of 

Bitcoin and Ethereum. 

In our empirical tests we consider 58 potential distributions. We provide a list in Table 

A2 of the Online Appendix. To investigate which distribution fits a specific series or most 

closely describes returns, we follow Bakouch, Khan, Hussain, and Chesneau (2019) and – for 

robustness - apply three goodness-of-fit tests. We apply  the Kolmogorov-Smirnov (KS), 

Anderson-Darling (AD), and chi-squared (χ2) tests, with the respective test statistics outlined 

in Equations (1)-(3): 

 𝐾𝑆 = 𝑚𝑎𝑥 {
𝑖

𝑛
− 𝑧𝑖 , 𝑧𝑖 −

𝑖−1

𝑛
},  (1) 

 𝐴𝐷 = −𝑛 −
1

𝑛
∑ (2𝑖 − 1)[𝑙𝑛(𝑧𝑖
𝑛
𝑖=1 (1 − 𝑧𝑖(𝑥𝑛−1+1))],  (2) 

  𝜒2 = ∑
(𝑂𝑖−𝐸𝑖)

𝐸𝑖

𝑛
𝑖=1  .  (3) 

In Equations (1) and (2) n denotes the number of observations, 𝑧𝑖 = 𝐹𝑋(𝑥𝑖) is the 

cumulative density function (CDF) of the distribution being tested, and i represents 

observations in ascending order. In Equation (3), 𝑂𝑖  is the observed frequency for a given bin 

and 𝐸𝑖 is an expected frequency for a given bin under a specified distribution. The number of 

bins is determined as 𝑘 = 1 + 𝑙𝑜𝑔2𝑛 where n is the sample size and k is the number of bins. 

The shared basis of these tests is that they compare the distance between hypothesized 

distributions and empirical distributions (Lemeshko, Lemeshko, and Postovalov 2010; Franke, 

Ho, and Christie 2012). Distributional parameters are estimated using four methods, namely 

the method of moments, maximum likelihood estimates, least squares estimates, and the 

method of L-moments (for an overview see Lloyd 1952; Hoskin 1990; Christopeit 1994; Everitt 

2014). When estimating parameters,  we select the least computationally intensive method for 

each distribution. Table A2 in the Online Appendix lists estimation methods for each 

distribution.  
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Once we have estimated statistics for the tests above, we rank distributions on the basis 

of these statistics and test the null hypothesis that returns conform to a specified distribution. 

If the null hypothesis is rejected for each hypothesized distribution, then no single distribution 

best describes returns. In such cases, goodness-of-fit tests indicate the best fitting distribution 

but not a specific distribution.  

 

3. Results 

Figure 1 plots the return distributions of the cryptocurrencies in our sample. A visual 

inspection confirms departures from normality in the form of excess kurtosis and thick-tails. 

The respective kernel density plots, estimated using the Epanechikov (1969) kernel, differ from 

the imposed normal distribution curve. 

[Insert Figure 1 here] 

Table 1 reports the results of the analysis of return distributions.1 The null hypothesis 

of the empirical distribution approximating a hypothesized distribution is not rejected across 

all three goodness-of-fit tests for Cardano, Tron, Chainlink and Iota. Four-parameter Dagum 

and Burr distributions are fitted to Cardano and Chainlink returns respectively. These 

distributions possess shape parameters which permit varying levels of skewness, kurtosis and 

tail-thickness (Gomes-Silva, da Silva, Percontini, Ramos & Cordeiro 2017). The Dagum 

distribution captures positive asymmetry and is a good descriptor of extremes (Tahir, Cordeiro, 

Mansoor, Zubair & Alizadeh 2014). Similarly, the (slightly) positively skewed Burr 

distribution, by accommodating a wide range of skewness and kurtosis levels, can fit a wide 

range of empirical data (Tadikamalla 1980). Both distributions are thick-tailed. The Cauchy 

distribution, also a leptokurtic distribution with thick-tails, is fitted to Tron returns. This 

distribution is considered a pathological case; mean and variance are undefined, implying that 

 
1 For a more detailed description of the best fitting distributions, see Table A3 in the Online Appendix. 
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both moments are dominated by arbitrarily large observations and that instability of the 

moments is inherent to the data (Mahdizadeh & Zamanzade 2019). 

[Insert Table 1 here] 

Interestingly, two distributions can be fitted to Iota returns, the Error (KS and 𝜒2 tests) 

and Laplace (AD test) distributions. The Error distribution is a symmetric bell-shaped 

distribution which permits varying levels of the sharpness of the peakedness. A k parameter of 

1 denotes sharp peakedness, transforming this distribution into the thick-tailed Laplace 

distribution and explaining why the Laplace distribution also fits Cardano returns. For all 

remaining cryptocurrencies, the Cauchy distribution appears to be the best fitting distribution 

although the null hypothesis that returns conform to this distribution is rejected for each 

cryptocurrency with the exception of Ethereum, Bitcoin Cash, EOS and Binance. For these 

currencies, the null hypothesis is not rejected by the KS test but is rejected by the other two 

tests. Neo returns are an exception. The Johnson SU distribution is the best fitting distribution. 

This is a flexible unbounded distribution which, depending upon its shape parameters, can 

capture asymmetry, excess kurtosis, and extreme tails (Choi & Nam 2008). Other candidate 

distributions, ranked on the basis of the KS, AD and  𝜒2 tests [columns (5), (6) and (7) in Table 

1] are the log-logistic and hypersecant distributions.   

Our findings are in general agreement with those of Chan et al. (2017),  Zhang et al. 

(2018), Bariviera et al. (2017) and Phillip et al. (2018) who find that cryptocurrency returns 

exhibit excess levels of kurtosis and thick-tails.  A number of cryptocurrencies considered by 

Chan et al. (2017), who similarly fit specific distributions to cryptocurrencies, also form part 

of our sample. Chan et al. (2017) fit the generalized hyperbolic distribution to Bitcoin and 

Litecoin returns and the normal inverse distribution to Dash, Monero and Ripple returns. Our 

results differ and we identify the Cauchy as the most appropriate distribution for the former 

three cryptocurrencies and for Ripple. The Error and Laplace distributions are fitted to Monero 
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returns.  A potential explanation is that the wider universe of distributions considered in this 

study leads to the identification of more appropriate and better fitting distributions.  

 

4. Conclusions 

We fit the broadest sample ever of 58 potential distributions to returns on 15 

cryptocurrencies. We identify specific distributions for a handful of cryptocurrencies, namely  

Cardano, Tron, Chainlink and Iota. For the remainder, we identify the best fitting distribution, 

(decisively) the Cauchy distribution.  We confirm findings of prior studies by showing that 

cryptocurrency returns are not normally distributed. Relatedly, the best fitting distributions are 

highly peaked and thick-tailed distributions.  

Our findings provide new insights into the behaviour of cryptocurrencies that are 

informative and of interest to both researchers and investors. Furthermore, our results are 

important for the modelling of cryptocurrency returns and for applications to risk assessment 

and management, and asset pricing.  
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Figure 1. Overview of cryptocurrency returns 
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This figure reports histograms of returns for each of the cryptocurrencies in the sample. A kernel density function (dashed line - - -) is fitted to each series to describe the empirical distribution for 

comparison against a hypothetical normal distribution (sold line  ——).  
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Table 1. Results of goodness-of-fit tests 

In column (1), KS, AD, and 𝜒2 refer to distributions identified by the Kolmogorov-Smirnov, Anderson-Darling 

and chi-squared  tests respectively. In column (4), the same convention is followed, with corresponding test 

statistics reported. The asterisks  * and ** indicate statistical significance at the respective 5% and 1% levels of 

significance. Column (3) reports the respective scale, location and shape parameters, where applicable in the latter 

case. Distributions identified and ranked according to KS, AD and 𝜒2 test statistics are reported in column (5), (6) 

and (7). For the respective probability and cumulative density functions (PDF and CDFs), and location, scale and 

shape parameters for the best fitting distributions, see Table A3 in the Online Appendix. For a full list of the 

distributions tested and methods applied, scale and shape parameters, refer to Table A2 in the Online Appendix. 

 

 (1) 

Crypto. 

(2) 

Best Fit 

(KS/AD/χ2) 

(3) 

Parameters 

 

(4) 

Goodness-of-fit 

(KS/AD/χ2) 

(5) 

KS 

(6) 

AD 

(7) 

χ2 

Bitcoin 

1. Cauchy 

1. Cauchy 

1. Cauchy 

σ =0,01489  

µ =0,00223 

0,03025* 

5,4355** 

43,855** 

2. Laplace 

3. Error 

4. Johnson SU  

5. Log-

Logistic (3P) 

2. Laplace  

3. Error 

4. Johnson SU 

5. Dagum (4P) 

2. Error 

3. Laplace 

4. Johnson SU 

5. Log-logistic 

(3P) 

Ethereum 

1. Cauchy 

1. Cauchy 

1. Cauchy 

σ =0,02591  

µ =-0,00157 

0,04149 

7,1984**  

40,904**  

2. Burr (4P) 

3. Laplace 

4. Error 

5. Log-Logistic 

2. Burr (4P) 

3. Laplace 

4. Error 

5. Log-logistic 

(3P) 

2. Error 

3. Laplace 

4. Burr (4P) 

5. Log-logistic 

(3P) 

Ripple 

1. Cauchy 

1. Cauchy 

1. Cauchy 

σ =0,02111 

µ =-0,00268 

0,02947*  

4,528 ** 

40,978**  

2. Johnson SU 

3. Log-Logistic 

(3P) 

4. Dagum (4P) 

5. Laplace 

2. Johnson SU 

3. Burr (4P) 

4. Dagum (4P) 

5. Log-logistic 

(3P) 

2. Johnson SU 

3. Burr (4P) 

4. Dagum (4P) 

5. Error 

Litecoin 

1. Cauchy 

1. Cauchy 

1. Cauchy 

σ =0,01937 

µ =0 

0,0357** 

5,0281**  

54,546**  

2. Log-Logistic 

(3P) 

1. 3. Dagum (4P) 

2. 4. Burr (4P) 

3. 5. Laplace 

2. Johnson SU 

3. Burr (4P) 

4. Dagum (4P) 

5. Log-logistic 

(3P) 

2. Johnson SU 

3. Error 

4. Laplace 

5. Burr (4P) 

Bitcoin Cash 

1. Cauchy 

1. Cauchy 

1. Cauchy 

σ =0,0317  

µ =-0,00505 

0,04385 

2,6096*  

23,807**  

2. Laplace 

3. Error 

4. Log-logistic (3P) 

5. Dagum (4P) 

2. Laplace  

3. Error 

4. Johnson SU 

5. Burr (4P) 

2. Error 

3. Laplace 

4. Burr (4P) 

5. Johnson (SU) 

EOS 

1. Cauchy 

1. Cauchy 

1. Cauchy 

 

σ =0,03234   

µ =-0,00242 

0,04126 

2,642*  

21,121*  

2. Burr (4P) 

3. Log-logistic (3P) 

4. Dagum (4P) 

5. Laplace 

2. Laplace 

3. Error 

4. Burr (4P) 

5. Dagum (4P) 

2. Error 

3. Laplace  

4. Burr (4P) 

5. Log-logistic 

Binance 

1.  Cauchy 

1. Cauchy 

1. Cauchy 

 

σ =0,03142   

µ =5,5510E-4 

0,04926 

3,4931*  

17,792*  

2. Burr (4P) 

3. Log-Logistic 

(3P) 

4. Dagum (4P) 

5. Johnson SU 

2. Johnson SU 

3. Burr (4P) 

4. Log-logistic 

(3P) 

5. Dagum (4P) 

2. Johnson SU 

3. Error 

4. Laplace 

5. Burr (4P) 

Cardano 

1. Burr (4P) 

k =0,79473 

α =22,139 

β =0,77855   

γ =-0,79404 

0,04803 

2,4485 

20,494*  2. Log-logistic (3P) 

3. Dagum (4P) 

4. Cauchy 

5. Laplace 

2. Log-Logistic 

(3P) 

3. Burr (4P) 

4. Cauchy 

5. Laplace 

 

2. Burr (4P) 

3. Log-logistic 

(3P) 

4. Cauchy 

5. Error 

 
1. Dagum (4P) 

1. Dagum (4P) 

k =0,76682   

α =12,567 

β =0,45671   

γ =-0,44661 

0,05107 

2,201 

15,297 

Stellar 

1. Cauchy 

1. Cauchy 

1. Cauchy 

σ =0,02792   

µ =-0,00407 

0,04236**  

7,8608**  

44,95**  

2. Burr (4P) 

3. Log-Logistic 

(3P) 

4. Dagum (4P) 

5. Laplace 

2. Burr (4P) 

3. Dagum (4P) 

4. Log-logistic 

(3P) 

5. Johnson SU 

2. Burr (4P) 

3. Error  

4. Laplace 

5. Dagum (4P) 
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Monero 

1. Error 

k =1,0  

σ =0,07249   

µ =0,00215 

0,03335*  

2,8561*  

32,735** 
2. Laplace 

3. Johnson SU 

4. Burr (4P) 

5. Log-Logistic 

(3p) 

2. Error 

3. Johnson SU 

4. Burr (4P) 

5. Dagum (4P) 

2. Laplace 

3. Johnson SU 

4. Cauchy 

5. Burr (4P) 1. Laplace 
λ =19,509   

µ =0,00215 

0,03335*  

2,8561*  

32,735**  

1.  Error   

Tron 

1.  Cauchy 

1.  Cauchy 

1. Cauchy 

σ =0,03495   

µ =-0,00367 

0,04036 

2,2061 

9,7874 

2. Log-logistic (3P) 

3. Burr (4P) 

4. Dagum (4P) 

5. Laplace 

2. Burr (4P) 

3. Dagum (4P) 

4. Log-logistic 

(3P) 

5. Laplace 

2. Burr (4P) 

3. Log-logistic 

(3P) 

4. Dagum (4P) 

5. Error 

Dash 

1. Cauchy 

1. Cauchy 

1. Cauchy 

σ =0,0265   

µ =-0,00249 

0,04049**  

8,2858**  

66,969**  

2. Burr (4P)  

3. Log-logistic (3P) 

4. Dagum (4P) 

5. Laplace 

2. Burr (4P) 

3. Johnson SU 

4. Log-logistic (3P) 
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