
The Development of a Service-Oriented Architecture for

Digital Services on Maritime Vessels

by

Nicholas Raymond Bunn

Thesis presented in partial fulfilment of the

requirements for the degree of

Master of Engineering (Mechatronic) in the Faculty of

Engineering at Stellenbosch University

Supervisor: Dr K Kruger

Co-supervisor: Prof A Bekker

April 2022

The financial assistance of the National Research Foundation (NRF) towards this research is

hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and

are not necessarily attributed to the NRF.

i

Declaration

By submitting this thesis electronically, I declare that the entirety of the work

contained therein is my own, original work, that I am the sole author thereof (save

to the extent explicitly otherwise stated), that reproduction and publication thereof

by Stellenbosch University will not infringe any third party rights and that I have

not previously in its entirety or in part submitted it for obtaining any qualification.

Date: April 2022

Copyright © 2022 Stellenbosch University

All rights reserved

Stellenbosch University https://scholar.sun.ac.za

ii

Abstract

The Development of a Service-Oriented Architecture for

Digital Services on Maritime Vessels

N.R. Bunn

Department of Mechanical and Mechatronic Engineering

Stellenbosch University

Private Bag X1, 7602 Matieland, South Africa

Thesis: M.Eng. (Mechatronic Engineering)

April 2022

Digitalisation efforts in the maritime domain have, until now, predominantly

focussed on ports and terminals. Contributions to the adoption of digitalisation

technologies on vessels themselves stem mostly from industry, although the value

of doing so has become increasingly apparent where digitalisation is said to present

opportunities for improved vessel operation and performance. A popular approach

to digitalisation, identified in the manufacturing and Industry 4.0 realms, is that of

service-orientation and digital services. Here, systems are composed of discrete

contributions, providing flexible and adaptable solutions to digitalisation

challenges in dynamic environments with evolving needs.

This thesis details the design, development, and evaluation of a service-oriented

architecture to aid in decision-making on maritime vessels. This architecture takes

a microservice approach to service-orientation, employing a custom variation of the

API-gateway pattern to enable a flexible and reconfigurable system. The proposed

architecture includes an aggregation layer to abstract coordination activities from

the service layer, negating the need for a service-mesh in the backend.

The architecture is tested and evaluated through a case study, carried out on the

icebreaking polar supply and research vessel, the S.A. Agulhas II. This case study

deploys information services and existing engineering models describing the vessel

as microservices. Aggregating services are designed to leverage these services,

providing information to aid in route planning and support more informed decision-

making.

The case study details specific technology implementations to provide the specified

platform functionality, with the most notable of these being gRPC as an RPC

framework. The experiments indicate that RPC is a suitable communication

mechanism for in-memory aggregation and real-time data delivery in this context.

However, it was discovered that the gRPC interceptor functionality is not a robust

Stellenbosch University https://scholar.sun.ac.za

iii

choice for all cases of rate-limiting and retry logic, and recommendations are

provided for a revision of these components.

This thesis concludes that the proposed architecture is successful in providing a

reconfigurable service-oriented architecture for digital service delivery on maritime

vessels. Generic platform components were developed in the four programming

languages used in the case study, showcasing the interoperability of services written

in various languages, and by various domain experts, within the system.

Stellenbosch University https://scholar.sun.ac.za

iv

Uittreksel

’n Diens-georiënteerde Argitektuur vir Digitale

Dienssamevoeging op Maritieme Vaartuie

N.R. Bunn

Departement van Meganiese and Megatroniese Ingenieurswese

Universiteit Stellenbosch

Privaatsak X1, 7602 Matieland, Suid-Afrika

Tesis: M.Ing. (Megatroniese Ingenieurswese)

April 2022

Die digitalisering van die maritieme veld fokus tans hoofsaaklik op hawens en

terminale. Navorsing oor digitaliseringtegnologieë op skepe word meestal gedryf

deur industrie en die waarde daarvan word beklemtoon waar hierdie digitalisering

die werking en verrigting van skepe kan verbeter. ‘n Gewilde benadering in die

digitalisering van die vervaardigingsindustrie, veral in die konteks van Industrie

4.0, is die van diens-oriëntering en digitale dienste. In hierdie benadering bestaan

stelsels uit diskrete bydraes wat aanpasbare oplossings bied tot die uitdagings van

digitalisering in dinamiese omstandighede met ontwikkelende vereistes.

Hierdie tesis bespreek die ontwerp, ontwikkeling en evaluering van ŉ diens-

georiënteerde argitektuur om besluitneming op maritieme vaartuie te ondersteun.

Die argitektuur neem ŉ mikrodienste benadering tot diens-oriëntering en gebruik

‘n pasgemaakte variasie van die toepassingprogrameringkoppelvlak-poort patroon

om ŉ aanpasbare en herkonfigureerbare stelsel te ontwikkel. Die argitektuur behels

ŉ samevoegingsvlak wat aktiwiteite van die diensvlak koördineer om sodoende die

behoefte aan ŉ dienstenet in die agtergrondverwerkingsvlak uit te skakel.

Die argitektuur is getoets en geëvalueer met ŉ gesimuleerde gevallestudie gebaseer

op ŉ ysbrekende, Antarktiese navorsingskip, genaamd die S.A. Agulhas II. Die

gevallestudie pas inligtingdienste en bestaande ingenieursmodelle wat die skip

beskryf toe as mikrodienste. Samevattingsdienste is ontwerp om hierdie

mikrodienste te benut om inligting te verskaf ter ondersteuning van roetebeplanning

en besluitneming op die skip.

Die gevallestudie beskryf spesifieke tegnologie-implementerings om

gespesifiseerde platformfunksionaliteit te verskaf. Die belangrikste implementering

is die van gRPC as afstand-prosedure oproep raamwerk. Die eksperimente dui aan

dat afstand-prosedure oproep ŉ gepaste kommunikasie meganisme is vir binne-

geheue samevatting en intydse data-aflewering in die konteks van digitalisering van

skepe. Ten spyte hiervan, is dit egter bevind dat die gRPC onderskepper nie ‘n

Stellenbosch University https://scholar.sun.ac.za

v

robuuste keuse is vir alle tempo-beperking en herprobeer logika nie. Voorstelle om

hierdie komponent te heroorweeg word verskaf.

In die gevallestudie is generiese platformkomponente ontwikkel in vier

programmeringstale, wat die samewerking van dienste – ontwikkel in verskillende

programmeringstale en moontlik selfs gelewer deur verskillende spesialiste – ten

toon stel. Die tesis kom tot die gevolgtrekking dat die voorgestelde argitektuur slaag

as ŉ herkonfigureerbare diens-georiënteerde argitektuur wat digitale dienste kan

lewer op skepe.

Stellenbosch University https://scholar.sun.ac.za

vi

Acknowledgements

Firstly, I would like to thank my family for their support throughout my studies and

the past two years. To my parents for their unconditional love and for all the effort

you have put into my education, be it through the opportunities made available to

me or through your personal teachings – I would not have found my way onto this

path without your guidance. To my brother, Greg, without your shared passion for

creating, innovation, and life, I would not have enjoyed my work as much as I have.

Then, I would like to thank my two supervisors for their guidance and support

throughout this project. Dr Kruger, for providing me with direction and introducing

me to the world of software. You have helped to structure this work; keeping me on

track while giving me the freedom to wander into that which interests me. You have

helped me to discover a passion for software that I was unaware of before beginning

this masters. To Prof Bekker for your constant motivation and for showing me the

true value of having passion in work. Your love for the S.A. Agulhas II has been

inspiring throughout, and I truly appreciate the environment that you have built

between you and your students. The opportunities and experiences that you have

provided, through our group runs, coffees, courses, our data project, and my time

on the ship, will stick with me forever – I am truly grateful. The two of you have

instilled a love for learning in me, and over the last two years have helped me to

discover the direction which I would like to take in the future.

I would like to extend my gratitude to my fellow researchers, especially those

within my two research groups. It is always comforting having others around, and

being surrounded by people who share a passion for technology makes for

stimulating conversation when breaks are, inevitably, needed. The value that this

sense of community has had was only amplified through the pandemic, and having

ears to share challenges with made it far easier to carry momentum through the

slower times.

A special mention should be made of the AMSOL crew on board the S.A. Agulhas

II. During my voyage, you made us feel so welcome on board that there were times

when I felt more like a crew member than a researcher. Your willingness to assist

us, entertain our ideas, and teach us was so greatly appreciated. The knowledge you

shared throughout our time working together has helped more than you can

imagine. To the DEFF personnel responsible for our voyage, you navigated difficult

situations from before we had even entered quarantine and still managed to keep a

smile on your faces throughout the expedition – additionally, the opportunities you

unlocked for us were once in a lifetime and will forever be cherished. Thanks should

also be given to all other passengers on the SANAE 60 expedition for contributing

to a welcoming environment. The vast knowledge available through all of you, and

the inclusive nature embodied by all, made for an interesting and exciting trip in all

aspects.

Stellenbosch University https://scholar.sun.ac.za

vii

Finally, gratitude is extended to the NRF for their financial support over the past

two years. Your financial assistance to my research has been greatly appreciated, in

addition to your support for the greater research performed through the SANAP

program. The knowledge-oriented environment you support in the SANAP program

made for a far more enriching post-graduate experience.

Stellenbosch University https://scholar.sun.ac.za

viii

Table of contents
 Page

Declaration .. i

Abstract ... ii

Uittreksel .. iv

Acknowledgements ... vi

List of figures .. xii

List of tables .. xiii

Glossary ... xiv

1 Introduction ... 1

1.1 Background ... 1

1.2 Objectives .. 2

1.3 Motivation ... 3

1.4 Methodology ... 5

2 Literature Review ... 7

2.1 Industry 4.0 in the Maritime Domain .. 7

2.2 Service-Oriented Architectures ... 9

2.2.1 Background.. 9

2.2.2 Service-Oriented Architectures in the Maritime Domain 11

2.2.3 Relevant Service-Oriented Architecture Applications 11

2.2.4 Microservices .. 13

2.2.5 Service-Oriented Holonic Systems.. 17

2.3 Middleware .. 19

2.4 Communication Mechanisms .. 21

2.4.1 REST API .. 21

2.4.2 Event-Driven Architectures ... 23

2.4.3 Remote Procedure Calls .. 24

2.5 Security .. 26

2.6 Conclusion ... 27

3 Problem Identification and Requirements ... 28

3.1 System Definition .. 28

3.2 Problem Identification ... 29

3.3 System Requirements .. 29

3.3.1 Functional Requirements ... 30

Stellenbosch University https://scholar.sun.ac.za

ix

3.3.2 Non-Functional Requirements... 30

4 Architecture Selection .. 32

4.1 Microservices .. 32

4.2 Multi-Agent Systems ... 33

4.3 Discussion ... 33

4.4 Selection .. 35

4.4.1 Frontend Layer .. 36

4.4.2 Middleware Layer ... 36

4.4.3 Backend Layer ... 37

5 Architecture Design .. 38

5.1 Communication ... 38

5.1.1 REST API .. 38

5.1.2 Event-Driven Architecture .. 39

5.1.3 Remote Procedure Calls .. 41

5.2 Middleware .. 42

5.2.1 Security Middleware ... 43

5.2.2 Monitoring Middleware... 43

5.2.3 Message-Oriented Middleware ... 43

5.2.4 Communication Middleware ... 43

5.3 Security .. 44

5.4 Architecture Specification ... 46

5.4.1 Communication ... 46

5.4.2 User Interfaces ... 47

5.4.3 Gateway Services .. 47

5.4.4 Security Services ... 48

5.4.5 Monitoring Services .. 49

5.4.6 Aggregation Layer ... 49

5.4.7 Service Layer ... 50

6 Case Study Implementation ... 51

6.1 Objectives .. 51

6.2 Methodology ... 51

6.3 Implementation .. 52

6.3.1 Implementation Strategy ... 52

6.3.2 Implementation Platform and Technology Selection 53

7 Case Study Evaluation ... 57

7.1 Evaluation Criteria .. 57

7.2 Experiments ... 59

7.2.1 Standard Operation Experiment .. 59

7.2.2 Forced Failure Experiment .. 60

7.2.3 Security Experiment .. 61

Stellenbosch University https://scholar.sun.ac.za

x

7.2.4 Reconfigurability Experiment ... 61

7.3 Results ... 62

7.3.1 Quantitative Metrics .. 62

7.3.2 Qualitative ... 67

7.4 Discussion ... 69

7.4.1 Functional Suitability .. 69

7.4.2 Performance Efficiency ... 77

7.4.3 Compatibility ... 81

7.4.4 Reliability .. 81

7.4.5 Security .. 85

7.4.6 Maintainability .. 87

8 Conclusion and Recommendations ... 89

9 References .. 92

Appendix A ISO/IEC 25010: Product Quality Evaluation System 98

A.1 Functional Suitability ... 98

A.2 Performance Efficiency ... 99

A.3 Compatibility ... 99

A.4 Usability ... 99

A.5 Reliability ... 100

A.6 Security .. 100

A.7 Maintainability ... 101

A.8 Portability ... 101

Appendix B Interceptor Source Code ... 102

B.1 Retry Interceptor .. 102

B.2 Metric Interceptor .. 103

B.3 Rate Limit Interceptor .. 105

B.4 Authorisation Interceptor ... 105

Appendix C Case Study Components ... 108

C.1 Ocean Weather Service .. 108

C.2 Power-Train Service .. 109

C.3 Vibration Estimate Service .. 110

C.4 Comfort Service ... 111

C.5 Propeller Monitor Service .. 112

C.6 Route Analysis Aggregator .. 114

C.7 Power-Train Aggregator .. 115

C.8 Vessel Vibration Aggregator ... 116

C.9 Web Gateway ... 117

Stellenbosch University https://scholar.sun.ac.za

xi

C.10 Rate Limit Service ... 117

C.11 Authentication Service ... 117

C.12 Prometheus Server ... 118

C.13 Web Frontend ... 118

Appendix D Test Procedures ... 119

D.1 Standard Operations Experiment ... 119

D.1.1 System Stability Test ... 119

D.1.2 Interceptor Benchmark Test .. 120

D.1.3 Request Limit Test .. 121

D.2 Forced Failure Experiment .. 121

D.2.1 Failure Isolation Test ... 121

D.2.2 Service Recovery Test ... 122

D.2.3 Network Recovery Test ... 123

D.3 Security Experiment .. 124

D.3.1 Unauthorised Access Test ... 124

D.3.2 Gateway Bypass Test .. 124

D.3.3 Rate Limit Test .. 125

D.4 Reconfigurability Experiment .. 126

D.4.1 Service Development Test ... 126

 129

D.4.2 Service Integration Test ... 130

Appendix E Results ... 133

Stellenbosch University https://scholar.sun.ac.za

xii

List of figures

 Page

Figure 1: Industrial revolutions in the maritime domain (adapted from Cline

(2017)) ... 7

Figure 2: API gateway pattern ... 16

Figure 3: System boundary diagram .. 29

Figure 4: Layered architecture diagram ... 36

Figure 5: Architecture diagram .. 47

Figure 6: Case study diagram .. 56

Figure 7: Communication latency histogram ... 62

Figure 8: Gateway latency histogram .. 63

Figure 9: Service latency with (a) no interceptors, (b) metric interceptor only, (c)

authorisation interceptor only, and (d) rate limit interceptor only 66

Figure 10: Plot comparison for power consumption with (a) showing the graph

presented after transport and (b) showing the graph generated in the

power-train service .. 72

Figure 11: Plot comparison for bridge acceleration with (a) showing the graph

presented after transport and (b) showing the graph generated in the

vibration estimate service ... 73

Figure 12: ISO 25010 (adapted from ISO/IEC & JTC1/SC7/WG6 (2011)) 98

Figure 21: Ocean weather service interface ... 108

Figure 22: Power-train service interface .. 110

Figure 23: Vibration estimate service interface ... 110

Figure 24: Comfort service interface ... 112

Figure 25: Propeller monitor service interface .. 114

Figure 26: Route analysis aggregator interface and information flow 115

Figure 27: Vessel vibration aggregator interface ... 116

Figure 28: Power train aggregator interface and information flow 116

Stellenbosch University https://scholar.sun.ac.za

xiii

List of tables

 Page

Table 1: Benefits and drawbacks of REST APIs. .. 22

Table 2: Benefits and drawbacks of event-driven communication. 23

Table 3: Benefits and drawbacks of (g)RPC ... 25

Table 4: Functional requirements .. 30

Table 5: Non-functional requirements ... 31

Table 6: Evaluation criteria .. 58

Table 7: Interceptor latencies ... 66

Table 8: Regression coefficients for open-water bridge estimates (Soal, 2014) . 111

Table 9: Comfort ratings (adapted from Appendix C, Standardization, 1997) ... 112

Table 10: Route analysis aggregator latency ... 133

Table 11: Power train aggregator latency .. 133

Table 12: Vessel vibration aggregator latency .. 134

Table 13: Comfort service latency (remote) .. 134

Table 14: Comfort service latency (local) ... 134

Table 15: Authentication service latency ... 135

Table 16: Ocean weather service latency .. 136

Table 17: Power train service latency .. 137

Table 18: Gateway latency .. 138

Table 19: Interceptor benchmark test latencies ... 139

Table 20: Rate limit test results ... 139

Stellenbosch University https://scholar.sun.ac.za

xiv

Glossary

Aggregation

The process of grouping/combining different sources of information, where

the combination of them does not alter the information in any way.

Aggregation simplifies accessing the information by ‘packaging’ it in an

easy-to-manage way.

Application Programming Interface (API)

A computing interface that defines the interactions between software

components. APIs define what kind of requests can be made, the

information to be communicated, the information to be expected, and the

data format to be used.

Architecture

A (software) architecture refers to the fundamental software components

and relationships between components that comprise a specific software

system. An architecture acts as a blueprint for developers to follow in

implementing software, in the same way an architect/engineer develops

blueprints for contractors to follow when constructing a building.

Design Pattern

A design pattern, in the context of software development, refers to a generic

and repeatable solution that can be applied to common problems

encountered during software design. Design patterns help designers to avoid

common pitfalls by employing template solutions resulting from lessons

learnt by more experienced designers and developers.

Digital Service

Describes the delivery of a service over an electronic network. Information

is communicated in an automated manner with little to no human

intervention. The information any given service provides is dictated by the

need for the service itself, thus, each service serves a specific purpose.

Digital Twin

A virtual representation of a real-world entity or process that emulates the

state and behaviours of the physical entity, based on sensor input from the

entity and/or its environments. Digital twins encapsulate domain knowledge

about some real-world entity in order to provide an interactive

representation in the virtual realm.

Digitalisation

Not to be confused with digitisation, which describes the process of

converting information from a physical format to a digital one.

Digitalisation is the act of leveraging digitised information and digital

technologies to improve business processes.

Stellenbosch University https://scholar.sun.ac.za

xv

Industry 4.0

Also known as the fourth industrial revolution. Industry 4.0 describes the

trend towards automation and intelligent data exchange between machines

using wireless communication. This trend describes a world of connected

machines and devices capable of sharing information regarding their state

and behaviour for enhanced decision-making, operation, and collaboration.

Maritime 4.0

Refers to the implementation of Industry 4.0 technologies and ideologies

within the maritime domain. Specifically, working towards smarter

shipbuilding, and autonomous vessel navigation and operation using

connected fleets.

Microservice Architecture

A modern extension of the service-oriented architecture (SOA) with a focus

on domain-driven design. Microservices are finer-grained than services in

an SOA and exist such that they are independently deployable and scalable.

Microservices allow for continuous development, improved modularity,

and highly scalable systems.

Multi-Agent System (MAS)

MAS’ describe a software system comprising of discrete, self-organising

entities (agents). The agents are considered intelligent entities, allowing for

autonomous decision-making and organisation in fulfilling their goals.

MAS’ are an approach to modelling and building complex distributed

systems in software.

REpresentational State Transfer (REST)

REST is an architectural style, providing 6 guiding principles, intended for

use in the design of APIs. It places a focus on efficient hypermedia data

transfer. A REST API provides a representation of the state of the resource

that is offering the interface.

Remote Procedure Call (RPC)

RPCs are an approach to inter-process communication enabling a computer

program to invoke a procedure on a separate machine as if it were invoking

a function executing locally. The RPC hides all networking complexity such

that the program requesting it does not need to navigate the network aspect

of the call.

Service-Oriented Architecture (SOA)

A software design style where digital services are provided to other

components, through a communication protocol over a network. A ‘service’

is a discrete, remotely-accessible unit of functionality responsible for a

specific business activity.

Stellenbosch University https://scholar.sun.ac.za

1

1 Introduction

This introductory chapter provides the background to this research such that the

context is understood and the objectives can be fully appreciated. Thereafter, it

defines the objectives of this work and motivates the value that its contributions

will have. Finally, this chapter describes the methodology that was followed to

achieve the specified objectives.

1.1 Background

“Digitalisation has the potential to add wind to the sails of global seaborne trade, if

leveraged effectively,” – Mukhisa Kituyi, United Nations Secretary-General

(UNCTAD, 2018).

The maritime industry is undoubtedly the biggest contributor to global trade, with

shipping responsible for over 90% of the world's export (Geiling, 2013). However,

even with this industry forming the backbone of the world’s international trade

sector, it is still considered one of the most conservative industries concerning

technological change and digitalisation. Recently, major industry players have been

investing in vessel digitalisation to propel their fleets into the digital era.

Ships require immense capital investment, having significant costs associated with

operation and maintenance too. Digitalisation presents opportunities for more

streamlined vessel operation with improved performance, facilitating more

effective maintenance plans and reduced operation costs – these are often attributed

as resulting from the implementation of digital twins. The concept of digital twins

is one approach to digitalisation. In the maritime domain, limited work has been

conducted on vessel digital twins within the research community. Currently, the

majority of contributions on this topic lie within industry where suppliers of

components, such as generators and motors, offer their products with an associated

software representation (the digital twin). These ‘digital twins’ offer comprehensive

data collection and in some cases, self-diagnoses or health monitoring.

The ideology of the digital twin describes a system that is all-knowing of itself, a

single source of truth. A notable challenge in developing these digital twins is in the

scoping of the digital twin to navigate the complexity inherent in the systems that

they are applied to. Various approaches to this have been proposed, with one of the

more practical being a systems-of-systems approach. Here, the digital twin of a

complex system comprises sub-system digital twins that encapsulate smaller,

bounded contexts within the greater system. In the context of the maritime domain,

and with most vessels comprising sub-systems from various vendors, these twins

typically exist as silos onboard with their data and insights existing in isolation of

each other (Fonseca & Gaspar, 2020).

Stellenbosch University https://scholar.sun.ac.za

2

Returning to the core idea, digitalisation is said to offer better synchronisation in

fleet operation and management, and more optimised route planning. Furthermore,

digitalisation opens doors for the integration of other modern technologies,

unlocking further big data capabilities to provide more valuable real-time insights

to ship operators and stakeholders.

The digitalisation of a vessel, or any real-world system for that matter, relies on a

sound basis to build off of. This comes in the form of a software architecture and is

critical to the success of any IT system (Bergner et al., 2005). The digitalisation of

a vessel can be achieved through developing a digital service architecture, where

various ship functionalities exist as services. The term ‘digital service’ collectively

refers to the electronic delivery of information across platforms. Here, the

information is delivered and presented such that it is easy to understand and

interpret for the user.

The Mechatronic, Automation, and Design (MAD) research group of Stellenbosch

University’s Department of Mechanical and Mechatronic Engineering have

previously conducted research into the development of software architectures.

Members of this group hold valuable experience relating to communication and

cyber-physical system applications. Also of Stellenbosch University’s Department

of Mechanical and Mechatronic Engineering, the Sound and Vibration Research

Group (SVRG) have a wealth of knowledge regarding the response of the S.A.

Agulhas II polar research vessel to her environment, as well as on-deck experience

working with their own data acquisition systems on the ship. The combined

knowledge and experience of these two groups provide a strong foundation for

developing a digital service architecture for use onboard maritime vessels.

1.2 Objectives

The objective of this thesis is to develop, deploy, and evaluate a digital service

architecture for the S.A. Agulhas II, henceforth referred to as the SAAII. This

system should provide the ship’s operators with real-time insights into vessel

performance and environmental interaction to aid in decision-making at strategic,

operational, and tactical levels (Erikstad, 2019). It will comprise discrete services,

acting independently while being orchestrated to serve stakeholder needs.

Considering the current state of digital twins within the maritime domain, this work

considers digital twins following the digital-twin-as-a-service model. In this model,

digital twins are considered as service providers, with other digital twins using the

services on offer for collaboration. Regarding information usage, any authorised

client is capable of querying these services to obtain information about the asset

that they encapsulate. Tying into this consideration, an assumption is made on data

availability on maritime vessels. In this thesis, it is assumed that where a service

boasts logic operating on recorded data, that the data is stored and available in a

usable format. This assumption ensures that services should not have to convert the

data into a usable format before they can process it. In the case that data is stored

Stellenbosch University https://scholar.sun.ac.za

3

in a proprietary format, it is assumed that this data belongs to a digital twin that is

capable of offering the data to clients in a usable format.

The objectives for this project are to design an architecture that:

• Facilitates decision-aiding services composed of discrete contributions.

• Provides a facility to run engineering models as well as information

collectors to feed these models. These will exist as digital services within

the system.

• Coordinates information between models and various information services,

enabling the fusion of information to enhance the value provided to

stakeholders.

• Supports contributions from diverse vendors, such that the system can

adapt over time as the needs of the vessel and its stakeholders change. This

will allow for the system to be configured on a per voyage basis, tailoring

the offerings around the voyage goal. Naturally, it should simplify

interfacing, encouraging vendors to contribute and enabling

reconfigurability, i.e. contributors should not need an intimate

understanding of the greater system in order to contribute to it.

This project, therefore, aims to provide a service-oriented architecture (SOA) for

the delivery of digital services on maritime vessels. The architecture should be:

high-performance to provide near real-time information flows, modular to support

various services such that it is relevant for multiple applications, and enable easy

contribution from multiple vendors. Note that the scope of this thesis does not

include advanced service development. The research instead focuses on developing

the system to facilitate services. It is also worth noting that while this architecture

shares certain goals with digital twins, it is not a digital twin itself. It will, however,

facilitate the integration of them through services offered.

1.3 Motivation

Currently, the SVRG conduct research into the SAAII’s interaction with, and

performance in response to, its environment; reporting their findings to the captain

and vessel stakeholders annually at the SAAII Mini-Conference. At the most recent

of these conferences, taking place in December of 2019, Captain Freddie Ligthelm

expressed how valuable these insights would be to him if he had access to them in

real-time.

At this same conference Mr Nish Devanunthan, Operations and Logistics Director

for the Department of Environmental Affairs stated that there is currently a financial

shortfall for the planned voyages on the SAAII, and mentioned that the current cost

of operation for the ship exceeds R550 000 per day. On top of this, a challenge that

Stellenbosch University https://scholar.sun.ac.za

4

places further financial pressures on the stakeholders is the progressive increase in

maintenance costs for the vessel. The successful implementation of the proposed

architecture would enable the delivery of information regarding the ship’s

environmental interaction to the captain, such that he/she can optimise routes to

reduce voyage time and/or fuel consumption. Furthermore, the information

provided through this architecture can be used to direct maintenance activities more

effectively, leveraging services offered by tools such as digital twins.

Erikstad (2019) argues that digital services are key enablers for improved

operations in terms of efficiency, safety, and environmental impact. He further

mentions how large quantities of data have been recorded over recent years without

any ideas or plans to use them for decision-making support. This applies to the

problem at present, in that the SVRG have gained valuable knowledge into, and

data describing, the SAAII’s operations through the analysis of their sensor

readings, but these insights are currently only being used for reflection. This thesis

aims to maximise the value of these insights by providing an architecture to deliver

them in (close to) real-time in order to support the stakeholders in decision making.

Fonseca & Gaspar (2020) mention how the digital management of maritime vessels

has traditionally relied on a host of software tools that produce solutions to their

respective problems, going on to say how interoperability of these tools and

solutions is rarely considered. Harper, et al (2019) speak about how, when working

with digital twins, each asset vendor holds unique expertise for their equipment

which makes them the best analysts of the subject matter. Thus, there is merit in

composing system representations of specialised digital twins of its sub-systems.

The authors advocate for digital twins and stand-alone services to exist in harmony.

This approach is said to provide a separatison of concerns in an attempt to manage

the complexity of modelling and representing large and composed systems.

Bekker (2017) describes a decision-support concept where the SVRG’s full-scale

measurement system on the SAAII is updated to enable the concurrent acquisition

of vessel data. Leveraging this data with efficient real-time algorithms, such as

machine learning models, would enable the delivery of real-time information.

Specific mention is made of the ship’s hull and propulsion systems. These sub-

systems of the vessel are likely candidates to boast digital twins, which can offer

self-diagnosis based on current response or estimated response for specified routes.

It is thus evident that a solution is required to integrate existing and future models

and data describing vessel operation. Moreover, a solution is required that can

integrate the information on offer by current and future digital twins and solution

systems that are siloed in the current landscape of maritime vessels.

As is discovered in the literature review, service-oriented architectures (SOAs) are

still new to the maritime industry. This project will not be the first application of

SOAs on maritime vessels, but will certainly be early work in the use of service-

based digital maritime architectures. The successful outcome of this project hopes

to further bridge the gap between the current state of digital vessel management and

the complete implementation of Industry 4.0 in the maritime domain.

Stellenbosch University https://scholar.sun.ac.za

5

1.4 Methodology

This research began by performing a review of literature, investigating relevant

work done by others. This review is presented in Chapter 2, where the use of SOAs

in the maritime, and other relevant domains, is investigated. This chapter presents

relevant architectures and design patterns that align with the objectives of this

application, considering aggregation within these architectures. Finally,

middleware and security considerations that are commonplace in distributed and/or

service-oriented systems were reviewed.

Following this review, a systems engineering approach was taken in the selection

of a suitable architecture for this application. This approach was deemed

appropriate considering that this thesis concerns the design of a system rather than

an entity within a system. This selection considered what capabilities this

architecture needed to deliver and entailed generating a set of requirements that it

should satisfy. These needs comprise those identified in the above discussion, as

well as those identified in literature.

Upon selection of an architectural style, the architecture was further developed

through a detailed design process. This involved specifying the structure of the

architecture, the selection of communication protocols, and the specification of

generic system components. Here, important decisions were made regarding the

structure of the architecture as well as the interactions and communication within.

With a detailed design proposed, all generic components of an implementation were

developed. These include all components not related to a specific use case. The

development followed an incremental design strategy, deploying and testing each

successive module as it was created to simplify the debugging process.

Subsequently, this generic architecture was implemented in the form of a case study,

carried out on the SAAII. During this implementation, projects and models of the

SVRG were exploited and deployed within the proposed system as services. To

provide a controlled and repeatable test environment, the case study was carried out

in a simulated laboratory environment using data from the SAAII, rather than on

the vessel itself. Data structures and collection methodologies on the vessel were

replicated in the laboratory where required. One limitation to this case study was

the fact that, at the time of testing, no digital twins were available for inclusion. As

digital twin development lay beyond the scope of this work, a simplified digital

twin representation was used. This representation used engineering models to offer

services describing sub-systems of the vessel; where these models required only the

data generated by that sub-system itself. This representation was run on its own

machine, as a digital twin would be on a vessel.

This thesis concluded with an evaluation of the architecture and its implementation.

Here, a reflective analysis was performed on this research. This entailed the

generation of evaluation criteria based on microservice characteristics and the

design decisions made throughout this thesis. These criteria were assigned metrics

Stellenbosch University https://scholar.sun.ac.za

6

where appropriate. Based on the evaluation criteria, a set of experiments were

designed, with their outcomes compared to the specified objectives and

requirements. Through this, opportunities for improvement were identified to aid in

future continuations of this, or similar, projects.

Stellenbosch University https://scholar.sun.ac.za

7

2 Literature Review

This chapter investigates the current state of research with regards to vessel

digitalisation and maritime 4.0. The investigation begins by delving into the

contributions made to the maritime domain by the previous three industrial

revolutions and discusses the role that the fourth revolution currently plays in the

shipping industry. Following this, an investigation is carried out into service-

oriented architectures, covering their use in the maritime and relevant domains. This

investigation explores the aggregation of information and services through the

review of approaches to service-orientation and established design patterns. Based

on the review of the state-of-the-art of service-orientation in this context, relevant

middleware and popular communication mechanisms are identified. Security

considerations are subsequently reviewed, placing a focus on security in distributed

systems. This chapter concludes with a short discussion of the review; relating its

findings to, and placing them in the context of, this thesis.

2.1 Industry 4.0 in the Maritime Domain

Figure 1 illustrates the four industrial revolutions and their contributions within the

maritime domain. The following discussion refers to this figure in the description

of the various revolutions.

Figure 1: Industrial revolutions in the maritime domain (adapted from Cline (2017))

Stellenbosch University https://scholar.sun.ac.za

8

Shipping has long been an essential transportation technology, tracing back to

before the 19th century where sailing ships already dominated foreign trade. While

a titan in the trade industry, historians widely consider shipping to have been

stagnant for hundreds of years before the first industrial revolution introduced iron

steamships (North, 1968). In 1807, Robert Fulton built the first commercial

steamships, kickstarting the development of the maritime industry (Kelley & O

Gráda, 2018). Driven by both military and commercial industries, the advancement

of shipping performance has always been of great global interest.

Towards the end of the 19th century, the world entered into what is now considered

to be the second industrial revolution. This was characterised by the introduction of

mass production, assembly lines, and electricity. For the maritime industry, this

brought with it the standardisation and mass production of ship engines, as well as

advancements in structural engineering. These advancements were characterised

mainly by the replacement of iron with steel and welded joints succeeding rivetted

assemblies. Advancements in hydrodynamics and vessel stability were made by

experimenting with more optimised bow types. Finally, this revolution introduced

more advanced navigational equipment such as Radar and Sonar. However,

navigation was still predominantly done using radio communication and techniques

developed during the wars (Penobscop Marine Museum, 2012).

Starting around 1969, the third industrial revolution introduced the world to

automation, computers, and electronics. Along with further advancements in

manufacturing, this provided the maritime industry with the technology used for

navigation and performance systems. On-board navigation systems using GPS and

advanced sensor networks are implicit on modern ships. However, before their

inception around 1983, or 1973 in the case of military vessels (McDuffie, 2017),

ships relied mostly on traditional navigation techniques (Sid Nair, n.d.).

Additionally, the third industrial revolution provided ships with digital systems

capable of monitoring vessel performance such as speed and fuel consumption –

with rudimentary data collection.

The world is currently entering into what is widely considered the fourth industrial

revolution, entailing the introduction of cyber-physical systems (CPS), the internet

of things (IoT), networks, and big data. This “Industry 4.0” is an initiative

conceptualised and adopted by the German government in 2011 (Henning et al.,

2013). The initiative is being led by the manufacturing industry and the onset of

digital factories (Weyer et al., 2015). It promises a connected world full of ‘smart’

devices and machines that communicate with each other within a network, enabling

real-time information transfer and autonomous control (Weyer et al., 2015).

Kavallieratos et al. (2020) extend the existing maritime architecture framework

(MAF) to include autonomous vessels. The MAF is a reference architecture used

for ship-to-ship and ship-to-shore communication based on the smart-grid reference

architecture. The paper focuses on extending this framework to enable fully

autonomous vessels to operate without an onboard crew or human control.

Stellenbosch University https://scholar.sun.ac.za

9

de la Peña Zarzuelo et al. (2020) perform a literature review on Industry 4.0 in the

port and maritime industry. This review describes the evolution of ports and

terminals from a local scope to a point where they are fully integrated into the global

supply chain. This application of Industry 4.0 technologies to ports, has been

dubbed Port 4.0. Similarly, the application of Industry 4.0 technologies to the

greater maritime domain, including the digitalisation of maritime vessels, has been

dubbed Maritime 4.0. The current focus of studies within this Maritime 4.0 seems

to be on robotic applications within shipyards. This focus on production is to be

expected as the manufacturing industry is seen as the driving force behind this

fourth industrial revolution. This paper concludes its review on the state of Industry

4.0 in the maritime domain by presenting emerging challenges in its adoption. The

two challenges identified are those of cybersecurity, and connectivity and

standardisation of systems. Cybersecurity has received the highest level of attention

from port and maritime leaders recently (de la Peña Zarzuelo et al., 2020), with

threats growing as the initiative is adopted globally (Jones, 2014).

Ellingsen & Aasland (2019) carried out a case study on Industry 4.0 in the maritime

domain, investigating enabling technologies and strategies for technology

acquisition with a focus on shipbuilding. Interestingly, this paper speaks of data

capture and simulation/visualisation in real-time, saying how “the benefit of being

able to perform such live real-time simulations is having the human in the loop and

playing around with operational experience”. Here, this quote refers to real-time

simulation in the manufacturing process, but it is equally applicable on board a ship.

Being able to merge the operational experience of seasoned captains with real-time

data and simulation provides immense opportunity for advancement in ship

operation and environmental navigation. Support for this kind of simulation is

discussed below, where simulations are implemented as services offered

independently and through digital twins.

2.2 Service-Oriented Architectures

2.2.1 Background

Abdelhedi & Bouassidar (2020) define service-oriented architectures (SOAs) as an

architectural style for building systems based on interacting services. This

architectural approach describes an application that makes use of available services,

where these services are provided to form applications in and of themselves. Before

further investigating SOAs, it is necessary to define what a ‘service’ is. Each service

logically represents a business activity with a specific outcome. Richardson (2018)

describes a service as “a mini-application that implements narrowly focussed

functionality”. SOAs typically employ “smart pipes” for inter-service

communication, manifesting in the form of an Enterprise Service Bus. These

service busses employ heavy weight protocols, along with business and message-

processing logic, to integrate services in the system. The services described in an

Stellenbosch University https://scholar.sun.ac.za

10

SOA are typically implemented such that they are a small application in themselves,

with all services in the system acting on a global data model. (Richardson, 2018)

Prior to SOAs, services were understood as the end result of the application

development process whereas, in an SOA, the application itself is composed of

discrete services. Services are loosely-coupled and independent such that they can

be delivered individually or as components of a larger, composite service. Services

in an SOA interact using protocols such as REpresentational State Transfer (REST)

or Simple Object Access Protocol (SOAP), often doing so over the web. However,

SOAs are not limited to operation on a web-based network. While an SOA can be

implemented as a web service, these two concepts are not inclusive. An important

differentiation to be made is that in an SOA a service is any remotely available

resource that can respond to requests. A web service is simply a service,

implemented using specific web-based protocols. (Tyson, 2020)

Singh Gill (2020) describe the following nine principles of an SOA:

1. Standardised service contracts: All services within the system should share

a common format with which they communicate, as well as information

defining the service interface.

2. Loose service coupling: Services should minimise their dependency on one

another in an attempt to minimise the scope of failure.

3. Abstracted services: Services should not expose the logic that they

encapsulate. Instead, they should offer the functionality they can provide

without showing how said functionality is performed.

4. Reusable services: Logic should be divided within the system such that

services maximise re-use.

5. Autonomous services: Services should fully control the logic that they

encapsulate, taking full ownership of the business domain they represent.

6. Stateless services: Services within an SOA should be stateless meaning that

they should not need to store data regarding program states.

7. Discoverable services: Services should be visible within the system, with

their location being discoverable by interested clients.

8. Composable services: Encapsulating discrete business logic into services

allows one to break larger problems into a series of smaller, independent

problems.

9. Interoperable services: Services should leverage standards to provide

support to any users of said service.

Stellenbosch University https://scholar.sun.ac.za

11

2.2.2 Service-Oriented Architectures in the Maritime Domain

SOAs have been used by the military because of the benefit realised from the loose

coupling of services (Russell et al., 2008). Zoughbiy et al. (2011) consider the

architecture design of SOAs within the military environment, stating that many

global military organisations have adopted SOAs due to their flexibility and

information capabilities. More specifically to the maritime domain, Meyer (2007)

speaks of how naval fleets have adopted the SOA as it is “the best technical

approach to integration of processes, functionality, and data in heterogeneous,

cross-organisational, technical environments”. This paper further speaks of how

SOAs help with producing and integrating information from sensor systems into

decision processes.

Microservices are an approach to service-orientation whereby a system is composed

of discrete, lightweight components that each focus on doing a single task. They are

discussed in more detail in the section on Microservices. He et al. (2019) designed

a microservice-based information system for an inland river ship, hosted using

Spring Cloud. In this application, microservices offer information through a

RESTful interface using JSON message format on top of the HTTP protocol. One

of the requirements of this application was for the architecture to have “strong

horizontal expansion capabilities” which translates to a modular and scalable

system. This application focuses on using microservices to facilitate data regarding

the waterway and traffic information, rather than onboard measurements. The

microservice architecture implemented here uses API gateways for service

aggregation, such that it encapsulates the internal structure of the application and

the client only needs to interact through said gateway. The API Gateway pattern is

discussed further in Section 2.2.4.2.

2.2.3 Relevant Service-Oriented Architecture Applications

Berger et al. (2017) document their experiences in using containerised development

to deploy a microservice architecture for self-driving vehicles. Containerisation is

an approach to deploying microservices, whereby each service is assigned its own

lightweight operating system to ensure service independence. In their application,

communication is carried out using a publish-subscribe/event-driven approach. The

authors mention the reasons a microservice architecture was used, how

containerised development assisted with the deployment of the architecture, and the

advantages that a microservices architecture offers to their use case – being quick

onboarding for new developers, scalability, and ease of component addition and

modification (flexibility). In this application, various vehicle tasks and/or functions

exist as their own microservice, making use of the Docker ecosystem for

containerised development and monitoring of microservices. Containerised

development was used for the development and deployment of software

components that interface with hardware components such as sensors. Their

reflection on the use of microservices provides suggestions for improvement

pertaining to the use of publish-subscribe communication and the reliance on the

Stellenbosch University https://scholar.sun.ac.za

12

Docker ecosystem as a limitation. No mention is given of issues or regrets in using

microservices for this application.

Building on the idea of containerisation, Borodulin et al. (2017) investigate the use

of containerisation for the development of digital twins in smart factories. To

provide execution of the digital twins, this project designs a “Digital Twins Cloud

Platform” that provides an Application Programming Interface (API) to present

each digital twin as a microservice. This platform, therefore, provides digital twins

as a service. Here, information that the digital twin is able to provide to consumers

is implemented as a service offering with no specific examples provided.

Kruger et al. (2021) present an architecture for integrating digital twins within a

service network. This work describes a service mesh being deployed alongside

digital twins. In this architecture, digital twin instances (DTIs) encapsulate and offer

services that can be interacted with in the same way as services in the service mesh.

The differentiation is that services encapsulated by a DTI are constrained to using

the data captured or generated within that digital twin – they are entirely

introspective. This allows a strong separation of concerns for digital twins, allowing

one to define and follow a strict scope during development. In the proposed

architecture, services in the service network are aligned to user requirements,

instead of to detailed domain knowledge of a physical counterpart. This approach

hinges on the idea of a digital-twin-as-a-service. This allows for the servitisation of

digital twins (and their associated physical assets), promoting integration through

customised service platforms. The paper mentions service-oriented architectures

for the service mesh, with emphasis placed on the more modern trend towards

microservice architectures.

Remaining within the manufacturing domain, Ciavotta et al. (2019) looked at

creating a microservice-based middleware for the digital factory. This application

focused on enabling the interoperability of enterprise applications and CPS’s,

paying special attention to simulation tools. The developed architecture provides

support for digital twins but does not provide a digital twin itself. This architecture

acts as a framework to support the digital twins of CPS’s using REST APIs for the

aggregation of twins. Aggregation within service-oriented architectures and more

specifically, microservice architectures, is discussed further in section 2.2.4.2.

Gamboa et al. (2015) present a framework for modelling manufacturing processes

through the use of service-oriented holonic manufacturing systems. The authors

state that holonic architectures and SOAs are the two most studied solutions to

provide flexible and responsive systems for rapidly changing environments. Further

mention is given of how these approaches provide agile environments for “next-

generation manufacturing systems”. This work takes the approach of combining

these two systems, specifying what it is that services represent in these

manufacturing systems.

Stellenbosch University https://scholar.sun.ac.za

13

Derigent et al. (2021) considers the contribution that holonic manufacturing

systems have had to Industry 4.0. This work includes multi-agent systems as an

approach to implementing holonic control architectures (HCA). The authors

attribute the adoption of HCAs to their cooperative, adaptable, autonomous, and

decision-making properties. These yield systems that can be easily and dynamically

reconfigured such that they remain relevant when modelling complex systems

boasting dynamic relationships – as is the case in large-scale manufacturing control

systems.

Egert et al. (2021) investigate holarchies as an architectural pattern for smart grid

applications. This work states how these holarchies provide isolation and self-

maintained operation of their subparts (holons). Further mention is made of the

support that holons, specifically, provide for the dynamic reconfiguration of

systems. Holonic architectures (holarchies) are discussed in Section 2.2.5.

2.2.4 Microservices

Whether microservices are in fact a type of SOA, or an entirely new architectural

style on their own, is a point of contention in literature. However, for the purpose

of this study, and considering the end goal of creating discrete services to break

down domain logic, they are considered as a sub-category of SOAs. Newman

(2014) describes microservices as autonomous services that work together, further

stating that they are small, lightweight, and focussed on doing one task well. Here,

autonomy refers to the services communicating via network calls. This is specified

to enforce the separation of services and avoid tight coupling.

Contrasting his description of an SOA, Richardson (2018) describes microservices

as using “dumb pipes”, such as message brokers or direct service-to-service

communication. “Dumb pipes” refer to communication support without containing

business logic, placing all business logic within the services themselves.

Complimenting these “dumb pipes” are lightweight messaging protocols such as

REST or gRPC. In addition to the difference in communication, microservices most

often work with a single data model per service, instead of a single data model for

the entire system. The final and most obvious variation to an SOA is in the service

size. Each service in a microservice is considerably smaller than that of an SOA. A

microservice typically encapsulates a single function within the system, whereas a

service in an SOA encapsulates a single application within the system. Considering

this difference, an SOA’s service is almost always larger and more complex than a

microservice as its purpose is to integrate monolithic applications.

2.2.4.1 Characteristics of Microservices

Extrapolating from Newman (2014) and Richardson (2018), a microservice

architecture’s core characteristics can be identified as:

Stellenbosch University https://scholar.sun.ac.za

14

1. Allowing for technology heterogeneity and easy technological adoption:

Through strict service boundaries and standardised interfaces, each

microservice is free to use any technology that suits its logic. This

encourages the adoption of new technologies in the system and allows the

most appropriate technology to be used for every function within.

2. Providing resilience and fault isolation: Performing a similar role as the

bulkhead of a ship, service boundaries provide resilience to failures.

Failures in a service cannot spread beyond its interface, isolating the failure

to that service where it originated.

3. Providing a scalable system: In a traditional monolithic application, the

entire application would need to scale together when the load required it.

However, in microservices, each service is able to scale independently as

required.

4. Enabling independent service deployment: Any changes to a service will

only affect that service. When updating this service during deployment, only

the updated service needs to be relaunched, instead of the entire system.

5. Allowing for organisational alignment: With each service existing

independently of others within the system, teams can be assigned to services

without them having to deal with the work of other teams. This allows for

services to be decomposed based on domain teams, allowing domain experts

to own and focus on their service without concerning themselves with the

work of others in the system.

6. Supporting composability: Having discrete services responsible for specific

functions and logic opens up opportunities for reuse of functionality instead

of replication of it.

7. Enhanced maintainability: By keeping services small in size, replacing and

refactoring services is a less intimidating task than that in monolithic

applications. In a traditional application, legacy systems are often left as is

because they are too complicated and have too large of a codebase to be

practically (and safely) updated. Microservices ensure that this is avoided

so that all components of the system can be kept up to date, enabling the

system to grow along with technological change.

2.2.4.2 Aggregation within Microservices

Malik et al. (2019) propose a solution to integrate ‘virtual objects’ based on

contextual information in order to provide an IoT service. The virtual objects

spoken about here are described as digital counterparts of physical objects. This

paper considers the orchestration of microservices, with each ‘virtual object’

associated to its own microservice. The IoT services are created by representing

real-world objects with virtual-world objects, using the collected real-world sensor

Stellenbosch University https://scholar.sun.ac.za

15

data. Orchestration is left as a responsibility of the user in this system; giving them

the option to select all possible virtual objects and observe all possible service

combinations, or allowing them to select the desired services and customise the

scope of aggregation.

Damyanov (2019) investigated data aggregation within a microservice architecture.

In microservices, data aggregation is performed in memory, by services themselves.

This differs from centralised applications where a relational database is typically

employed to execute this aggregation logic. Building on this fact, this paper

investigates the use of the JavaScript Object Notation (JSON) format with an API

for aggregation. Language INtegrated Queries (LINQ) defines the API used to

enable the querying of data collection. Aggregation is performed in-memory in this

application by using advanced LINQ queries that select and join JSON data fields

to serve user requests. LINQ offers an SQL-like query syntax allowing the querier

to filter (where), map (select), sort (order), and bind/group information. Leveraging

this, the API can be defined to perform aggregation of in-memory data sources

instead of relying on a relational database and SQL-queries to provide aggregation.

2.2.4.3 Microservice Design Patterns

With microservices gaining popularity in recent times through their adoption by

larger institutions such as Netflix, Uber, and Amazon, some form of standardisation

has emerged. This standardisation comes in the form of design patterns. Patterns

are not a new concept but have only recently been introduced to the world of

microservices. The concept was first introduced by Alexander et al. (1977) as

describing a problem and the core of a solution that can be reused in different ways

within a field of expertise. This definition was originally put forward in the context

of architecture but has since been adopted in the world of software development.

Here, patterns refer to generic and reusable approaches or blueprints to building a

codebase where different ‘patterns’ can be used depending on the problem or goal

at hand. Patterns are developed through lessons learnt in taking various approaches

to implementing applications. As such, a designer can avoid certain shortfalls and

avoid common mistakes through the selection of a suitable pattern for their

application.

Stellenbosch University https://scholar.sun.ac.za

16

The nature of a microservice architecture is that it comprises a suite of loosely-

coupled, fine-grained services with each running in its own process (Fowler &

Lewis, 2014). As a result of how independent each service is, one of the most

common design patterns used for this architectural style is the ‘aggregator’ design

pattern (Basu, 2018). In this pattern, a single aggregator service exists to invoke the

required services to serve the requested information to the user.

A popular variation of the aggregator pattern is the ‘API Gateway’ design pattern,

shown in Figure 2. These two patterns look nearly identical with a single service

sending requests to multiple downstream services. The difference between the two

is apparent in the function of the aggregator/gateway. Aggregators are responsible

for collecting information from various services and returning an information

aggregate to their clients. The gateway, on the other hand, is a single entry point to

the system with the primary responsibility of request routing. This API gateway

pattern arose because microservices are often too fine-grained for client (user)

needs and, as such, the client requires information from multiple services to serve

their application (Richardson, 2018). Additionally, this pattern makes provision for

different clients requiring different data (for instance, where one client exists on a

mobile platform and another exists on the web).

In this pattern, the API Gateway can be considered as a proxy service for routing

requests to the relevant microservices. Here, the gateway acts as an entry point for

all services and caters to different types of clients creating a more versatile system.

With this design pattern, the client sends a request to the API gateway, with the

gateway forwarding the client request to the appropriate backend service. Before

forwarding the request, the gateway can additionally leverage load balancing and/or

rate-limiting logic to control information at a system level. Being a variation of the

aggregator service, the gateway can still send requests to multiple services and

aggregate the results back to the consumer service (Kappagantula, 2019). It is worth

noting, however, that it is uncommon to use the gateway in this manner as this

requires a mature or custom piece of software for the gateway components, instead

Figure 2: API gateway pattern

Stellenbosch University https://scholar.sun.ac.za

17

of a simple proxy implementation. Additionally, one risks bloating the gateway and

making it less manageable by forcing this logic into it. The more common approach

is to send a request to a single service and to allow that service to invoke subsequent

services as it requires. The subsequent service would then do the same, building a

chain of services, until all the required information to serve the request has been

obtained (Richardson, 2018).

2.2.5 Service-Oriented Holonic Systems

Holonic systems are characterised as software systems that are based on the

concepts of holons, where holons are simultaneously part of a larger system(s) and

a whole system in themselves (Egert et al., 2021). This approach can be thought of

as a system-of-systems, similar to how service-oriented architectures are

applications built up of applications. Rodriguez et al. (2011) define a holon as self-

similar structures composed of holons as sub-structures. The authors further state

how the hierarchical structure composed of holons is referred to as a holarchy. This

definition emphasises the system-of-system nature where the holon is defined in

itself. Derigent et al. (2021) define a holon as a communicating decisional entity

composed of sub-level holons while, at the same time, being part of a wider

organisation composed of higher-level holons. This work considers the decision

making capability and adaptability of holons as fundamental properties.

Holonic systems have strong ties to the manufacturing domain, often being

employed as a solution to model flexible manufacturing systems (Rodriguez et al.,

2005). This is due to the nature of holons where entities can comprise more complex

entities, and allows for complex relationships to be modelled. Rodriguez et al.

(2005) make mention of the Product-Resource-Order-Staff architecture (PROSA)

as an example of holonic manufacturing systems. Derigent et al. (2021) mention

how holonic control systems have been used to tackle the problem of complex

control systems of manufacturing floors. This work suggests that agents are one

approach to implementing holons. Again, mention is made of PROSA in the

intersection of multi-agent systems and holarchies.

2.2.5.1 Multi-Agent Systems

Multi-agent systems have become a prominent technology within the

manufacturing domain, maintaining relevance through the Industry 4.0 and IoT

movements. Similar to microservices, agents are developed such that they act

independently of other system components. However, they differ in that agents tend

to have a level of intelligence about them – often striving towards achieving a goal

rather than just completing a task.

Rodriguez et al. (2005) detail a holonic multi-agent system (HMAS) as a domain-

neutral solution to self-organising entities. Here, agents create holons where an

agent is unable to fulfil a task on its own. The authors recognise multi-agent systems

as “useful abstractions and technologies for modelling and building complex

Stellenbosch University https://scholar.sun.ac.za

18

distributed systems”. Later works consider HMAS where MAS are used to

implement holarchies, with agents as the holons (Rodriguez et al., 2011). Derigent

et al. (2021) describe the purpose of MAS as providing a decentralised architecture

comprising autonomous, modular, cooperative, and intelligent components.

A MAS pattern mentioned in the work of Derigent et al. (2021) is that of the

delegate multi-agent system (D-MAS). A D-MAS describes a group of

computationally-lightweight agents that more complex agents can delegate tasks to.

These D-MAS agents support the more complex agents in achieving their functions

(Maoudj et al., 2019). In the final revision of PROSA, Valckenaers (2019)

introduces a D-MAS to provide a separation of concerns in the system. Here, the

original PROSA holons are allowed to focus on reflecting reality, while the D-MAS

agents are responsible for all decision-making in the system. This idea of utilising

discrete, computationally lightweight components to perform tasks is akin to the

approach taken with microservices. Recall, however, that agents tend to be goal-

seeking entities instead of task-fulfilling ones. This comparison is mirrored by

Valckenaers (2019) in his comparison of beings and agents – where beings are

considered satisfiers whereas agents are considered optimisers.

Rodriguez et al. (2005) state how, in many multi-agent system (MAS) applications,

an agent may appear as a single entity while they are in fact composed of multiple

agents – as is the case in holarchies. It is thus evident that aggregation is inherent

in multi-agent systems due to the nature of the holarchy. During the second revision

of PROSA, a “staff” holon was introduced to provide dynamic aggregation

(holarchies) at a more granular level. This was introduced in an attempt to provide

more optimised and reliable performance in the system. This holon type was

specified as being entirely optional, even after its inclusion. While the removal of a

staff holon will likely result in a reduction of optimality, it should not break the

system. Thus, the manner in which this aggregation component is introduced should

not create a dependency between it and the holons that it is aggregating.

(Valckenaers, 2019)

2.2.5.2 Characteristics of Multi-Agent Systems

Botti & Giret (2008) provide a characteristic comparison between holons and

agents. Agents are said to be autonomous and flexible computational systems that

are able to act in an environment, where flexible refers to being:

• reactive: reacting to changes in an agents environment;

• proactive: attempting to fulfil its goals; and

• social: being able to communicate with other agents.

Additionally, further properties of agents are specified as:

• autonomous: operating without direct intervention;

Stellenbosch University https://scholar.sun.ac.za

19

• rational: capable of reasoning about perceived data;

• adaptable: referring to an agent’s capability to change its behaviour based

on what it has learnt;

• mobile: the ability of an agent to move within a specified network;

• truthful: an agent’s inability to deliberately provide false information; and

• benevolent: an agent is only willing to help other agents so long as it does

not contradict its own goals.

The characteristics of holons share the same merit but are described in different

terms. The most notable difference is in the explicit specification of the recursive

nature of holons – referring to their ability to aggregate. This is not considered an

explicit characteristic of agents, although it is implicit in their ability to help, and

request help from, other agents.

2.3 Middleware

IBM (2021) define middleware as “software that enables one or more kinds of

communication or connectivity between two or more applications or application

components in a distributed network”. Middleware streamlines application

development by providing the functionality to connect applications that were not

explicitly designed to connect to each other. When investigating middleware,

definitions can be vague as the scope of different middleware components vary

greatly. There may be a middleware that focuses on a single, specific type of

communication. An example of this would be message brokers like RabbitMQ.

Conversely, there may be a middleware such as web-servers that provide the full

functionality needed to build an application. Abstracting another level, there is

middleware, such as those on offer when using the HTTP protocol, that allow

developers to build customised middleware functionality for their application. This

concept received its name as the first middleware existed as a mediating layer

between the application frontend and backend. Modern middleware has developed

far beyond this scope though, with some middleware components encompassing

aspects of either the frontend, the backend, or both.

Middleware, on the scale of entire applications, has become a notable approach in

the IoT realm, where it is used to connect sensors and devices to processing

platforms or users. Benayache et al. (2019) developed a microservice-based

middleware for smart wireless sensor networks (WSN). Here, the microservice

middleware (MsM) is proposed as a solution to the interoperability issues presented

by WSN-based IoT projects. The MsM acts as an intermediate tool to allow for

interactions between IoT devices without requiring large architectural changes.

Ciavotta et al. (2019) describe two middleware components forming part of the

MAYA project: the MAYA Support Infrastructure (MSI) and the MAYA

Stellenbosch University https://scholar.sun.ac.za

20

Communication Layer (MCL). The MSI is a large-scale, broadly-scoped

microservices data processing middleware. It is responsible for the management of

digital twins during their factory life cycle. The MCL, on the other hand, is a tighter-

scoped communication middleware that hosts a runtime environment to enable

aggregation, discovery, orchestration, and communication among CPSs. The MCL

sits between the machines and the cloud, enabling data flows between the two; the

MSI sits one layer higher than this and enables communication between the cloud

and the user. In the integration of the MSI, the MCL, and the third component - the

MAYA Simulation Framework (MSF) – finer-grained middleware, such as

WebSockets and encryption middleware, are employed.

IBM (2021) and Bishop & Karne (2003) describe the most commonly-used types

of middleware, with those relevant to this work being: message-oriented

middleware (MOM), remote procedure call/procedure-oriented middleware, API

middleware, and object request broker (ORB) middleware.

Message-oriented middleware acts as a translator to enable components using

different messaging protocols to communicate with each other. In addition to

translating messages between applications, MOM manages message routing to

ensure that messages get to the correct components in the correct order. MOM is

typically implemented as a proxy service.

Remote procedure call middleware usually manifests in the form of a framework.

These frameworks allow an application on one machine to trigger a procedure on

another machine, as if both processes were running on the same machine. This

middleware takes care of all networking complexity on behalf of the developers by

offering an intuitive interface for them to invoke these procedures.

API middleware can vary in scope but generally provide tools that developers can

use to create and manage their APIs. This middleware is most notably used with the

HTTP protocol, where it is typically employed to perform authorisation or to

monetise an API call.

ORB middleware is again used for distributed networks, where it enables the

fulfilment of requests between applications or components without these

components needing to know where the other is hosted. This is a similar task to that

of the MOM, but differs in its execution and application.

In addition to these middleware types, there is merit in defining security and

monitoring middleware here. Al-Jaroodi et al. (2010) discusses approaches to

security middleware. The authors discuss how middleware can be implemented

such that it is responsible for authentication, authorisation and access control, and

data security and integrity in a system. Finally, a more application-oriented

middleware comes in the form of monitoring middleware. This middleware is

responsible for collecting metrics describing the system during runtime. This is

application-oriented middleware as it is typically just an implementation of

Stellenbosch University https://scholar.sun.ac.za

21

database middleware with the focus on structured metric collection. This

middleware acts as an intermediate layer between the application recording metrics

and the database that stores them.

It is evident that middleware is not governed by a strict definition. Many of the

middleware discussed above describe concepts without a clear boundary to their

scope. As such, there may exist a large overlap between middleware components,

where certain categories encompass the functionality described by other categories.

The following review of communication mechanisms and security provides a

background on concepts that may be implemented through some form of

middleware. Considering the potential overlaps in middleware, it is not impossible

for security functionality to be considered in the middleware that is employed for

specific communication mechanisms. In certain cases, it may in fact be beneficial

for this to be the case.

2.4 Communication Mechanisms

The literature covered in the section on service-oriented architectures identified

three main communication mechanisms that are leveraged when implementing

SOAs and microservices. Communication mechanisms stipulate the procedure

followed when transferring information between two or more software components.

These allow for architectures to be further specified based on communication style

and requirements. The three mechanisms identified are: REST APIs, event-driven

architectures, and remote procedure calls.

2.4.1 REST API

REST, or REpresentational State Transfer, is an architectural style for distributed

hypermedia systems. It was developed in 2000 by Roy Fielding (Fielding, 2000). It

is predominantly used as an architecture for designing APIs based on HTTP calls,

specifically for use in web-based systems. Supporting this, REST is designed to be

efficient for hypermedia data transfer, which optimises it for the common use case

of the web (Fielding, 2000).

Fielding (2000) presents the six guiding constraints of the REST architectural style

as follows:

1. Strict client-server roles: This constraint is based on the separation of

concerns principle. The user interface concerns (client) are decoupled from

data storage concerns (server) to improve the portability of the user interface

across platforms.

2. Statelessness: In the REST architecture, all communication must be

stateless. This dictates that no session state is to be stored in the server. In

order to achieve this, the request that is sent by the client must contain all

the information required to perform the request. The state of a session is

Stellenbosch University https://scholar.sun.ac.za

22

thus stored in the client. This is said to provide visibility, reliability, and

scalability.

3. Cacheable: Statelessness introduces inefficiency as repeated requests are re-

processed instead of having their results reused where practical. In an

attempt to improve network efficiency, clients can be given the right to reuse

the response data. Caching improves efficiency and performance by

potentially reducing interactions. The downside of this is that there is

potential for clients to reuse stale data, reducing reliability.

4. Uniform interface: Employing a standardised interface simplifies the

interactions performed in the system. Through this, implementations on the

server-side are decoupled from the services that they provide. This further

encourages independent evolvability. The trade-off with this is that the

uniform interface reduces efficiency as information is transferred in a

standardised form rather than one specified to an application’s need.

5. Layered system: In a further attempt to improve scalability, a layered system

constraint was added to the REST architecture. This specifies that

components cannot see beyond the immediate layer that they are interfacing

with. By restricting components to only require knowledge of a single layer,

complexity is bounded.

6. Code on demand: The final constraint allows for client functionality to be

extended by downloading and executing code as scripts. This allows

functionality to be added after deployment, improving extensibility. This is

an optional constraint in the REST specification.

The benefits and drawbacks of using REST APIs are provided by Richardson

(2018) and Newman (2014), and can be observed in Table 1.

Table 1: Benefits and drawbacks of REST APIs.

Benefits Drawbacks

• Simplicity and familiarity

• Support for the request/response

communication model

• Being firewall-friendly

• Requiring no intermediate broker

• The ability to test the API with a

browser

• Being limited to only supporting

request/response communication

• Being constrained by the fixed

semantics; making it difficult to map

multiple operations to HTTP verbs

• Reduced availability because no

intermediary buffers is used

• Clients need to know the locations

(URLS) of service instances

Stellenbosch University https://scholar.sun.ac.za

23

2.4.2 Event-Driven Architectures

Tragatschnig et al. (2018) attributes the recent adoption of distributed event-driven

architectures (EDA) to their ability to provide highly scalable, flexible, and

concurrent solutions. Typically, an EDA consists of discrete components or agents

that communicate with each other through sending and receiving events (Mühl et

al., 2006). Employing discrete components, EDAs map well to service-oriented

architectures where the components or agents are implemented as services. Servers

publish events to topics hosted on a message broker; interested parties would be

subscribed to this topic and can thus consume information as the events are posted.

Through this approach, clients and servers are fully decoupled with no knowledge

of each other, or even whether the other exists in the system. This provides absolute

isolation but at the same time provides no guarantee that requests (posted as events)

are received by any servers.

Mühl et al. (2006) describe an ‘event’ as “any happening of interest that can be

observed from within a computer”. This could be a physical event where sensors

are monitoring an environment, a timer event, or any state or information change in

a system. This approach advocates for a push-based system where components react

to changes to information instead of requesting it. Note that there is no specification

forcing this, and it could be implemented as a pull system by adding request topics

that servers would respond to. However, this is not how it was intended to operate

as it is not a transactional communication mechanism.

Bellemare (2020) introduces event-driven microservices where services use

consumable events to asynchronously and indirectly communicate with each other.

An important distinction made in modern event-driven microservices architectures

is that the information is not destroyed upon consumption, as it is in transactional

message-passing systems. Instead, the information remains available for other

consumers to read as is required. This provides message persistence and traceability

as events can be tracked in hindsight. In event-driven architectures, services may

be either stateful or stateless with no constraint placed on this (Bellemare, 2020).

Richardson (2018) strongly supports asynchronous messaging using event-driven

architectures, with the stated benefits and drawbacks of using it shown in Table 2.

Table 2: Benefits and drawbacks of event-driven communication.

Benefits Drawbacks

• Loose coupling where clients can be

unaware of service instances

• Messages are buffered until a time

when they can be processed

• Risk of performance bottleneck

• Potential for a single point of failure

• Increased system complexity

Stellenbosch University https://scholar.sun.ac.za

24

2.4.3 Remote Procedure Calls

Krishnamurthy & Maheswaran (2016) describe remote procedure calls (RPC) as an

abstraction for performing procedural calls across languages, platforms, and

protection mechanisms. In the context of IoT, this translates to supporting

communication between distributed devices. RPC implements the request/response

communication pattern, making it a transactional communication style.

Newman (2014) defines RPCs as the “technique of making a local call and having

it execute on a remote service somewhere”. A separate interface definition is said

to make the generation of client and server stubs easier across different technology

stacks. An example is given where a JAVA server exposes a SOAP interface, and

a .NET (C#) client is generated from the Web Service Definition Language

(WSDL) definition of the interface. Essentially, when employing RPC as a

communication mechanism, one needs to select an interface definition language

(IDL) and RPC framework; the former is often included in the framework. This

IDL and framework allow a developer to define their interface, with the client and

server stubs being generated automatically. These stubs perform parsing logic and

consider the network complexity of the call on behalf of the developer. It is this

functionality that allows one to invoke a remote call as if it were a local one.

Further mention is made of how one potential drawback of using RPC is its

(potential) brittleness. Traditional RPC implementations such as SOAP, Java RMI,

or Thrift have struggled to gain traction and widespread adoption due to issues in

their implementations. Additional issues have been known to arise where the IDL

allows some way of forcing language-specific objects into the message, as this

creates havoc when the client/server on the other end of the connection cannot

interpret it effectively. (Newman, 2014)

Considering microservice applications, Richardson (2018) describes remote

procedure invocation as the process whereby a client sends a request to a service,

with the service processing and returning the response. In his definition, no mention

is given of the remote nature of the call; however, when considering the context of

microservices, it is implicit.

An alternate approach to implementing remote procedure invocation than those

highlighted by Newman (2014), and one that has gained immense popularity in

recent times, is employing the gRPC framework. gRPC is the most recent offering

of RPC frameworks, addressing shortfalls of previous forays into inter-process

communication such as SOAP.

gRPC is a binary message-based protocol where one defines their API using

Google’s Protocol Buffers. This is a language-neutral mechanism for serialising

structured data. The Protocol Buffer compiler then generates the client and server-

side stubs in any of the (currently) 11 supported languages. gRPC can be used with

alternate serialisation mechanisms, although it is optimised, and provides the most

Stellenbosch University https://scholar.sun.ac.za

25

support, for Protocol Buffers. Serialised messages are then transported between

clients and servers using the HTTP/2 protocol – a performance-focussed revision

of the HTTP protocol. HTTP/2 enables multiple message-streaming configurations

on top of the standard request/response model when using RPCs. (Richardson,

2018)

Newman (2014) writes about RPCs with a focus on their shortcomings. The notable

three drawbacks mentioned are the technology coupling, brittleness, and the fact

that local calls are not remote calls (and making them appear that way is a difficult

endeavour). The author does note that while his argument makes RPCs seem

terrible, they are not – and their shortfalls are all related to the available

implementations at that time of writing (2014). Richardson (2018) focuses on the

gRPC framework in his more recent work. His discussion on this framework

addresses the shortfalls identified by Newman (2014) and concludes with only two

drawbacks to the approach. These are complimented with a list of benefits that

gRPC, specifically, has over REST APIs – these can be seen in Table 3.

Table 3: Benefits and drawbacks of (g)RPC

Benefits Drawbacks

• API design is straightforward

and boasts custom semantics

• The underlying serialisation is

considerably more efficient

• Bi-directional streaming

enables both request/response

and messaging communication

styles

• That their use enables

interoperability between clients

and servers written in a wide

range of languages

• Implementing (g)RPC in

JavaScript/the browser requires

more work than REST APIs –

especially considering that

gRPC is predominantly based

on the HTTP/2 protocol

• Older firewalls may not support

HTTP/2

The issues with RPC have to do mostly with forward compatibility of legacy

systems. However, since Richardson's (2018) work was published, Google has

made great progress with their gRPC-Web project, dealing with the first drawback.

Additionally, browsers have since provided support for HTTP/2. With this

adoption, firewalls have almost all adopted support for the protocol in order to

maintain relevance.

Stellenbosch University https://scholar.sun.ac.za

26

2.5 Security

According to Firdhous (2012), there are five key security considerations that one

needs to take into account when working with distributed systems. These are: the

protection of data in transit, user authentication, access control, explicit

consideration for denial of service (DOS) attacks, and multi-level security

considerations.

When considered, the protection of data in transit ensures that the data sent arrives

at the intended destination untampered with and without its contents being viewed

by any other party during transmission. This is achieved through encrypting

messages using tested encryption mechanisms such as TLS encryption.

User authentication confirms that the user making requests is who they say they are

and that this user is recognised by the system (Newman, 2014). Traditionally, this

is implemented in computer systems through a user database that enables

recognised users to log in before being given access to the system. The assumption

is made that only the user knows of their username and password combination and

thus, by verifying those details the system can trust that the user is in fact who they

say they are.

Authorisation (or access control) is described as the mechanism that maps a

principle (user) to an action (request) (Newman, 2014). More simply, this

mechanism verifies that the user making the request is allowed to do so. This

enables the protection of sensitive information and optionally allows a system to

support users with different roles. Authorisation is often implemented in

combination with authentication. When a user logs in, the authentication

components will generate an access token. This token represents the user’s session

and is used to authorise the user for any further calls during that session.

The explicit consideration of DOS attacks is a means to ensure availability and

quality of service (QoS), and stems from security requirements of computing

clusters (Firdhous, 2012). DOS attacks overload systems with requests so that they

are unable to process normal traffic effectively. Without being considered, the best

case is that this attack results in a decrease in the QoS; the worst case is that the

entire system buckles under the load and crashes.

Multi-level security considerations, also termed defence in depth, is an approach to

minimise the possibility of a single-point-of-failure. This details the consideration

and implementation of security measures at all points within a system. In complex

systems with multiple potential points of access this is critically important, hence

the advocation for it in distributed systems. This approach is an attempt to provide

robust security where implementations may unknowingly expose vulnerabilities.

In addition to the above, isolation is considered a valuable security consideration in

microservice architectures (Newman, 2014). This can be implemented as service

Stellenbosch University https://scholar.sun.ac.za

27

isolation and/or network segmentation. Service isolation ensures that malicious

attacks such as the DOS attacks documented above do not affect that other than the

component under attack. Network segmentation entails building subnetworks

within your system of components that typically work together. This is akin to

building multiple perimeters around a property to limit how far traffic can travel

within it. Additionally, interfaces can be provided for each subnet which gives

improved control over access to components in that subnet.

2.6 Conclusion

From the review presented above, it is evident that digitalisation in the maritime

domain is a topic of great interest at present. The adoption of Maritime 4.0 seems

to be focused on shipbuilding and manufacturing aspects rather than the operation

of vessels themselves. The focus of this work will be on investigating Maritime 4.0

within the operational context.

As is mentioned in the Section 1.1, the maritime industry is considered to be one of

the more traditional industries. Due to the immense associated costs, it tends not to

be an early adopter of technologies, waiting for them to be proven before investment

is considered viable. Review was thus performed on SOA use in the manufacturing

and IoT realms as research in these fields are far more diverse and available at

present. Multiple applications were found where SOAs were used as an architecture

for digital factories. This domain seems to be the driving force behind digitalisation

in the fourth industrial revolution. However, contributions from these domains are

often offered for large-scale applications and are thus too complex and require too

much connectivity for practical application on maritime vessels. Maritime vessels

offer unique challenges for digitalisation, requiring a balance of complexity and

connectivity in order to provide a viable solution. Across all domains, information

siloes were identified as a significant challenge requiring thoughtful consideration

in order to offer comprehensive digitalised assets and processes.

The review identified microservices as being a popular and prominent approach to

digitalisation, with recent contributions all opting for this approach over the

traditional service-oriented architectural style. When considering microservices,

and referring specifically to the size of services, the general consensus encountered

in literature is to decompose microservices into software components that can be

managed by a single, specific domain team. This research will follow these

recommendations by considering services as isolated units of code capturing the

knowledge of domain experts. This will be a driving ideology throughout the

remainder of this thesis, where it is used in the selection of an architecture in

Chapter 4. The communication mechanisms and middleware presented above are

considered in the context of this thesis to further specify this design in Chapter 5.

Stellenbosch University https://scholar.sun.ac.za

28

3 Problem Identification and Requirements

This chapter identifies the problem and solution spaces which are considered in this

thesis. With these, a set of functional and non-functional requirements are generated

based on the findings of the literature review and the objectives, set out in Section

1.2.

3.1 System Definition

Before considering what this system needs to achieve, it is important to define the

scope of the system itself. The system described in this research encompasses only

software aspects, decisions regarding data-collection and sensor interaction are not

considered. This system exists between data collection components and the user.

However, for the purpose of this study, an application layer/frontend has been

included. SEBoK Authors (2020) state that “for a service system, and also when

considering the service system context, the value is realised only through service

transactions”, elaborating that “the end-user co-creates value at the time of the

request to use this service”. Naturally then, when designing a service-oriented

architecture, one needs to consider the service interaction in order to ensure that

service value is fully realised.

Figure 3 shows the proposed architecture and the considered system within the

broader context. The ‘operational context’ encompasses physical assets, their

associated sensors, and their data acquisition systems, as they would exist on their

own. This context accounts for subsystem digital twins that may exist within a

vessel, too. Isolating the operational context guides the design towards being neutral

regarding these implementation details. The ‘environmental context’ contains

external data sources that may provide information about the operational

environment relevant to vessel operation. The system in consideration

communicates with the existing operational context, while leveraging information

from external data sources, so as to allow for servitisation; the ability to offer the

association of a physical asset with services, functionalities, processes, and data

access (Minerva et al., 2020). This servitisation allows the physical asset, or data,

to move from being merely a good to a suite of services acting upon the good

(Minerva et al., 2020).

Stellenbosch University https://scholar.sun.ac.za

29

3.2 Problem Identification

“A system cannot be defined unless it is possible to clearly describe what it is

supposed to accomplish” (SEBoK Authors, 2020). The proposed architecture serves

to aid in decision-making on maritime vessels by communicating meaningful data

to the stakeholders in (close to) real-time. The architecture should be capable of

performing elementary data analysis such that the information it delivers is easily

interpretable to users. The system should be able to communicate with services,

whether they are standalone or offered by a digital twin, and aggregate the

information received from them to deliver insight to operators. At the highest level,

it should provide a service package to vessel operators, consisting of mission-

relevant data derived from sensors and/or simulation – with this service package

focussing on stakeholder needs, not the assets required to serve them. Finally, the

architecture needs to be reconfigurable such that it can be customised for specific

voyage requirements and can evolve with a vessel as it - and its stakeholder’s needs

- change throughout its life.

3.3 System Requirements

The systems engineering approach is well aligned with that of ISO/IEC FCD 25010

(Appendix A), which specifies how one firstly needs to understand what system

must do, before considering how the system should work. The requirements for this

system are split into two categories: functional requirements, and non-functional

requirements. Functional requirements stipulate what the system should deliver in

terms of the user, as driven by the problem described above. The non-functional

requirements stipulate what needs to happen internally in order to successfully serve

the functional requirements. For the most part, the non-functional requirements

stem from the literature review.

Figure 3: System boundary diagram

Stellenbosch University https://scholar.sun.ac.za

30

In the presented requirements, broad needs are specified under “Need from source”.

These are then broken down and focussed into more specific requirements under

the “Need for architecture” column. Each need is subsequently given an ID for

further reference during the design and evaluation chapters. The IDs are prefixed

with an ‘F’ for functional requirements, and an ‘NF’ for non-functional

requirements.

3.3.1 Functional Requirements

The functional requirements, found in Table 4, specify the functionality that the

system should provide considering the context. Functional requirements can be

thought of as higher-level requirements driving the design instead of constraining

it. These detail the behaviour that the system strives to exhibit and assist in forming

services catering to the needs of the user.

Table 4: Functional requirements

Need from source Need for architecture Need ID

Aggregate information from

multiple data sources

Facilitate data inputs from

digital twins

F0.0

Facilitate data inputs from

non-digital twin services

F0.1

Provide stakeholders with

insight into vessel operation,

facilitating more informed

decision-making

Perform (close to) real-time

data processing on board for

monitoring

F1.0

Encapsulate ‘simulation’

capabilities

F1.1

Facilitate machine-to-human

communication

F1.2

There is merit in defining what real-time refers to in this thesis, as there is no

explicit threshold under which a system should perform in order to be considered

real-time. Instead, real-time can only be defined when considering the context in

which it is being evaluated. In the context of this work, considering that simulation

is a common use case, real-time does not place as strict of a latency requirement as

would be on a control system, for example. To be considered real-time, the user

should not notice additional latency resulting from supporting/platform

functionality; the time required for these activities should be sufficiently short such

that their effect is eclipsed by the processing times of the services. So long as the

information flows of the system do not comprise a large portion of the overall

response times, the system can be considered as real-time.

3.3.2 Non-Functional Requirements

The non-functional requirements, found in Table 5, define the criteria that are used

to evaluate the whole system, but not for a specific behaviour. These requirements

describe the functionality that the architecture should achieve internally to ensure

proper operation, and will help form the services that serve only the architecture,

rather than those that serve the user directly. These will help to structure the

Stellenbosch University https://scholar.sun.ac.za

31

architecture and set functional goals. The quality attributes derived from ISO/IEC

FCD 25010 were consulted in the generation of these requirements. This standard

is a quality model that can be used as a product quality evaluation system; it is

discussed in Appendix A.

Table 5: Non-functional requirements

Need from source Need for architecture Need ID

Support multiple services Enable individual service

development.

NF0.0

Enable individual service

deployment and removal.

NF0.1

Support multiple users Keep track of users and their

respective permissions.

NF1.0

Support multiple, concurrent

requests from different users

NF1.1

Service request routing Interpret and route client

requests to the relevant

service(s).

NF2.0

Handle multiple, concurrent

sessions.

NF2.1

Security Implement access control. NF3.0

Ensure data integrity. NF3.1

Compatibility Capable of interacting with

legacy systems.

NF4.0

Make provision for the

addition of future external

systems.

NF4.1

Support distributed services,

running on various machines

across a vessel.

NF4.2

Robustness and reliability Recoverable in the case of

failure.

NF5.0

Fault-tolerant to service and

communication failures.

NF5.1

Available offline. NF5.2

Usability Support access from multiple

devices.

NF6.0

Hide back-end complexity

from the users.

NF6.1

Maintainability and

supportability

Support logical fault-tracing

and debugging.

NF7.0

Stellenbosch University https://scholar.sun.ac.za

32

4 Architecture Selection

This section considers certain non-functional requirements, identified in Table 5, to

guide the selection of a suitable architectural style to follow in this design. Through

literature, microservices and agent-based systems were identified as potential

candidates for suitable architectural styles – attributed to their service-orientations.

In the selection of architectural style, the most influential requirements will be those

relating to supporting multiple services and maintainability (NF0.0, NF0.1) and

request routing (NF2.0, NF6.1).

4.1 Microservices

Beginning with the need to support multiple services, a microservice architecture

appears to be the most suitable candidate. Microservice architectures serve

developers in that they strive to be more maintainable than traditional, monolithic

architectures and design patterns. With a natural tendency towards loose service

coupling, this architectural style fulfils the need for a modular (FN0.0) and

modifiable (FN0.1) system.

While a robust and reliable system is predominantly attributed to effective

implementation, a system boasting the low service coupling of a microservice

architecture aids in this success. Having each service in the system existing

independently isolates failures. With service failure and recovery happening

independently of the greater system, full-system failure cannot originate from the

failure of a single component. This isolated launching (and re-launching) of

services serve the above-mentioned need for a modifiable system, too, as individual

services can be updated and swapped out during deployment without affecting the

operation of other services in the system.

In order to address the needs of usability and service-request routing, more detail

regarding the specific microservice implementation is required. The API Gateway,

a popular microservice pattern as is described in Chapter 2, provides a suitable

solution to these needs. Implementing the backend-for-frontend (BFF) variation,

multiple gateways are employed with each serving different frontend clients (be it

mobile, web, or embedded desktop applications). This allows the architecture to

serve multiple clients in a more optimised manner, giving greater control over the

available information and allowing for better traffic management. This pattern

serves the need for supporting access from multiple devices/systems (NF6.0).

Considering the need for service request routing, a suitable approach for this

application would again be to implement the API Gateway pattern (or any of its

variations) using some form of server-side discovery. This untethers the frontend

from the inner workings of the architecture, limiting its concern to the effective

delivery of information and providing a valuable level of abstraction for both

Stellenbosch University https://scholar.sun.ac.za

33

developers and users. Evidently, the use of this pattern serves needs NF2.0 and

NF6.1 by abstracting the frontend from backend-complexity.

4.2 Multi-Agent Systems

With multi-agent systems holding their own in the Industry 4.0 and IoT movements,

it is only fitting that they are considered in the context of digitisation. Considering

the application at hand, the holonic nature of these systems provides great value

through the aggregation of information. With an agent being somewhat akin to a

microservice, holonic/multi-agent architectures are a suitable consideration for the

service-oriented application at hand. The distributed nature of agents, where they

are developed to act independently of other system components, embodies service-

orientation in such a way so as to satisfy the need to support multiple services

(NF0.0, NF0.1).

The social nature of agents is attractive for the distributed problem at hand, enabling

components to readily share information to serve a goal. Considering the holonic

nature demonstrated by agents, this provides the necessary support for request

routing (NF2.0) where agents can serve a request through the employment of

(routing of responsibilities to) other agents. The autonomous approach taken in

doing so additionally serves the need to hide backend-complexity from users

(NF6.1) as the aggregation is performed without requiring human intervention.

In an attempt to maintain component isolation and avoid rigid dependencies, agents

provide a suitable solution. The reactive property of agents means that an agent is

able to dynamically build an aggregation comprising the necessary agents to serve

a specific request (or goal, to maintain MAS semantics). For the application at hand,

this relates to ‘services’ maintaining their independence while still enabling value-

adding collaboration. Additionally, the reactivity of agents means that they are able

to respond to failures in the system such that they can still meet their goals - and

thus, are still able to serve requests. This property serves the need for a fault-tolerant

system (NF5.1).

4.3 Discussion

The discussion presented here considers the API Gateway and service-oriented

multi-agent architectures mentioned above as potential approaches. While both

these architectures boast aspects that make them attractive for this application, they

each have shortfalls that require addressing.

The API Gateway, often considered an evolution of the standard service-oriented

architecture (SOA), lends itself well as a digital service architecture. The focus

placed on service-independence, and the separation of concerns this brings with it,

could prove to be a valuable aspect in the proposed application. This separation of

concerns allows teams of domain-specialists to develop their services

Stellenbosch University https://scholar.sun.ac.za

34

independently – without having to concern themselves with the development of

other services/sub-domains (Harper et al., 2019). This low coupling of services

enhances the reliability of the system by isolating failures and enabling low-cost

service recovery.

When considering a system that may consist of separate development teams, the

low coupling of services makes it easier to understand the role and workings of

individual services/components. Keeping the services largely independent and

focussing them on performing specific tasks avoids intimate dependency between

software components that developers would have to navigate when trying to

understand and contribute to the system. This results in fewer integrations when

adding to the system, and also means that dependencies need not be considered or

adapted to facilitate the addition of new services.

Microservices, and the API Gateway specifically, are clearly a promising candidate.

However, taking a traditional microservices approach presents a challenge for this

application. The first issue relates to how services exist in the backend of a

microservices architecture. The overwhelming majority of microservice

applications, regardless of whether they follow the API Gateway pattern or not,

describe their backend as a complex service-mesh. In general, when working with

microservices, and especially the API Gateway pattern, aggregation is done at a

high-level - taking place in the gateway itself. Because aggregation is done at this

single point, coordination of services and information is the responsibility of

components at the service level. While a seemingly minor detail, services are no

longer focused solely on performing their task and now have to concern themselves

with the tasks of other services in the system. This results in larger-grained services

as they now have to contain more knowledge about the rest of the system. Adding

to this, these communication links present new challenges such as failure-handling

and traffic management, which need to be dealt with at a service, not system, level.

There are design patterns such as the Circuit Breaker pattern (Richardson, 2018),

and frameworks such as Istio that have been developed to deal with these issues –

and they do so effectively.

The issue that this places on this application, however, is in how specialised domain

teams interact with each other. Following this mesh approach would mean that these

domain teams would have to collaborate in order for their services to work together.

This is manageable when the software is being developed under one roof, but when

the domain teams are developing services for their specific assets and the vessel is

comprised of assets from various manufacturers, this approach is not practical. This

problem reaches further by creating complexity barriers for developers wanting to

add/update services, as they now have to navigate communication links between

services. In this case, any non-backwards compatible changes to a service would

require a re-design of all services that may be consuming that services’ information.

A solution to the issue of communication links is provided in multi-agent systems

where temporary dependencies are built dynamically, based on the state of the

Stellenbosch University https://scholar.sun.ac.za

35

system when an aggregate is required. Certain multi-agent architectures, such as

ARTI (Valckenaers, 2019), provide explicit aggregation agents existing at lower

levels of the system. These aggregating agents build holarchies that handle sub-

system aggregation. This allows low-level agents to maintain their focus on

achieving their goals, abstracting coordination activities to these aggregating

agents. This creates a strong decoupling of low-level components, but still provides

coherence among them.

This aggregation ties in well to the dynamic nature of multi-agent systems, where

agents exist independently and are contracted as needed. However, the dynamic

nature of these systems may provide unnecessary functionality for the application

at hand. Firstly, dynamic discovery and resource allocation is not a requirement for

application on a ship. The components of a ship, and the services that may stem

from them, are static and individual by nature (there is only one power-train on a

ship, which is static and has one task/application; compared to robots in a

manufacturing line which may serve multiple applications and need to adapt to the

required task). By the same logic, the intelligence of agents is not required for

application on a ship. The comparatively static nature of a service on the ship means

that they should not need to ‘bid’ to serve; they are better suited as task-specific

components that form a service-package, rather than goal-driven entities competing

for a contract. The goals of agent-based systems are in the same region but do not

fully align with those of this application. Implementing an agent-based system here

may introduce unnecessary complexity, with potential developers avoiding

adoption due to the effort required to understand and integrate their services within

the system.

4.4 Selection

From the analysis above, it is evident that neither microservices nor agent-based

systems perfectly suit the application at hand. Both offer attractive aspects, but have

shortfalls that cannot be overlooked, namely in aggregation and the balance of

complexity – which are arguably the two most important considerations in the

proposed application. As a result, a hybrid architecture is proposed consisting of a

combination of useful aspects from both architectures.

The architecture presented in Figure 4 is an adaptation of the BFF architecture

proposed in Section 4.1. An (optional) aggregation layer has been added to the

backend to create holarchies within the system. These holarchies appear as a single

entity to clients while diluting the responsibilities of the gateways and providing

finer-grained aggregation. The addition of this layer enables services to maintain

their independence and focus on their tasks, leaving coordination activities to

services in the aggregation layer. This division of lower-level services helps to

reduce complexity by maintaining a strong separation of concerns. Aggregating

services contain the necessary logic to negate the need for service-to-service

communication, avoiding the webbed communication networks discussed above.

Stellenbosch University https://scholar.sun.ac.za

36

4.4.1 Frontend Layer

Services falling under the frontend layer encapsulate all user interfaces for the

architecture. As the selected architecture is an adaptation of the BFF design pattern,

different interfaces will exist for the different users of the architecture. No logic is

placed in this layer - it simply receives the processed and aggregated data and

displays it in an easy-to-interpret manner. As these services are user-facing, their

source code is essentially made public. By keeping all program logic hidden in the

backend, not only do users not have to navigate this complexity, but security is

maintained as malicious users cannot reverse-engineer the system through

analysing frontend code.

4.4.2 Middleware Layer

Services that live in the middleware layer are responsible for handling the majority

of the non-functional requirements specified in Chapter 3. These services are all the

internal components of a generic architecture, comprising all but the user interface

and domain-specific components. Within this middleware layer, there are three

Figure 4: Layered architecture diagram

Stellenbosch University https://scholar.sun.ac.za

37

main service types: gateway services, security services, and monitoring services.

Gateway services are the proxies associated with each frontend - these are the only

entry point into the backend and handle request routing and system-wide rate-

limiting and load-balancing (should the application require it). Security services are

responsible for user account and authentication (UAA) – these services store user

credentials and permissions, and handle authentication for the system. Monitoring

services are responsible for collecting and displaying metadata about service

performance and interaction for system analysis and introspection.

4.4.3 Backend Layer

Backend layer services relate to a specific implementation. These services are

required in order for the architecture implementation to create value for the end-

user. The backend contains two service types (divided vertically in Figure 4):

aggregation services and microservices. For clarity, both types will contain

microservices specific to the application, but the purpose of services in each layer

differ. Aggregation services are driven by stakeholder needs and are responsible for

coordinating calls between, and aggregating information from, services in the

microservice layer. Services in the microservice layer focus on a single, specific

task that provides information about whatever it is that they are focussed on. The

microservice layer is therefore responsible for capturing domain knowledge,

whereas the aggregation layer is instead responsible for performing business logic.

Stellenbosch University https://scholar.sun.ac.za

38

5 Architecture Design

The diagram presented above gives a high-level description of the structure of the

architecture. This chapter delves deeper into the details of the architecture,

considering lower-level requirements to guide towards a better-specified design.

This chapter discusses various communication mechanisms that could be used to

provide inter-service communication, as well as generic architecture components

that will support services and developers. At the end of this chapter, a specific

communication mechanism will be selected along with certain middleware

components in order to specify a more detailed design.

5.1 Communication

Communication plays a fundamental role in all computer systems. Its importance

is only amplified in distributed systems. The method of communication should,

among other things, satisfy requirements concerning security, compatibility, and

usability. Literature identified three prominent approaches to communication when

implementing microservices: REST APIs, event-driven communication, and

remote procedure calls (RPC). Each of these boasts a set of benefits and drawbacks,

covered in the literature review. Neither is a silver bullet and as such, the decision

about which to use needs to be made considering the intended application.

5.1.1 REST API

One of the most popular and prominent methods of communication used today is

REST APIs. APIs expose information to the interested parties while acting as an

interface for the services to external clients. This includes other services existing

within the architecture itself.

REST, or REpresentational State Transfer, is an architectural style (for APIs) based

on HTTP calls for use in distributed systems, specifically web-based systems. When

a client invokes a REST API, the server hosting that API will provide a

representation of the state of the resource (server). These are universally recognised

as the de-facto standard for making web calls and as such, are well understood by

most developers.

REST, at its core, is a set of constraints that need to be followed when transferring

or representing information. Consequently, communication can be done either

synchronously or asynchronously - where REST itself is neither. Synchronicity

depends rather on the provisions made by the language used in the server, as REST

is exclusively implemented on the server-side.

REST is a universally recognised standard. This means that it is easy for external

clients to use the interface because of the accessibility to the large developer

community. The learning curve for implementing REST is relatively short because

Stellenbosch University https://scholar.sun.ac.za

39

of the comprehensive resources available. Contributing to this ease-of-adoption is

the call simplicity that results from following the CRUD semantics. By limiting the

client to four predefined calls/actions, the communication complexity is greatly

reduced.

The drawbacks of REST APIs result from one of their advantages, which is the

simplicity of their semantics. REST APIs are somewhat outdated in the modern era

- owing their popularity to the fact that they are already well-understood and well-

adopted, and not because they are necessarily the best option. The CRUD semantics

they follow can become limiting in certain customised applications. This is

especially the case when one moves beyond the frontend of an application.

However, the most limiting factor is the restriction to the HTTP protocol. This

restriction is disadvantageous as any application wanting to make use of REST

APIs is constrained to using the HTTP protocol, which is gradually being replaced

by new revisions.

Another limitation one could encounter when using REST is the fact that a service

can be either a server or a client, but cannot be both simultaneously. This restriction

makes service-to-service invocation impossible, which is severely limiting to its

application in the backend of a service-oriented architecture.

5.1.2 Event-Driven Architecture

An event-driven communication system is based on the publish-subscribe

communication model, necessitating some form of message broker. This broker

acts as a single intermediary for messages. Clients and servers subscribe to the

topics that they are interested in and then post and/or consume events to/from the

relevant topics. With a messaging broker, a service is able to act as both a client and

a server, needing only to post requests/responses to suitable topics. This lack of role

constraint makes service to service invocation a simple task.

The publish-subscribe communication model is not a transactional communication

style, making it asynchronous by nature. Asynchronous messaging decouple the

request from the response where each can be queued in the messaging broker. This

enables more efficient communication over unreliable connections as there is less

of a ‘tie’ between clients and servers. Consequently, a network failure does not

necessarily cause complete transaction failure.

The most immediate advantage of using an event-driven communication model is

the low service coupling it enforces. Services need not know of each other or even

whether others exist; they simply need to know which topics they are interested in

and process requests. Services will remain dormant until a triggering event is posted

to a topic that it is subscribed to. This will hold true even if there are no other

services to post events to that topic. This “ignorance” to the existence of other

services provides a high level of abstraction within the architecture as services are

truly independent, existing with no coupling other than the message broker itself.

Stellenbosch University https://scholar.sun.ac.za

40

This forced service independence compliments the decoupled nature of a

microservice architecture.

The broker, being a relatively mature piece of software, manages message queuing

and distribution. This adds a level of robustness towards service failure as the

messages persist in the queue, to be picked up again once the relevant services have

recovered. The queuing feature of the broker additionally unlocks the potential for

streaming data; this means receiving information from the servers as it is made

available and pushing that through to the clients instead of waiting for the server’s

process to complete before receiving any information.

The level of decoupling provided by an event-driven architecture makes service

maintenance a clean process. Services can be updated or replaced with ease as they

should not be tied into communication with other services. The new service simply

needs to subscribe or post to the topics it is interested in and everything else will

carry on working as it did before the change. This also means that it is easy to add

new services and functionality to the system as there is no need to interface with a

highly interdependent system. This allows domain teams to focus on their specific

service without concerning themselves with the work of other teams. Should one

service require another, it simply needs to post its request to the relevant topic,

instead of having to know the location and capabilities of the other service. This

style of service invocation helps to avoid communication chains and dependencies

that have the potential to introduce latency and cascading failures. Subsequently,

the freedom provided by this decoupling makes it easy to add or update services on

the fly without having to worry about its effect on the rest of the architecture. This

is useful once the system has been deployed and rapid service updates need to be

implemented without pulling the system down.

The publish-subscribe model that event-driven communication is built on allows

for one-to-many, many-to-one, and many-to-many communication without

additional communication overhead. This makes it well-suited for the task of

aggregation. As the communication is indirect, one-to-many communication can be

achieved in a very lightweight manner requiring a single ‘message’ to be sent out

for all recipients (as opposed to transactional communication where a single

message would be sent out for each recipient). Unsurprisingly, this means that

event-driven communication is naturally asynchronous – allowing for multiple

requests to be sent out simultaneously before aggregating the responses.

Conversely, the low service coupling provided by an event-driven architecture

comes at the cost of system complexity. While the services themselves and their

interfacing procedure are kept simple and isolated – maintaining the

communication channels becomes complex even at small scale. Essentially, the

communication complexity is shifted from the services to the system when taking

this approach, requiring a detailed model of the communication to fully describe it.

Stellenbosch University https://scholar.sun.ac.za

41

An event-driven architecture provides a highly robust system in terms of service

robustness. Ultimately though, the reliability of the system depends entirely on the

reliability of the broker and the machine hosting it. This single point of failure

necessitates a highly robust piece of software for the message broker and contends

the robustness provided by a distributed system in itself. In addition to being a

single point of failure, the messaging broker has the potential to act as a bottleneck

as it is a central communication channel that all components need to consult when

they require information.

Event-driven architectures work well when the tasks of some services depend on

the status of other services, but may not be as suitable for cases where information

transfer is the goal. When task status is important, services simply post their status

updates and the interested parties can consume and respond to these events.

However, when information transfer is the priority, the process is not as simple. A

service can post an update with available information, which may not be in the form

of a structured message and, consequently, no message structure can be enforced

by either the client or the server. This places more responsibility on the service

developers as they now have to ensure that the messages are correctly and robustly

parsed so that the information is properly extracted. This increases service

complexity and introduces a potential point for human error to occur. Additionally,

aggregation is achieved through the implicit design of information flows. With

complete isolation of components, any aggregation of information has to be

considered when designing the execution order that services follow in their

consumption and publishing of information. This requires some forward thought

towards service configuration so that services can effectively be re-used.

5.1.3 Remote Procedure Calls

Remote Procedure Calls (RPCs) is a communication mechanism that is well suited

to distributed systems. This is a result of its ability to hide networking complexity

and as such is one of the most suitable communication styles for microservice

architectures (Murthy, 2017). An RPC can invoke a procedure to execute in a

different address space, or a different machine, while programmed as if it were a

normal function call. When using RPCs, the servers and clients are stubbed such

that the RPCs mimic local procedure calls – shielding them from networking

details. This provides a useful level of abstraction to service developers as they do

not have to concern themselves with details pertaining to the remote interaction. A

client requiring a service from a server on another device simply makes a call to

invoke this service in the same way that it would invoke a local method. In this

interaction, the stubs take care of the network details between the server and client.

Since no specialised message-broker is required for RPC communication, the

related potential bottlenecks and dependence on highly-mature software are

eliminated. Even without a broker, RPCs can still be made asynchronously,

depending on the provisions made by the implementation language of the server.

Stellenbosch University https://scholar.sun.ac.za

42

RPCs additionally give the freedom to create customised semantics, which provides

valuable flexibility for application in backend services. Additional freedom is

granted due to RPCs protocol-agnostic nature, giving designers the ability to select

whichever protocol suits their application best. This allows one to employ as many

protocols as wanted within a given application, should that be desirable.

Additionally, RPC implementations are not limited by a set of constraints like

REST APIs are. Consequently, server and client roles are more relaxed, which

allows a server to exist as both if necessary.

To be suitable in the application at hand, RPCs would need to allow for information

to be aggregated. Fortunately, RPCs allow for one-to-many and many-to-one

communication to take place – with aggregation being a common activity when

using this communication style.

While avoiding the need for a specialised broker when using RPCs, it is required to

stub all clients and servers. This concept is a potential barrier that new developers

will have to grasp and overcome when contributing to the system. With the stubbed

message, communication is also more intimate, following a transactional style. This

is not necessarily an issue, but it does increase the coupling between services and

reduces the speed at which messages can be exchanged when compared with a

brokered implementation. However, RPCs are more committed to maintaining the

core principles of distributed systems when compared with the event-driven style.

Additionally, in order to generate the server and client stubs for RPC, a standard

interface needs to be defined. This interface acts as a contract between servers and

clients, specifying a standard message structure communicators will use. With this

approach, parsing is taken care of on behalf of the developers, removing the

potential for errors relating to message interpretation.

Unlike event-driven architectures, data streaming is generally not a feature that is

considered in traditional RPC implementations. Following the transactional

communication style rather than using queued messages, information is only

returned to the client once the invocation process has completed, ending the

transaction. However, while not an explicit feature of RPC, certain RPC

frameworks do offer streaming functionality depending on the underlying

messaging protocol. HTTP/2, for example, supports streaming in multiple

configurations - so any RPC framework leveraging this protocol should support

message streaming.

5.2 Middleware

Recall that Section 2.3 described middleware as a component that simplifies the

connectivity between application components (IBM, 2021). Through leveraging

middleware, one can provide standard functionality across components of a system.

In the context of this work, this provides a valuable abstraction for developers

wanting to contribute as middleware can perform the majority of the system-

Stellenbosch University https://scholar.sun.ac.za

43

integration functionality on their behalf. Considering the middleware layer

proposed in Chapter 4, and the communication protocols discussed in Section 5.1,

there are four relevant types of middleware to consider in this application. These

are security middleware, monitoring middleware, message-oriented middleware,

and communication middleware.

5.2.1 Security Middleware

Security middleware refers to all software components that contribute to

guaranteeing secure communication within the system. Considering the application

at hand, this encompasses everything that deals with authorisation, authentication,

and information integrity. This includes services that handle user profiles, their

permissions, and access control. These services can - and most likely will - vary in

their scope, with some acting at a global level (looking at the greater system) and

others at a more granular level (looking at individual services). In this

implementation, these components may materialise as a service that users can log

in with or as a service that other services can use to verify a user’s request.

5.2.2 Monitoring Middleware

Monitoring middleware encompasses the components that track or monitor

transactions within the system. These do not add inherent value to the user, instead,

they assist developers to analyse the system and its usage. These components track

all service interactions and enable insight into how the services communicate within

the system. In distributed systems, monitoring middleware plays a vital role as it

provides developers with a look into how services are performing and aids in fault

finding within the context of the greater system. These components usually

manifest in the form of logging frameworks and performance trackers, which record

service interaction states and metrics that describe individual service performance.

5.2.3 Message-Oriented Middleware

Message-oriented middleware enables components using different messaging

protocols to exchange messages. In addition to providing a ‘translation’ service,

these components manage routing so that messages are delivered to the correct

services in the correct order. For the presented application this type of middleware

encompasses the gateway component, which handles message routing and traffic

management. Typical message-oriented middleware components are implemented

as proxies or proxy-based frameworks. These implement load-balancers, rate

limiters and message routing based on application-specific criteria.

5.2.4 Communication Middleware

Communication middleware is a type of middleware that assists in the

implementation of the selected communication mechanism. There will be specific

middleware components for REST APIs, RPCs, and brokered-communication

within this category. These middleware components act at a higher level than those

Stellenbosch University https://scholar.sun.ac.za

44

discussed above; potentially including other middleware components within

themselves. For example, certain communication middleware may perform

authorisation itself, negating the need for such middleware components.

RPC middleware is the software that enables the distributed nature of the call while

allowing it to be used as if it were a local call. This software handles the networking

complexity of RPC calls, abstracting it from the programs employing the RPC. RPC

middleware performs the stub generation of clients and servers and, as such,

generally dictates a message format. In doing so, the RPC middleware handles the

parsing of messages as the protocol and structure are somewhat embedded in the

stubs. Broker middleware, also known as Object Request Broker middleware

(ORBM), refers to the aforementioned ‘mature’ piece of software. ORBM executes

the message queuing functionality in a publish-subscribe model. This software

manages the topics implemented in event-driven architectures and queues the

messages as they are posted and consumed. It is worth noting that ORBM does not

specify message structure and, as such, message parsing is the responsibility of

services. As REST is a set of constraints and not an explicit communication

procedure, no middleware components are required to implement it. Middleware is

commonly used to refer to software that acts on an API call before it is processed

by the server when working with HTTP. This is applicable when using REST APIs

as they often use the HTTP protocol. In this case, the communication middleware

is not used as a means to implement the REST API. It rather supports the

implementation by enabling other middleware to be implemented.

5.3 Security

As is mentioned in Chapter 2, Firdhous (2012) defines five key security

considerations that one needs to make when working with distributed systems. In

addition to this, Newman (2014) added a sixth security consideration when

developing microservices specifically.

Successful consideration of the protection of data in transit ensures that the data

sent arrives at the intended destination untampered with, and without being viewed

by any other party during transmission. This is achieved through encrypting

messages and is advocated for in microservice applications by Richardson (2018)

where TLS encryption is suggested as an encryption mechanism.

User authentication and access control tend to be considered together. This

combination enables the protection of sensitive information and allows a system to

support users with different roles. When implementing the API Gateway pattern,

Richardson (2018) advocates for authentication to be done in the gateway and

authorisation to be done in the service(s). He explains this as the access token

pattern, where the gateway provides access tokens to the services when routing

requests to them. Through this approach, the gateway’s responsibility is to ensure

that the user has access to the system. This necessitates that microservices ensure

Stellenbosch University https://scholar.sun.ac.za

45

that the user has permission to access the specific information that they are

querying. This divide enables authentication to be a system-wide consideration,

with authorisation being more granular. This is a logical approach as services are

given full control over who has access to each of their offerings, but do not have to

concern themselves with the security requirements of the greater system.

The explicit consideration of DOS attacks is a means to ensure the availability of

services and stems from security requirements of computing clusters (Firdhous,

2012). By implementing a rate limiter, one can slow down the attacks enough to

minimise the effect that they have on service delivery. Rate limiting can be

implemented globally at the gateway, and more granularly at a service level. This

multifaceted approach to security allows for tailored rate-limiting of services based

on their individual performance. This would be beneficial for computationally-

heavy services, such as those that run simulations. Additionally, considering rate

limiting both globally and locally ties into the final requirement described by

Firdhous (2012) as multi-level security considerations.

Multi-level security considerations was initially identified for distributed systems

in Firdhous (2012) but was found to be explicitly advocated for in microservices

applications by Newman (2014). This details the implementation of security

measures at all points within a system. In complex systems with multiple potential

points of access this is critically important, hence the relevance in distributed

systems. This does not detail specific security measures. Instead, it specifies that

security measures span all levels of a system where possible. Accounting for the

other considerations discussed above, this philosophy can be applied in three

instances. The first would be to configure the gateway to only offer services that

the user has access to. As mentioned above, rate limiting is considered at both a

global and service level – this contributes to defence in depth. Finally, messages

should be encrypted within the system in addition to at external interfaces.

Isolation is inherent when designing microservices, and as such is more of an

implementation consideration. While being isolated in nature, running services on

a common machine presents potential faults to this isolation. In the case where

services share an operating system, any malicious access to the host OS could result

in all services deployed on that OS being compromised. It is not always feasible to

run each service on a separate machine as this could result in thousands of greatly-

underutilised machines. An approach to dealing with this that has become

commonplace in microservices, especially with the advent of cloud-computing

services, is that of containerisation. Containers are lightweight operating system

instances that can run on the same machine concurrently. Containers are far more

lightweight than virtual machines as they operate on a single kernel. This approach

provides protection against this kind of infiltration as invalid access is constrained

to a single service/OS.

Stellenbosch University https://scholar.sun.ac.za

46

5.4 Architecture Specification

5.4.1 Communication

REST, constrained by its semantics and ties to the HTTP protocol, is unsuitable to

use anywhere other than the frontend for the application at hand. Considering RPC,

allowing for tailored semantics and boasting protocol-agnosticism, is a far more

suitable communication style for a backend implementation. Considering that the

frontend in this application is not dominantly web-based, RPC is equally suitable

for use in the frontend.

The decoupling of services, indirect messaging style, and ease of messaging

multiple services makes event-driven communication an attractive option for use in

microservices. Additionally, the ability to stream data improves real-time

communication in a system boasting simulation capabilities – as is the case here.

With streaming, processing throughput is increased as large, timely simulations can

be broken down into a series of smaller simulations; where the series of smaller

simulations yield more timely results. However, the potential issues involved with

unenforced information parsing is a concern. This is an especially important

consideration where different teams will be responsible for defining their interfaces.

Considering that the focus of this system is on information and not task

coordination, an event-driven approach introduces unnecessary complexity and

risk. Conversely, the stub generation process of RPC requires that a message

structure and standardised protocol be defined in the interface. In doing so, the stubs

perform message parsing on behalf of the service. This removes the potential for

message misinterpretation.

An option that is not unheard of, and is described in an example by Murthy (2017),

is to design an architecture combining the three discussed communication styles.

This approach suggests using REST APIs in the frontend, where user interfaces

need to communicate with the architecture. RPCs and message brokers are used for

backend communication, where information transfer is handled using RPCs and

task coordination is handled by a message broker/event-driven communication.

Considering the size of the application being considered, this fusion approach is

unnecessarily complicated.

The considerations presented in Section 5.1 indicate that RPC is likely the most

suitable communication mechanism for use in the proposed architecture. In the

discussion to follow, it is specified that the selected RPC framework should support

message encryption, relating to the need for data integrity (NF3.1), and some form

of interceptor middleware. Additionally, to cater to further security requirements,

implementations should utilise containerisation technology to ensure true isolation

and portability of services. In the application considered here, where internet

connection is not guaranteed, having pre-configured containers means that services

do not need to be built or have dependencies fetched from online repositories during

Stellenbosch University https://scholar.sun.ac.za

47

a voyage. Instead, their containers, which contain these dependencies already, can

be launched and migrated as required.

With a communication style selected, the layered architecture presented in Figure

4 can be expanded upon. A generic, lower-level architecture is depicted in Figure

5. The discussion to follow specifies how the presented components are to be

implemented considering the discussion on middleware presented in Section 2.3.

5.4.2 User Interfaces

Multiple user interfaces can exist, with each being tailored to a specific client.

Operator interfaces, for example, will be optimised to require minimal navigation,

allowing operators to focus on piloting the vessel instead of navigating their

information services. Mobile interfaces will likely be more involved and display

less information per page due to the nature of the device.

5.4.3 Gateway Services

The gateway services are the only access point to the system, acting as a

receptionist. In order to confirm access to the system and its services, the gateway

communicates with security services to authenticate users who want to use the

system. Richardson (2018) shows how providing each individual frontend with a

gateway allows for better traffic control and finer-grained access to services.

An off-the-shelf message-oriented middleware component can be used to

implement the gateway. This allows for easy reconfiguration of the backend system

as protocol translation and routing is handled through a configuration file rather

than a custom codebase. A suitable message-oriented middleware component for

Figure 5: Architecture diagram

Stellenbosch University https://scholar.sun.ac.za

48

this task would be a proxy that can essentially represent the backend system to the

frontend/user. Most proxies exhibit the described translation and routing

functionality out of the box, with the additional option of rate-limiting and load

balancing being a standard feature. By configuring the proxy to implement rate-

limiting at the gateway, system-wide rate limiting can be implemented in addition

to service-level rate limiting. This can be used to provide preference to priority

users at the system level, which could be useful in situations where networks are

constrained.

Considering defence-in-depth, the gateway that is selected should at least provide

facilities for message encryption and rate-limiting. Employing encryption at the

gateway, as well as in the selected RPC framework, allows for one to encrypt both

internal and external messages. Additionally, through leveraging two points and

approaches to encryption, separate certificates can be used for internal and external

communication. This provides an additional layer of security - where one set of

certificates become compromised, the extent of the damage is constrained to that

communication channel only. Rate limiting in the gateway allows for the system to

be configured independently of the services, which provides high-level control over

inbound traffic and acts as the first line of defence against DOS attacks. Here, the

system can be configured to only allow the maximum expected traffic on board the

specific vessel (145 pax in the case of the SAAII).

5.4.4 Security Services

Considering the points discussed in Section 5.3, it is evident that security needs to

be considered at both a global level and a service level. With this in mind, multiple

security middleware components will be included in the architecture specification.

To deal with authentication needs, and following the suggestions of Richardson

(2018), an authentication service (with an associated database of users) should be

included to only allow valid users to log into the system. This service facilitates

security at a global level by generating access tokens for valid users to use with

their queries. To successfully implement the access token pattern (Richardson,

2018), each service should enforce authorisation for itself. This can be achieved

through a generic middleware component that is configured and employed by each

service. For RPCs, this can be achieved through the use of an authorisation

interceptor. By doing so, developers do not have to deal with implementing the

system logic of authorisation, having only to add the generic interceptor to their

server. This interceptor can be added to all components, not just low-level

microservices, to provide the system with defence-in-depth. Considering

authentication and authorisation in this manner provides the required support for

different users (NF1.0, NF1.1, and NF3.1).

To round out security middleware considerations, rate-limiting at a service level

can be implemented through the use of a generic interceptor, too. This interceptor

can be configured to rate limit based on user or IP, providing tailored DOS

Stellenbosch University https://scholar.sun.ac.za

49

protection to the services. Again, by using a generic interceptor, developers can

focus on their service without the need to deal with complicated system integration.

The final security consideration is that of message encryption. Encryption has

become an industry standard and as such, is generally provided for in messaging

frameworks. This specification is not assigned to a specific component but will be

used as a requirement for selecting an RPC framework and proxy technology during

implementation.

5.4.5 Monitoring Services

Monitoring services collect performance and usage data from the services,

including information about service usage, failure, and response times. These can

be used for debugging and introspection and can help to identify sub-standard

services and target backend optimisations. These services consist of the metric

database, recording quantitative metrics about service interactions, and a

monitoring console that displays this information and trends to system

administrators.

Monitoring middleware can be achieved in one of two ways: either through a

service registry component or a monitoring interceptor. Adding a service registry

requires that each service registers itself on start-up and posts interaction

information either before or after each interaction. This approach requires service

developers to interface with other components in the system which conflicts with

the approach taken in this system design. A better approach would be to specify a

generic monitoring interceptor that records the service interaction of the service it

is added to, and have this interceptor post information on behalf of the service. This

allows the developer to maintain focus on their service rather than the system, which

is better aligned with the objectives of this work. Additionally, with interceptors

already being considered for security middleware, this decision does not add any

additional component types to the system specification.

5.4.6 Aggregation Layer

The aggregation layer is the first layer of the backend, consisting of custom

software. Services that fall under this layer are inspired by the staff holons of the

PROSA aggregation (Valckenaers, 2019), differing from standard microservices in

that they do not have an explicit task to do. These services are responsible for

invoking services required to provide certain information, and aggregating the

responses. To the gateways and users, aggregators can be thought of as providing a

‘service package’. These services send out concurrent, non-blocking requests to all

the necessary services, aggregating the responses and returning them to the user

(through the gateway).

While a seemingly simple adaptation from having a pure service mesh in the

backend, having this aggregation layer provides great value for implementation

Stellenbosch University https://scholar.sun.ac.za

50

with specialised domain teams. The aggregators coordinate information among

services, so that in the case where a Service A requires information provided by a

Service B, it will not have to know of Service B or its location. The aggregator has

this logic programmed into it, first invoking Service B to get the necessary

information, then relaying that to Service A as a message argument when making

the invocation. This approach provides a valuable level of abstraction, especially

when working with services developed by domain experts. These experts can focus

on developing services that encapsulate their knowledge, without having to concern

themselves with how their service will interact with others. This abstraction further

helps to avoid backend complexity, avoiding communication webs between

services that could cause lock-ins and cascading failures.

5.4.7 Service Layer

The service layer embodies the lowest level of this architecture and is where all the

microservices reside. Because of the inclusion of the aggregation layer, these

services truly live up to the vision of the microservice, dedicating themselves to

performing a single task and nothing else. These services are not concerned with

other services or locating the required information, they simply receive a request

and serve it. The simplicity and independence that is afforded by the aggregation

layer makes updating and optimising services incredibly easy, and allows them to

remain as lightweight as possible. Because the code of these services only serves to

achieve the task it exists to do, and not any system-integration activities, it is also

easier for new developers to understand and contribute to the service.

The customised semantics enabled by RPCs make it easy to tailor the calls that can

be made to these service. In this architecture, digital twins simply expose available

services through an RPC server. These look the same as any other service would to

clients in the architecture, and are interacted with in the same manner, too. In the

case that a digital twin is unable to expose itself through RPCs due to its siloed

development, an RPC client can be set up to act as a ‘translator’ between the

architecture and the service exposed by the digital twin. This is enabled by the

relaxed server/client roles of RPC.

Stellenbosch University https://scholar.sun.ac.za

51

6 Case Study Implementation

This chapter details the implementation of the specified architecture in a case study.

The case study manifests as an implementation of the architecture proposed in

Figure 5, applied to the SAAII. This implementation will serve as a basis for the

evaluation of the architecture design, with the evaluation described in Chapter 7.

This chapter outlines the objectives of this case study, the methodology taken in

implementing it, and the specific components comprising the case study itself.

6.1 Objectives

The implementation of the proposed architecture is designed such that it aggregates

information from various sources in a way that creates value beyond that which

each source could provide independently. Additionally, the implementation should

servitise existing engineering models and algorithms that have been developed by

domain experts in previous studies. This showcases the design’s considerations

towards service development by independent teams.

Beyond meeting the design requirements, the case study is designed such that it

showcases specific characteristics. These are the characteristics that are omitted

from the evaluation due to their implementation-specific nature, this is discussed in

Section 7.1. Recalling that service isolation enables varying technology stacks to

be employed, the implementation includes different but suitable technologies based

on the service requirements. The services are decomposed such that they are aligned

with specialised domain teams and can be reused to provide different information

to the user. This displays the composability characteristic of microservices. Finally,

this case study deliberately includes services existing as both clients and servers,

since this functionality was a key consideration in the architecture design and

communication mechanism selection.

This case study, therefore, aims to verify the suitability of the proposed architecture

for the aggregation of information on maritime vessels. The case study comprises a

minimal implementation meeting the requirements set out in Chapter 3. This

implementation will serve as a basis for testing and evaluation.

6.2 Methodology

The development of services that encapsulate advanced domain knowledge is

beyond the scope of this thesis. As such, the majority of the services used in this

case study implementation were curated from a repository of past studies carried

out by the Sound and Vibration Research Group (SVRG). Each of these studies

imparts their own contributions to the research community, but are used here merely

as examples of service instances that may exist within the maritime context.

Stellenbosch University https://scholar.sun.ac.za

52

These services were originally developed as stand-alone solutions, they all followed

a siloed development style to serve the studies’ initial goal. These were developed

in complete isolation, with no intention for future collaboration or servitisation.

Many of these studies were conducted over different time periods too, serving

research needs that evolved with the vessel. The individuals who developed these

models and algorithms are considered domain experts, with their studies focussing

on specific and intricate details of the SAAII. This siloed development by domain

experts is a recurring theme when working with maritime systems and, by

leveraging this, verifies the design choices made when designing the architecture

regarding individual service development by specialised domain teams (NF0.0).

6.3 Implementation

This section describes the implementation of the proposed architecture. It details

the process followed to develop the case study, as well as the technologies selected

to implement it.

6.3.1 Implementation Strategy

This case study involved the development of both generic and study-specific

components. The generic components are those that hold no relation to a specific

implementation and can thus be reused across multiple implementations with

reconfiguration. These were developed without considering domain logic to

maintain their generic nature. The study-specific components relate to this case

study, specifically, and consist of models and algorithms made available through

the SVRG. These are included to effectively demonstrate the aggregation and

coordination of information in a maritime environment through this architecture.

The implementation will consist of various services which would traditionally exist

as a monolithic system (or multiple, independent monolithic systems). In this

hypothetical monolithic system, these services would likely be deeply intertwined

with repeated functionality and replicated data. By instead following the proposed

microservices approach, each service exists independently within the system such

that the services, and the information that they provide, are reused where practical.

Additionally, by designing each operation with clearly defined interfaces, their data

can be used with or by other operations to enhance the value that it can provide.

During testing, the gateway, authentication service, and relevant interceptors (rate-

limit, retry, authorisation) were reconfigured as needed to change how services

would react to specific requests. As is mentioned in Chapter 3, the frontend needed

to be considered to demonstrate certain architectural requirements but doesn’t fall

into the scope of this project. As such, a suitably simple frontend was developed to

serve the needs of this case study. It allows for the required inputs to be provided

when invoking services, displays the outputs, and only displays offered services

based on the user’s role.

Stellenbosch University https://scholar.sun.ac.za

53

6.3.2 Implementation Platform and Technology Selection

Considering the specification made in Chapter 5 that the selected RPC framework

should support message encryption and some form of interceptor middleware,

gRPC has been selected for this implementation. gRPC is covered in Section 2.4.3

and is a highly-suitable framework for use in microservices, providing interceptor

support and encrypted messaging out of the box.

Following the recommendations of Berger et al. (2017), each service will be

deployed in their own Docker container with all containers running within their

own network. This is done to support migration between machines during

development and deployment as containers improve the portability of services –

requiring no further installations or builds between machines as dependencies are

implicit to the container. Containerisation is a popular deployment approach for

microservices, ensuring fully de-coupled, lightweight services that fail in complete

isolation while being easily recoverable. Additionally, building Docker containers

beforehand, known as baking, yields Docker images containing all the required

dependencies. Through the baking of containers, offline operation is guaranteed as

everything required by the service is available locally. This is likely how this system

would be deployed on board a vessel, so it will be tested in this manner to best

mimic the real-world deployment environment.

6.3.2.1 Generic Components

The gateway component was said to most likely be implemented as a proxy. Google

advocate for using Envoy as a proxy for gRPC applications, as it supports the

translation of HTTP/1 to and from HTTP/2. This is done to enable gRPC to run in

the browser, as modern browsers do not yet support the full range of HTTP/2

functionality used by gRPC. Based on this support, and its successful adoption in

industry, Envoy will be used to implement the gateway component. This proxy will

route user requests to the relevant backend services while translating any requests

where necessary. In addition to this, Envoy will be configured to rate-limit requests

at the system level. The gateway is documented in Appendix C.9, and enables the

web gateway to be written in JavaScript using gRPC Web. In addition to the

gateway, a generic authentication service has been developed in Golang, as is

documented in Appendix C.11.

A custom retry interceptor was developed in order to offer clients with fault-

handling functionality. This interceptor adds exponential back-off retry logic to

connections. In the case that a server is inaccessible the very moment a client tries

to connect to it, or in the case that a server goes offline while processing a request,

the client-side interceptor will catch the error and retry the request, with the back-

off logic gradually increasing the time between retries instead of throwing an

immediate error. This provides relief by giving the server enough time to process

internal issues, or to restart itself before the next call is received. The source code

for this interceptor can be found in Listing 1.

Stellenbosch University https://scholar.sun.ac.za

54

A custom metric interceptor was also developed, allowing for service metrics to be

recorded. This interceptor records all client and server interactions with metrics for

latency, traffic, and packet size. These metrics are sent to a Prometheus server,

which is running in its own container, ensuring that the data describing service

interactions does not reside with that service. This centralises the system monitoring

and ensures that metrics about service performance persist the services themselves.

All source code relevant to the logic performed by this interceptor can be found in

Listing 2, Listing 3, and Listing 4.

Additionally, a rate limit interceptor was developed for servers. This interceptor

boasts logic that tracks the number of active calls being processed by the server as

well as the limit to concurrent calls imposed by that server. Once this interceptor

has recorded that the server is currently processing its maximum number of

concurrent requests, any further requests are rejected so as to protect against DOS

attacks. Source code for the logic performed by this interceptor is presented in

Listing 5.

The final middleware component developed for generic use is a custom

authorisation interceptor. This was developed to enable role-based authorisation,

complimented by the authentication service mentioned above. This interceptor can

be added to any server in order to achieve service-level authorisation. This

interceptor loads in permissions for every service that it is added to, catching

requests before they reach the server. The interceptor extracts an access token from

the request metadata and verifies that the user requesting a service call is permitted

to do so before forwarding the request to the server. The relevant source code for

this interceptor can be found in Listing 6, Listing 7, and Listing 8.

At this point, it is worth noting that interceptors are language-specific components.

As such, any additional language that is employed requires that the interceptor logic

be replicated for that language.

6.3.2.2 Domain-Specific Components

Figure 6 shows the case study’s information flows and the relationships between

them. Note that in this diagram, the data flows into the metric database (Prometheus

server) have been omitted. These links were purposely left out in an attempt to avoid

a cluttered diagram. For the same reason, interceptors have not been shown on this

diagram. However, in both cases, the same metric database connections and

interceptors have been employed as are shown in Figure 5, previously. Each of the

services, and their information flows, are individually discussed in detail in

Appendix C.

As is mentioned above, microservices were selected from a repository of past

projects of the SVRG. Certain projects were documented such they could be

servitised by adding server code and making minor adjustments to the original

source code, while others required complete development from scratch. The

Stellenbosch University https://scholar.sun.ac.za

55

microservices used in this case study include: the ocean weather service

(responsible for collecting environmental data), the power-train service and

vibration estimate service (showcasing different data-driven modelling

approaches), the comfort service (running remotely), and the propeller monitor

service (running remotely to showcase numerical modelling and services offered

by digital twins). Here, majority of services have been written in Python 3, with the

vibration estimate service being implemented in C#.

Aggregator services were designed to demonstrate service coordination, service

reuse, and information aggregation. Three aggregators have been included in this

case study, documented in detail in Appendix C.6 to C.8. The route analysis

aggregator coordinates and aggregates information between multiple microservices

to provide a multifaceted, high-level summary of the proposed route. The associated

user interface allows users to click on metrics of interest, where they are provided

with more detailed insights through automated requests to the power-train

aggregator or vessel vibration aggregator. The power-train aggregator provides a

high-resolution time series description of the power consumption along a proposed

route. This power consumption is overlayed with the additional cost incurred at

each point along the route – providing stakeholders with insight into the power

consumption/cost trade-off and allowing them to alter routes to minimise power

and cost requirements. The vessel vibration aggregator orchestrates service calls to

provide an estimation of the whole body vibration that may be experienced on the

bridge along the given route. The aggregators additionally contain specific logic to

convert the information as is required for various services. For example, the ocean

weather service should not have to contain logic for the ship’s heading to provide

relative wind and wave information. Instead, the ocean weather service provides

absolute values for these, with the aggregator converting them to relative values

where subsequent service invocations may require them. All aggregators have been

written in Golang, as is documented in Appendix C.

Stellenbosch University https://scholar.sun.ac.za

56

The middleware layer encompasses all generic and reconfigurable services, and

have been configured specifically for this case study. Additionally, the middleware

layer encompasses the interceptors described in Section 5.4, although it is not

displayed in the figure below for reasons already mentioned.

Figure 6: Case study diagram

Stellenbosch University https://scholar.sun.ac.za

57

7 Case Study Evaluation

This chapter serves to evaluate the architecture implemented in the case study

described in Chapter 6, considering the requirements formulated in Chapter 3. This

evaluation utilises the ISO 25010 standard, presented in Appendix A, as a guideline

for evaluating the criteria. This chapter details the generation of the evaluation

criteria below. Thereafter, it presents the results before discussing them considering

the formulated criteria.

7.1 Evaluation Criteria

This section details the evaluation criteria. Table 6 presents the metrics appropriate

to the evaluation of the design. For criteria where metrics could not be derived, a

discussion is provided in Section 7.4 along with a discussion of the metrics – these

are included in the table but have no metrics assigned to them. The proposed

architecture design builds on the core characteristics of microservices. The case

study showcases the design decisions made, with this evaluation serving to validate

these characteristics and decisions. Beyond the design decisions, this evaluation

should benchmark the behaviour of the system for those requirements that can only

be considered during implementation. The criteria specified here dictate the

experiments required to perform an evaluation, as discussed in Section 7.2.

Note that in Table 6, not all microservice characteristics and decisions have been

included. Characteristics, such as enabling technological heterogeneity, allowing

for organisational alignment, and supporting composability cannot be evaluated for

a generic architecture. Instead, these were considered in the case study design. In

validating the decisions to use RPC as a communication mechanism, motivation

based on flexible server and client roles is again considered in the case study design,

where aggregators and gateways act as both servers and clients in the system.

Considering that the proposed architecture follows the microservice architectural

style, the initial evaluation criteria are based on the characteristics of microservices

(presented in Chapter 2). Accounting for service independence, the evaluation

should verify that faults originating in a single service do not affect any other

component of the system. Microservices are often favoured as each service can be

individually deployed and updated. This evaluation should verify that this

architecture supports individual service deployment and removal during operation.

Beyond the criteria for a microservices architecture, certain application-specific

criteria require evaluation. These refer to the aforementioned design decisions and

benchmarks. A major decision made in the architecture selection was to employ the

API gateway pattern with an additional aggregation component. The gateway was

selected to handle request routing, protocol translation, and provide an easily

reconfigurable system; while the additional aggregation component was included

to enable greater service independence and simplicity. The experiments should thus

Stellenbosch University https://scholar.sun.ac.za

58

be designed such that they can reasonably validate the system’s behaviour regarding

request routing, protocol translation, and reconfigurability, without requiring

complex service navigation. The experiments should additionally verify that

through the inclusion of the aggregator component, services are allowed to exist

independently of others in the system.

Table 6: Evaluation criteria

S
o

u
rce

 o
f

C
riter

io
n

Microservic

e

Characteris

tics

Architecture Selection

Decisions

Architecture Design Decisions

C
riter

io
n

 F
au

lt iso
latio

n

 E
n

ab
le in

d
ep

en
d

en
t serv

ice d
ep

lo
y

m
en

t

 E
n

h
an

ced
 m

ain
tain

ab
ility

 A
P

I g
atew

ay
 fo

r req
u

est ro
u

tin
g

 A
P

I g
atew

ay
 fo

r p
ro

to
co

l tran
slatio

n

R
eco

n
fig

u
rab

ility

E
n

su
re serv

ice in
d

ep
en

d
en

ce

A
g

g
reg

atio
n
 lay

er fo
r h

id
in

g
 co

m
p

lex
ity

R
P

C
 fo

r real-tim
e resp

o
n

se

 G
atew

ay
 fo

r au
th

en
ticatio

n

S
erv

ices fo
r au

th
o

risatio
n

M
essag

e en
cry

p
tio

n

G
atew

ay
 an

d
 serv

ice rate lim
itin

g

M
etric co

llectio
n

 in
 serv

ice p
ro

v
id

in
g
 stru

ctu
re

 M
o

n
ito

rin
g

 serv
ice fo

r p
ersisten

t m
etrics

Metrics

Q
u

a
n

tita
tiv

e

Response

time
 X X

X X X

X

Number of

concurrent

requests

 X

X

Number of

concurrent

sessions

 X

 X

Launch

time
 X X

X

Lines of

code
 X X

X

Stellenbosch University https://scholar.sun.ac.za

59

Following the selection of the architecture, important decisions were made in the

Architecture Design. Most notably was the selection of RPC as the communication

mechanism in the architecture. Relevant to this evaluation, the selection was

motivated by RPC’s support for distributed services. The experiments should thus

evaluate the support for running, and communicating with, services remotely. In

the architecture design, decisions were made regarding middleware components,

too. Security middleware was specified to perform authorisation at each service

interface, message encryption both internally and externally, and rate-limiting of

both the system and services. Along with authorisation at each service interface, it

was stated that authentication would be performed at the gateway level. The

experiments should thus support the evaluation of these security decisions. Beyond

security, middleware was specified to provide system monitoring functionality. The

experiments should verify that metrics are collected in a structured manner and that

they persist the services that they describe.

7.2 Experiments

Considering the evaluation criteria, four experiments are identified to evaluate this

system: a standard operations experiment, a forced failure experiment, a security

experiment, and a reconfigurability experiment. Metrics regarding system

performance will be collected by the monitoring middleware throughout the

experiments, with the raw results documented in Appendix E. Through the use of

these metrics for evaluation, the monitoring middleware requirement for structured

data storage is verified. Here, each service produces labelled data that can be

efficiently searched and compiled based on its assignment.

7.2.1 Standard Operation Experiment

The standard operations experiment aids in evaluating whether or not standard

functionality is achieved. This includes aggregation activities, request routing,

protocol translation, and metric collection, as well as how the system operates in a

simulated deployment environment (unreliable internet connection). With the help

of the data collected by the metric interceptors during this experiment, benchmarks

for F1.0, F1.1, F2.1, and F6.0 can be provided. The procedure for the standard

operations experiment is provided in Appendix D.1, with the benchmark data

presented in Appendix E and discussed in Section 7.3.

This experiment involves running the system as it would be in a deployment. The

system will be run for a prolonged period (for this experiment, 24 hours was deemed

sufficient to ensure stability). During this time, sporadic but regular requests will

be made to the system from various machines on the local network with the

developer verifying that the system is behaving as expected. Calls will be made

from various devices and by different users to ensure that the system’s requirements

for multiple device and user support is stable.

Stellenbosch University https://scholar.sun.ac.za

60

From the metrics recorded for this experiment, the service with the most consistent

response times will be identified. This service will be used to benchmark all

interceptor-based functionality. Initially, the service will receive a control set of

requests without any interceptors added to it, to provide a performance baseline.

Subsequently, each interceptor will be added and tested individually using the same

control set of requests. It is expected that longer response times will result from

incorporating interceptor functionality. The results can be used to evaluate if the

associated design decisions allow for the system to maintain a real-time response.

To fully consider edge use cases, where every passenger on board the SAAII may

want to make use of the system at the same time, the final test in this experiment

makes 145 requests to the system at a single point in time. This tests if the system

can handle the maximum expected traffic on the SAAII.

7.2.2 Forced Failure Experiment

The forced failure experiment describes a controlled environment in which

potential failures in the system are forcibly invoked. These failures should be

handled by the system and, as such, the system’s observed response is compared to

the expected response. This experiment serves to verify that the system is robust

against internal failures and that services are truly isolated – insomuch that their

failures do not induce failure elsewhere within the system. The test procedures for

this experiment are presented in Appendix D.2, with the related benchmark data

documented in Appendix E and discussed in Section 7.3.

This experiment invokes failures at multiple points in the system. The first point

that is tested is in the system’s response to failure in a singular service. For this test,

a service, running locally, is pulled offline during a call and the system’s reaction

to this is observed. The same test is done for a remote service. This failure should

not propagate beyond the failing service to ensure service independence and

isolation. The second test point is in the autonomy of system recovery, this test

entails modifying a service to force a failure only once a call has been made to the

service. By forcing a failure of this type, where a fatal error will be thrown, the

autonomous recovery of services can be evaluated. Again, this test will be

performed on both local and remote services. Through testing the recovery of

services, the requirement for independent service deployment is tested too. Finally,

handling and recovery from network failure are tested. In order to provide a robust

distributed system, the system should handle network failures and should recover

once the network is re-established. To ensure the persistence of metrics to aid in

diagnosis, the performance metrics should persist service failures without being

overwritten when the services are re-launched. This ensures that a complete history

of system behaviour is maintained even when failures occur.

Stellenbosch University https://scholar.sun.ac.za

61

7.2.3 Security Experiment

The security experiment serves to validate all security considerations in the

architecture, verifying that the security requirements identified in Section 3.3 are

satisfied in this implementation. The procedure for this experiment is documented

in Appendix D.3, with results discussed in Section 7.4.

For the first test in this experiment, the system is reconfigured to provide a specified

user with the option of requesting information from a service that they do not have

access to. Thereby the first layer of security, authentication at the gateway, is

maintained, but represents a misconfiguration of the system. This tests whether

authorising calls in the service is an effective design decision, providing multilayer

security. An additional test on the suitability of authorisation in the service is to

attempt service access without the request being routed through the gateway. This

approach fails to present an access token and it is again expected that the request

will be rejected. The explicit considerations against a DOS attack necessitate

launching a DOS attack while ensuring that other users are granted access to the

system without degrading service delivery. This is the final test of this experiment

and is performed by overloading a service with requests from a single user.

7.2.4 Reconfigurability Experiment

The reconfigurability experiment serves to evaluate the process required to add a

new user-facing service to a deployed system. The design proposed in this research

strives to minimise the system knowledge required for contributors. It is fitting then

that contributing to the system should not be a difficult endeavour. This experiment

serves to test the modularity of the architecture, by evaluating the modularity

requirements (NF0.0, NF0.1). The test procedures are presented in Appendix D.4,

with Listing 9 to Listing 14 containing the code snippets where changes are

required.

This experiment requires that the system be running as it would be in a deployment

environment. From this stable state, the process required to add an existing service

to the system is followed, documenting the required changes to source code. Once

the service is ready to be run within this system, the service needs to be integrated

with the deployed system. To do so, the gateway needs to be updated (through its

configuration file). This update necessitates that the gateway be pulled offline

momentarily with the updated instance relaunching. A successful outcome would

result if the system performed consistently during this downtime as it would in

standard operation. This test verifies that individual service deployment is

successfully considered and that the architecture has been designed to support

maintainability.

Stellenbosch University https://scholar.sun.ac.za

62

7.3 Results

This section presents the results of the evaluation. All raw data has been included

in Appendix E, with the data relevant to the evaluation presented here. Quantitative

results are presented in Section 7.3.1, with the qualitative results presented in

Section 7.3.2.

7.3.1 Quantitative Metrics

7.3.1.1 System Stability Test

Using the measured service request latencies presented in Table 10 to Table 14, the

average communication times can be calculated. Knowing the call list of each

aggregator, one can subtract the request latency of each service invoked by that

aggregator to determine the net communication time (time for messages to be sent

and received, without considering server processing time) for a call chain. This can

then be divided by the number of services invoked by the aggregator to obtain the

average communication time between a client and a server. The communication

time is the time required for a request to be sent to, and for a response to be sent

from, a server, excluding the time required for any service logic to be performed.

This has been performed on the metrics recorded in Appendix E by matching

request ID, with the results are presented in Figure 7, below:

From the data presented in Figure 7, the average communication time is calculated

to be approximately 80 ms, with the slowest communication times nearing 114 ms

and the fastest falling within 60 ms.

Figure 7: Communication latency histogram

Stellenbosch University https://scholar.sun.ac.za

63

The gateway, being a standard component containing no domain logic, was

benchmarked during the standard operations stability test. The results are presented

in Table 18 and Figure 8.

The average response time of the gateway, while performing protocol translation,

request routing, and system-wide rate-limiting, was calculated to be approximately

160 ms, with the majority of the recorded interactions taking place within 100 ms.

The slowest response received from the gateway took 628 ms, with the best

performance providing a response in close to 10 ms.

Figure 10 and Figure 9 show the hardware requirements of each service used in this

case study. These graphs present the information provided in Table 21. In both

figures, the requirement for a dormant service is presented with the requirement for

an active service – note that the active requirements are stacked on top of the

dormant requirements in these graphs, not alongside them. In Figure 10, it can be

seen that the two services offering simulation functionality, the propeller monitor

service and the power-train service, place notably greater requirements on the

processer. Here it can be seen that both of these services require approximately 50%

of the CPU when processing requests. Note that for all services, the ‘dormant’ CPU

requirements are nearly negligible, as can be expected.

Figure 8: Gateway latency histogram

Stellenbosch University https://scholar.sun.ac.za

64

It can be observed in Figure 9 that the user database and power-train service require

the most memory, with the user database requiring nearly 500MB of memory when

both dormant and active.

In Figure 11 the times required to build the container for the case study services are

presented – this is based on the data documented in Table 22. In this figure, the

initial build time for each service container is provided alongside the time required

to build the service container once all necessary dependencies have been cached.

These dependencies includes container images and packages/libraries required by

Figure 10: CPU usage of case study services

Figure 9: Memory usage of case study services

Stellenbosch University https://scholar.sun.ac.za

65

the service. In this figure, it is evident that the power-train service and web frontend

boast the lengthiest build times, with the power-train service needing almost 7

minutes to complete the initial build. One can also observe that, with all necessary

dependencies cached, container build times dropped to approximately 6 seconds

across all services except for the Ocean Weather Service, which took 11 seconds in

this case.

7.3.1.2 Interceptor Benchmark Test

The interceptor benchmarks, recorded in Table 19, were averaged as each recorded

transaction was unique, and were subsequently compared. The average response

times with various interceptor configurations were recorded and can be observed in

Figure 12.

From the response times presented in Figure 12, the additional latency added to a

request by each interceptor is calculated and presented in Table 7.

Figure 11: Container build times for case study services

Stellenbosch University https://scholar.sun.ac.za

66

Table 7: Interceptor latencies

Interceptor Average request

latency [ms]

Additional request

latency [ms]

Percentage increase

on baseline [%]

None 1.96 0 0

Metric interceptor 9.83 7.87 402.53

Authorisation interceptor 2.39 0.43 21.94

Rate limit interceptor 2.22 0.26 13.26

7.3.1.3 Rate Limit Test

The rate limit rejection results, recorded in Table 20, show successful results when

implementing service-level rate-limiting in Golang and system-wide rate-limiting

in Envoy. Here, the service and the gateway rejected all calls once the limits had

been reached. Service-level rate-limiting in Python, however, provided varying

results depending on the service configuration. Consistent results were obtained

where the server processing requests was constrained to using 20 or fewer workers

(threads) to handle requests, and the server set its rate limit to enable fewer than 16

concurrent requests. It can be observed that inconsistent results are provided for any

configuration where there are: more than 20 threads serving requests, the rate limit

is set to more than 16, or the rate limit is set to be greater than the number of threads.

(a) (b)

(c) (d)

Figure 12: Service latency with (a) no interceptors, (b) metric interceptor only, (c)

authorisation interceptor only, and (d) rate limit interceptor only

Stellenbosch University https://scholar.sun.ac.za

67

7.3.2 Qualitative

7.3.2.1 System Stability Test

For the duration of this test, the system remained online and accessible from all

devices on the network. During this time, all authorised requests were successfully

processed except for those that were sent when the host machine had its internet

connection intentionally revoked. In this case, the requests were still sent and

processed, but the ocean weather service recorded and returned an error when trying

to access the Stormglass API as the service was unable to connect to the Stormglass

servers.

7.3.2.2 Request Limit Test

The request limit test saw the system being sent 145 concurrent requests. With the

gateway rate limit and the service rate limits set to allow for this many requests, all

requests were processed. During this test, user functionality was maintained, with

service access being provided only to those users who were authorised. It is worth

noting, however, that Python servers did not process all requests concurrently.

gRPC servers that are implemented in Python are configured using workers

(threads), with each worker being assigned a single request. It was observed that

Python was able to process a maximum of 20 requests concurrently, with

subsequent requests being queued. This resulted in all requests being served, but

with them being processed in batches of 20 requests at a time.

7.3.2.3 Fault Isolation Test

For the fault isolation test, none of the invoked failures originating from a single

service were observed to invoke faults anywhere else in the system. When a fault

occurred, all other components in the system were still capable of processing

requests as intended. This held true for both locally-hosted and remote services.

7.3.2.4 Service Recovery Test

In the service recovery test, all services were observed to relaunch themselves

without intervention. This held true for both local and remote connections. When a

Golang client was used to invoke a failing service, its retry interceptor successfully

picked up failed calls where the service ran on the same machine. However, it failed

to re-establish a connection to a recovered remote service, returning “code =

Unavailable desc = transport is closing”. This is a known bug in Golang when

programs are presented with dropped connections. As such, the test was repeated

with a Python client. In this case, the same error was logged by the client, with the

retry interceptor successfully re-establishing the connection and completing a

successful call chain for both local and remote connections.

Stellenbosch University https://scholar.sun.ac.za

68

7.3.2.5 Network Failure Test

Observing the server logs, the network was unplugged once the remote server

received a call and was only re-connected once the logs showed that the server was

attempting to return a response. The server retried returning the response such that

the response was successfully returned once the remote machine’s network

connection was re-established. In this interaction, both the server and client

maintained their connection through the network failure, allowing for the same

connection to be re-used once the physical connection was regained.

7.3.2.6 Unauthorised Access Test

Unauthorised requests that were validly sent to servers were rejected as expected.

Validly sending requests dictates that the requests are routed through the gateway.

In all cases, the server logs documented a “Failed to authorise: the user does not

have permission to access the requested service” internally, returning an “rpc error:

code=PermissionDenied desc=user does not have permission to access this RPC”

message.

7.3.2.7 Gateway Bypass Test

With requests being sent to servers in an invalid fashion, the client fails to provide

the server with an access token in the request. In all cases, these invalid requests

were rejected as anticipated. Server logs documented a “Failed to authorise: JWT

has not been provided” internally, returning an “rpc error: code=PermissionDenied

desc=authentication token has not been provided” message in all cases.

7.3.2.8 Service Development Test

The process documented in Appendix D.4 describes changes to at least eighteen

lines of code to convert service logic into a service capable of being run in this

system. In addition to these changes, two build commands need to be called. These

eighteen lines of code span two separate files, with the majority of changes

attributed to customised service call semantics. Due to the nature of these

semantics, there is no possible way to further automate the creation or

reconfiguration of services. These semantic changes necessitate changes in the

service file. Generic configuration variables, however, have been implemented in a

manner such that they can all be changed through the configuration file.

It is worth noting here that this thesis does not account for any line changes to the

frontend to display the information of new services. This was considered out of

scope as the line changes required for this depend heavily on the implementation of

the frontend (web vs. embedded) and the design of the frontend itself. Additionally,

the architecture proposed in this thesis does not specify how to implement the

frontend. Keep in mind, though, that the addition of any new service would require

that the frontend be updated to display the new information on offer. Here, the

Stellenbosch University https://scholar.sun.ac.za

69

frontend should not need updating to offer the new service, as this is done

automatically when the user logs in and their access permissions are provided

through the gateway.

7.3.2.9 Service Integration Test

The process of updating the system to include a newly-developed service is

described in Appendix D.4. This procedure requires five-line changes in a single

file, as well as one build command. These line changes are purely configuration and

are required for the gateway to know where to route new requests. The process of

updating the gateway during deployment requires a single command, which pulls

the old container offline and replaces it with the new one. This process executes in

the order of milliseconds. Where there is an existing connection to the gateway

when it is pulled offline, the client receives an “ERR: CONNECTION REFUSED”

error as the connection to the gateway is immediately killed. The server request

continues to be processed, yielding an error only when the response is returned. In

order to handle this dropped request, the client’s retry interceptor re-establishes a

connection to the new gateway instance and retries the call through that connection.

This behaviour mirrors that which was observed during the fault isolation test.

7.4 Discussion

This section presents a discussion of the results, recorded in Section 7.3 and

Appendix E, in the context of the case study and thesis objectives. The results are

evaluated in terms of the satisfaction of the requirements stipulated in Section 3.3.

As is mentioned above, the ISO 25010 standard is consulted in structuring this

evaluation; because this standard is intended for evaluating software products, not

designs specifically, categories that relate to implementation such as supportability,

usability, and portability, have been omitted here to maintain relevance.

7.4.1 Functional Suitability

Functional suitability considers the extent to which the system is able to provide the

functionality described by the objectives and requirements. The emphasis here is

on qualitative achievement and as such, the requirements associated with the

qualitative results presented in Section 7.3.2 are mostly discussed in this section.

7.4.1.1 Functional Completeness

The system implemented in the case study successfully provides a facility in which

to run engineering models and information collectors. The case study sufficiently

demonstrates this through running both data-driven (power-train service and

vibration estimate service) and mathematical models (propeller monitor service), as

well as the inclusion of an environmental information collector (ocean weather

service). From the service types used in this case study, it can be seen that the

proposed architecture is capable of running modern engineering models (regardless

Stellenbosch University https://scholar.sun.ac.za

70

of whether they are mathematically derived or built off repositories of data). This

allows models of standard components, such as motors or generators, to be

deployed as services in this system, as well as models that would be specific to each

vessel, such as hull or propeller models. The case study additionally showcased

how the system can coordinate information between information sources and these

models for enhanced insights, too. Here, a standard set of information services

could be offered, such as those for open ocean weather, with custom information

services being developed based on specialised use cases. An example of this would

be a custom information service to provide ice information, which could use

satellite imagery to provide information about ice fields, or it could have a more

specialised implementation extracting this information from a drone or camera

setup installed on the vessel instead. The architecture proposed here does not place

any constraints on this, offering a system that is flexible and customisable for each

vessel and voyage it is used on.

The addition of an aggregation layer considers the objective to coordinate

information between models and information collectors. The three aggregators

were effective in displaying this, enabling each microservice to focus solely on

capturing domain knowledge, with the aggregators providing additional value

through the fusion of information.

The final objective specified that the architecture be designed such that it supports

contributions from various vendors, creating a modular and adaptable system. The

selection of a microservices-inspired architecture was the first step towards

achieving this. The discrete nature of microservices inherently promotes a modular

system. Additionally, the abstraction provided by the aggregation layer allows for

microservices to be oriented around domain knowledge – as is advocated for in the

domain-driven design ideology (Evans, 2003). This makes contribution easier as

developers need only focus on providing domain-specific information, not on how

the information will be used in the system. To consider information use, the

aggregators are oriented around business logic, with their development focussing

on using domain-specific services to derive value for end-users. This combination

produces a system that can be easily reconfigured for changing stakeholder needs

and vessel expansions. The case study demonstrates this through the use of services

that were developed by domain experts prior to this research, which are deployed

within the system to provide enhanced value to users. This allows the system to

grow along with the vessel and her needs, with additional services and information

being made available as new requirements are formed and new insights are

obtained.

The architecture has also been designed such that the value that a single service can

provide is not limited to that use case alone. It was demonstrated how the

information provided by services could be used to provide value greater than just

what is offered by that service. In the case study this was seen where the power-

train service was capable of providing power and cost estimates, but could provide

even greater value when its information was used to derive information from the

Stellenbosch University https://scholar.sun.ac.za

71

vessel vibration service too – providing insights beyond what one could with the

power-train service alone.

Through the case study, the selection of well-supported and well-documented open-

source technologies, such as gRPC, encourages contribution as interfacing

complexity is minimised. This was demonstrated in the Reconfigurability

Experiment, where it was shown how the interfacing procedure does not necessitate

a depth of knowledge into the system or the technologies employed by it. Apart

from the service logic, the only changes required from the boilerplate code provided

is in configuration variables. These variables relate to standard computing concepts

that any developer capable of writing code should understand. Additionally, the

semantics required to create a service definition are human-readable and logical,

with comprehensive support provided through the greater software community.

7.4.1.2 Functional Correctness

Functional correctness is the degree to which a system provides the correct results,

considering the precision required by the application. This refers to mathematical

precision when transferring data. Considering this work, it can be thought of as

ensuring that the essence of the data is not lost through aggregation.

Figure 13 and Figure 14 show the data displayed to the user after aggregation and

transfer through the system, alongside the data plotted by the service where it

originated. The timestamps and positions provided by the user for these graphs were

those of the SAAII on the 23rd of January 2021, taken at twelve hour-long intervals.

This day fell on the return leg of the vessel from her annual Antarctic relief voyage;

it was a notably stormy day, challenging the vessel with large waves, low visibility,

and high winds. These conditions forced the vessel to drop her speed to

approximately 5 knots, hence the low power requirements.

Figure 13 shows the frontend plot against the service-generated plot for power

consumption. Similarly, Figure 14 shows the frontend plot against the service-

generated plot for bridge accelerations. From these plots, it is clear that the essence

of the data is not lost in transit through the system. In both cases, the plot offered to

users perfectly represents that which is generated by the root service. This

sufficiently proves that the aggregation of data does not affect the information

delivered to users. It is worth noting that the service interfaces were designed to use

appropriate data types to avoid potential aggregation issues. Figure 13 and Figure

Stellenbosch University https://scholar.sun.ac.za

72

14 verify that the facilities required to support the high-precision data generated by

engineering models are available.

In Figure 13, the power plot is indicated by the blue line, with the left hand side

axis indicating the values. The yellow bars show the incremental cost for that

portion of the route, with the right hand side axis indicating the cost. This overlay

of data gives insight into which portions of a route will be the most costly and

support operators in reducing costs by altering specific parts of the route. In Figure

14, the human-weighted RMS vibration on the SAAII bridge are plotted over time.

The blue lines represent the x-axis acceleration, the green represents the y-axis, and

the red represents the z-axis. The y-axis of the graph indicates the RMS

acceleration, in m/s2, with the x-axis showing the unix timestamps [s].

(a)

(b)

Figure 13: Plot comparison for power consumption with (a) showing the graph presented

after transport and (b) showing the graph generated in the power-train service

Stellenbosch University https://scholar.sun.ac.za

73

7.4.1.3 Functional Appropriateness

The need to enable individual service development (NF0.0) is ensured by following

a microservices approach to digital services. Through the inclusion of the

aggregation layer, services can be developed in complete isolation of the greater

system as coordination with other services within the system is not required. This

was tested through the service development test where a new service was developed

from existing domain-logic and configured to run in the system while it was online.

The requirement to enable individual service deployment and removal (NF0.1)

shares similar merit and was tested in the service integration and fault isolation

tests, respectively. During these tests, it was found that services could indeed be

deployed and removed independently of the greater system. Launching a service

(such that it exposes itself on the host machine and within the local network) could

be done without having any effect on other services in the system. The addition of

new services, however, required the gateway to be relaunched which, while not

(a)

(b)

Figure 14: Plot comparison for bridge acceleration with (a) showing the graph presented

after transport and (b) showing the graph generated in the vibration estimate service

Stellenbosch University https://scholar.sun.ac.za

74

affecting any of the existing services, resulted in current requests being cancelled.

In order to maintain autonomous recovery, this necessitates that the user-facing

client boast retry logic to retry the failed calls.

Note that the system was not required to enable dynamic service addition as it is

highly unlikely for the needs of the vessel to change during a given voyage. The

system was instead designed to be configured for each voyage before the time (in

part due to unreliable internet required for additional development to take place on

board).

The requirement for individual service deployment and removal is further

guaranteed by specifying service deployment in containers. These containers can

be pulled offline and relaunched in a matter of microseconds without directly

affecting any other services in the system. The failure isolation test verified this

whereby services were individually pulled offline and removed from the system.

Each of the remaining services were tested, ensuring normal operation after the

removal. Services were subsequently re-launched through the service recovery test,

displaying successful behaviour for individual service deployment.

This capability to independently deploy and remove services enables the system to

be updated while online. While this was not a requirement, there are cases where it

may be beneficial. If, for whatever reason, a service was observed to have a bug

while the vessel was at sea, this service can be pulled offline and replaced with a

patched version without affecting the rest of the system. It was also observed how

this could be done in approximately 6 seconds. Additionally, should an opportunity

for new information be identified during a voyage, a service capable of offering this

information could be developed and deployed on that voyage, with a worst-case

downtime of 12 seconds, and without affecting any of the other services deployed

within the system. Additionally, taking the aforementioned approach to deployment

with containers, these services (or more suitably, their containers) can be built in

the absence of internet - as is likely the case on a maritime vessel.

The need to keep track of users and permissions (NF1.0) was considered through

the specification of an authentication service and user database. This was satisfied

in the case study by adding four separate users, with different permissions, and

dynamically tailoring the frontend to them depending on their respective

permissions. The login functionality offered by the authentication service further

provided support for access control (NF3.0) – discussed further in Section 7.4.5.1.

The request interpretation and routing requirement (NF2.0) is satisfied at two levels

in the architecture. Firstly, requests are routed by the gateway component. This

routing ensures that users do not require knowledge of backend address spaces in

order to derive value from the system. This abstraction additionally aids in hiding

backend complexity from users (NF6.1). During all tests, request routing through

the gateway proved to be a robust solution. Additionally, the gateway negated the

need for advanced service discovery, all the while without requiring the users to

Stellenbosch University https://scholar.sun.ac.za

75

know of service locations. Reconfigurability of the gateway proved a simple task,

requiring minimal adjustments (in the order of five-line changes of code) to reflect

changes to backend configurations.

The second point of consideration is in the aggregator component. Requests for

information (implicitly implemented as an information aggregate) are routed to the

relevant aggregator by the gateway, with the aggregator routing and coordinating

subsequent requests to the microservices required to provide the information for

this aggregate. The aggregation layer proved to simplify reconfiguration as

adjustments to the gateway were limited to a single service (or aggregator). In the

absence of the aggregator, custom logic would need to be placed in the gateway,

requiring a more complex piece of software than the proxy used in this case study.

Additionally, aggregation logic requires more complex changes, which would

increase the chance of a relaunched gateway instance containing errors and

increasing downtime. Finally, if aggregation was performed in the gateway, users

would be interacting directly with aggregation logic; with this logic sitting so close

to the user it is easier to unintentionally expose program/aggregation logic to them.

Access control and authentication needs (NF3.0) are considered through the

specification of the authorisation interceptor on each service. This, coupled with the

access token logic described for the authentication service, ensures that users are

authorised before requests are processed at all points within the system. The

security experiment proved this approach to be successful in providing defence-in-

depth, ensuring that information remains protected even in the cases where a user

may bypass system-level security mechanisms. For authorisation to be performed

at the service, the use of interceptor middleware proved to be a valid design

decision. In the tests, all invalid requests were rejected with the services exhibiting

the anticipated behaviour perfectly. The performance implications of adding

authorisation functionality to each service are discussed in Section 7.4.2.1.

Data integrity (NF3.1) was not tested in this thesis but is considered by specifying

an RPC framework that supports message encryption for internal integrity, and a

gateway that provides message encryption externally. In the case study, TLS

encryption was supported by all components used in the system, with gRPC

encrypting messages internally (for service-service invocation) and Envoy, being

the only external interface, encrypting communication with the browser. Enabling

the use of message encryption both internally and externally satisfies the need to

guarantee data integrity.

The capability of this system to integrate with legacy systems and consider future

systems (NF4.0 and NF4.1, respectively) could not be explicitly tested in this case

study. However, the modularity of this system ensures that it can adapt to changing

vessel configurations and stakeholder needs where required. Additionally, the

reconfigurability experiment showed that, while an unlikely and unintended use

case, the system can be updated during deployment to include new or updated

services. Where services are updated and not added, other requests being processed

Stellenbosch University https://scholar.sun.ac.za

76

by the system would remain unaffected as the gateway would not require

reconfiguration in this case. Considering digital twins, specifically, it is reasonable

to assume that a digital twin would offer multiple interfaces to ensure their

compatibility with common systems. With RPC being a prominent communication

mechanism in the field, one of these interfaces would likely be RPC. Alternatively,

the relaxed roles of an RPC implementation allow one to configure a translation

client or proxy that converts requests and responses between proprietary interfaces

and RPC where required. The nature of RPCs in this context is that they support

services running on remote machines. This is verified in the case study by running

the propeller monitor and comfort services on a remote machine, thus satisfying the

requirement for distributed services (NF4.2). For a maritime vessel, this allows one

to deploy services as close to their data as possible. A service that encapsulates a

model may be deployed on the same machine responsible for collecting and storing

the data that the model acts on. This allows for the service to remain synchronised

with the data, and allows the service to act on the data where required even when

there are network issues present. As microservices are stateless by nature, any

‘state’ is maintained by the data that belongs to that services. By deploying the

service on the same hardware as its data, service ‘state’ is maintained while keeping

the service itself stateless; keeping a service stateless in this manner greatly reduces

complexity making the services more manageable for contributors.

The service and network recovery tests displayed that the system was easily and

autonomously recoverable. Recovery times could not be reliably recorded;

however, all services relaunched themselves within the first retry bracket (i.e.

within 100ms). Launching the system entails the parallel launching of each service

and, similarly, system recovery entails the parallel recovery of individual services.

This satisfies the need for recoverability (NF5.0), which is further discussed in

Section 7.4.4.4.

In the case study, the system enabled access from any device on the local network

that had access to a browser. This includes laptops and mobile phones. The BFF

pattern that was employed describes a customised gateway for different device/user

types. This was deemed unnecessary to test through the case study and as such all

web traffic was handled by a single gateway. There is no constraint on this,

however, and a mobile application could just as easily route its requests to a

gateway optimised for mobile traffic. The specification of a gateway component

providing customised translation and routing satisfies the need for access from

multiple devices (NF6.0).

The requirement for logical fault-tracing and debugging support (NF7.0) is satisfied

through the addition of the metric interceptors and service logging. During the

forced-failure test, the root cause of the failure could be easily identified by the

messages provided through the user interface, as well as through any service

involved in the failing call chain.

Stellenbosch University https://scholar.sun.ac.za

77

7.4.2 Performance Efficiency

Performance efficiency is the category concerned with resource usage and system

performance when the software is used under specified conditions. Considering the

requirements presented in Chapter 3, this mostly refers to real-time requirements

where it is specified that the system is to achieve soft real-time performance (i.e.

platform functionality should not comprise a significant portion of the overall

response times).

7.4.2.1 Time Behaviour

All time behaviour results obtained refer to the need for soft real-time data

processing (F1.0). The first aspect to be addressed here was the decision to use an

aggregation component that sends out a request and waits for the necessary

response before sending requests to subsequent services. This was an adaption to

traditional microservice approaches where each microservice would be responsible

for obtaining the information it requires. The decision to use the aggregated

approach does not notably affect response times as, by the end of the call invocation,

only one additional request and response pair will have occurred – that of the

aggregator itself. With the same messages being sent to and from microservices,

the same request latencies can be expected. Considering the communication latency

reported in Section 7.3, with an average communication time (request + response

latency) of 80ms, an additional call is not detrimental to achieving soft real-time

considering the service latencies recorded in Table 10 to Table 17: Power train

service latency.

On top of the specification of an (optional) aggregation layer, the inclusion of a

gateway layer could potentially affect real-time operation as requests need to be

processed by an additional component before reaching the intended service in the

backend. The gateway recorded an average response of 160ms, twice that of the

communication time for services. This time was required to perform system-wide

rate limiting, protocol translation, and request routing. Again considering the

context of this work, the addition of 160 ms is a reasonable trade-off to provide the

additional security and functionality on offer through this gateway. The worst-case

for the gateway of 628 ms is a notable outlier. This outlier could have a more

significant effect on the system where the gateway took longer to process than the

cumulative communication times of all down-the-line services. Considering that

this was an outlier, the average response times (service processing and

communication times), and that there is a fairly relaxed definition for real-time in

this context, stakeholders should not notice a dip in performance. Thus the

additional latency incurred through the inclusion of both the aggregation and

gateway components is justified when considering the value of the functionality

and abstraction provided by each.

Considering the service latencies recorded during the standard operations test, a

discussion can be provided on system and service use. The service response times

Stellenbosch University https://scholar.sun.ac.za

78

showed a worst-case response of 2.5 s for the aggregators and 2 s for the ocean

weather service. This suggests that the system is suitable for route planning,

allowing for multiple route simulations to be made without limiting, or placing

time-constraints on, the decision-making of stakeholders. Looking at the latencies

of platform components (such as the gateway and interceptors), it is unlikely that

this system be recommended for use in high-performance control applications and

would be better kept as a decision-support tool. For a service such as the propeller

monitor service, where real-time monitoring is offered, the system places minor

constraints on deployment. In the original work of Nickerson (2021), real-time

response is recorded for data bins as small as 2 seconds – where the algorithm is

capable of processing all data before a new data bin is recorded. Running this

algorithm as a service in this system reduces the real-time capabilities as, on

average, an additional 160 ms needs to be accounted for the gateway processing, as

well as an additional 80 ms for the service communication time. This does not have

a detrimental impact on a ship, considering the rate at which decisions are made,

but is worth noting. It is also worth noting that the results recorded both in this work

and in the work of Nickerson (2021) do not consider data pre-processing times,

reporting instead purely on service and algorithm processing times, respectively.

The effect of pre-processing/converting data on real-time application needs to be

considered before one can say that this system is truly capable of running real-time

monitoring for such a service.

A decision was made in the architecture design to use interceptors for service-level

rate-limiting, authorisation, and metric collection. Each of these interceptors were

benchmarked in the

interceptor benchmark test to analyse their effect on the real-time performance of

this system. The additional latency incurred by each is documented in Table 7. Of

the three interceptors, the metric interceptor was observed to consume the most

time. This is to be expected as this interceptor communicates with an external server

in order to store the metrics. The authorisation interceptor was an order of 10 faster

than the metric interceptor, with the rate limit interceptor executing in half of that

time. On average, the cumulative time incurred by these interceptors was less than

9 ms. Considering that this comprises approximately 11% of the average

communication time in a service, the interceptors are not considered to have a

notable impact on the real-time operation of the system. Additionally, considering

the fine-grained control each provide to services in the system, and the additional

functionality, the approximately 9 ms of additional latency is seen as a worthwhile

trade-off.

The build times presented in Figure 11 show that the initial build times can vary

greatly between services. Here, it is clear that the power-train service and web

frontend require the most time for their initial builds. These two services require

the most, and largest, packages of all services used in the case study. The power-

train service, for example, requires the TensorFlow package and all of its

dependencies, which exceed 500MB in size. It can also be seen that all aggregators

Stellenbosch University https://scholar.sun.ac.za

79

require similar initial build times, far less than that observed for the power-train

service. An important service to consider is the Envoy proxy, as for any new service

addition, this will require an update and re-build. In this case, we expect an initial

build to take 1 minute and any subsequent builds requiring 6 seconds. From the

data, one can expect an initial build of up to 7 minutes for services requiring larger

packages, and a minimum of ~30s for simpler services with fewer dependencies,

such as the comfort service. With all necessary packages cached, though, we see all

builds taking place in approximately 6 seconds, bar the Ocean Weather Service.

This means that, should a bug in a service be identified while the system is deployed

and the vessel is at sea, or a new use case/service need be identified, the

patched/new service can be built and relaunched with anywhere between 6 and 12

seconds of downtime. Here, 6 seconds would be the case of updating an existing

service, and 12 seconds would be the case of a new service addition where the

additional 6 seconds accounts for the time required to relaunch an updated gateway

(Envoy) instance to include the new service. Here, it is worthwhile noting that

building a service with packages cached still uses the internet to perform checks –

this could introduce issues considering the state of internet connectivity on an

ocean-going vessel. To work around this, a Docker image can be build before the

voyage to contain all packages required by services. This way, instead of having to

check for packages online, the service containers can instead inherit the services

from this prebuilt container. This container can then be cached so that no online

checks are required.

Considering how long a vessel spends in port prior to a voyage (at least 2 weeks in

the case of the SAAII), the worst case service build time of 431s is considered

completely reasonable. Additionally, considering the processing times of services,

the cached build time of 6s is considered acceptable, and the worst case service

downtime of 12s is thought not to have a notable effect on how the system is used.

7.4.2.2 Capacity

The request limit test resulted in the system processing all 145 requests without

error. However, not all 145 requests were processed concurrently. As was

highlighted in Section 7.3, Python servers only had the capacity to process 20

requests at any given time. The Python implementation of gRPC uses the

concurrent/futures module to process concurrent requests in the server using a

thread pool. In the documentation of this module, it is noted that a limit of 32

workers (threads) is imposed by the module itself. Theoretically, the maximum

number of threads that Python will be able to run on the host machine is described

by the microchip architecture. Each core of the processor on the host machine used

in the case study enables two threads, and with 8 cores present the machine should

be able to run 16 concurrent Python processes. This means that 16 threads can be

processed at a single instance. When there are more than 16 threads requiring

processing, the machine multi-threads to rapidly change between which 16 threads

are being processed at a given instance. It was observed during testing that with this

multi-threading, the Python servers were capable of concurrently handling 20

Stellenbosch University https://scholar.sun.ac.za

80

requests with the full system deployed. Services written in other languages, such as

Golang which is renowned for its concurrent performance, were capable of

processing all requests concurrently. Additionally, the gateway was successful in

concurrently routing all requests while maintaining its core functionality. Thus, it

is shown that the system itself is capable of processing the maximum number of

requests that can be expected on board the SAAII, satisfying the need for concurrent

request handling (NF1.1). However, the importance of choosing an appropriate

implementation language is highlighted. If the service being developed is expected

to handle high loads of concurrent traffic, the service should be implemented in a

language that can handle the expected concurrent traffic.

The requirement for supporting multiple user sessions (NF2.1) stimulates an

interesting discussion. The decision to employ ‘transparent’ access tokens,

implemented with JWTs in this case study, allows for a theoretically infinite

number of user sessions. Transparent tokens - and the number of tokens issued - are

not tracked by the backend system, and once issued are the sole responsibility of

the user that they are issued to. As a result, no additional load is placed on the

system by generating further access tokens or sessions. Considering this, an infinite

number of tokens could be generated without impacting system performance as the

mere existence of tokens, representing sessions, places no load on the system at all.

The only performance degradation that may result from issuing this infinite number

of tokens surfaces when these hypothetical users all request information from the

system at the same time. In this case, the system would be heavily overloaded,

mimicking a DOS attack. In order to enable multiple sessions then, the system

should be able to handle concurrent requests as there is no actual limit on the

sessions. Rather, the limit is on processing requests from multiple sessions.

Therefore, this implementation was shown to successfully support 145 user sessions

as that was the extent to which the capacity of the architecture was tested. Thus,

through successfully supporting concurrent requests (NF1.1), the requirement for

supporting concurrent sessions (NF2.1) is satisfied.

Considering the hardware requirements presented in Figure 10 and Figure 9,

observations can be made on the resource requirements of different service types.

It is clear that considering both processer and memory usage, services offering

simulation functionality such as the power-train and propeller monitor service

require more resources that average. This makes sense as the logic performed by

such services perform computationally-expensive math operations and store more

intermediate data than other services. These two services are shown to use up to

50% of the CPU capacity on the test machine when performing their logic. It is

likely then, that if simulation services are deployed on a machine with similar CPU

specs, that they would be deployed in isolation (alongside no further services) and

would rate limit themselves to process at most 2 concurrent requests.

It can also be seen that aggregator services do not place particularly strict

requirements on the host machine. Considering this, it may be appropriate to deploy

all aggregators on a single machine and with platform services (gateway,

Stellenbosch University https://scholar.sun.ac.za

81

authentication, rate limit, etc.) being deployed on their own machine. Services that

are less computationally expensive, such as the information collectors, could be

deployed on a single machine, with simulation services deployed on dedicated

machines or on the machines responsible for collecting their data where that is

appropriate. This approach provides platform services and aggregators with the

resources required to handle the scale of requests expected on a maritime vessel

without unnecessarily under-utilising machines. Additionally, it provides a

guarantee that where a service is offered based on specific, recorded data, the

service maintains its state during network interruptions by existing on the same

machine as the data providing its state (as the service itself is stateless, but the data

it is associated with is not).

7.4.3 Compatibility

Compatibility considers the ability of the system to exist and interoperate with other

systems, both on the same machine and remotely. Co-existence is considered an

implementation detail and has been omitted from the evaluation. However, it is

noted that while running the suite of tests, other software such as Google Chrome

and Microsoft Word were used with no noticeable performance degradation in

either. In this work, compatibility refers to the system’s ability to communicate

information to and from external systems.

7.4.3.1 Interoperability

This architecture was designed to be interoperable with digital twins where they

offer services, and by nature, any other service offering that caters to RPC clients.

Where RPC is not offered, an RPC server can be created to act as a translation client

for whatever communication mechanism is offered. Although this may not result in

the most elegant solution, the relaxed client/server roles offered by RPC allow for

it. Essentially, this system can then retrieve information from any source offering

it. This capability enables this system to interoperate with any existing system as a

client, granted that the system makes provision for interoperability itself.

The case study demonstrated the language-agnostic nature of RPC, where four

mainstream programming languages were used in the implementation. This

demonstrated the interoperability between services written in different languages,

enabling experts to use whichever language best suits their service in its

implementation. This was considered sufficient proof of interoperability

considering that microservices (and gRPC itself) have already been accepted and

proved by industry as offering this language interoperability. gRPC offers a further

7 languages at present, encompassing all major languages, to provide further choice

to those wanting to interface.

7.4.4 Reliability

Reliability encompasses the ability of the system to maintain performance under

specified, sub-optimal conditions. In the context of application on a maritime

Stellenbosch University https://scholar.sun.ac.za

82

vessel, the anticipated sub-optimal conditions include unreliable and occasionally

absent internet connections. Additionally, due to the nature of the system, reliability

also considers the system robustness to dropped local networks and individual

component failures.

7.4.4.1 Maturity

The system maintained a stable state throughout the standard operations test.

During this time the system did not exhibit any unexpected behaviour and produced

no errors other than those related to network connectivity, as is described in the

section on availability.

For the remainder of the tests, the system maintained stability in terms of exhibiting

the expected behaviour, apart from in two of the tests. During the rate limit test and

service recovery tests, inconsistent behaviour was observed in certain interceptors.

In the rate limit test, it was identified that the Python rate limit interceptor provided

inconsistent results depending on the service configuration. The results are briefly

discussed in Section 7.3.1.3. Based on the manner in which the results vary with

configuration, it is hypothesised that the inconsistency can be attributed to how

concurrent requests are dealt with in Python, discussed in the section on capacity,

above. Consistent results were observed when the server limited requests to fewer

than the machine’s theoretical maximum of 16 concurrent requests, with imperfect

but bounded deviations observed where the server was limited to between 16

requests and the observed maximum of 20 requests. Completely unreliable results

were observed when the server limited connections to anything greater than the

observed maximum number of concurrent requests. In the case where the limit was

set to be greater than 20, the rate limit interceptor had no effect at all, allowing all

traffic through. Conversely, the Golang implementation provided consistent results

for all limits as the underlying implementation differs from that in Python. Python’s

gRPC implementation is built on top of the C core, whereas Golang’s

implementation is built on a Golang core. Using a native core, as is done in the C,

Golang, and Java implementations of gRPC, provides finer-grained control over,

and access to, the underlying connection. The unreliable results observed in the

Python rate limiter are attributed to a lack of control over the underlying connection

because of how the Python implementation of gRPC is only a wrapper on the C

core.

In contrast, the opposite was observed during the service recovery test. When

servers were pulled offline while handling calls, the server sends a termination

message to the server to kill the underlying TCP connection. The system was

designed for this, with the clients catching this error and attempting to re-establish

the connection in order to complete the request. During the test, it was observed

that the specific error raised by servers was not handled by the Golang interceptor

as expected, with the client not retrying and immediately logging and returning an

error up the call chain. After some research, it was discovered that this specific error

is known to produce unexpected behaviour in certain versions of Golang and at the

Stellenbosch University https://scholar.sun.ac.za

83

time of testing it had not been patched. A Python client was written with a Python

implementation of the retry interceptor in order to test the logic and handling of

failed services. This approach produced satisfactory results with the Python client

successfully re-establishing the connection with the server once the server had

restarted itself. The root cause of the Golang bug remains unknown at the time of

writing. However, the fact that both shortfalls were associated with interceptors

working on the underlying connection may be indicative that processing

connections through interceptors is not a stable approach.

The Open Systems Interconnection (OSI) Model of networking is a model used to

provide a conceptual framework to describe the communication between a

computer system using seven layers of abstraction. These layers serve to divide the

flow of data in a communication system to reduce, or rather abstract, complexity.

In this model, a higher layer (represented by a higher layer number) is served by,

and relies on, the layer below it. In the model, layer 7, being the highest layer,

describes the application layer; this is the interface responsible for communicating

with host-based and user-facing applications. Maintaining relevance to this work,

Layers 3 and 4 represent the network and transport layers, respectively. The former

of these is responsible for forwarding (routing) packets of information from the data

source to its destination in a network, whereas the latter is responsible for delivering

the packets to the appropriate process on the host computer once it is there. When

considering the software used in this work, layer 7 describes the RPC interface that

developers can use to communicate between services – here, it is dealt with in code

at the application layer. Layer 3 describes the functionality performed by the proxy

to route a request from one machine to another over the network, and layer 4 is the

functionality that sends this request to the correct service (process) once it has

arrived at the correct machine. It is evident, then, that gRPC is a high-level piece of

software, offering less control over the underlying connection than something like

the proxy. This provides an explanation as to why rate limiting was shown to be

effective when performed by Envoy, a proxy, but ineffective when performed by

gRPC, an RPC middleware; similarly, this may explain why unreliable results were

obtained when working with connections in the rate limit interceptors.

7.4.4.2 Availability

Again referencing the standard operation test, the system remained available from

all devices on the network as long as the local network remained online. Accessing

the system through various devices on the network satisfies the requirement for

multi-device access (NF6.0). During the test period, where internet connection was

lost, the system was still available to all users on the network. As discussed in

Section 7.3.2, services requiring internet access returned errors during this time, but

the system itself was not reliant on internet and was thus still accessible. This

satisfies the requirement that the system should be available offline (NF5.2).

Stellenbosch University https://scholar.sun.ac.za

84

7.4.4.3 Fault Tolerance

Fault tolerance was tested through the fault-isolation and network-failure tests, with

results discussed in Section 7.3.2. In both the tests, the system exhibited expected

behaviour with the invoked fault having no effect on other components of the

system. All components were capable of receiving and processing requests, with

their automated tests passing following the failure of other services. In addition to

service failure, network failures displayed the same results in the system. In this

test, all local and remote services operated as expected. With network failure, the

remote invocations failed, but this is to be expected as the communication medium

was no longer present. The displayed robustness towards failures in the system is

sufficient to satisfy the need for fault-tolerance (NF5.1).

This behaviour towards fault tolerance was to be expected, given that the

architecture follows a microservices approach. A poor implementation could result

in dependencies between components that would result in shared failure, however,

it could be argued that an implementation of this nature no longer follows a

microservices approach. Consequently, this hypothetical implementation can no

longer be considered an implementation of the proposed architecture either.

7.4.4.4 Recoverability

The recoverability of the system was evaluated through the service recovery and

network failure tests. The service recovery test showcased the successful

autonomous recovery of failed services and the re-establishment of any failed calls

resulting from the failed service. In both the case of local and remote service

failures, the services were successful in autonomously relaunching themselves.

Additionally, the services relaunched themselves fast enough such that the client

retry logic was able to re-establish the connections before timing out. For the re-

establishment of calls, however, not all cases were successful, as is discussed in

Section 7.4.4.1.

For network recovery, the system was successful in re-establishing connections

after a network failure, re-using the existing connections where the connection had

not yet timed out. In the cases of connection timeout, the client was successful in

retrying the call by re-establishing a new connection every time. This is an expected

outcome and successfully provides recovery and robustness to network failures.

These results prove that the decision to place retry logic in all clients is practical,

but again suggests that implementing this through interceptors may not be a suitable

approach as retry logic requires functionality acting at a connection level.

This automatic system recovery offers valuable functionality for application on a

vessel when the system is deployed in a distributed manner. Considering the above

discussions, where it is shown how computationally expensive services will likely

be deployed on their own machines, and where services are recommended to be

Stellenbosch University https://scholar.sun.ac.za

85

deployed on the same machine responsible for collecting the data that they operate

on, having services recover themselves and re-establish failed connections greatly

improves availability. This allows for computationally-heavier services to be run

on suitable machines, and in isolation, while providing a mechanism to handle

sporadic network failures. Additionally, in the case where a service is deployed on

the same hardware as its data storage, the service protects the data from having to

expose itself on the network. This has the added benefit of abstracting

responsibilities for access control to the service. In the case of a network failure,

and where a client might cache failed requests to re-attempt once the connection

has been re-established, there is a risk of the client essentially launching a DOS

attack on the server by re-attempting all failed calls simultaneously. If the service

were on a separate machine to the database, the service would act as the client in

this hypothetical and would launch this attack on the database itself – risking the

data collection and storage in doing so. By instead having the service act as the

server, by running on the same machine as the data, the service would take the brunt

of the attack and, if it fails, database integrity is maintained. As the data is where

all state is maintained, this abstraction provides a lot of value to protecting

measurements on the vessel. And with measurements generally being used for

control systems on maritime vessels, ensuring its integrity is of utmost importance.

Considering this, partial satisfaction of the need for a recoverable system (NF5.0)

is provided. In this partial satisfaction, failed services were all successful in

autonomously relaunching themselves. However, the system was not successful in

re-establishing connections or completing failed calls for all test cases.

7.4.5 Security

Security is evaluated through the considerations advocated for distributed systems.

In the design of the proposed system, explicit decisions were made around security

considerations. The suitability of these decisions is evaluated below.

7.4.5.1 Confidentiality

In order to ensure that data is only accessible to those authorised to it, call

authorisation was specified as a responsibility of each individual service. This was

based on a recommendation by (Richardson, 2018). In this implementation,

authorisation was specified through an authorisation interceptor. During the

unauthorised and gateway bypass tests, all requests were sent with the knowledge

that they were unauthorised requests. In all cases, these unauthorised requests were

rejected on logical grounds. These results suggest that authorisation through

interceptors is sufficient to provide fine-grained access control and confidentiality

in the system. Considering this, the need for access control (NF3.0) is satisfied.

7.4.5.2 Non-repudiation

A truthful understanding of events within the system can be obtained through the

analysis of log files. The inclusion of logging in each service enhances

Stellenbosch University https://scholar.sun.ac.za

86

maintainability as is required by NF7.0. Program logs record interactions in services

that describe the services’ lifetime. This allows for interested parties to track events

throughout the system. In the current design, events need to be tracked based on the

time series and can only be tracked by following the call chain from its root. For

example, one would need to start at the first service to receive a request and move

to subsequent services based on the calls made by that service. The subsequent calls

can only be identified based on the times that they were received. Additionally, log

files live with the service and in the case of failure, die along with the service. A

better approach to service logging, and thus non-repudiation would be to include a

logging interceptor in the design, responsible for exporting service logs for each

interaction to a central location. This would enable log files to persist the services

that they are describing, as is done with the metric collection. Additionally,

assigning an ID to call chains would enhance traceability, as system events could

be grouped by ID instead of by following their time series. This would be especially

beneficial where concurrent requests are handled and there may be multiple call

chains being logged at the same time. IDs could be generated in the gateways such

that all inbound traffic is seen as unique when analysing the logs.

7.4.5.3 Accountability

The current logging system includes the user ultimately responsible for invoking a

service in its logs. This provides accountability by allowing one to associate specific

requests, or events resulting from requests, to specific users. This accountability

additionally allows one to monitor the usage of the system based on user. Further,

in the case of system misuse, and when combined with system authentication, this

allows one to identify the responsible parties. This knowledge can enable stricter

rate-limiting policies to be placed on that specific user for future requests.

7.4.5.4 Authenticity

The specification of a user database and/or authentication service and the manner

in which it is included in this system ensures that all users are known to the system.

In order to gain access to any information through the system, an access token is

required. This access token can only be obtained through consulting the

authentication service. Additionally, this authentication service will only provide

an access token to valid users of the system. By enforcing this, the system can

guarantee the identity of any user capable of querying information from it. The

gateway bypass test proved that should a user gain access to services without

navigating this non-optional information flow, they would be unable to access

information through that service. This is because the system, or more specifically

the components within the system, are unable to verify that the client has been

successfully authenticated by the greater system. Considering that the gateway was

capable of routing all requests during the request limit test, and that the

authentication service was implemented in Golang, specifying this single point of

authentication does not act as a bottleneck for the system at the scale required. This

Stellenbosch University https://scholar.sun.ac.za

87

satisfies the needs to implement access control, support multiple requests, and route

client requests (NF3.0, NF1.1 and NF2.0, respectively).

7.4.6 Maintainability

Maintainability is predominantly related to the implementation of a system,

depending on the considerations made during its development. However, certain

sub-categories are relevant and have been included considering that the proposed

system should be maintainable in order to enable further expansion and

reconfiguration. The following discussion considers the design decisions related to

service independence and system modularity.

7.4.6.1 Modularity

In terms of modularity, microservices are arguably the most suitable architecture

style to follow. Specifying that each component should be discrete to provide a low-

coupling of services results in services that can be added, removed, or updated

without any effect to others. With interfaces defined, the logic serving a call is

abstracted from the call interface itself. This makes updating logic easy as, unless

new functionality is added, the interface remains the same. Where new functionality

is added, the interface can be expanded such that the change remains backwards

compatible. The reconfigurability experiment displayed how services can be

developed in isolation of the system and can be near seamlessly added to it.

Additionally, it shows how existing services could be “hot-swapped” and updated

without any apparent downtime. The fault isolation test additionally displayed the

discrete nature of these services by showcasing how services are indifferent to the

operation of others within the system.

7.4.6.2 Reusability

The reusability of services is again attributed to the discrete nature of microservices,

with emphasis placed on their specialised focus on domain logic. The information

flows implemented in the case study showcase the re-use of low-level services in

serving different user needs. Additionally, these low-level services are reused

among different aggregators in a manner such that they are used to compose

additional value-adding services.

7.4.6.3 Modifiability

In employing a common interface definition language (IDL) through a standardised

RPC framework, interfaces (or APIs) are decoupled from the logic serving them.

Through this, the logic of a service can be updated freely without requiring any

changes elsewhere in the system. This means that clients can remain unchanged

even if server logic is updated. This modifiability is what enables services to be

independently updated within the system. Considering the implementation, every

service includes a set of unit and integration tests. These enable one to quickly

Stellenbosch University https://scholar.sun.ac.za

88

verify whether an update to a service is backwards-compatible or if changes break

core program logic.

Stellenbosch University https://scholar.sun.ac.za

89

8 Conclusion and Recommendations

This research aimed to develop a service-oriented software architecture capable of

delivering digital services on maritime vessels. Based on the analysis of its

implementation in a case study on the S.A. Agulhas II, it was shown how the

proposed design is successful in achieving the specified objectives. The system was

able to provide information to users, giving them greater insight into vessel

operation for enhanced decision-making. This information comprised discrete

contributions from domain-experts, where these contributions originated from

engineering models and environmental information services. The case study

conducted showcases the initial value that this approach to digitalisation could have

in the maritime domain, where the services leveraged were capable of providing

insight into how proposed routes relate to operational cost. This allows stakeholders

to make more informed decisions regarding viable routes by balancing sailing time

and incurred costs.

The design was successful in coordinating information between its services, where

the aggregating services were shown to provide a valuable level of abstraction to

the system. The specification of aggregation services enables a separation of

concerns for developers; allowing the microservices to focus solely on capturing

domain knowledge, with aggregation services focussing on serving stakeholder

needs by employing these microservices.

Reconfigurability was tested, where the proposed design was shown to be easily

reconfigurable. Service contributions were demonstrated to require little effort from

developers, with the majority of service setup and code being generic enough to

enable autonomous generation. Additionally, integrating services into the system

was shown to require minimal adjustment, necessitating changes to configuration

files only. The design was shown to successfully enable dynamic service updates,

as well as service addition – although the latter was not a requirement for this

application.

The discussion provided on user session support highlights the importance that

system-wide rate-limiting has in this design. Considering that the effect of multiple

sessions can only be controlled through rate-limiting, the gateway component is

shown to be of utmost importance – and any additional latency incurred through its

inclusion is seen as worthwhile.

It can be concluded that the proposed architecture is capable of providing a flexible

digital service system for use on maritime vessels, however, the success of its

application requires careful consideration of the hardware on which the system and

its components are deployed. Contribution was shown to require little

understanding of the greater system, with platform integration and support

functionality being added to services by default. Thus, this system can be

reconfigured on a per-voyage basis, allowing it to adapt to changes in the vessel,

available services, and/or its specific voyage goals.

Stellenbosch University https://scholar.sun.ac.za

90

During testing, a concern was identified in the implementation of service-level rate-

limiting and client-side retry logic. While it is concluded from the evaluation that

the specification of interceptor middleware did not have a significant impact on

performance, the experiments suggest that interceptors are not a suitable approach

for providing functionality acting on underlying connections. Considering the OSI

model of networking, RPC middleware, and the interceptors that they provide,

operate at the application layer, layer 7. This makes it high-level software, and with

the underlying TCP connections existing at the transport layer, layer 4, RPC

frameworks may not have the control over the transport details required to provide

reliable functionality regarding the connection. It is recommended that service-level

rate limiting and client-side retry logic be performed by a proxy middleware instead

of through interceptors. Proxies traditionally operate at layers 3 and 4, giving them

greater control over the connection. A generic proxy configuration could be added

to each service, performing the required rate-limiting or retry logic, while

interceptors are maintained to perform authorisation, logging, and metric collection.

This maintains the abstraction for developers, but provides better control over

connections.

Additionally, a use case that was not considered, and may be worthwhile

investigating, is that where a digital twin acts as a client to the system. Currently,

the system makes provisions for interaction with digital twins following the digital-

twin-as-a-service model. Here, digital twins offer a service and the system queries

information from this service. In this interaction, the system acts as a client only.

No provisions have been made for the situation where a digital twin might want

information from this system, in which case the system would offer services to a

digital twin client. Note that the proposed architecture places no constraints

preventing this behaviour, it just has not been evaluated in this case study.

Thus, four opportunities for further research have been identified:

• To evaluate reliability enhancements through the use of proxy middleware

for certain platform functionality. The Istio project has been identified as a

possible solution for this research. This project provides a solution to

offering generic platform functionality to microservices, wrapping each

service with a custom implementation of the Envoy Proxy. The Envoy

proxy proves to be a reliable rate limiter in this case study, where it is

employed at a system level. It is assumed that it would maintain this

reliability when implemented at a service level with an Istio configuration.

• Evaluate the system where data is not available in a usable format. This

work is based on the assumption that data is available in a format that is

readily-usable. This work used simulated data instead of a simulated data

pipeline where the effect of obtaining the data stored in a proprietary format

is not considered. Before the system can be considered fully capable of

offering maritime services in real-time, an investigation is required on the

effect that converting/pre-processing data may have on real-time insight

Stellenbosch University https://scholar.sun.ac.za

91

delivery. This investigation should place a focus on shaft-line services, such

as the propeller monitor service, which could be tested on a simulated

measurement system employing the actual hardware used to record data on

board the SAAII.

• Investigating the inclusion of a digital twin as a client in this architecture,

where mature digital twin implementations could query environmental or

service-based information from this system. A possible approach to this

would be to host a gateway catering to digital twins as a user. This gateway

would be configured to provide translation functionality for common digital

twin communication protocols. Additionally, the encryption performed by

this gateway when communicating outside of the system would use a

separate set of certificates than those used internally and at the web

interface, for enhanced security.

• With the architecture and generic platform functionality available, explore

more advanced service implementations within the architecture. The case

study implemented here employed existing models and algorithms as a

proof of concept for the design, with a rudimentary digital twin

representation. Future work that considers fatigue damage and/or asset

lifecycle would be of great value to the maritime domain. These services

would likely be offered by a sub-system digital twin as they describe

specific assets and their lifetimes. The implementation of such services

could be evaluated in the same context of route planning, allowing for

potential routes to be described by the estimated wear on sub-systems, or

the vessel itself.

Stellenbosch University https://scholar.sun.ac.za

92

9 References

Abdelhedi, K. & Bouassidar, N. 2020. An SOA Design Patterns Recommendation

System Based on Ontology. Advances in Intelligent Systems and Computing.

Springer. 940:1020–1030.

Al-Jaroodi, J., Jawhar, I., Al-Dhaheri, A., Al-Abdouli, F. & Mohamed, N. 2010.

Security Middleware Approaches and Issues for Ubiquitous Applications.

Computers & Mathematics with Applications. 60:187–197.

Alexander, C., Silverstein, M. & Sara Ishikawa. 1977. A Pattern Language.

Oxford University Press.

Basu, S. 2018. Microservices Aggregator Design Pattern Using AWS Lambda.

[Online], Available: https://dzone.com/articles/microservices-aggregator-

design-pattern-using-aws [2020, May 26].

Bekker, A. 2017. From (Big) Data to Insight – A Roadmap for the " SA Agulhas

II ". High Performance Marine Vessels. (September, 11).

Bellemare, A. 2020. Building Event-Driven Microservices. O’Reilly.

Benayache, A., Bilami, A., Barkat, S., Lorenz, P. & Taleb, H. 2019. MsM: A

Microservice Middleware for Smart WSN-Based IoT Application. Journal of

Network and Computer Applications. 144:138–154.

Berger, C., Nguyen, B. & Benderius, O. 2017. Containerized Development and

Microservices for Self-Driving Vehicles: Experiences & Best Practices. In

Proceedings - 2017 IEEE International Conference on Software Architecture

Workshops, ICSAW 2017: Side Track Proceedings. 7–12. (April, 5).

Bishop, T. & Karne, R. 2003. A Survey of Middleware. In Proceedings of the

ISCA 18th International Conference Computers and Their Application. 254–

258. (March, 26-28).

Borodulin, K., Sokolinsky, L., Radchenko, G., Tchernykh, A., Shestakov, A. &

Prodan, R. 2017. Towards Digital Twins Cloud Platform: Microservices and

Computational Workflows to Rule a Smart Factory. In UCC 2017 -

Proceedings of the10th International Conference on Utility and Cloud

Computing. 205–206. (December, 5-8).

Botti, V. & Giret, A. 2008. Holons and Agents. Journal of Intelligent

Manufacturing. 15:645–659.

Ciavotta, M., Dal Maso, G., Rovere, D., Tsvetanov, R. & Menato, S. 2019.

Towards the Digital Factory: A Microservices-Based Middleware for Real-

to-Digital Synchronization. In Microservices, Science and Engineering.

Stellenbosch University https://scholar.sun.ac.za

93

Springer. 273–297.

Damyanov, I. 2019. Data Aggregation in Microservice Architecture. International

Journal of Online and Biomedical Engineering. 15:81–87.

de la Peña Zarzuelo, I., Freire Soeane, M.J. & López Bermúdez, B. 2020. Industry

4.0 in the Port and Maritime Industry: A Literature Review. Journal of

Industrial Information Integration. 20:100-173.

Derigent, W., Cardin, O. & Trentesaux, D. 2021. Industry 4.0: Contributions of

Holonic Manufacturing Control Architectures and Future Challenges.

Journal of Intelligent Manufacturing. 32:1797–1818.

Durandt, P.G. 2020. Data-Driven Regression Models for Voyage Cost

Optimization Based on the Operating Conditions of the SA Agulhas II.

Masters Thesis. Stellenbosch University.

Egert, R., Grube, T., Volk, F. & Mühlhäuser, M. 2021. Holonic System Model for

Resilient Energy Grid Operation. Energies. 14:4120.

Ellingsen, O. & Aasland, K.E. 2019. Digitalizing the Maritime Industry: A Case

Study of Technology Acquisition and Enabling Advanced Manufacturing

Technology. Journal of Engineering and Technology Management - JET-M.

54:12–27.

Erikstad, S.O. 2019. Designing Ship Digital Services. In Computer Applications

and Information Technology (Compit). 458–469. (March, 25-27).

Evans, E. 2003. Domain-Driven Desgin. 1st ed. Addison-Wesley Professional.

Fielding, R. 2000. Architectural Styles and the Design of Network-based Software

Architectures. Doctoral Thesis. University of California.

Firdhous, M. 2012. Implementation of Security in Distributed Systems - A

Comparative Study. International Journal of Computer and Information

Sytems. 2:1–6.

Fonseca, Í. & Gaspar, H. 2020. Challenges when Creating a Cohesive Digital

Twin Ship: a Data Modelling Perspective. Ship Technology Research. 68:1–

14.

Fowler, M. & Lewis, J. 2014. Microservices. [Online], Available:

https://martinfowler.com/articles/microservices.html [2020, May 26].

Gamboa, F., Cardin, O., L’anton, A. & Castagna, P. 2015. Process Specification

Framework in a Service Oriented Holonic Manufacturing Systems. Studies in

Computational Intelligence. 594:81–89.

Stellenbosch University https://scholar.sun.ac.za

94

Harper, K.E., Ganz, C. & Malakuti, S. 2019. Digital Twin Architecture and

Standards. Industrial Internet Consortium Journal of Innovation. 12:72-83.

He, S., Zhao, L. & Pan, M. 2019. The Design of Inland River Ship Microservice

Information System Based on Spring Cloud. In Proceedings - 2018 5th

International Conference on Information Science and Control Engineering,

ICISCE. 548–551. (July, 20-22).

Henning, K., Wahlster, W. & Helbig, J. 2013. Recommendations for

Implementing the Strategic Initiative INDUSTRIE 4.0. Forschungsunion.

IBM. 2021. What is Middleware? [Online], Available:

https://www.ibm.com/cloud/learn/middleware [2021, October 18].

International Organization for Standardization, 1997. ISO 2631-1:1997.

Mechanical Vibration and Shock - Evaluation of Human Exposure to Whole

Body Vibration. Organization for Standardization.

International Organization for Standardization, 2011. ISO/IEC 25010:2011.

Information Technology - Systems and Software Quality Requirements and

Evaluation - System and Software Quality Models. Organization for

Standardization.

Jansen, K., Whiting, C. & Hulbert, G. 2000. Generalized-Alpha Method for

Integrating the Filtered Navier-Stokes Equations with a Stabilized Finite

Element Method. Computer Methods in Applied Mechanics and Engineering.

190:305-319.

Jones, S. 2014. Addressing Cyber Security Risks at Ports and Terminals. London.

[Online], Available: www.seasecurity.org [2021, October 19].

Kappagantula, S. 2019. Top Microservices Design Patterns To Build Your

Applications. [Online], Available:

https://medium.com/edureka/microservices-design-patterns-50640c7bf4a9

[2020, May 26].

Kavallieratos, G., Katsikas, S. & Gkioulos, V. 2020. Modelling Shipping 4.0: A

Reference Architecture for the Cyber-Enabled Ship. Intelligent Information

and Database Systems. 202–217. (February, 16).

Kelley, M. & Ó Gráda, C. 2018. Speed under sail during the early Industrial

Revolution. [Online], Available: https://voxeu.org/article/speed-under-sail-

during-early-industrial-revolution [2020, May 26].

Krishnamurthy, J. & Maheswaran, M. 2016. Programming frameworks for

Internet of Things. Internet of Things: Principles and Paradigms. Morgan

Kaufmann. 79-102.

Stellenbosch University https://scholar.sun.ac.za

95

Kruger, K., Human, C. & Basson, A.H. 2021. Towards the Integration of Digital

Twins and Service- Oriented Architectures. In Service Oriented, Holonic and

Multi-Agent Manufacturing Systems for Industry of the Future. (October

2021).

Malik, S., Ahmad, S. & Kim, D.H. 2019. A Novel Approach of IoT Services

Orchestration Based on Multiple Sensor and Actuator Platforms using

Virtual Objects in Online IoT App-Store. Sustainability (Switzerland).

11:204.

Maoudj, A., Bouzouia, B., Hentout, A., Kouider, A. & Redouane, T. 2019.

Distributed multi-agent scheduling and control system for robotic flexible

assembly cells. Journal of Intelligent Manufacturing. 30:1629–1644.

McDuffie, J. 2017. Why the Military Released GPS to the Public. [Online],

Available:

https://www.popularmechanics.com/technology/gadgets/a26980/why-the-

military-released-gps-to-the-public/ [2020, May 26].

Meyer, J. 2007. Service Oriented Architecture (SOA) Migration Strategy for U.S.

Operational Naval Meteorology and Oceanography (METOC). In Oceans

Conference. (June, 18-21).

Minerva, R., Lee, G.M. & Crespi, N. 2020. Digital Twin in the IoT Context: A

Survey on Technical Features, Scenarios, and Architectural Models.

Proceedings of the IEEE. 108:1–40.

Mühl, G., Fiege, L. & Pietzuch, P. 2006. Distributed Event-Based Systems.

Springer International Publishing.

Murthy, N. 2017. REST, RPC, and Brokered Messaging. [Online], Available:

https://medium.com/@natemurthy/rest-rpc-and-brokered-messaging-

b775aeb0db3 [2020, October 20].

Nair, S. n.d. History of Sea Navigation Before the GPS. [Online], Available:

https://www.teletracnavman.com/gps-fleet-tracking-education/history-of-sea-

navigation-before-the-gps [2020, May 26].

Newman, S. 2014. Building Microservices: Designing Fine-Grained Sytems. 1st

ed. O’Reilly.

Nickerson, B. 2021. Inverse Models for Ice-Induced Propeller Moments on a

Polar Vessel. Doctoral Thesis. Stellenbosch University.

North, D. 1968. Sources of Productivity Change in Ocean Shipping, 1600-1850.

Journal of Political Economy. 76:953–970.

Penobscop Marine Museum. 2012. Navigation: the 20th Century to the Present.

Stellenbosch University https://scholar.sun.ac.za

96

[Online], Available: https://penobscotmarinemuseum.org/pbho-1/history-of-

navigation/navigation-20th-century-present [2020, May 26].

Richardson, C. 2018. Microservice Patterns. 1st ed. Manning.

Rodriguez, S., Hilaire, V. & Koukam, A. 2005. Formal Specification of Holonic

Multi-Agent Systems Framework. International Conference on Cyber

Security and Privacy. 3516:719–726.

Rodriguez, S., Hilaire, V., Gaud, N., Galland, S. & Koukam, A. 2011. Holonic

Multi-Agent Systems. Natural Computing Series. 37:238–263.

Russell, D., Looker, N., Liu, L. & Xu, J. 2008. Service-Oriented Integration of

Systems for Military Capability. In Object Oriented Real-Time Distributed

Computing. 33–41. (May, 5-7).

SEBoK Editorial Board. 2021. The Guide to the Systems Engineering Body of

Knowledge (SEBoK). v.2.5, Cloutier, R.J (Ed.). Hoboken, NJ: The Trustees

of the Stevens Institute of Technology. Accessed [2020, July 13].

www.sebokwiki.org.

Singh Gill, N. 2020. A Quick Guide to Service-Oriented Architecture (SOA).

[Online], Available: https://www.xenonstack.com/insights/service-oriented-

architecture [2021, October 18].

Soal, K.I. 2014. Vibration Response of the Polar Supply and Research Vessel the

S.A. Agulhas II in Antarctica and the Southern Ocean. Masters Thesis.

Stellenbosch University.

Tragatschnig, S., Stevanetic, S. & Zdun, U. 2018. Supporting the Evolution of

Event-Driven Service-Oriented Architectures using Change Patterns.

Information and Software Technology. 100:133–146.

Tyson, M. 2020. What is service-oriented architecture? [Online], Available:

https://www.javaworld.com/article/2071889/what-is-service-oriented-

architecture.html [2020, May 24].

UNCTAD. 2018. Digitalization set to revolutionize shipping – new United

Nations report. [Online], Available: https://unctad.org/press-

material/digitalization-set-revolutionize-shipping-new-united-nations-report

[2020, May 12].

Valckenaers, P. 2019. ARTI Reference Architecture – PROSA Revisited:

Proceedings of SOHOMA 2018. In Service Orientation in Holonic

Manufacturing and Multi-Agent Manufacturing. 1–19.

Weyer, S., Schmitt, M., Ohmer, M. & Gorecky, D. 2015. Towards Industry 4.0 -

Standardization as the crucial challenge for highly modular, multi-vendor

Stellenbosch University https://scholar.sun.ac.za

97

production systems. IFAC-PapersOnLine. 48:579–584.

Zoughbi, G., Kattnig, G., Parkinson, S., Lindqvist, N., al Nuaimi, M. & Balooshi,

H. 2011. Considerations for Service-Oriented Architecture (SOA) in military

environments. IEEE GCC Conference & Exhibition. (February, 19-22).

Stellenbosch University https://scholar.sun.ac.za

98

Appendix A ISO/IEC 25010: Product Quality

Evaluation System

The ISO/IEC 25010 standard is a quality model describing the characteristics to be

accounted for when evaluating a software product. The standard defines the quality

of a system as the degree to which said system satisfies the needs of its stakeholders.

The quality model defined in this standard comprises of eight characteristics for

quality, as is shown in Figure 15. (ISO/IEC & JTC1/SC7/WG6, 2011)

A.1 Functional Suitability

Functional suitability is described as the degree to which a system boasts

functionality that meets the needs when used under specific conditions. This can be

seen as the coverage a system provides to the user requirements. The sub-categories

of functional suitability are as follows:

• Functional Completeness: This is the degree to which the set of functions

offered by the system cover the specified objectives. Essentially, it is a

means towards acceptance testing to ensure that all required functionality is

offered by the system.

• Functional Correctness: This is the degree to which a system provides the

correct results, considering the precision required by the application.

Generally, this refers to mathematical precision available when transferring

data.

• Functional Appropriateness: This is the degree to which the functions

provided for by the system facilitate the accomplishment of objectives.

While similar to functional completeness, this considers the suitability of

choices made towards implementing the functions, not just the presence of

the functionality.

Figure 15: ISO 25010 (adapted from ISO/IEC & JTC1/SC7/WG6 (2011))

Stellenbosch University https://scholar.sun.ac.za

99

A.2 Performance Efficiency

Performance efficiency is the category that represents the systems performance,

considering resource usage under specific conditions. Oftentimes, this is dependent

on the implementation and the machine(s) running the software product. The

evaluation should thus be carried out considering the application. The three sub-

categories of performance efficiency are:

• Time behaviour: This considers the degree to which the response and

processing times, and throughput rates of the system meet their

requirements during standard operation.

• Resource Utilisation: This sub-category considers the amount and type of

resources used by the system when it is performing its functions. This

includes CPU, RAM, and memory.

• Capacity: This assesses how close the system is to its limits during normal

operation.

A.3 Compatibility

This characteristic serves to evaluate the degree to which a system can interoperate

with other components while sharing a common hardware or software environment.

Compatibility sub-categories include:

• Co-Existence: This evaluates how efficiently the system can perform its

functionality while sharing a common environment and resources with other

products. Effectively, the system, and any other system sharing resources,

should not have notable reductions in performance when operating together.

• Interoperability: This is the degree to which the system can exchange

information with and use information that has been exchanged with other

systems.

A.4 Usability

This is how effectively, efficiently, and satisfactorily the system can be used to

achieve its goals. Principally, this category deals with ergonomics and user-

experience. The sub-categories of usability are as follows:

• Appropriateness and Recognisability: This evaluates how easily users can

recognise whether a product or system is appropriate for their needs.

• Learnability: This evaluates how easily a user can learn to use the system.

It considers how intuitive the system is for new users.

Stellenbosch University https://scholar.sun.ac.za

100

• Operability: This deals with the user interface and evaluates the attributes

included to make operation and control of the system intuitive.

• User Error Protection: This evaluates the degree to which the system

protects users against making errors. This predominantly deals with error

handling and input-validation where user are asked to provide information.

• User Interface Aesthetics: This is a more subjective characteristic,

considering how satisfying the user interface, and interactions with it, are.

• Accessibility: This evaluates how accessible the system is to users with a

range of capabilities. It evaluates the extent to which specific

expertise/capabilities are required to use the system.

A.5 Reliability

Reliability considers the extent to which the system can perform its functions under

specified conditions. Reliability encompasses the following four sub-categories:

• Maturity: This is the degree of reliability to which the system performs

under normal operation.

• Availability: This is the degree to which the system is operational and

accessible when required by users.

• Fault Tolerance: This is the degree to which the system can perform its

functions given the presence of specific hardware or software failures.

• Recoverability: This is the degree to which the system is able to recover

itself and its data, as well as to re-establish its state in the event of a failure.

A.6 Security

The security characteristic is used to evaluate how well the system protects

information and data. Additionally, this encompasses ensuring that data access is

only provided to those who should have access to it. Security encompasses the

following aspects:

• Confidentiality: This is the degree to which the system can ensure that data

is only accessible to those who are authorised to it.

• Integrity: This is how well a system can prevent unauthorised access or

modification to programs and data. It evaluates the extent to which the

system can guarantee data to its consumers.

Stellenbosch University https://scholar.sun.ac.za

101

• Non-repudiation: This is the degree to which events within the system can

be traced back to a unique identity or source.

• Accountability: This evaluates the extent to which the actions of an entity

can be traced back to that unique entity within the system.

• Authenticity: This evaluates the extent to which the identity of a

subject/resource can be verified to be that which is claimed.

A.7 Maintainability

This represents how effectively and efficiently the system can be modified for

improvements, corrections, or adaptions to its environment and requirements.

Maintainability includes:

• Modularity: This evaluates the degree to which the system is composed of

discrete components. Through this, it evaluates the scope of impact that a

change to a single component has to others within the system.

• Reusability: This evaluates the extent to which an asset or component can

be used for more than one purpose or in more than one system, as well as in

composing additional assets or components.

• Modifiability: This evaluates how the system can be modified without

introducing defects to the system functionality, or degrading the quality of

the system to its users.

• Testability: Testability evaluates how effectively the system can be tested

to verify whether pre-defined criteria have been met.

A.8 Portability

Portability encompasses aspects that can be used to evaluate whether the system

can be transferred across hardware or software environments while maintaining its

core functionality. Portability describes the following three aspects:

• Adaptability: The is the degree to which the system can be adapted for

evolving hardware or software environments.

• Installability: This evaluates how effectively the system can be installed or

uninstalled in a specific environment.

• Replaceability: This evaluates how well the system can replace a specified

software product for the same purpose in the same environment.

Stellenbosch University https://scholar.sun.ac.za

102

Appendix B Interceptor Source Code

This appendix contains the source code for the interceptors used in this case study.

These are generic and are thus reusable across any and all implementations. For the

sake of readability, the interceptors documented here are those written in Python.

However, the same logic is applied in the interceptors written in other languages.

B.1 Retry Interceptor

The retry interceptor contains the logic required to retry failed calls. To perform

this logic, only the intercept method (Listing 1) is required. If the response contains

an error, the intercept method will wait a specific amount of time (using exponential

backoff logic) before retrying the call. The wait times and retry limit are set when

adding the interceptor to a server.

Listing 1: Retry interceptor, ‘intercept’ method

Stellenbosch University https://scholar.sun.ac.za

103

B.2 Metric Interceptor

The metric interceptor is implemented using a Python decorator. Two helper

functions are used to separate operations. The pushToPrometheus function (Listing

2) is responsible for labelling metrics and posting them to the Prometheus push

gateway. The sendMetrics decorator function (Listing 4) is responsible for

generating the metric data, invoking the server call, and calling the

pushToPrometheus function. This decorator function wraps the intercept method

(Listing 3) allowing for additional logic to be added to the interceptor both before

and after the call has been made.

Listing 2: Metric interceptor, ‘pushToPrometheus’ function

Stellenbosch University https://scholar.sun.ac.za

104

Listing 4: Metric interceptor, ‘sendMetrics’ decorator function

Listing 3: Metric interceptor, ‘intercept’ method

Stellenbosch University https://scholar.sun.ac.za

105

B.3 Rate Limit Interceptor

The rate limit interceptor performs all necessary logic in its intercept method

(Listing 5). Whenever a new request is received, it increments its counter,

decreasing it when a response is returned.

B.4 Authorisation Interceptor

The authorisation interceptor employs three methods to perform authorisation logic.

The authorise method (Listing 6) firstly evaluates whether the requested RPC

requires authentication. If it does, the interceptor extracts the metadata from the

request to obtain the authentication token. The interceptor subsequently evaluates

whether the token is valid, before verifying that the user has permission to access

the RPC that they are requesting. If none of these checks return, the interceptor

defaults to rejecting the request based on the premise that their claims could not be

verified.

Listing 5: Rate limit interceptor, ‘intercept’ method

Stellenbosch University https://scholar.sun.ac.za

106

The verifyJWT method (Listing 8) decodes the token it is provided with, returning

a structured data object (key-value pair) containing token and user claim info. The

HS256 signing algorithm was used for token encryption in this case study.

Listing 6: Authorisation interceptor, ‘authorise’ method

Stellenbosch University https://scholar.sun.ac.za

107

Upon receiving a request, the intercept method (Listing 7) invokes the authorise

function to verify the user making the request. If an error is returned, the RPC is

not made to the server, with the interceptor instead returning an error.

Listing 8: Authorisation interceptor, ‘verifyJWT’ method

Listing 7: Authorisation interceptor, ‘intercept’ method

Stellenbosch University https://scholar.sun.ac.za

108

Appendix C Case Study Components

Where not specified, the rate limit interceptor has been configured to allow 150

concurrent calls to be made to the service at any given time. All client connections

have been fitted with a retry interceptor. The retry interceptors are configured to

retry a call when a gRPC error is received, and to retry a maximum of 5 times. The

first retry waits 100ms, with each subsequent retry waiting twice the previous

waiting period. The maximum time spent retrying is thus 3.1s.

All aggregator services in this case study have been written in Golang due to its

suitability for system development and high-performance approach to concurrency.

Additionally, Golang, being a product of Google, has extensive support for gRPC,

with both server and client interceptors being well documented for the language.

Where applicable, service interfaces are provided, detailing what calls are on offer

and the relevant message contents. The fields of the request and response messages

have been colour coded in these figures to show the origin of the data. Additionally,

fields encapsulated by square brackets indicate an array of values – and in most

cases represent a time-series.

All source code can be found in the project repository on Github.

C.1 Ocean Weather Service

The ocean weather service provides information about the weather that the vessel

encounters during open-water passage. This service queries the APIs of select,

reputable marine weather services, fetching a tailored set of parameters that are

required to describe the vessel’s environment along a route. The outputs of this

service are intended to serve other services that may require environmental inputs.

The interface for this service is shown in Figure 16.

Figure 16: Ocean weather service interface

Stellenbosch University https://scholar.sun.ac.za

https://www.github.com/NicholasBunn/mastersCaseStudy/tree/main/services/powerTrainService

109

This service receives a set of associated latitudes, longitudes, and (Unix)

timestamps as input, which it uses to query the pre-defined parameters. For the

models present in this implementation, these parameters are: wind speed, wind

direction, swell direction, swell height, and swell period. From these, the service

further calculates the wave length, swell frequency, and derives the Beaufort

number. For the case study, a single call is offered. The Ocean Weather Prediction

call offers a marine weather prediction, providing foresight for tactical decision-

making. This call uses the Stormglass API to fetch future predictions as it offers an

intuitive interface for retrieving marine weather predictions, intended for navigation

and route planning of maritime vessels.

The Stormglass API does not provide swell frequency or wave length, but does

provide the information required to calculate such parameters. The swell frequency

can be determined by taking the reciprocal of the swell period. The wave length is

calculated using the relationship shown in Equation 1, where 𝝀 represents the wave

length and T represents the swell period.

𝝀 = 𝟏. 𝟓𝟔 ∙ 𝑻𝟐 (1)

It was observed that majority of marine weather services offer ready-to-use API

libraries and well-documented interfaces for Python and, as such, this service was

written in Python 3. The rate limit interceptor has been configured to allow for 50

concurrent requests to be made at any given time – this was selected to limit the

Stormglass API usage during testing.

C.2 Power-Train Service

The power-train service offers information on the power-train of the SAAII. It is a

servitisation of the work done by Durandt (2020), focussing on providing power

and cost estimates for the operation of the vessel through a data-driven model. The

outputs of this service are intended to be used for route-planning and analysis.

This service requires a combination of the proposed sailing configuration (motor

speeds, propeller pitches, and speed over ground) and predicted environmental

conditions (relative wind direction, wind speed, Beaufort number, wave direction,

and wavelength). Two calls are offered by this service. The Power Estimate call

provides foresight for tactical decision-making by estimating the power required

for a proposed route-plan - this is served by a data-driven model of the SAAII’s

power requirements. The Cost Estimate call serves the same temporal aspect and

value space, building on this by analysing the cost as a result of the required power

and elapsed time of a proposed route. The additional cost (Cadd) for a time period is

calculated using Equation 2:

𝑪𝒂𝒅𝒅 = 𝑪𝒉𝒓𝒍𝒚 ∙ (
𝜹𝒕𝒊𝒎𝒆

𝟑𝟔𝟎𝟎
) + 𝑪𝒌𝑾𝒉 ∙ 𝑷𝑬𝒔𝒕 ∙ (

𝜹𝒕𝒊𝒎𝒆

𝟑𝟔𝟎𝟎
) (2)

Stellenbosch University https://scholar.sun.ac.za

110

Here, the Chrly is the cost of running the vessel per hour. This includes crew salaries

and equates to R10000. CkWh is the cost incurred by each kWh used by the SAAII –

this is dependent on the price of diesel for each voyage and the efficiency of the

SAAII, which is documented as being 179 gdiesel/kWh (Durandt, 2020). Pest is the

power estimate, produced by the data-driven model used in the power estimate call.

The original model, as developed by Durandt (2020), was done in Python using the

Keras and Tensorflow libraries. This choice was made as Python offers outstanding

support for machine learning and data manipulation. This service was thus written

in Python 3 to demonstrate the ease with which one can servitise work done by

domain experts. The interfaces for this service are shown in Figure 17, with source

code available in the project’s Github repository.

C.3 Vibration Estimate Service

This service offers information about whole body vibration on the SAAII. Whole

body vibration refers to vibrations in the range of 0.5Hz to 80Hz (Soal, 2014). It is

a servitisation of the work done by Soal & Bekker (2014) with a focus on estimating

vessel response to wave conditions. The service interface is presented in Figure 18.

Again, this service requires a combination of wave conditions (relative wind speed,

wave height, relative wind direction) and sailing configuration (port prop motor

Figure 17: Power-train service interface

Figure 18: Vibration estimate service interface

Stellenbosch University https://scholar.sun.ac.za

https://www.github.com/NicholasBunn/mastersCaseStudy/tree/main/services/powerTrainService

111

power, latitude, and heading) as inputs to the call. For this case study, only a single

call is offered. The Bridge Estimate call provides foresight for tactical decision-

making by providing human-weighted whole body RMS vibration estimates for the

three primary axes (x, y, and z) on the bridge; this is done by implementing the

regression model developed by Soal & Bekker (2014) for human-weighted

vibration estimation on the bridge of the SAAII. The vibration response, 𝑌𝑛, can be

calculated using the regression model described by Equation 3 (Soal, 2014), with

the coefficients provided in Table 8. This provides the whole body vibration

response in m/s2.

𝒀𝒏 = 𝑪𝒏 + 𝜶 ∙ 𝑪𝒏 + 𝜷 ∙ 𝑪𝒏 + 𝜸 ∙ 𝑪𝒏 + 𝜹 ∙ 𝑪𝒏 + 𝜻 ∙ 𝑪𝒏 + ƞ ∙ 𝑪𝒏 (3)

Table 8: Regression coefficients for open-water bridge estimates (Soal, 2014)

Coefficient X-axis Y-axis Z-axis

Intercept C 2.7298 2.5711 1.7605

Port Prop Motor Power 𝛼 0.0013 0.0016 0.0010

Latitude 𝛽 -0.0004 -0.0004 -0.0004

Relative Wind Speed 𝛾 0 0 0.2050

Relative Wind Direction 𝛿 -0.0010 -0.0010 -0.0008

Heading 𝜁 0.0037 0.0011 0.0017

Wave height ƞ 0 0.8668 0

The implementation of this service is relatively simple as it required only basic math

operations. To showcase a more diverse technology stack, this service was

implemented in C# using the .NET 5 framework – source code can be found in the

project repository.

C.4 Comfort Service

The comfort service offers a single call that serves all three temporal aspects,

depending on the context in which it is used. The Comfort Rating service call takes

either a single value for, or a series of, human-weighted RMS vibration(s) as input.

Where a series is given, it calculates an equivalent vibration of the time-series using

Equation 4 (Equation C1, Standardization, 1997). This provides an aggregate of the

vibration that passengers are exposed to for multiple periods of exposure to

vibration of different magnitudes. Where the equivalent vibration is used, high-

resolution measurements are diluted in order to provide a “summary” of the

vibrations imposed on passengers.

𝒂𝒘,𝒆 = √
∑𝒂𝒘𝒊

𝟐 ∙ 𝑻𝒊

∑𝑻𝒊

 (4)

Stellenbosch University https://scholar.sun.ac.za

https://www.github.com/NicholasBunn/mastersCaseStudy/tree/main/services/vesselMotionService

112

This (equivalent) vibration is then used to classify the comfort of passengers on

board, based on the thresholds outlined in ISO 2631-1, which are documented in

Table 9. This service was again implemented in Python 3, with its interface

recorded in Figure 19 – source code can be found in the project repository.

Table 9: Comfort ratings (adapted from Appendix C, Standardization, 1997)

Threshold Classification

a < 0.314 [m/s2] Not uncomfortable

0.315 [m/s2] < a <0.63 [m/s2] A little uncomfortable

0.5 [m/s2] < a < 1 [m/s2] Fairly uncomfortable

0.8 [m/s2] < a < 1.6 [m/s2] Uncomfortable

1.25 [m/s2] < a < 2.5 [m/s2] Very uncomfortable

a > 2 [m/s2] Extremely uncomfortable

C.5 Propeller Monitor Service

The propeller monitor service offers a single call providing real-time insights. This

service servitises the model developed by Nickerson (2021), calculating the inverse

problem to estimate propeller and ice induced torques based on internal shaft

measurements. This service can be used to determine if the calculated ice load

exceeds the threshold at the propeller. The information required by this model (shaft

RPM and internal shaft torque) is information that would likely be recorded by, and

belong to, a shaft line digital twin. Additionally, shaft information such as material

characteristics and dimensions would be documented by this digital twin too. As

such, this service is run remotely to represent a digital twin’s service interface, with

the interface available in Figure 20. Note that in this interface, the request message

is empty. This is because all information required by the model belongs to the

digital twin offering the service.

The solution presented by Nickerson (2021) performs matrix manipulations to solve

the inverse problem of a continuous model of the SAAII’s shaft. The solution

derives a set of matrices, which are solved using the modified generalised-alpha

Figure 19: Comfort service interface

Stellenbosch University https://scholar.sun.ac.za

https://www.github.com/NicholasBunn/mastersCaseStudy/tree/main/services/comfortService

113

method (Jansen, Whiting & Hulbert, 2000). This is offered as a service through the

Estimate Propeller Load call, providing soft real-time insight into the state of the

shaft line. The equation derived by Nickerson (2021) and is solved by this service

can be seen in Equation 5(5, with relevant matrices shown in Equations 6 to 9.

𝑱�̈� + 𝑪�̇� + 𝑲𝒒 = 𝑸 (5)

𝑱 =

[

(𝝆𝑱𝑳 + 𝑱𝒑 + 𝑱𝒎𝒐𝒕𝒐𝒓) (𝑱𝒑 − 𝑱𝒎𝒐𝒕𝒐𝒓) … (𝑱𝒑 − 𝑱𝒎𝒐𝒕𝒐𝒓) 𝟎 𝟎

(𝑱𝒑 − 𝑱𝒎𝒐𝒕𝒐𝒓) (𝝆𝑱𝑳 + 𝑱𝒑 + 𝑱𝒎𝒐𝒕𝒐𝒓) … (𝑱𝒑 + 𝑱𝒎𝒐𝒕𝒐𝒓) 𝟎 𝟎

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

(𝑱𝒑 − 𝑱𝒎𝒐𝒕𝒐𝒓) (𝑱𝒑 + 𝑱𝒎𝒐𝒕𝒐𝒓) … (𝝆𝑱
𝑳

𝟐
+ 𝑱𝒑 + 𝑱𝒎𝒐𝒕𝒐𝒓) 𝟎 𝟎

𝟎 𝟎 … 𝟎 𝟎 𝟎
𝟎 𝟎 … 𝟎 𝟎 𝟎]

(6)

𝑪 =

[

𝑪𝒑 𝑪𝒑 𝑪𝒑 … 𝑪𝒑 𝟎 𝟎

𝑪𝒑 𝑪𝒑 𝑪𝒑 … 𝑪𝒑 𝟎 𝟎

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝑪𝒑 𝑪𝒑 𝑪𝒑 … 𝑪𝒑 𝟎 𝟎

𝟎 𝟎 𝟎 … 𝟎 𝟎 𝟎
𝝋𝟎(𝒙𝒂) 𝝋𝟏(𝒙𝒂) 𝝋𝟑(𝒙𝒂) ⋯ 𝝋𝑵−𝟏(𝒙𝒂) 𝟎 𝟎]

(7)

𝑲 =

[

𝟎 𝟎 𝟎 … 𝟎 𝟏 −𝟏

𝟎 𝑮𝑱
𝝅𝟐

𝟐𝑳
𝟎 … 𝟎 𝟏 𝟏

𝟎 𝟎 𝑮𝑱
(𝟑𝝅)𝟐

𝟐𝑳
⋯ 𝟎 𝟏 𝟏

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝟎 𝟎 𝟎 … 𝑮𝑱
((𝑵 − 𝟏)𝝅)𝟐

𝟐𝑳
𝟏 𝟏

𝟎 𝑮𝑱𝝋𝟏
′(𝒙𝒂) 𝑮𝑱𝝋𝟑

′(𝒙𝒂) … 𝑮𝑱𝝋𝑵−𝟏
′(𝒙𝒂) 𝟎 𝟎

𝟎 𝟎 𝟎 ⋯ 𝟎 𝟎 𝟎]

(8)

𝑸 =

[

𝟎
𝟎
⋮
𝟎

𝑸(𝒙𝟎, 𝒕)

�̇�(𝒙𝟎, 𝒕)]

(9)

Stellenbosch University https://scholar.sun.ac.za

114

The original study tested the algorithm in Matlab which is not natively supported

by gRPC. The model was thus translated into a Python 3 implementation employing

NumPy libraries so that it could be run as a service – source code can be found in

the project repository. This implementation leverages gRPC’s server-side

streaming functionality to provide a constant feed of data to users. The service

monitors the “digital twin’s” data stores for updated data, running the algorithm and

streaming the results when new data is made available. This breaks the traditional

request/response mould where a single request receives a single response. Instead,

a single request for monitoring is made, with multiple responses provided, so long

as new data is observed. It is worth noting that the implementation of this service

does not require aggregation of information outside of the service’s scope. As such,

this service is communicated with directly from the gateway, without an

aggregation service, as can be seen in Figure 6.

C.6 Route Analysis Aggregator

The route analysis aggregator takes a route as an input and provides a summary of

it using high-level statistics (e.g. using ensemble estimates instead of full time-

series descriptions). This summary aggregates information describing the route to

provide multiple, low-resolution descriptions. The beginning of this flow invokes

the ocean weather service to fetch weather estimates along a route, which are fed

through to the power-train service with the sailing configuration to obtain power

and cost estimates. These estimates are added to a new request message used to

invoke the vibration estimate service and, subsequently, the comfort service. The

response contains summary information from almost every service in the invocation

chain such that the user can get a low-resolution picture of the proposed route. An

approach without this aggregation component would not be able to provide

information from multiple services like this without adding logic into each service

that enables it. The addition of this logic, however, would create a tight, static

coupling between services that makes microservice management incredibly

difficult. The service interface is shown in Figure 21.

Figure 20: Propeller monitor service interface

Stellenbosch University https://scholar.sun.ac.za

https://www.github.com/NicholasBunn/mastersCaseStudy/tree/main/services/propellerMonitorService

115

C.7 Power-Train Aggregator

The power-train aggregator aggregates information to provide the power estimates

for the requested routes. It firstly invokes the ocean-weather service to get the

predicted weather for the provided route. Relative wind and wave speeds are then

derived and combined with the provided sailing configuration. This information is

sent with the request to the power-train service, which returns the power estimate

and cost estimate along, and total cost for, the requested route. This aggregator

provides more granular information about the power-train for a specified route than

the route analysis aggregator. The service interface is provided in Figure 23. This

information is presented by overlaying the incremental power requirements with

the costs incurred by each, as is seen in Figure 13 (a). This provides stakeholders

with insight into the cost/power trade-offs at points along the route, giving them the

information required to reduce costs if preferable.

Figure 21: Route analysis aggregator interface and information flow

Stellenbosch University https://scholar.sun.ac.za

116

C.8 Vessel Vibration Aggregator

The vessel vibration aggregator coordinates information among services to provide

high-resolution vibration estimates for a specified route. The initial call is, again, to

the ocean weather service, followed by a call to the power-train service – the same

as for the power-train aggregator; except that in the vessel vibration aggregator, the

Figure 23: Power train aggregator interface and information flow

Figure 22: Vessel vibration aggregator interface

Stellenbosch University https://scholar.sun.ac.za

117

power estimate call is invoked instead of the cost estimate call as cost is not

necessary for this use case. A combination of information from both services is sent

through to the vibration estimate service to produce whole body vibration estimates

for the bridge, which is returned for display to the user. The service interface is

shown in Figure 22.

C.9 Web Gateway

The web gateway has been implemented using the Envoy Proxy. The configuration

offered by Google for gRPC has been adapted to this case study to route requests

to the relevant aggregators and microservices. In addition to this, TLS encryption

has been added to the gateway, with a rate limiting filter to limit the number of calls

allowed to the greater system. This filter is employed alongside Lyft’s rate limit

service and a Redis database cache – used to keep track of current connections and

perform the rate limit logic. For routes where filters are added, an RPC call is firstly

made to the rate limit service to verify that the call can be made according to a pre-

defined set of rules, before the request is routed to the relevant backend service.

C.10 Rate Limit Service

The rate limit service is deployed alongside the web gateway, with a Redis database

cache associated to it. This service is an implementation of Lyft’s rate limit service,

which has been open-sourced for rate limiting using the Envoy proxy. This is a

gRPC service that the proxy communicates with before routing requests. Rate limit

rules are passed in the query message automatically and the service evaluates

whether the request can be sent to down-the-line services based on the rule set and

call history provided.

C.11 Authentication Service

The authentication service offers login functionality, checking the provided user

details with a user database. The user database has been implemented using

mySQL, with the authentication service implemented in Golang and built on top of

the database. Once a user’s details have been verified, the authentication service

generates a JSON Web Token (JWT) for the user to use in subsequent requests to

the system. JWTs are used as the access token in this architecture, taking a

transparent token approach. This approach dictates that access tokens are not

managed or recorded in the backend, being the sole responsibility of the user that

they are issued to once generated. This approach reduces the number of backend

calls, as users can be authorised by each service’s authorisation interceptor instead

of having the tokens verified with a central authority for every service for every

call. In this implementation, the tokens are signed using the HS256 algorithm.

Golang has been adopted by the financial technology industry as a result of its

cryptographic support and is suitable for this service because of this. Golang’s

database driver has been used such that SQL queries are sanitised when built. This

Stellenbosch University https://scholar.sun.ac.za

118

sanitisation ensures that user inputs cannot be provided such that they comment out

the remainder of the SQL statement that the user inputs are being added to,

providing protection against SQL injection.

C.12 Prometheus Server

Prometheus has been selected as the technology for performance monitoring, being

an open-source server and database intended specifically for metric collection. The

metric interceptors (Listing 2 to Listing 4)were developed to post to the Prometheus

server, with Prometheus providing supporting libraries for most popular languages.

This server has been configured to use a push gateway, where services push their

metrics to the server endpoint. This differs from standard approaches where the

services expose their metrics over an endpoint and have the server scrape that

endpoint to collect metrics. Administrators are provided access to the metrics on

the machine running the server. This server is independent of any services in the

system allowing for the data it records to persist the services providing it.

C.13 Web Frontend

The web gateway leverages gRPC web to make gRPC requests from the browser.

This allows the system to be accessed from any device that has access to the internet

through a browser. The frontend has been developed using a combination of

JavaScript, HTML, and CSS. Users are met with a login page where they will have

to log in through before they are provided access to the actual system. When

successfully logged in, the user is provided with an access token that is

automatically added to subsequent requests – ensuring that authorisation is

performed without the user needing to perform further actions. Based on the user’s

privileges, HTML elements representing the services available to them are loaded

dynamically. This ensures that the code cannot be edited in the browser to provide

access to services that the user should not have access to. The user can provide

inputs when requesting a service, with the errors or responses displayed using either

standard HTML elements or GraphJS, where relevant.

Stellenbosch University https://scholar.sun.ac.za

119

Appendix D Test Procedures

This appendix documents the test procedures followed during the evaluation of the

case study. These are mentioned in Section 7.2, with the exact procedures

documented here.

For all tests documented below, the implementation was run across two machines.

The core services were all run on a Dell XPS 13 boasting 16GB of RAM and a 10th

gen Intel I7-1051U (1.8GHz) processor running 64 bit Ubuntu 20.04.3. The

propeller monitor and comfort services were run on an 8GB Raspberry Pi 4 running

64 bit Kali Linux.

D.1 Standard Operations Experiment

D.1.1 System Stability Test

This test is used to collect the standard operation metrics for this system. This

includes latency, packet size, and request volume. This test requires that the system

be run for a sufficient time period such that stability is guaranteed. The tester will

query the system regularly during this period to simulate vessel passengers looking

for information. Additionally, the system should be run in a similar manner as it

would be during a deployment, i.e. with occasional drops in internet connection. In

the case study that has been designed, the ocean weather service requires an internet

connection in order to fetch environmental data. Considering these points, the

system will be run with an internet connection. However, the host machine’s

internet connection will be interrupted at random points during the test. At least one

of these interruptions should overlap with a user querying information from the

ocean weather service. The raw data from this test can be found in Appendix E.

The test procedure is as follows:

1. Deploy the system with all services as documented in Chapter 6.

2. Inspect all ports on the machines involved in the test to ensure that all

expected services were running.

3. Load the user interface and log in as an administrator. Once logged in, all

service offerings should be tested to ensure that they are working as

intended. This can be done with by sending requests and observing the

responses

4. Following the service tests, log into the Prometheus server to ensure that the

metrics for all services are being collected.

Stellenbosch University https://scholar.sun.ac.za

120

5. The tester should log back in and query all services on offer at least once

every hour, varying the request density each session. Note that the tester

should log in with different profiles during the different sessions to verify

that the user support is functioning correctly.

6. At the end of the 24 hour test period, all metrics should be downloaded from

the Prometheus server.

D.1.2 Interceptor Benchmark Test

The service with the most consistent (smallest standard deviation in) response

times, identified in Test 1, will be used for this test. The interceptor benchmark test

provides metrics describing the additional latency added by including each type of

interceptor. The service will first be benchmarked without any interceptors added

to it. This provides a baseline performance for the service. This baseline will be

performed with a control set of requests. The actual content of this control set does

not matter as the message structure required by the server’s interface dictates a

standard format. As long as the content of the messages is kept constant throughout

the test consistent results can be produced. Interceptors will be added to the service

individually, running the same control set of requests against the service to record

the response latency. The raw data from this test is presented in Appendix E.

The steps followed for this test are as follows:

1. Reconfigure the selected service such that it employs no interceptors.

2. Deploy the Prometheus monitoring service.

3. Deploy the “naked” service and run the control set of requests against it.

The omission of a metric interceptor necessitates that the client requesting

the service records response times. The only additional latency added

through this approach is the network/message travel time. Running the

client and server on the same machine, however, minimises this contribution

as well as providing a standard communication medium such this variation

is negligible.

4. With the baseline metrics recorded, pull the server offline and reconfigure

it to don only the metric interceptor. Subsequently, relaunch the service and

run the control set of requests against it, as was done in Step 2.

5. Repeat step 4 for the authorisation interceptor, retry interceptor, and rate

limit interceptor.

6. Repeat steps 1-5 ten times to obtain a stable, averaged result.

7. Download the metrics from the Prometheus server.

Stellenbosch University https://scholar.sun.ac.za

121

D.1.3 Request Limit Test

Still in the realm of standard operation is the request limit test. This test evaluates

whether the system can handle the maximum expected load. This would occur

where every pax onboard the S.A. Agulhas II attempts to access the system at once.

The SAAII was designed to accommodate 100 passengers and 45 crew members.

Considering this, 145 concurrent requests will be made to the system at a single

time. The requests will be made from users with varying privileges such that the

access control functionality can be verified to remain effective. The results of the

test were recorded in Section 7.3.2.

The procedure followed for this test is as follows:

1. Set up three clients to iterate over the request process, creating and sending

each request in its own thread (concurrently).

2. Each client should be manually issued an access token with different user

claims (privileges).

3. The requests are all sent to the same service in this test, however they could

just as well be sent to different services as it is the system being analysed

and not a specific service. The service receiving the requests should have its

rate limit interceptor modified to allow for this many concurrent requests to

be made.

4. Each client should have the anticipated, successful response preloaded such

that it can autonomously verify the actual responses. Along with this, logic

should be added to notify of a response match or mismatch. This enables

the tester to easily confirm whether the requests have been correctly

handled.

5. Observe the notifications from the client, looking out for response

mismatches.

6. Record results.

7. Repeat steps 2-6 ten times to obtain a stable, averaged result.

D.2 Forced Failure Experiment

D.2.1 Failure Isolation Test

This tests the considerations towards robustness to failure in the system, specifically

fault isolation. To do this, a service is pulled offline with the system’s response

documented. The results of this test were recorded in Section 7.3.2.

The steps followed for this test are as followed:

Stellenbosch University https://scholar.sun.ac.za

122

1. Deploy the system with all services as documented in Chapter 6

2. Make a request to a service known to be running on the host machine,

monitoring said service’s log files. The tester should monitor the logs to

confirm once the service begins processing the request.

3. Once the service has begun processing the request, the tester should forcibly

shut down the service before it can complete the request.

4. The tester should observe that the client to the removed service is still

running. This ensures that the client does not fail if the call does.

5. The tester should observe the log files of the client to ensure that the error

is effectively caught.

6. The tester should additionally confirm that all other services in the system

are still operational by sending requests to them using a client program

(Bloom RPC was used in this thesis).

7. Record results.

8. Repeat steps 1-7 ten times to obtain a stable, averaged result.

9. Repeat steps 1-8 for a service running on a remote machine.

D.2.2 Service Recovery Test

This test evaluates the autonomy of the system regarding service recovery. For this

test, a service is modified such that it starts up correctly but raises a fatal error when

receiving a call. By forcing a failure of this type the autonomous recovery of the

service can be tested. It is expected that the service restarts itself and the client

retries the request. This behaviour will be monitored and confirmed by the tester.

This test additionally confirms that the requirement for independent service

deployment is met. The results to this test are documented in Section 7.3.2.

The procedure followed for this test is as follows:

1. A selected service running on the host machine should be modified to raise

a fatal error when invoked. This allows the service to host itself as expected,

failing only when a request is made to it.

2. Make a request to the modified service, with the client donning a retry

interceptor. This interceptor employs exponential backoff logic, retrying the

call after 100 ms, and waiting an double that time for subsequent failures.

The retry limit is set to 5 by default, providing 3.1 seconds of relief.

Stellenbosch University https://scholar.sun.ac.za

123

3. The tester should observer that the service restarts itself autonomously. With

the service restarted, the tester should inspect the log files of the client to

determine which retry bracket was successful. This allows the tester to

determine in which timeframe the service recovered itself.

4. Record results.

5. Repeat steps 1-4 ten times to obtain a stable, averaged result.

6. Repeat steps 1-5 for a service running on a remote machine.

D.2.3 Network Recovery Test

This test evaluates the recovery of the system from a network failure. This is a

crucial consideration to ensure a robust distributed system. This test requires a

request to a remote server, with the network connection between the client and

server dropping during communication. The fault isolation is evaluated by

confirming the operation of all other components of the system as is done in test 1.

The network connection is re-established, and the behaviour is observed. It is not

expected for the failed call to resume, except in cases where the network is

reconnected before the client’s retry interceptor times out. The successful outcome

of this test specifies that the system (specifically, the failed service) can be queried

without any manual intervention once the network connection is re-established.

This ensures system autonomy where networks may fail or be updated during a

voyage. The results of this test are documented in Section 7.3.2.

The test procedure followed was as follows:

1. Deploy the system with all services as documented in Chapter 6.

2. Make a request to the propeller monitor service, with the tester monitoring

the service’s log files.

3. Once the tester observes that the propeller monitor service has received the

request, they should unplug the network cable connecting the two machines.

4. The network cable should be immediately plugged back in, with the

response observed. This is done to observe the behaviour of the system

where the client’s retry interceptor is still relevant.

5. Repeat steps 1-4 ten times to obtain a stable, averaged result.

6. Record results.

7. Repeat steps 1-3.

Stellenbosch University https://scholar.sun.ac.za

124

8. The network cable should only be plugged back in after 10 seconds. This

allows sufficient time such that the retry interceptor is no longer relevant.

9. Record results.

10. Repeat steps 7-9 ten times to obtain a stable, averaged result.

D.3 Security Experiment

D.3.1 Unauthorised Access Test

This test evaluates the design decision to authorise calls in the service. To perform

this test, the system is reconfigured to provide a specific user (guest) the option of

requesting information from a service that they do not have access to. This

represents a misconfiguration of the gateway and frontend components, or a

malicious user forcing access of services through the gateway. It is anticipated that

the request be received by the service as no authorisation is performed through the

gateway. However, the request should be rejected based on the user not having

access permissions to said service. The results of this test are documented in Section

7.3.2.

The procedure followed was:

1. Reconfigure the frontend to offer a guest user access to a service offering

that they are not authorised to access.

2. Deploy the system with the new (mis)configuration.

3. Log in as a guest and make a request to the service that you are unauthorised

to access to but are offered.

4. Observe an error on the frontend and inspect the log files of the service. The

logs should document that the request was rejected based on the user’s

access token.

5. Record results.

6. Repeat steps 1-5 ten times to obtain a stable, averaged result.

D.3.2 Gateway Bypass Test

This tests that services cannot be accessed without the client presenting an access

token. This would be the case where a user somehow managed to enter the closed

network that the system runs on, where they would be able bypass the gateway to

query individual services. The expected result is that the request is rejected as was

done in Test 1. The results are recorded in Section 7.3.2.

Stellenbosch University https://scholar.sun.ac.za

125

The procedure taken was as follows:

1. Expose a service outside of the closed network. This service should don all

interceptors as it would in a full deployment.

2. Using an RPC client (Bloom RPC was used for this test), make a request to

the exposed service.

3. Observe the response from the server, it should return an unauthenticated

error.

4. Observe the log files of the service to ensure that the request was not

processed by the service.

5. Record results.

6. Repeat steps 1-5 ten times to obtain a stable, averaged result.

D.3.3 Rate Limit Test

This test evaluates the explicit considerations against DOS attacks. For this test, the

client used in the request limit test is reused to launch multiple, concurrent requests.

The system is reconfigured to limit the number of requests to less than the number

sent by the client, with the client recording the number of rejected requests. The

server will still be recording latency metrics so that performance reduction can be

quantified. The test is performed both at a system and service level. Results can be

found in Section 7.3.2 and Appendix E.

The test procedure followed is as follows:

1. Deploy the system with all services as documented in Chapter 6.

2. Modify the client developed in the Request Limit Test to launch twenty

requests concurrently. Additionally, change the response code of the client

to count the number of failed requests as well as the number of successful

requests.

3. Reconfigure the gateway to rate limit to ten calls total.

4. Run the client, observe the response counter. The client should print out that

there were ten successful requests and ten unsuccessful requests.

5. Record the results. Additionally, download Prometheus metrics for the

system.

6. Repeat steps 1-5 ten times to obtain a stable, averaged result.

Stellenbosch University https://scholar.sun.ac.za

126

7. Reconfigure the gateway to allow for more than twenty requests.

Reconfigure the authentication interceptor of the service being targeted to

limit to ten calls.

8. Repeat steps 4-6 for the new configuration, downloading only the

Prometheus metrics for the involved service.

D.4 Reconfigurability Experiment

The reconfigurability experiment serves to evaluate the process required to add a

new, user-facing, service to a deployed system. The design propose in this research

strives to minimise the system knowledge required for contributors. It is fitting,

then that contributing to the system should not be a difficult endeavour. This

experiment serves to test the modularity of the design, evaluating the requirement

for individual service development, deployment and removal (NF0.0, and NF0.1,

respectively).

This experiment requires that the system be running as it would be in a deployment

environment. From this stable state, the process required to add an existing service

to the system is documented placing emphasis on the required code complexity and

integration. Once the service is ready to be run within this system, the service needs

to be integrated with the deployed system. To do so, the gateway needs to be

updated (through its configuration file). This update necessitates that the gateway

be pulled offline momentarily with the updated instance relaunching. This process

will be done multiple times to evaluate the behaviour of the system during this

downtime given different states (gateway receiving requests, processing requests,

returning requests). A successful outcome would result if the system performs the

same during this downtime as it would without the downtime. This test verifies that

individual service deployment is successfully considered, and that the system has

been designed in an easily maintainable manner.

D.4.1 Service Development Test

This test involves converting a program into a service that is ready to be run in this

system. The ‘program’ encapsulates the service logic, and the process of running

that logic as a service is focussed on here. This is the typical procedure a domain

expert would need to follow when contributing to this system. For this test, the

number of lines of code requiring changes is recorded, as well as how many

different files these changes occur in.

The procedure required to servitise a program is as follows:

1. First, generate the service file structure and boilerplate code using an

automated build command

2. Open the 'configuration.yaml’ file and change at least three lines of code

Stellenbosch University https://scholar.sun.ac.za

127

2.1.Update the port that the new service will expose itself on (line 3 in

Listing 11).

2.2. Add 1 line per call for the access level ‘name’ field. This is used to

match requests in the authorisation interceptor (line 10 in Listing

11).

2.3. Add 1 line per call for the access level ‘role’ field. This is used to

evaluate whether a user has access to the matched request (line 12

in Listing 11).

3. Create the .proto file in the “proto/v1” directory.

3.1. Add 1 line for the package name (3 in Listing 9).

3.2.Add 1 line for request message definition. Add an extra line for each

subsequent message field required (line 5 in Listing 9).

3.3. Add 1 line for the response message definition. Add an extra line

for each subsequent message field required (line 13 in Listing 9).

3.4. Add at least 1 more line for each additional message required (lines

9 and 17 in Listing 9).

3.5. Add 1 line defining the service name (line 21 in Listing 9).

3.6. Add 1 line defining the service call (line 22 in Listing 9). Add an

extra line for each subsequent call on offer (line 23 in Listing 9).

4. Open the service file/script.

4.1. Update 2 lines for protofile imports. This only requires updating the

path name (omitted in the figures below as it does not fall into a

function).

4.2.Update 1 line in the metric interceptor integration (line 9 in Listing

12). This change assigns a label to the service when recording

metrics.

4.3. Add 1 line per call in the authorisation interceptor (line 13 in Listing

12). This provides the authorisation interceptor with a key-value pair

of request names and request permissions.

4.4. Update 1 line for the rate limit interceptor specifying how many

calls to limit the service to (line 16 in Listing 12).

Stellenbosch University https://scholar.sun.ac.za

128

4.5. Update 1 line for service registration (line 28 in Listing 12). This

tells the server which class definition to override, with these classes

automatically generated by the proto compiler.

4.6. Copy the service definition from the proto files. This definition is

automatically generated for you (Listing 10).

4.7. Add 1 line in the service handler function to create a response (line

5 in Listing 10).

4.8. Add 1 line in the service handler function to return the response

(line 5 in Listing 10). Note that step 4.8 and 4.9 are displayed on the

same line in Listing 10 for the sake of brevity; in reality, the response

message would be created prior to returning it so that the message

fields can be populated.

Listing 9: Generic proto file

Stellenbosch University https://scholar.sun.ac.za

129

Listing 11: Generic service, configuration file

Listing 10: Generic service, service class

Stellenbosch University https://scholar.sun.ac.za

130

D.4.2 Service Integration Test

Listing 12: Generic service, 'serve' function

Stellenbosch University https://scholar.sun.ac.za

131

This test involves using the service developed in the Service Development Test and

integrating it with the deployed system. Note that the system was not initially

designed with the goal of dynamic service addition in mind. The original goal was

to enable hot-swappable service updates without any system downtime, i.e to

reconfigure existing services during a voyage where required. The performance of

the system, however, presented interesting opportunities to evaluate dynamic

service addition, observing downtime and the system’s response to it. In order to

add a new service to the system is a simple case of adding the service to the closed

network which does not affect any other components of the system as the services

are all completely independent. In order to present this new, independent, service

offering to the user, however, the gateway needs to be reconfigured. This

necessitates that the current instance of the gateway be pulled down with the

updated instance being relaunched instead. In reality, this downtime is so small that

a user would not notice it. However, a user would notice if their request failed.

Thus, the behaviour of existing calls will be evaluated during this downtime. The

results of this are documented in Section 7.3.2.

The process of integrating a service with a running system is documented below:

1. Open the “envoy.yaml” configuration file.

2. Add a new route option. This is where how Envoy know how to route

requests.

2.1. Update 1 line for the message prefix of this route (line 13 in Listing

14). This is how envoy matches or identifies an incoming request.

2.2. Update 1 line for the cluster for this route (line 17 in Listing 14).

Once Envoy has matched or identified said incoming request, this is

where it routes that request.

3. Add a new cluster. This cluster holds the information about where envoy is

routing the request.

3.1.Update the name of the cluster to match that set in step 2.2 (line 2 in

Listing 13).

3.2.Update the address of the cluster to represent the address space that

the service is hosting itself on. This can be the local address, internal

Docker address, or the network hostname of a remote service (line

14 in Listing 13).

3.3. Update the port that the service is exposing itself on (line 15 in

Listing 13).

4. Re-build the Envoy Docker image.

Stellenbosch University https://scholar.sun.ac.za

132

5. Pull the current Envoy container offline and re-launch the new one.

Listing 14: Envoy configuration, virtual_hosts

Listing 13: Envoy configuration, clusters

Stellenbosch University https://scholar.sun.ac.za

133

Appendix E Results

This appendix documents the raw results generated by the experiments of Appendix

D. Majority of the results below were extracted from the data recorded by the metric

interceptors, which was downloaded from the Prometheus server.

Table 10: Route analysis aggregator latency

Request ID Cumulative request

latency [s]

Request latency per

call [s]

Client-side request

latency [s]

1 2.361533295 2.361533295 2.38

2 4.524789331 2.163256036 2.28

3 7.034973034 2.510183703 2.53

4 9.372878725 2.337905691 2.35

5 12.196905886 2.824027161 2.84

6 14.073475482 1.876569596 2.4

7 16.132097777 2.058622295 2.37

8 18.571937616 2.439839839 2.46

9 21.098379991 2.526442375 2.55

10 22.77029045 1.671910459 2.3

Table 11: Power train aggregator latency

Request ID Cumulative request

latency [s]

Request latency per

call [s]

Client-side request

latency [s]

11 1.826012551 1.826012551 1.9

12 3.565061844 1.739049293 1.75

13 4.948039508 1.382977664 1.7

14 6.526804434 1.578764926 1.65

15 7.908688122 1.381883688 1.602

16 9.215126543 1.306438421 1.62

17 10.723540284 1.508413741 1.54

18 12.350896179 1.627355895 1.64

19 13.926617598 1.575721419 1.59

20 15.581704508 1.65508691 1.66

Stellenbosch University https://scholar.sun.ac.za

134

Table 12: Vessel vibration aggregator latency

Request ID Cumulative request

latency [s]

Request latency per

call [s]

Client-side request

latency [s]

21 2.402917585 2.402917585 2.48

22 4.026829691 1.623912106 2.04

23 5.453413511 1.42658382 1.9

24 7.522794904 2.069381393 2.08

25 8.768254816 1.245459912 1.77

26 10.124946209 1.356691393 1.72

27 11.953640754 1.828694545 1.85

28 13.558839418 1.605198664 1.698

29 15.580809639 2.021970221 2.04

30 17.601399086 2.020589447 2.04

Table 13: Comfort service latency (remote)

Request ID Cumulative request latency

[s]

Request latency per call [s]

1 0.00195956230163574 0.001959562301636

2 0.00318455696105957 0.001224994659424

3 0.00572299957275391 0.002538442611694

4 0.0074770450592041 0.00175404548645

5 0.00891613960266113 0.001439094543457

6 0.0105624198913574 0.001646280288696

7 0.0117754936218262 0.001213073730469

8 0.0140478610992432 0.002272367477417

9 0.0152480602264404 0.001200199127197

10 0.0164375305175781 0.001189470291138

Table 14: Comfort service latency (local)

Request ID Cumulative request latency

[s]

Request latency per call [s]

1 0.000347852706909 0.000347852706909

2 0.0006945133209228516 0.000346660614014

3 0.00101470947265625 0.000320196151733

4 0.0013153553009033203 0.000300645828247

5 0.00160980224609375 0.00029444694519

6 0.0019791126251220703 0.000369310379028

7 0.002270936965942383 0.00029182434082

8 0.002644777297973633 0.000373840332031

9 0.0030362606048583984 0.000391483306885

10 0.003438472478027344 0.000402212141

Stellenbosch University https://scholar.sun.ac.za

135

Table 15: Authentication service latency

Request ID Cumulative request latency

[s]

Request latency per call [s]

1 0.210221521 0.210221521

2 0.389366484 0.179144963

3 0.582184472 0.192817988

4 0.798584816 0.216400344

5 1.01954035 0.220955534

6 1.124142274 0.104601924

7 1.346817525 0.222675251

8 1.580945182 0.234127657

9 1.802512729 0.221567547

10 2.017874745 0.215362016

11 2.194310619 0.176435874

12 2.389455358 0.195144739

13 2.683609029 0.294153671

14 2.897722194 0.214113165

15 3.108086534 0.21036434

16 3.301726905 0.193640371

17 3.523337678 0.221610773

18 3.724208388 0.20087071

19 3.972768943 0.248560555

20 4.21270021 0.239931267

21 4.42402428 0.21132407

22 4.667611809 0.243587529

23 4.893179804 0.225567995

24 5.126438674 0.23325887

25 5.35874871 0.232310036

26 5.575922523 0.217173813

27 5.812214529 0.236292006

28 5.92660355 0.114389021

29 6.159280489 0.232676939

30 6.390500895 0.231220406

Stellenbosch University https://scholar.sun.ac.za

136

Table 16: Ocean weather service latency

Request ID Cumulative request latency

[s]

Request latency per call [s]

1 1.29532504081726 1.29532504081726

2 2.87037992477417 1.57505488395691

3 4.65417695045471 1.78379702568054

4 6.41064429283142 1.75646734237671

5 8.65156841278076 2.24092411994934

6 9.78731989860535 1.13575148582459

7 11.2693922519684 1.48207235336305

8 13.1938104629517 1.48207235336305

9 15.1854875087738 1.9916770458221

10 16.2334952354431 1.0480077266693

11 17.5952196121216 1.3617243766785

12 18.995772600174 1.4005529880524

13 19.936910867691 0.941138267517001

14 21.0939555168152 1.1570446491242

15 22.0187573432922 0.924801826477001

16 23.0000140666962 0.981256723403998

17 24.0042028427124 1.0041887760162

18 25.2457418441772 1.2415390014648

19 26.3478558063507 1.1021139621735

20 27.4698433876038 1.1219875812531

21 29.4647974967957 1.9949541091919

22 30.6727859973907 1.207988500595

23 31.6648359298706 0.992049932479898

24 33.2741410732269 1.6093051433563

25 34.2037889957428 0.929647922515898

26 35.1744561195374 0.970667123794605

27 36.5849206447601 1.4104645252227

28 37.6711971759796 1.0862765312195

29 39.2684338092804 1.5972366333008

30 40.6126866817474 1.344252872467

Stellenbosch University https://scholar.sun.ac.za

137

Table 17: Power train service latency

Request ID Cumulative request latency

[s]

Request latency per call [s]

1 0.378655195236206 0.378655195236206

2 0.619446277618408 0.240791082382202

3 0.839204072952271 0.219757795333863

4 1.16547274589539 0.326268672943119

5 1.39550733566284 0.23003458976745

6 1.59398651123047 0.19847917556763

7 1.90351963043213 0.30953311920166

8 2.11553430557251 0.21201467514038

9 2.30516934394836 0.18963503837585

10 2.55764961242676 0.2524802684784

11 2.79433917999268 0.23668956756592

12 2.99378323554993 0.19944405555725

13 3.25463080406189 0.26084756851196

14 3.50545740127563 0.25082659721374

15 3.78313684463501 0.27767944335938

16 3.98943448066711 0.2062976360321

17 4.31889295578003 0.32945847511292

18 4.53442811965942 0.21553516387939

19 4.84532999992371 0.310901880264289

20 5.05721092224121 0.2118809223175

21 5.26983880996704 0.21262788772583

22 5.51028990745544 0.2404510974884

23 5.74655318260193 0.236263275146491

24 6.02551031112671 0.278957128524779

25 6.20798873901367 0.18247842788696

26 6.45428419113159 0.24629545211792

27 6.67841720581055 0.22413301467896

28 7.01321482658386 0.334797620773309

29 7.25205588340759 0.23884105682373

30 7.52893612861633 0.27688024520874

Propeller monitor service

Results are not able to contribute to evaluation (the response time that was
recorded indicated the time required for the server to acknowledge the response,
 t th t t th q t. h th y ’t b t t t
data).

Stellenbosch University https://scholar.sun.ac.za

138

Gateway

Data describing the gateway latency was extrapolated by subtracting request

latency of aggregators from the associated client-side call time (as recorded by the

browser network monitor).

Table 18: Gateway latency

Request ID Request latency per call [s]

1 0.018466705

2 0.116743964

3 0.019816297

4 0.012094309

5 0.015972839

6 0.523430404

7 0.311377705

8 0.020160161

9 0.023557625

10 0.628089541

11 0.073987449

12 0.010950707

13 0.317022336

14 0.071235074

15 0.220116312

16 0.313561579

17 0.031586259

18 0.012644105

19 0.014278581

20 0.10491309

21 0.077082415

22 0.416087894

23 0.47341618

24 0.010618607

25 0.524540088

26 0.363308607

27 0.021305455

28 0.092801336

29 0.018029779

30 0.019410553

Stellenbosch University https://scholar.sun.ac.za

139

Table 19: Interceptor benchmark test latencies

Request latency for

naked service [s]

Request latency for

metric interceptor

only [s]

Request latency for

authentication

interceptor only [s]

Request latency for

rate limit interceptor

only [s]

0.002262036 0.03311139 0.002197871 0.002558613

0.002065373 0.008264827 0.002492698 0.002006417

0.001879877 0.00724314 0.002428657 0.001831754

0.00185192 0.007141475 0.00257878 0.001666799

0.002021791 0.006376783 0.002626695 0.001875669

0.001925043 0.008294034 0.002531447 0.001782087

0.001736588 0.006581529 0.002302119 0.00196225

0.001939543 0.00638695 0.002165371 0.00205579

0.001903918 0.008425824 0.002115789 0.002115955

0. 00181692 0. 006501906 0. 002467573 0. 001707131

Table 20: Rate limit test results

Rate limit setpoint Number of

requests sent

Number of

requests processed

Implementation/configu

ration

25 100 100 Python (‘None’ workers)

25 100 100 Python (10 workers)

17 100 100 Python (10 workers)

17 100 100 Python (12 workers)

17 100 17 Python (20 workers)

17 100 20 Python (20 workers)

17 100 18 Python (20 workers)

14 100 14 Python (20 workers)

14 100 14 Python (20 workers)

14 100 14 Python (20 workers)

14 100 14 Python (16 workers)

14 100 14 Python (16 workers)

14 100 14 Python (16 workers)

25 100 25 Golang

25 100 25 Golang

17 100 17 Golang

17 100 17 Golang

14 100 14 Golang

25 100 25 Envoy (system-wide)

25 100 25 Envoy (system-wide)

25 100 25 Envoy (system-wide)

17 100 17 Envoy (system-wide)

17 100 17 Envoy (system-wide)

14 100 14 Envoy (system-wide)

14 100 14 Envoy (system-wide)

Stellenbosch University https://scholar.sun.ac.za

140

Table 21: Resource requirements of case study services

Service name Dormant service Active service

Maximum CPU

usage (%)

Memory usage

(MB)

Maximum CPU

usage (%)

Memory usage

(MB)

Rate limit

service

0.22 5.109-5.121 0.28 5.648

Vibration

estimate service

0.01 22.86 1.42 27.84

Propeller

monitor service

0.14 63.23 51.7 110.7

Ocean weather

service

0.16 26.65 5.73 28.61

Comfort service 0.16 17.68 0.2 18.84

User database 0.35 411.1 0.42 422.9

Vessel vibration

aggregator

0.01 3.289 2.56 6.555

Web frontend 0.01 17.67 0.01 23.69

Power-train

aggregator

0.01 3.254 6.41 4.129

Authentication

service

0.01 2.852 12.28 4.023

Redis database 0.28 2.094 0.33 2.7293-2.797

Prometheus 0.513 35.31 0.513 36.45

Envoy 0.41 23.18 1.24 23.79

Route

comparison

aggregator

0.01 2.988 2.78 7.102

Power-train

aggregator

0.13 194.8 49.4 205.4

Table 22: Container build times for case study services

Service name Initial build time (s) Cached build time (s)

Rate limit service N/A N/A

Vibration estimate service 104.037 5.905

Propeller monitor service 90.017 5.655

Ocean weather service 43.247 11.171

Comfort service 25.691 5.845

User database 88.147 5.757

Vessel vibration aggregator 75.242 6.048

Web frontend 334.166 7.701

Power-train aggregator 56.887 5.638

Authentication service 42.513 5.682

Redis database N/A N/A

Prometheus 6.979 5.466

Envoy 58.629 5.73

Route comparison aggregator 55.571 5.205

Power-train service 431.508 5.428

Stellenbosch University https://scholar.sun.ac.za

