The Importance of Component-Wise
Stochasticity in Particle Swarm Optimization

Elre T. Oldewage!2[0000-0002-0568—-8700] - Apdries P.

Engelbrechtl,B[OOOO700027024273539]7 and ChI‘iStOpher w.
Cleghornl [0000—0002—7860—0650]

! Department of Computer Science, University of Pretoria, Pretoria, South Africa
vze.ezvOgmail.com, engel@cs.up.ac.za, ccleghorn@cs.up.ac.za
2 Council for Scientific and Industrial Research, Pretoria, South Africa
3 Institute for Big Data and Data Science, Pretoria, South Africa

Abstract. This paper illustrates the importance of independent, compo-
nent-wise stochastic scaling values, from both a theoretical and empirical
perspective. It is shown that a swarm employing scalar stochasticity is
unable to express every point in the search space if the problem di-
mensionality is sufficiently large in comparison to the swarm size. The
theoretical result is emphasized by an empirical experiment, comparing
the performance of a scalar swarm on benchmarks with reachable and
unreachable optima. It is shown that a swarm using scalar stochasticity
performs significantly worse when the optimum is not in the span of its
initial positions. Lastly, it is demonstrated that a scalar swarm performs
significantly worse than a swarm with component-wise stochasticity on a
large range of benchmark functions, even when the problem dimension-
ality allows the scalar swarm to reach the optima.

1 Introduction

The particle swarm optimization (PSO) algorithm employs stochasticity as an
important mechanism to avoid premature convergence to local optima. The
stochasticity should (usually) be applied in every dimension (i.e. component-
wise) to ensure independence between position updates in each dimension. How-
ever, it is a common mistake for scalar stochastic values to be used instead,
which restricts the swarm’s movement and degrades performance [7,13,18,19].

This paper investigates the effect of using scalar stochasticity, both theoret-
ically and empirically. The paper begins by introducing the PSO algorithm and
briefly discussing the importance of component-wise stochasticity in Section 2.
Section 3 provides theoretical results to formalize the restriction on the swarm’s
movement caused by scalar stochasticity. It is shown that there is a problem of
“reachability”, i.e. a swarm with scalar stochasticity will not be able to reach
the optimum if the problem dimensionality is higher than the size of the swarm.

Section 4 examines the empirical effects of reachability on the performance of
a swarm employing scalar stochasticity. The section compares a scalar swarm’s

2 E.T. Oldewage et al.

performance on a number of constructed benchmark functions with optima de-
fined to be reachable or unreachable by a scalar swarm. Section 5 goes on to
compare the performance of a swarm with scalar stochasticity to a swarm with
component-wise stochasticity for a wide range of benchmark functions that are
not biased towards or against the scalar swarm. Section 6 concludes the paper.

2 Background

This section briefly discusses the PSO algorithm and introduces relevant concepts
regarding the importance of component-wise stochasticity.

PSO is a stochastic, population-based optimization algorithm [4] that does
not require gradient information and may thus be applied to black box opti-
mization problems. A swarm consists of a number of particles. The position of
a particle in the search space represents a potential solution to the optimization
problem. The particle moves through the search space for a number of iterations,
using local information (the best position encountered by the particle thus far,
called the personal best position) and global information (the best position en-
countered by all the particles within the given particle’s logical neighbourhood,
called the global or local best position, depending on how the neighbourhood
is defined). This paper considers the global best topology, but the findings pre-
sented are applicable to arbitrary topologies. Each particle ¢’s position is updated
at iteration ¢ according to:

R (1)

where xf“ denotes the position of particle ¢ at iteration £+ 1 and VE—H denotes
its velocity at iteration ¢ + 1. The particle’s initial position, x?, is usually drawn
from a uniform random distribution over the search space boundaries (in every
dimension). PSO with inertia weight, as introduced in [17], updates particle 4’s

velocity at iteration ¢ in every dimension j as below:

t+1 ot t ¢ . ¢
v = wvj; + (i — i) + carz; (i — xi;) (2)
where vf*l denotes particle i’s velocity in dimension j, w denotes the inertia

weight, and ¢; and cy denote the cognitive and social acceleration constants
respectively. 71, 72; ~ U(0,1) are random numbers sampled between 0 and 1
at every iteration. yfj denotes the personal best position of particle ¢ in the jth
dimension and g;; denotes jth dimension of the best position found by all the
particles in the neighbourhood of particle i. Particle neighbourhoods are usually
defined by logical indexing of the swarm. When neighbourhoods are strict subsets
of the entire swarm, the algorithm is referred to as a local best PSO. If every
particle’s neighbourhood consists of the entire swarm, the algorithm is referred
to as a global best PSO and y; = ¥y is called the global best position. Except
where otherwise specified, this paper considers a global best PSO.

The stochastic scaling components, r; and ry can also be expressed as diag-
onal matrices, Ry and Ry, as illustrated below:

vf“ =wvi +c Ry (y! — xfg) + 2R (y — x}) ®3)

The Importance of Component-Wise Stochasticity in PSO 3

where R; and Ry are diagonal matrices, with r; and ry forming their diagonals.

This paper emphasizes that if 7y and ro are random scalars, then the swarm’s
movement becomes entirely linear. Every position investigated by the swarm will
necessarily be a linear combination of the swarm’s initial positions, velocities and
personal best positions. If the swarm size is too small relative to the problem
dimensionality, then the swarm can only reach a subspace within the larger
search space (as is proved in Section 3). Since the swarm is typically initialised
randomly, there is a possibility that the optimum can not be expressed as a
linear combination of the swarm’s initial positions, i.e. the swarm will never be
able to find the optimum.

The effect of using scalar r; and 7o values has been discussed in literature
[14, 20]. Paquet and Engelbrecht introduced a Linear PSO [14], in order to solve
constrained linear optimization problems. If the swarm is initialised so that all
positions are within the problem constraints, then using scalar r; and ro values
ensures that the swarm can never leave the feasible space, which forms a subspace
of the search space. In [20], purposeful dimensional coupling via shared ry and ro
components was suggested to reduce the unwanted roaming exhibited by PSO
in high dimensional problem spaces.

Throughout the remainder of the paper, a swarm that uses scalar values for
r1 and 7o will be called a “scalar swarm”. A swarm that uses vectors for r; and ry
which are multiplied with the cognitive and social components in every dimension
(or, alternatively, are diagonal matrices) will be called a “vector swarm”.

3 Theoretical Results
This section provides a theoretical discussion regarding the consequences of using
a scalar PSO. A number of definitions and key concepts are introduced first [15].

Definition 1. A set of vectors T = {z1,22,....,2p} C R™ is linearly dependent
if there exists a finite number of distinct vectors, z1,2s,...2zx € L, and scalars,
ai, as,...,ax € R, not all zero, such that

121 + aszo + ... +agzr =0 (4)

Since at least one scalar is non-zero, say a1 # 0, the vector z1 can be expressed
as a linear combination of the other vectors:

Zq :—%ZQ—...—%ZK (5)
a1 a1

Thus, the set I is linearly dependent if and only if at least one element in Z can
be written as a linear combination of the other elements in ZI.

Definition 2. A set of vectors T = {z1,...,zp } C R™ is linearly independent if
121 + asZo + ... +ayzy =0 (6)

can only be satisfied by a1 = az = ... = apr = 0. Thus no element in I can be
written as a linear combination of other elements from T.

4 E.T. Oldewage et al.

Definition 3. Let Z be a non-empty set of vectors from R™ (i.e.) # T C R"™).
Then the span of I is the smallest subspace W C R™ that contains Z. Thus
span(Z) = W. The subspace W consists of all linear combinations of elements
of Z, given below (where |.| denotes set cardinality):

IZ|

span(T) = { > arz

k=1

zkeI,akeR,keN} (7)

Definition 4. A non-empty set of vectors, T = {z1,...,2Znm}, is a spanning set
for a subspace W C R"™ if and only if any element in W can be expressed as a
linear combination of elements in Z. In other words, for any non-zero z € W,
there exist scalars ay,as, ...,ap; with at least one a; # 0 such that

Z = Q121 + G2%Zo + ... +apZp (8)

Definition 5. A basis for a subspace S of R™ is a set of vectors B in S where
B is a spanning set for S, and B is linearly independent.

Armed with these definitions, it is proven below that if r; and 79 are scalars,
then the positions of any particle at any iteration of the search space must
be a linear combination of their initial positions, personal best positions, and
velocities. The theorem below is for a local best PSO, since global best PSO can
be considered as a special case of local best PSO where the neighbourhood is
the entire swarm. For the sake of generality, the theorem makes no assumptions
regarding the initial particle velocities or personal best positions.

Theorem 1. For a particle swarm governed by the movement update equations
in equations (1) and (2), at any iteration t > 0, the position x! of any particle
i is in the span of T where T = {x9,y?,v?, .., x% y% vO1.

Proof. Suppose that particle velocities, positions and personal best positions are
initialised randomly within the search space. Let the set of all these initial points
be given by Z = {x{,y?,v), ..., X%S , ygs , v?LS }. Assume that all the elements in Z
are unique and non-zero. These assumptions are made without loss of generality:
the probability of obtaining a zero vector from a uniform initialisation is zero,
since the probability of a continuous random variable being a particular constant
is zero. Similarly, the probability of sampling two equal vectors is zero because
the set of such points have zero measure.

The position of any particle at ¢ = 0 is in Z by the definition of Z. Thus, the
hypothesis holds for the case ¢t = 0.

At iteration ¢ = 1, the position of any particle 7 is given by

X, =% +V, (9)

Since xY € Z, it is only necessary to prove that v} € span(Z) for x} to be in the
span of Z. According to the velocity update equation,

vi = wv] +er(y) — x)) + cora(y] — x7) (10)

= wvgJ + clrly? + 027“2}7? — (rie1 + T'QCQ)X,? (11)

The Importance of Component-Wise Stochasticity in PSO 5

By definition, v¥,y?,x? € Z. Additionally, the neighbourhood best position is
chosen from among the personal best positions of the other particles in the
neighbourhood, so that §9 € Z. Thus, if particle i is not the neighbourhood
best, then v} is a linear combination of four distinct elements from Z. If particle
i is the neighbourhood best, then y? = y? and v} is a linear combination of
three distinct elements from Z. In either case, v} € span(Z) by definition 3. The
fact that v} € span(Z) will be referred to as (*). Therefore, since x; is the sum
of two elements in span(Z), x} is in the span of Z. Since this is true for any
particle ¢, all the particles’ positions at iteration ¢ must be in the span of Z -
this fact will be referred to as (**).

Suppose for all iterations s < t, that the positions of all the particles are in
the span of Z. It will now be proved that the positions of all the particles must
still be in the span of Z at iteration ¢ + 1. The position of any particle ¢ is given
by the position update equation:

xit = xt 4 VEH (12)
where x! € span(Z) by virtue of the inductive assumption. It thus remains to
prove that vf“ is in the span of Z:

Vit = wvi ey = xi) + cara(9i — xj) (13)

= wv! + 11y} + cora¥t — (ricq + rac2)x! (14)

where x! € span(Z) by the inductive assumption. It remains to prove that vi,
y! and y! are in the span of Z. According to the position update equation,

xi = XE_I +vi (15)

— vi=x!- xz_l (16)
In other words, v! is a linear combination of x! and x!™!, both of which are
elements in the span of Z by the inductive assumption. Thus, v! is also in the
span of Z. The personal best position of any particle ¢ can only be equal to one
of the particle’s previous positions. But, by the inductive assumption, all the
particle’s previous positions were in the span of Z. Thus, y! must be in the span
of Z. Similarly, the neighbourhood best position must be equal to a previous
position of some particle in i’s neighbourhood, all of which are in the span of
7 by the inductive assumption. Therefore, the velocity and also the position of
particle 7 at iteration ¢ + 1 must be in span(Z). O

Theorem 1 implies that, when r; and r9 are random scalar values, the positions
of the particles are limited to be in the span of their initial velocities, positions
and personal best positions. If either of the assumptions on Z does not hold
(e.g. some vectors are multiples of another or some are zero), then the positions
of the particles are limited further to being linear combinations of all non-zero,
linearly independent initial velocities, positions and personal best positions. The
question arises whether any point in the search space can be expressed in terms
of such linear combinations. This question is answered by the theorem below:

6 E.T. Oldewage et al.

Theorem 2. Suppose I contains m linearly independent vectors and S = [L,U]".
If m < n then span(Z) NS C S. Thus T can only be a spanning set of S if it
contains at least n linearly independent elements.

Theorem 2 follows from the fundamental theorem of invertible matrices (as given
in [15]), the exact proof as given in [10] is not reproduced here. If 7 constitutes a
spanning set for the search space (i.e. the span of 7 is larger than the search space
or equal to), then any point in the search space can theoretically be reached by
the particles. However, if Z is not a spanning set of the search space (i.e. the
span of Z is a strict subspace within the search space), then the particles can
not reach every position in the search space. If the global optimum happens to
be outside the span of Z, then the particles will never be able to find it. Since
initial positions and personal best positions are typically generated randomly,
this is a realistic scenario in high dimensional spaces.

If the swarm’s velocities are initialised to zero and the initial personal best
positions are set equal to the initial positions, then the portion of the search
space that can be reached by the particles is even smaller. Additionally, the
swarm may lose degrees of freedom throughout the search. Since the algorithm
is executed on a computer with limited precision, some of the vectors in Z may
be cancelled out further in the search. Though unlikely, the span of the swarm
may in fact decrease as the search progresses. Thus, if the size of the swarm
is much smaller than the dimensionality of the search space, then the swarm
will be unable to reach a large part of the search space. Unfortunately, simply
increasing the number of particles in the swarm is not an adequate solution,
because it greatly increases the computational cost. Additionally, the swarm size
parameter influences the swarm'’s searching behaviour in other ways, so changing
the swarm size drastically may have unintended consequences [5, 9].

4 Illustration of Reachability

This section aims to illustrate the importance of reachability, i.e. that the scalar
swarm’s performance is severely penalized if the optimum is not in the span of
the swarm’s initial positions. Section 4.1 describes the experiment’s empirical
method and Section 4.2 summarizes the results.

4.1 Empirical Method - Reachability

The optimum can be placed inside or outside the swarm’s initial span by shifting:
f(x)srn = f((x —«)), where x denotes the position vector to be evaluated,
f denotes the objective function and ~ denotes the shift vector. If the scalar
swarm performs well when the shift places the optimum within its reach, but
poorly when the optimum is outside the swarm’s span, then the importance of
reachability will be empirically justified.

Unfortunately, the performance of a swarm on a function with a reachable op-
timum can not be compared directly with its performance on an unreachable ver-
sion of that same function. The swarm would essentially be optimizing different

The Importance of Component-Wise Stochasticity in PSO 7

functions, since applying a particular shift may change the problem’s difficulty.
Thus, in order to compare the influence of reachability on the scalar swarm’s
performance, a total of 30 different shifts were generated for each benchmark
problem: 15 placed the optimum within the scalar swarm’s span and 15 moved
the optimum to an unreachable region. The swarm was run 30 times on all 30
versions of each benchmark function. The suite of benchmark functions consisted
of Ackley, Absolute Value, Elliptic, Griewank, Quartic, Rastrigin, Rosenbrock,
Schwefel 1.20, Schwefel 2.21, Spherical and Weierstrass (as defined in [6]). A
total of 30 x 11 functions were thus under consideration.

The process for generating the shifts is described below. First, the Modified
Gram-Schmidt method [12] was applied to the particles’ initial positions to pro-
duce a basis B containing m-many vectors (where m is the swarm size, as before).
For the shift to be reachable, a direction vector d was generated by a random
linear combination of the vectors in 5. The direction vector was normalized and
used to define a line passing through the search space center. A random point
on that line, v was then chosen as the shift. To produce an unreachable shift,
a new random vector s was chosen (distributed uniformly over the search space
in each dimension, like the particle positions). The vector s was then orthogo-
nalized relative to B, producing &, a direction vector orthogonal to the swarm’s
span. As before, v was chosen to be a random point on the line passing through
the center of the search space with direction d.

The experiments used PSO with inertia weight as introduced in [17] with the
global best topology. The selected inertia weight, w = 0.7298 and the acceler-
ation coefficients ¢; = co = 1.49618 are known good values suggested by Clerc
[3] that guarantee convergence of the swarm (in terms of expectation and vari-
ance of particle positions [2]). As suggested by [1], all personal and global best
positions were restricted to be within the search space. Each swarm consisted
of 10 particles (m = 10), so that m is low enough to test problems of dimen-
sionality 5 times larger than m without venturing into large scale optimization).
The particles’ initial positions were initialised uniform randomly throughout the
search space. Each particle’s initial personal best position was set equal to its
initial position, and its velocity was initialised to zero. Thus, the scalar swarm
was limited to the span of its initial positions. The experiments were repeated
for dimensions n = {15, 20, 25,50}. Every simulation ran 2000 iterations to allow
sufficient time for the swarm to converge.

4.2 Results - Reachability

Table 1 compares the scalar swarm’s performance on the 165 (11 functions x
15) problems with reachable optima against the 165 problems with unreachable
optima. As mentioned in Section 4.1, 30 runs were performed on each problem
for statistical significance. Every row of the table corresponds to the results
for a given problem dimensionality. Friedman tests with a p-value of 0.05 were
used to detect statistically significant differences between the scalar and vector
PSO’s performance (in terms of the best scores attained over all runs on a
given function). If the Friedman test indicated a significant difference, pairwise

8 E.T. Oldewage et al.

comparisons were done by Mann-Whitney U tests with a p-value of 0.05. If no
statistically significant different was found, the result was recorded as a draw.

Table 1. Scalar Swarm’s Performance on Reachable and Unreachable Problems

Dimensionality |Reachable Wins|Draws|Unreachable Wins
n=15 104 26 35
n =20 117 21 27
n=25 120 22 23
n =50 93 28 44

As expected from the theoretical discussion, Table 1 shows that the scalar
swarm performed significantly better on the problems with reachable optima.
It may still be possible for the swarm to perform better on the benchmark
functions with theoretically unattainable optima if the swarm’s initial subspace
is “sufficiently” close to the shifted optimum. Additionally, a given problem with
an unreachable problem may still be easier than a problem with a reachable
optimum, as discussed in Section 4.1, resulting in a few wins for the swarm
optimizing the unreachable problems. However, the general trend is that the
scalar swarm preform better on a given benchmark function when the optimum
is within the span of its initial positions, as would be expected from the theory.

5 Extensive Performance Comparison

As seen in the previous section, it may be that the swarm’s reachable subspace
may lie in a region sufficiently close to the optimum for it to be a mere tech-
nicality that the optimum is unreachable. Since the benchmark suites from the
previous section were designed either in favour or against the scalar PSOs, this
section compares the performance of the vector and scalar swarms on a large
suite of unbiased benchmark functions. The optima for these functions are either
shifted by a predefined constant (as specified in the corresponding technical pa-
pers) or by a random vector, distributed uniformly over the search space. Section
5.1 details the empirical method and Section 5.2 discusses the results.

5.1 Empirical Method - Performance Comparison

The benchmark suite consisted of 28 base functions which are listed in the “Func-
tion Name” column of Table 2. A given function f was shifted and rotated to
produce fsprot according to

fX)snrot = F(Q(x—7)) + 5 (17)

where [is a constant scalar, «y is either constant or uniform random over the
search space in each dimension, and @ is a randomly generated orthogonal ma-
trix. The constants are specified in Table 2.

The Importance of Component-Wise Stochasticity in PSO 9

Table 2. Benchmark Functions

Function Name‘Src "y ‘ﬁ ‘RotHFunction Name‘Src "y ‘6 ‘Rot‘

Absolute Value |fi |Rand|0.0 |[No ||Rastrigin fi2 |Rand|0.0 |No
Ackley fo |Rand|0.0 |No ||Rastrigin Rot fi2 2.0 |—330|No
Ackley Sh f2 |10.0 |—140 |No ||Rastrigin Sh fi2 10.0]0.0 |Yes
Ackley Rot f2 10.0 0.0 [Yes ||Rastrigin ShRot |fi2 [1.0 |—330|Yes
Ackley ShRot f2 |—32.0/—140 |[No [|Rosenbrock fi3 |[Rand [0.0 |No
Alpine F7 |Rand|0.0 |[No ||Rosenbrock Sh |fiz [10.0 {390 |No
Brown Fss |Rand |0.0 [No ||Rosenbrock Rot |fiz [0.0 [0.0 |Yes
Dixon-Price Fus |Rand 0.0 [No |[Salomon fi12 [Rand |0.0 |No
Egg Holder fa |Rand|0.0 |No [|Schaffer 6 fi5 |Rand|0.0 |No
Elliptic fs |Rand|0.0 |No [|Schaffer 6 ShRot |fi5 |20.0 |—300 |Yes
Elliptic Sh fs 10.0 |—450 [No ||Schwefel Gs 0.0 |0.0 [No
Elliptic Rot fs 10.0]0.0 |Yes ||Schwefel 1.2 fie |Rand|0.0 |No
Elliptic ShRot fs 10.0 |—450 |Yes ||Schwefel 1.2 Sh |fis [10.0 |—450|No
Griewank fe |Rand|0.0 |No ||Schwefel 1.2 Rot |fis |0.0 [0.0 |Yes

Griewank Sh fe |10.0 |—180 [No ||Schwefel 2.21 fi9 |[Rand|0.0 |No
Griewank Rot f6 10.0 |0.0 [Yes ||Schwefel 2.22 f20 |[Rand|0.0 |No

Griewank ShRot |fs |—60.0]—180 |Yes ||Shubert f21 |[Rand|0.0 |No
HyperEllipsoid |f7 |Rand|0.0 |No ||Spherical f22 |Rand|0.0 |No
Michalewicz fs |Rand|0.0 |No [|Spherical Sh f22 |10.0 |—450 |No
Norwegian fo |Rand|0.0 [No [|Step f2s |Rand|0.0 |No
Powell Singular 2|Fy |[Rand [0.0 |No ||Vincent f2a |Rand|0.0 |No
Quadric fio |Rand|0.0 [No ||Weierstrauss f2s |[Rand|0.0 |No
Quartic fi1 |[Rand|0.0 |No ||Weierstrauss Sh |f25 [1.0 —130|No

The “Rot” column in Table 2 indicates whether the function was rotated
or not. The transformations provided a total of 46 benchmark functions. The
benchmark suite contains uni- and multi-modal functions that are both separa-
ble and non-separable. The definitions of the functions and the corresponding
bounds were used as in [6], [8] and [16]. The “Src” column of Table 2 lists the
identifier of each function according to its source. Function ¢ from [6] is denoted
by fi; function ¢ from [8] is denoted by F; and function ¢ from [16] is denoted by
G;. The vector and scalar swarms were run on each of the benchmark problems
30 times for statistical significance. Each simulation ran for 2000 iterations.

All of the functions were minimized in 5, 10, 15, 20, and 25 dimensions. As
before, the swarm size was set to 10. If the hypothesis proved in the previous sec-
tion holds, then it is expected for the scalar swarm’s performance to deteriorate
as the problem dimensionality exceeds the number of particles in the swarm.

10 E.T. Oldewage et al.

5.2 Results - Performance Comparison

Table 3 summarizes the results of the wide performance comparison.The scalar
swarm consistently performed better than the vector swarm on the Quadric func-
tion (fi0) for n > 5. However, the vector swarm outperforms the scalar swarm
on nearly all of the benchmark functions, even when the problem dimensionality
is low enough for the scalar swarm to reach the optimum. Although the reacha-
bility of the optimum also plays a role (as shown previously), the scalar swarm’s
linear movement prevents the swarm from finding good solutions even inside the
swarm’s initial subspace.

Table 3. Comparison of Vector and Scalar Swarms Across Dimensionality

Dimensionality|Scalar Wins|Draws|Vector Wins
n=>5 0 2 44
n =10 1 0 45
n=15 1 0 45
n =20 1 2 43
n =25 1 1 44

The strong restriction imposed on the scalar swarm becomes apparent in
Figures 1 to 4, which plot typical profiles of the swarm diversity (as defined in
[11]), averaged over all runs for n = 5 and n = 25. As the problem dimensionality
increases, the vector PSO’s swarm diversity also increases. In contrast, the scalar
PSO’s diversity profile remains unchanged even as the dimensionality increases.

As shown before [20], restricting the swarm’s movement may be beneficial in
high dimensional spaces for the very reason that the initial velocity explosion
is mitigated, causing the unchanged diversity profile observed here. However, in
low dimensional spaces, the vector swarm outperforms the scalar swarm.

6 Conclusion

This paper demonstrated the importance of employing component-wise stochas-
ticity both theoretically and empirically. Section 3 showed that a swarm’s move-
ment is severely restricted by using scalar values for r; and r9. In particular, it is
emphasized that a scalar swarm is limited to the span of its initial particle posi-
tions, personal best positions and velocities. Thus, the swarm may not be able to
reach the optimum. Section 4 shows that reachability is not merely a theoretical
problem, but can also be illustrated empirically. The section constructs bench-
mark functions with optima explicitly defined to be reachable or unreachable by
a scalar swarm. The scalar swarm is shown to perform significantly better on
benchmark problems with reachable optima, as expected from the theory.
Since the benchmarks in Section 4 were biased in favour of, or against the
scalar swarms, the artificial benchmarks would not provide a fair comparison

The Importance of Component-Wise Stochasticity in PSO 11

36 Vector Swarm — 90- Vector Swarm —
334 Scalar Swarm — Scalar Swarm —
81
30
27 72
o >
24 G 07
< 5}
z2 ER
a a
18 45
E E
g 151 g6
w127 2]
27
9
6 18
3 9
0 600 1200 1800 0 600 1200 1800
Iterations Iterations

Fig. 1. Diversity, Ackley Shr (n =5) Fig. 2. Diversity, Ackley Shr (n = 25)

7-5e+02 Vector Swarm — 1.8e+03 Vector Swarm —
6.80402 Scalar Swarm — L6e+03 Scalar Swarm —
6e+02 1.4e+03
2520402 Pr12e+03
Z S
T 4.50+02 & 1.1e+03
£ g
EDE 3.8e+02 Q g.ge+02
§ 3e+02 ’§ 7.1e+02
D 3 26402 N 5 36402
1.50+02 3.50+02
75 1.8e+02
0 600 1200 1800 0 600 1200 1800
Iterations Iterations

Fig. 3. Diversity, Griewank (n = 5) Fig. 4. Diversity, Griewank (n = 25)

between scalar and vector swarms. Towards this end, Section 5 demonstrated the
performance difference between scalar and vector swarms on an extensive range
of benchmarks. It was shown that the vector swarm performs significantly better
on almost all of the benchmark functions than the scalar swarm, even when the
dimensionality is low enough for the scalar swarm to reach the optimum.

Acknowledgments. This work is based on the research supported by the Na-
tional Research Foundation (NRF) of South Africa (Grant Number 46712). The
opinions, findings and conclusions or recommendations expressed in this article
is that of the author(s) alone, and not that of the NRF. The NRF accepts no
liability whatsoever in this regard.

References

1. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization.
In: Proceedings of the IEEE Swarm Intelligence Symposium. pp. 120-127. IEEE
Computer Society (2007). https://doi.org/10.1109/SIS.2007.368035

12

10.

11.

12.

13.

14.

15.

16.

E.T. Oldewage et al.

. Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm stability: a theoretical extension

using the non-stagnate distribution assumption. Swarm Intelligence (Sep 2017).
https://doi.org/10.1007/s11721-017-0141-x

Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence
in a multidimensional complex space. IEEE Transactions on Evolutionary Com-
putation 6(1), 58-73 (Feb 2002). https://doi.org/10.1109/4235.985692

Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Pro-
ceedings of the Sixth International Symposium on Micro Machine and Human
Science. pp. 39-43 (Oct 1995). https://doi.org/10.1109/MHS.1995.494215
Engelbrecht, A.P.: Fitness function evaluations: A fair stopping condition? In:
Proceedings of the IEEE Symposium on Swarm Intelligence. pp. 1-8 (Dec 2014).
https://doi.org/10.1109/SIS.2014.7011793

Engelbrecht, A.: Particle swarm optimization: Global best or local best? In: Pro-
ceedings of the BRICS Congress on Computational Intelligence and 11th Brazilian
Congress on Computational Intelligence (BRICS-CCI CBIC). pp. 124-135 (Sept
2013). https://doi.org/10.1109/BRICS-CCI-CBIC.2013.31

Han, F., Liu, Q.: A diversity-guided hybrid particle swarm optimiza-
tion based on gradient search. Neurocomputing 137, 234 — 240 (2014).
https://doi.org/https://doi.org/10.1016 /j.neucom.2013.03.074, advanced Intelli-
gent Computing Theories and Methodologies

Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global opti-
mization problems. Int. Journal of Mathematical Modelling and Numerical Opti-
misation 4(2), 150194 (2013)

Malan, K., Engelbrecht, A.P.: Algorithm comparisons and the significance of popu-
lation size. Proceedings of the IEEE Congress on Evolutionary Computation (IEEE
World Congress on Computational Intelligence) pp. 914-920 (2008)

Oldewage, E.: The Perils of Particle Swarm Optimisation in High Dimensional
Problem Spaces. Master’s thesis, University of Pretoria, Pretoria, South Africa
(2018)

Olorunda, O., Engelbrecht, A.P.: Measuring exploration/exploitation in
particle swarms using swarm diversity. In: Proceedings of the IEEE
Congress on Evolutionary Computation. pp. 1128-1134 (June 2008).
https://doi.org/10.1109/CEC.2008.4630938

Paige, C.C., Rozloznik, M., Strakos, Z.: Modified gram-schmidt (mgs), least
squares, and backward stability of mgs-gmres. Society for Industrial and Ap-
plied Mathematics Journal Matrix Analysis and Applications 28(1), 264-284 (May
2006). https://doi.org/10.1137/050630416

Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm optimization-
based heuristic for scheduling workflow applications in cloud comput-
ing environments. In: 2010 24th IEEE International Conference on Ad-
vanced Information Networking and Applications. pp. 400-407 (April 2010).
https://doi.org/10.1109/AINA.2010.31

Paquet, U., Engelbrecht, A.P.: Particle swarms for linearly constrained
optimisation. Fundamental Informatics 76(1-2), 147-170 (Feb 2007),
http://dl.acm.org/citation.cfm?id=1232695.1232705

Poole, D.: Linear Algebra: A Modern Introduction, Third Edition. Cengage Learn-
ing, Canada (2011)

Ramezani, F., Lotfi, S.: The modified differential evolution algorithm (mdea). In:
Pan, J.S., Chen, S.M., Nguyen, N. (eds.) Intelligent Information and Database
Systems, Lecture Notes in Computer Science, vol. 7198, pp. 109-118. Springer
Berlin Heidelberg (2012). https://doi.org/10.1007/978-3-642-28493-9_13

17.

18.

19.

20.

The Importance of Component-Wise Stochasticity in PSO 13

Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
IEEE International Conference on Evolutionary Computation. pp. 69-73 (May
1998). https://doi.org/10.1109/ICEC.1998.699146

Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S., Nakanishi, Y.: A particle
swarm optimization for reactive power and voltage control considering voltage
security assessment. IEEE Transactions on Power Systems 15(4), 1232-1239 (Nov
2000). https://doi.org/10.1109/59.898095

Zahara, E., Kao, Y.T., Su, J.R.: Enhancing particle swarm optimization with gradi-
ent information. In: 2009 Fifth International Conference on Natural Computation.
vol. 3, pp. 251-254 (Aug 2009). https://doi.org/10.1109/ICNC.2009.711

van Zyl, E., Engelbrecht, A.: Group-based stochastic scaling for pso velocities.
In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC). pp.
1862-1868 (07 2016)

