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Background. Rifampicin (RIF) resistance is highly correlated with isoniazid (INH) resistance and used as proxy for multidrug-
resistant tuberculosis (MDR-TB). Using MTBDRplus as a comparator, we evaluated the predictive value of Xpert MTB/RIF (Xpert)–
detected RIF resistance for MDR-TB in eastern Democratic Republic of the Congo (DRC).

Methods. We conducted a cross-sectional study involving data from new or retreatment pulmonary adult TB cases evaluated 
between July 2013 and December 2016. Separate, paired sputa for smear microscopy and MTBDRplus were collected. Xpert testing 
was performed subject to the availability of Xpert cartridges on sample remnants after microscopy.

Results. Among 353 patients, 193 (54.7%) were previously treated and 224 (63.5%) were MTBDRplus TB positive. Of the 224, 43 
(19.2%) were RIF monoresistant, 11 (4.9%) were INH monoresistant, 53 (23.7%) had MDR-TB, and 117 (52.2%) were RIF and INH 
susceptible. Overall, among the 96 samples detected by MTBDRplus as RIF resistant, 53 (55.2%) had MDR-TB. Xpert testing was 
performed in 179 (50.7%) specimens; among these, 163 (91.1%) were TB positive and 73 (44.8%) RIF resistant. Only 45/73 (61.6%) 
Xpert-identified RIF-resistant isolates had concomitant MTBDRplus-detected INH resistance. Xpert had a sensitivity of 100.0% 
(95% CI, 92.1–100.0) for detecting RIF resistance but a positive-predictive value of only 61.6% (95% CI, 49.5–72.8) for MDR-TB. The 
most frequent mutations associated with RIF and INH resistance were S531L and S315T1, respectively.

Conclusions. In this high-risk MDR-TB study population, Xpert had low positive-predictive value for the presence of MDR-TB. 
Comprehensive resistance testing for both INH and RIF should be performed in this setting.

Keywords.  GenoType MTBDRplus assay; drug resistance; rpoB mutations; inhA mutations; DRC.

Multidrug-resistant tuberculosis (MDR-TB), defined as TB di-
sease with Mycobacterium tuberculosis (MTB) strains resistant 
to at least rifampicin (RIF) and isoniazid (INH), threatens the 
global TB response, particularly in low- and middle-income 
countries (LMICs) [1]. It is commonly assumed that RIF re-
sistance occurs when INH resistance is present. Rifampicin-
resistant TB has hence been used as a proxy for MDR-TB and 
is treated with second-line regimens that omit INH [2, 3]. 
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However, the validity of this assumption may be setting specific. 
Indeed, testing only for RIF resistance might unnecessarily 
deny access to INH for patients with low-level INH resistance 
or no INH resistance (ie, RIF-monoresistant TB). Conversely, 
INH-monoresistant, RIF-susceptible TB that is, on the basis of 
an Xpert RIF–susceptible result, wrongly assumed to be fully 
susceptible can lead to mismanagement, since patients that re-
ceive the standard first-line TB regimen will have higher risks of 
treatment failure, relapse, and MDR-TB acquisition [4, 5].

The Democratic Republic of the Congo (DRC), home to an 
estimated 81 million people, is 1 of 14 countries on the World 
Health Organization (WHO) list of countries with high TB, 
TB/human immunodeficiency virus (HIV), and MDR-TB bur-
dens [1]. In 2018, the estimated TB incidence rate was 322 per 
100 000 with 60 000 TB-related deaths [1]. The estimated prev-
alence of MDR/RIF-resistant TB in the DRC was 1.7% and 9.5% 
in new and previously treated TB cases [1], respectively, but the 
accuracy of these estimates is limited by low laboratory cov-
erage in many areas for the performance of MTB culture and 
drug susceptibility testing (DST). In contrast, an analysis of 
DRC surveillance between 2007 and 2016 reported an MDR-TB 
prevalence of 42.8% (95% confidence interval [CI], 38.4–47.8%) 
among high-risk patients with MDR-TB [6].

Xpert MTB/RIF assay (Xpert; Cepheid, Sunnyvale, CA) de-
velopment has been a game changer for improving the diag-
nosis of MTB and detecting RIF resistance globally. Xpert is a 
rapid (2-hour), fully automated, real-time nucleic acid amplifi-
cation technology that requires minimal staff training but does 
not test for INH resistance [7, 8]. In 2012, postconflict South 
Kivu province in eastern DRC was the first province to roll 
out Xpert at 10 urban and rural community sites through the 
Stop TB Partnership’s TB REACH initiative [9]. Subsequently, 
in 2013, the line probe assay (LPA) GenoType MTBDRplus 
(MTBDRplus; Hain Lifescience GmbH, Nehren, Germany) was 
made available, but only at the referral laboratory in Bukavu, 
the capital city of South Kivu. MTBDRplus is a molecular LPA 
containing probes specific for the MTB complex as well as 
common mutations conferring RIF and INH resistance [10, 11].

We aimed to compare the diagnostic accuracy of Xpert and 
MTBDRplus for MDR-TB detection and evaluate the frequency 
of INH- and RIF-associated mutations in eastern DRC.

METHODS

Study Design, Patients, and Setting

We conducted a cross-sectional study at 10 urban and rural TB 
diagnostic and treatment centers (French acronym: CSDTs) as 
well as from military camps and artisanal mining sites between 
July 2013 and December 2016 in the post–armed-conflict South 
Kivu province of eastern DRC. Our study inclusion criteria 
were adult patients aged 18 years or older with newly diagnosed 
pulmonary TB or retreatment pulmonary TB cases (relapses, 

failures, and return after loss to follow-up with documented 
TB treatment exposure). Presumptive TB cases were found and 
identified either passively (by referral) or actively (via symptom 
screening by CSDT staff or community health workers).

Microscopy, Xpert, and MTBDRplus

All sputum specimens included in this study were analyzed using 
microscopy as per routine clinical care, whereas MTBDRplus was 
performed for study purposes and Xpert testing was performed 
subject to availability of cartridges and as indicated by DRC na-
tional TB program guidelines (eg, high-risk for MDR-TB based on 
TB treatment history) on remnant microscopy samples (Figure 1A 
and 1B). From 2015, specimens were preserved in 90% ethanol (di-
lution, 1:1) prior to transportation to preserve the quality of the 
DNA and decrease the biohazard risk. The first sputum specimen 
was provided in a sterile screw-cap universal disposable container. 
Ziehl-Nielsen slides were examined at CSDTs by bright-field mi-
croscopy (×1000 magnification). The second sputum specimen 
(for MTBDRplus assay) was provided in a sterile screw-cap uni-
versal disposable container and transported to a centralized lab-
oratory in Bukavu city. DNA was extracted using the GenoLyse 
kit (Hain Lifesciences GmbH, Nehren, Germany). Multiplex pol-
ymerase chain reaction (PCR), reverse hybridization, and results 
interpretation were performed per the manufacturer’s instructions. 
Demographic data and clinical information were abstracted from 
laboratory request forms.

Statistical Analysis

Data were summarized using proportions and means (± standard 
deviations) for categorical and continuous variables, respectively. 
Pearson’s chi-square and Student’s t tests were applied for tests of 
association, where appropriate. Sensitivity, specificity, and pos-
itive- and negative-predictive values and their 95% CIs were 
calculated to determine the diagnostic accuracy characteristics 
of Xpert compared to MTBDRplus for diagnosis of MDR-TB. 
Using logistic regression models, we investigated the unadjusted 
association between baseline patient characteristics and the 
presence of MDR-TB as determined by MTBDRplus. We esti-
mated adjusted associations by including all baseline covariates 
a priori in a multivariable model. Starting with a full model, we 
then used a backward elimination procedure, excluding pre-
dictor variables with a P value less than .1, and compared the 
estimated reduced model adjusted odds ratios (aORs) and as-
sociated 95% CIs with the full multivariable model estimates. 
Results for which P values were less than .05 were considered 
statistically significant. Statistical analyses were performed using 
STATA version 12.1 (StataCorp, College Station, TX).

Research Ethics Approval

This study was approved by the Institutional Ethics Committee 
of the Université Catholique de Bukavu (reference number 
UCB/CIE/NC/07/2015).
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Figure 1. A, Flow diagram of MTBDRplus diagnostic assay done on sputum specimens included in the study. B, Flow diagram of Xpert MTB/RIF diagnostic assay done on 
sputum specimens included in the study. Abbreviations: AFB, acid-fast bacilli; DS-TB, drug-susceptible tuberculosis; INHInd, isoniazid indeterminate; INH-R, isoniazid resist-
ance; MDR-TB, multidrug-resistant tuberculosis; MTB, Mycobacterium tuberculosis; MTBNeg, Mycobacterium tuberculosis negative; RIF, rifampicin; RIFInd, rifampicin indeter-
minate; RIFR, rifampicin resistant; RIFS, rifampicin susceptible; RR-TB, rifampicin-resistant tuberculosis; ZN, Ziehl Nielsen.
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RESULTS

Sociodemographic and Clinical Characteristics

As shown in Table 1, the mean age of individuals in the sample 
population was 37.6 years. Seventy-five percent were males, and 
two-thirds resided in rural areas. Approximately 30% had HIV 
testing results available; one-third of those tested were HIV 
positive. Most patients (193, 54.7%) had a previous TB treat-
ment history and were more likely to be tested by Xpert (54.7% 
vs 34.2%; P < .001) (Supplementary Table 1). Forty-two (12%) 
were acid-fast bacilli (AFB) smear negative (Figure 1A and 1B).

MTBDRplus Assay Results

Among the 353 sputum samples tested by MTBDRplus, 193 
(54.7%) had TB treatment history and 224 (63.5%) were 
MTB positive. Of these, 43 (19.2%) had RIF-monoresistant 
TB, 11 (4.9%) had INH-monoresistant TB, 53 (23.7%) had 
MDR-TB, and 117 (52.2%) were susceptible to both INH and 
RIF. Among the 96 samples with RIF resistance detected by 
MTBDRplus (43 RIF-monoresistant TB + 53 MDR-TB), only 
53 (55%) had MDR-TB (Table 2). Among the 38 patients with 
HIV, 23 (60.5%) of whom were newly diagnosed with TB, 13 
(34.2%) had MDR-TB, 5 (13.1%) had RIF-monoresistant TB, 
3 (8%) had INH-monoresistant TB, 12 (31.6%) were TB sus-
ceptible, and 5 (13.1%) tested negative for MTB. In contrast, 
among 94 specimens from individuals without HIV, 16 (17%) 
had MDR-TB, 12 (12.8%) had RIF-monoresistant TB, 1 (1.1%) 
had INH-monoresistant TB, 38 (40.4%) were TB susceptible, 
and 27 (28.7%) were MTB negative. In multivariable logistic 

regression model, we found that HIV-positive status was in-
dependently associated with increased risk of RIF resistance 
and MDR-TB by Xpert and MTBDRplus (aOR [95% CI], 3.07 
[1.14–8.27] [P = .026] and 3.3 [1.37–7.95] [P = .008], respec-
tively) (Supplementary Tables 2 and 3), while only history of 
previous TB treatment was independently associated with 
an increased risk of MDR-TB (aOR, 3.00; 95% CI, 1.41–6.37; 
P = .004) (Supplementary Table 3).

Xpert Results and Concordance With MTBDRplus

As shown in Table 3, among 179 samples tested by both Xpert 
and MTBDRplus, 163 (91.1%) were MTB positive by the LPA, 
11 (6.1%) were identified as MTB positive by Xpert but not LPA, 
and 5 (2.8%) were non-MTB by both Xpert and MTBDRplus; 
these 5 non-MTB cases were excluded from the analysis of 
drug-resistance concordance. Among the 163 positive sam-
ples by both MTBDRplus and Xpert, MTBDRplus identified 22 
(13.5%) as RIF monoresistant, 11 (7%) as INH monoresistant, 
45 (28%) as MDR-TB, and 83 (51%) as susceptible to both INH 
and RIF. Of note, among the 45 MDR-TB samples (identified 
by MTBDRplus) tested by Xpert, all 45 (100%) were positive 
for RIF resistance, and all 22 (100%) RIF-monoresistant sam-
ples (by MTBDRplus) were positive for RIF resistance by Xpert. 
However, overall, only 45 of 73 (61.6%) cases identified as RIF 
resistant by Xpert had concomitant INH resistance detected 
by MTBDRplus (ie, were identified as MDR-TB). Therefore, 
Xpert had sensitivity, specificity, and positive- and negative-
predictive values of 100.0% (95% CI, 92.1–100.0%), 79.1% (95% 

Table 1. Sociodemographic Characteristics of Participants (Tested With MTBDRplus)

Variables All Patients (N = 353) MTB Positive (n = 224) MTB Negative (n = 129) P

Age, mean ± SD, years 37.6 ± 14 36.5 ± 15.7 38.3 ± 15 .810

Gender n (%)    .464

 Male 263 (74.5) 162 (72.3) 101 (78.3)  

 Female 90 (25.5) 62 (27.7) 28 (21.7)  

Residence, n (%)    .958

 Urban 130 (36.8) 80 (35.7) 50 (38.8)  

 Rural 223 (63.2) 144 (64.3) 79 (61.2)  

Occupation, n (%)    .046

 Miners 45 (12.7) 39 (17.4) 6 (4.7)  

 Military 48 (13.6) 29 (13) 19 (14.7)  

 Other 260 (73.7) 156 (69.6) 104 (80.6)  

HIV status, n (%)    .150

 Positive 38 (10.8) 33 (14.7) 5 (3.9)  

 Negative 94 (26.6) 66 (29.5) 28 (21.7)  

Past TB treatment, n (%)    .011

 Yes 193 (54.7) 141 (63.%)  52 (40.3)  

 No 149 (42.2) 77 (34.3%)  72 (55.8)  

Smear status, n (%)    .258

 Negative 34 (9.6) 15 (6.7) 19 (14.7)  

 Smear +1 101 (28.6) 47 (21) 54 (41.9)  

 Smear +2 125 (35.4) 89 (39.7) 36 (27.9)  

 Smear +3 93 (26.4) 73 (32.6) 20 (15.5)  

Abbreviations: HIV, human immunodeficiency virus; MTB, Mycobacterium tuberculosis.
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CI, 71.2–85.6%), 61.6% (95% CI, 49.5–72.8%), and 100% (95% 
CI, 96.6–100%), respectively, for correct diagnosis of MDR-TB 
(Table 4). Of note, 4 (5.5%) samples identified as RIF resistant 
by Xpert were found to be RIF susceptible by MTBDRplus.

Isoniazid and Rifampicin Resistance–Conferring Mutations

Of 96 patient specimens identified as RIF resistant with 
MTBDRplus, 77 (86.5%) were missing the wild-type 8 (WT8) 
band that covers codons 530 to 533 of the rpoB gene and 51 
(53.1%) had mutation S531L in the rpoB gene according to hy-
bridization with the rpoB gene MUT3 band (Table  5). Of 64 
specimens identified as INH resistant with MTBDRplus, the 
most frequent resistance-conferring mutation was katG S315T1 
(MUT1) (60; 93.8%), while only 3 (4.7%) specimens had inhA 
promoter C-15T mutations (MUT1). Concurrent katG S315T1 
(MUT1) and inhA promoter C-15T (MUT1) mutations were 
present in only 1 (1.5%) patient specimen.

DISCUSSION

Our findings suggest that comprehensive testing of patients 
with TB for susceptibility to both RIF and INH is necessary 
in eastern DRC. When tested with MTBDRplus, only 55% of 

isolates with RIF resistance had concomitant INH resistance 
and thus were MDR-TB. We further demonstrated that, in a 
subgroup of samples tested by both Xpert and MTBDRplus¸ 
only 61.6% of Xpert-detected RIF-resistant samples had 
MDR-TB. Furthermore, we found that 4.9% of these patients 
had INH monoresistance. These results strongly suggest that 
Xpert-detected RIF resistance is a suboptimal marker for 
MDR-TB in eastern DRC; this testing platform also missed 
clinically significant INH monoresistant cases that would pre-
sumably be treated as drug-susceptible TB if relying on Xpert 
testing alone. Therefore, previous assumptions that RIF and 
INH monoresistance are rare may not apply in all settings. As 
also shown in our study, there have been previous reports of in-
creased prevalence of RIF monoresistance or MDR-TB and its 
association with HIV positivity [12–14]. However, the latter as-
sociation should be interpreted with caution, given that most of 
our study population had unknown HIV status and there have 
been conflicting reports on this issue [15–17].

We also documented a relatively high prevalence (23.7%) 
of MDR-TB by LPA in our study sample, which purpos-
ively included a high proportion of high-risk patients with 
MDR-TB. Importantly, 47.8% of the MTB-positive patients 

Table 2. MTBDR plus Assay Results

All (N = 353)

New PTB  
Patients (n = 149) 

(42.2%)

Previously Treated  
PTB Patients  

(n = 193) (54.7%)

Patients With  
Unknown PTB History 

(n = 11) (3.2%)

Smear-positive 
Patient 

Specimens
Smear-negative 

Patient Specimens

Specimens with positive MTBDRplus results   

 RIFS-INHS 117 (33.1) 46 (30.9) 65 (33.7) 6 (54.5) 101 (86.3) 16 (13.7)

 RIFS-INHR 11 (3.1) 6 (4) 5 (2.6) 0 11 (100) 0

 RIFR-INHS 34 (9.6) 15 (10.1) 19 (9.8) 0 31 (91.2) 3 (8.8)

 RIFR-INHInd 9 (2.6) 3 (2) 6 (3.1) 0 9 (100) 0

 RIFR-INHR 53 (15) 12 (8.1) 41 (21.2) 0 49 (92.5) 4 (7.5)

 Subtotal 224 (63.5) 82 (36.6) 136 (60.7) 6 (2.7) 201 (89.7) 23 (10.3)

Specimens with negative, invalid, or indeterminate MTBDRplus results   

 Negative 99 (76.7) 50 (50.5) 34 (34.3) 15 (15.2) 81 (81.8) 18 (18.2)

 Invalid 22 (17) 6 (27.3) 16 (72.7) 0 21 (95.5) 1 (4.5)

 Indeterminate 8 (6.3) 1 (12.5) 7 (87.5) 0 8 (100) 0

 Subtotal 129 (36.5) 57 (44.2) 57 (44.2) 15 (11.6) 110 (85.3) 19 (14.7)

Data are presented as n (%). 
Abbreviations: INHInd, isoniazid indeterminate; INHR, isoniazid resistant; INHS, isoniazid susceptible; PTB, pulmonary tuberculosis; RIFR, rifampicin resistant; RIFS, rifampicin susceptible.

Table 3. Xpert MTB/RIF Results and Concordance With MTBDRplus

Xpert MTB/RIF 

MTBDRplus, n (%)

Total RIFR-INHR RIFR-INHS RIFS-INHS RIFR-INHNv RIFS-INHR Non-MTB Neg

MTB-pos/RIFR 45 (61.6) 22 (30.1) 4 (5.5) 2 (2.7) 0 0 0 73 (100)

MTB-pos/RIFS 0 0 79 (98.7) 0 11 (1.3) 0 0 90 (100)

MTB-Neg 0 0 0 0 0 5 0 5 (100)

MTB-pos/RIFInd 0 0 0 0 0 3 (27.3) 8 (72.7) 11 (100)

Total 45 (25.1) 22 (12.3) 83 (46.4) 2 (1.1) 11 (0.6) 8 (10.1) 8 (4.5) 179 (100)

Abbreviations: INHNv, not valid results for INH (there was not clear evidence that these specimens were INH resistant since the katG and inhA bands were extremely faint); INHR, isoni-
azid resistant; INHS, isoniazid susceptible; MTB, Mycobacterium tuberculosis; Neg, negative; pos, positive; RIF, rifampicin; RIFInd, rifampicin indeterminate; RIFR, rifampicin resistant; RIFS, 
rifampicin susceptible.
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had at least 1 form of TB drug resistance (MDR-TB, RIF- or 
INH-monoresistant TB). Our convenience study sampling 
may partially account for the higher than average community-
based MDR-TB prevalence in DRC [18]. However, our data 
are in line with the 2007–2010 DRC TB drug-resistance sur-
veillance, which reported a prevalence of 42.8% (95% CI, 
38.4–47.8%) among high-risk patients with MDR-TB [6]. 
A study by Dube-Mandishora et al [19] also reported a high 
prevalence (42%) of MDR-TB among Zimbabwean patients 
with known risk factors for MDR-TB, albeit from a sample 
size (n = 69) much smaller than ours. The majority of RIF re-
sistance in our study sample was conferred by the rpoB S531L 
mutation, which is among the most prevalent RIF resistance–
associated mutations and has been previously described in 
sub-Saharan Africa, including in rural western DRC [20–22].

In our study, a high proportion of RIF-resistant sputum 
specimens failed to hybridize with the wild-type (WT8) 
probe by MTBDRplus. These specimens, lacking WT8 and 
MUT3 hybridization, could reflect a technical problem or a 
new, previously unreported mutation. Seifert et al [23] sug-
gested that this type of result is likely due to the failure of 
the mutant to hybridize with the mutation probe and not the 
presence of a rare or new mutation. The absence of the rpoB 
WT8 is associated with L533P and S531W mutations in the 
setting of low RIF resistance [24–26]. Unfortunately, DNA 
sequencing could not be performed on these specimens to 
confirm or identify the mutations. Nevertheless, the codon 
531 mutation is considered the most prevalent RIF resist-
ance–associated mutation among such specimens in the 
South Kivu province.

Table 5. Mutations Associated With Rifampicin- and Isoniazid-resistant Tuberculosis as Detected by MTBDRplus

Rifampicin Resistance Isoniazid Resistance

  
Frequency

rpoB Gene katG Gene inhA Gene

WT Absent MUT Present rpoB Mutation WT Absent MUT Present katG Mutation WT Absent MUT Present inhA Promoter Mutation

WT1 … … … … … … … … 2 (2.2%)

WT2 … … … … … … … … 3 (3.3%)

WT3/4 … … … … … … … … 3 (3.3%)

WT3/4 MUT1 D516V … … … … … … 2 (2.2%)

WT3/4 MUT1 D516V katGWT katGMUT1 S315T1 … … … 1 (1.1%)

WT7 MUT2A H526Y katGWT katGMUT1 S315T1 inhAWT1 inhAMUT1 C-15T 1 (1.1%)

WT7 MUT2A H526Y katGWT katGMUT1 S315T1 … … … 3 (3.3%)

WT7 MUT2A H526Y katGWT katGMUT1 S315T1 … … … 1 (1.1%)

WT8 MUT3 S531L katGWT katGMUT1 S315T1 … … … 30 (33.3%)

WT8 MUT3 S531L … … … inhAWT1 inhAMUT1 C-15T 1 (1.1%)

WT8 … S531L katGWT … … inhAWT1 inhAMUT1 C-15T 1 (1.1%)

WT8 … … … … … inhAWT2 … … 1 (1.1%)

WT8 MUT3 S531L … katGMUT1 S315T1 … … … 8 (8.9%)

WT8 … … katGWT katGMUT1 S315T1 … … … 1 (1.1%)

WT8 MUT3 S531L … … … … … … 13 (14.4%)

WT8 … … … … … … … … 19 (21.1%)

Abbreviation: WT, wild-type.

Table 4. Performance of Xpert Against the Reference Standard of MTBDRplus (Line Probe Assay) for Multidrug-resistant Tuberculosis Detection

Xpert RIF Resistant Total

MDR-TB by LPA

Positive Negative

Results    

 Positive 73 45 (a) 28 (b)

 Negative 90 0 (c) 90 (d)a

 Total 163 45 118

Sensitivity, % (95% CI) … 100.0 (92.1–100)

Specificity, % (95% CI) … 76.3 (71.2–85.6)

Positive-predictive value, % (95% CI) … 61.6 (49.5–72.8)

Negative-predictive value, % (95% CI) … 100.0 (96.6–100)

Sensitivity = a/a + c; Specificity = d/b + d; positive-predictive value = a/a + b; negative-predictive value = d/d + c.
aThe 2 invalid isoniazid results by LPA were assumed to be susceptible (ie, did not detect MDR-TB) and included in the denominator for the calculation of specificity. 

Abbreviations: CI, confidence interval; LPA, line probe assay; MDR-TB, multidrug-resistant tuberculosis; RIF, rifampicin.
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Only 3 patient isolates contained a mutation in the inhA pro-
moter gene. The other 61 patients with INH resistance had the 
S315T katG gene mutation corresponding to the AGC-ACC 
modification at codon 315. Results of previous studies suggest 
that mutations in katG and inhA account for the majority of 
INH-resistant strains of TB [27–29]. While the katG gene is as-
sociated with a high level of INH resistance, studies have sug-
gested that mutations in the inhA promoter have limited impact 
on INH resistance as it is also present in many INH-susceptible 
strains [30]. Patients with inhA promoter mutations may benefit 
from high-dose INH but not require inclusion of ethionamide 
in their treatment regimens.

All discrepancies (n = 4) found in this study between Xpert 
and MTBDRplus were due to samples being characterized as 
sensitive by MTBDRplus but resistant by Xpert. This finding is 
consistent with studies in LMICs, where the numbers of dis-
crepancies between Xpert and MTBDRplus were even higher 
[19, 24, 31, 32]. A study by Rahman et al [31] noted that Xpert 
performed more accurately than MTBDRplus in detection of 
mutations associated with RIF resistance, as MTBDRplus failed 
to detect mutations that occurred in regions 530-533, 513-519, 
and S522P.

Our findings have important clinical, diagnostic, and treat-
ment guideline implications. Indeed, reliance on molecular 
assays that test for RIF resistance in isolation, without ascer-
tainment of INH resistance, can lead to suboptimal treatment 
of INH- or RIF-monoresistant TB. The 2019 WHO guide-
line recommends that patients with INH-resistant and RIF-
susceptible TB be treated with a 6-month regimen composed of 
RIF, ethambutol (EMB), pyrazinamide (PZA), and levofloxacin 
[3]. Patients with INH-monoresistant TB who are treated 
with a 6-month first-line TB regimen (2-month INH-RIF-
EMB-PZA/4-month INH-RIF) have higher risks of treatment 
failure, relapse, and acquiring additional resistance than those 
with drug-susceptible TB [5]. Conversely, patients with con-
firmed low-level or no INH resistance (RIF-monoresistant TB) 
will benefit from the inclusion of INH in their treatment regi-
mens. Surprisingly, the 2018 WHO MDR-TB treatment guide-
lines no longer included high-dose INH, one of the key drugs 
in the short-course MDR-TB regimen that achieved success 
in approximately 80% of patients from observational studies 
in Bangladesh [33] and Africa [34] as well as in stage 1 of the 
Standardized Treatment Regimen of Anti-TB drugs for patients 
with MDR-TB (STREAM) trial [35]. Because of data from our 
study and others, the 2019 WHO consolidated guidelines now 
recommend that INH again be used in patients with confirmed 
INH susceptibility or the presence of mutations that do not usu-
ally confer complete resistance to INH, as indicated by specific 
inhA promoter mutations in the absence of katG mutations [3].

Furthermore, in this high-risk MDR-TB study population, 
our results showed that Xpert had a low positive-predictive 
value (61.6%) for MDR-TB. This finding suggests that 

approximately 40% of cases, if tested only with Xpert and not 
LPA, could be false positives and assumed to be MDR-TB, 
but in fact could be INH susceptible. Our data suggest that, if 
Xpert is used in a population with an even lower prevalence of 
RIF-resistant TB (ie, for TB diagnosis in a general population), 
the positive-predictive value for MDR-TB will decrease since 
predictive values are a function of disease prevalence in a pop-
ulation. Therefore, our study underscores the importance of 
and continuing need for the development of near-care/point-
of-care technologies that provide more comprehensive and 
cost-efficient DST to guide individualized treatment regimens 
using WHO’s “target product profiles” for new diagnostics 
[36]. In light of the data we present here and that of others 
[4, 5], the DRC National TB Program revised its MDR-TB 
diagnostic guidelines in 2019 and now recommends that all 
patients with Xpert-identified RIF resistance have a second 
sputum sample collected for INH susceptibility testing by LPA 
at the regional reference laboratory [37]. However, LPA has 
its own limitations since it only captures about 85% of INH 
mutations, has a 4- to 6-hour turnaround (precluding same-
day therapeutic decision making), and is confined to refer-
ence laboratories that meet infrastructure and assay training 
requirements [10–12]. One alternative to LPA is a novel in-
vestigational cartridge for use with the Xpert platform to 
rapidly detect resistance to INH, fluoroquinolones, and 
aminoglycosides, which can be used as complementary testing 
on all patients with documented Xpert-identified RIF-resistant 
TB strains [38]. Another alternative include platform such as 
the BD MAX MDR-TB assay (Becton Dickinson Diagnostics, 
Franklin Lakes, NJ), which provides INH and RIF resistance 
information and is relatively fast and automated; however, this 
technology has workflow limitations and is likely best situated 
in reference laboratories [39].

Our study has several limitations. First, logistical and cost 
constraints prevented the use of the standard references of cul-
ture and conventional phenotypic sensitivity testing. However, 
we believe our approach is acceptable because the main objec-
tive of our study was to determine the frequency of unrecog-
nized concomitant INH and RIF resistance in our setting, where 
Xpert MTB/RIF is the primary test for drug susceptibility. 
Second, the method of preservation and transportation of LPA 
samples was improved 1 year before the end of our study, which 
increased the yield of the MTBDRplus testing, consequently 
underestimating LPA performance. Finally, Xpert testing based 
on cartridge availability and convenience sampling, which en-
riched our study with individuals more likely to have MDR-TB, 
may limit the generalizability of our findings to all DRC. Despite 
the above limitations, we believe our study is timely and adds 
value to the field. We provided a direct, comparative evaluation 
of 2 molecular diagnostic tests for TB diagnosis and genotypic 
DST in a real-life programmatic setting with important clinical, 
diagnostic, and treatment implications for LMICs.
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In conclusion, in this high-risk MDR-TB population, Xpert-
identified RIF resistance has poor positive-predictive value as 
a proxy for the presence of MDR-TB. Isoniazid, as part of an 
MDR-TB regimen, is likely to be an effective therapy for 2 out 
of 5 individuals with Xpert-diagnosed RIF resistance. The most 
frequent mutations associated with RIF and INH resistance 
were S531L and S315T1, respectively. Our findings highlight 
the urgency for continuing the development of near-care tech-
nologies to provide more comprehensive and cost-efficient DST 
to guide individualized treatment regimens in LMICs.
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