
Resampling Algorithms for Multi-Label Classification 

Ulrich Kotze

Thesis presented in fulfilment of the requirements for the degree of Master of Commerce 
(Statistics) in the Faculty of Economic and Management Science at Stellenbosch University. 

April 2022
 Supervisor: Dr. T Sandrock 



2 

Declaration 
By submitting this thesis electronically, I declare that the entirety of the work contained 
therein is my own, original work, that I am the sole author thereof (save to the extent 
explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch 
University will not infringe any third party rights and that I have not previously in its entirety 
or in part submitted it for obtaining any qualification.  

Initials and Surname Date 
U. Kotze April 2022

Copyright © 2022 Stellenbosch University All rights reserved 

Stellenbosch University https://scholar.sun.ac.za



 3 

Acknowledgments 
 
I hereby wish to acknowledge the Department of Statistics and Actuarial Science of 
Stellenbosch University for providing me with the necessary support to complete this thesis. 
I am also thankful for the South African Statistical Association National Research Foundation 
(SASA-NRF) grant. I would like to thank Dr. T Sandrock for her supervision and support of my 
research.  
 
The financial assistance of the National Research Foundation (NRF) towards this research is 
hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author 
and are not necessarily to be attributed to the NRF. 
 

 
  

Stellenbosch University https://scholar.sun.ac.za



 4 

Abstract 
 
Multi-label classification is a member of the supervised learning family and represents a 
scenario where we wish to classify an observation into many of many classes. Therefore, in 
the classification paradigm an observation can belong to more than one class simultaneously.  
 
Imbalanced data is a common problem in the multi-label paradigm of learning. This project 
investigated resampling algorithms as a pre-processing mechanism to address the 
manifestation of imbalance in multi-label data to improve multi-label classification 
performance.  
 
Imbalance can manifest itself through a sparse data matrix at small global densities. 
Imbalance can also manifest itself through a disparity in local label density at larger global 
densities. The effect of resampling algorithms on multi-label performance is studied for both 
of these forms of imbalance. We specifically study the effect of these resampling algorithms 
on multi-label performance at changing levels of global density.  
 
The thesis made use of simulated data, five common multi-label classification techniques and 
seven of the most popular resampling algorithms. Three example-based, label-based and 
ranking-based evaluation metrics were used to assess the effect of the resampling algorithms 
on multi-label classification performance.  
 
Keywords:  
Classification, multi-label, resampling algorithms, simulated data 
  

Stellenbosch University https://scholar.sun.ac.za



 5 

Opsomming 
 
Multi-etiket klassifikasie is 'n voorbeeld van onder toesig leer en verteenwoordig 'n scenario 
waarin ons 'n waarneming in baie van baie klasse wil klassifiseer. Daarom kan 'n waarneming 
in 'n klassifikasieparadigma gelyktydig aan meer as een klas behoort. 
 
Ongebalanseerde data is 'n algemene probleem in die multi-etiket paradigma van leer. 
Hierdie tesis het hersteekproefnemingalgoritmes ondersoek as 'n 
voorverwerkingsmeganisme om die manifestasie van wanbalans in multi-etiket data aan te 
spreek om multi-etiket klassifikasieprestasie te verbeter. 
 
Wanbalans kan manifesteer deur 'n yl data matriks by klein globale digthede of deur 'n verskil 
in plaaslike etiketdigtheid by groter globale digthede. Die effek van 
hersteekproefnemingalgoritmes op multi-etiket prestasie word bestudeer vir beide hierdie 
vorme van wanbalans. Ons bestudeer spesifiek die effek van hierdie 
hersteekproefnemingalgoritmes op multi-etiket prestasie by veranderende vlakke van 
globale digtheid. 
 
Die studie het gebruik gemaak van gesimuleerde data, vyf algemene multi-etiket 
klassifikasietegnieke en sewe van die gewildste hersteekproefnemingalgoritmes. Drie 
voorbeeld-gebaseerde, etiket-gebaseerde en ranglys-gebaseerde evalueringsmetings is 
gebruik om die effek van die hersteekproefnemingalgoritmes op multi-etiket 
klassifikasieprestasie te bepaal. 
 
Sleutelwoorde:  
Klassifikasie, multi-etiket, hersteekproefnemingalgoritmes, gesimuleerde data 
 
  

Stellenbosch University https://scholar.sun.ac.za



 6 

Table of contents 

 

Declaration ....................................................................................................................... 2 

Abstract ............................................................................................................................ 4 

Opsomming ....................................................................................................................... 5 

Table of contents ............................................................................................................... 6 

List of figures ..................................................................................................................... 9 

Chapter 1: Introduction ................................................................................................... 14 

1.1 Multi-label Classification ..................................................................................................... 14 

1.2 The classification paradigm ................................................................................................. 15 

1.3 Describing a multi-label dataset .......................................................................................... 17 
1.3.1 Label cardinality ................................................................................................................................. 17 
1.3.2 Global Density .................................................................................................................................... 18 
1.3.3 Local Label Density ............................................................................................................................ 18 

1.4 Imbalance in multi-label data .............................................................................................. 19 
1.4.1 Reasons for imbalance in multi-label data ........................................................................................ 19 
1.4.2 Measuring imbalance ........................................................................................................................ 19 
1.4.2.1 IRLbl ................................................................................................................................................ 20 
1.4.2.2 MeanIR ........................................................................................................................................... 20 
1.4.2.3 SCUMBLE ........................................................................................................................................ 20 

1.5 Visualising multi-label data ................................................................................................. 22 

1.6 Resampling algorithms ........................................................................................................ 26 
1.6.1 Oversampling the minority class ....................................................................................................... 26 
1.6.2 Undersampling the majority class ..................................................................................................... 26 

1.7 Benchmark datasets ........................................................................................................... 27 

1.8 Research goals .................................................................................................................... 28 
1.8.1 Are resampling algorithms effective at improving MLC performance at changing levels of global 
density? ...................................................................................................................................................... 28 
1.8.2 Is there one form of resampling preferred to all others? .................................................................. 28 

1.9 Moving forward .................................................................................................................. 29 

Chapter 2: Multi-label Learning ....................................................................................... 30 

2.1 Multi-label learning tasks .................................................................................................... 30 

2.2 Multi-label classification methods ...................................................................................... 31 
2.2.1 Algorithm Adaption ........................................................................................................................... 31 
2.2.2 Problem Transformation ................................................................................................................... 32 
2.2.3 Ensemble methods ............................................................................................................................ 32 

2.3 Base classifiers .................................................................................................................... 34 

2.4 Support Vector Machines .................................................................................................... 34 
2.4.1 Hyperplane ........................................................................................................................................ 34 
2.4.2 Classification using a separating hyperplane ..................................................................................... 35 

Stellenbosch University https://scholar.sun.ac.za



 7 

2.4.3 Maximal Margin Classifier ................................................................................................................. 36 
2.4.4 The Support Vector Classifier ............................................................................................................ 36 
2.4.5 Support Vector Machine .................................................................................................................... 37 

2.5 Multi-label classification models ......................................................................................... 38 
2.5.1 Multi-label k-nearest neighbours ...................................................................................................... 38 
2.5.2 Binary Relevance ............................................................................................................................... 40 
2.5.3 Classifier Chains ................................................................................................................................. 42 
2.5.4 Calibrated Label Ranking ................................................................................................................... 43 
2.5.5 Multi-label ensemble schemes .......................................................................................................... 43 

Chapter 3: Resampling Algorithms .................................................................................. 46 

3.1 The Resampling task ........................................................................................................... 46 
3.1.1 Low cardinality and global density in general .................................................................................... 46 
3.1.2 The polarity of local density between labels ..................................................................................... 46 

3.2 Resampling algorithms ........................................................................................................ 51 
3.2.1 LP-ROS ............................................................................................................................................... 51 
3.2.2 ML-ROS .............................................................................................................................................. 54 
3.2.3 MLTL .................................................................................................................................................. 55 
3.2.4 REMEDIAL .......................................................................................................................................... 60 
3.2.5 MLSMOTE .......................................................................................................................................... 63 
3.2.6 MLSOL ................................................................................................................................................ 66 
3.2.7 RHwRSMT .......................................................................................................................................... 71 

Chapter 4: Simulating multi-label data ............................................................................ 72 

4.1 Introduction ........................................................................................................................ 72 

4.2 MLDatagen ......................................................................................................................... 73 

4.3 Simulating data ................................................................................................................... 74 

4.4 Examples ............................................................................................................................ 75 
4.4.1 Special case, 𝝃 close to 0 ................................................................................................................... 75 
4.4.2 𝝃 ∈ {𝟎. 𝟏, 𝟎. 𝟐, . . . , 𝟎. 𝟓} ...................................................................................................................... 76 
4.4.3 Example dataset ................................................................................................................................ 78 

Chapter 5: Multi-label performance measures ................................................................. 80 

5.1 Introduction ........................................................................................................................ 80 
5.1.1 Bipartition-based ............................................................................................................................... 81 
5.1.2 Ranking-based ................................................................................................................................... 81 

5.2  Notation ............................................................................................................................ 81 

5.3 Evaluation metrics .............................................................................................................. 82 
5.3.1 Example-based metrics ...................................................................................................................... 83 
5.3.2 Label-based metrics ........................................................................................................................... 84 
5.3.3 Ranking-based metrics ...................................................................................................................... 85 

Chapter 6: Experimental design ....................................................................................... 87 

6.1 Introduction ........................................................................................................................ 87 
6.1.1 Resampling algorithms ...................................................................................................................... 87 
6.1.2 Computational efficiency ................................................................................................................... 87 
6.1.3 Stability of models ............................................................................................................................. 87 

6.2 Experiments ........................................................................................................................ 88 
6.2.1 Simulate data ..................................................................................................................................... 88 
6.2.2 Cleaning ............................................................................................................................................. 88 
6.2.3 Test and training split ........................................................................................................................ 89 

Stellenbosch University https://scholar.sun.ac.za



 8 

6.2.4 Resampling algorithms ...................................................................................................................... 89 
6.2.5 Fit MLC models .................................................................................................................................. 89 
6.2.6 Calculate evaluation metrics ............................................................................................................. 89 

Chapter 7: Performance of resampling algorithms ........................................................... 92 

7.1 Introduction ........................................................................................................................ 92 

7.2 Example-based ................................................................................................................... 93 
7.2.1 𝑲	 = 	𝟓 ............................................................................................................................................... 93 
7.2.2 𝑲	 = 	𝟏𝟎 ............................................................................................................................................ 96 
7.2.3 𝑲	 = 	𝟐𝟎 ............................................................................................................................................ 98 
7.2.4 Conclusions ...................................................................................................................................... 100 

7.3 Label-based ...................................................................................................................... 101 
7.3.1 𝑲	 = 	𝟓 ............................................................................................................................................. 101 
7.3.2 𝑲	 = 	𝟏𝟎 .......................................................................................................................................... 104 
7.3.3 𝑲	 = 	𝟐𝟎 .......................................................................................................................................... 106 
7.3.4 Conclusions ...................................................................................................................................... 109 

7.4 Ranking-based metrics ...................................................................................................... 110 
7.4.1 𝑲	 = 	𝟓 ............................................................................................................................................. 110 
7.4.2 𝑲	 = 	𝟏𝟎 .......................................................................................................................................... 112 
7.4.3 𝑲	 = 	𝟐𝟎 .......................................................................................................................................... 114 
7.4.4 Conclusions ...................................................................................................................................... 116 

Chapter 8: Consolidation ............................................................................................... 117 

8.1 Introduction ...................................................................................................................... 117 

8.2 Recommendation ............................................................................................................. 118 
8.2.1 Example-based ................................................................................................................................ 118 
8.2.2 Label-based ...................................................................................................................................... 118 
8.2.3 Ranking-based ................................................................................................................................. 119 

8.3 Degree of resampling ........................................................................................................ 120 

8.4 Computational efficiency .................................................................................................. 121 

8.5 Evaluation metrics ............................................................................................................ 122 

Chapter 9: Conclusion .................................................................................................... 124 

Appendix ....................................................................................................................... 126 

𝑲	 = 	𝟓 ................................................................................................................................... 126 

𝑲	 = 	𝟏𝟎 ................................................................................................................................. 127 

𝑲	 = 	𝟐𝟎 ................................................................................................................................. 128 

References ..................................................................................................................... 130 

Code Appendix: ............................................................................................................. 135 

Simulation code: ..................................................................................................................... 135 

Resampling code: ................................................................................................................... 137 
 

  

Stellenbosch University https://scholar.sun.ac.za



 9 

List of figures 
Figure 1: Class distributions ................................................................................................... 17 

Figure 2: Local label density (flags) ........................................................................................ 22 

Figure 3: Labels per instance histogram flags ........................................................................ 23 

Figure 4: Imbalance plot (flags) .............................................................................................. 24 

Figure 5: Label concurrence plot (flags) ................................................................................. 25 

Figure 6: Hyperplane .............................................................................................................. 35 

Figure 7: Separating hyperplane ............................................................................................ 35 

Figure 8: Maximal margin classifier ........................................................................................ 36 

Figure 9: Decision boundaries (SVM) ..................................................................................... 37 

Figure 10: Binary Relevance ................................................................................................... 40 

Figure 11: Classifier Chains ..................................................................................................... 42 

Figure 12: Bagging .................................................................................................................. 44 

Figure 13: IRLbl vs Local label densities ................................................................................. 47 

Figure 14: Change in IRLbl ...................................................................................................... 48 

Figure 15: Change in local label density ................................................................................. 48 

Figure 16: Distribution of IRLbl ............................................................................................... 49 

Figure 17: LP-RUS pseudo code (Charte et al., 2015a) ........................................................... 52 

Figure 18: LP-ROS flow-diagram ............................................................................................. 53 

Figure 19: ML-ROS pseudo code (Charte et al., 2015a) ......................................................... 55 

Figure 20: ML-ROS flow-diagram ........................................................................................... 55 

Figure 21: Tomek-Links .......................................................................................................... 56 

Figure 22: MLTL pseudo code (Pereira et al., 2020) ............................................................... 58 

Figure 23: MLTL flow-diagram ............................................................................................... 59 

Figure 24: REMEDIAL pseudo code (Charte et al., 2019a) ..................................................... 61 

Figure 25: REMEDIAL flow-diagram ....................................................................................... 62 

Figure 26: SMOTE ................................................................................................................... 63 

Figure 27: MLSMOTE pseudo code (Charte et al., 2015) ....................................................... 64 

Figure 28: MLSMOTE flow-diagram ....................................................................................... 65 

Figure 29: MLSOL (main algorithm) pseudo code (Liu & Tsoumakas, 2020a) ........................ 68 

Figure 30: MLSOL (GenerateInstance) pseudo code (Liu & Tsoumakas, 2020a) .................... 69 

Stellenbosch University https://scholar.sun.ac.za



 10 

Figure 31: MLSOL (InitTypes) pseudo code (Liu & Tsoumakas, 2020a) .................................. 69 

Figure 32: MLSOL flow-diagram ............................................................................................. 70 

Figure 33: RHwRSMT flow-diagram ....................................................................................... 71 

Figure 34: Minority and Majority pdf's for "special case" ...................................................... 75 

Figure 35: Local label densities for "special case" .................................................................. 76 

Figure 36: Minority and Majority pdf's .................................................................................. 77 

Figure 37: Local label densities .............................................................................................. 77 

Figure 38: Example simulated dataset ................................................................................... 79 

Figure 39: Example of results matrix ...................................................................................... 90 

Figure 40: Experimental design .............................................................................................. 91 

Figure 41: Example-based for 𝐾 = 5 ....................................................................................... 93 

Figure 42: Example based change in performance 𝐾 = 5, density = 0.03 .............................. 94 

Figure 43: Example-based change in performance for 𝐾 = 5, density = 0.21 ........................ 95 

Figure 44: Example-based change in performance for 𝐾 = 5, density = 0.1 .......................... 95 

Figure 45: Example-based performance for 𝐾 = 10 ............................................................... 96 

Figure 46: Change in example-based performance for 𝐾 = 10, density = 0.02 ...................... 97 

Figure 47: Example based performance for 𝐾 = 20 ................................................................ 98 

Figure 48: Change in example-based performance for 𝐾 = 20, density = 0.03 ...................... 99 

Figure 49: Label-based performance for 𝐾 = 5 .................................................................... 101 

Figure 50: Change in label-based performance for 𝐾 = 5, density = 0.03 ............................ 102 

Figure 51: Change in label-based performance for 𝐾 = 5, density = 0.1, 0.21 ..................... 102 

Figure 52: Change in label-based performance 𝐾 = 5, density = 0.3, 0.37, 0.46 .................. 103 

Figure 53: Label-based performance for 𝐾 = 10 .................................................................. 104 

Figure 54: Change in label-based performance for 𝐾 = 10, density = 0.02 .......................... 105 

Figure 55: Label-based performance for 𝐾 = 20 .................................................................. 106 

Figure 56: Change in label-based performance for 𝐾 = 20 , density = 0.03 ......................... 107 

Figure 57: Change in label-based performance for 𝐾 = 20, density = 0.1,0.2 ...................... 107 

Figure 58: Change in label-based performance for 𝐾 = 20, density = 0.27, 0.37, 0.45 ........ 108 

Figure 59: Ranking-based for 𝐾 = 5 ...................................................................................... 110 

Figure 60: Coverage for 𝐾 = 5 .............................................................................................. 111 

Figure 61: Ranking-based for 𝐾 = 10 .................................................................................... 112 

Figure 62: Coverage for 𝐾 = 10 ............................................................................................ 113 

Stellenbosch University https://scholar.sun.ac.za



 11 

Figure 63: Ranking-based for 𝐾 = 20 .................................................................................... 114 

Figure 64: Coverage for 𝐾 = 20 ............................................................................................ 115 

Figure 65: Degree of resampling .......................................................................................... 120 

Figure 66: Run times for 𝐾 = 5, 10 and 20 ............................................................................ 121 

Figure 67: Run time vs global density .................................................................................. 122 

 

 

 

  

Stellenbosch University https://scholar.sun.ac.za



 12 

List of tables 
 
Table 1: Benchmark datasets ................................................................................................. 27 

Table 2: Selecting seed observations for MLSOL ................................................................... 67 

Table 3: Combinations of global density and number of labels ............................................. 88 

Table 4: Results for 𝜉= 0 and K = 5 ....................................................................................... 126 

Table 5: Results for 𝜉 = 0.1 and K = 5 ................................................................................... 126 

Table 6: Results for 𝜉 = 0.2 and K = 5 ................................................................................... 126 

Table 7: Results for 𝜉 = 0.3 and K = 5 ................................................................................... 126 

Table 8: Results for 𝜉 = 0.5 and K = 5 ................................................................................... 126 

Table 9: Results for 𝜉 = 0 and K = 10 .................................................................................... 127 

Table 10: Results for 𝜉 = 0.1 and K = 10 ............................................................................... 127 

Table 11: Results for 𝜉 = 0.2 and K = 10 ............................................................................... 127 

Table 12: Results for 𝜉 = 0.3 and K = 10 ............................................................................... 127 

Table 13: Results for 𝜉 = 0.4 and K = 10 ............................................................................... 127 

Table 14: Results for 𝜉 = 0.5 and K = 10 ............................................................................... 128 

Table 15: Results for 𝜉 = 0 and K = 20 .................................................................................. 128 

Table 16: Results for 𝜉 = 0.1 and K = 20 ............................................................................... 128 

Table 17: Results for 𝜉 = 0.2 and K = 20 ............................................................................... 128 

Table 18: Results for 𝜉 = 0.3 and K = 20 ............................................................................... 128 

Table 19: Results for 𝜉 = 0.4 and K = 20 ............................................................................... 129 

Table 20: Results for 𝜉 = 0.5 and K = 20 ............................................................................... 129 

 
  

Stellenbosch University https://scholar.sun.ac.za



 13 

List of abbreviations: 
 
MLC  Multi-label Classification 
LC  Label Concurrence 
MLR  Multi-label ranking 
kNN  k-Nearest Neighbours 
RF  Random Forest  
SVM  Support Vector Machines 
XGB  XGBoost 
CART  Classification And Regression Tree 
NB  Naive Bayes 
MLkNN Multi-label k-Nearest Neighbours 
BR  Binary Relevance 
BRplus   BR+   
DBR  Dependant Binary Relevance 
CC  Classifier chains 
CLR  Calibrated Label Ranking 
EBR  Ensemble of Binary Relevance 
ECC  Ensemble of Classifier Chains 
LP-ROS  Label-Powerset Random Oversampling 
LP-RUS  Label-Powerset Random Undersampling 
ML-ROS Multi-Label Random Oversampling 
ML-RUS Multi-Label Random Undersampling 
MLTL  Multi-Label Tomek-Links 
REMEDIAL Resampling multi-label datasets by decoupling highly imbalanced 
MLSMOTE Multi-Label Synthetic Minority Oversampling Technique 
MLSOL  Synthetic Oversampling of Multi-Label Data based on Local Label Distribution  
RHwRSMT REMEDIAL-Hybridisation with synthetic instance generation 
Pdf  Probability Density Function 
LP  Label-Powerset 
HD  Hamming Distance 
AHD  Adjusted Hamming Distance 
 
 
 
 
 

 
 
 

Stellenbosch University https://scholar.sun.ac.za



 14 

Chapter 1: Introduction 
 
1.1 Multi-label Classification  
 
Multi-label classification (MLC) is a lesser-known member of the supervised learning family. 
Although MLC has been extensively studied in recent years, it remains less common than 
many other traditional classification tasks such as binary and multi-class classification. In 
recent years there has been a considerable increase in the research performed on MLC. The 
research is being spearheaded by among others: Grigorios Tsoumakas1, Francisco Charte2, 
Antonio J. Rivera3, Maria J. del Jesus4, Andre C. P. L. F. de Carvalho5, and Francisco Herrera6. 
The rise of complex data structures like text, video, and genomics that need to be annotated 
with more than one tag facilitated the need for advancement in MLC research.  
 
The dominant areas of application are (Tsoumakas et al., 2009): 

• Text annotation (Tsoumakas et al., 2011) 
• Semantic annotation of images and video (Yang et al., 2007) 
• Functional genomics (Barutcuoglu et al., 2006) 
• Music categorisation into emotions (Trohidis et al., 2011) 
• Directed marketing (Yi Zhang et al., 2007) 

 
An application of MLC that has recently become popular is online text editing, like the website 
and application Grammarly. Grammarly has a tone detector feature, which tells a user the 
different tones of voice being used in a piece of text. The passage of writing could, for 
example, be labelled as “formal, assertive and confident”. Therefore, it is a form of text 
annotation. This website has an extensive list of tones and after text processing a label is 
assigned based on this list, where a piece of text can be assigned multiple tones from the list. 
 
Another prominent application often encountered is the emotional annotation of tweets 
from Twitter (Yang et al., 2014). Each tweet is processed and annotated with the emotions 
expressed in the tweet. The emotional annotation can form a powerful combination with 
sentiment analysis. A tweet can, for example, be labelled as just “Angry” or “Angry, Frustrated 
and Impatient”, therefore assigning multiple labels to a tweet from a list of possible labels.  
 
In the field of bioinformatics, we often wish to diagnose patients with certain illnesses. 
Suppose we are given a set of predictor variables such as symptoms or RNA-seq data. The 
patient could potentially have more than one illness—multi-label classification facilitates this 

 
1 Grigorios Tsoumakas. Retrieved August 20, 2021, from https://scholar.google.com/citations?user=PlGKUhwAAAAJ&hl=en 
 
2 Francisco Charte. Retrieved August 20, 2021, from https://scholar.google.com/citations?user=i8l_80EAAAAJ&hl=en 
 
3 Antonio J. Rivera. Retrieved August 20, 2021, from https://scholar.google.com/citations?user=VW2FhqgAAAAJ&hl=en 
 
4 Maria J Del Jesus. Retrieved August 20, 2021, from https://scholar.google.com/citations?user=1n84M0kAAAAJ&hl=en 
 
5 Andre Carlos Ponce De Leon Ferreira De Carvalho. Retrieved August 20, 2021, from 
https://scholar.google.com/citations?user=B3L9jQMAAAAJ&hl=en 
 
6 Francisco Herrera. . Retrieved August 20, 2021, from https://scholar.google.com/citations?user=HULIk-QAAAAJ&hl=en 

Stellenbosch University https://scholar.sun.ac.za



 15 

by allowing observations to belong to more than one class. Therefore, given a set of 
symptoms, a patient can be related to several possible illnesses (Keren et al., 2011).  
 

1.2 The classification paradigm 
 
This thesis falls within the supervised learning paradigm. The classification paradigm of 
supervised learning contains binary classification, multi-class classification and multi-label 
classification. The complexity of solving the classification task increases as we move from 
binary to multi-class and from multi-class to multi-label. In this section we clearly distinguish 
the differences between the three paradigms of the supervised learning classification 
problem.  
 
The classification paradigm of supervised learning is concerned with using a set of predictor 
variables 𝑋!, 𝑋", … , 𝑋# to predict a set of qualitative response variables 𝑌!, 𝑌", … , 𝑌$. The 
training data consists of (𝒙% , 𝒚%)	∀	𝑖 ∈ 1,2, … , 𝑁. A function 𝑓4𝑋!, 𝑋", … , 𝑋#5 is used to map 
the input variables to the response variables 𝑌!, 𝑌", … , 𝑌$. Therefore, the function 𝑓 uses the 
predictor variables 𝑋!, 𝑋", … , 𝑋# to predict the qualitative response variables 𝑌!, 𝑌", … , 𝑌$.  
 
The simplest example of the classification problem is binary classification, where the aim is to 
classify an observation into one of two classes, for example, “Class 1 or Class 2”, “True or 
False”, “spam or not spam”. The two classes are mutually exclusive (cannot coincide). The 
binary classifier needs to classify the observation into one of these two classes. Therefore, 
the set of training observations (𝒙!, 𝒚!) … (𝒙&, 𝒚&) is used to build a binary classifier, with the 
purpose of predicting the binary (two-level) qualitative response variable 𝑌. Therefore, 𝐾 =
1 and 𝑌 ∈ [0,1]. If an observation 𝑦% = 0, it belongs to class 1 and if 𝑦% = 1, the observation 
belongs to class 2. For supervised learning algorithms, this task is trivial at the best of times 
and very difficult on some occasions. 	
 
The natural way of increasing the complexity of binary classification is to add more classes to 
the problem, therefore moving from having just two classes to having many classes.  The 
resultant effect is a multi-class classification problem since the aim is now to classify an 
observation into one of many classes. An observation can be one of many things, for example 
“Iris-virginica or Iris-versicolor or Iris-setosa”, “blue or green or red”, “one star or two stars or 
three stars or four stars or five stars”. These classes are all mutually exclusive. The training 
observations (𝒙!, 𝒚!)… (𝒙&, 𝒚&) are used to build a multi-class classifier, with the purpose of 
predicting the G-level qualitative response variable 𝑌. Therefore, 𝐾 = 1 and 𝑌 ∈ {1,2, . . . , G}. 
The multi-class classifier needs to classify each of the observations into one of the G classes. 
𝑦% = 𝑔 if the 𝑖'( observation belongs to the 𝑔'( class, where 𝑖 ∈ {1,2, . . . , n} and 𝑔 ∈
{1,2, . . . , G}. Multi-class classification has been one of the focus areas of supervised learning 
research for many years and forms an essential part of many supervised learning applications 
in practice. 
   
Multi-label classification increases the complexity of the multi-class problem by allowing 
observations to belong to more than one class simultaneously, changing the task from “one 
of many” to “many of many”. The classes are not mutually exclusive. It is reasonable to 
assume that this increases the complexity of the multi-class classification task further. The 

Stellenbosch University https://scholar.sun.ac.za



 16 

number of possible class combinations for each observation will grow exponentially for the 
multi-label task, whereas it will grow linearly for the multi-class task as the number of possible 
classes grows. An observation can now be many of many things. Observations could belong 
to one class, two classes, or even all the classes simultaneously. The training observations 
(𝒙!, 𝒚!)… (𝒙&, 𝒚&) are used to build a multi-label classifier, with the purpose of predicting 
the 𝐾 binary response variables. Therefore 𝐾 > 1 and 𝑌) ∈ {0,1}. Each response variable is 
binary and represents one of the labels in the multi-label problem. If the 𝑖'( observation has 
the 𝑘'( label present 𝑦% = 1 at the 𝑘'( entry, where 𝑖 ∈ {1,2, . . . , n} and 𝑘 ∈ {1,2, . . . , K}. 
Standard machine learning algorithms need to be adapted and changed or the multi-label 
data needs to be transformed to solve the multi-label problem. Most of the successful MLC 
techniques in the literature propose simple, pragmatic approaches to solving the multi-label 
problem. 
 
Multi-label proposals contain many contrasting ways of approaching the multi-label 
classification task, which can broadly be categorised as either problem transformation or 
algorithm adaption approaches. Problem transformation techniques attempt to transform 
the multi-label data into a different problem that can be solved using existing binary and 
multi-class classification techniques. In comparison, algorithm adaption techniques attempt 
to alter existing machine learning techniques to solve the multi-label problem directly.  
 
A typical multi-label dataset 𝐷 consists of 𝑖	 = 	1,2, … , 𝑛 observations with a matrix of 
predictor variables  and a matrix of response variables  that contain the 
labels. Therefore, each observation will have a vector of predictor variables 𝑋 =
F𝑋!, 𝑋", … , 𝑋#G and a binary vector of responses 𝑌 = [𝑌!, 𝑌", … , 𝑌$] called the label-set of the 
𝑖'( observation. Therefore, we want to use the information available in 𝑋 = F𝑋!, 𝑋", … , 𝑋#G 
to predict 𝑌 = [𝑌!, 𝑌", … , 𝑌$]. The more information 𝑋 contains about 𝑌, the better our MLC 
techniques can predict the response 𝑌. MLC falls under the supervised learning paradigm of 
machine learning techniques since our data has both predictor variables and a response 
variable that we are predicting. 
 
The validation and training process of building multi-label models remain the same as in the 
supervised learning paradigm. The basic principle of training a model on training data and 
validating the model on “unseen” test data is still the foundation of the model fitting process. 
Some significant challenges in dealing with MLC come within the MLC models themselves: 
evaluation, visualisation, and describing the dataset’s attributes. The following sections 
explore how multi-label datasets are described and visualised. 
  

X ∈ ℝN×P Y ∈ {0,1}N×K

Stellenbosch University https://scholar.sun.ac.za



 17 

1.3 Describing a multi-label dataset 
 
The first step in any classification task, binary or multi-class, would be to look at the class 
distributions of the data. The class distributions show the proportion of the dataset that 
belongs to each class and is straightforward for binary and multi-class data since the classes 
are all mutually exclusive. In the multi-label case, the classes overlap and are not mutually 
exclusive since observations can belong to more than one class simultaneously. Therefore, 
we need to find additional ways of describing how the classes are distributed. 
 
Figure 1 below shows an uncomplicated visualisation of the class distributions for the binary 
and multi-class classification tasks. It is easy to spot those classes containing more 
observations or fewer observations and make conclusions on the general distribution of the 
data among classes. Determining imbalance in the data can be done visually or by looking at 
the proportion of the data found in each class.  
 

MLC addresses the problem of class imbalance by using different measures in addition to the 
traditional class proportions. In addition to looking at the proportion of labels that falls in 
each class, MLC also looks at the local label density, global density and cardinality of the 
dataset. These measures represent different ways of counting and describing the frequency 
with which labels are present in the dataset. The descriptive measures employed in multi-
label data are: 
 

1.3.1 Label Cardinality 
1.3.2 Global Density 
1.3.3 Local Label Density  

 
1.3.1 Label cardinality 
 
Label cardinality is the average number of labels that are present per observation. An overall 
label cardinality of 2.1 tells us that the average number of labels per observation is 2.1. Some 
observations will have more than two labels, and other observations will have less than two 
labels, but on average, an observation will have 2.1 labels. 
 
𝐿𝑎𝑏𝑒𝑙	𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 = !

&
∑ |𝑌%|&
%*! , where 𝑛 = Number of observations and |𝑌%|	=Number of  

labels present for observation 𝑖. 

Figure 1:Class distributions 

Stellenbosch University https://scholar.sun.ac.za



 18 

 
The advantage of label cardinality is that it is intuitive since it is on the same scale as the 
labels. If the dataset has ten labels and the cardinality is 4, we know that there is, on average, 
four of the ten labels present per observation. However, the cardinality cannot be compared 
from one dataset to another since most datasets do not have the same number of labels. 
Label cardinality can only be compared from one dataset to another if the datasets have the 
same number of labels. (Tsoumakas et al., 2009) 
 
 
1.3.2 Global Density 
 
The overall or global label density, not to be confused with the local label density (1.3.3), 
describes how often labels are present relative to the total number of labels in the dataset. It 
can be interpreted as the relative percentage of labels that are present for the average 
observation. The global density is closely related to cardinality but is different since it gives 
the proportion of present labels rather than the number. If the overall label density is high, it 
shows that an observation will have more labels present on average, whereas a smaller 
global density shows that, on average, an observation will have fewer labels present. A 
label density of 0.1 shows that the average observation in the dataset will have 10% of its 
labels present.  
 
𝐺𝑙𝑜𝑏𝑎𝑙	𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = !

&
∑ |,!|

$
&
%*!  , where 𝐾	 = Number of labels. 

 
The advantage of using the global label density is that it is a relative measure that can be 
compared from dataset to dataset. If one dataset has a higher label density than another 
dataset, we know that its labels are present more often. The same is not valid for a measure 
such as cardinality. (Tsoumakas et al., 2009b) 
 
1.3.3 Local Label Density 
 
The label density can also be calculated for every label individually (local label density). Local 
label density is the closest measure to the class distributions seen for binary and multi-class 
classification. It is calculated by summing the total number of observations present for the 
specific label and dividing it by the total number of observations in the dataset. 
  

𝐿𝑜𝑐𝑎𝑙	𝑑𝑒𝑛𝑠𝑖𝑡𝑦	𝑓𝑜𝑟	𝑙𝑎𝑏𝑒𝑙	𝑌) =
∑ ."!,$
%
!&'

&
, where 𝐼,!,$ = 1, if label 𝑘 is present for the 𝑖'( 

observation and 0 otherwise. 
 
The local label density becomes useful when we want to visualise the multi-label dataset and 
compare the presence of different labels in the dataset. If the local label density for one label 
is higher than for another, we know that label is present more often. The global label density 
is also equal to the average of the 𝐾 local label densities.  
 
These descriptive measures do not necessarily describe the class distribution as explicitly as 
it is for the binary and multi-class cases, but it does give us a fair idea of how the data is 

Stellenbosch University https://scholar.sun.ac.za



 19 

distributed across labels. Multi-label data also poses unique challenges, which requires 
different solutions to the standard way of thinking.  
 

1.4 Imbalance in multi-label data 
 
1.4.1 Reasons for imbalance in multi-label data 
 
A common problem that arises in most MLC tasks is imbalanced data. There are two 
mechanisms through which imbalance manifests itself in multi-label data: 
 
Although each observation can belong to many classes, they seldom do and usually tend to 
have very few labels or a small global density and cardinality. This gives rise to an imbalance 
in our data since the low cardinality and global density in general causes a sparse response 
data matrix 𝑌. A sparse response data matrix will have many zeros among the responses and 
very few ones, indicating the lack of present labels. Supervised learning algorithms thrive on 
an abundance of data. Therefore, a sparse data matrix provides a challenging environment 
within which the supervised learning algorithms must function. (Charte et al., 2019a) 
 
Multi-label data often has some labels with very high local label densities and other labels 
with very small local label densities. This disparity in the local label density of the labels 
causes a problem for machine learning algorithms since they tend to be naive in these 
scenarios. Datasets that have some labels with very small local label densities that are 
accompanied by other labels with larger local label densities are common in multi-label data, 
for example the cal500 (Turnbull et al., 2008) dataset seen in Section 1.7. These datasets 
consist of a few dominant labels that are often present and have a large local label density, 
accompanied by other labels with very small local label densities that are seldom present.  
 
 
1.4.2 Measuring imbalance 
 
Given how common imbalanced datasets are in MLC, it is an essential part of any MLC 
problem to quantify the imbalance present in the dataset. The following metrics can be 
calculated to describe the imbalance in a multi-label dataset: 
 

1.4.2.1 Imbalance Ratio Per Label (IRLbl) 
1.4.2.2 Mean Imbalance Ratio (MeanIR) 
1.4.2.3 Score of ConcUrrence among iMBalanced LabEls (SCUMBLE) 
 

  

Stellenbosch University https://scholar.sun.ac.za



 20 

1.4.2.1 IRLbl 
 
The Imbalance Ratio Per Label (IRLbl) (Charte et al, 2015b) is a way of measuring the local 
imbalance of individual labels. The higher the IRLbl of a label is, the larger the imbalance in 
that label is. The smaller the IRLbl of a label is, the smaller the imbalance in that label is. The 
IRLbl allows us to know which labels are majority classes and which labels are minority classes. 
The majority labels will have smaller IRLbl values, whereas minority labels will have larger 
IRLbl values. Imbalance refers to a small proportion of 1's, and not to a small proportion of 
0's as well. 
 
The IRLbl can be calculated with the following formula: 
 

𝐼𝑅𝐿𝑏𝑙(𝑦)) =
/01($

) ∈"2  ∑ 456$
)∈,!89

%
!&'  :

∑ 5[6$∈,!]8%
!&'

, where 𝑦) 	is the 𝑘'( label being analysed and  𝑦′) are all 

of the labels, excluding the 𝑘'( label.  
 
The double square brackets  represent the indicator function that return one if the 
expression in the brackets is true and 0 otherwise and 𝑦) is the label that is being analysed. 
The most commonly occurring label is used as the reference. (Charte et al., 2019) 
 
1.4.2.2 MeanIR 
 
The Mean Imbalance Ratio (MeanIR) is a way of measuring the global imbalance of a multi-
label dataset, where the MeanIR is the average of the IRLbl for all the labels. The 
smaller MeanIR is, the less imbalance there is in a dataset, and the larger the MeanIR is, the 
more imbalance there is in the dataset. High MeanIR can occur for different reasons. There 
could be high MeanIR because IRLbl is large for many labels or if there is extreme imbalance 
in only some of the labels. The MeanIR can be calculated with the following formula: 
 

𝑀𝑒𝑎𝑛𝐼𝑅 = ∑ .=>?@(6$)+
$&'

$
, where 𝐾 is the number of labels in the dataset.  

 
Therefore, IRLbl calculates the local imbalance for specific labels, and MeanIR calculates the 
global imbalance for the entire dataset. The IRLbl and MeanIR are extremely important to 
MLC and form an integral part of resampling algorithms for MLC. Those labels that have 
𝐼𝑅𝐿𝑏𝑙	 > 	𝑀𝑒𝑎𝑛𝐼𝑅  are seen as minority labels, and the labels that have 𝐼𝑅𝐿𝑏𝑙	 ≤ 	𝑀𝑒𝑎𝑛𝐼𝑅 
are seen as majority labels. Resampling algorithms will be discussed in detail in Chapter 3. 
(Charte et al., 2019) 
 
1.4.2.3 SCUMBLE 
 
A characteristic that emerges in multi-label learning is that some labels are correlated with 
each other. The correlation between labels can be expected since it is reasonable to assume 
that one characteristic (class) could often be paired with another characteristic (class). These 
label interdependencies could add useful information to an MLC problem. Some MLC 
techniques try to take advantage of these correlations to better predict the labels. MLC 

[[ ]]

Stellenbosch University https://scholar.sun.ac.za



 21 

models such as classifier chains try to exploit the label correlations by ordering the labels in 
the chain in a specific order to exploit the correlations among labels.  
 
The correlations can also create problems for MLC and resampling algorithms. It is 
troublesome for resampling algorithms when majority labels are correlated to minority labels. 
This situation is referred to as concurrence. Concurrence is another barrier in the way of 
resampling algorithms for MLC. Concurrence can be measured by calculating a Score of 
ConcUrrence among iMBalanced LabEls (SCUMBLE)  (Charte et al., 2014) score as follows: 
 
If the label 𝑘 is present for observation 𝑖, then 𝐼𝑅𝐿𝑏𝑙%) = 𝐼𝑅𝐿𝑏𝑙(𝑘) otherwise 𝐼𝑅𝐿𝑏𝑙%) = 0. 

𝐼𝑅𝐿𝑏𝑙% =
∑ .=>?@!$+
$&'

$
, the average of 𝐼𝑅𝐿𝑏𝑙%) for all of the labels appearing in observation 𝑖. 

The 𝐼𝑅𝐿𝑏𝑙%  scores are used to calculate the concurrence per instance called 𝑆𝐶𝑈𝑀𝐵𝐿𝐸%&C. 
 

𝑆𝐶𝑈𝑀𝐵𝐿𝐸%&C = 1 −
1

𝐼𝑅𝐿𝑏𝑙%
ab𝐼𝑅𝐿𝑏𝑙%)

$

)*!

c 

 
The 𝑆𝐶𝑈𝑀𝐵𝐿𝐸%&C values are averaged for all the observations in the dataset to obtain the 
final SCUMBLE score.  
 

𝑆𝐶𝑈𝑀𝐵𝐿𝐸(𝐷) =
1
𝑛d𝑆𝐶𝑈𝑀𝐵𝐿𝐸%&C(𝑖)

&

%*!

 

 
It is essential to mention that datasets can have observations that dominate the 𝑆𝐶𝑈𝑀𝐵𝐿𝐸%&C 
that can be seen as outliers. These outliers can artificially inflate the SCUMBLE score. To 
measure differences in concurrence among observations, we can calculate SCUMBLE.CV as 
follows: 
 

𝑆𝐶𝑈𝑀𝐵𝐿𝐸D = ed
(𝑆𝐶𝑈𝑀𝐵𝐿𝐸%&C(𝑖) − 𝑆𝐶𝑈𝑀𝐵𝐿𝐸)"

𝑛 − 1

&

%*!

 

 

𝑆𝐶𝑈𝑀𝐵𝐿𝐸. 𝐶𝑉 =
𝑆𝐶𝑈𝑀𝐵𝐿𝐸D
𝑆𝐶𝑈𝑀𝐵𝐿𝐸  

 
SCUMBLE.CV allows us to determine if the large SCUMBLE is due to a few observations that 
dominate the SCUMBLE score or whether it is a general problem in the dataset. Although 
SCUMBLE does not directly reflect imbalance, it plays a significant role in dealing with 
imbalance. The resampling algorithms discussed in Chapter 3 are specifically adversely 
affected by this phenomenon. The SCUMBLE measure is an indication of how hard it is to deal 
with a certain multi-label dataset for resampling algorithms. Therefore, when SCUMBLE is 
large, resampling would struggle to improve MLC performance and when SCUMBLE is 
relatively smaller, resampling algorithms would find it easier to improve MLC performance 
(Charte et al., 2019). 
 

Stellenbosch University https://scholar.sun.ac.za



 22 

1.5 Visualising multi-label data 
 
Visualising a multi-label dataset is almost as important as describing it using metrics like 
density and MeanIR. Visualising a multi-label dataset aims to achieve a high-level 
understanding of what the dataset looks like and what characteristics the dataset might have. 
The descriptive statistics (1.4) and the visualisations of the multi-label data (1.5) should be 
used in conjunction with each other. Neither can form a complete picture of the multi-label 
dataset by itself and should therefore be used together. We use the “flags” (Goncalves et al., 
2013) dataset for demonstration purposes as it is one of the benchmark datasets and is 
commonly found in MLC research. This dataset contains details of some countries and their 
flags, and the goal is to predict the colours contained in the flags, where one flag could contain 
multiple colours.  
 
  
The local label densities can be visualised by creating a bar plot. Figure 2 shows an example 
of this plot. The plot of local label density can be used in conjunction with the global density, 
to compare the local label densities to the global density. In figure 2, the heights of the bars 
represent the local label density of the individual labels and the red horizontal line represents 
the global density, which is the average of the local label densities. Therefore, we can identify 
those labels that have a below average local label density and those labels that have an above 
average local label density.  
 

 
Figure 2: Local label density (flags) 

 
 
A histogram is used to plot the number of labels per observation. The histogram will show us 
the distribution of labels per observation. It can be used in conjunction with cardinality. The 

Stellenbosch University https://scholar.sun.ac.za



 23 

cardinality is the average number of labels per observation. Therefore, the cardinality will be 
the central tendency of the distribution of labels per observation.  
 

 
Figure 3: Labels per instance histogram flags 

Extending from the discussion of imbalance before, the local and global imbalance levels 
given by IRLbl and MeanIR can be visualised together in an imbalance plot. This visualisation 
is not found in the literature but is very useful. The visualisation plots a bar plot of the label 
specific IRLbl’s, with a red horizontal line representing the MeanIR. The imbalance plot allows 
us to see which labels have IRLbl larger than the MeanIR (minority labels) and which labels 
have IRLbl smaller or equal to MeanIR (majority labels). Therefore, this plot gives a global 
perspective for the prevalence of imbalance in the dataset.  

Stellenbosch University https://scholar.sun.ac.za



 24 

 
Figure 4: Imbalance plot (flags) 

  

Figure 4 represents something close to the inverse of Figure 2 seen before. These plots show 
the close relationship that exists between the local label densities and the IRLbl of the 
individual labels. This relationship is explored further in Chapter 3.  
 
The prevalence of concurrence can be visualised by using the label concurrence (LC) plot 
observed in Figure 5 below (Charte et al., 2019), which allows us to visualise the local label 
density of each label and the labels that appear with it most often. We observe the coloured 
filled arcs on the outside of Figure 5, representing the local densities of the individual labels. 
The larger the arc is, the larger the local label density of that label is. Filled lines also join these 
coloured arcs. These lines connect labels that often occur together. Therefore, those labels 
that tend to co-occur will be joined by filled lines. Observing labels with small local densities 
connected to labels with large local densities may indicate SCUMBLE in a dataset. The LC plots 
become ineffective when we have too many labels present since the graph becomes 
unreadable and takes a substantial amount of time to plot. 
 
  

Stellenbosch University https://scholar.sun.ac.za



 25 

  

Figure 5: Label concurrence plot (flags) 

Stellenbosch University https://scholar.sun.ac.za



 26 

1.6 Resampling algorithms 
 
Resampling algorithms will be briefly introduced in this section since it is vital to understand 
the role that these resampling algorithms play in MLC before discussing the purpose of this 
thesis. Chapter 3 will provide an in-depth discussion of the resampling algorithms used in this 
thesis. The primary purpose of resampling algorithms is to improve MLC performance by 
reducing the prevalence of imbalance in a multi-label dataset as a preprocessing tool for MLC. 
Therefore, resampling algorithms are designed to either reduce MeanIR or SCUMBLE. By 
reducing the imbalance or SCUMBLE, it is reasonable to assume that the performance of MLC 
will improve.  
  
Traditionally in binary classification there are two broad heuristic approaches for reducing 
imbalance in a dataset, oversampling the minority class (1.6.1) and undersampling the 
majority class (1.6.2) 
 
1.6.1 Oversampling the minority class 
 
Oversampling selects random observations with replacement from the minority class and 
adds them to the dataset, therefore artificially inflating the minority class so that it will have 
more observations and balance the class distributions. The advantage of oversampling the 
minority class is that we do not lose any information because no observations are being 
deleted from the dataset. However, it is debatable whether adding copies of the same 
observation in the dataset will help classification performance. Nevertheless, it will balance 
the class distributions.  
 
1.6.2 Undersampling the majority class 
 
Undersampling deletes random observations in the majority class from the dataset, therefore 
artificially deflating the majority class by removing observations to balance the class 
distributions. The advantage of this approach is that the observations in the minority class are 
not changed. Therefore, we are not artificially adding any information to the dataset that 
could skew the analysis. The drawback of this approach is the necessity of a large dataset 
since observations are being removed from the dataset. Removing observations from a 
dataset will lead to a loss of information.  
 
For large datasets, undersampling the majority class will be preferred. However, when the 
dataset is not large enough, oversampling of the minority class needs to be performed. In 
general, oversampling is preferred.  
 
Undersampling and oversampling are more complicated in the multi-label paradigm than in 
the single-label paradigm. In the multi-label paradigm, observations can belong to more than 
one class simultaneously. Therefore, it becomes difficult to distinguish minority observations 
from majority observations since it is possible for an observation to belong to both minority 
and majority labels at the same time. This leads to problems for normal heuristic 
oversampling and undersampling methods since oversampling the minority classes might 
implicitly lead to oversampling of the majority classes and vice versa for undersampling. This 

Stellenbosch University https://scholar.sun.ac.za



 27 

specifically becomes a problem when SCUMBLE is high in the dataset.  A high SCUMBLE score 
is an indication that minority and majority labels are correlated with each other. Therefore, 
in these scenarios normal undersampling and oversampling might be redundant and lead to 
a degradation in data quality since the inflation of the minority labels could also lead to an 
inflation of the majority labels. A reduction in the majority labels could also lead to a reduction 
in the minority labels, which is an undesirable outcome for the resampling algorithms.  
 
On top of the basic heuristic methods, many other approaches use more complex algorithms 
to create new artificial minority observations or delete the most ambiguous majority 
examples. These algorithms will be covered in depth for the multi-label scenario in Chapter 
3. 
 
 

1.7 Benchmark datasets 
 
Research performed in the paradigm of multi-label classification often makes use of 
benchmark datasets. These datasets are open source and freely available and serve as a point 
of comparison for MLC techniques. Although this thesis discusses the drawbacks of the 
benchmark datasets and instead makes use of simulated data, these datasets are very useful 
and form an integral part of the vast majority of multi-label research. Charte & Charte, (2015) 
provides an overview of the benchmark datasets in the R package “mldr.datasets”. The R 
package contains a list of 49 benchmark datasets. A summary of a few of the commonly used 
benchmark datasets is given in the table below: 
 

Table 1: Benchmark datasets 

Name Observations Variables Labels Domain Density Cardinality 
Yeast (Elisseeff & 

Weston, 2002) 
 

2417 133 14 Biology 0.303 4.237 

Cal500 (Turnbull et 
al., 2008) 502 242 174 Music 0.149 26.044 

Emotions 
(Wieczorkowska et 

al., 2006) 
 

593 72 6 Music 0.311 1.868 

LangLog (Read et 
al., 2012) 1460 1004 75 Text 0.016 1.180 

Scene (Boutell et 
al., 2004) 2407 294 6 Image 0.179 1.074 

 
The list above is not complete and only contains a few of the benchmark datasets. The Yeast 
dataset is a multi-label dataset from the Biology domain, it contains protein profiles and their 
categories. Cal500 and Emotions are multi-label datasets from the music domain, it contains 
features extracted from music tracks and the emotions they produce. LangLog is a multi-label 
dataset from the text domain containing language forum discussion. Scene is a multi-label 
dataset from the image domain and contains images with different natural scenes.  

Stellenbosch University https://scholar.sun.ac.za



 28 

 
In Section 1.5, we observe that the global density of a multi-label dataset refers to the relative 
percentage of labels that are present per observation. A list of the publicly available multi-
label datasets is provided by Moyano (2021). In this list, we observe that most of the datasets 
have a global density smaller than 0.1.  
 
In Table 1, we also observe that the cardinality is close to one for three of the five datasets. A 
cardinality close to one indicates that the observations on average only have one label 
present. This indicates that these datasets are almost multi-class datasets and not multi-label 
since the labels are present so seldomly. This is a common theme in multi-label data and one 
of the main reasons we make use of simulated data, instead of the benchmark datasets.  
 

1.8 Research goals 
 
In this thesis, there are two research goals we would like to address: 
 
1.8.1 Are resampling algorithms effective at improving MLC performance at changing 
levels of global density? 
 
The efficacy of resampling algorithms as a preprocessing mechanism for multi-label 
classification at disparate levels of global density will be investigated. Therefore, the research 
aims to use the most popular resampling algorithms to preprocess the data and then fit 
various MLC models on this data. We can then investigate what effect the resampling 
algorithms had on the performance of the MLC models and how the performance of 
resampled datasets compares to the performance of data that has not been resampled. These 
experiments will be performed with multi-label data at disparate levels of global density. 
Therefore, the resampling algorithms will be tested on imbalanced data, due to a sparse data 
matrix and on imbalanced data due to a disparity in local label density at larger levels of global 
density. The results for this question are discussed in Chapter 7.  
 
1.8.2 Is there one form of resampling preferred to all others? 
  
Secondly, we would like to determine if one or more resampling algorithms should be 
preferred to all others. We know that most of the selected resampling algorithms are effective 
under certain conditions. We want to determine if any of these resampling algorithms emerge 
as a dominant one across the diverse set of conditions created in the experiments. We also 
wish to make recommendations relating to the use of the resampling algorithms, relating to 
MLC performance, computational efficiency and degree of resampling. These results are 
discussed in Chapter 8.  
 
It would be possible to perform our research on the list of publicly available datasets since 
there are datasets available at all levels of global density. However, a significant hurdle to our 
research would be that all these datasets come from different domains. It is reasonable to 
assume that the domain that the dataset comes from will significantly impact the 
performance of an MLC model (domain effect). Therefore, we will use artificially simulated 
data to create datasets with disparate levels of global density whilst still having the same 

Stellenbosch University https://scholar.sun.ac.za



 29 

strength of dependence between the predictor variables and the response variables, 
mitigating the domain effect on the MLC performance. The use of simulated data has an 
added benefit in that it mitigates confirmation bias. We do not have the option of only 
selecting the datasets that support our narrative but are dependent on our simulations’ data. 
A new way of simulating multi-label data is proposed by Sandrock & Steel (2017). This method 
of simulating multi-label data provides control over the local label densities, which forms a 
fundamental part of this thesis.  
 
The purpose of this thesis is not the comparison of MLC techniques, feature selection nor 
evaluation measures. Although MLC techniques and evaluation metrics need to be chosen, 
the goal is not to find the best MLC technique, compare MLC techniques with each other or 
claim that one evaluation metric is better than another. The purpose of this thesis is to 
investigate the efficacy of resampling algorithms as a preproccesing tool for MLC at various 
levels of global density, using a wide variety of evaluation metrics.  
 

1.9 Moving forward 
 
The structure of the thesis is as follows. In Chapter 2 MLC techniques are discussed, where 
we provide an overview of the different approaches to solving the MLC problem and an in-
depth look at the MLC models used in this thesis. Chapter 3 will discuss the various resampling 
algorithms. Chapter 4 discusses the mechanism used to simulate artificial multi-label data. 
Chapter 5 introduces the evaluation metrics used to assess MLC performance. Chapter 6 
contains the experimental design and provides an overview of the experiments performed in 
the analysis. Chapters 7 and 8 address the two research goals posed in Section 1.8. Lastly 
Chapter 9 is a conclusion of the entire thesis and discusses all the main findings in the thesis 
and makes recommendations for future research.  
 
  

Stellenbosch University https://scholar.sun.ac.za



 30 

Chapter 2: Multi-label Learning 
 
2.1 Multi-label learning tasks 
 
Multi-label learning falls under the paradigm of supervised learning. The data consists of a 
matrix of predictor variables 𝑋E,G and a matrix of response variables 𝑌E,$. Each observation 
can belong to more than one class simultaneously, where these classes are referred to as 
labels. It is the job of the multi-label classifier, which can be referred to as some function 
𝑓(𝑋), to predict the labels belonging to each observation. The goal of multi-label learning is 
to choose the function 𝑓(𝑋) such that the multi-label performance is optimised in terms of 
the chosen performance metric. An MLC model can form a label-set prediction in the 
following two ways: 
 
Multi-label classification refers to a predictive model 𝑓(𝑋) that attempts to directly predict 
the label-set belonging to each observation.  A prediction of 𝑦% = 1 for the 𝑘'( label indicates 
the presence of label 𝑘 and 𝑦% = 0 indicates the absence of the 𝑘'( label, where 𝑘	 ∈
{1,2, … , 𝐾}. Therefore, MLC directly makes a classification of the labels.  
 
In contrast to MLC, multi-label ranking (MLR) does not directly predict the labels. Instead, 
MLR generates a “preference” for each of the labels, where this preference is given in terms 
of a label ranking 0 ≤ 	𝑟% ≤ 	1.  For each observation, we observe a vector of label rankings 
𝑟% = [𝑟%!, 𝑟%", … , 𝑟%$]	∀	𝑖 ∈ {1,2, … , 𝑁}	𝑎𝑛𝑑	𝑘 ∈ {1,2, … , 𝐾}. The higher the label ranking is, 
the more likely it is that this label will be present. The lower the label ranking is, the less likely 
it is that this label is present. Therefore, the labels can be ranked according to their relevance 
for the given observation. When MLR is employed, a classification can be found using some 
threshold 𝑡 to choose the present labels. Therefore, when the label ranking is above some 
threshold 𝑡, the label is present, and when the ranking is below the threshold 𝑡, the label is 
not present. Formally 𝑦%) = 0	𝑖𝑓	𝑟%) 	≤ 	𝑡	 and 𝑦%) = 1	𝑖𝑓	𝑟%) 	> 	𝑡, where 𝑖	 =
	1,2, , … , 𝑁	𝑎𝑛𝑑	𝑘	 = 	1,2, … , 𝐾. 
 
This chapter first provides an overview of the general approaches to solving the multi-label 
learning problem, with references to the most popular approaches. After this, we will give an 
in-depth discussion of the models we have chosen to use in this thesis. We are not necessarily 
looking to optimise MLC performance but would like to choose a diverse group of models that 
cover most of the approaches for multi-label learning, are computationally efficient and can 
function under a diverse set of conditions. The analysis aims to investigate the effect that the 
resampling algorithms have on the performance of MLC in general and not to compare the 
performance of one MLC model with another.   
  

Stellenbosch University https://scholar.sun.ac.za



 31 

2.2 Multi-label classification methods 
 
Multi-label classification methods can broadly be split into three main categories, described 
below: 

 
 
2.2.1 Algorithm Adaption 
 
Algorithm adaption methods are multi-label learning techniques that modify, expand, and 
alter existing machine learning algorithms to handle the multi-label problem directly. There 
is an abundance of machine learning algorithms for binary and multi-class problems that 
produce outstanding results. A natural way to solve the multi-label problem would be to 
adapt these algorithms to also solve the multi-label problem directly. Some of the algorithms 
that have been adapted are: 

• Boosting (Schapire et al., 2000) 
• kNN (Zhou et al., 2006) 
• C4.5 (Clare & King, 2001) 
• Neural Networks (Min-Ling Zhang & Zhi-Hua Zhou, 2006) 
• Support Vector Machines (Elisseeff & Weston, 2002) 

 
All the algorithms mentioned above were not specifically developed for the multi-label 
paradigm. These algorithms had to be changed and adapted to be able to solve the multi-
label classification problem. The struggle with algorithm adaption techniques is what makes 
multi-label learning so enjoyable. In multi-label learning we face a different landscape where 
these well-known algorithms do not necessarily maintain the same success they achieved in 
the multi-class classification paradigm (Tsoumakas, 2019a). 
 
 
  

Stellenbosch University https://scholar.sun.ac.za



 32 

2.2.2 Problem Transformation 
 
Problem transformation methods introduce pragmatic approaches to solving the multi-label 
learning problem. The problem transformation algorithms transform the multi-label problem 
into one or many binary and multi-class problems. These binary and multi-class problems can 
then be solved using standard machine learning algorithms. Therefore, the problem 
transformation approach uses the vast number of approaches available for binary and multi-
class classification to solve the multi-label problem. The following are some popular 
approaches to transforming the multi-label problem: 

• Binary Relevance (BR) (Tsoumakas & Katakis, 2007) 
• Classifier Chains (CC) (Read et al., 2011) 
• Label Powerset (LP) (Tsoumakas & Katakis, 2007) 
• Pruned Problem Transformation (PPT) (Read et al., 2009) 
• Ranking by Pairwise Comparison (RPC) (Hüllermeier et al., 2008) 
• Calibrated Label Ranking (CLR) (Brinker et al., 2006) 

 
Problem transformation algorithms range from simple pragmatic solutions like Binary 
Relevance to advanced techniques such as Calibrated Label Ranking. However, all these 
techniques have the same goal and that is to break up the multi-label classification problem 
into a simpler problem that can be solved by techniques that are known to be successful in 
the binary and multi-class classification domains. (Tsoumakas, 2009a) 
 
An example of a problem transformation technique is the label-powerset (LP) technique. LP 
attempts to change the multi-label learning problem into a multi-class problem by considering 
every distinct label-set as a class in a multi-class problem. Therefore, the multi-class classifier 
will classify an observation to the most likely label-set. The labels in the label-set then form 
the prediction for that observation. LP leverages the suggestions that are already available on 
multi-class classification. LP, therefore, uses standard machine learning techniques, 
mitigating the need for an elaborate multi-label model. A possible disadvantage of this 
approach is when there is low cardinality present for certain labels, the binary classification 
that needs to be performed will also be an imbalanced classification problem. This could 
become a problem if there is low cardinality for many labels.   
 
2.2.3 Ensemble methods 
 
In the general case, an ensemble method combines multiple models to generate better 
predictive performance. The ensemble should generate better performance than any of its 
members could by itself. An ensemble’s basic idea is to train a group of models with low bias 
and high variance (highly flexible models). When we average this group of models, we are left 
with a model that still has a low bias but reduces variance caused by the averaging. For an 
ensemble to be effective, it is paramount that the member models of the ensemble are not 
too similar since this will mitigate the effect of the averaging. A popular way this is achieved 
is by fitting the member models (which are flexible models with low bias) of the ensemble on 
bootstrap datasets (bagging) since these datasets should look like the original dataset but 
slightly different. The predictions from each of these highly flexible models should then look 
different for the bootstrap datasets, averaging them leading to a better model.  
 

Stellenbosch University https://scholar.sun.ac.za



 33 

The idea of ensemble models in multi-label learning is built on a similar principle. The models 
used within the ensemble are either algorithm adaption models or problem transformation 
models. The basic proposition remains the same, namely training multiple diverse multi-label 
models and then averaging these models to come to a final model that has better predictive 
performance than any of its members by itself. In the multi-label paradigm, there are different 
ways in which we can achieve diversity in models—bootstrapping the dataset still being the 
most obvious solution to the problem. Another solution could be to consider only a subset of 
the labels for each model in the ensemble. An obvious drawback of these models is the 
computational complexity of having to fit many multi-label models. Fitting a multi-label model 
by itself is already expensive computationally. Fitting many of them could lead to long 
runtimes. Nevertheless, ensembles have the potential to vastly improve classification 
performance. Some of the most popular ensemble-based approaches to solving the multi-
label problem are: 

• Ensemble of Binary Relevance (Read et al., 2009) 
• Ensemble of Classifier Chains (Read et al., 2009) 
• RAkEL (Tsoumakas et al., 2011) 
• Ensemble of Pruned Sets (Read et al., 2008) 
• Recursive Dependent Binary Relevance (Rauber et al., 2014) 

 
 
 
  

Stellenbosch University https://scholar.sun.ac.za



 34 

2.3 Base classifiers 
 
We observe that both the problem transformation and the ensemble methods that make use 
of problem transformation models, make use of binary and multi-class classifiers within the 
algorithms. The binary or multi-class classifier that the algorithm uses is called the base 
classifier. The “utiml” package (Rivolli & Carvalho, 2019) is a framework that allows the user 
to apply multi-label classification in the R programming language. A framework similar to 
MULAN (Tsoumakas et al., 2011) in the Waikato Environment for Knowledge Analysis (Weka) 
allows the user to easily apply multi-label classification, sampling methods, transformation 
strategies, threshold functions, pre-processing techniques and evaluation metrics. The 
following base classifiers are available in the R package “utiml”: 
 

• Random Forest (RF) 
• Support Vector Machines (SVM) 
• XGBoost (XGB) 
• C5.0 
• K-Nearest Neighbours (KNN) 
• Classification And Regression Trees (CART) 
• Naive Bayes (NB) 

 
For this thesis, a base classifier that is computationally efficient and produces consistent 
results across multiple models is required since the goal of this thesis is not to find the best 
multi-label classification model. One base classifier will therefore be used, to avoid adding 
unnecessary complexity to the experimental conditions. Madjarov et al. (2012) compare 
several MLC techniques in a comparative study and find that SVM’s are the most appropriate 
base classifier for BR, CC, CLR, EBR and ECC. Therefore, SVM’s will be used as the base 
classifier for all the multi-label models in this thesis, except for MlkNN which is an algorithm 
adaptation technique and therefore does not require a base classifier. 
 

2.4 Support Vector Machines 
 
Support Vector Machines (SVMs) fall under supervised learning algorithms and were initially 
intended for binary classification but can also be used for multi-class classification and 
regression. A brief, high-level discussion of the Support Vector Machine algorithm follows 
from the formulation of James et al. (2013). The formulation for the SVM algorithm is very 
extensive, but this discussion will be kept short and to the point since the SVM is a well-known 
algorithm and does not necessarily fall within the scope of our research. For a more 
comprehensive discussion, refer to Hastie et al. (2013). We will start with a hyperplane and 
then move to classification using a hyperplane. The next step thereafter is to look at the 
maximal margin classifier before arriving at the SVM algorithm.  
 
2.4.1 Hyperplane 
 
In a 𝑝 dimensional space, a hyperplane is a (𝑝 − 1) dimensional flat affine surface. Therefore, 
in two dimensions a hyperplane will be a straight line. In three dimensions, a hyperplane will 
be a flat surface that cuts the three dimensions. In more than three dimensions, it becomes 

Stellenbosch University https://scholar.sun.ac.za



 35 

difficult to visualise a hyperplane. The black line in Figure 6 represents a hyperplane in two 
dimensions. 
 

 
 
  
2.4.2 Classification using a separating hyperplane 
 
Suppose we consider a data matrix 𝑋&,# with 𝑛 observations in a 𝑝 dimensional space, where 
observations can belong to one of two classes 𝑦% ∈ {−1,1}	∀	𝑖	 = 	1,2, … , 𝑁. In this case the 
classes are assumed to be linearly separable (note that this is not always the case). A 
separating hyperplane is a hyperplane that intersects these two classes. In the figure 7, we 
observe a separating hyperplane in two dimensions.  
 

 
 
If we were to think about the hyperplane in terms of a classification rule, we could classify 
new observations that fall to the one side of the hyperplane as 𝑦% = −1 and observations that 
fall on the other side of the hyperplane as 𝑦% = 1, where 𝑖	 = 	1,2, … , 𝑛. Any line or surface in 
(𝑝 − 1) dimensions that perfectly separates these two classes can be used as a separating 
hyperplane. Therefore, technically speaking, when the classes are perfectly separable (no 
overlap between classes), an infinite number of separating hyperplanes could separate the 
classes. Changing the slope of the separating hyperplane by a tiny fraction would lead to a 
new separating hyperplane.  The further an observation is away from the hyperplane, the 
more certain we can be about the classification since it is further away from the class 
boundary and the closer an observation is to the hyperplane the less certainty we have about 
the classification.  

Figure 6: Hyperplane 

Figure 7: Separating hyperplane 

Stellenbosch University https://scholar.sun.ac.za



 36 

2.4.3 Maximal Margin Classifier 
 
Addressing the problem of having an infinite number of separating hyperplanes, the maximal 
margin classifier tries to find the separating hyperplane that is farthest from the training 
observations. If we consider the margin to be the distance between the hyperplane and the 
closest training observation, we will find the hyperplane that maximises the margin, therefore 
trying to find the hyperplane that optimally separates the two classes. The observations that 
lie on the margin, those observations “supporting the margin”, are called support vectors, the 
origin of the name support vector machines. All the observations lying on the margin can be 
seen as support vectors to the separating hyperplane. The support vectors are the 
observations that are the hardest to classify since they lie on the margin.  

 
The maximal margin classifier tries to find the hyperplane that optimally separates the two 
classes by finding the hyperplane that maximises the margin. The support vectors are the 
observations that would change the position of the separating hyperplane since moving these 
observations would have a direct impact on the margin. The major stumbling block to this 
technique, as mentioned previously, is that classes are rarely perfectly separable, like we see 
in this example. Therefore, the technique was extended to allow observations to be on the 
wrong side of the hyperplane and this generalisation is referred to as the support vector 
classifier.  
 
2.4.4 The Support Vector Classifier 
 
The support vector classifier extends the maximal margin classifier by allowing the training 
observations to be on the wrong side of the margin or hyperplane. Therefore, we are willing 
to accept a hyperplane that does not perfectly separate the two classes. Allowing the 
observations to be on the wrong side of the margin relaxes the need for the hyperplane to be 
a perfect separating hyperplane. Each observation receives a slack variable 𝜖%∀𝑖 ∈ {1,2, … , 𝑛}. 
These slack variables 𝜖%  measure how far each observation is on the wrong side of the margin. 
A tuning parameter 𝐶 is introduced through a new constraint ∑ 𝜖%E

%*! ≤ 𝐶. Therefore, the user 
can specify  and, by doing so, chooses how much violation of the margin will be tolerated. 
As 𝐶 increases we allow more observations to violate the margin, leading to a wider margin 
and vice versa.  In practice 𝐶 is often chosen through cross-validation since 𝐶 is the parameter 
that controls the bias-variance trade-off for the SVM. A small 𝐶 will lead to a model that has 
low bias, but high variance and a large 𝐶 will lead to a model with high bias and low variance. 

C

Figure 8: Maximal margin classifier 

Stellenbosch University https://scholar.sun.ac.za



 37 

The goal of the classifier remains to maximise the margin 𝑀, but subject to the new constraint 
introduced through the 𝐶 parameter.  
 
The algorithm above is for a linear classifier and can easily be extended to the non-linear case 
by considering quadratic, cubic or higher-order polynomial functions of the predictors instead 
of a linear function, and in this case the classifier is referred to as the Support Vector Machine. 
 
2.4.5 Support Vector Machine 
 
The support vector machine extends the support vector classifier by enlarging the feature 
space to introduce a non-linear decision boundary. The feature space is enlarged by using 
quadratic, cubic and polynomial functions of the predictors, which allows us to address the 
possibility of non-linear decision boundaries. However, enlarging the feature space in this 
manner can quickly lead to a large number of features and an optimisation problem that is 
hard to solve efficiently. SVMs addresses this efficiency problem by using kernels in a specific 
way to enlarge the feature space.  
 

  
An advantage of SVMs is that it makes use of cross-validation to select the tuning parameter 
that controls the bias-variance trade-off. This provides stability to the algorithm and ensures 
that it does not overfit the data. SVMs can also be used as both binary and multi-class 
classifiers, which makes it ideal to be used as a base classifier. Figure 9 shows two examples 
of what non-linear decision boundaries could look like when kernels are used in SVMs. The 
practical application of SVMs is not too cumbersome. In R, the package “e1071” (Meyer et al., 
2021) is used to fit SVMs. Throughout this thesis, SVMs are used as the base classifiers in all 
the multi-label models fitted. 
 
 

Figure 9: Decision boundaries (SVM) 

Stellenbosch University https://scholar.sun.ac.za



 38 

2.5 Multi-label classification models 
 
We wish not to limit ourselves to one group of models or approaches. The purpose of this 
thesis is to investigate MLC performance at changing global density in general. For this reason, 
we need to include a broad scope of models in our analysis and not just focus on choosing 
the models that would optimise performance in a specific context. The models used in this 
thesis are limited by the software packages used. For consistency in results, only the packages 
“mldr”  (Charte & Charte, 2015) and “utiml” (Rivolli & Carvalho, 2019) were used in R to fit 
MLC models. Refer to Rivolli & Carvalho, (2019) for a complete list of MLC models that can be 
used in the “utiml” package. Only one algorithm adaption technique is chosen since MLkNN 
is the only algorithm adaption technique available in the “utiml” package. The tree diagram 
below describes the models that were chosen to be used in this analysis; these are also the 
models discussed in this section: 
 

  
2.5.1 Multi-label k-nearest neighbours 
 
𝑘-Nearest Neighbours (kNN) is not an unfamiliar model in data science circles and is often the 
starting point for non-parametric classification techniques. kNN is built on the premise that 
similar observations will lie close to each other in distance (usually Euclidean distance). If 
observations from class 𝑦	 = 	1 mostly surround a test observation, then the test observation 
is also most likely from the class 𝑦	 = 	1. This is a reasonable assumption since observations 
from the same class tend to be similar and should therefore lie close to each other in a 
Euclidean space, and observations from different classes tend to be dissimilar and should 
therefore lie further from each other in a Euclidean space. kNN is a lazy learning algorithm. 
Lazy learning implies that there is no explicit training and test step in the model, in the sense 
that an explicit decision boundary is not derived. When a new test observation is queried, we 
find the 𝑘 closest neighbours to the test observation. The test observation is then classified 
to the majority class among the 𝑘-nearest neighbours.  
 
Multi-label 𝑘-Nearest Neighbours (MLkNN) proposed by Zhang & Zhou, (2007) is built on the 
same premise as kNN, MLkNN is therefore an algorithm adaption of kNN. The assumption is 
made that observations that have similar label-sets should lie close to each other in the 
Euclidean space, and observations that have dissimilar label-sets should lie further from each 

Stellenbosch University https://scholar.sun.ac.za



 39 

other in a Euclidean space. Multi-label classification poses a significant challenge to the kNN 
algorithm since each observation can now belong to more than one class. 
 
MLkNN (Herrera, 2016) starts by training a model on two pieces of information, the prior 
probability and the conditional probability of each label individually. These probabilities are 
calculated for each label separately as a binary class. The prior probability for each label is the 
number of times the label appears, divided by the total number of observations in the dataset. 
Therefore, the prior probability is related to the local label density of the individual labels. 
The prior probability is multiplied by a smoothing factor, to avoid multiplication by zero. The 
conditional probability of each label is the proportion of the observations with this label 
whose 𝑘-nearest neighbours also have the same label. The correlations between labels are 
completely disregarded by the MLkNN algorithm since each label is considered separately as 
a binary class. Therefore, the calculation of the prior and conditional probabilities can be seen 
as a training step for the MLkNN model, before new test observations can be classified.  
 
To classify a new test observation, the MLkNN algorithm follows the steps: 

1. Calculate the 𝑘-nearest neighbours to the test observation, using the Euclidean 
distance.  

2. The presence of each label in the neighbourhood of the 𝑘-nearest neighbours is used 
to calculate the Maximum A Posteriori (MAP) probabilities from the prior and 
conditional probabilities calculated at the start for each label. 

3. The label-set for the new test observation is generated from the MAP probabilities, 
where the probabilities serve as a confidence level for each label. This also allows the 
labels to be ranked.  

 
Although kNN is a lazy learning algorithm, MLkNN is not a lazy learning algorithm in the same 
sense. MLkNN does implicitly contain a training step for the model, where the calculation of 
the prior and conditional probabilities at the start of the algorithm can be seen as the training 
step. Once the training step has taken place, new observations can be labelled by using the 
MAP probabilities calculated in step 2 above.  
 
 
  

Stellenbosch University https://scholar.sun.ac.za



 40 

2.5.2 Binary Relevance 
 
Binary Relevance (BR) (Tsoumakas & Katakis, 2007) is the first problem transformation 
method considered. BR implements a pragmatic approach to solving the multi-label problem 
by leveraging the vast amount of binary classifiers at our disposal. BR can work in conjunction 
with any binary classifier and offers a simple and easy approach to solving the multi-label 
problem.  
 
One classifier is trained for each label. Therefore, we fit 𝐾 binary classifiers, 𝑓) 	∀	𝑘 ∈
{1,2, … , 𝐾} where 𝑌)   ∈  {0,1}. BR starts by transforming the multi-label dataset 𝐷 into 𝐾 
smaller datasets, where there is one dataset for each of the 𝐾 labels—illustrated by the 
diagram below. Each observation can then be a 𝑦	 = 	0 or a 𝑦	 = 	1, where a 0 indicates that 
the label is not present and a 1 indicates that the label is present. Therefore, we now have 𝐾 
binary datasets. A separate binary classifier is now trained on each of these 𝐾 binary datasets.  
 

 
Figure 10: Binary Relevance 

 
A new test observation is given a label-set by allowing each of these 𝐾 classifiers 𝑓) to predict 
𝑦	 = 	1 or 𝑦	 = 	0 for the 𝑘'( label. The label-set of the test observation is then the union of 
the predictions made by the 𝐾 classifiers. Therefore, the test observation receives the labels 
for which the individual classifiers returned positive results.  
 

Stellenbosch University https://scholar.sun.ac.za



 41 

BR does not take label correlations into account, which could have a detrimental effect on 
performance in datasets that have label dependencies. Sometimes the weaknesses of a 
model can also be its strengths. Not taking label correlations into account makes BR resistant 
to overfitting label combinations. It also allows BR to add and remove labels from the analysis 
easily. Another weakness of BR is the imbalanced classes that often occur when the data is 
aggregated. Multi-label data often has low cardinality. Therefore, we will likely encounter an 
abundance of zeros and very few positive examples when considering a label by itself. The 
imbalance poses a problem to the base classifiers fit on each label individually, as these 
classifiers may be biased towards the majority class. The computational cost could also 
become a problem in certain paradigms where we have enormous datasets.  
 
There are other variations of Binary Relevance that exist. These variations try to address some 
of the shortcomings found for BR. Two of the common variations come across in the literature 
is BR+ (BRplus) proposed by Alvares-Cherman et al., (2012)  and dependant binary relevance 
(DBR) proposed by Montañes et al. (2014). BRplus is an extension of BR that allows the BR 
model to take label correlations into account. Dependant Binary Relevance combines 
properties from both Classifier Chains and the Stacking approach proposed by Godbole & 
Sarawagi, (2004) to better model the dependencies between labels.  
 
 
 
 
 
 
  
  

Stellenbosch University https://scholar.sun.ac.za



 42 

2.5.3 Classifier Chains 
 
Classifier Chains (CC) (Tsoumakas & Katakis, 2007) is another problem transformation 
technique, which can be seen as a natural extension of the BR technique, discussed 
previously. The dataset 𝐷 is transformed similarly, where a binary dataset is created for each 
label. A binary classifier is fit on each of these 𝐾 binary datasets. Up to this point, CC is 
equivalent to BR.  
 
The property that separates CC from BR is the inclusion of previous label classifications into 
the training dataset. The binary classifiers are not all fit at the same time. The ordering of the 
chain is random or can be chosen by the user. The classifiers are then fit to the binary datasets 
one by one, sequentially. The chain structure allows the prediction made by the previous 
classifiers to be inserted as predictor variables into the next classifier, allowing CC to take 
label correlations into account. 
 

 
Figure 11: Classifier Chains 

In the diagram above, we observe the idea of a classifier chain, where a binary classifier such 
as an SVM is fit on the binary dataset emerging from each label. The predictions made by the 
previous classifiers in the chain are carried forward as predictor variables to the following 
classifiers in the chain. It is reasonable to assume that the presence or absence of specific 
labels will influence the presence of other labels, referred to as label correlations. This is the 
idea behind carrying the predictions made by the previous classifiers forward. Therefore, 
decisions made by classifiers early in the chain could affect decisions made by classifiers later 
in the chain. It is implicitly taking label correlations into account.  
 
The classifier chain does not have to be ordered like it is in the diagram. The SVMs can be fit 
in any order. This ordering does however affect the model’s performance. There are several 
heuristics for the ordering of the chain. Often a random ordering is used. If there is specific 
domain knowledge of correlations between certain labels, the chain could be ordered 
accordingly. For example, if label 10 turns out to be a good predictor of label 1 and label 3. It 

Stellenbosch University https://scholar.sun.ac.za



 43 

would be desirable to have label 10 in the chain before label 1 and label 3, allowing us to take 
the correlation of these labels into account when predicting label 1 and label 3.  
 
The criticisms of CC are similar to that of BR since the two approaches are so similar, except 
for the ability of CC to take label correlations into account. However, CC comes with an added 
risk of error propagation. The classes in a CC are ordered linearly. Therefore, an error made 
early in the chain will impact the rest of the chain and cause more errors down the chain. 
Nevertheless, CC performs well in comparative studies.  Read et al., (2021) found classifier 
chains to have state of the art performance across many datasets and evaluation metrics.  
 
 
2.5.4 Calibrated Label Ranking 
 
Multi-label ranking is concerned with learning a model 𝑓(𝑋) that produces both a ranking of 
the complete label-set and a partition of this label-set into relevant and irrelevant labels. The 
set of labels 𝑌) 	∀	𝑘 ∈ {1,2, … , 𝐾} is to be split into a set of relevant labels 𝑃1 and a set of 
irrelevant labels 𝑁1. 
 
To convert the label rankings into a multi-label prediction, Calibrated Label Ranking (CLR) 
(Brinker et al., 2006) needs to determine a point at which the label rankings are split into sets 
of relevant  and irrelevant  labels.  
 
The fundamental idea behind CLR is to introduce a virtual label 𝑌H as a split point between 
the relevant and irrelevant labels. The virtual label can be seen as an artificial calibration label. 
The set of relevant labels are all preferred to the virtual label. The virtual label is preferred to 
all labels in the set of irrelevant labels. An implicit assumption of the model is that the 
partition made by the model is, in general, not independent of the ranking of the model.  
 
A calibrated label ranking 𝑌%! ≻ 𝑌%" ≻ ⋯ ≻ 𝑌%I ≻ 𝑌H ≻ 𝑌%IJ! ≻ 𝑌%$  induces a ranking among 
the labels and a dichotomous partition 𝑃1 = 𝑌%!, … , 𝑌%I  and 𝑁1 = 𝑌%IJ!, … , 𝑌%$  . All of the 
labels that are preferred to the virtual label 𝑌H are part of the set of relevant labels 𝑃1 and 
those labels that are not preferred to the virtual label 𝑌H	form the set of irrelevant labels 𝑁1. 
Therefore, those labels that form part of the set of relevant labels 𝑃1 will have 𝑦% = 1 and the 
labels that form part of the set of irrelevant labels 𝑁1 will have 𝑦% = 0.  
 
The CLR model can be learned by solving the conventional ranking problem in the augmented 
CLR space (majority voting). This can now be seen as a ranking problem with 𝐾 + 1 
alternatives—the 𝐾 labels, with the addition of the virtual label. (Brinker et al., 2006) 
 
 
2.5.5 Multi-label ensemble schemes 
 
Multi-label ensemble schemes (Read et al., 2011) follow the bagging framework found in the 
supervised learning literature. Bagging fits 𝐵 models on 𝐵 bootstrap samples of the data; 
these 𝐵 models are then averaged to produce a final model. Combining these 𝐵 models will 
have better performance than any of the individual models within the framework. By fitting 
models with small bias and large variance on the individual bootstrap samples, averaging 

Stellenbosch University https://scholar.sun.ac.za



 44 

these 𝐵 models will lead to a model with small bias, but a reduction in variance caused by the 
averaging of the models. In the supervised framework, the fundamental principle behind 
Bagging is to reduce the model's variance without increasing the model's bias.  
 
2.5.5.1 Bootstrap sampling 
Many variations of the bootstrap exist. Our focus falls on the standard non-parametric 
bootstrap. Suppose we consider a dataset 𝐷, with 𝑛 observations. One bootstrap sample is a 
sample of size 𝑛, sampled with replacement from 𝐷, usually in the context of Bagging we 
would be interested in taking 𝐵 bootstrap samples. Therefore, a bootstrap sample will be the 
same size as the original dataset but will consist of a similar but slightly different set of 
observations, where duplicate observations can occur.  
  
2.5.5.2 Bagging 
Bagging (Bootstrap aggregation) fits a model on each of the 𝐵 bootstrap samples. The 
predictions made by the 𝐵 models are then averaged to obtain the final predictions by the 
model. The idea of Bagging can be seen in the diagram below. In the context of Bagging, we 
can make 𝐵 as large as we want, without any risk of overfitting the model. The limitation on 
𝐵 is computational since we need to sample and fit a model on each of these datasets. 
 

 
 
 
 
 
 

 

 

Figure 12: Bagging 

Stellenbosch University https://scholar.sun.ac.za



 45 

2.5.5.3 Multi-label context 
In the multi-label paradigm (Read et al., 2011), the same procedure as explained above is 
followed; the individual models used are BR and CC. Therefore, BR and CC models will be fit 
on bootstrap samples of the data, and their predictions averaged according to some threshold 
to obtain the final label-set prediction.  
 
More formally, fit a BR/CC model on each bootstrap sample 𝐷%∀𝑖 ∈ {1,2, … , 𝐵}, where 𝐷%  are 
bootstrap samples from the original dataset. Produce a vector of confidence outputs, 𝑤n =
[𝑤!o,𝑤"o,… ,𝑤$o] where 𝑤)o   represents the confidence for the 𝑘'( label ∀	𝑘 ∈ {1,2, …𝐾}. In 
other words, 𝑤)o  is the average number of times that label 𝑘 was predicted as present by the 
𝐵  models.  
 

𝑤)o =
1
𝐵d𝑦),?

K

?*!

 

 
To create a bipartition of relevant and irrelevant labels, we can apply a threshold function to 
𝑤n . For a new observation: 
 

 
 
where 𝑡 could be set to any value. For the best performance Read et al., (2011) propose using: 
 

𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛' qr𝐿𝐶𝐴𝑅𝐷(𝐷) − t
1
𝑁dd1L,MN'

>

I*!

E

%*!

urq 

 
The threshold above tries to achieve cardinality in the new predictions as close as possible to 
the cardinality in the training data, which is a reasonable approach since we would expect 
that new test observations should have similar cardinality to the training dataset on average. 
The approach outlined above should achieve better results than a threshold set at some 
arbitrary value like 0.5. The approach outlined above will be used with BR and CC. The 
resulting models are an ensemble of binary relevance (EBR) and an ensemble of classifier 
chains (ECC). 
  

⇒ yk = 1 i f ̂wk ≥ t
0 i f ̂wk < t

Stellenbosch University https://scholar.sun.ac.za



 46 

Chapter 3: Resampling Algorithms 
 

3.1 The Resampling task 
 
In Chapter 1, a short introduction to imbalance was given. Chapter 3 is dedicated to discussing 
resampling algorithms that combat the prevalence of imbalance and attempt to improve MLC 
performance in multi-label datasets. In the multi-label paradigm, two mechanisms can 
introduce imbalance: 
 
3.1.1 Low cardinality and global density in general 
 
The first mechanism for imbalance is introduced through a sparse data matrix, which can be 
seen through a lack of label presence in general throughout the dataset. This form of 
imbalance is associated with large MeanIR values and small global densities. A sparse data 
matrix will have an abundance of zeros and very few ones, a common occurrence in the multi-
label paradigm, where some datasets have such low global densities that it can almost be 
seen as a multi-class problem. A dataset that has a very small global density and hence a large 
MeanIR can be seen as a dataset with imbalance due to a sparse data matrix. This form of 
imbalance will be referred to as the “special case” and is explained further in Section 4.4.1.  
  
3.1.2 The polarity of local density between labels 
 
The second mechanism through which imbalance can manifest itself is a polarity between the 
local label density of individual labels. Therefore, some labels are much more common than 
other labels, which is more in line with the traditional idea of imbalance seen in other forms 
of classification. Therefore, the data will consist of minority labels with very small local label 
density (high IRLbl) and majority labels with large local label density (small IRLbl). The 
imbalance is due to the polarity in local label density of these minority and majority labels. 
Machine learning algorithms may be biased towards those labels with a higher local label 
density since they will favour the labels that occur more often. Section 4.4.2 explores the 
simulation of data where imbalance manifests itself as a polarity between the local label 
density of individual labels. This form of imbalance is important to this thesis since it describes 
the situation where imbalance can manifest itself at larger global densities.  
 
The traditional way of measuring imbalance is through the IRLbl (locally per label) and MeanIR 
(globally): 
 
  

𝐼𝑅𝐿𝑏𝑙(𝑦)) =
𝑚𝑎𝑥6$)∈>4  ∑ F[𝑦)O ∈ 𝑌%]G&

%*!  5

∑ F[𝑦) ∈ 𝑌%]G&
%*!

 

 

𝑀𝑒𝑎𝑛𝐼𝑅 =
∑ 𝐼𝑅𝐿𝑏𝑙(𝑦))$
)*!

𝐾  

 

Stellenbosch University https://scholar.sun.ac.za



 47 

If we look a little deeper into these measures, we find that IRLbl almost ends up being a proxy 
for the local label density, and the MeanIR ends up being a proxy for the global label density. 
Generally, the labels with small local label densities tend to have large IRLbl scores and those 
labels that have relatively larger local label densities tend to have smaller IRLbl scores. 
Datasets that have smaller global densities tend to have larger MeanIR scores and datasets 
that have larger global densities tend to have smaller MeanIR scores. The effect this has is 
that when we have datasets with higher global densities, the MeanIR is lower. A small MeanIR 
indicates that these datasets are not imbalanced; however, these datasets could still be 
imbalanced due to a polarity in local label density. Even at higher global density levels, there 
could still be a polarity in local label density, a manifestation of imbalance in the dataset. 
However, the MeanIR measures imbalance through the IRLbl; this might provide false security 
that there is no imbalance in the dataset. 
 
Figure 13 illustrates this idea. In the first figure, we observe the local label densities. There is 
some imbalance present in this dataset, caused by the polarity of the label densities. If we 
compare the local densities in the top graph with the IRLbl in the second graph, we observe 
that the IRLbl of the individual labels represents something similar to the inverse of the local 
label densities. If the local label density is low, the IRLbl will be high, and if the local density is 
high, the IRLbl will be low.  
 

 
The general purpose of resampling algorithms would be to balance the class distributions. 
Therefore, we want the labels with comparatively small local label density to be better 
represented in the dataset if oversampling is used or the labels with large local label density 
to be reduced if undersampling is used. The goal of the resampling algorithms is to reduce 

Figure 13: IRLbl vs Local label densities 

Stellenbosch University https://scholar.sun.ac.za



 48 

the IRLbl of labels with high IRLbl scores. We are indirectly increasing the local density of 
labels with small local densities.   
 
In Figure 14, we observe the effect of a resampling algorithm on the IRLbl of a dataset. The 
figure on the left gives the IRLbl of the dataset before resampling, and on the right-hand side, 
we observe the IRLbl of the datasets after resampling. The resampling algorithm ML-ROS was 
used for illustration purposes. The IRLbl has been reduced for all labels with large IRLbl on the 
left-hand side. A large IRLbl is indicative of a minority label. The MeanIR has also been reduced 
from 6.9 to 1.75. 
 
 
 

  
In Figure 15, we observe the local label densities corresponding to the IRLbl scores seen 
above. We observe that the reduction in IRLbl seen above coincides with an increase in local 
label density seen below. Labels V22, V23 and V26 have experienced an increase in local label 
density because of the resampling algorithm. Therefore, labels with a high IRLbl score above 
have seen an increase in local label density because of the resampling algorithm. 

Resampling algorithms work with a mechanism to identify minority and majority labels 
(minority labels being those labels with large IRLbl and small local label density and majority 
labels those with small IRLbl and large local label density). To address the imbalance in the 
dataset, we need to perform undersampling of the majority classes or oversampling of the 
minority classes. For undersampling or oversampling to be implemented, we need to identify 
minority and majority labels first to perform the resampling.  

Figure 14: Change in IRLbl 

Figure 15: Change in local label density 

Stellenbosch University https://scholar.sun.ac.za



 49 

 
The most common mechanism seen in resampling algorithms for identifying minority and 
majority labels is categorising those labels with 𝐼𝑅𝐿𝑏𝑙	 ≤ 	𝑀𝑒𝑎𝑛𝐼𝑅  as majority labels and 
those labels with 𝐼𝑅𝐿𝑏𝑙	 > 	𝑀𝑒𝑎𝑛𝐼𝑅 as minority labels. Figure 16 below illustrates this 
principle. On the left-hand side, we observe the IRLbl per label. The horizontal dashed red line 
represents the MeanIR. Therefore, all labels with IRLbl above the red line (MeanIR) are 
minority labels, and all labels with IRLbl smaller than the red line (MeanIR) are majority labels. 
In the figure on the right, we observe the distribution of the IRLbl scores for all labels. The 
exponential distribution is the general shape found for the distribution of IRLbl in most multi-
label datasets. Labels that find their IRLbl to the right of the red line (MeanIR) are seen as 
minority labels, and those labels that find their IRLbl to the left of the red line are majority 
labels. An interesting thought experiment would be to use the medianIR instead of the 
MeanIR. The distribution of the IRLbl seen below is the shape often found in multi-label 
datasets and is skewed to the right. The medianIR would shift the red line leftwards and cause 
the algorithm to select more minority classes and fewer majority classes.  
 

Therefore, the traditional application of resampling algorithms in the context of multi-label 
classification is to reduce the MeanIR in a dataset by balancing the class distributions through 
some form of undersampling of majority classes or oversampling of minority classes, with the 
implicit assumption that this will improve classification performance. This investigation into 
resampling algorithms examines the usefulness of these algorithms in scenarios where the 
MeanIR is not necessarily high or indicative of imbalance, but where the polarity of label 
density is present and causes imbalance. Therefore, we wish to apply the resampling 
algorithms at divergent levels of global density to investigate whether the resampling 
algorithms effectively improve multi-label performance even when the MeanIR is not 
necessarily large.  
 
The resampling algorithms are applied as a pre-processing step for multi-label classification. 
Therefore, if the multi-label data is split up into a test and training dataset, only the training 
data gets pre-processed using one of the resampling algorithms. It is important that the test 
dataset remains untouched and does not get pre-processed by the resampling algorithm. 
Therefore, the MLC model is fit on the training data that has been pre-processed and then 
evaluated on the test data that has remained untouched.  
 

Figure 16: Distribution of IRLbl 

Stellenbosch University https://scholar.sun.ac.za



 50 

All the resampling algorithms used in this thesis are shown in the figure below. The following 
section provides an in-depth discussion of each of these algorithms. Of particular interest for 
each algorithm is 

• The mechanism used to find minority and majority classes.  
• The use of undersampling or oversampling. 
• Presence of synthetic instance generation. 
• Pseudocode of the algorithm. 

 

 
 
The only resampling algorithm for multi-label data that is available in R or Python packages is 
REMEDIAL. Therefore, all the resampling algorithms were coded in R from first principles 
using the pseudocode and explanations of the algorithms in the literature.  
 
 
  

Stellenbosch University https://scholar.sun.ac.za



 51 

3.2 Resampling algorithms 
 
3.2.1 LP-ROS 
 
Label-Powerset-Random Oversampling (LP-ROS) proposed in Charte et al. (2015a) is a 
resampling algorithm based on the Label Powerset approach and uses random oversampling 
of label-sets as its mechanism to generate duplicate observations. LP-ROS and LP-RUS 
(Undersampling version of LP-ROS) are analogous since they use the same mechanism to 
undersample and oversample the label-sets. LP-ROS is based on oversampling of label-sets, 
and LP-RUS is based on undersampling of label-sets. LP-ROS does not use synthetic instance 
generation since the random sampling of minority label-sets add new observations to the 
dataset. These new observations are not synthetically generated since they are clones of 
observations that are already in the dataset.  
 
The foundational principle of the LP-ROS algorithm is to oversample the minority label-sets. 
Minority label-sets are those label-sets that occur a below-average amount of time. 
Therefore, the algorithm needs to identify the minority label-sets and randomly oversample 
these label-sets in an attempt to balance the class distributions of the dataset.  
 
The LP-ROS algorithm needs to determine the number of samples to generate, which can be 
done by calculating a 𝑃% (user defined) size increase in the dataset. The dataset is 
transformed to LP form and split up so that all the observations from unique label-sets are 
put into their own bags. Therefore, each label-set has a bag of observations with that label-
set. The average number of observations per bag is calculated. Minority bags are then 
identified as those bags with fewer observations than the average number of observations 
per label-set bag. These minority bags are created to facilitate oversampling. A mean 
increment is calculated as the number of samples to generate divided by the number of 
minority bags. The minority bags are processed from largest to smallest, random observations 
from the minority bag are sampled and added to the dataset. The sampling is repeated until 
the minority bag reaches the mean size (used to select the minority bags at the start) or until 
the mean increment number of samples has been added. The algorithm is described by the 
flow diagram in Figure 18.  
 
The pseudocode for the LP-RUS (undersampling) algorithm is observed in Figure 17 below. A 
few small changes are made to accommodate LP-ROS (oversampling) from this pseudocode. 
A collection of minority groups 𝑚𝑖𝑛𝐵𝑎𝑔%  with (|𝑙𝑎𝑏𝑒𝑙𝑠𝑒𝑡𝐵𝑎𝑔%| < 𝑚𝑒𝑎𝑛𝑆𝑖𝑧𝑒)  is obtained, a  
𝑚𝑒𝑎𝑛𝐼𝑛𝑐	 = 	𝑠𝑎𝑚𝑝𝑙𝑒𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒/𝑚𝑖𝑛𝐵𝑎𝑔 is calculated. Processing the minority groups from 
the largest to the smallest, an individual increment for each 𝑚𝑖𝑛𝐵𝑎𝑔%  is determined. If a 
𝑚𝑖𝑛𝐵𝑎𝑔%  reaches 𝑚𝑒𝑎𝑛𝑆𝑖𝑧𝑒 samples before 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐵𝑎𝑔%  observations have been 
added, the excess is distributed among the other bags (Charte et al., 2015a). 

Stellenbosch University https://scholar.sun.ac.za



 52 

 
LP-ROS is typically preferred over LP-RUS because of its use of oversampling instead of 
undersampling. Even in the best of cases, multi-label data leads to a sparse data matrix. 
Undersampling the majority classes will lead to an even further increases in the sparseness of 
the data matrix—an undesirable outcome for multi-label performance. Therefore, the 
oversampling version of the LP-resampling algorithms is preferred (Charte et al., 2015a). 
 
Potential issues occur with the LP-RUS and LP-ROS algorithms when there are many distinct 
label-sets. Many label-sets distort the notion of which label-sets are majorities and minorities 
since most of the label-sets will have very few observations. A dataset such as CAL500 
(Turnbull et al., 2008) presents a unique case where each observation in the dataset has a 
unique label-set. Therefore, each label-set bag will contain only one observation, which will 
prove problematic for the LP-RUS and LP-ROS algorithms since all label-set bags will be 
minorities and majorities at the same time.  
 
Figure 18 describes the LP-ROS algorithm in a flow-diagram. 
  

Figure 17: LP-RUS pseudo code (Charte et al., 2015a) 

Stellenbosch University https://scholar.sun.ac.za



 53 

 
 

Figure 18: LP-ROS flow-diagram 

   

Stellenbosch University https://scholar.sun.ac.za



 54 

3.2.2 ML-ROS 
 
Multi-label-Random Oversampling (ML-ROS) proposed in Charte et al. (2015a) is a label based 
random oversampling algorithm. ML-ROS differs from the LP-based methods seen in Section 
3.2.1 since it uses individual labels to identify the observations to oversample, rather than 
using label-sets to identify minority observations. Minority labels are identified as labels with 
𝐼𝑅𝐿𝑏𝑙	 > 	𝑀𝑒𝑎𝑛𝐼𝑅. No synthetic instance generation is used since observations are randomly 
oversampled from bags of minority observations.  
 
The number of samples to generate is given by a 𝑃% (user defined) increase in the overall 
size of the dataset. The first step is to identify all the minority labels, therefore those labels 
with 𝐼𝑅𝐿𝑏𝑙	 > 𝑀𝑒𝑎𝑛𝐼𝑅. Observations that contain minority labels are placed into minority 
bags. Each minority label has its bag containing all the observations that have that label. The 
next step is to oversample these minority bags. The number of samples to clone/oversample 
is determined by the 𝑃% increase in the overall size of the dataset. While the samples to 
clone is greater than zero, we iterate over the bags of labels and oversample one random 
observation from each bag—every time an observation is oversampled, the number of 
samples to clone decreases by one. When the IRLbl of a label is no longer greater than the 
MeanIR, that bag is removed from the bags to oversample from since it is no longer a minority 
label. 
 
Some of the criticisms towards the ML-ROS resampling algorithm comes from the presence 
of concurrence in some datasets. Concurrence is when there are some minority labels that 
are correlated to majority labels. Therefore, there will be observations in the dataset that 
belong to both minority labels and majority labels. When  we oversample these observations, 
we are inflating the minority labels as well as the majority labels—mitigating the usefulness 
of the resampling. For this reason, ML-ROS is less effective on datasets with high SCUMBLE 
(Charte et al., 2015a). 
 
ML-ROS is preferred over ML-RUS (undersampling version of ML-ROS) due to its use of 
oversampling rather than undersampling. In multi-label data we often deal with a sparse data 
matrix, therefore undersampling will lead to a loss of information in the dataset that is not 
desirable, especially at smaller global densities. (Charte el al., 2015a) 
 
The pseudocode and flow diagram for the ML-ROS algorithm is observed below in Figure 19 
and 20: 

Stellenbosch University https://scholar.sun.ac.za



 55 

 
  

Figure 19: ML-ROS pseudo code (Charte et al., 2015a) 

Figure 20: ML-ROS flow-diagram 

Stellenbosch University https://scholar.sun.ac.za



 56 

3.2.3 MLTL 
 
 
3.2.3.1 Tomek-Links: 
The traditional use of Tomek-Links (Kubat, 2017) is as a preprocessing algorithm for binary 
and multi-class classification data. The goal of the algorithm is to remove ambiguous 
observations from the dataset. Ambiguous observations are those observations that lie on 
the boundary between two classes.  
 
Three conditions need to be true for two observations X1 and X2, to be considered a Tomek-
Link: 

I. X1 needs to be the nearest neighbour of X2 
II. X2 needs to be the nearest neighbour of X1 

III. X1 and X2 need to belong to different classes.  
 
The diagram below explains the idea of what a Tomek-Link is. Those pairs of observations that 
have been circled are seen as Tomek-Links. These observations are each other’s nearest 
neighbours and belong to opposite classes (blue and red). The topmost red observation is not 
part of a Tomek-Link since the blue observation is its nearest neighbour, but the red 
observation is not the blue observations nearest neighbour. 
 

  
The standard procedure is to remove Tomek-Link pairs from a dataset, which should lead to 
an improvement in the data quality through the removal of ambiguous observations. One 
needs to be careful when datasets are small since removing more observations from a small 
dataset could be detrimental to the analysis. Using Tomek-Links for an imbalanced dataset 
could also be troublesome. Removing all the Tomek-Links could potentially lead to the 
removal of many of the minority class observations. The solution to the imbalanced class 
problem for Tomek-Links leads us to the undersampling proposition by the Tomek-Link 
algorithm. Instead of removing the pair of observations found to be a Tomek-Link, only the 
majority class observation is removed from the dataset, therefore leaving the minority class 
intact while still removing some of the ambiguity from the dataset. 
 
 

Figure 21: Tomek-Links 

Stellenbosch University https://scholar.sun.ac.za



 57 

 
3.2.3.2 Multi-label Tomek-Links 
Multi-label Tomek-Links (MLTL) proposed by Pereira et al. (2020) is based on a similar idea. 
There are however some challenges that the multi-label paradigm poses to the algorithm 
above:  

• Observations can belong to more than one majority class. 
• The algorithm needs to determine which classes are majority classes.  
• The algorithm needs to determine whether observations belong to different classes, 

even though they can belong to more than label. 
 
To determine the majority classes, MLTL uses the classical mechanism that takes all labels 
with 𝐼𝑅𝐿𝑏𝑙	 ≤ 𝑀𝑒𝑎𝑛𝐼𝑅 as majority labels. Finding the nearest neighbours of an observation 
is not difficult for multi-label data, as this is dependent on the predictor variables 𝑋 and not 
the labels. However, to determine if two observations are Tomek-Links, we need to determine 
if they have opposite classes. The MLTL algorithm proposes the use of the Hamming distance 
to determine the similarity between the label-sets of two observations.  
 
The Hamming Distance (HD) calculates how different the label-sets of two observations are. 
Instead of using the normal Hamming distance, the adjusted Hamming distance is proposed. 
The adjusted Hamming Distance (AHD) considers the active labels between the two 
considered observations instead of all the labels. The active labels can be seen as the union 
of the two label-sets. Using the Adjusted Hamming Distance, instead of the normal Hamming 
distance, will allow us to avoid very low scores when there are many labels in the dataset.  
 
Formally the process is as follows. Given two vectors of binary numbers 𝑎 and 𝑏 of length 𝑁, 
consider ∑ 𝑎%%  and ∑ 𝑏%% . Let	𝑋𝑂𝑅(𝑎, 𝑏), be the “exclusive or” between the vectors 𝑎 and 𝑏. 
The HD and AHD can be calculated using the following formulae: 
 

𝐻𝐷%(𝑎, 𝑏) =
	∑ 4𝑋𝑂𝑅(𝑎, 𝑏)5%

E
%

𝑁  

𝐴𝐻𝐷%(𝑎, 𝑏) =
∑ 4𝑋𝑂𝑅(𝑎, 𝑏)5%
E
%

∑ 4𝑂𝑅(𝑎, 𝑏)5
%

E
%

, 0 ≤ 𝐴𝐻𝐷%(𝑎, 𝑏) ≤ 1 

 
The larger the AHD is, the more significant the difference between the vectors 𝑎 and 𝑏. A 
large AHD between 𝑎 and 𝑏 indicates that they are dissimilar. Therefore, an indication that 
they are Tomek-Links and should be removed. However, the question arises what should be 
considered as a large AHD.   
 
A threshold is needed to determine whether the AHD is large enough to warrant that the two 
observations are indeed Tomek-Links. This threshold (TH) is based on the level of imbalance 
in the dataset. The threshold is determined using the following formulae: 

𝐼 =
1

√𝑀𝑒𝑎𝑛𝐼𝑅
 

𝑇𝐻	 = 	0.5,  𝑖𝑓	𝐼	 ≥ 0.5 
𝑇𝐻	 = 	0.3,  𝑖𝑓 0.5 > 	𝐼	 ≥ 0.3 
𝑇𝐻	 = 	0.15, 𝑖𝑓	𝐼	 < 0.3 

Stellenbosch University https://scholar.sun.ac.za



 58 

 
Therefore, if the AHD of two observations exceeds TH, the observations are seen as Tomek-
Links. The Multi-label Tomek Link (MLTL) approach can also be split up into an undersampling 
or preprocessing/cleaning method. The pseudocode of the MLTL approach is observed below. 
 

 
 
3.2.3.2.1 Undersampling 
For the undersampling method, the labels are split up into majority bags. Therefore, all 
observations that contain a majority class label are put into the majority bag of the 
corresponding label. The AHD from every observation in the majority bags to its nearest 
neighbour is calculated. If the AHD is larger than TH, the observation is added to the array of 
Tomek-Links,. Only the majority class observation is added to the array and not the nearest 
neighbour. An observation is not checked twice. Therefore, if an observation belongs to more 
than one majority label, it does not get rechecked. All of the majority class observations in 
the array of Tomek-Links are removed from the dataset.  
 
 

Figure 22: MLTL pseudo code (Pereira et al., 2020) 

Stellenbosch University https://scholar.sun.ac.za



 59 

 
3.2.3.2.2 Cleaning 
For the cleaning method, a similar approach is followed. However, instead of just the 
observations belonging to the majority classes being checked, all of the observations are 
checked. Therefore, we calculate the AHD from all observations to their nearest neighbour 
and check if it is greater than TH. If the AHD > TH, the observation and its nearest neighbour 
are added to an array of Tomek-Links marked for removing.  
 
For this thesis, only the undersampling algorithm will be studied. Therefore, MLTL is an 
undersampling technique that does not make use of synthetic instance generation. 
 
 
 
 
  

Figure 23: MLTL flow-diagram 

Stellenbosch University https://scholar.sun.ac.za



 60 

3.2.4 REMEDIAL 
 
Resampling multi-label datasets by decoupling highly imbalanced labels (REMEDIAL) 
proposed by Charte et al., (2019a) is an oversampling algorithm. It has specifically been 
developed for multi-label datasets with concurrence between imbalanced labels, therefore 
datasets with high SCUMBLE. REMEDIAL attempts to decouple observations that belong to 
both minority and majority classes. REMEDIAL splits existing observations into two 
observations, one with the minority labels and the other with the majority labels. We do not 
necessarily expect REMEDIAL to be competitive with any of the other resampling algorithms 
in all instances since it was developed for datasets with large SCUMBLE. However, it would 
be worthwhile to investigate the effect that increasing global density has on the label 
decoupling technique.  
 
The following formulae were defined in Chapter 1 and are used to decide which observations 
need to be decoupled into majority and minority labels. 𝑆𝐶𝑈𝑀𝐵𝐿𝐸%&C refers to the 
𝑆𝐶𝑈𝑀𝐵𝐿𝐸 per individual observation and 𝑆𝐶𝑈𝑀𝐵𝐿𝐸(𝐷) refers to the overall 𝑆𝐶𝑈𝑀𝐵𝐿𝐸 in 
the dataset. 
 

𝑆𝐶𝑈𝑀𝐵𝐿𝐸%&C = 1 −
1

𝐼𝑅𝐿𝑏𝑙%
ab𝐼𝑅𝐿𝑏𝑙%)

$

)*!

c 

 

 
The observations with 𝑆𝐶𝑈𝑀𝐵𝐿𝐸%&C > 𝑆𝐶𝑈𝑀𝐵𝐿𝐸(𝐷) will be decoupled. Therefore, all the 
observations that have an above-average amount of 𝑆𝐶𝑈𝑀𝐵𝐿𝐸 will be decoupled. By 
decoupling, we mean that the observations will be split into two observations. One will 
contain all the majority labels, and the other will contain all the minority labels. The majority 
labels are those with 𝐼𝑅𝐿𝑏𝑙	 ≤ 𝑀𝑒𝑎𝑛𝐼𝑅 , and the minority labels are those with 𝐼𝑅𝐿𝑏𝑙	 >
	𝑀𝑒𝑎𝑛𝐼𝑅. The pseudocode for the algorithm is found below: 
 

⇒ SCUMBL E(D) = 1
N

N

∑
i=1

SCUMBL Eins(i )

Stellenbosch University https://scholar.sun.ac.za



 61 

  

REMEDIAL is technically an oversampling algorithm since it produces new observations. The 
decoupling process produces new observations but also modifies existing observations. One 
unique feature of REMEDIAL that is not seen in other resampling algorithms is that it does not 
change the label frequencies. The number of observations belonging to the majority and 
minority labels does not change, even though the composition of the dataset has been 
changed. REMEDIAL will not affect the 𝐼𝑅𝐿𝑏𝑙 of individual labels or the MeanIR. It is, however, 
effective at reducing the overall SCUMBLE in the dataset. The decoupling of labels in 
observations that contain both minority and majority labels will cause the dataset to have 
fewer observations that contain both minority and majority labels simultaneously. Therefore, 
the correlation between majority and minority labels will be reduced, causing a reduction in 
SCUMBLE.  
 

Figure 24: REMEDIAL pseudo code (Charte et al., 2019a) 

Stellenbosch University https://scholar.sun.ac.za



 62 

 
 
  

Figure 25: REMEDIAL flow-diagram 

Stellenbosch University https://scholar.sun.ac.za



 63 

3.2.5 MLSMOTE 
 
3.2.5.1 SMOTE (binary classification) 
Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al., 2002), is one of the most 
popular techniques to oversample a dataset using synthetic instance generation. Synthetic 
instance generation refers to the production of new minority samples that get added to the 
dataset. Therefore, SMOTE does not oversample existing minority observations, but rather 
produces new synthetic observations.  
 
The general procedure for SMOTE in the case of binary classification is as follows. For all 
observations in the minority class, pick a random instance among the 𝑘 nearest neighbours 
of that instance (minority class neighbours). A new instance is generated by interpolating the 
features between the observation and the random neighbour. This new synthetic observation 
also belongs to the minority class. This procedure will produce new artificial minority class 
observations that will be similar to the existing ones. It is reasonable to assume that this 
procedure should lead to a more balanced dataset and improve classification performance. 
 
The diagram below gives a visualisation of the SMOTE procedure. For all the minority 
observations, pick a random neighbour amongst the 𝑘 nearest neighbours. Produce a new 
minority class observation by interpolating the features from the minority observation and 
the random neighbour. The synthetic observation need not lie precisely between the minority 
observation and the random neighbour but could be anywhere on the dashed line.  
 

 
Chawla et al. (2002) found that SMOTE could improve the accuracy of classification for 
minority classes and performed better than plain undersampling. Out of a total of 48 
experiments, SMOTE was only outperformed on 4 occasions.  
 
 
 
 
 

Figure 26: SMOTE 

Stellenbosch University https://scholar.sun.ac.za



 64 

 
3.2.5.2 MLSMOTE 
Multi-label Synthetic Oversampling Technique (MLSMOTE) proposed by Charte et al. (2015), 
attempts to extend SMOTE to the multi-label paradigm. As we saw with MLTL, extending a 
single-label paradigm to the multi-label paradigm is not that straightforward. Many changes 
need to be accounted for, for instance how the nearest neighbours will be determined, which 
observations will be regarded as minorities and what label-set should be assigned to the new 
synthetic instance.  
 
The MLSMOTE proposal is as follows. Iterating over the labels, check if the label is a minority 
label. Minority labels are defined to have 𝐼𝑅𝐿𝑏𝑙	 > 	𝑀𝑒𝑎𝑛𝐼𝑅. If the label is a minority label, 
place all the observations belonging to that label in a bag. For each observation in the minority 
bag, find the 𝑘 nearest neighbours. Select a random neighbour from the 𝑘 neighbours. 
Generate a new synthetic observation using algorithm 2, with the minority observation and 
the random neighbour as parameters. Interpolate the features between the minority bag 
observation and the neighbour according to lines 23-33 in algorithm 2 and assign these 
features to the synthetic observation. Generate the label-set for the new synthetic instance 
according to lines 35-38 of algorithm 2 and assign the label-set to the new observation. Add 
the new synthetic observation to the dataset. Repeat for all labels. If the IRLbl of a label 
reaches the MeanIR, this label is no longer oversampled. 
 

  
 

Figure 27: MLSMOTE pseudo code (Charte et al., 2015) 

Stellenbosch University https://scholar.sun.ac.za



 65 

 
Figure 28: MLSMOTE flow-diagram 

  
  

Stellenbosch University https://scholar.sun.ac.za



 66 

3.2.6 MLSOL 
 
Synthetic Oversampling of Multi-Label Data based on Local Label Distribution (MLSOL) 
proposed by Liu & Tsoumakas (2020a) is the most elaborate algorithm we will consider. 
MLSOL is an oversampling algorithm that makes use of synthetic instance generation based 
on local label distributions. Making use of the local label distributions allows MLSOL to 
generate more diverse and better-labelled observations. MLSOL can be seen as a direct 
opponent to MLSMOTE. Both algorithms propose the synthetic generation of observations 
based on the local neighbourhood of observations.  
 
MLSOL is a complicated resampling algorithm and makes use of a number of mechanisms to 
facilitate the generation of synthetic observations in order to balance the class distributions. 
Steps 1,2 and 3 work together as a training step before synthetic observations are generated. 
These three steps have the purpose of calculating a weight (𝑤%) that is assigned to each 
observation that represents how difficult it is to classify the minority labels for the 
observation. The weights calculated in step 3 are used to select the most appropriate seed 
observations used in steps 4 and 5 to generate the synthetic observations. The larger the 
weight of an observation is, the larger is the probability that it will be selected as a seed 
observation. Therefore, the observations whose minority labels are the hardest to classify are 
the most likely to be selected as seed observations in the algorithm since these observations 
will have the largest weights. Once a seed observation has been selected, a random neighbour 
is selected as a reference instance and a new observation is generated according to the 
algorithm on page 71, using the seed instance and the randomly selected neighbour as a 
reference instance. The generation of new synthetic observations is repeated in steps 4 and 
5, until enough samples have been generated.  
 
A summary of the algorithm is given below. Each section within the summary is discussed 
separately, referring to the pseudocode.  
 
Step 1: Find bNN to each observation: 
Using the Euclidean distance, the 𝑏 nearest neighbours to every observation in the dataset is 
calculated. The result is a 𝑛 by 𝑏 matrix with the distance to the 𝑏 closest observations for 
each observation 𝑖 ∈ {1,2, … , 𝑛} in the dataset. Another 𝑛 by 𝑏 matrix is created with the 
index of the nearest neighbours in the original dataset. These neighbours are referenced at a 
later stage. 
 
Step 2: Calculate 𝐶 
The MLSOL algorithm samples seed observations with replacement. The probability of 
selecting an observation is proportional to the number of minority class observations in its 
neighbourhood. Therefore, the probability of selecting an observation is weighted by the 
proportion of majority class observations in its 𝑏 nearest neighbours. Calculating 𝐶 is an 
intermediate step in generating a sampling weight for each observation based on its local 
neighbourhood.  
 

, where 𝐶%,) ∈ {0,1} 

 

⇒ Cik = 1
b ∑

xm∈bNN(xi)
[[ymk ≠ yik]]]

Stellenbosch University https://scholar.sun.ac.za



 67 

A value of 𝐶%,) close to zero is indicative of a safe environment, where the observation is 
surrounded mainly by similarly labelled observations. A value of 𝐶%,) close to one is indicative 
of a hostile environment, where the observation is surrounded mainly by oppositely labelled 
observations. It is reasonable to assume that the difficulty of classifying an observation is 
proportional to the number of opposite class values in its neighbourhood.  
 
Step 3: Calculate 𝑤 
To arrive at a single sampling weight 𝑤%  per observation, 𝐶%,) needs to be aggregated per 
observation. Therefore, each observation 𝑥%  will receive a corresponding weight 𝑤%, ∀	𝑖 ∈
{1,2, … , 𝑛}. 𝑤%  represents the difficulty of correctly predicting the minority class. Larger values 
of 𝑤%  relate to observations that are more likely to be selected in the random sampling of 
observations and vice versa for smaller values of 𝑤%.  
 

𝑤% =d
𝐶%,) �F𝑦%,) = 1G�   �F𝐶%,) < 1G�

∑ 𝐶%,) �F𝑦%,) = 1G�&
%*!   �F𝐶%,) < 1G�

$

)*!

 

 
Probability Proportionate to Size (PPS) sampling is used to select random seed observations 
based on 𝑤%.  A uniformly distributed random number between 0 and 1 is generated and is 
multiplied with the sum of all the weights (∑ 𝑤%&

%*! ). The index corresponding to the interval 
within which the random number falls is the randomly selected observation.  
 
In Table 2 below, we observe an example of one seed instance being selected. The uniformly 
distributed random number between 0 and 1 is generated and multiplied with ∑ 𝑤%&

%*!  and 
equals 0.25. We observe that 0.25 falls in the interval (0.1, 0.3]. This interval relates to 𝑖	 =
	2. Therefore, observation two is selected as a seed instance. 
 
 

Table 2: Selecting seed observations for MLSOL 

Index Weight ( ) Cumulative 
weight 

Interval Weighted 
Random Number 

1 0.1 0.1 [0,0.1) 
 

2 0.2 0.3 (0.1,0.3] 0.25 

… … … … 
 

N 0.05 
 

a… ,d𝑤%

E

%*!

� 

 

 
The probability of selecting observation 𝑖 as a seed instance is equal to L!

∑ L!%
!&'

. Therefore, the 

larger 𝑤%  is, the larger the probability is of observation 𝑖 being selected. 
 
 
 
 

wi

N

∑
i=1

wi

Stellenbosch University https://scholar.sun.ac.za



 68 

Step 4: Find observation types 
When the new synthetic observations are generated, the type of observation we are dealing 
with is essential for label assignment. The minority observations will be split into four 
different types: Safe(SF), Borderline(BD), Rare(RR), and Outlier(OT).  
 

• Safe (SF): 0 ≤ 𝐶%,) < 0.3	 A safe observation is in a region dominated by minority 
examples.  

• Borderline (BD): 0.3 ≤ 𝐶%,) < 0.7 Located close to the decision boundary between 
majority and minority classes.  

• Rare (RR): 0.7 ≤ 𝐶%,) < 1 Located in the majority region and is far from the decision 
boundary.  

• Outlier (OT): 𝐶%,) = 1 Surrounded by majority examples.  
 
The split is done according to the proportion of neighbours from the same minority class. The 
pseudocode is outlined in algorithm 2.  
 
Step 5: Synthetic observation generation 
Choose a random seed observation, using 𝑤%  as set out in step 3. Randomly select one of the 
𝑏 nearest neighbours to the seed observation as a reference observation. According to the 
pseudocode in algorithm 3, generate a new observation using the seed observation and 
reference observation. Add the new synthetic observation to the dataset. Repeat this process 
of generating new observations until enough samples have been generated.  
 
 
 
 
 
 
  
 
 

Figure 29: MLSOL (main algorithm) pseudo code (Liu & 
Tsoumakas, 2020a) 

Stellenbosch University https://scholar.sun.ac.za



 69 

 

Figure 31: MLSOL (InitTypes) pseudo code (Liu & Tsoumakas, 
2020a) 

Figure 30: MLSOL (GenerateInstance) pseudo code (Liu & 
Tsoumakas, 2020a) 

Stellenbosch University https://scholar.sun.ac.za



 70 

  Figure 32: MLSOL flow-diagram 

Stellenbosch University https://scholar.sun.ac.za



 71 

3.2.7 RHwRSMT 
 
REMEDIAL-Hybridisation with synthetic instance generation (RHwRSMT) proposed by Charte 
et al. (2019) is an oversampling algorithm that combines two resampling algorithms we have 
already seen. REMEDIAL and MLSMOTE are used together. Firstly, REMEDIAL is used to 
decouple the majority and minority labels and reduce the presence of SCUMBLE in the 
dataset. Once REMEDIAL has been used to decouple the data, MLSMOTE is applied to the 
decoupled data.  
 
As we have seen previously in Section 3.2.5, the first step for MLSMOTE is to place all 
observations that belong to minority labels in a bag. The decoupling procedure of REMEDIAL 
will make it easier for MLSMOTE to differentiate between minority and majority observations. 
Therefore, those observations placed in the minority bag will have label-sets better 
representing minority observations since the minority label-sets have been decoupled from 
the majority label-sets. Therefore, the minority observations selected by MLSMOTE and their 
neighbours could potentially have different label-sets that could better represent minority 
observations. This stands to benefit the MLSMOTE algorithm since the algorithm makes use 
of the minority observations to generate new synthetic observations. If the minority 
observations and their neighbours have label-sets better representing minority observations, 
the MLSMOTE algorithm could potentially be more effective at balancing the class 
distributions.  
 
MLSMOTE produces synthetic label-sets for new observations. The set of labels is produced 
from the nearest neighbours to the observation being processed. The decoupling procedure 
performed by REMEDIAL before the minority observations are placed in a bag will influence 
the chosen observations and their neighbours. This could lead to a more balanced label 
distribution for the new synthetically generated observations.  
 
A drawback of the algorithm highlighted in Charte et al., (2019) is that although REMEDIAL 
changes the label-sets of the decoupled observations, it does not change the location of the 
observations in terms of the feature set. A potential remedy to this problem would be a 
relocation of the decoupled observations once they have been split into minority and majority 
observations. 
 

  
 
  

Figure 33: RHwRSMT flow-diagram 

Stellenbosch University https://scholar.sun.ac.za



 72 

Chapter 4: Simulating multi-label data 
 

4.1 Introduction 
 
Many studies performed in multi-label literature use the benchmark datasets discussed in 
Chapter 1 to evaluate the performance of different multi-label techniques. Although the 
benchmark datasets provide a practical way of comparing the performance of multi-label 
techniques, it is not ideal for this thesis. The analysis of multi-label performance is limited to 
the specific attributes that these datasets have. Two datasets are rarely the same, which is 
especially true for multi-label data. Each multi-label dataset is unique and provides different 
challenges and characteristics to the algorithms.  
 
It is reasonable to assume that the benchmark datasets do not fully encapsulate the scope of 
characteristics that multi-label data could have. Most of the benchmark datasets have very 
low cardinality and density, almost to the point where they are multi-class and not multi-
label. In this thesis we look at addressing imbalance at changing levels of global density. 
Therefore, we require datasets at all levels of global density.  
 
Domain bias is another stumbling block when making use of the benchmark datasets. The 
multi-label performance for two similar datasets from different domains could be completely 
different. A dataset from the text domain might yield completely different multi-label 
performance than a dataset from the biology domain, even though their characteristics might 
be similar. Therefore, comparing performance of resampling algorithms on these datasets 
would be naïve since the changes in performance might be due to the differences in domains, 
rather than the differences in the resampling algorithms.  
 
An ethical problem with using the benchmark datasets is “cherry-picking” the datasets for 
which the technique works the best and leaving out those datasets on which the technique 
struggles. Cherry-picking becomes a problem since we need to know under which 
circumstances techniques perform well and under which circumstances they do not perform 
well. If we only select the datasets that support our arguments, this will defeat the purpose 
of the analysis.  
 
This thesis proposes an impartial approach in studying the effectiveness of resampling 
algorithms for multi-label classification using simulated data. Simulating data allows control 
over specific characteristics of the experimental conditions. The simulation mechanism allows 
us to specify the local label densities directly and consequently indirectly control which labels 
are majorities and minorities. A diverse set of experimental conditions is created to put the 
array of resampling algorithms to the test. Since we are not proposing our own algorithm, our 
thesis is purely observational. We want to identify the scenarios in which the resampling 
algorithms excel, as well as the scenarios in which the resampling algorithms should be 
avoided.  
 
 
 

Stellenbosch University https://scholar.sun.ac.za



 73 

4.2 MLDatagen 
 
Researchers simulate data to avoid some of the pitfalls mentioned in Section 4.1. In the single-
label paradigm it is much easier to generate simulated data than in the multi-label paradigm. 
In the multi-label paradigm we need to incorporate many characteristics into the data. Some 
of the characteristics that need to be taken into consideration are the number of 
observations, number of variables, number of labels, the correlation between labels and the 
correlation between variables.  
 
MLDatagen was proposed by Tomás et al. (2014) and is one of the very few proposals for the 
simulation of multi-label data. MLDatagen provides an online multi-label data simulation 
framework that allows the user to control certain characteristics of the multi-label data being 
simulated. Two strategies are implemented in MLDatagen: hypercubes and hyperspheres. 
These randomly generated geometric shapes populate the observations and their associated 
labels. MLDatagen gives the user control over the following characteristics of the data: 

• Strategy: A choice between hypercubes and hyperspheres 
• Number of relevant features 
• Number of irrelevant features  
• Number of redundant features  
• Number of labels 
• Number of observations 
• Noise parameter (0 to 1) 
• Maximum and minimum radius of the hypersphere/hypercube.  

 
MLDatagen is an extremely useful tool in the context of multi-label research and has been 
used successfully in many multi-label studies. However, for the purpose of this thesis, 
MLDatagen lacks the ability to directly control the global density and the local label densities, 
which is an aspect of data simulation that is critical to this thesis since we wish to study the 
efficacy of resampling algorithms at increasing levels of global density.  
 
A comprehensive discussion of the MLDatagen simulation mechanism falls outside the scope 
of this thesis, for a more thorough discussion of the simulation mechanism refer to Tomás et 
al., (2014).  
 
 
 
  

Stellenbosch University https://scholar.sun.ac.za



 74 

4.3 Simulating data 
 
The simulation mechanism used in this thesis is from the proposal of Sandrock & Steel (2017). 
This proposal gives specific control over local label densities. Having control over local label 
densities also indirectly gives control over the global density of the dataset since the global 
density of a multi-label dataset is the average of all the local label densities. Control over the 
local label densities is critical to the outcome of our research since we are interested in 
investigating the efficacy of the resampling algorithms at divergent levels of global density. 
Having control over the local label densities also gives the ability to create imbalance through 
diversity in local label densities.  
 
A high-level discussion of the data simulation is explored below. A more in-depth discussion 
of the simulation mechanism can be found in Sandrock & Steel (2017).   
 
The following parameters are at our disposal to generate simulated data: 

• 𝑁	 → The number of observations. 
• 𝐾	 →The number of labels.  
• 𝑝	 → The number of relevant predictor variables. 
• 𝑝𝑛𝑜𝑖𝑠𝑒	 → The number of irrelevant predictor variables. 
• 𝐴 	→	A matrix that controls the global and local relevancies of variables for labels. A 

variable is locally relevant for a label if it aids in predicting whether that label is present 
or not, irrespective of its relevance for any other labels. If a variable is globally 
relevant, it is relevant for several or all of the labels.  

• ρ  → Controls the correlation between labels.  
• 𝑆𝑖𝑔𝑛𝑎𝑙	 → Strength of dependence between the predictor variables and the labels. It 

represents how much information is available in the input variables to predict the 
labels.  

• 𝑝𝑣𝑒𝑐	 → Vector of label densities.  
• 𝑆𝑖𝑔𝑚𝑎𝑥	 → Allows control over the correlation between predictor variables.  

 
The experimental design (Chapter 6) outlines the parameters that were chosen to simulate 
multi-label data for the empirical analysis. Section 4.4 provides additional information and 
examples relating to how the multi-label data is simulated and what a typical simulated multi-
label dataset would look like using the simulation mechanism mentioned in Section 4.3.  
 
In addition to the parameters specified above, the desired global density 𝜉 can also be 
specified. Due to the nature of the simulations, the global density will not exactly be equal to 
𝜉, but will be very close. The desired level of global density is achieved through the 𝑝𝑣𝑒𝑐 
defined above. The local label densities assigned to the 𝑝𝑣𝑒𝑐 are drawn from distributions 
defined in Section 4.4 and 𝜉 is equal to the average of the local label densities.  
  

Stellenbosch University https://scholar.sun.ac.za



 75 

4.4 Examples 
 
4.4.1 Special case, 𝝃 close to 0 
 
The “special case” is a scenario where we replicate a dataset with a very sparse data matrix. 
The global density in this case will be very small. The purpose of the special case is to create 
a very extreme scenario to test the resampling algorithms. The extreme case will create a 
large polarity between the local label densities of the minority labels and the majority labels. 
The minority labels will have extremely small local label densities and the majority labels will 
have relatively larger local label densities. The global density of a multi-label dataset is the 
average of the local label densities, therefore the global density for the special case will be 
very small.  
 
The probability density functions (pdf) from which the minority and majority label densities 
are randomly drawn are observed below in Figure 34. The local densities for both the minority 
and majority labels will be very small to create a sparse data matrix. The minority classes will 
have a density, a random observation drawn from the pdf shown on the left-hand side in the 
figure below. This will create an extreme case with very small local label densities. The 
majority classes will have a local label density, a random observation drawn from the pdf on 
the right. The majority classes will, in a relative sense, have much larger densities than the 
minority classes. However, in a real sense, these label densities are still very small. 
 
 

 
Data will be simulated to illustrate the functionality of the simulations. Two datasets with 20 
labels were simulated for the special case. The local label densities from the two simulations 
are observed in Figure 35. We observe that there are many labels with very small local label 
densities, relating to the labels simulated for the minority classes. There are also labels with 
comparatively larger local label densities, relating to the labels simulated from the majority 
classes. Comparing the two simulations allows us to observe how the simulated data might 
change from one iteration to the next. The simulated datasets will be homogeneous yet 
different for each iteration, as observed below. 
 

Figure 34: Minority and Majority pdf's for "special case" 

Stellenbosch University https://scholar.sun.ac.za



 76 

  
4.4.2 𝝃 ∈ {𝟎. 𝟏, 𝟎. 𝟐, . . . , 𝟎. 𝟓} 
 
In the repository for multi-label data found at Moyano (2021), there are no datasets with 
global density larger than 0.5, therefore we simulate data for values of ξ ranging from 0.1 to 
0.5. Local label density vectors are created  in the same way as above. The probability density 
functions from which the local label densities are randomly drawn will be explored below. In 
this case, we will create imbalance through the disparity of the minority and majority local 
label densities. Although, the local label densities are now larger, the data will be simulated 
in such a way that the local label densities of the minority labels are much smaller than the 
local label densities of the majority labels. As ξ increases, the global density of the datasets 
also increases, where ξ	 ≈ 𝑔𝑙𝑜𝑏𝑎𝑙	𝑑𝑒𝑛𝑠𝑖𝑡𝑦. The minority and majority labels will be drawn 
from the pdfs illustrated below to create a disparity in local label density between the 
minority labels and the majority labels.  
 
In Figure 36 below, we observe the pdf’s relating to the local label densities of the minority 
and majority labels, where each colour corresponds to a larger level of global density (𝜉). We 
observe the pdfs from which the minority class local label densities will be drawn on the left-
hand side. On the right-hand side, we observe the pdf’s from which the majority class local 
label densities will be drawn. A disparity in local label density between the minority and 
majority classes is created by randomly sampling the label densities from the different pdfs. 
The disparity in label density between the minority and majority local label density is 
observed  in Figure 36. 
 

Figure 35: Local label densities for "special case" 

Stellenbosch University https://scholar.sun.ac.za



 77 

 
In Figure 37 below, we observe the local label densities for datasets simulated with 𝜉	 =
	0.1, 0.2, 0.3, 0.4, 0.5 , respectively, with 𝐾	 = 	20 labels. These simulated datasets are 
random and will change from one simulation to the next. However, as mentioned previously: 
The signal, the number of relevant and irrelevant predictors, 𝜌 and A matrices all remain 
constant to ensure that even though the datasets may look different in terms of local label 
densities, the domain effect does not play a role. The height of the bars represent the 
densities and the x-axis represents simulated labels as V21, V22, …, V40.  
 

𝜉	 = 	0.4 

 

𝜉	 = 	0.1 𝜉	 = 	0.2 

𝜉	 = 	0.3 

𝜉	 = 	0.5 

Figure 36: Minority and Majority pdf's 

Figure 37: Local label densities 

Stellenbosch University https://scholar.sun.ac.za



 78 

The simulated data displayed above represents how data used in the experimental design will 
look. The datasets change from one iteration/simulation to the next. The differences in local 
label density between labels is due to the local label densities being randomly sampled from 
the majority and minority pdf’s mentioned above. The purpose is to have many datasets 
representing a similar situation in terms of global density and imbalance.  
 
In Figure 37, we observe that although there is a difference in label density between the 
majority classes and the minority classes, the level of imbalance is not extreme at larger 
densities. Creating extreme imbalance at larger levels of global density is difficult since the 
global density is the average of the local label densities, therefore even though some of the 
labels will have very small local label densities, the average of the local label densities still 
needs to be large enough to obtain a larger global density. The scenario we have created 
represents imbalanced data, however the imbalance at larger global densities is not as 
extreme as it is observed for the “special case”. An avenue of future research might be to 
simulate datasets that have extreme imbalance at large global densities.  
 
From one data simulation to the next, the level of imbalance measured by MeanIR remains 
consistent. The largest deviations in MeanIR from one simulation to the next is observed for 
the “special case”. As an example, for ten simulated datasets with 𝜉	 = 	0, the MeanIR was 
(10.20, 		8.40		6.93, 15.71, 	8.01, 10.01, 	7.37, 		8.91, 	4.95	10.51). Therefore, for the special 
case we observed large levels of MeanIR, due to the small local label densities of both the 
minority and majority classes. At larger levels of global density, we observe that the MeanIR 
of the datasets are smaller. For ten simulated datasets with 𝜉 = 	0.1, the following MeanIR’s 
were observed: (3.14, 3.01, 2.16, 4.51, 2.74, 2.28, 2.87, 2.87, 2.36, 2.21). Therefore, the 
MeanIR’s are now more consistent from one simulation to the next, but are not as large as 
we observed for the “special case”. For a global density of 𝜉 = 	0.2, the following MeanIR’s 
were observed: (2.19, 3.07, 1.98, 2.24, 3.03, 1.75, 2.06, 3.13, 3.48, 2.82). A similar trend is 
observed for datasets with global density larger than 𝜉	 = 	0.2, where the MeanIR tends to 
be between 2 and 3 and remains consistent from one simulation to the next.  
 
The simulation mechanism of Sandrock and Steel (2017) does provide control over the 
correlation between labels in general, but not explicit control over the correlation between 
specific labels. Without explicit control over the dependence between labels, creating 
SCUMBLE in the datasets is not feasible. Therefore, SCUMBLE in the simulated datasets is not 
large.  
 
4.4.3 Example dataset 
 
As an example, a dataset will be simulated with ten labels and a global density of 𝜉	 = 0.2. 
The figures below visualise this dataset in terms of its label concurrence plots, local label 
density and labels per observation. The global density for the simulated dataset is the average 
of the local label densities. The global density will not be precisely equal to 𝜉 in each 
simulation but should be approximately equal to 𝜉. For this example, the local densities were:  
0.168, 0.143, 0.174, 0.106, 0.301, 0.201, 0.179, 0.146, 0.388, 0.197. The average of these 
densities leads to ξ = 	0.2003	 ≈ 	0.2. The label concurrence plot shows that most labels are 
somewhat correlated and look reasonable for multi-label data. The histogram with the 
number of labels per observation has an exponential shape.  

Stellenbosch University https://scholar.sun.ac.za



 79 

 

  

  
  

Figure 38: Example simulated dataset 

Stellenbosch University https://scholar.sun.ac.za



 80 

Chapter 5: Multi-label performance 
measures 
 

5.1 Introduction 
 
Evaluation metrics are used to quantify the performance of supervised learning algorithms. 
In binary and multi-class classification we can rely on a few key metrics that allow us to 
quantify classification performance. Metrics such as Accuracy, F-measure and Area Under 
Curve (AUC) are often used to evaluate the performance of classification algorithms. 
However, multi-label performance is more complicated since each observation can now be 
associated with more than one class. The multi-label paradigm therefore poses a significant 
challenge to the status quo and requires alternative approaches.  
 
The multi-label nature of the data leads to some questions that need to be answered: Firstly, 
is it better to predict a label as present that is not present, or is it better not to predict a label 
that is present? Secondly, is wrongly predicting three labels in one observation the same as 
wrongly predicting one label in three observations? Thirdly, how do we differentiate the 
performance between minority and majority labels? Lastly, what impact does global density 
and cardinality have on multi-label performance measures? These questions should be 
addressed when multi-label evaluation metrics are designed.  
 
For comparative studies like this one, evaluation metrics focusing on various aspects of multi-
label performance are chosen. It becomes essential to include different and contrasting 
evaluation measures, ensuring that we fully encapsulate the performance of the models. If 
too few evaluation metrics are chosen, it might add bias to the analysis since we might come 
to false conclusions if some of the models only perform well on the chosen metrics and not 
on some of the other metrics not included in the study. Therefore, we should make use of a 
diverse group of evaluation metrics.  
 
A metric such as Subset Accuracy is commonly used in binary and multi-class classification, 
but is not as common in the multi-label paradigm. Subset Accuracy is an extremely strict 
measure and is rarely a good way of measuring multi-label performance.  Subset Accuracy 
requires the predicted label-set to be an exact match to the true label-set. It is difficult for 
MLC to predict all labels in the label-set correctly. Therefore, MLC techniques could do poorly 
on the Subset Accuracy and lead us to wrongly conclude that our model is doing poorly when 
in reality it could only be misclassifying a small number of the labels. A measure such as the 
Hamming loss is more common in the multi-label paradigm and can be seen as a relaxed 
version of the Subset Accuracy since it measures the proportion of wrongly predicted labels.  
 
Evaluation metrics can be split into two groups—those metrics that are bipartition-based and 
those that are ranking-based - see Tsoumakas & Katakis (2007). 
 
  

Stellenbosch University https://scholar.sun.ac.za



 81 

5.1.1 Bipartition-based 
 

Bipartition-based metrics compare the predicted present labels with the actual present 
labels. Therefore, we are trying to determine how the labels we predict match the actual 
observed labels. Bipartition-based metrics can further be split into example-based and label-
based metrics: 
 
Example-based: These metrics average the difference between the actual and predicted 
label-sets over all the observations in the dataset.  
 
Label-based: Label-based metrics can further be split up into micro and macro averaged 
metrics.  

• Macro-averaged metrics calculate any binary evaluation metric on each label 
separately and then averages these 𝐾 metrics to come to the final macro-averaged 
metric, therefore treating each of the 𝐾 labels equally.  

• Micro-averaged metrics aggregate the contribution of all the labels and calculates the 
average metric of these aggregated values. Therefore, the classes are not treated 
equally.  

 
5.1.2 Ranking-based 
 
Ranking-based metrics are calculated on the label rankings and not from the binary 
predictions. These metrics compare the ranking of the labels with the true label-sets. 
 
 

5.2  Notation 
 
Classifiers can make different types of predictions and mistakes. These can be categorised 
into different groups:  

• True Positives (TP): A label that is present is predicted as present,  
• True Negative (TN): A label that is not present is predicted as not being present, 
• False Positive (FP): A label that is not present is incorrectly predicted as present,  
• False Negative (FN): A label that is present is predicted as not present, 

 
where TP, TN, FP and FN represent the totals for the entire dataset. These can also be 
calculated for individual labels, where 𝑇𝑃) , 𝑇𝑁) , 𝐹𝑃) , 𝐹𝑁) 	∀	𝑘 ∈ {1,2, … , 𝐾} represent the 
totals for label 𝑘.  
 
Let the dataset 𝐷 have 𝑁 observations and 𝐾 labels 𝑌) 	∀	𝑘 ∈ {1,2, … , 𝐾}. The matrix of 
predictor variables is  and the label matrix is .  𝑓(𝑥%) denotes the 
prediction of 𝑦%, a vector of label predictions for the 𝑖′𝑡ℎ observation, where the true 
prediction is .  𝑓)(𝑥%) denotes the prediction for the 𝑘′𝑡ℎ label of the 𝑖′𝑡ℎ observation 𝑦%), 
where the true prediction is . Let 𝑟% 	∀	𝑖 ∈ {1,2, … , 𝑁} be the vector of label rankings for 
observation 𝑖.  
 
 

X ∈ ℝN×P Y ∈ {0,1}N×K

!ik
!ik

Stellenbosch University https://scholar.sun.ac.za



 82 

5.3 Evaluation metrics 

 
  

Stellenbosch University https://scholar.sun.ac.za



 83 

 
5.3.1 Example-based metrics 
 
As mentioned in Section 5.2.1, the example-based metrics calculate the difference between 
the actual and predicted label-sets and average across all the observations in the dataset to 
calculate the final metrics. (Madjarov et al., 2012)  
 
5.3.1.1 Hamming loss 
 
Hamming loss represents the fraction of misclassified labels. A misclassified label can be a 
label not belonging to the observation being predicted or a label belonging to the observation 
not being predicted. Formally, Hamming loss is defined by 
 

 

 
where  is the symmetric difference between 𝑓(𝑥%), the prediction and  , the 
ground truth. Performance increases as Hamming loss decreases. Therefore, we would want 
the Hamming loss to be as small as possible, where Hamming loss is measured by a score 
between 0 and 1.  
 
5.3.1.2 Precision 
 
Precision is the proportion of predicted present labels that are in fact present. It is the 
proportion of labels that we predict as positive, that were positive. Therefore, it is the 
proportion of positive predictions that were true positives (TP). Formally, Precision is defined 
by 
 

 

 
Performance increases as Precision increases. Therefore, we would want the Precision to be 
as large as possible, where Precision is measured by a score between 0 and 1.  
 
5.3.1.3 Recall 
 
Recall is the proportion of true positives among all true examples. It is the proportion of 
observations belonging to a class that has been predicted as belonging to that class. 
Therefore, it is the proportion of relevant labels that have been selected. Formally, Recall is 
defined by 
 

 

 
Performance increases as Recall increases. Therefore, we would want the Recall to be as large 
as possible, where Recall is measured by a score between 0 and 1.  

⇒ Ha m ming − L oss = 1
N

N

∑
i=1

1
K

| f (xi) △ $i | ∈ [0,1]

f (xi) △ "i !i

⇒ Preci sion = 1
N

N

∑
i=1

| f (xi) ∩ #i |
|#i |

= TP
FP + TP

∈ [0,1]

Recal l = 1
N

N

∑
i=1

| f (xi) ∩ "i |
| f (xi) |

= TP
FN + TP

∈ [0,1]

Stellenbosch University https://scholar.sun.ac.za



 84 

 
5.3.2 Label-based metrics 
 
The label-based bipartition evaluation metrics that follow were all chosen to be macro-based. 
Macro-based means that the metric is calculated for each label separately as a binary class. 
The metrics are then averaged per label to obtain the final evaluation metric. Each label 
receives the same weight in the final metric, regardless of how many positive examples are 
in the class. These macro-based metrics will penalise models that perform poorly on the 
minority classes and only perform well on the majority classes, making these metrics robust 
against imbalanced class distributions. (Madjarov, 2012a) 
 
 
5.3.2.1 Macro-Precision 
 
Macro-Precision is the average Precision per label. The Precision is calculated for each label 
as a binary class. These scores are then averaged to obtain the Macro-Precision. Formally, 
Macro-Precision is defined by 
 

 

 
Performance increases as Macro-Precision increases. Therefore, we would want Macro-
Precision to be as large as possible, where Macro-Precision is measured by a score between 
0 and 1. (Madjarov, 2012a) 
 
 
5.3.2.2 Macro-Recall 
 
Macro-Recall is the average Recall per label. The Recall is calculated for each label as a binary 
class. These scores are then averaged to obtain the final Macro-Recall. Formally, Macro-Recall 
is defined by 
 

 
 
Performance increases as Macro-Recall increases. Therefore, we would want Macro-Recall to 
be as large as possible, where Macro-Recall is measured by a score between 0 and 1. 
(Madjarov, 2012a) 
 
5.3.2.3 Macro-F1 
 
Macro-F1 is the average F1 score per label. The F1-score is calculated for each label as a binary 
class. These scores are then averaged to obtain the final Macro-F1 score. The F1-score is the 
harmonic mean of the Recall and Precision, thus taking both metrics into account. The F1-
score will be optimal when a classifier finds a balance between Precision and Recall and will 
be penalised if it only does well on one of the two metrics. The Macro-F1 score is the standard 

⇒ Macro − Precision = 1
K

K

∑
k=1

TPk

FPk + TPk
∈ [0,1]

⇒ Macro − Recall = 1
K

K

∑
k=1

TPk

TPk + FNk
∈ [0,1]

Stellenbosch University https://scholar.sun.ac.za



 85 

way to evaluate the efficacy of resampling algorithms in the literature. If the resampling 
algorithms can improve the Macro-F1 score, it is reasonable to assume that they have 
successfully addressed imbalance and led to better classification of minority observations. 
Formally, Macro-F1 is defined by: 
 

 
 
where 𝑃) is the Precision for the 𝑘′𝑡ℎ label and 𝑅) is the Recall for the 𝑘′𝑡ℎ label.  
 
Performance increases as Macro-F1 increases. Therefore, we would want Macro-F1 to be as 
large as possible, where Macro-F1 is measured by a score between 0 and 1 (Madjarov, 2012a). 
 
5.3.3 Ranking-based metrics 
 
As mentioned in Section 5.2.1 the ranking-based metrics are calculated on the label rankings 
𝑟% 	∀	𝑖 ∈ {1,2, … , 𝑁}	&	𝑘 ∈ {1,2, … , 𝐾}. Therefore, we compare the predicted label rankings 
with the ground truth label-sets. These (and other) ranking-based metrics are discussed in 
detail in (Tsoumakas et al., 2009).  
 
5.3.3.1 One-Error 
 
One-Error measures how often the top-ranked label is not included in the set of relevant 
labels. Formally, One-Error is defined by: 

𝑂𝑛𝑒 − 𝐸𝑟𝑟𝑜𝑟 =
1
𝑁dδ�𝑎𝑟𝑔𝑚𝑖𝑛Q!(𝑌)�

E

%	*!

 

where . 
 
Performance increases as One-Error decreases. Therefore, we would want One-Error to be as 
small as possible, where One-Error is measured by a score between 0 and 1. (Tsoumakus et 
al., 2009) 
 
5.3.3.2 Ranking-Loss 
 
Ranking-Loss measures the average percentage of label pairs that are reversely ordered for 
the example. Formally, Ranking-Loss is defined by: 
 

 

 
 and  is the complementary set of .  

 
Performance increases as Ranking-Loss decreases. Therefore, we would want to minimise the 
Ranking-Loss, where Ranking-Loss is measured by a score between 0 and 1 (Tsoumakas et al., 
2009). 
 

⇒ Macro − F1 = 1
K

K

∑
k=1

2.Pk . Rk

Pk + Rk
∈ [0,1]

δ(Y ) = 1 i f Y ∉ "i an d 0 other wise

⇒ Rank ing − L oss = 1
N

N

∑
i=1

|Di |
|#i | |#̄i |

∈ [0,1]

Di = {(Ya, Yb) : ri(Ya) > ri(Yb), (Ya, Yb) ∈ "i . "̄i} !̄ !

Stellenbosch University https://scholar.sun.ac.za



 86 

 
5.3.3.3 Coverage 
 
Coverage measures how far we need to go down the list of ranked labels to cover all the 
relevant labels of the observation. The smallest value that the Coverage can be is the 
cardinality of the dataset. Formally, Coverage is defined by: 
 
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = !

E
∑ 𝑚𝑎𝑥Q!(𝑌)
E
%*! − 1  

 
where 𝑌 ∈ 𝑌%. 
  
Performance increases as the Coverage decreases. Therefore, we would want to minimise the 
Coverage. (Tsoumakus et al., 2009). Coverage is not measured with a score between 0 and 1 
like all of the other metrics, but is rather given in terms of the cardinality of the dataset and 
will therefore be visualised separately from the other ranking-based metrics in Chapter 7.  
 
  

Stellenbosch University https://scholar.sun.ac.za



 87 

Chapter 6: Experimental design 
 

6.1 Introduction 
 

1. Are resampling algorithms effective at improving MLC performance at changing 
levels of global density? 

2. Is there one form of resampling preferred to all others? 
 
So far, we have explored MLC models, resampling algorithms, simulated data and evaluation 
metrics. This section intends to explain how all these elements were integrated to address 
the research goals above.  
 
When designing the experiments, there were some stumbling blocks and considerations that 
needed to be made. 
 
6.1.1 Resampling algorithms 
 
The first major stumbling block encountered in this thesis was that only one of the chosen 
resampling algorithms is available in R or Python. Therefore, all of the resampling algorithms 
explored in Chapter 3, with the exception of REMEDIAL had to be programmed from scratch. 
These algorithms are large and elaborate and took a considerable amount of time and effort 
to programme correctly. The process of coding these algorithms formed a large portion of the 
work performed in this thesis. Resampling algorithms for multi-label data are mostly available 
on the Java platform through the Mulan library in the Weka environment (Tsoumakas et al., 
2011). Developing these algorithms for widespread use in R and Python could lead to an 
increase in the popularity of the resampling algorithms.  
 
6.1.2 Computational efficiency 
 
In our experiments we found that computational efficiency was an important factor to be 
considered. Our experiments involved fitting many models on a large number of datasets 
along with running a large number of resampling algorithms. Given the nature of our 
experiments, this became a significant consideration in all decisions made. To ensure that 
experiments did not run for weeks at a time, we selected BR, CC, MLkNN, ECC, EBR and ECC 
as our MLC models since these models are efficient and would work under a diverse set of 
conditions. Section 8.4 provides a breakdown of the computational efficiency of the various 
resampling algorithms used.  
 
6.1.3 Stability of models 
 
Models were being fitted in large loops. Therefore, we needed the models to be stable and 
work under a diverse set of conditions created by the simulated data. If a model did not work 
for whatever reason, the experiments had to be stopped and restarted from the beginning. 
The simulated data ranged from very sparse data to data with high global density. We 
required the MLC models to be stable under all these conditions. The same applied to 

Stellenbosch University https://scholar.sun.ac.za



 88 

resampling algorithms. Therefore, the experiments were designed to be as stable and 
efficient as possible by selecting simple MLC models and adding a cleaning step for the data 
to avoid anomalies in the data. The experiments can be split up into six steps and are 
explained in detail in the following section. 
 

6.2 Experiments 
 
It is important to note that for each combination of Y and 𝜉, ten datasets were simulated and 
the results across the ten datasets were averaged to obtain the final results. The evaluation 
metrics calculated at the end of each iteration of the experiments are averaged. A flow 
diagram can be found in the following section, visually outlining this process.  
 
6.2.1 Simulate data 
 
The starting point for the experiments was to simulate the data using the simulation 
mechanism of Sandrock & Steel (2017) explained in Chapter 4. Data was simulated for 𝐾	 =
	5, 10	and	20 labels and for global density ξ = 	0,0.1, … ,0.5. The simulated datasets had 𝑁	 =
	1000 observations, had 10 relevant features, 10 redundant features, the signal was 0.5 and 
correlation between labels ρ = 	0.25. Each experiment consisted of one combination of 𝐾 
and ξ. Therefore, the first experiment had K	= 	5 and ξ = 	0 for all ten iterations. This was 
done for all possible combinations of 𝐾 and ξ. The results were aggregated accordingly, 
allowing us to compare the performance at different number of labels and changing global 
density.  
 
The table below illustrates the different combinations of 𝐾 and 𝜉 that were used to simulate 
datasets.  
 

Table 3: Combinations of global density and number of labels 

Labels 𝜉	 = 	0 𝜉	 = 	0.1 𝜉 = 0.2 𝜉	 = 0.3 𝜉	 = 	0.4 𝜉	 = 	0.5 
K = 5 𝐾	 = 	5	& 

	𝜉	 = 	0 
𝐾	 = 	5	& 
	𝜉	 = 	0.1 

𝐾	 = 	5	& 
	𝜉	 = 	0.2 

𝐾 = 	5	& 
	𝜉	 = 	0.3 

𝐾	 = 	5	& 
	𝜉	 = 	0.4 

𝐾	 = 	5	& 
	𝜉	 = 	0.5 

K = 10 𝐾	 = 	10	& 
	𝜉	 = 	0 

𝐾	 = 	10	& 
	𝜉	 = 	0.1 

𝐾	 = 	10	& 
	𝜉	 = 	0.2 

𝐾		10	& 
	𝜉	 = 	0.3 

𝐾	 = 10	& 
	𝜉	 = 	0.4 

𝐾	 = 10	& 
	𝜉	 = 	0.5 

K = 20 𝐾	 = 	20	& 
	𝜉	 = 	0 

𝐾	 = 	20	& 
	𝜉	 = 	0.1 

𝐾	 = 	20	& 
	𝜉	 = 	0.2 

𝐾	 = 20	& 
	𝜉	 = 	0.3 

𝐾	 = 20	& 
	𝜉	 = 	0.4 

𝐾	 = 20	& 
	𝜉	 = 	0.5 

 
6.2.2 Cleaning 
 
A cleaning step was included to ensure the stability of the algorithms. All observations that 
contained no labels were removed from the analysis. On rare occasions, the simulation 
mechanism led to some of the labels having no observations belonging to it. These labels 
were also removed as a pre-processing step. 

Stellenbosch University https://scholar.sun.ac.za



 89 

6.2.3 Test and training split 
 
A random test and training split was applied. We preferred to keep this part of the experiment 
as simple as possible. Cross-validation was considered. However, this would have added even 
more complexity to an already complex set of experimental conditions. A 70/30 test and 
training split was used. Therefore, a random 70% of the observations were chosen as the 
training dataset. The remaining 30% of the data formed the test dataset.  
 
It is important to note how the resampling algorithms apply to the data when a test and 
training split occurs. The resampling algorithms are only applied to the training data. The test 
data is not resampled and must remain untouched.  
 
6.2.4 Resampling algorithms 
 
The seven resampling algorithms as explored in Chapter 3 were applied to only the training 
data, creating seven new datasets. Each dataset represented the training data that was 
resampled using one of the resampling algorithms. Alongside the resampled datasets, we also 
kept the original training dataset, which was not resampled and allowed us to compare the 
performance on the resampled datasets to the performance on the initial training dataset. 
Therefore, for each simulated dataset, 7 new training datasets were created, one for each of 
the resampling techniques.  
 
6.2.5 Fit MLC models 
 
After step 4, we were left with eight training datasets—the seven datasets from the 
resampling algorithms and the original training dataset. The MLC models outlined in Chapter 
2 (MLkNN, BR, CC, CLR, ECC and EBR) were then fit on these eight datasets. Therefore, all six 
MLC models were fit on each of the eight datasets.  
 
6.2.6 Calculate evaluation metrics 
 
This is the first time that the test dataset was used. The models trained in step 5 were used 
to make predictions for the unseen test dataset. The evaluation metrics outlined in Chapter 
4 were then calculated for the predictions made from all the models. Evaluation metrics were 
calculated by comparing the predictions made with the ground truth in the unseen test data. 
  
Since we are interested in the effect of the resampling algorithms on performance, the 
evaluation metrics for the five MLC models for each resampling algorithm is averaged to 
obtain evaluation metrics for each form of resampling and the original training data. These 
evaluation metrics are the final product for each iteration of the experiments. Therefore, 
these evaluation metrics are averaged over the ten iterations to obtain the results for 
datasets with the characteristics 𝐾 and ξ.  
 
The result for one experiment was an 8 by 11 matrix. The matrix contained the evaluation 
metrics as well as the average time taken by each resampling algorithm and the average 
change in the number of observations resulting from the resampling. Therefore, each 

Stellenbosch University https://scholar.sun.ac.za



 90 

combination of 𝐾 and ξ will have a resulting matrix (18 total matrices). Consider the table 
below, which contains the results for 𝐾	 = 	5 and ξ	 = 	0: 
 

 
Figure 39: Example of results matrix 

Therefore, for each simulated dataset, a test and training split was performed. The seven 
resampling algorithms were applied to the training data, and five MLC models were trained 
on the resulting resampled training datasets, also the original training dataset. The five MLC 
models trained on the various resampled datasets were used to predict the test dataset, and 
evaluation metrics were then calculated for all the MLC models. These evaluation metrics 
were averaged over the five models for each form of resampling. Averaging the performance 
over the five MLC models is reasonable since they had very similar performance for the 
simulated data. Therefore, we were left with seven forms of resampling and the original 
dataset, which have associated evaluation metrics. This procedure is performed ten times. 
Thus, the evaluation metrics for the resampled datasets are averaged over the ten iterations 
to obtain the final matrix of evaluation metrics for each form of resampling.  
 
  

Stellenbosch University https://scholar.sun.ac.za



 91 

 

 
Figure 40: Experimental design 

Stellenbosch University https://scholar.sun.ac.za



 92 

Chapter 7: Performance of resampling 
algorithms 
 

7.1 Introduction 
 
The first research goal was to determine whether resampling algorithms are effective at 
improving MLC performance at changing levels of global density. The seven resampling 
algorithms discussed in Chapter 3 were chosen because they were designed to improve MLC 
performance in highly imbalanced datasets. We want to evaluate this notion at differing levels 
of global density. When the global density increases, imbalance no longer manifests itself as 
high MeanIR but instead occurs due to a disparity in local label densities. It is reasonable to 
assume that some of the resampling algorithms could effectively improve MLC performance 
by balancing the class distributions at larger global densities. Therefore, in Chapter 7, we wish 
to determine if the resampling algorithms effectively improve MLC performance in general. 
 
Chapter 8 extends from Chapter 7 and investigates whether there are resampling algorithms 
preferred in general and whether there are specific resampling algorithms that perform well 
under certain conditions and other algorithms that need to be avoided under certain 
conditions. Chapter 8 also provides recommendations on when to use and avoid the 
resampling algorithms, the computational efficiency of the resampling algorithms and the 
degree of the resampling imposed at different global densities. 
 
To investigate the first research goal we used the experimental design found in Chapter 6. 
Data is simulated for 𝐾	 = 	5, 𝐾	 = 	10 and 𝐾	 = 	20 labels at rising levels of global densities, 
where imbalance manifests itself in these datasets as a disparity in local label densities as 
seen in Chapter 4. For each combination of 𝐾 and 𝜉	 = 	0, 0.1, 0.2, 0.3, 0.4, 0.5, 10 datasets 
were simulated. The 7 resampling algorithms were applied to the resulting training datasets. 
5 MLC models were fit on each of these resampled training datasets, as well as the original 
training dataset. The 5 MLC models were used to make predictions on the respective test 
datasets and the evaluation metrics were calculated accordingly. For each combination of 
𝐾	and 𝜉, the performance metrics were averaged over the 10 dataset and the 5 MLC models.  
 
A reasonable assumption is that a resampling algorithm would be effective as a preprocessing 
tool if it improves MLC performance over the original dataset, therefore if the MLC models 
achieve better MLC performance when it uses the resampled datasets than when just the 
original data is used. Therefore, we wish to compare the performance of the MLC models that 
were fit using preprocessed datasets to MLC models that were fit using the original data. 
Throughout Chapter 7, the performance of the models on the original dataset is used as a 
reference to gauge if the preprocessing algorithms are a viable solution in the experimental 
conditions. The following sections are split by category of evaluation metrics, therefore a 
section for example-based, label-based and ranking-based metrics respectively.  
  

Stellenbosch University https://scholar.sun.ac.za



 93 

7.2 Example-based 
 
7.2.1 𝑲	 = 	𝟓 
 
In Figure 41 below, we observe line graphs representing the average performance of the MLC 
models for 𝐾	 = 	5 labels across the three example-based evaluation metrics, where each 
figure represents a different level of global density. The resampling algorithms are observed 
on the horizontal-axis, and the evaluation metrics are observed on the vertical-axis. The 
dashed lines in each graph represent the performance of the models on the original data. 
Therefore, it serves as a point of reference for the other forms of resampling.  
    

The first observation we make above is that the deviation in performance from the original 
data increases as the global density increases. In the top-left figure, we observe that all three 
lines are essentially flat, barely showing any deviation in performance from the dashed lines 
(original dataset). Only upon closer inspection, we observe how the resampling algorithms 
deviate in performance from the original dataset. However, as we move to the figures at 

Figure 41: Example-based for 𝐾 = 5 

Stellenbosch University https://scholar.sun.ac.za



 94 

larger global densities, the deviations in performance away from the dashed lines become 
larger. The top left figure has a global density of 0.03, representing the “special case” 
discussed in Chapter 5. We expect the resampling algorithms to be effective in this scenario. 
 
The visualisation below in Figure 42 allows us to zoom in on the “special case” mentioned 
above. The height of the bars represents the change in performance from the resampling 
algorithms relative to the original dataset. Therefore, the height of the bars represents the 
difference in performance between the original dataset and the resampled datasets. We 
observe that LP-ROS, ML-ROS, MLSOL and MLTL effectively improve MLC performance in 
terms of all three metrics. Therefore, these algorithms effectively reduce the Hamming loss 
and increase the Precision and Recall relative to what the MLC models were able to achieve 
on the original data. These changes in performance are extremely small, only leading to 
marginal improvements in performance. MLSMOTE performed poorly and led to a 
degradation in performance. Upon closer inspection we found that MLSMOTE only added a 
small number of observations, compared to the other algorithms.  
 

 
When we move away from the “special case” to larger global densities, we observe a change 
in the resampling algorithms that are effective at improving performance. Figure 44 below 
shows the same visualisation as above, but for a global density of 0.1 and 0.21. We observe 
that MLSMOTE and MLTL effectively improve performance at a global density of 0.1 and 0.21. 
LP-ROS and ML-ROS are also effective at improving performance at a global density of 0.21. 
The changes in performance at these levels of global density are still small, as seen in the line 
graphs above, but larger than for the special case.  
 
 

Figure 42: Example based change in performance 𝐾 = 5, density = 
0.03 

Stellenbosch University https://scholar.sun.ac.za



 95 

 
 
 

 
 
Referring to Figure 41, when the global density becomes larger than 0.3, we observe that the 
changes in performance are much larger. However, most of the algorithms are only able to 
improve Recall and often lead to a reduction in performance in terms of Hamming loss and 
Precision. REMEDIAL and RHWrSMT particularly start to struggle when the global density 
becomes larger.  
 
  

Figure 44: Example-based change in performance for 𝐾 = 5, density 
= 0.1 

Figure 43: Example-based change in performance for 𝐾 = 5, density 
= 0.21 

Stellenbosch University https://scholar.sun.ac.za



 96 

7.2.2 𝑲	 = 	𝟏𝟎 
 
In Figure 45, we observe line graphs representing the average performance of the MLC 
models for 𝐾	 = 	10 labels across the three example-based evaluation metrics, where each 
plot represents a different level of global density.   

 
In Figure 45 we observe the same phenomenon as we did for 𝐾	 = 	5, where the changes in 
performance due to the resampling algorithms become more exaggerated as the global 
density becomes larger. In the top-left figure we observe the performance for the “special 
case” with very small global density. The deviations in performance are very small and is 
cumbersome to see on the visualisation above. Figure 46 below allows us to zoom in closer, 
to inspect the deviations in performance from the original data.  
 
 

Figure 45: Example-based performance for 𝐾 = 10 

Stellenbosch University https://scholar.sun.ac.za



 97 

 

 
  
In Figure 46 above, we observe that all the resampling algorithms improve MLC performance 
in terms of all three metrics. The performance improvement comes through an increase in 
both Recall and Precision and a decrease in Hamming loss. The resampling algorithms with 
the most significant impact are LP-ROS, ML-ROS and REMEDIAL. However, the changes in 
performance remain small.  
 
Referring to Figure 45, as we move toward larger global densities, we observe that MLSMOTE 
and MLTL are the most successful algorithms. At global densities of 0.1 and 0.21, both 
algorithms could generate minor improvements in MLC performance, while most other 
resampling algorithms experienced relatively larger reductions in performance. An inherent 
characteristic that seems to emerge is that all the algorithms can successfully improve Recall, 
but this is consistently paired with a reduction in Precision and an increase in Hamming loss. 
The only exception to this rule is MLSMOTE, REMEDIAL and RHwRSMT, for which the opposite 
is true. However, for REMEDIAL and RHwRSMT, the increase in Precision is small relative to 
the reduction in Recall. In the cases where MLSMOTE did not improve the performance in 
terms of all three metrics, it improved the Precision but not the Recall, which is also true for 
the 𝐾	 = 	5 case. It is just less pronounced than for 𝐾	 = 	10.  

Figure 46: Change in example-based performance for 𝐾 = 
10, density = 0.02 

Stellenbosch University https://scholar.sun.ac.za



 98 

7.2.3 𝑲	 = 	𝟐𝟎 
 
In Figure 47, we observe line graphs representing the performance of the MLC models for 
𝐾	 = 	20 labels across the three example-based evaluation metrics, where each plot 
represents a different level of global density. 
 

 
In the top-left plot above, we observe the performance of all the resampling algorithms for 
the “special case” with very small global density. Once again, the deviations in performance 
from the original data are very small when the global density is small and becomes more 
exaggerated as the global density increases. Figure 48 allows us to zoom in on the deviations 
in performance for the top-left plot above.  
 

Figure 47: Example based performance for 𝐾 = 20 

Stellenbosch University https://scholar.sun.ac.za



 99 

 
We observe that the most successful resampling algorithms were MLSMOTE, REMEDIAL and 
RHwRSMT. These models are able to improve performance in terms of all three metrics. 
Therefore, Hamming loss is reduced and Precision and Recall are increased, relative to the 
use of the original data. The improvements are very small, but this was the general trend 
when the global density is very small. 
 

 
As the global density increases, we observe that MLSMOTE tends to be the most successful 
resampling algorithm since it does not lead to a degradation in performance in terms of any 
of the three metrics. Generally, MLSMOTE either improved performance or retained the same 
performance as the original dataset. For 𝐾	 = 	20, we observe that the resampling algorithms 
struggle to improve performance in terms of more than one of the evaluation metrics. 
Similarly to 𝐾	 = 	10, many of the algorithms can significantly improve Recall, but this is 
paired with a reduction in performance in terms of Hamming loss and Precision. MLSMOTE, 
REMEDIAL and RHwRSMT are the algorithms that are able to improve Precision. However, 
this improvement in Precision is offset with a more significant reduction in Recall. 
  

Figure 48: Change in example-based performance for 𝐾 = 20, 
density = 0.03 

Stellenbosch University https://scholar.sun.ac.za



 100 

7.2.4 Conclusions 
 
We found that the resampling algorithms struggled to improve all three of the example-based 
evaluation metrics simultaneously. The resampling algorithms tend to significantly improve 
performance in terms of one or two of the evaluation metrics at the cost of worse 
performance on the other metrics. Most of the algorithms were able to improve Recall. 
However, this comes at the cost of a reduction in Precision. The only resampling algorithms 
that were able to improve Precision consistently were MLSMOTE, REMEDIAL and RHwRSMT. 
Very few of the algorithms were able to improve Hamming loss, and when there were 
improvements, it tended to be minor improvements.  
 
A trade-off exists between the improvement of Precision and Recall. Including the F1-score, 
which is the harmonic mean between the Precision and Recall would have been helpful to 
determine which effect is the largest. The F1-score rewards an algorithm for finding a balance 
between the Precision and Recall. 
 
The only situations where Hamming loss was improved was at the special cases with very 
small global density or when an undersampling algorithm like MLTL was used. Therefore, we 
conclude that the Hamming loss generally does not stand to gain from oversampling at larger 
global densities. Undersampling algorithms might be a future avenue of research to explore 
whether improvements in Hamming loss can be found.  
 
Deviations in performance consistently became larger as the global density became larger. 
Although the resampling algorithms were more successful at improving performance in terms 
of all three example-based metrics at small global densities, the positive deviations in 
performance tended to be small. As the global density increased, the deviations in 
performance became larger. However, generally, the algorithms were only successful at 
improving one or two of the metrics simultaneously, usually paired with a reduction in 
performance for the other metrics.  
 
MLSMOTE was the most consistent resampling algorithm throughout the experiments. Except 
for the "special case" with 𝐾	 = 	5 labels, MLSMOTE could improve performance in terms of 
all three example-based metrics or retain the same performance as the original data. 
MLSMOTE very rarely led to a reduction in performance, and when this was the case, the 
reduction was minimal.  LP-ROS, ML-ROS, MLSOL and MLTL were very successful at improving 
Recall. However, this was often paired with a reduction in performance in other metrics. 
REMEDIAL, MLMSOTE and RHwRSMT were able to improve Precision, especially at larger 
global densities, but this was usually paired with an even bigger reduction in Recall.  
 
Therefore, in terms of the example-based metrics, resampling is not a tool that can lead to a 
general improvement in MLC performance. Resampling algorithms are able to improve some 
of the metrics, but not all of them. Therefore, if a researcher is looking to improve a specific 
metric like Precision or Recall, resampling might be a viable option to improve the specific 
metric. If a researcher is looking to improve the performance of Hamming loss, undersampling 
algorithms could be a future avenue for research since generally the oversampling algorithms 
led to a reduction in performance for the Hamming loss.  
  

Stellenbosch University https://scholar.sun.ac.za



 101 

7.3 Label-based 
 
The three label-based metrics are Macro-Precision, Macro-Recall and Macro-F1. From the 
three categories of evaluation metrics, it is reasonable to assume that the resampling 
algorithms will have the largest positive impact on the label-based metrics. The label-based 
metrics are sensitive to imbalance in the dataset, therefore MLC models will do well on the 
label-based metrics if they can classify the minority labels well. Since most of the resampling 
algorithms try to inflate the minority classes and reduce imbalance, we expect the 
performance on resampled datasets to be better than the performance on the original 
dataset. For all three metrics an increase would indicate an improvement in MLC 
performance, resulting from the resampling. 
 
7.3.1 𝑲	 = 	𝟓 
 
In Figure 49 below, we observe line graphs representing the average performance of the MLC 
models for 𝐾	 = 	5 labels across the three label-based evaluation metrics, where each plot 
represents a different level of global density. 
 

Figure 49: Label-based performance for 𝐾 = 5 

Stellenbosch University https://scholar.sun.ac.za



 102 

From Figure 49 above, we observe that the deviations in performance from the resampling 
algorithms to the original dataset are much larger than we observed for the example-based 
metrics. These deviations are also large at smaller global densities, which was not the case 
for the example-based metrics previously. It is clear that many of the resampling algorithms 
effectively improve MLC performance. For the 𝐾	 = 	5 case, the algorithms struggle to 
improve MLC performance for the “special case” with a very small global density. However, 
they are very effective at all other levels of global density. 
 
In Figure 50 below, we observe the deviation in performance for the resampling algorithms 
from the original dataset, when the global density is very small (“special case”). 

 
From Figure 50, we observe that most resampling algorithms are unsuccessful at improving 
MLC performance. The resampling algorithms that successfully improve MLC performance in 
terms of all three metrics are MLSOL and MLTL. MLSMOTE, one of the most successful 
algorithms in terms of example-based metrics, causes a reduction in performance for all three 
metrics, which was also the case for the example-based metrics with K = 5 and the “special 
case”. 
  
  

Figure 50: Change in label-based performance for 𝐾 = 5, 
density = 0.03 

Figure 51: Change in label-based performance for 𝐾 = 5, density = 0.1, 0.21 

Stellenbosch University https://scholar.sun.ac.za



 103 

Figure 51 shows the same visualisation as before, but for global densities of 0.1 and 0.21. We 
observe that many of the algorithms are now successful at improving MLC performance for 
all three metrics. LP-ROS, ML-ROS, MLSOL and MLTL are all successful at improving MLC 
performance for all three metrics. The algorithms are especially effective at improving Macro-
F1.  
 
The deviations in performance from the original dataset for global densities of 0.3, 0.37 and 
0.46 are observed in Figure 52. As the global density becomes larger than 0.3, we observe 
that the dominant resampling algorithms are LP-ROS, ML-ROS and MLSOL. These resampling 
algorithms are effective at improving MLC performance for all three metrics. We also observe 
that REMEDIAL and RHwRSMT lead to reductions in performance for all three metrics as the 
global density becomes larger.  
 

  
 
 
 
 
  
 
 
 
 
  

Figure 52: Change in label-based performance 𝐾 = 5, density = 0.3, 0.37, 0.46 

Stellenbosch University https://scholar.sun.ac.za



 104 

7.3.2 𝑲	 = 	𝟏𝟎 
 
In Figure 53, we observe line graphs representing the average performance of the MLC 
models for 𝐾	 = 	10 labels across the three label-based evaluation metrics, where each plot 
represents a different level of global density. 
    

 
From Figure 53, we observe that the deviations in performance from the original data are 
already large at small densities and these deviations continue to become larger as the global 
densities increases. For K = 10, we observe a few resampling algorithms that are consistently 
the most effective at improving the label-based metrics across different global densities. The 
most successful algorithms are LP-ROS, ML-ROS and MLSOL. These algorithms consistently 
produced large improvements in performance over the original data. 
 

Figure 53: Label-based performance for 𝐾 = 10 

Stellenbosch University https://scholar.sun.ac.za



 105 

 

 
In Figure 54, we observe the deviations in performance from the original data for the “special 
case”, with a global density of 0.02. Unlike for 𝐾	 = 	5, there are several algorithms that led 
to small improvements in terms of the label-based metrics for the “special case”. LP-ROS, ML-
ROS and MLSOL improve the label-based performance in terms of all three metrics.  
 
Referring to Figure 53, as the global density increases, we observe that LP-ROS, ML-ROS and 
MLSOL remain the most successful resampling algorithms and improve performance in terms 
of all three metrics at all levels of global density.  For a global density of 0.35 and 0.44, we 
observe that MLTL is also succesful at improving performance for all three label-based 
metrics, along with the other three algorithms.  
 
Similarly to 𝐾	 = 	5, we observe that REMEDIAL and RHwRSMT experienced a large reduction 
in performance as the global density became larger than 0.27. This reduction increases as the 
global density increases. We also observe that the deviations in performance relative to the 
original data are very large. Therefore, those algorithms that improve MLC performance lead 
to large improvements. MLSMOTE, one of the most successful algorithms in terms of the 
example-based metrics experienced a consistent decline in performance as the global density 
increased.  
  

Figure 54: Change in label-based performance for 𝐾 = 
10, density = 0.02 

Stellenbosch University https://scholar.sun.ac.za



 106 

7.3.3 𝑲	 = 	𝟐𝟎 
 
In Figure 55, we observe line graphs representing the average performance of the MLC 
models for 𝐾	 = 	20 labels across the three label-based evaluation metrics, where each plot 
represents a different level of global density. 
 

 
In Figure 55, we observe similar patterns to what has been observed for 𝐾	 = 	5 and 𝐾	 =
	10. We observe that the most successful resampling algorithms at all levels of global density 
are ML-ROS, LP-ROS and MLSOL. These algorithms consistently improve MLC performance in 
terms of all three label-based metrics. 
 
 
 
 

Figure 55: Label-based performance for 𝐾 = 20 

Stellenbosch University https://scholar.sun.ac.za



 107 

 
In Figure 56, we observe the deviations in performance from the orignal data for each of the 
resampling algorithms, when we obsevrve the “special case” with a global density of 0.03. We 
observe that LP-ROS has the largest positive impact on MLC performance, followed by MLSOL 
and ML-ROS. MLSMOTE, REMEDIAL and RHwRSMT also have a positive impact on 
performance in terms of all three metrics.  
 
 

  
When the global density increases to 0.1 and 0.2, we observe that only LP-ROS, ML-ROS and 
MLSOL are able to successfully improve MLC perfromance in terms of all three label-based 
metrics. MLSMOTE, REMEDIAL and RHwRSMT are no longer able to improve MLC 
performance.  
 
In Figure 58, we observe the deviations in performance for global density of 0.27, 0.37 and 
0.45. We observe that LP-ROS, ML-ROS and MLSOL consistently improve MLC performance 
across all levels of global density. MLTL increases in performance as the global density 
becomes larger and is on par with the other algorithms for a global density of 0.45. Once 
again, we observe that REMEDIAL and RHwRSMT experience a considerable decline in 
performance as the global density increases.  
 

Figure 56: Change in label-based performance for 𝐾 = 
20 , density = 0.03 

Figure 57: Change in label-based performance for 𝐾 = 20, density = 0.1,0.2 

Stellenbosch University https://scholar.sun.ac.za



 108 

 
 
 

   
 
  

Figure 58: Change in label-based performance for 𝐾 = 20, density = 0.27, 0.37, 0.45 

Stellenbosch University https://scholar.sun.ac.za



 109 

7.3.4 Conclusions 
 
The results from the label-based metrics produce contrasting results to the example-based 
metrics seen previously. We expected the resampling algorithms to be very successful at 
improving the MLC performance on the label-based metrics and this was the case. The 
resampling algorithms were able to produce large improvements in MLC performance over 
the original data and these deviations in performance were large at small global densities and 
got even bigger at larger global densities.  
 
The label-based metrics were specifically chosen as imbalance aware evaluation metrics  that 
are sensitive to predictions on the minority classes. The Macro-F1 score is often chosen as the 
evaluation metric to rank the efficacy of resampling algorithms in multi-label literature. An 
improvement in the label-based metrics shows that the resampling algorithms were able to 
make better predictions on the minority classes, compared to when the original data was 
used. Therefore, it is reasonable to assume that an improvement in the label-based metrics 
indicates that the resampling algorithms were able to successfully address imbalance and 
hence improve the classification of the minority labels.  
 
Three resampling algorithms emerged as the most successful for the label-based metrics. LP-
ROS, ML-ROS and MLSOL were able to improve performance in terms of all three metrics for 
every combination of labels and global density. These algorithms were also very successful at 
larger global densities and were able to generate large improvements in performance at these 
global densities. MLTL was also successful at improving performance in terms of all three 
metrics on occasions. Therefore, if the goal is to improve the classification performance on 
the minority labels of an imbalanced multi-label classification problem, LP-ROS, ML-ROS and 
MLSOL would be recommended.  
 
An interesting observation was how REMEDIAL and RHwRSMT experienced a consistent 
decline in performance as the global density increased. This decline was amplified at a global 
density of 0.4 and 0.5. The common denominator among the two algorithms are that they 
both make use of label decoupling. Label decoupling will have a negative impact and cause a 
reduction in label-based performance as the global density increases. Therefore, we would 
recommend avoiding the use of algorithms that make use of label decoupling when the global 
density becomes larger in multi-label classification problems.  
 
MLSMOTE, the most successful algorithm for the example-based metrics, did not replicate its 
impressive performance for the label-based metrics. MLSMOTE either experienced a small 
reduction in performance or retained the same performance as the original data.  
  

Stellenbosch University https://scholar.sun.ac.za



 110 

7.4 Ranking-based metrics 
 
The three ranking-based metrics are Coverage, Ranking-Loss and One-Error. These metrics 
are calculated on the label rankings rather than the binary predictions. Therefore, it is an 
entirely different way of assessing an MLC model from the two sections seen before. From 
Chapter 5, we observe that Coverage is measured on a different scale to all the other 
evaluation metrics and will therefore be discussed separately from Ranking-Loss and One-
Error in this section. For all the metrics a decrease would indicate an improvement in MLC 
performance, resulting from the resampling. 
 
7.4.1 𝑲	 = 	𝟓 
 
In Figure 59, we observe line graphs representing the average performance for One-Error and 
Ranking-Loss on the MLC models for 𝐾	 = 	5 labels, where each plot represents a different 
level of global density. 
 

Figure 59: Ranking-based for 𝐾 = 5 

Stellenbosch University https://scholar.sun.ac.za



 111 

From Figure 59, we observe that the deviations in performance for One-Error and Ranking-
Loss are not large. The deviations in performance do become larger as the global density 
increases, however it is still small in comparison to the example-based and label-based 
metrics seen previously. We observe that none of the models can improve performance in 
any meaningful way at any level of global density. REMEDIAL and MLSOL are the two worst-
performing resampling algorithms and lead to the most significant reduction in performance. 
The decrease in performance from REMEDIAL becomes larger as the global density increases. 
 
In Figure 60, we observe line graphs representing the performance for Coverage on the MLC 
models for 𝐾	 = 	5 labels, where each plot represents a different level of global density. 
 

 
 
From Figure 60, we observe that there are only very small deviations in Coverage at all levels 
of global densities. For the “special case” when the global density is very small,  MLSOL, MLTL, 

Figure 60: Coverage for 𝐾 = 5 

Stellenbosch University https://scholar.sun.ac.za



 112 

LP-ROS, and ML-ROS can improve Coverage. At a global density of 0.1, LP-ROS, ML-ROS and 
MLTL are effective at producing a slight increase in performance, and at a global density of 
0.2, only LP-ROS and ML-ROS were able to improve Coverage. At global densities larger than 
0.2, none of the algorithms could effectively improve Coverage. REMEDIAL was the worst 
performing algorithm in terms of Coverage and led to increasing reductions in performance 
as the global density increased. 
 
7.4.2 𝑲	 = 	𝟏𝟎 
 
In Figure 61, we observe line graphs representing the performance for One-Error and Ranking-
Loss on the MLC models for 𝐾	 = 	10 labels, where each plot represents a different level of 
global density. 
 

 
For 𝐾	 = 	10, we also observe that the deviations in performance are minimal. The deviations 
do increase as the global density increases but are still small compared to the deviations 

Figure 61: Ranking-based for 𝐾 = 10 

Stellenbosch University https://scholar.sun.ac.za



 113 

observed for the label-based metrics. For the “special case” with a very small global density, 
we observe that all the resampling algorithms can make minor improvements in terms of both 
metrics. However, as the global density increases, none of the algorithms can consistently 
improve performance. MLSMOTE and MLTL are the two most successful algorithms since they 
improved performance on some occasions and never led to a significant reduction in 
performance. As the global density increases, the reduction in performance from LP-ROS and 
ML-ROS consistently increases. 
 
In Figure 62, we observe line graphs representing the performance for Coverage on the MLC 
models for 𝐾	 = 	10 labels, where each plot represents a different level of global density. 
 
 

 
 

Figure 62: Coverage for 𝐾 = 10 

Stellenbosch University https://scholar.sun.ac.za



 114 

 
We observe that the deviations in performance are minimal at all levels of global density. 
Most of the algorithms tend to produce similar levels of Coverage at all levels of global 
density. For the “special case” with a very small global density, we observe that all the 
resampling algorithms successfully reduced the Coverage slightly. However, as the global 
density increases, most of the algorithms lead to a slight increase in Coverage, except for 
MLSMOTE, which led to a very small reduction in Coverage on two occasions.  
 
7.4.3 𝑲	 = 	𝟐𝟎 
 
In Figure 63, we observe line graphs representing the average performance for One-Error and 
Ranking-Loss on the MLC models for 𝐾	 = 	20 labels, where each plot represents a different 
level of global density. 

Figure 63: Ranking-based for 𝐾 = 20 

Stellenbosch University https://scholar.sun.ac.za



 115 

We observe that none of the resampling algorithms could improve MLC performance in terms 
of either of the metrics. The performance of the resampling algorithms was either the same 
as the original data or worse. LP-ROS, ML-ROS and MLSOL tended to have the worst 
performance and led to a reduction in performance at all levels of global density. This 
reduction in performance increased as the global density increased. 
 
In Figure 64, we observe line graphs representing the average performance for One-Error and 
Ranking-Loss on the MLC models for 𝐾	 = 	20 labels, where each plot represents a different 
level of global density. 

 
  
From Figure 64, we observe that most deviations in performance are very small. Generally, 
the resampling algorithms do not lead to significant deviations in Coverage. LP-ROS, ML-ROS 
and MLSOL were the models that struggled the most since they led to the largest increase in 
Coverage of all the resampling algorithms. We observe that MLSMOTE and MLTL were the 

Figure 64: Coverage for 𝐾 = 20 

Stellenbosch University https://scholar.sun.ac.za



 116 

most successful resampling algorithms in terms of Coverage since they either matched the 
performance of the original data or led to a very slight decrease in Coverage. 
 
7.4.4 Conclusions 
 
The resampling algorithms were less successful at improving MLC performance in terms of 
the ranking-based metrics, compared to the example-based and label-based metrics before. 
In general, the deviations in performance tended to be small. Even as the global density 
increased, the deviations did not become very large as we experienced with the label-based 
and example-based metrics. Most of the resampling algorithms either retained the same 
performance as the original data or led to a slight reduction in performance.  
 
MLSMOTE and MLTL were the two most successful resampling algorithms for the ranking-
based metrics, although they rarely improved performance. They were able to consistently 
match the performance of the original data and on some occasions could make small 
improvemements in performance. Most of the resampling algorithms tended to struggle to 
improve the ranking-based performance, therefore at least matching the performance of the 
original data was a good property to have, when an algorithm could not make improvements 
in performance.  
 
LP-ROS, ML-ROS and MLSOL were consistently the worst resampling algorithms in terms of 
the ranking-based metrics. These algorithms consistently led to a reduction in performance. 
The reduction in performance tended to increase as the global density increased. This result 
comes in contrast to Section 7.3, where these three algorithms were found to consistantly be 
the most successful algorithms at improving the label-based evaluation metrics.  
 
The observation above, leads us to make a similar conclusion to that in Section 7.2.4 for 
Hamming loss. Undersamping could be a future area of research to improve the performance 
on the ranking-based metrics, instead of using oversampling. We would not recommend the 
resampling algorithms as a general mechanism to improve ranking-based performance since 
the resampling algortihms struggled to make improvements on the ranking-based metrics 
compared to the use of the original data, although the performance for most of the 
resampling algorithms tended to remain the same as for the original data.  
 
Section 7.2.4 reccomends that LP-ROS, ML-ROS and MLSOL be used as resampling algorithms 
to improve the label-based evaluation metrics. The tradeoff in performance with the ranking-
based metrics should be taken into consideration when these three resampling algorithms 
are used. The increase in label-based performance that these algorithms are able to generate 
will be accompanied with a reduction in ranking-based performance.  
 
 
  

Stellenbosch University https://scholar.sun.ac.za



 117 

Chapter 8: Consolidation 
 

8.1 Introduction 
 
The second research goal addressed whether there is one form of resampling preferred to all 
others. This builds on the information we have seen in the preceding chapter. In Chapter 7 
we observed how MLC performance changes when resampling algorithms are used to 
preprocess the data instead of just using the original data.  
 
The information we have observed so far has left us with some mixed results. A clear answer 
to the question would be “No”. There is no form of resampling that is preferred to all others. 
This analysis was performed with a mix of different evaluation metrics to form a holistic 
approach that would provide a big picture of how the resampling algorithms affected MLC 
performance. Some algorithms are preferred to others in certain situations.  However, no 
resampling algorithm emerges as the best in all scenarios.  
 
The use of three categories of evaluation metrics allowed us to conclude that the different 
types of resampling algorithms affect performance differently. Some of the algorithms are 
very effective for example-based metrics but perform poorly for label-based metrics. The 
algorithms are also, in general, better at improving specific types of evaluation metrics. For 
instance, the resampling algorithms were very effective at enhancing label-based metrics but 
struggled to improve the performance for ranking-based metrics.  
 
Therefore, when to use specific resampling algorithms depends on what the goal of the study 
is. Choosing the correct resampling algorithm would depend on which evaluation metric is 
important to that specific study. If Precision is important, we will select one of the resampling 
algorithms that effectively improve Precision without creating too much of a reduction in 
some of the other metrics. In the next section, we will explore which algorithms are the most 
effective for the different evaluation metrics and what the downside might be when the 
algorithms are used. 
 
  

Stellenbosch University https://scholar.sun.ac.za



 118 

8.2 Recommendation 
 
8.2.1 Example-based 
 
We found that the resampling algorithms were effective at improving performance for the 
example-based metrics. However, the algorithms struggled to improve all three metrics 
simultaneously and could usually only improve one of the three metrics. The deviations in 
performance became larger as the global density increased.  
 
Generally, MLSMOTE was the most effective resampling algorithm for the example-based 
metrics. MLSMOTE either improved performance or retained the same performance as the 
original data in the cases it could not improve performance. MLSMOTE was the most 
consistent algorithm across all the example-based metrics and rarely led to a reduction in 
performance in terms of any metrics. 
 
MLSMOTE, REMEDIAL and RHwRSMT were the only algorithms that were able to improve 
Precision. However, this improvement usually came at the cost of a reduction in Recall. LP-
ROS, ML-ROS, MLTL and MLSOL were effective at improving Recall. However, this came at the 
expense of a decrease in Precision. It was rare for any algorithm to improve the Hamming 
loss. There was no clear pattern in which algorithms are preferred in terms of Hamming loss. 
The changes in Hamming loss were negligible, even at larger global densities. Therefore, the 
resampling algorithms are practical at either improving Recall or Precision, and a trade-off 
exists between these two metrics to improve performance. It would therefore make sense to 
rather consider the F1 score as an evulation metric in future studies. 
 
Therefore, in terms of a performance recommendation for the example-based metrics, 
MLSMOTE would be the safe choice. However, if Precision needs to be improved REMEDIAL 
or RHwRSMT could also be used. These algorithms do come with downside in terms of other 
metrics. If improving Recall is the objective LP-ROS, ML-ROS, MLTL or MLSOL could be 
considered.  
 
8.2.2 Label-based 
 
The resampling algorithms were highly successful at improving performance in terms of the 
label-based metrics. The algorithms that were able to improve all three metrics made 
considerable improvements in performance and were very consistent. Gains in performance 
for the label-based metrics provides encouraging signs for the efficacy of the resampling 
algorithms as a preprocessing tool to improve MLC performance. An improvement in 
performance from the original data shows that the resampling algorithms could better 
represent the minority classes and improve the classification performance of these 
underrepresented classes. 
 
LP-ROS, ML-ROS and MLSOL were able to make large improvements in all three metrics at all 
levels of global density. Using these algorithms would be effective for label-based metrics. 
However, all three metrics also produced poor performance in terms of ranking-based 
metrics. Therefore, they effectively improve performance for the label-based metrics, but this 
comes at the cost of worse performance on the ranking-based metrics. MLTL and MLSMOTE 

Stellenbosch University https://scholar.sun.ac.za



 119 

were also successful at improving performance in terms of the label-based metrics. However, 
they were not as consistent as LP-ROS, ML-ROS and MLSOL, and the performance 
improvements were smaller. But, MLSMOTE and MLTL come with fewer drawbacks and risk 
of reduced performance in other metrics.   
 
REMEDIAL and RHwRSMT experienced a consistent reduction in label-based performance as 
the global density increased. These reductions in performance were also large. Therefore, we 
would advise avoiding these algorithms at large global densities. There was no trade-off in 
performance between the three metrics. Generally, if a resampling algorithm did well, it did 
well in terms of all three metrics, and if it did poorly, performance would decrease in terms 
of all three metrics.  
 
To optimise performance in terms of the label-based metrics, LP-ROS, ML-ROS or MLSOL 
should be considered. All three algorithms do provide downside in terms of some other 
metrics. However, MLSOL is the safest in this regard and would be the best all round 
resampling algorithm of the three since LP-ROS and ML-ROS do have some considerable 
drawbacks in terms of the ranking-based metrics. 
 
8.2.3 Ranking-based 
 
All the resampling algorithms struggled to improve performance in terms of the ranking-
based metrics. Deviations in performance remained small, even as the global density 
increased. Therefore, even though the algorithms did not improve performance, they also 
generally did not lead to large reductions in performance.  
 
MLSMOTE and MLTL were the most successful algorithms in terms of ranking-based metrics. 
They were able to consistently match the original data's performance and improve 
performance on some occasions. Most of the other algorithms invariably led to small 
reductions in performance. Therefore, matching the performance of the original data could 
be seen as a success for the ranking-based metrics.  
 
LP-ROS, ML-ROS and MLSOL consistently led to a reduction in performance for the ranking-
based metrics. These reductions also increased as the global density increased. This is an 
interesting observation since these are the three very successful algorithms in terms of label-
based metrics. Therefore, the gains in performance observed for the label-based metrics are 
somewhat offset by the reduction in performance for the ranking-based metrics. Although, 
the increase in performance seen for the label-based metrics are much larger than the 
reduction in performance for the ranking-based metrics.  
 
Improving the performance on the ranking-based metrics through resampling might not be a 
feasible goal. Most of the algorithms struggled to improve performance, and when the 
algorithms did improve performance, they tended to be minor improvements. Therefore, we 
would not recommend resampling algorithms to improve ranking-based performance. 
However, if not reducing the ranking-based metrics is part of the goal, we recommend 
avoiding LP-ROS, ML-ROS and MLSOL. Generally, the deviations in performance for the 
ranking-based metrics tended to be minor, in a positive and negative sense. 

Stellenbosch University https://scholar.sun.ac.za



 120 

8.3 Degree of resampling 
 
In Chapter 7 we observed that the resampling algorithms' effect on performance became 
amplified as the global density increased. It is reasonable to assume that this is due to 
resampling algorithms becoming more aggressive in undersampling and oversampling the 
datasets as the global density increases. In Figure 65 below, we observe the average number 
of observations added or removed by the resampling algorithms at different levels of global 
density. All of the resampling algorithms have tuning parameters that control the degree of 
resampling performed. Throughout this thesis the default settings recommended by the 
relevant literature was used in all simulations.  
 

 
We observe that the average number of observations added or removed from the datasets 
increased as the global density increased. It is reasonable to assume that the increase in 
performance deviations experienced at larger global densities is due to the increase in 
observations that have been added or removed from the dataset as the global density 
increased. Adding or removing more observations from the dataset will have a more 
polarising effect on MLC performance. The direction of this deviation in performance depends 
on the quality of the observations generated or removed.  
 
A future avenue of research could be to tune the relevant parameters for the resampling 
algorithms as the global density increases. This would reduce some of the polarity seen in the 
changes of performance. At large global densities, changes in performance became large in a 
positive and a negative sense. Using the tuning parameters of the resampling algorithms to 
control the trade-off between the degree of resampling and the performance of the 
algorithms could be an important part of unlocking the potential of the resampling algorithms 
at larger global densities.   
  

Figure 65: Degree of resampling 

Stellenbosch University https://scholar.sun.ac.za



 121 

8.4 Computational efficiency 
 
Throughout the experiments the “run time” of the resampling algorithms were recorded 
using the Sys.time() function in R. The difference in time between the start and end of each 
resampling algorithm was recorded in seconds. We use the run time as an indication of the 
computational efficiency. All experiments were performed on a 2019 MacBook Pro, with a 
1.4 GHz Quad-Core Intel Core i5 and 8 GB of 2133 MHz LPDDR3 RAM. It should be noted that 
all the resampling algorithms were coded from scratch, and it is not guaranteed that these 
run times represent the optimal run time that can be achieved for these algorithms. It is 
reasonable to assume that the run time can be lowered by improving the efficiency of the 
code.  
 
In Figure 66 below we observe the run times in seconds for 𝐾	 = 	5, 𝐾	 = 	10 and 𝐾	 = 	20 
labels respectively. The run times are averaged across all the experiments.  
 

  
From Figure 66, we observe that the run times increased drastically for all the algorithms as 
the number of labels in the dataset increased. The increasing run times as the labels in the 
dataset increased was a limitation to our thesis since we had to fit resampling algorithms on 
many different datasets. The computational cost added up and led to experiments taking very 
long. For this reason, we did not include datasets with more labels in this analysis. This is 
something that should be considered in future studies. We observe that MLSOL had the 
longest run times of all the algorithms, and MLSMOTE had the shortest run times. MLTL, 
REMEDIAL and RHwRSMT were also relatively efficient. LP-ROS and ML-ROS were less 
efficient than MLTL, REMEDIAL and RHwRSMT, but was still much more efficient than MLSOL. 
 
Referring to Chapter 3, we observed that MLSOL has a very elaborate algorithm involving 
many different algorithms used together. The algorithm also calculates the 𝑘-nearest 
neighbours to each observation in the dataset, which leads to very long run times. MLSMOTE, 
on the other hand, avoids iterating over all the observations in the dataset and instead only 
focuses on the minority observations. 

Figure 66: Run times for 𝐾 = 5, 10 and 20 

Stellenbosch University https://scholar.sun.ac.za



 122 

 
In Figure 67, we observe the average run times of all the resampling algorithms as the global 
density increases. 
 

 
 
We observe that the run times of the algorithms generally increased as the global density 
increased. Initially, there was a large increase in the run times. However, this increase started 
to plateau as the global density increased further. It is reasonable to assume that this increase 
in run time, was due to the increase in observations being added and deleted by the 
resampling algorithms as the global density increased. The more samples that need to be 
added or removed, lead to more computations that need to be performed and in turn longer 
run times for the algorithms.  
 
The run times of the resampling algorithms is something that should be kept in mind when 
considering it as part of a multi-label analysis. The run-time required for the resampling 
algorithms will increase as the number of labels increases and as the global density increases. 
Although changing the number of observations in the datasets fell outside the scope of this 
thesis, it is reasonable to assume that datasets with a larger number of observations will also 
lead to longer run times.  
 

8.5 Evaluation metrics 
 
In the literature on multi-label resampling algorithms, most papers make use of label-based 
evaluation metrics to measure the efficacy of the resampling algorithms as a preproccesing 
mechanism for multi-label data. The macro-F measure is often chosen as the evaluation 
metric that is used to rank the resampling algorithms. Using label-based metrics to measure 
the performance of the resampling algorithms is reasonable since the label-based metrics 
punish algorithms if they only perform well on the majority classes and perform poorly on the 
minority classes. This is a desirable characteristic since we would want the resampling 
algorithm to improve the performance of our MLC models on the minority labels. 

Figure 67: Run time vs global density 

Stellenbosch University https://scholar.sun.ac.za



 123 

 
However, in this study we have included a broad group of evaluation metrics including 
example-based, label-based and ranking-based metrics. The results are interesting, since we 
observe that the resampling algorithms are the most successful on the label-based metrics 
and less successful on the example-based and ranking-based metrics. A metric such as 
Hamming loss is extremely important in MLC and is often used to select the most appropriate 
MLC model. In this thesis we found that the resampling algorithms struggle to make 
improvements in terms of Hamming loss and often led to a slight reduction in performance 
in terms of Hamming loss.  
 
Therefore, even though the resampling algorithms might be improving the classification 
performance on the minority labels, they might lead to a reduction in performance on the 
other labels and lead to a worse overall MLC model. In Chapter 7, we observed that LP-ROS, 
ML-ROS and MLSOL were very successful at improving the label-based metrics, however all 
three models also lead to a consistent reduction in the ranking-based performance measures.  
 
We would recommend including both ranking-based and example-based metrics along with 
the label-based metrics in future studies to quantify the effect that the resampling algorithms 
will have on the overall MLC performance of the models and on the performance of the 
minority labels.  
 
 
 
 
 
 
 
 

Stellenbosch University https://scholar.sun.ac.za



 124 

Chapter 9: Conclusion 

 
In this thesis, we set out to address two research goals. These research goals allowed us to 
learn about the effect that resampling algorithms have on multi-label performance at 
changing levels of global density, where imbalance manifests itself as a disparity in local label 
densities. We made use of artificially generated data to mitigate the prevalence of domain 
bias. The artificial data allowed us to develop the necessary conditions without being 
dependant on benchmark datasets, which created a controlled environment for our 
experiments. 
 
The thesis found resampling algorithms to be effective at all levels of global density. Although 
the algorithms performed well for the "special cases", which is a good representation of the 
scenarios the resampling algorithms were intended for, where imbalance manifests itself 
through a sparse data matrix. The improvements in performance made at these levels of 
global density were consistent but small. When the global density increased, we found that 
the resampling algorithms' effect on MLC performance was amplified. There were much 
larger deviations in performance created by the resampling algorithms at larger global 
densities, positively and negatively. The increase in performance deviations at larger global 
densities is due to the resampling algorithms becoming more aggressive in how it 
undersampled and oversampled the datasets. We found that more observations were added 
and removed from the datasets as the global density increased. This led to larger deviations 
in performance.  
 
We observed that no resampling algorithm emerged as a dominant algorithm above all 
others. The use of many evaluation metrics showed that all the algorithms favour different 
evaluation metrics and can improve performance in different ways. We also found that the 
performance improvements for one metric were often paired with a reduction in 
performance for another.  
 
For the example-based metrics we found that the resampling algorithms could not lead to a 
general improvement in MLC performance. The resampling algorithms were able to improve 
one or two of the metrics, but not all of them simultaneously. MLSMOTE was the most 
consistent resampling algorithm for the example-based metrics. The resampling algorithms 
were the most successful on the label-based evaluation metrics since they were able to 
consistently make large improvements at all levels of global density. Only REMEDIAL and 
RHwRSMT were unable to improve the label-based performance at all levels of global density. 
The most successful resampling algorithms for the label-based metrics were LP-ROS, ML-ROS 
and MLSOL. The resampling algorithms struggled to improve the ranking-based metrics and 
generally either retained the same performance as the original data or led to a reduction in 
performance. MLSMOTE and MLTL were the best performing algorithms and could on 
occasions lead to an improvement in the ranking-based performance. LP-ROS, ML-ROS and 
MLSOL were the worst performing resampling algorithms on the ranking-based metrics and 
led to larger reductions in ranking-based performance as the global density increased.  
 
We found that the resampling algorithms do place a computational burden on the analysis. 
The computational cost of the resampling algorithms increased as the number of labels 

Stellenbosch University https://scholar.sun.ac.za



 125 

increased. The computational cost also increased as the global density increased, due to an 
increase in the number of observations being added and removed from the datasets at larger 
global densities. Therefore, the number of labels and global density should be taken into 
consideration when resampling algorithms are considered for use in multi-label classification. 
MLSMOTE was the most efficient resampling algorithm and MLSOL was the least efficient 
resampling algorithm.   
 
We would recommend expanding the research to include more observations, adding more 
labels, and including more iterations in the experimental design for future research. Many of 
the limitations placed on the thesis have been computational. Therefore, more computational 
power might allow future studies to broaden the scope of the analysis.  
 
We found that the resampling algorithms became more aggressive in undersampling and 
oversampling as the global density increased. Throughout the experiments the default 
settings recommended for the algorithms in the literature were used. As a possible avenue of 
future research we would recommend to study the tuning of these parameters at changing 
levels of global density. Therefore, we could control the trade-off between the degree of 
resampling and the potential gain in performance from the resampling algorithms.   
 
For future comparative studies, we would recommend including both ranking-based and 
example-based evaluation metrics along with the label-based metrics. Including more 
evaluation metrics will allow the study to show what effect the resampling algorithms have 
on the overall MLC performance as well as the effect that the resampling algorithms have on 
the classification of the minority labels.  
 
We would also propose the use of MedianIR as an alternative to the MeanIR in the selection 
of majority and minority labels as a future area of research. The distribution of IRLbl across 
labels is often found to have an exponential distribution and is usually skewed to the right as 
seen in Section 3.1.2. Therefore, the MeanIR > MedianIR in these scenarios. Minority labels 
are those labels with IRLbl > MeanIR, so using the MedianIR instead of the MeanIR would lead 
to more of the labels being selected as minority labels. Therefore, more labels will be able to 
benefit from the oversampling mechanism.  
 

  

Stellenbosch University https://scholar.sun.ac.za



 126 

Appendix 
𝑲	 = 	𝟓 
 

Table 4: Results for 𝜉= 0 and K = 5 

 
 

Table 5: Results for 𝜉 = 0.1 and K = 5 

 
 

Table 6: Results for 𝜉 = 0.2 and K = 5 

 
 

Table 7: Results for 𝜉 = 0.3 and K = 5 

 
 

Table 8: Results for 𝜉 = 0.5 and K = 5 

 

Stellenbosch University https://scholar.sun.ac.za



 127 

 

𝑲	 = 	𝟏𝟎 
Table 9: Results for 𝜉 = 0 and K = 10 

 
 

Table 10: Results for 𝜉 = 0.1 and K = 10 

 
 

Table 11: Results for 𝜉 = 0.2 and K = 10 

 
 

Table 12: Results for 𝜉 = 0.3 and K = 10 

 
 

Table 13: Results for 𝜉 = 0.4 and K = 10 

 
 

Stellenbosch University https://scholar.sun.ac.za



 128 

Table 14: Results for 𝜉 = 0.5 and K = 10 

 
 

𝑲	 = 	𝟐𝟎 
 

Table 15: Results for 𝜉 = 0 and K = 20 

 
 

Table 16: Results for 𝜉 = 0.1 and K = 20 

 
 

Table 17: Results for 𝜉 = 0.2 and K = 20 

 
 

Table 18: Results for 𝜉 = 0.3 and K = 20 

 
 
 

Stellenbosch University https://scholar.sun.ac.za



 129 

Table 19: Results for 𝜉 = 0.4 and K = 20 

 
 

Table 20: Results for 𝜉 = 0.5 and K = 20 

 

  

Stellenbosch University https://scholar.sun.ac.za



 130 

References 
 
 
 
Bernardini, F. C., Silva, R. B. da, Rodovalho, R. M., & Meza, E. B. M. (2014). Cardinality and 
Density Measures and Their Influence to Multi-Label Learning Methods. L&NLM, 12(1), 53–
71. 10.21528/lnlm-vol12-no1-art4 
 
Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene 
classification. Pattern Recognition, 37(9), 1757–1771. 10.1016/j.patcog.2004.03.009 
 
Charte, F., & Charte, D. (2015). Working with Multilabel Datasets in R: The mldr Package. 
The R Journal, 7(2), 149. 10.32614/rj-2015-027 
 
Charte, F., Rivera, A., del Jesus, M. J., & Herrera, F. (2015a). Resampling Multilabel Datasets 
by Decoupling Highly Imbalanced Labels. International Conference on Hybrid Artificial 
Intelligence Systems, 489–501. 10.1007/978-3-319-19644-2_41 
 
Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2014). MLeNN: A First Approach to 
Heuristic Multilabel Undersampling. International Conference on Intelligent Data 
Engineering and Automated Learning, 1–9. 10.1007/978-3-319-10840-7_1 
 
Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2015b). Addressing imbalance in 
multilabel classification: Measures and random resampling algorithms. Neurocomputing, 
163, 3–16. 10.1016/j.neucom.2014.08.091 
 
Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2015c). MLSMOTE: Approaching 
imbalanced multilabel learning through synthetic instance generation. Knowledge-Based 
Systems, 89, 385–397. 10.1016/j.knosys.2015.07.019 
 
Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2019a). Dealing with difficult minority 
labels in imbalanced mutilabel data sets. Neurocomputing, 326–327, 39–53. 
10.1016/j.neucom.2016.08.158 
 
Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2019b). REMEDIAL-HwR: Tackling 
multilabel imbalance through label decoupling and data resampling hybridization. 
Neurocomputing, 326–327, 110–122. 10.1016/j.neucom.2017.01.118 
 
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic 
Minority Over-sampling Technique. Jair , 16, 321–357. 10.1613/jair.953 
 
Clare, A., & King, R. D. (2001). Knowledge Discovery in Multi-label Phenotype Data. European 
Conference on Principles of Data Mining and Knowledge Discovery, 42–53. 10.1007/3-540-
44794-6_4 
 

Stellenbosch University https://scholar.sun.ac.za



 131 

CRAN - Package E1071. Retrieved September 16, 2021, from https://cran.r-
project.org/web/packages/e1071/index.html 
 
CRAN - Package Mldr.datasets. Retrieved August 30, 2021, from https://cran.r-
project.org/web/packages/mldr.datasets/index.html 
 
Elisseeff, A., & Weston, J. (2002). A kernel method for multi-labelled classification. Advances 
in Neural Information Processing Systems 14: Proceedings of the 2001 Conference. 
10.7551/mitpress/1120.003.0092 
 
Everton Alvares-Cherman, Jean Metz, Maria Carolina Monard (2012). Incorporating label 
dependency into the binary relevance framework for multi-label classification, Expert 
Systems with Applications, Volume 39, Issue 2, 1647-1655, ISSN 0957-4174, 
https://doi.org/10.1016/j.eswa.2011.06.056. 
 
Flags: Dataset With Features Correspoinding To World Flags In Mldr.datasets: R Ultimate 
Multilabel Dataset Repository. (2019, January 17). 
https://rdrr.io/cran/mldr.datasets/man/flags.html 
 
Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., & Brinker, K. (2008). Multilabel classification 
via calibrated label ranking. Mach Learn, 73(2), 133–153. 10.1007/s10994-008-5064-8 
 
Godbole, S., & Sarawagi, S. (2004). Discriminative Methods for Multi-labeled Classification. 
Pacific-Asia Conference on Knowledge Discovery and Data Mining, 22–30. 10.1007/978-3-
540-24775-3_5 
 
Goncalves, E. C., Plastino, A., & Freitas, A. A. (2013). A Genetic Algorithm for Optimizing the 
Label Ordering in Multi-label Classifier Chains. 2013 IEEE 25th International Conference on 
Tools with Artificial Intelligence, 469–476. 10.1109/ictai.2013.76 
 
Hastie, T. (2013). The Elements of Statistical Learning (2nd ed., pp. 417–455). Springer 
Science & Business Media. 
 
Herrera, F. (2016). Multilabel Classification (pp. 50–51). Springer. 
 
Hüllermeier, E., Fürnkranz, J., Cheng, W., & Brinker, K. (2008). Label ranking by learning 
pairwise preferences. Artificial Intelligence, 172(16–17), 1897–1916. 
10.1016/j.artint.2008.08.002 
 
James, G. (2013). An Introduction to Statistical Learning (7th ed., pp. 337–355). Springer 
Science & Business Media. 
 
Keren, Betty & Kalech, Meir & Rokach, & Lior. (2011). Model-Based Diagnosis with Multi-
Label Classification.: Vol. 22nd International Workshop on Principles of Diagnosis. 
 
Kubat, M. (2017). An Introduction to Machine Learning. Springer. 
 

Stellenbosch University https://scholar.sun.ac.za



 132 

Langlog: Dataset With Data From The Language Forum Discussion . (2019, May 16). 
https://rdrr.io/github/fcharte/mldr.datasets/man/langlog.html 
 
Liu, B., & Tsoumakas, G. (2020). Synthetic Oversampling of Multi-label Data Based on Local 
Label Distribution. Joint European Conference on Machine Learning and Knowledge 
Discovery in Databases, 180–193. 10.1007/978-3-030-46147-8_11 
 
Madjarov, G., Kocev, D., Gjorgjevikj, D., & Džeroski, S. (2012). An extensive experimental 
comparison of methods for multi-label learning. Pattern Recognition, 45(9), 3084–3104. 
10.1016/j.patcog.2012.03.004 
 
Min-Ling Zhang,  Zhi-Hua Zhou. (2006). Multilabel Neural Networks with Applications to 
Functional Genomics and Text Categorization. IEEE Trans. Knowl. Data Eng., 18(10), 1338–
1351. 10.1109/tkde.2006.162 
 
Montañes, E., Senge, R., Barranquero, J., Ramón Quevedo, J., José del Coz, J., & Hüllermeier, 
E. (2014). Dependent binary relevance models for multi-label classification. Pattern 
Recognition, 47(3), 1494–1508. 10.1016/j.patcog.2013.09.029 
 
Moyano, J. (2021). Multi-Label Classification Dataset Repository – Knowledge Discovery And 
Intelligent Systems – KDIS – University Of Córdoba. https://www.uco.es/kdis/mllresources/ 
 
Pereira, R. M., Costa, Y. M. G., & Silla Jr., C. N. (2020). MLTL: A multi-label approach for the 
Tomek Link undersampling algorithm. Neurocomputing, 383, 95–105. 
10.1016/j.neucom.2019.11.076 

 
Rauber T.W., Mello L.H., Rocha V.F., Luchi D., Varejão F.M. (2014) Recursive Dependent Binary 
Relevance Model for Multi-label Classification. In: Bazzan A., Pichara K. (eds) Advances in 
Artificial Intelligence -- IBERAMIA 2014. IBERAMIA 2014. Lecture Notes in Computer Science, 
vol 8864. Springer, Cham. https://doi.org/10.1007/978-3-319-12027-0_17 
 
Read, J., Bifet, A., Holmes, G., & Pfahringer, B. (2012). Scalable and efficient multi-label 
classification for evolving data streams. Mach Learn, 88(1–2), 243–272. 10.1007/s10994-
012-5279-6 
 
Read J., B. Pfahringer and G. Holmes, (2008). Multi-label Classification Using Ensembles of 
Pruned Sets. 2008 Eighth IEEE International Conference on Data Mining, 2008, pp. 995-1000. 
doi: 10.1109/ICDM.2008.74. 

 
Read J., Pfahringer B., Holmes G., Frank E. (2009) Classifier Chains for Multi-label 
Classification. In: Buntine W., Grobelnik M., Mladenić D., Shawe-Taylor J. (eds) Machine 
Learning and Knowledge Discovery in Databases. ECML PKDD 2009. Lecture Notes in 
Computer Science, vol 5782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-
642-04174-7_17 
 
Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-label 
classification. Mach Learn, 85(3), 333–359. 10.1007/s10994-011-5256-5 

Stellenbosch University https://scholar.sun.ac.za



 133 

 
Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2021). Classifier Chains: A Review and 
Perspectives. Journal of Artificial Intelligence Research, 70, 683–718. 10.1613/jair.1.12376 
 
Rivolli, A., & Carvalho, A., C. ,P. ,L. ,F. ,de. (2019). The utiml Package: Multi-label 
Classification in R. The R Journal, 10(2), 24. 10.32614/rj-2018-041 
 
Schapire, R.E., Singer, Y. BoosTexter: A Boosting-based System for Text 
Categorization. Machine Learning 39, 135–168 (2000). 
https://doi.org/10.1023/A:1007649029923 
 
Synthetic Dataset Generator For Multi-label Learning (Mldatagen). Retrieved June 23, 2021, 
from http://sites.labic.icmc.usp.br/mldatagen/ 
 
Thomas G. Dietterich, Suzanna Becker, Zoubin Ghahramani  (2002). A kernel method for 
multi-labelled classification, Advances in Neural Information Processing Systems 
14: Proceedings of the 2001 Conference, 2002 
 
Tomás, J. T., Spolaôr, N., Cherman, E. A., & Monard, M. C. (2014). A Framework to Generate 
Synthetic Multi-label Datasets. Electronic Notes in Theoretical Computer Science, 302, 155–
176. 10.1016/j.entcs.2014.01.025 
 
Trohidis, K., Tsoumakas, G., Kalliris, G., & Vlahavas, I. (2011). Multi-label classification of 
music by emotion. J AUDIO SPEECH MUSIC PROC., 2011(1). 10.1186/1687-4722-2011-
426793 
 

Tsoumakas, G., & Katakis, I. (2007). Multi-Label Classification: An Overview. International 
Journal of Data Warehousing and Mining (IJDWM), 3(3), 1-13. 
http://doi.org/10.4018/jdwm.2007070101 

 
Tsoumakas G., Katakis I., Vlahavas I. (2009) Mining Multi-label Data. In: Maimon O., Rokach 
L. (eds) Data Mining and Knowledge Discovery Handbook. Springer, Boston, MA. 
https://doi.org/10.1007/978-0-387-09823-4_34 
 
Tsoumakas, G., Katakis, I., & Vlahavas, I. (2011). Random k-Label-sets for Multilabel 
Classification. IEEE Trans. Knowl. Data Eng., 23(7), 1079–1089. 10.1109/tkde.2010.164 
 
Tsoumakas, G., Eleftherios, S., Jozef, V., Ioannis, V. (2011), MULAN: A Java Library for Multi-
Label Learning, Journal of Machine Learning Research 12 (2011) 2411-2414  
 
Turnbull, D., Barrington, L., Torres, D., & Lanckriet, G. (2008). Semantic Annotation and 
Retrieval of Music and Sound Effects. IEEE Trans. Audio Speech Lang. Process., 16(2), 467–
476. 10.1109/tasl.2007.913750 
 
Wieczorkowska A., Synak P., Raś Z.W. (2006). Multi-Label Classification of Emotions in 
Music. In: Kłopotek M.A., Wierzchoń S.T., Trojanowski K. (eds) Intelligent Information 
Processing and Web Mining. Advances in Soft Computing, vol 35. Springer, Berlin, 
Heidelberg. https://doi.org/10.1007/3-540-33521-8_30 

Stellenbosch University https://scholar.sun.ac.za



 134 

 
Write Your Best With Grammarly. Retrieved August 20, 2021, from https://grammarly.com 
 
Zafer Barutcuoglu, Robert E. Schapire, Olga G. Troyanskaya (2006), Hierarchical multi-label 
prediction of gene function, Bioinformatics, Volume 22, Issue 7, 1 April 2006, Pages 830–
836, https://doi.org/10.1093/bioinformatics/btk048 
 
Yang J., Jiang L., Wang C. and  Xie J.. (2004). Multi-label Emotion Classification for Tweets, 
2014 IEEE 26th International Conference on Tools with Artificial Intelligence, 2014, pp. 424-
428, doi: 10.1109/ICTAI.2014.71. 
 
Yang S., Kim S.  and Man Ro Y. (2007). Semantic Home Photo Categorization, IEEE 
Transactions on Circuits and Systems for Video Technology, vol. 17, no. 3, pp. 324-335, 
March 2007, doi: 10.1109/TCSVT.2007.890829. 
 
Zhang Yi, Street W. N.  and Burer S. (2005). Sharing classifiers among ensembles from 
related problem domains, Fifth IEEE International Conference on Data Mining (ICDM'05), 
2005, pp. 8 pp.-, doi: 10.1109/ICDM.2005.131. 
 
Zhang, M.-L., Li, Y.-K., Liu, X.-Y., & Geng, X. (2018). Binary relevance for multi-label learning: 
an overview. Front. Comput. Sci., 12(2), 191–202. 10.1007/s11704-017-7031-7 
Zhang, M.-L., & Zhou, Z.-H. (2007). ML-KNN: A lazy learning approach to multi-label learning. 
Pattern Recognition, 40(7), 2038–2048. 10.1016/j.patcog.2006.12.019 
 
Zhou, L., Zheng, X., Yang, D., Wang, Y., Bai, X., & Ye, X. (2021). Application of multi-label 
classification models for the diagnosis of diabetic complications. BMC Med Inform Decis 
Mak, 21(1). 10.1186/s12911-021-01525-7 
 
 
  

Stellenbosch University https://scholar.sun.ac.za



 135 

Code Appendix: 
 

Simulation code: 
 
generate.data = function (N,p,pnoise,K,rho,pvek,Amat,signal)  
{ 
Amat=matrix(Amat,nrow=p) 
n=length(pvek) 
theta=qnorm(pvek) 
sigmax=matrix(0.5,p,p) 
diag(sigmax)=1 
apvek1=NULL 
xmat=matrix(0,N,p+pnoise) 
ymat=matrix(0,N,K) 
apmat=matrix(0,K,K) 
gem=rep(0,p) 
sign.rho=sign(rho) 
 
for (j in 1:p) apvek1[j]=sum(Amat[j,]*pvek) 
 
for (k1 in 1:K) for (k2 in 1:K) { 
  term1=rho*sqrt(pvek[k1]*(1-pvek[k1])*pvek[k2]*(1-pvek[k2])) 
  term2=pvek[k1]*pvek[k2] 
  term3= t(Amat[,k1])%*%Amat[,k2] 
  apmat[k1,k2]=term3*(term1+term2) 
 } 
 
antwoord=sum(apvek1)+sum(apmat)-sum(diag(apmat))-(sum(apvek1^2)) 
c=sqrt(signal/antwoord) 
 
itel = 0 
while (itel < N)  
 { 
 if (rho>=0) { 
 
 eps0=rnorm(1) 
 eps=rnorm(n) 
 u=rbinom(n,1,sqrt(rho)) 
 z=u*eps0+(1-u)*eps 
 yvek=(z<=theta)+0 
} 
 
 if (rho<0) { 
  
 eps=rnorm(n) 
 z=eps 
 u=rbinom(n,1,abs(rho)) 
 for (j in 2:n) 
 { 
  z[j]=sign.rho*u[j]*z[j-1]+(1-u[j])*eps[j] 
 } 
 yvek=(z<=theta)+0 
} 
 
if (sum(yvek)>=0) 
{ 
itel=itel+1 
  

Stellenbosch University https://scholar.sun.ac.za



 136 

for (j in 1:p) gem[j]=c*sum(Amat[j,]*yvek) 
 
 xmat[itel,]=c(mvrnorm(1,gem,sigmax),mvrnorm(1,rep(0,pnoise),diag(pnois
e))) 
 ymat[itel,]=yvek 
}  
} 
return(list("Predictors" = xmat,"Labels" = ymat,antwoord,c)) 
} 
 
#Function to return some basic information about the dataset 
getInfo = function(D){ 
  output = list("NumOfInstances" = D$measures$num.instances, "NumOfLabels" 
= NROW(D$labels), "Cardinality" = D$measures$cardinality, "Density" = 
D$measures$density, "MeanIR" = D$measures$meanIR, "SCUMBLE" = 
D$measures$scumble, "Percentage min labels" = 100*mean(D$labels$IRLbl > 
D$measures$meanIR 
)) 
  return(output) 
} 
 
#Create an mldr dataset from simlation code 
create.mldr = function(data){ 
df = as.data.frame(cbind(data$Predictors, data$Labels)) 
new.mldr = mldr_from_dataframe(dataframe = df, labelIndices = (NCOL(df) - 
ncol(data$Labels) + 1):NCOL(df)) 
return(new.mldr) 
} 
 
#Function to create a vector of densities 
create.density.vector = function(K, num.majority, Xi.mins, Xi.majs){ 
  dens.vec = rep(0, K) 
  j = 1 
   if(Xi.mins > 0){ 
  omega.mins = Xi.mins/3 
  alpha.mins = (1 - Xi.mins)*-180 
  }else{ 
    omega.mins = 0.005 
    alpha.mins = 50 
  } 
  while(j <= K){ 
    val = rsn(n = 1, xi = Xi.mins,omega = omega.mins, alpha = alpha.mins) 
    if(val>0){ 
    dens.vec[j] = val 
    j = j + 1 
    } 
    else{ 
      print(paste("reject", j)) 
    } 
  } 
   if(Xi.majs > 0){ 
  omega.majs = 0.05 + Xi.majs/5 
  }else{ 
    omega.majs = 0.05 
  } 
  dens.vec 
  if(num.majority > 0){ 
    index.taken = c() 
  while(num.majority>0){ 
   index = round(runif(n = 1, min = 1, max = K),0) 
   if(index %in% index.taken == FALSE){ 

Stellenbosch University https://scholar.sun.ac.za



 137 

     val = rsn(n = 1, xi = 0.005 + Xi.majs,omega = omega.majs, alpha = 
183.4461481484) 
     if(val > 0){ 
   dens.vec[index] = val 
   index.taken = c(index.taken, index) 
   num.majority = num.majority - 1} 
     else{ 
       print("Reject", index) 
     } 
    
   } 
  } 
  } 
  return(dens.vec) 
} 
#function to plot the label densities 
plot.label.density = function(data){ 
  densities = data$labels$count/data$measures$num.instances 
  barplot(height = densities, names.arg = 
colnames(data$dataset[,data$labels$index]), 
          las = 2, ylim = c(0,1),  
          col = rainbow(data$measures$num.labels), 
          main = "Density of labels") 
} 
 
#Create the A matrix with 10 labels 
A.10 = matrix(nrow = 10, ncol = 10) 
for(i in 1:nrow(A.10)){ 
  for(j in 1:ncol(A.10)){ 
    A.10[i,j] = round(rnorm(n=1,mean = 0.43,sd = 0.1),0) 
  } 
} 
 
#Create the A matrix with 20 labels 
A.20 = matrix(nrow = 10, ncol = 20) 
for(i in 1:nrow(A.20)){ 
  for(j in 1:ncol(A.20)){ 
    A.20[i,j] = round(rnorm(n=1,mean = 0.43,sd = 0.1),0) 
  } 
} 
 

Resampling code: 
 
library(utiml) 
library(XML) 
library(mldr) 
library(smotefamily) 
library(imbalance) 
library(neighbr) 
library(e1071) 
library(FNN) 
library(mldr.datasets) 
 
 
 
LP_RUS = function(D, P, plots){ 
  #Initialise variabels 
  L = NROW(D$labels) #Object for the labels 
  samplesToDelete = P*D$measures$num.instances #-> Number of samples to 
delete P% size reduction 

Stellenbosch University https://scholar.sun.ac.za



 138 

  lp.trans = mldr_transform(D, type = "LP") #-> Transform the dataset to 
label powerset 
  MeanIR = D$measures$meanIR #-> MeanIR for the whole dataset 
  IRLbl = D$labels$IRLbl #-> IRLbl for the labels in the original dataset 
  labelsetBag = list() #-> Create a bag of observtaions for each of the 
possible label combinations 
  majBag = list() #-> A list for the majority bags...element type mldr() 
  minBag = list() #-> A list for the minority bags...element type mldr() 
 
#Create a bag of the samples in each labelset 
  print("Get labelsetbags") 
 labelsets = rownames(D$labelsets)#-> Creata a vector with the label 
combinations 
 lengths.labelsetBag = c()#-> Vector to save the counts of observtaions 
belonging to each labelset combination 
 for(i in 1:length(labelsets)){#->Iterate over the labelsets 
   labelsetBag[[i]] = D[lp.trans$classLabel == labelsets[i]]#-> Create a 
labelsetbag for each combination of labels 
   lengths.labelsetBag[i] = labelsetBag[[i]]$measures$num.instances#-> Save 
the number of instances in each of the bags, used to choose the majority 
classes  
 } 
   
#Calculate the average number of samples in each labels 
 meanSize = (1 / length(labelsetBag))*sum(lengths.labelsetBag)  
 
#Obtain the majority labels bags and the minority bags 
 print("Get majority and minority bags") 
 j = 1 
 z = 1 
 indexes = c() 
 for(i in 1:length(labelsetBag)){#-> Iterate over the labelsetbat 
   if(labelsetBag[[i]]$measures$num.instances > meanSize){#-> Identify the 
majority bags 
     majBag[[j]] = labelsetBag[[i]]#-> Add bag to the list of majority bags 
     j = j + 1 
   } 
   else{ 
     minBag[[z]] = labelsetBag[[i]]#->Add bag to the list of minority bags 
     z = z+1 
     } 
 } 
 meanRed = round(samplesToDelete/length(majBag))#-> Used to calculate the 
number of samples that need to be deleted 
if(meanRed < 1){ 
  print("P too small") 
}  
#Process the majority bag from smallest to largest  
#Calculate the number of instances to delete and remove them 
 if(length(majBag) == 0){ 
   return("No majority bags") 
 } 
 print("Generate new samples") 
 remainder = 0 
 for(j in 1:length(majBag)){#-> Iterate over the majority bags 
   rBag = min(majBag[[j]]$measures$num.instances - meanSize, meanRed)#-> 
The number of samples that need to be removed from each bag 
   remainder = remainder +  meanRed - rBag #Calculate the remainder 
    
#Delete samples in majBagi 
   for(n in 1:rBag){#->Remove rBag samples from majBag(j) 

Stellenbosch University https://scholar.sun.ac.za



 139 

     x = sample(1:majBag[[j]]$measures$num.instances, size = 1, replace = 
F)#-> Randomly select a sample in majBag(j) 
     majBag[[j]] = majBag[[j]][-x]#-> Remove sample x 
   } 
 } 
  
 # #The remainder needs to be randomly shared among the minBags 
 for(r in 1:remainder){ 
    b = sample(1:length(majBag), 1, replace = F) 
    if(majBag[[b]]$measures$num.instances > 1){ 
   x = sample(1:majBag[[b]]$measures$num.instances, size = 1, replace = 
F)#-> Randomly select a sample in majBag(j) 
   majBag[[b]] = majBag[[b]][-x]#-> Remove sample x 
    } 
 } 
  
#Create a new resampled dataset to give as output 
#First add the majority bags 
resampled = majBag[[1]] 
for(j in 2:length(majBag)){ 
  resampled = resampled + majBag[[j]] 
} 
#Then add the original minority bags 
for(z in 1:length(minBag)){ 
  resampled = resampled + minBag[[z]] 
} 
 
#plots(TRUE/FALSE) -> Barplot of the label counts before and after the 
resampling has been applied  
if(plots == TRUE){ 
  barplot(D$labels[,2], main = "Before resampling", names.arg = 
rownames(D$labels), xlab = "labels", ylab = "Instances per label", ylim = 
c(0, max(D$labels[,2]))) 
  barplot(resampled$labels[,2], main = "After resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(D$labels[,2]))) 
} 
 
#-> Output for the function in list() format 
output = list("Resampled dataset" = resampled, "Samples deleted" = 
NROW(D$dataset) - NROW(resampled$dataset), "SCUMBLE before" = 
D$measures$scumble, "SCUMBLE after" = resampled$measures$scumble, "MeanIR 
before" = D$measures$meanIR, "MeanIR after" = resampled$measures$meanIR) 
return(output) 
} 
 
 
 
### Parameters ### 
#D -> dataset 
#P -> Percentage 
#plots -> (TRUE/FALSE) plots of the number of insatnces per label before 
and after the resampling has been applied 
 
### Output ### 
#A pre-proccessed dataset 
LP_ROS = function(D, P, plots){ 
  L = NROW(D$labels) #-> Number of labels 
  samplesToGenerate = (1+P)*D$measures$num.instances - 
D$measures$num.instances #-> Num of samples to generate 

Stellenbosch University https://scholar.sun.ac.za



 140 

  lp.trans = mldr_transform(D, type = "LP")#-> Dataset in label-powerset 
form 
  MeanIR = D$measures$meanIR #-> MeanIR for the full dataset 
  IRLbl = D$labels$IRLbl #-> IRLbl per label 
  labelsetBag = list() #-> A list with bags of instances for each of the 
possible combination of labels...label-powerset 
  majBag = list()#-> List of majBag datasets in mldr() format 
  minBag = list()#-> List of minBag datasets in mldr() format 
  resampled = D 
 
#Create a bag of the samples in each labelset 
  print("Getting labelsetbags") 
 labelsets = rownames(D$labelsets)#-> All of the combinations of labels LP 
 lengths.labelsetBag = c() #-> A vector to store the number of instances in 
each of the labelsetBags, used to choose the combinations of labels that 
need to be resampled 
 for(i in 1:length(labelsets)){ 
   labelsetBag[[i]] = D[lp.trans$classLabel == labelsets[i]] 
   lengths.labelsetBag[i] = labelsetBag[[i]]$measures$num.instances 
 } 
   
#Calculate the average number of samples in each of the labelsets 
 meanSize = (1 / length(labelsetBag))*(sum(lengths.labelsetBag) ) 
 
#Obtain the majority labels bags and the minority bags 
 print("Obtaining minority and majority bags") 
 j = 1 
 z = 1 
 indexes = c() 
 for(i in 1:length(labelsetBag)){#-> Iterate over labelsetBags 
   if(labelsetBag[[i]]$measures$num.instances > meanSize){#-> Identify the 
majority bags 
     majBag[[j]] = labelsetBag[[i]]#-> The majority bags added to a list() 
majBag 
     j = j + 1 
   } 
   else{ 
     minBag[[z]] = labelsetBag[[i]]#-> The minortiy bags added to a list() 
minBag 
     z = z + 1 
     } 
 } 
  
 added = 0 
 meanInc = round(samplesToGenerate/length(minBag)) #-> Used to decide how 
many samples is added to each element in minBag 
 if(meanInc < 1){ 
   return("P too small") 
 } 
 #Process the minority bags from largest to smallest 
 if(length(minBag) == 0){ 
   return("No minority bags") 
 } 
 print("Generate samples") 
 remainder = 0 
 added = 0 
 #Calculate the number of instances to delete and remove them 
 for(j in length(minBag):1){#-> Iterate over the minority bags 
      rBag = min(minBag[[j]]$measures$num.instances + meanSize, meanInc )#-
> The number of samples that need to be removed from each bag 

Stellenbosch University https://scholar.sun.ac.za



 141 

   remainder = remainder + meanInc - rBag #-> Needs to be distributed 
evenly among the bags 
#Add samples to minBag 
   for(n in 1:round(rBag)){#-> Generate n points that is added to minBag(j) 
     x = sample(1:minBag[[j]]$measures$num.instances, size = 1, replace = 
F)#-> Select random samples 
     minBag[[j]] = minBag[[j]] + minBag[[j]][x]#-> Add the cloned points to 
minBag(j) 
     resampled = resampled +  minBag[[j]][x]#-> Add the samples to the 
resampled dataset 
     added = added + 1 
   } 
 } 
  
 # #Remainder needs to be shared evenly maong the bags 
 # for(r in 1:remainder){ 
 #   b = sample(1:length(minBag), 1, replace = F) 
 #   x = sample(1:minBag[[b]]$measures$num.instances, size = 1, replace = 
F)#-> Randomly select a sample in majBag(j) 
 #   minBag[[b]] = minBag[[b]] + minBag[[j]][x] 
 #   resampled = resampled +  minBag[[b]][x]#-> Add the samples to the 
resampled dataset 
 # } 
 
#From plots(TRUE/FALSE) -> barplots of the label counts before and after 
the resampling has been applied 
if(plots == TRUE){ 
  barplot(D$labels[,2], main = "Before resampling", names.arg = 
rownames(D$labels), xlab = "labels", ylab = "Instances per label", ylim = 
c(0, max(resampled$labels[,2]))) 
  barplot(resampled$labels[,2], main = "After resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(resampled$labels[,2]))) 
} 
 
#List of outputs for the function 
output = list("Resampled dataset" = resampled, "Samples added" = 
NROW(resampled$dataset) - NROW(D$dataset), "SCUMBLE before" = 
D$measures$scumble, "SCUMBLE after" = resampled$measures$scumble,  "MeanIR 
before" = D$measures$meanIR, "MeanIR after" = resampled$measures$meanIR) 
return(output) 
} 
 
 
ML_ROS = function(D, P, plots){ 
#Initialis some variables   
resampled = D #-> The dataset that the new samples will be added to...D-
>orginal 
samplesToClone = (1+P)*D$measures$num.instances - D$measures$num.instance 
#-> Num of samples to clone/add 
L = D$labels #-> Matrix with label properties 
MeanIR = D$measures$meanIR #-> MeanIR for the original dataset 
minBag = list() #-> List to store the minority bags...elements type mldr() 
labelIndex = D$labels$index 
minLabelIndex = c() #-> Indexes of the minority labels 
 
#Find the bags of minority samples 
print("Finding minority bags") 
 IRLbl = D$labels$IRLbl #-> IRLbl for the labels in the original dataset 
 j = 1 
for(l in 1:length(IRLbl)){#-> Iterate over the labels 

Stellenbosch University https://scholar.sun.ac.za



 142 

 if(IRLbl[l] > MeanIR){#->Look for minority labels 
   minBag[[j]] = D[D$dataset[,labelIndex[l]] == 1]#-> Add the bag of labels 
to the minBag list...adding instances 
   j = j+1 
   minLabelIndex = c(minLabelIndex,l)#-> Indexes of the minority labels 
 } 
} 
 
 #Stop if there are no minority bags in the dataset 
 if(length(minBag) < 1){ 
   return("No minority bags") 
 } 
 
 print("Cloning samples") 
while(samplesToClone > 0 ){#-> Iterate while there are still instances to 
clone 
  delete.index = c() #Save the indexes of the bags that need to be deleted 
   
  #Clone a sample from each minority bag 
   for(i in 1:length(minBag)){#-> Iterate over the bags 
    x = sample(1:minBag[[i]]$measures$num.instances, size = 1, replace = 
F)#->Select a random instance from minBag(i) 
     minBag[[i]] = minBag[[i]] + minBag[[i]][x] #-> Add the instance to 
minBag(i) 
     resampled = resampled + minBag[[i]][x]#-> Also add the cloned sample 
to the resampled dataset, to test if the labels of minBag(i) iare still 
minorities 
     
     #Check if the minority labels are still minorities, remove the label 
if it is not a minoroty 
     if( resampled$labels$IRLbl[minLabelIndex[i]] <= 
resampled$measures$meanIR ){ 
        delete.index = c(delete.index, i) #Save the indexes of labels that 
are no longer minorities 
     } 
     samplesToClone = samplesToClone - 1 #-> One less sample to clone 
   }#-> Back to start of the for loop 
 
  #Delete the labels that are no longer minorities, only after the for loop 
    if(length(delete.index) > 0){ 
    minBag = minBag[-delete.index] 
    minLabelIndex = minLabelIndex[-delete.index] 
    } 
   
  #Break if there are no minBags left 
    if(length(minBag) == 0){ 
      break 
    } 
   
 }#-> Break the while loop 
 
  
#From the plots(TRUE\FALSE) parameter, plots the label counts before and 
after the resampling...barplots 
if(plots == TRUE){ 
  barplot(D$labels[,2], main = "Before resampling", names.arg = 
rownames(D$labels), xlab = "labels", ylab = "Instances per label", ylim = 
c(0, max(resampled$labels[,2]))) 
  barplot(resampled$labels[,2], main = "After resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(resampled$labels[,2]))) 

Stellenbosch University https://scholar.sun.ac.za



 143 

} 
  
#-> Give the output of the functiona as a list 
output = list("Resampled dataset" = resampled, "Samples added" = NROW( 
  resampled$dataset) - NROW(D$dataset), "SCUMBLE before" = 
D$measures$scumble, "SCUMBLE after" = resampled$measures$scumble,  "MeanIR 
before" = D$measures$meanIR, "MeanIR after" = resampled$measures$meanIR) 
return(output) 
} 
 
 
ML_RUS = function(D, P, plots){ 
#Initialise variables to be used  
resampled = D #-> Dataset from which we will delete instances in majority 
labels 
samplesToDelete = P*D$measures$num.instances #->Number of samples to delete 
L = D$labels #-> Labels 
MeanIR = D$measures$meanIR #-> MeanIR for the original dataset 
majBag = list() #-> Empty list for the majority bags...list elements of 
type mldr() 
minBag = list() #-> Empty list for the minority bags..list elements of type 
mldr() 
labelIndex = D$labels$index 
majLabelIndex = c() #-> Empty vector for the majority label indexes 
minLabelIndex = c() #-> Empty vector for the majority label indexes 
 
#Find the bags of minority samples and bags of majority samples 
print("Finding minority bags") 
 IRLbl = D$labels$IRLbl #-> IRLbl per label 
 i = 1 
 j = 1 
for(l in 1:length(IRLbl)){ #-> Iterate over the labels 
 if(IRLbl[l] <= MeanIR && IRLbl[l]>0){ #-> Find the majority labels and put 
them in bags (list) 
   majBag[[i]] = D[D$dataset[,labelIndex[l]] == 1] #-> Each bag is an 
element in the list 
   i = i+1 
   majLabelIndex = c(majLabelIndex,l)#->Index of the majority labels 
 }else if(IRLbl[l] > 0){#-> Find the minority labels and put them into bags 
    minBag[[j]] = D[D$dataset[,labelIndex[l]] == 1]#-> Each bag is an 
element in the list 
   j = j+1 
   minLabelIndex = c(minLabelIndex,l)#->Index of the minority labels 
 } 
} 
 
 samplesToDelete.total = samplesToDelete 
 #Instances cloning loop 
 print("Samples to delete:") 
 print(samplesToDelete.total) 
 while(samplesToDelete > 0 ){#->Loop until samplesToDelete equals zero 
   #Delete a sample from each majority bag 
   delete.index = c() #Indexes for samples that are no longer minorities 
    
    
   for(i in 1:length(majBag)){#> Select a random observation in majBag(i) 
and delete it 
       
     if(majBag[[i]]$measures$num.instances == 1){ 
        #If there is only one observation in bag, we cannot delete it 
mldr() package 

Stellenbosch University https://scholar.sun.ac.za



 144 

      print("break") 
       break}   
      
      x = sample(1:majBag[[i]]$measures$num.instances, size = 1, replace = 
F) 
     majBag[[i]] = majBag[[i]][-x] 
      
     #Delete the same sample from the full dataset, to calculate if the 
labels are still majorities 
    resampled = resampled$dataset[rownames(resampled$dataset) != 
rownames(majBag[[i]][x]$dataset),] 
    resampled = mldr_from_dataframe(resampled, attributes =  
D$attributesIndexes, labelIndices = labelIndex) 
      
    #Check if the majority label is still a majority label 
     if(resampled$labels$IRLbl[majLabelIndex[i]] > 
resampled$measures$meanIR ){ 
       #If the label is not a majority anymore delete it from majBag 
        delete.index = c(delete.index, i) 
     } 
     samplesToDelete = samplesToDelete - 1#-> One less observation to 
delete 
   } #-> Back to top of for loop 
     
     if(length(delete.index) > 0){ 
    print(majLabelIndex) 
    majBag = majBag[-delete.index] 
    majLabelIndex = majLabelIndex[-delete.index] 
  } 
    
    if(samplesToDelete/samplesToDelete.total == 0.05){ 
    print("5%") 
  }else if(samplesToDelete/samplesToDelete.total == 0.1){ 
     print("10%") 
  }else if(samplesToDelete/samplesToDelete.total == 0.2){ 
     print("20%") 
  }else if(samplesToDelete/samplesToDelete.total == 0.3){ 
     print("30%") 
  }else if(samplesToDelete/samplesToDelete.total == 0.4){ 
     print("40%") 
  }else if(samplesToDelete/samplesToDelete.total == 0.5){ 
     print("50%") 
  }else if(samplesToDelete/samplesToDelete.total == 0.6){ 
     print("60%") 
  }else if(samplesToDelete/samplesToDelete.total == 0.7){ 
     print("70%") 
  }else if(samplesToDelete/samplesToDelete.total == 0.8){ 
     print("80%") 
  }else if(samplesToDelete/samplesToDelete.total == 0.9){ 
     print("90%") 
  } 
  
 }#Break the while loop 
  
  
 #Use plots parameter (TRUE/FALSE) -> Barchart of the number of instances 
per label before and after the resampling 
if(plots == TRUE){ 
  barplot(D$labels[,2], main = "Before resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(D$labels[,2]))) 

Stellenbosch University https://scholar.sun.ac.za



 145 

  barplot(resampled$labels[,2], main = "After resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(D$labels[,2]))) 
} 
  
 #Place the functions output in a list 
output = list("Resampled dataset" = resampled, "Samples deleted" = NROW( 
  D$dataset) - NROW(resampled$dataset), "SCUMBLE before" = 
D$measures$scumble, "SCUMBLE after" = resampled$measures$scumble,  "MeanIR 
before" = D$measures$meanIR, "MeanIR after" = resampled$measures$meanIR) 
return(output) 
} 
 
 
MLeNN = function(D, HT, NN, plots){ 
L = D$labels #-> Labels 
labelIndex = D$labels$index #Column indexes of the labels 
IRLbl = D$labels$IRLbl 
MeanIR = D$measures$meanIR 
markForRemoving = c() 
 
 
for(i in 1:D$measures$num.instances){#-> Iterate over the samples 
  #Looking for samples that are majorities 
   
   
  #Check to see if the observation is a majority 
  for(l in 1:NROW(IRLbl)){ #-> Iterate over the labels 
  if(IRLbl[l] > MeanIR){ #-> Check if the label is a majority 
    if(D$dataset[i,labelIndex[l]] == 1){ 
      majority.i = FALSE #Preserve instance as a minority 
    } 
  }else{ 
    majority.i = TRUE #Observation is a majority 
  }#End if else 
  }#End for loop over labels 
   
   
   
   
  #Only for the majority observations 
  if(majority.i){ 
    
     #Find the NN nearest neighbors to the sample i 
    nn = get.knn(data = data.matrix(D$dataset[, D$attributesIndexes]), k = 
NN) 
    index.kkn = nn$nn.index[i,] 
    numDifferences = 0 
    
     
    #Check to see if the sample should be removed 
    for(n in 1:length(index.kkn)){#-> For each of the nearest neighbors 
      if(hamming.distance(x = as.numeric(D$dataset[i, labelIndex]), y = 
as.numeric(D$dataset[index.kkn[n], labelIndex])) > HT){ 
        numDifferences = numDifferences + 1 
      } 
    }#End for loop over neighbors 
     
     
    if(numDifferences >= NN/2){#->Check if the observation should be 
removed 

Stellenbosch University https://scholar.sun.ac.za



 146 

      markForRemoving = c(markForRemoving, i) 
    } 
     
  }#-> End of the if statement checking for majority observations 
   
   
  #Progress of algorithm 
   if(i == 0.05*D$measures$num.instances){ 
    print("5%") 
  }else if(i == 0.1*D$measures$num.instances){ 
     print("10%") 
  }else if(i == 0.2*D$measures$num.instances){ 
     print("20%") 
  }else if(i == 0.3*D$measures$num.instances){ 
     print("30%") 
  }else if(i == 0.4*D$measures$num.instances){ 
     print("40%") 
  }else if(i == 0.5*D$measures$num.instances){ 
     print("50%") 
  }else if(i == 0.6*D$measures$num.instances){ 
     print("60%") 
  }else if(i == 0.7*D$measures$num.instances){ 
     print("70%") 
  }else if(i == 0.8*D$measures$num.instances){ 
     print("80%") 
  }else if(i == 0.9*D$measures$num.instances){ 
     print("90%") 
  } 
   
}#-> End of the for loop iterating over the samples 
 
 
 
if(length(markForRemoving) == D$measures$num.instances){ 
return("Increase HT")#ALgorithm wants to remove all observations 
}else if(length(markForRemoving) == 0){ 
  return("Decrease HT")#No observations being removed 
}else { 
  resampled = D[-markForRemoving]#Remove observtaions 
} 
 
 
 
#Use plots parameter (TRUE/FALSE) -> Barchart of the number of instances 
per label before and after the resampling 
if(plots == TRUE){ 
  barplot(D$labels[,2], main = "Before resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(D$labels[,2]))) 
  barplot(resampled$labels[,2], main = "After resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(D$labels[,2]))) 
} 
 
 
 #Place the functions output in a list 
output = list("Resampled dataset" = resampled, "Samples deleted" = NROW( 
  D$dataset) - NROW(resampled$dataset), "SCUMBLE before" = 
D$measures$scumble, "SCUMBLE after" = resampled$measures$scumble,  "MeanIR 
before" = D$measures$meanIR, "MeanIR after" = resampled$measures$meanIR) 
 

Stellenbosch University https://scholar.sun.ac.za



 147 

return(output) 
} 
 
remedial = function(D, plots){ 
 
   
#Calculate the imbalance levels 
IRLbl = D$labels$IRLbl 
MeanIR = D$measures$meanIR 
#Calculate SCUMBLE 
SCUMBLEins = D$dataset$.SCUMBLE 
SCUMBLE.mean = mean(SCUMBLEins) 
L = D$labels 
labelIndex = D$labels$index #Column indexes of labels 
resampled = D 
 
 
for(i in 1:D$measures$num.instances){#->Iterate over the samples 
  
   
   if(SCUMBLEins[i] > SCUMBLE.mean){#-> Look for observations with high 
concurrance ie. SCUMBLEins 
   #If the instance has high concurrance, decouple the labels 
     
    #Decoupling 
    clone = D[i] #-> Clone the instance 
    clone$dataset[,labelIndex] = 
clone$dataset[,labelIndex]*(IRLbl>MeanIR)#->Maintain majority labels 
    resampled$dataset[i,labelIndex] = 
resampled$dataset[i,labelIndex]*(IRLbl<=MeanIR)#->Maintain minority labels 
    resampled = resampled + clone#->Add clone to resampled dataset 
   } 
   
   
  #Progress of the algorithm 
  if(i == 0.05*D$measures$num.instances){ 
    print("5%") 
  }else if(i == 0.1*D$measures$num.instances){ 
     print("10%") 
  }else if(i == 0.2*D$measures$num.instances){ 
     print("20%") 
  }else if(i == 0.3*D$measures$num.instances){ 
     print("30%") 
  }else if(i == 0.4*D$measures$num.instances){ 
     print("40%") 
  }else if(i == 0.5*D$measures$num.instances){ 
     print("50%") 
  }else if(i == 0.6*D$measures$num.instances){ 
     print("60%") 
  }else if(i == 0.7*D$measures$num.instances){ 
     print("70%") 
  }else if(i == 0.8*D$measures$num.instances){ 
     print("80%") 
  }else if(i == 0.9*D$measures$num.instances){ 
     print("90%") 
  } 
 
   
  }#-> End for loop 
 
 

Stellenbosch University https://scholar.sun.ac.za



 148 

#Use plots parameter (TRUE/FALSE) -> Barchart of the number of instances 
per label before and after the resampling 
if(plots == TRUE){ 
  barplot(D$labels[,2], main = "Before resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(D$labels[,2]))) 
  barplot(resampled$labels[,2], main = "After resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(D$labels[,2]))) 
} 
 
#Place the functions output in a list 
output = list("Resampled dataset" = resampled, "Samples added" = NROW( 
  resampled$dataset) - NROW(D$dataset), "SCUMBLE before" = 
D$measures$scumble, "SCUMBLE after" = resampled$measures$scumble,  "MeanIR 
before" = D$measures$meanIR, "MeanIR after" = resampled$measures$meanIR) 
return(output) 
 
} 
 
 
###########################################################################
########################## 
newSample = function(sample, refNeigh, neighbors, D, k){ 
  L = D$labels 
  labelIndex = D$labels$index #Column index of labels 
   
   
   
  #Assign the features to the new synthetic sample 
  synth.sample = sample 
  for(j in 1:length(D$attributesIndexes)){#Iterate over the features 
    if(D$attributes[j] == "NUMERIC"){#Check if the feature is numeric 
      diff = as.numeric(refNeigh$dataset[,refNeigh$attributesIndexes[j]]) - 
as.numeric(sample$dataset[,refNeigh$attributesIndexes[j]]) 
      offset = diff*runif(n = 1, min = 0 , max = 1) 
      value = as.numeric(sample$dataset[,refNeigh$attributesIndexes[j]]) + 
offset 
    }else{#If the feature is not numeric 
      #Most frequent value 
      value = 
tail(sort(table(refNeigh$dataset[,refNeigh$attributesIndexes[j]])), 1) 
    } 
    synth.sample$dataset[,refNeigh$attributesIndexes[j]] = value #Assign 
the new attributes 
  } 
   
   
   
  #Label set assignment 
  lblcounts = sample$dataset[,labelIndex] #Samples labels 
  neigh.counts = c(rep(0, length(labelIndex))) #Empty vector 
  for(i in 1:neighbors$measures$num.instances){ #Iterate over neighbors 
    neigh.counts = neigh.counts + neighbors$dataset[i,labelIndex]#Sum the 
labels 
  } 
  lblcounts = lblcounts + neigh.counts 
  labels = c(1)*(lblcounts > (k + 1)/2)#Find the labels 
  synth.sample$dataset[, labelIndex] = labels #Assign the labels 
  return(synth.sample)#-> Return the new observation 
} 

Stellenbosch University https://scholar.sun.ac.za



 149 

 
###########################################################################
########################## 
MLSMOTE = function(D, k, plots){ 
resampled = D 
L = D$labels 
MeanIR = D$measures$meanIR 
IRLbl = L$IRLbl 
minBag = list() 
labelIndex = D$labels$index 
 
i = 1  
for(l in 1:NROW(L)){#Iterate over the labels 
   
  if(IRLbl[l] > MeanIR){#Identify minority labels and add the instances to 
a bag 
    minBag[[i]] = D[D$dataset[,labelIndex[l]] == 1] #Minbag for label l 
 if(minBag[[i]]$measures$num.instances > k){#If there are more than k 
observations 
   nn = get.knn(data = 
data.matrix(minBag[[i]]$dataset[,D$attributesIndexes]), k = k)#get the 
nearest neighbors  
 for(j in 1:minBag[[i]]$measures$num.instances){#->Iterate over the samples 
in minbag[i] 
    index.kkn = nn$nn.index[j,]#Sorted neareast neighbors to observation j 
    #Neighbor set selection 
    neighbors = minBag[[i]][index.kkn]#k nn to observation j 
    refNeigh = minBag[[i]][sample(index.kkn, size = 1, replace = 
FALSE)]#Choose random neighbor as a reference 
    #Feature set and labelset generation 
    sample = minBag[[i]][j]#Current observation(j) in minbag[i] 
    synthSmpl = newSample(sample = minBag[[i]][j], refNeigh, neighbors, D, 
k)#New sample generated 
    resampled = resampled + synthSmpl#add sample to the dataset 
    }#End for 
    }#End if  for k 
    i = i + 1 
      if(l == 0.1*NROW(L)){ 
    print("10%") 
  }else if(l == 0.2*NROW(L)){ 
    print("20%") 
  }else if(l == 0.3*NROW(L)){ 
    print("30%") 
  }else if(l == 0.4*NROW(L)){ 
    print("40%") 
  }else if(l == 0.5*NROW(L)){ 
    print("50%") 
  }else if(l == 0.6*NROW(L)){ 
    print("60%") 
  }else if(l == 0.7*NROW(L)){ 
    print("70%") 
  }else if(l == 0.8*NROW(L)){ 
    print("80%") 
  }else if(l == 0.9*NROW(L)){ 
    print("90%") 
  } 
 
}#End if over labels 
} #End for over labels 
 

Stellenbosch University https://scholar.sun.ac.za



 150 

#Use plots parameter (TRUE/FALSE) -> Barchart of the number of instances 
per label before and after the resampling 
if(plots == TRUE){ 
  barplot(D$labels[,2], main = "Before resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(resampled$labels[,2]))) 
  barplot(resampled$labels[,2], main = "After resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(resampled$labels[,2]))) 
} 
 
#Place the functions output in a list 
output = list("Resampled dataset" = resampled, "Samples added" = NROW( 
  resampled$dataset) - NROW(D$dataset), "SCUMBLE before" = 
D$measures$scumble, "SCUMBLE after" = resampled$measures$scumble,  "MeanIR 
before" = D$measures$meanIR, "MeanIR after" = resampled$measures$meanIR) 
return(output) 
} 
 
###########################################################################
################ 
#Function that finds the k-nearest neighbours to each instance 
find_knn_per_example = function(D,k){ 
L = D$labels 
labelIndex = D$labels$index 
nearest.neighbors = list() 
neighbor.index = matrix(nrow = D$measures$num.instances, ncol = k) 
#Find the k nearest neighbors for each instance 
nn = get.knn(data = data.matrix(D$dataset[, D$attributesIndexes]), k = k ) 
for(i in 1:D$measures$num.instances){ 
  nearest.neighbors[[i]] = D[nn$nn.index[i,]]  
} 
 
  if(i == 0.05*D$measures$num.instances){ 
    print("5%") 
  }else if(i == 0.1*D$measures$num.instances){ 
     print("10%") 
  }else if(i == 0.2*D$measures$num.instances){ 
     print("20%") 
  }else if(i == 0.3*D$measures$num.instances){ 
     print("30%") 
  }else if(i == 0.4*D$measures$num.instances){ 
     print("40%") 
  }else if(i == 0.5*D$measures$num.instances){ 
     print("50%") 
  }else if(i == 0.6*D$measures$num.instances){ 
     print("60%") 
  }else if(i == 0.7*D$measures$num.instances){ 
     print("70%") 
  }else if(i == 0.8*D$measures$num.instances){ 
     print("80%") 
  }else if(i == 0.9*D$measures$num.instances){ 
     print("90%") 
  } 
 print("100%") 
  output = list("neighbor.index" = neighbor.index,"nearest.neighbors" = 
nearest.neighbors) 
} 
 
###########################################################################
################ 

Stellenbosch University https://scholar.sun.ac.za



 151 

#Calculate the proportion of neighbors having oposite class 
calculateC = function(D,k, nearest.neighbors){ 
L = D$labels 
labelIndex = D$labels$index 
  
#For each observation we calcuate the propotion of neighbors having 
opposite class/labels 
C = matrix(nrow = D$measures$num.instances, ncol = NROW(D$labels)) 
for(i in 1:D$measures$num.instances){#Loop over observations 
labs.i = D$dataset[i,labelIndex]#Labels of observation i in orginal dataset 
labs.nn.i = nearest.neighbors[[i]]$dataset[,labelIndex]#labels for the nn 
of obs i 
s = rep(0, NROW(L)) 
for(z in 1:k){#Loop over neighbors 
  s = (s + c(1)*(labs.i != labs.nn.i[z,]))/k 
} 
  C[i,] = s 
}#End loop over observations 
return(C) 
} 
###########################################################################
################ 
#Find the labels that are minority labels...to be used in the calculation 
of w 
#Crude way of finding minority labels...Consider replacing this with 
IRbl>MeanIR 
get_min_class_labels = function(D){ 
  L = D$labels 
  minority_labels = c() 
  minority_labels = c(rep(0,NROW(L))) 
  labelIndex = D$labels$index #-> Col index of the labs 
 
  for(l in 1:NROW(L)){ 
    class1 = sum(D$dataset[,labelIndex[l]] == 1) 
    class0 = sum(D$dataset[,labelIndex[l]] == 0) 
     
    if(class1 >= class0){#Idenitfied as a majority label 
      minority_labels[l] = 0 
    } 
    else{#Identified as a minority label 
      minority_labels[l] = 1 
    } 
  } 
  return(minority_labels) 
} 
 
###########################################################################
################ 
#Aggregate the values of C per sample, to calculate the sampling weight 
get_w_per_example = function(D, C){ 
  L = D$labels 
  minority_labels = get_min_class_labels(D) 
  w = c() 
  sum_of_non_out_minority_examples_per_example = rep(0, NROW(L)) 
  labelIndex = D$labels$index #-> Col index of the labs 
 
  for(j in 1:NROW(L)){#Iterate over columns 
    for(i in 1:D$measures$num.instances){#Iterate over rows 
      if(D$dataset[i,labelIndex[j]] == minority_labels[j] &  C[i,j]<1){ 
        sum_of_non_out_minority_examples_per_example = 
sum_of_non_out_minority_examples_per_example + C[i,j] 

Stellenbosch University https://scholar.sun.ac.za



 152 

      }#End if 
    }#End for loop over columns 
  }#End for loop over rows 
 
  for(i in 1:D$measures$num.instances){#Iterate over rows 
    sum = 0 
    for(j in 1:NROW(L)){#Iterate over columns 
      if(D$dataset[i, labelIndex[j]]==minority_labels[j] & C[i,j]<1){ 
        sum = sum + C[i,j]/sum_of_non_out_minority_examples_per_example[j] 
      }#End if 
    }#End columns for loop 
    w[i] = sum 
  }#End rows for loop 
   
  return(w) 
} 
 
###########################################################################
################ 
#C->Matrix that stores the proportion of KNNs 
#k-> Number of nearest neighbors 
#OUTPUT -> Type of instance T 
initTypes = function(C, k, neighbor.index, D){ 
  L = D$labels 
  T.mat = matrix(nrow = D$measures$num.instances, ncol = NROW(L)) 
  minority_labels = get_min_class_labels(D) 
  labelIndex = D$labels$index #-> Col index of the labs 
 
for(i in 1:D$measures$num.instances){#Iterate over the samples 
  for(j in 1:NROW(L)){#Iterate over the labels 
    if(D$dataset[i,labelIndex[j]] == minority_labels[j]){#y is in majority 
class 
       if(C[i,j] < 0.3){ 
      T.mat[i,j] = "SF" 
    } 
    else if(C[i,j] < 0.7){ 
      T.mat[i,j] = "BD" 
    } 
    else if(C[i,j] < 1){ 
      T.mat[i,j] = "RR" 
    } 
    else{ 
      T.mat[i,j] = "OT" 
    } 
    }else{ 
       T.mat[i,j] = "MJ" 
    } 
  }#End for loop over columns 
}#End for loop over observations 
 
change = TRUE 
while(change){ 
  change = FALSE 
  for(i in 1:D$measures$num.instances){#Iterate over observations 
    for(j in 1:NROW(L)){#Iterate over the labels 
      if(T.mat[i,j] == "RR"){#Check for type RR 
        for(m in neighbor.index[i,]){#Iterate over the bag of nearest 
neighbors 
          if(T.mat[m,j] == "SF" || T.mat[m,j] == "BD"){ 
            T.mat[i,j] = "BD" 
            change = TRUE 

Stellenbosch University https://scholar.sun.ac.za



 153 

            break 
          }#End of if 
        }#End of for loop over nearest neighbors 
      }#End of if checking for RR 
    }#End of for loop over labels 
  }#End of for loop over observations 
}#End of while loop 
 
return(T.mat) 
} 
###########################################################################
################ 
GenerateInstance = function(seed,ref,Ts, Tr, D){ 
L = D$labels 
  synth.sample = D[1]#-> An initial starting point of type mldr() 
  labelIndex = D$labels$index #-> Col index of the labs 
 
for(j in D$attributesIndexes){#Interpolate the feature values of the 
instance 
   synth.sample$dataset[,j] = as.numeric(seed$dataset[,j]) + runif(1,min = 
0, max = 1)*(as.numeric(ref$dataset[,j]) - as.numeric(seed$dataset[,j])) 
} 
ds = distance(x = as.numeric(synth.sample$dataset[,D$attributesIndexes]), y 
= as.numeric(seed$dataset[,D$attributesIndexes]), measure = 
"euclidean")#Distance from synth to seed 
dr = distance(x = as.numeric(synth.sample$dataset[,D$attributesIndexes]), y 
= as.numeric(ref$dataset[,D$attributesIndexes]), measure = 
"euclidean")#Distance from synth to ref 
cd = ds/(ds + dr)#indicates whether the synthetic instance is closer to the 
seed (cd < 0.5) or closer to the reference instance (cd > 0.5) 
 
#Label assignment 
theta = 0 
for(j in 1:NROW(L)){ 
  if(seed$dataset[,labelIndex[j]] == ref$dataset[,labelIndex[j]]){ 
    synth.sample$dataset[, labelIndex] = seed$dataset[, labelIndex] 
  } 
  else{ 
    if(Ts[j] == "Mj"){#Ensure seed(j) is a minority label 
      #Switch around the reference and seed instances 
      holder = seed 
      ref = seed 
      seed = holder 
      #Swith around the distances 
      holder = ds 
      dr = ds 
      ds = holder 
      #Switch around the references 
      holder = Ts[j] 
      Tr[j] = Ts[j] 
      Ts[j] = holder 
       
      cd = 1 - cd 
    } 
    if(Ts[j] == "SF"){ 
      theta =  0.5 
    } 
    else if(Ts[j] == "BD"){ 
      theta = 0.75 
    } 
    else if(Ts[j] == "RR"){ 

Stellenbosch University https://scholar.sun.ac.za



 154 

      theta = 1.00005 
    } 
    else if(Ts[j] == "OT"){ 
      theta = -0.00005 
    } 
    if(cd <= theta){ 
      synth.sample$dataset[,labelIndex] = seed$dataset[, labelIndex] 
    } 
    else{ 
        synth.sample$dataset[,labelIndex] = ref$dataset[, labelIndex] 
    } 
  } 
} 
return(synth.sample) 
} 
###########################################################################
################ 
# Get the seed instance for the instance generation 
get_seed_instance = function(w){ 
  seed.index = 0 
  limit = runif(n = 1, min = 0, max = 1)*sum(w) 
  temp_sum = 0 
  for(i in 1:length(w)){ 
    temp_sum = temp_sum + w[i] 
    if(limit <= temp_sum){ 
      seed.index = i 
      break 
    } 
  } 
  return(seed.index) 
} 
###########################################################################
################ 
                        #           FINAL FUNCTION           # 
###########################################################################
################ 
MLSOL = function(D,P,k, plots){ 
GenNum = D$measures$num.instances*P #->Number of instances to generate 
resampled = D 
L = D$labels 
labelIndex = D$labels$index #-> Col index of the labs 
 
print("Finding nearest neighbors") 
knn = find_knn_per_example(D,k)#Find the knn to each of the samples 
neighbor.index = knn$neighbor.index#Index of the neighbors in the origianal 
D 
nearest.neighbors = knn$nearest.neighbors#List with the neighbors to each 
observation 
 
print("Calculating C") 
C = calculateC(D,k, nearest.neighbors)#Proportion of neighbors having 
oposite class 
 
print("Caclulating w") 
w = get_w_per_example(D, C)#Sampling weight per training example, 
aggregated from C 
 
print("Finding observation types") 
T.mat = initTypes(C,k, neighbor.index, D)#Distinguish the observations into 
types 
 

Stellenbosch University https://scholar.sun.ac.za



 155 

tot = GenNum 
print("Generating new instances") 
while(GenNum > 0){#Generate the new instances 
  seed.index = get_seed_instance(w)#Choose a random seed index using 
weights 
  seed = D[seed.index]#The seed observation 
  x = sample(x = 1:k, 1, replace = FALSE)#Choose a random neighbor 
  reference = nearest.neighbors[[seed.index]][x] 
  new = GenerateInstance(seed,reference,Ts = T.mat[seed.index,], Tr= 
T.mat[neighbor.index[i,x],], D) #Generate a new instance 
  resampled = resampled + new #Add new instance to resampled dataset 
  GenNum = GenNum - 1 #One less observation to generate 
  if(GenNum == 0.1*tot){ 
    print("10%") 
  }else if( GenNum == 0.2*tot){ 
     print("20%") 
  }else if( GenNum == 0.3*tot){ 
     print("30%") 
  }else if( GenNum == 0.4*tot){ 
     print("40%") 
  }else if( GenNum == 0.5*tot){ 
     print("50%") 
  }else if( GenNum == 0.6*tot){ 
     print("60%") 
  }else if( GenNum == 0.7*tot){ 
     print("70%") 
  }else if( GenNum == 0.8*tot){ 
     print("80%") 
  }else if( GenNum == 0.9*tot){ 
     print("90%") 
  } 
} 
 
#Use plots parameter (TRUE/FALSE) -> Barchart of the number of instances 
per label before and after the resampling 
if(plots == TRUE){ 
  barplot(D$labels[,2], main = "Before resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(resampled$labels[,2]))) 
  barplot(resampled$labels[,2], main = "After resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(resampled$labels[,2]))) 
} 
 
#Place the functions output in a list 
output = list("Resampled dataset" = resampled, "Samples added" = NROW( 
  resampled$dataset) - NROW(D$dataset), "SCUMBLE before" = 
D$measures$scumble, "SCUMBLE after" = resampled$measures$scumble,  "MeanIR 
before" = D$measures$meanIR, "MeanIR after" = resampled$measures$meanIR) 
 
return(output) 
} 
 
 
 
RHwRSMT = function(D, plots){ 
  print("Implementing remedial") 
  remed = remedial(D, plots = FALSE) 
  print("Implementing MLSMOTE") 
  resampled = MLSMOTE(D = remed$`Resampled dataset`, k = 5, plots = 
FALSE)$`Resampled dataset` 

Stellenbosch University https://scholar.sun.ac.za



 156 

   
  #Use plots parameter (TRUE/FALSE) -> Barchart of the number of instances 
per label before   and after the resampling 
  if(plots == TRUE){ 
  barplot(D$labels[,2], main = "Before resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(resampled$labels[,2]))) 
  barplot(resampled$labels[,2], main = "After resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(resampled$labels[,2]))) 
} 
 
  #Place the functions output in a list 
  output = list("Resampled dataset" = resampled, "Samples added" = NROW( 
  resampled$dataset) - NROW(D$dataset), "SCUMBLE before" = 
D$measures$scumble, "SCUMBLE after" = resampled$measures$scumble,  "MeanIR 
before" = D$measures$meanIR, "MeanIR after" = resampled$measures$meanIR) 
 
  return(output) 
} 
 
 
 
###########################################################################
###############                         #     Undersampling method      # 
###########################################################################
###############          
undersamplingMethod = function(D){ 
  L = D$labels 
  labelIndex = D$labels$index #-> Col index of the labs 
  MeanIR = D$measures$meanIR 
  #Formula to choose the threshold 
  I = 1/sqrt(MeanIR) 
  if(I >= 0.5){ 
    TH = 0.5 
  }else if( 0.5 > I && I > 0.3){ 
    TH= 0.3 
  }else if(I<0.3){ 
    TH = 0.15 
  } 
  majBag = list() 
  majLabelIndex = c() 
  TL = c() 
  #Find the nearest neighbor 
  neighbors = get.knn(data = data.matrix(D$dataset[,D$attributesIndexes]), 
k = 1) 
   
  #Get the majority labels 
  IRLbl = D$labels$IRLbl #-> IRLbl for the labels in the original dataset 
  i = 1 
for(l in 1:length(IRLbl)){#-> Iterate over the labels 
 if(IRLbl[l] <= MeanIR && IRLbl[l] > 0){#->Look for majority labels 
   majBag[[i]] = D[D$dataset[,labelIndex[l]] == 1]#-> Add the bag of labels 
to the majBag 
   i = i+1 
   majLabelIndex = c(majLabelIndex,l)#-> Indexes of the majority labels 
 } 
} 
  
 for(j in 1:length(majBag)){#Iterate ove the majority bags 

Stellenbosch University https://scholar.sun.ac.za



 157 

   for(i in 1:majBag[[j]]$measures$num.instances){#Iterate ove the 
instances in majbag[j] 
 #Check if the current sample has been removed already 
    neighbor.index = neighbors$nn.index[i,1]#Find the nearest neighbor to 
observation i 
    NN = D[neighbor.index]#NN in the dataset 
     if(sum(NN$dataset[,labelIndex]) > 0){#If the observation has labels 
present 
   adj.hamming.dist = sum(xor(NN$dataset[, labelIndex], D$dataset[i, 
labelIndex]))/sum((NN$dataset[, labelIndex] | D$dataset[i, 
labelIndex]))#Calculate the adjusted hamming distance 
    }else{ 
      adj.hamming.dist = 0 
    } 
   if(adj.hamming.dist >= TH){#Check if the observation should be removed 
     TL = c(TL, i)#Add the index to observations that need to be removed 
      }#End of the small if 
  }#End for loop over observations in majBagi 
    
    if(j == 0.05*length(majBag)){ 
    print("5%") 
  }else if(j == 0.1*length(majBag)){ 
     print("10%") 
  }else if(j == 0.2*length(majBag)){ 
     print("20%") 
  }else if(j == 0.3*length(majBag)){ 
     print("30%") 
  }else if(j == 0.4*length(majBag)){ 
     print("40%") 
  }else if(j == 0.5*length(majBag)){ 
     print("50%") 
  }else if(j == 0.6*length(majBag)){ 
     print("60%") 
  }else if(j == 0.7*length(majBag)){ 
     print("70%") 
  }else if(j == 0.8*length(majBag)){ 
     print("80%") 
  }else if(j == 0.9*length(majBag)){ 
     print("90%") 
  } 
    
    
}#End for loop over majBags 
  
 return(unique(TL)) 
}#End of function  
 
###########################################################################
#          Cleaning method             # 
########################################################################### 
cleaningMethod = function(D){ 
  L = D$labels 
  labelIndex = D$labels$index #-> Col index of the labs 
  MeanIR = D$measures$meanIR 
  #Formula to choose the threshold 
  I = 1/sqrt(MeanIR) 
  if(I >= 0.5){ 
    TH = 0.5 
  }else if( 0.5 > I && I > 0.3){ 
    TH = 0.3 
  }else if(I < 0.3){ 

Stellenbosch University https://scholar.sun.ac.za



 158 

    TH = 0.15 
  } 
  TL = c()#Vector holding observations to be removed 
  #Find the nearest neighbors 
  neighbors = get.knn(data = data.matrix(D$dataset[,D$attributesIndexes]), 
k = 1)#get the nn to each of the observations 
  for(i in 1:D$measures$num.instances){#Iterate over the observations 
    neighbor.index = neighbors$nn.index[i,1]#Index of the nn to each 
observation 
    NN = D[neighbor.index]#The nearest neighbor 
    if(sum(NN$dataset[,labelIndex]) > 0){#Check if labels are present 
   adj.hamming.dist = sum(xor(NN$dataset[, labelIndex], D$dataset[i, 
labelIndex]))/sum((NN$dataset[, labelIndex] | D$dataset[i, 
labelIndex]))#Calculate the adjusted hamming distance 
    }else{ 
      adj.hamming.dist = 0 
    } 
   if(adj.hamming.dist >= TH){#Check if the observation should be removed 
     TL = c(TL, i)#Add index to observations that need to be removed 
    }#End of if 
    if(i == 0.05*D$measures$num.instances){ 
    print("5%") 
  }else if(i == 0.1*D$measures$num.instances){ 
     print("10%") 
  }else if(i == 0.2*D$measures$num.instances){ 
     print("20%") 
  }else if(i == 0.3*D$measures$num.instances){ 
     print("30%") 
  }else if(i == 0.4*D$measures$num.instances){ 
     print("40%") 
  }else if(i == 0.5*D$measures$num.instances){ 
     print("50%") 
  }else if(i == 0.6*D$measures$num.instances){ 
     print("60%") 
  }else if(i == 0.7*D$measures$num.instances){ 
     print("70%") 
  }else if(i == 0.8*D$measures$num.instances){ 
     print("80%") 
  }else if(i == 0.9*D$measures$num.instances){ 
     print("90%") 
  } 
  }#End for loop over observations 
  return(unique(TL)) 
}#End of function 
########################################################################### 
 
#D -> Dataset 
#type -> "cleaning" or "undersampling" 
MLTL = function(D,type, plots){ 
  resampled = D 
  if(type == "cleaning"){ 
    TL = cleaningMethod(D) 
  } 
  else if(type == "undersampling"){ 
    TL = undersamplingMethod(D) 
  } 
  #Only remove the observations if there are observations to remove anf if 
all the observatiosna are not being removed 
  if(length(TL) != 0 && length(TL) != D$measures$num.instances){ 
  resampled = resampled[-TL] 
} 

Stellenbosch University https://scholar.sun.ac.za



 159 

  #Use plots parameter (TRUE/FALSE) -> Barchart of the number of instances 
per label before   and after the resampling 
  if(plots == TRUE){ 
  barplot(D$labels[,2], main = "Before resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(D$labels[,2]))) 
  barplot(resampled$labels[,2], main = "After resampling", names.arg = 
rownames(resampled$labels), xlab = "labels", ylab = "Instances per label", 
ylim = c(0, max(D$labels[,2]))) 
} 
 
  #Place the functions output in a list 
  output = list("Resampled dataset" = resampled, "Samples deleted" = NROW( 
  D$dataset) - NROW(resampled$dataset), "SCUMBLE before" = 
D$measures$scumble, "SCUMBLE after" = resampled$measures$scumble,  "MeanIR 
before" =   D$measures$meanIR, "MeanIR after" = resampled$measures$meanIR) 
  return(output) 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Stellenbosch University https://scholar.sun.ac.za




