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ABSTRACT

An Extension of the Linear Regression Model for

Improved Vessel Trajectory Prediction - utilising a priori AIS

Information

C.N. Burger

Department of Mathematical Sciences, Division of Computer Science,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa

Thesis: M.Sc (Computer Science)

April 2022

As maritime activities increase globally, there is a greater dependency on technology in monitoring,

control and surveillance of vessel activity. One of the most prominent systems for monitoring vessel

activity is the Automatic Identification System (AIS). An increase in both vessels fitted with AIS

transponders, and satellite- and terrestrial receivers has resulted in a significant increase in AIS

messages received globally. This resultant rich spatial and temporal data source related to vessel

activity provides analysts with the ability to perform enhanced vessel movement analytics, of which

a pertinent example is the improvement of vessel location predictions. In this thesis, we propose

a novel method for predicting future locations of vessels by making use of historic AIS data. The

proposed method extends a Linear Regression Model (LRM), utilising historic AIS movement data

in the form of a priori generated spatial maps of the course over ground (LRMAC). The LRMAC

has low complexity and is programmatically easy to implement, and attains accurate prediction

results. We first compare the LRM with a Discrete Kalman Filter (DKF) on linear trajectories.

We then extend the LRM to form the LRMAC. The LRMAC is compared to another method in

literature called the Single Point Neighbour Search (SPNS). For the use case of predicting Cargo

and Tanker vessel trajectories, with a prediction horizon of up to six hours, the LRMAC has an

improved execution time and performance compared to the SPNS.

Key words:

Linear Regression Model, Automatic Identification System (AIS), Vessel Trajectory Prediction,

Spatial Maps, Data Mining
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OPSOMMING

’n Uitbreiding van die Lineêre Regressiemodel vir
Verbeterde Vaartuig-trajek Voorspelling - deur gebruik te maak 

van a priori OIS Inligting

C.N. Burger

Departement van Wiskundige Wetenskappe, Divisie van Rekenaarwetenskap,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602 , Suid-Afrika.
Tesis: M.Sc (Rekenaarwetenskap)

April 2022

As gevolg van die toename in maritieme aktiwiteite wêreldwyd, het die afhanklikheid van tegnologie 

in die monitering, beheer en toesig van vaartuigaktiwiteite ook toegeneem. Een van die mees 

prominente stelsels vir die monitering van vaartuigaktiwiteit is die Outomatiese Identifikasiestelsel 

(OIS). ’n Toename in vaartuie wat toegerus is met OIS-transponders, en die toename in satelliet- en 

terrestriële ontvangers, het gelei tot ’n aansienlike groei in OIS-boodskappe wat wêreldwyd ontvang 

is. Dit het weer gelei tot die toename in dataryke ruimte-temporele bronne, wat verband hou met 

vaartuigaktiwiteite. Dit gee ontleders die vermoë om gevorderde vaartuig-bewegingsanalise uit te 

voer, waarvan ’n toepaslike voorbeeld, die verbetering van vaartuig-liggingvoorspelling is. In hierdie 

tesis stel ons ’n nuwe strategie voor om toekomstige liggings van vaartuie te voorspel, wat gebruik 

maak van historiese OIS-data. Die voorgestelde metode brei ’n Lineêre Regressie Model (LRM) 

uit, deur gebruik te maak van historiese bewegingsdata en ruimte kaarte van a priori koers oor 

grond inligting (LRMAK). Die LRMAK het ’n lae kompleksiteit en is programmaties eenvoudig om 

te implementeer, met relatiewe akkurate voorspelling resultate. Ons vergelyk eers die LRM met 

’n Diskrete Kalman Filter (DKF) op lineêre trajekte. Dan brei ons die LRM uit om die LRMAK 

te vorm. Die LRMAK word vergelyk met ’n ander metode in literatuur wat die Enkel-punt Buur-

soektog (EPBS) genoem word. In die geval van trajek-voorspelling vir vrag- en tenkwa-vaartuie, het 

die LRMAK ’n verbeterde uitvoeringstyd en is vergelykbaar met ’n ander algoritme in literatuur, 

die EPBS, tot en met ’n voorspellingstydperk van ses-ure.

Sleutelwoorde:

Lineêre regressiemodel, outomatiese identifikasiestelsel ( OIS), v aartuigtrajekvoorspelling, ruimte 
kaarte, data-ontginning
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CHAPTER 1

INTRODUCTION

1.1 PROBLEM STATEMENT AND OBJECTIVES

The world’s oceans are of critical importance to humanity as it is key to fisheries, shipping, and

the environment. From an economic perspective, it is estimated that 90% of all global goods and

energy transportation is done by sea, with millions of people being dependent on maritime-related

activities for their livelihoods (Fang et al., 2020b). As maritime activities increase globally, there

is a greater dependency on technology for monitoring, controlling, and surveying of vessels and

their activities. One of the most prominent systems for monitoring vessel activity is the Automatic

Identification System (AIS).

Figure 1.1: Artisanal depiction of the AIS system data flow (Burger, 2021)

AIS operates in the Very High Frequency (VHF) band and transmits messages from vessels to

other vessels, terrestrial shore stations, and satellites (an artisanal depiction is shown in Figure

1.1). Due to the global increase in vessels fitted with AIS transmitters and the proliferation of

satellite (S-AIS) and terrestrial (T-AIS) receiving stations, a significant increase in AIS messages
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has been received globally. This increased data volume makes it possible to track the real-time

movement of vessels and opens the door for improving vessel location predictions via historic vessel

movement patterns. Several algorithms have been developed in recent years to aid in improved

vessel coordinate prediction.

In this thesis, we present a novel prediction method whose main aim is to aid in vessel trajectory

prediction of Cargo and Tanker vessels, specifically. We developed this method as we identified the

need for a model with a low run-time complexity that is easy to implement and initialise. We will

refer to this novel method as the Linear Regression Model with added a priori Course Information

(LRMAC) throughout this thesis. When we designed the LRMAC, we kept in mind that it should

be simple to implement and easy to initialise. LRMAC uses an Linear Regression Model (LRM)

model at its core; and with the addition of a priori information whilst predicting, is able to predict

non-linearly.

The a priori information the proposed method utilises is in the form of Spatial Maps (SMs). SMs

are two-dimensional grids with cells containing information about specific geospatial locations on

Earth.

The main problem we address in this thesis is:

Develop a low complexity, programmatically simple to implement method of predicting the

trajectories of Cargo and Tanker vessels. Moreover, this simplistic approach should incorporate

a priori information.

As we have already alluded to, the algorithm developed to solve the above problem is the LR-

MAC. Designing the LRMAC required multiple steps. First, a thorough literature review was

conducted to investigate what approaches others have proposed to address the aforementioned

problem. This literature review can be found in Section 2.2.2. Secondly, from this literature

review, it seemed logical to use an LRM as our base model since Cargo and Tanker vessels

travel along piece-wise linear trajectories. Next, it had to be determined if the LRM was an

accurate and sufficient model to use for the prediction of Cargo and Tanker vessels’ trajectories.

The LRM and a more complex benchmarking approach, the so-called Discrete Kalman Filter

(DKF), is presented in Section 4.3 and Section 4.2, respectively. The LRM and the DKF were
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compared, and the result of this comparison study is discussed in Chapter 5.2.2. The LRM was

found to be sufficient (to predict the linear segments of the piece-wise linear trajectories). The

next step entailed extending the LRM to also incorporate a priori information, to allow the

model to not only predict linear trajectories but also piece-wise linear trajectories. The prob-

lem then arose, what form should this a priori information take to enable such an extension?

The format settled on were SMs, which are discussed in greater detail in Section 3.2. SMs sum-

marise pertinent information, and its content could be extracted efficiently. Once the format

was decided on, exactly how it should be incorporated to improve the prediction capability

of the LRM needed to be established. The incorporation mechanism is discussed in greater

detail in Section 4.5.2. Finally, we had to compare the accuracy and the time complexity of

the developed method with a similar approach in literature. During the literature study, the

Single Point Neighbour Search (SPNS) was identified as a good benchmarking approach. The

SPNS is described in detail in Section 4.4. The result of this comparative study is presented in

Section 5.3.3. In short, the outcome of this comparative study was that the LRMAC performed

better than the SPNS in terms of long term prediction accuracy, and it has a significantly faster

execution time.

1.2 RESEARCH QUESTIONS

The research questions of this thesis are:

1. How does an LRM compare (in terms of accuracy) to other more complex vessel trajectory

prediction methods when we consider the Tanker and Cargo vessel use case?

2. Can the LRM be extended to predict long-term non-linear trajectories by incorporating a

priori information?

3. How does this extended LRM compare with other similar a priori prediction methods from

literature in terms of prediction capability and run-time complexity?

1.3 THESIS STRUCTURE

Chapter 2 provides background on the vessel tracking technologies that currently exist. AIS is

discussed, together with alternative and complementary technologies. Furthermore, the technolo-
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gies are compared in detail, discussing their advantages and disadvantages. The hardware used by

each technology is also discussed. We then further discuss AIS and methods that utilise AIS for

the prediction of vessel coordinates, in the form of a literature study. The methods discussed range

until mid-2021.

Chapter 3 introduces the AIS dataset used to compare all the methods presented in this thesis.

The cleaning of the dataset and its statistics are also discussed. We introduce SMs as well and how

they were generated from the aforementioned dataset.

Chapter 4 discusses all the methods included in this study. We start with the non a priori

methods1, the DKF and LRM and then introduce the a priori methods the SPNS and the created

novel LRMAC.

Chapter 5 contains the results of the method comparisons and the experimental design for each

of them. An in-depth comparison for each of the non a priori and a priori methods are presented,

where all the methods were tested on multiple vessels. Each comparison is followed by a case study.

Chapter 6 concludes the thesis, the specific drawbacks and advantages of the various methods are

discussed, highlighting some of the observations that can be made from this work.

Appendix A provides an in-depth overview of the DKF. The appendix discusses the DKF in

detail and should equip the reader to have a good understanding of the DKF and how it works.

An example of the DKF example is also presented and discussed.

Appendix B provides an in-depth overview of the LRM. The least squares (LS) fit is discussed

in detail. An example is presented and discussed to allow the reader to understand how the LS fit

works and how the optimal LRM fit is obtained.

Appendix C introduces two tables. These tables contain the information of the vessels and

trajectories used to test the non a priori and a priori methods on.

1When we refer to non a priori methods throughout this thesis, we refer to methods that do not continuously
incorporate historic information (a priori) whilst predicting. We are aware that the DKF makes use of a priori
information during the initialisation of its matrices, and it also refers to the previous predicted state as the a priori
state estimate.
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1.4 ACADEMIC CONTRIBUTIONS

In this section we highlight the academic contributions made during the course of the study.2

1.4.1 Conference Papers

• C. N. Burger, T. L. Grobler and W. Kleynhans, “Discrete Kalman Filter and Linear Regres-

sion Comparison for Vessel Coordinate Prediction”, 2020 21st IEEE International Conference

on Mobile Data Management (MDM), 2020, pp. 269-274.

• T. L. Grobler, W. Kleynhans, B. P. Salmon and C. N. Burger, “Unsupervised Sequential

Classification of Modis Time-Series”, IGARSS 2020 - 2020 IEEE International Geoscience

and Remote Sensing Symposium, 2020, pp. 2244-2247.

1.4.2 Journal Papers

• C. N. Burger, W. Kleynhans, and T. L. Grobler, (2021)., “Extended Linear Regression Model

for Vessel Trajectory Prediction with a priori AIS Information”, Geo-spatial Information

Science Journal, In Press.

1.4.3 GitHub

All code used throughout this thesis is documented and available on a public GitHub repository.

The repository contains relevant code and algorithms, and the link is provided below:

• https://github.com/cnburger/MScComputerScience

2The content presented in this Thesis supersedes and improves any work published before the year 2021.
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CHAPTER 2

LITERATURE REVIEW

In this chapter we introduce different vessel tracking technologies and techniques considered. We

discuss each technology and do a comparison between them. Furthermore, we do a deeper dive

into one of the vessel tracking technologies, namely, AIS. During the deep dive we discuss AIS

applications followed by a literature review on prediction methods that make use of AIS.

2.1 VESSEL TRACKING TECHNOLOGIES

In recent years the tracking and monitoring of vessels have become more prevalent and necessary

to improve the safety of maritime-related activities and the crews involved.

At the United Nations (UN) Geneva Convention of March 1948, a convention adopted at the UN

Maritime Conference resulted in the formation of the International Maritime Organisation (IMO),

which was formally known as the Intergovernmental Maritime Consultative Organisation (IMCO)

until 1982. In 1948, the convention was prepared and opened for signature, and its acceptance was

convened by the Secretary-General of the UN (United Nations, 1958). The IMO officially came

into force in March 1958. In short, the Geneva Conventions and their additional protocols form the

core of international humanitarian law, which regulates the conduct of armed conflicts and seeks

to limit the effects thereof1.

The International Convention for the Safety of Life at Sea (SOLAS), is an international maritime

treaty that sets the minimum safety standards for the operation of vessels, created by the IMO

(United Nations, 1980). The increase in tracking and monitoring of vessels is due to the SOLAS reg-

ulations created by the IMO, and the worldwide adoption thereof. These regulations require vessels

that meet certain criteria to be fitted with specific transponders, which aid in vessel monitoring.

A transponder is a device capable of automatically transmitting and receiving signals (data). Vari-

ous types of transponder technologies to monitor vessel activity exists. One such technology is AIS,

which is an active tracking technology consisting of both terrestrial-AIS (T-AIS) and satellite-AIS

(S-AIS). The aforementioned transmitters transmit data at regular time intervals (Curlander and

1For more on the Geneva Convention see: https://www.icrc.org/en/war-and-law/treaties-customary-law/
geneva-conventions
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McDonough, 1991).

AIS is one of the most common tracking technologies used by vessels. However, as we have already

alluded to, there exist a wide range of different technologies similar to AIS with different use cases

and applications. One such technology is Long Range Identification and Tracking (LRIT). LRIT

is a satellite-based system that samples at a lower rate than AIS. An advanced non transponder

based, tracking technology called Synthetic Aperture Radar (SAR) also exists, which is used as

a complementary technology to AIS and LRIT. SAR is a satellite/aircraft-based system able to

track vessels in all terrains and weather conditions. Optical satellites and coastal radar are also

complementary technologies to AIS and LRIT, allowing for improved tracking of vessels.

A shore-side monitoring service exists that utilises all the different tracking technologies, known as

the Vessel Tracking Service (VTS). The VTS utilises technologies, such as radar, AIS, LRIT and

other visual aids.

2.1.1 Vessel Tracking Service

The VTS is a marine traffic monitoring system created by harbour and port authorities to monitor

vessel activity close to shore. The first VTS system appeared at a port in Liverpool, UK in 19492.

The VTS can contact vessels from shore using radio frequency transmission; relaying important

information identified by all of the technologies in the VTS control room onshore, which human

operators manage. The VTS is similar to air traffic control for aircraft. The type of information

communicated to vessels from the VTS includes: positions of other traffic, meteorological hazard

warnings such as disturbances on the sea floor and bathymetric2 information. The VTS only

manages traffic within a port or waterway that is within its range of authority.

The VTS has predefined zones of authority enabling captains of vessels to make more informed

navigational decisions. The ocean can be divided into these specific areas (zones). The zones are

visualised in Figure 2.1 and summarised below.

1. Region A1, an area which lies within the coverage region at least one Very High Frequency

(VHF) coast station providing Digital Selective Calling (DSC) alerting and radiotelephony

services.

2According to the United States Coast Guard, see: https://www.navcen.uscg.gov/?pageName=vtsHistory
2Bathymetry is defined as the measurement of the depth of oceans, rivers, or lakes.
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Figure 2.1: VTS visualisation of sea area zones

2. Region A2, an area excluding A1, which is within the radiotelephone range of at least one

Medium Frequency (MF) coast station in which continuous DSC alerting and radiotelephony

services are available.

3. Region A3, an area excluding A1 and A2, within the coverage of an Inmarsat geostationary

satellite in which continuous alerting is available.

4. Region A4, an area outside A1, A2 and A3. Vessels must carry a DSC-equipped High Fre-

quency (HF) radiotelephone/telex.

The VTS’s authority is limited to a specific area within a certain radius of the control centre. When

a vessel enters a VTS area, they must report to the authorities using radio. Vessels may be tracked

by the VTS control centre as determined by the IMO. When vessels are within a VTS area, they

must monitor a specific radio frequency for warnings, and they can be contacted directly by a VTS

operator in the event of an emergency, risk of incident or where traffic flow is regulated by the VTS.

SOLAS regulation V/12 states that governments may establish a VTS when in their opinion, the

volume of traffic or the degree of risk justifies such services. The primary purpose of the VTS is to

improve the safety and efficiency of harbours, ports and routes.

VTS utilises various transponder and non-transponder based technologies. Non-transponder based
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technologies include radio, radar, optical satellites, and SAR. Transponder based technologies in-

clude AIS and LRIT. Radar can be used by the VTS to detect the size of an object and its speed.

Vessels equipped with radar systems can further extend the range of radar, transmitting the col-

lected information to the VTS. AIS aid in the reliability and efficiency of navigation, utilising

terrestrial receivers (T-AIS) and satellites (S-AIS) to transmit data. VTS makes use of a technol-

ogy known as Radio Direction Finder (RDF) which assists in collecting maritime information and

locating the direction from which radio frequencies are coming.

Vessels have to carry specific transponders or a range of transponders depending on the criteria

set by the IMO. There are different types of transponders that can be employed, namely AIS and

LRIT.

2.1.2 Automatic Identification System

The AIS system was developed to identify, track, and report on different types of data points

generated by vessels. Data availability and coverage of AIS has increased significantly over time.

The usage of AIS for improved vessel tracking, location predicting, position monitoring and collision

avoidance has also grown significantly (Yang et al., 2019). Large volumes of AIS data are being

recorded each day, Natale et al. (2015) reported that in 2014 there were 200 million unique AIS

messages that were recorded in each month, amounting to 6.5 million AIS messages a day. Yang

et al. (2019) mentioned that if an AIS message is sent every 10 seconds from a single vessel, it will

send up to 3 million messages a year. AIS messages can be categorised as static messages, dynamic

messages, voyage related messages and safety-related messages (Harchowdhury et al., 2012). A

subset of the information AIS messages contain is shown in Table 2.1.

AIS information is broadcasted, collected and exchanged on a regular basis (Balduzzi et al., 2014).

The frequency thereof varies from a couple of seconds to minutes depending on the type of informa-

tion being sent and the condition of a station (some AIS receiver technologies are old, and a delay

in signal processing may occur). All AIS messages have an identifier that indicates which vessel

the message belongs to, called the Maritime Mobile Service Identity (MMSI). A MMSI is issued

by authorities such as the United States coast guard, which also issues the call sign of a vessel

3World Geodetic System (WGS-84) is a language of location and it is used by the Global Positioning System
(GPS) (Kumar, 1988)
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Description Measurement Unit Range

Maritime Mobile Service Identity (MMSI) - 9 Digits
AIS Navigational Status Integer 0-100
Longitude (LON) Degrees (WGS-843) [-180.0000, 180.0000]
Latitude (LAT) Degrees (WGS-84) [-90.0000, 90.0000]
Speed over Ground (SOG) knots (kt) [0.0, 102.0]
Course over Ground (COG) Degrees [0.0, 359.0]
Rate of Turn (ROT) Degrees per min [0, 720]
Heading Degrees [0, 359]
Bearing Degrees [0, 359]
Timestamp (Coordinated Universal Time) UTC -

Table 2.1: Information in an AIS message

(Balduzzi et al., 2014). The MMSI consists of numbers whereas the call sign is an alphanumeric

string.

The MMSI consists of nine digits, and uniquely identifies each vessel. A MMSI can be used on

different types of vessels and crafts. The MMSI encoding for vessels are indicated in Table 2.2 (

Saputra et al. (2018)). The first three digits of the MMSI refer to the Maritime Identification Digits

(MID) which specifies the administration (country) or geographical administration responsible for

the vessel, as stipulated by the International Telecommunication Union (2012) recommendation

M.585-6. The subscript in Table 2.2 refers to the position number in the MMSI string, the prefix

values [0, 1, 9] are used to identify a certain type of vessel/craft, the characters [M, I, D] represent

the three digit MID integer values, and X represents any integer values from zero to nine, inclusive.

Vessel/Craft Type MMSI String Structure

Individual Vessel M1 I2 D3 X4 X5 X6 X7 X8 X9

Group of Vessels 01 M2 I3 D4 X5 X6 X7 X8 X9

Shore Station 01 02 M3 I4 D5 X6 X7 X8 X9

SAR Aircraft 11 12 13 M4 I5 D6 X7 X8 X9

Navigation Aids 91 92 M3 I4 D5 X6 X7 X8 X9

Table 2.2: MMSI encoding breakdown

The IMO adopted the regulation from SOLAS which requires that certain types of vessels must be

fitted with an AIS transmitter (the regulations are listed below). SOLAS Chapter V Regulation

19/.2.1.4 paragraph 2.10, which specifies which vessels engaged on international voyages ought to

be fitted with an Electronic Chart Display and Information System (ECDIS), to improve the safety
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of vessels and their crews at sea. An AIS transmitter is an ECDIS.

The aforementioned regulations as they pertain to Cargo and Tanker vessels are summarised below:

• Tanker Vessels

– 3000 Gross Tonnage (GT) and upwards constructed on or after 1 July 2012.

– 3000 GT and upwards constructed before 1 July 2012; no later than the first survey4 on

or after 1 July 2015.

• Cargo Vessels

– 10000 GT and upwards constructed on or after 1 July 2013.

– 50000 GT and upwards constructed before 1 July 2013; no later than the first survey on

or after 1 July 2016.

– 20000 GT and upwards but less than 50000 GT constructed before 1 July 2013, with

the first survey on or after 1 July 2016.

– 10000 GT and upwards but less than 20000 GT constructed before 1 July 2013; no later

than the first survey on or after 1 July 2018.

2.1.2.1 AIS Transponders

AIS transponders make use of VHF radio and GPS technology. As mentioned the AIS communi-

cation medium can be broken into two types which are used interchangeably, namely T-AIS and

S-AIS. Transponders can transmit to onshore receiving stations, other AIS equipped vessels in the

vicinity and satellites. AIS transmission range is similar to that of VHF radios. AIS broadcasts in-

formation in packets, where each packet contains 256 bits transmitted at 9600 bits per second (bps)

(Harchowdhury et al., 2012). In Figure 2.2, a simplistic artisanal depiction of the AIS transponder

communication network is shown (created specifically for this thesis).

4The first survey, is defined in a regulation of the 1974 SOLAS convention. The first survey refers to the “first
annual, periodical or renewal survey, whichever is due first after the date specified in the relevant regulation or
any other survey if the Administration deems it reasonable and practicable.” https://www.imorules.com/GUID-

A0F84557-EF59-4E18-BB75-34C1FC2F0DF7.html.

11

Stellenbosch University https://scholar.sun.ac.za



Figure 2.2: An artisanal depiction of the AIS transponder communication network, S-AIS and T-
AIS combined (Burger, 2021))
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AIS transponders can be divided into two classes, A and B. Class A transponders have stricter

requirements compared to class B transponders. Class A transponders are required on vessels in

excess of 300 GT that partake in international voyages, where class B can be fitted to any non-

SOLAS vessel. Class B transponders have a lower cost compared to class A transponders and are

much simpler. Class A transponders comply with all relevant IMO AIS requirements. In Table 2.3

a comparison between Class A and B transponders is provided.

Feature Class A Class B

Transmit
power

12.5 Watts (W)
2 W (low power)

2W

Unique Communication
Access Scheme

Self Organised Time Division Multiple Access 5

(SOTDMA)
Carrier Sense Time-Division Multiple Access6

(CSTDMA)

Transmission
Frequency Range

156.025-162.025 MHz @12.5/25 kHz
DSC (156.525 MHz)

156.025-162.025 MHz @25 kHz
Optional: DSC (156.525 MHz) & 12.5kHz

Miscellaneous
External GPS

Heading
Rate of Turn Indicator

Heading (optional)

Safety Text
Messaging

Transmit and Receives Transmit (optional)

Table 2.3: Class A and B, AIS transmitter information

2.1.2.2 AIS drawbacks, vulnerabilities and security risks

Balduzzi et al. (2014) did an in-depth evaluation of AIS regarding security. Like any system, AIS

also has its vulnerabilities and is constantly being improved to be more resistant against cyber-

attacks. Androjna et al. (2021) did an in depth investigation into AIS vulnerabilities and how

these vulnerabilities can and are being exploited. These vulnerabilities have been reported to the

relevant organisations.

6SOTDMA is an access protocol used by AIS for continuous transmission. The idea behind SOTDMA is that
vessels within a self organised area maintain timing synchronisation to transmit AIS messages amongst themselves
autonomously (Harchowdhury et al., 2012). Each SOTDMA area can be thought of a circle with a radius of 20
Nautical Miles (NM) from the AIS equipped vessel. Vessels will transmit information to other vessels within its
SOTDMA area.

6CSTDMA is an access protocol to provide channel access and simultaneous switching. Carrier sensing is used to
defer transmissions until no other stations are transmitting (Zhang et al., 2014). Once a free slot is found, transmission
of information starts, for more see and article by Weatherdock: https://www.easyais.com/en/technical-news/ais-
know-how-data-transfer-sotdma-vs-cstdma/
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One of the drawbacks of AIS is that vessels may deactivate their AIS transponders. According to

the criteria laid out by SOLAS and adopted by the IMO, not all vessels have to be equipped with

AIS transponders; only certain vessels have to be equipped with a transponder, namely those that

fulfil the criteria set by SOLAS (Chen et al., 2019).

The three main threats of AIS identified by Balduzzi et al. (2014) are spoofing, hijacking and

availability disruption. These threats can be software or radio frequency related, disrupting their

normal function. The malicious intent behind these attacks is to cause dismay in: vessel tracking,

identification, prediction, and monitoring.

AIS spoofing includes the creation of artificial vessels that interfere with Search and Rescue Transpon-

ders (SARTs) where messages are sent to. These messages are usually in the form of fraudulent

emergency messages, luring a targeted vessel to a hostile and attacker-controlled sea space (Balduzzi

et al., 2014). By law, a vessel must join a search and rescue sea operation.

AIS hijacking happens when any information in AIS messages is altered, compromising the integrity

and quality of the data collected from AIS equipped vessels. Information sent to vessels can be

modified maliciously, letting vessels veer off course. In both cases, the recipients receive attacker

modified versions of the original AIS messages (Balduzzi et al., 2014).

Finally Balduzzi et al. (2014), also mentioned the existence of availability disruption attacks. These

attacks’ purpose is to interfere with radio frequencies. Attacks include messages being sent to

transponders, instructing them to change their broadcasting frequencies, rendering AIS useless.

When the transmission frequencies change, the data sent will not be recorded by the AIS receivers.

The interruption of communications within a certain coverage range can result in large scale AIS

disruptions. Another type of disruption attack is the so-called timing attack. A timing attack

causes AIS transponders to delay transmission times and prevent them from communicating their

position and other relevant tracking information.

Although vulnerabilities do exist within the AIS system, the system is reviewed, maintained and

updated more regularly than any other vessel tracking system (Balduzzi et al., 2014).
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2.1.3 Long-range Identification and Tracking (LRIT)

LRIT is the most similar to AIS if compared to all the vessel tracking technologies, although it

has a completely different data pipeline and use case. The LRIT system allows for the global

identification and tracking of vessels to improve the security of shipping, safety, and maritime

environments. According to the European Maritime Safety Agency (EMSA), LRIT was established

in October 2006 by the IMO7.

LRIT is a satellite-based real-time reporting system that collects and distributes vessel positional

information to specific LRIT data centres (DC) as determined by each vessel’s Flag administration

(Xiao et al., 2020). A Flag administration can be defined as the country/nation a vessel belongs to.

Each Flag administration has a list of vessels entitled to fly its flag, which means that the associated

LRIT data is governed by the rules set out by the Flag administration. Each administration

determines the DC to which LRIT information has to be sent to, from the vessels with their flag.

The majority of the Flag administrations opted for cooperative DCs. However, there are nations

that opted for National DCs, such as the US where DC data is not shared unless otherwise specified.

Each Flag administration has the right to protect the information of their vessels, while allowing

Coastal states to access information of a vessel that is about to enter their coastal region (Verma,

2009). A coastal state is defined as any nation with a coast. Coastal states have the right to protect

their coastline as set out in the United Nations Convention on the Law of the Sea (UNCLOS) created

by the United Nations General Assembly (1982). The US, as an example, has full control over their

LRIT data (national DC), and has to provide their LRIT data to coastal administrations when

vessels under their flag enters their coastal region as stated in UNCLOS and SOLAS. Every Flag

administration is responsible for enforcing any applicable maritime regulations. LRIT entitles all

SOLAS Contracting Governments to receive information about vessels, that is up to 1000 NM from

their coast (Verma, 2009).

7The EMSA is an agency of the European Union, more on LRIT from the EMSA is available at http://www.

emsa.europa.eu/lrit-main/lrit-home/legal-basis.html
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The LRIT system as a whole consists of several items. The components of an LRIT system are

listed below (International Maritime Organization, 2020):

• LRIT information transmitting and satellite communication equipment

• Communication Service Providers (CPS)

• Application Service Providers (ASP)

• LRIT DC, including any related Vessel Monitoring System (VMS)

• LRIT Data Distribution Plan (DDP)

• LRIT International Data Exchange (IDE)

The LRIT system by default should transmit the positional information of a vessel in no less than

six-hour intervals to the respective DCs (There should be at least four positional updates in a

24-hour period). The transmission frequency is determined by the Flag administration. The types

of information transmitted by LRIT can be seen in Table 2.4 below.

Description Measurement Range

LON WGS-84 Degrees [-180.0000°, 180. 0000°]
LAT WGS-84 Degrees [-90.0000, 90.000]

Timestamp (UCT) UCT
Ship name String

IMO Number
Call Sign

Martime Mobile Service Identity (MMSI) 9 Digit Number

Table 2.4: LRIT Tracking Parameters

The LRIT regulation applies to all vessel types on international voyages, as required and stipulated

by the International Maritime Organization (2020). Vessels that needs to be equipped with LRIT

are listed below:

• All passenger vessels including high-speed craft.

• Cargo vessels, including high-speed craft of 300 gross tonnage (GT) and above.

• Mobile offshore drilling units.
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2.1.4 Complementary Technologies

In this section, we discuss complementary technologies to AIS and LRIT. These technologies include

SAR, Coastal based Radar, and Optical satellites, all non-transponder based. They are used to

further improve transponder-based systems’ tracking abilities.

2.1.4.1 Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) is a satellite/aircraft-borne technology, that can be utilised for

maritime surveillance. SAR’s biggest advantage is that it can operate in any weather condition and

time of day. SAR imagery can track vessels at sea, as they are highly reflective when compared

to the oceanic background (Schwegmann et al., 2018). SAR, however, cannot provide further

information on a vessel other than its location and dimensions, therefore it is being used together

with transponder technologies.

The physical SAR antenna is relatively small and can provide high-resolution large-scale imagery

(Curlander and McDonough, 1991). However, SAR simulates the use of a long antenna by the

implementation of signal processing techniques (Cutrona, 1990), enabling higher resolutions given

the small antenna size8. SAR uses the fact that it is fitted to a moving object to its advantage,

producing higher resolution images through the means of signal processing. The reduced size of

the SAR system means the incurred cost to implement is also reduced, as the size and weight of a

satellite-borne system have a significant impact on the cost thereof (Chan and Koo, 2008).

SAR imagery only covers areas where satellites with the technology are actively at (due to satellite

orbits). AIS technology, on the other hand, is not only dependent on satellites but has terrestrial

receivers as well.

If the right operating frequency is chosen for SAR, it will be able to penetrate through clouds, rain

and fog without any diminishing effects on the quality of SAR imagery. Therefore, SAR can be

used in any weather condition, while optical and infrared systems are not able to operate in all

weather conditions (Ulaby et al., 1981). SAR is an active sensor, which means that it has its own

source of illumination (not relying on sunlight reflecting off of the earth); therefore, it can operate

at any time of day (Chan and Koo, 2008).

8Longer antennas usually translates into higher spatial resolutions imagery, and improved data capturing
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SAR was developed to overcome coverage limitations of traditional technologies, which require

vessels to have transmitting equipment on board. A SAR equipped aircraft can be deployed in any

region to identify and track vessels. Schwegmann et al. (2017), made use of SAR to accurately

detect vessels at sea. Multiple other methods that utilise SAR have also been developed. Other

examples include Koppe et al. (2014), Brusch et al. (2010) and Wang et al. (2017).

SAR has various applications, and is not only limited to vessels at sea (Chan and Koo, 2008). Other

applications include:

• Mining (Lynne and Taylor, 1986)

• Oceanography (Walker et al., 1996) such as Bathymetry (Ma et al., 2021)

• Oil pollution and Environment Monitoring (Hovland et al., 1994)

• Sea ice (Drinkwater et al., 1990) and snow monitoring (Storvold et al., 2006)

• Terrain Classification (Kong et al., 1990)

• Vessel monitoring and surveillance

SAR and AIS have been used together in the past for maritime surveillance. Achiri et al. (2018),

proposed a method to fuse SAR images and AIS data for improved vessel detection and feature

extraction. Various SAR and AIS algorithms exist. See Zhao et al. (2014) for a review on such

algorithms.

SAR, however, does not allow for continuous temporal coverage of a specific region together with

adequate real-time surveillance (Maresca et al., 2014). SAR requires complex signal processing to

make use of its data (Chaturvedi, 2019). Raw SAR data has to be transformed into usable data,

whereas AIS data needs no transformation from its raw state. AIS transmitters already transform

the measurements it makes into usable data; in the form of AIS messages.

2.1.4.2 Coastal Radar System

The Coastal Radar System (CRS) consists of a range of onshore radar stations along the coast.

Coastal Radar (CR) allows for the detection of vessels within the range of operation defined by

the Radar System (RS). The range of a RS is dependent on the technology and specifications of

the system. CRS, similar to SAR, is used in conjunction with transponder based technologies to
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further improve the tracking of vessels.

RS play an important role in the monitoring of sea and air traffic; reducing accidents in the

transportation sector (Octavian and Jatmiko, 2020). The RS utilises electromagnetic waves for

the detection of objects. It can measure distances from the radar to any object, making maps

of objects within its range (these objects includes planes, vessels and vehicles). The RS is also

capable of detecting weather information and including it on its maps. Octavian and Jatmiko

(2020), proposed a method to aid in MSA by using AIS, CRS and long-range cameras together

with Artificial Intelligence (AI) to improve vessel tracking, anomaly detection and path planning.

High Frequency Radar (HFR), can have a detection range of up to 200 km. However, detection

accuracy is limited due to interference by external factors (see Dzvonkovskaya and Rohling (2010)).

Conventional microwave radars operate in line-of-sight propagation, and as such, are limited to a

few kilometres (Maresca et al., 2014). CRS is widely used and is the most common technology

which is used by the VTS.

2.1.4.3 Optical Satellites

Optical satellite tracking involves the classification and identification of vessels by means of optical

images captured from satellites, such as Sentinel-29. Optical refers to the visible spectrum of the

human eye, with wavelengths ranging from 400− 700 nanometre (nm), and reflected infrared that

covers the near and short-wave infrared bands of up to 3µm (Kanjir et al., 2018). Optical sensors

are passive sensors, which means that they rely on an external illumination source, such as the sun.

Optical imagery plays an important role in maritime surveillance; literature studies on detection

algorithms utilising optical imagery have been published as early as 1978 (Kanjir et al., 2018).

Kanjir (2019) proposed a method using freely available Sentinel-2 optical image data to support

humanitarian efforts to identify migrants that risk their lives to migrate over the Mediterranean sea,

illegally on makeshift vessels. Vessel detection is also essential in sea rescue operations, or to detect

illegal activity such as pollution, illegal fishing, and illegal migration. Kanjir et al. (2018), did an

in-depth review of the literature that makes use of optical satellite imagery for vessel detection and

9Sentinel-2 is an earth observation mission launched by the joint effort between the EC (European Commission)
and ESA (European Space Agency). Sentinel-2 is a constellation of two identical satellites (Sentinel-A and Sentinel-
B) in the same orbit, phased at 180◦ relative to each other (https://sentinel.esa.int/web/sentinel/missions/
sentinel-2).
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classification, up to 119 studies were reviewed.

2.1.5 Technology Comparison

AIS and LRIT can be used to track and identify vessels whereas SAR, Optical Satellites and CRS

are usually used together with AIS and LRIT, further improving the tracking abilities. Some

technologies are superior to others and have numerous advantages, but it comes with a trade-off

which is usually cost-related.

CR is the most limited of all the technologies as it can only track vessels close to shore and in

waterways, whereas the other technologies have global coverage due to satellite technology. When

comparing AIS with Optical Satellites, it is far superior, as it allows for vessel tracking in any

weather condition and time of day. SAR technology comes at a relatively high cost. LRIT data

is exclusive and limited to the LRIT network. AIS makes use of a combination of terrestrial and

satellite data, allowing for worldwide coverage, and it tracks multiple parameters of a vessel at a

relatively low cost. The process to obtain AIS data is relatively easy.

Although each system has its drawbacks and compromises, hybrid systems exist. Hybrid systems

aid in the improvement in vessel tracking and classification abilities leading to more accurate results,

i.e.:

• Chaturvedi et al. (2012) made use of a hybrid SAR and AIS method for improved vessel

trajectory prediction.

• Lang et al. (2018) used AIS together with SAR to improve vessel classification.

• Milios et al. (2019) combined AIS and SAR for improved vessel classification. Kleynhans

et al. (2013) made use of SAR and LRIT data for vessel detection.

• SAR can be used in conjunction with optical satellite imagery to produce images with even

higher spatial resolutions (Xiao et al., 2020).

• Meraner et al. (2020) proposed using SAR together with Optical Satellites for cloud cover

removal from images, as optical imaging sometimes requires extra processing for the removal

thereof.

In Table 2.5 each of the technologies are given and compared showcasing their advantages and

disadvantages.
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AIS LRIT
Coastal
Radar

SAR
Optical
Satellites

Detection
Mechanism

Self-reporting Self-reporting
Proactive
detection

Proactive
detection

Proactive
detection

Primary
Surveillance

Area

Ports
and

open oceans

Within 1000
nautical miles

of coast

Port waters
and

EEZ10
Open Oceans Open Oceans

Update/
Recording
frequency

Moving:
2-10 seconds
Anchor:
3 minute

(Class-A AIS)

At least:
6 hourly

and
4 updates
a day

Configurable
under

the system
limit

Configurable
under

the system
limit

Configurable
under

the system
limit

Land/Air
Based

Shore
and Satellite

based

Satellite
based

Shore
based

Satellite/aircraft
based

Satellite
based

Data format
Decoded as
value-based

data

Decoded as
value-based

data

Radar
Imagery

SAR
imagery

Optical
Imagry

Data Cost
and

availability

Readily available
and

low cost

Data
exclusive

Limited to
radar stations

High-cost
data

High-cost
data

Table 2.5: Vessel Tracking Technology Comparison

2.2 AUTOMATIC IDENTIFICATION SYSTEM: A DEEP DIVE

AIS data has opened up new research possibilities into the behaviour of vessel movements. Research

related to vessels equipped with AIS is still growing, with new studies and applications being

published each year. AIS data is used by all the methods implemented in this thesis. In this

section, we briefly discuss the applications of AIS allowing the reader to have an overview of the

different AIS applications, followed by an AIS trajectory prediction literature review.

10Exclusive Economic Zones (EEZ) were determined by United Nations General Assembly (1982). It states that
any coastal state can assume jurisdiction over the exploration and exploitation of marine resources in its coastal
waters. Coastal waters of a state consist of the area within 200 NM of the state’s shore lines.
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2.2.1 Applications

One of the main use cases for AIS is Maritime Situational Awareness (MSA). Volumes of AIS data

are being recorded each day, and the availability thereof has led to an increase in research of vessels

and their behavioural patterns. AIS is used to gain more insight into vessel behavioural patterns

(Hart and Timmis, 2008).

Data mining, in terms of AIS, is the process of extracting valuable information out of AIS data. Data

mining can be divided into different categories: pattern recognition ((Xiao et al., 2020) (Pallotta

et al., 2014)), concept-learning, prediction, clustering (Theodoropoulos et al., 2019), and classifi-

cation (both supervised and unsupervised) (Pitsikalis et al., 2021) (Lang et al., 2018). Trajectory

extraction is another important process often applied to AIS data that entails the reconstruction

or prediction of vessel trajectories (Yuan et al., 2019).

Furthermore, anomaly detection, in terms of AIS, is the process of identifying vessels that do not

conform to the normal and known behaviour typically observed by a vessel (Ristic et al., 2008).

Anomaly detection is often used to identify vessels with abnormal behaviour (Rong et al., 2020).

Anomaly detection is important due to the sheer volumes of vessel data,making it rather difficult

for human operators at the VTS to monitor all vessels simultaneously.

2.2.2 Literature Review: Prediction

In the previous section, we briefly mentioned some applications of AIS. Recall that the main use

case we focus on in this thesis is prediction.

As such, we present a literature review on different trajectory prediction methods that utilises

AIS data in this section. Methods range from simplistic linear regression Machine Learning (ML)

models, as done by Burger et al. (2020), to more advanced ML models such as that proposed by

Xu (2020). As part of this thesis, we present a novel trajectory prediction method. Our literature

review spans published methods until mid-2021 and will be discussed in chronological order.

Perera et al. (2012) proposed an Extended Kalman Filter (EKF) to estimate the state of a vessel.

The EKF was also used for the prediction of vessel trajectories. The EKF as-is, can be used to

fuse non-linear system kinematics with a set of noisy measurements. An Artificial Neural Network

(ANN) is also introduced as a mechanism to detect and track multiple vessels. It is well known that

22

Stellenbosch University https://scholar.sun.ac.za



ANNs can self adapt, approximate universal functions, capture non-linear behaviour and compute

posterior probabilities. The proposed EKF estimates the vessel’s state, i.e. its position (spatial

location), velocity, and acceleration. The acceleration is estimated by using position measurements

that the ANN provides. A curvilinear motion model is selected so that the motions of vessels

affected by external disturbances can be represented by white Gaussian noise. Perera et al. (2012)

showed that the EKF could successfully predict future states and trajectories with acceptable error

rates. The methods were tested on simulated examples with a time horizon of 50 seconds.

Pallotta et al. (2014) presented a vessel trajectory prediction method based on Ornstein-Uhlenbeck

(OU) stochastic processes, where the parameters of these processes are estimated from historic AIS

data. The data is clustered into three types: vessels, waypoints, and routes. Route extraction is

done using Traffic Route Extraction and Anomaly Detection (THREAD) from AIS data, which is

presented in Pallotta et al. (2013). The three types of clustered data aid in, vessel prediction and

empirical calculations. The maximum prediction time window of a vessel depends on the mean

duration of the historically observed route.

Mazzarella et al. (2015a) proposed a Bayesian vessel prediction algorithm based on a Particle Filter

(PF). The PF (also known as Sequential Monte Carlo) is defined as a numerical approximation of

the non-linear Bayesian filtering problem, used to filter and smooth state-space models (Gordon

et al., 1993). The proposed method refines the strategy presented by Mazzarella et al. (2015b)

by exploiting algorithms in the field of Bayesian non-linear filtering. Mazzarella et al. (2015a)

also proposed an architecture to fuse historic AIS, LRIT and VMS data (the results obtained by

Mazzarella et al. (2015a) were all based on the fused data). The aforementioned fused data allowed

for improved knowledge extraction from traffic patterns in the regions of interest. A Knowledge

Based Particle Filter (KB-PF) approach is proposed, which was inspired by Papi et al. (2012) and

Ristic et al. (2008) and is able to predict vessel motion patterns (i.e. the vessel’s COG and SOG).

The KB-PF was compared to a Knowledge Based Velocity Model (KB-VM) which was presented

in Mazzarella et al. (2015b). The KB-VM is a more computationally efficient model; however, the

KB-PF had increased prediction accuracy. The proposed method is applied to real-world data and

outperforms the KB-VM in terms of prediction accuracy. The KB-PF and the KB-VM were both

tested on 60-hour predictions, yielding average distance error rates of 52 km and 73 km, respectively

(based on the fused data).
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Zissis et al. (2015) proposed a cloud-based architecture, capable of perceiving and predicting the

behaviour of multiple vessels, i.e. their spatial location, SOG, and COG, by implementing an ANN.

The proposed ANN was designed as a cloud-based application, with the ability to overlay predicted

short and long term vessel trajectories, including the behaviours on an interactive map. The time

horizon for the short-term predictions is 15 minutes, and for the long term predictions, 75 and 150

minutes, respectively. The ANN learns vessel patterns in specific geospatial regions, utilising any

historic AIS data recorded in a given region. The performance of the ANN was evaluated using

real AIS data. The proposed method had good prediction accuracy in terms of the vessel location

prediction and SOG prediction. However, it had difficulty predicting the COG since the vessels

which were considered, rapidly changed course. When comparing the prediction accuracies for the

short and the long term predictions of the ANN, the long term accuracies were worse in comparison

to the short term prediction accuracies. In both cases, the ANN was able to recognise and predict

the overall behaviour of the vessels, which include the prediction of the location, SOG and COG.

This observation is expected, as any changes in a vessel’s COG or incorrect prediction thereof will

lead to an increase in prediction error as more time passes.

Zissis et al. (2016) created a method to accurately predict future coordinates of a vessel by using

ANNs. Different types of model pre-processing and construction techniques are implemented, and

the ANN was trained using Historic AIS data. The model learns (adapts) in real-time as the data

changes whilst predicting with a prediction time horizon of up to 15 minutes. The worst error

rate recorded was 4.75%, measured as the percentage difference between the actual and predicted

output.

Hexeberg et al. (2017) presented a method that uses historic AIS data to predict future locations

of vessels. The method is called Single Point Neighbour Search (SPNS). The method does a close

neighbour (CN) search by extracting historic observations within a certain radius of the current

vessel’s spatial location. Vessels in the CN set that do not adhere to prespecified COG range values

are removed. Using the CN set, the median COG and SOG value is calculated. Using the median

COG and SOG, the predicted longitude and latitude is calculated. The method predicts in constant

distance intervals, where the SOG is used to calculate the time passed between two observations.

The method can confidently predict with a time horizon of up to 15 minutes.
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Jaskolski (2017) implemented a Discrete Kalman Filter (DKF), to predict future locations of vessels.

The DKF, in the context of vessel coordinate prediction, constantly adjusts itself for an improved

prediction as new observations are observed. It is assumed that a vessel fitted with an AIS sensor will

not constantly send updates. The DKF consists of two sets of equations: predictor and measurement

update equations. Burger et al. (2020) showed that there is no significant improvement in the

prediction accuracy by using a DKF over a Linear Regression Model (LRM) if both are used to

predict linear trajectories.

Dalsnes et al. (2018) proposed a prediction method that utilises Gaussian Mixture Modelss (GMMs).

The use of GMMs allows for the measurement of the degree of uncertainty and handles multimodal-

ity. The proposed method is built on a method called the Neigbor Course Distribution Method

(NCDM) developed by Hexeberg (2017). The NCDM was developed to improve on some of the

shortfalls of the SPNS method created by Hexeberg et al. (2017). The SPNS prediction output

can be seen as a list of states forming a single trajectory, whereas the output from NCDM is a

tree of states which forms multiple trajectories. Each trajectory calculated by the NCDM is cal-

culated similarly to that of the SPNS method. The NCDM has a higher complexity than that

of the SPNS but allows for the prediction of trajectories in several branched sea lanes with an

uncertainty measure attached. The predicted future position calculated by the NCDM is given by

a number of Jmax points taken from the desired level of the prediction tree. The proposed method

extends the NCDM by fitting a GMM to the predicted points resulting in a probabilistic model of

the future position. The Expectation Maximisation (EM) algorithm is used to fit the GMM, which

will fit the maximum likelihood GMM for the given points (Dalsnes et al., 2018). The GMM, as

in the case of the NCDM, allows for the prediction of trajectories branching over several sea lanes.

Thus, the predicted future position’s distribution can be seen as a multimodal distribution. The

prediction horizon of the proposed method is 5-15 minutes. Dalsnes et al. (2018) recorded a median

Root Mean Square Error (RMSE) of 290 m and 675 m for the 5 and 15 minute prediction horizon,

respectively.

Kim and Lee (2018) proposed a deep NN model called the Ship Traffic Extraction Network

(STENet) to predict medium-term (20 − 30 minutes) and long-term (40 − 50 minutes) traffic in

a so-called caution area. The caution area is an area identified by VTS operators in which nu-

merous vessel route intersections exist with high traffic flow. The proposed method was designed
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to minimise the risk in such areas, reducing the probability of vessel collisions or groundings. A

vessel’s SOG and COG can suddenly change, resulting in many parameters that have to be tracked

by the VTS operators. STENet was trained on historic AIS data. STENet was organised into

a hierarchical architecture. The hierarchical architecture consists of a front-part (feature extrac-

tion) and rear-part (prediction). The front-part consists of two feature extraction modules: vessel

movement vectors and vessel attributes, i.e. caution area, vessel length, vessel destination, pilot

embarkation, and vessel type. The first module consists of a CNN, and the second consists of five

Fully-Connected Convolutional Neural Networks (FCNNs) each receiving an associated attribute.

The extracted features are concatenated and fed into the prediction module’s rear-part. The pur-

pose of feature extraction at the front-part of the architecture is to prevent cross-talking between

unrelated attributes. The rear-part consists of a FCNN, which predicts the number of vessels that

will be in a caution area. Four prediction models were compared, namely Dead Reckoning, the

Support Vector Regression (SVR), the STENet and the VGGNet (a model proposed by Simonyan

and Zisserman (2015)). Kim and Lee (2018) showed when comparing the STENet to the SVR,

that the STENet was 50.65% more accurate when compared on short term predictions, and 57.65%

more for long-term predictions. The error was calculated using the Mean Absolute Percentage Error

(MAPE), which calculates the difference between the true and predicted trajectory as a percentage.

Virjonen et al. (2018) proposed a trajectory prediction method using k-Nearest Neighbours (k-NNs).

The idea behind the method is to compare the target vessel11 with other vessels that historically

resided in the same geospatial area. The predicted trajectory is estimated with a k-NN model by

finding k matching routes from the historical AIS data with similar behavioural characteristics as

the target vessel. The measure of similarity allows one to identify vessels that were close to each

other historically with a similar SOG in the given geospatial area. For the experimental design,

Virjonen et al. (2018) made use of two predefined spatial areas, where the distance from the starting

point of the spatial areas to the endpoint was 60 km and 120 km, respectively. Nested leave-one-

out cross-validation was used to evaluate the performance of the method. Acceptable prediction

accuracy was achieved for the use case (prediction of an emissions control vessel’s trajectory, which

is mostly linear). The prediction accuracy was between 3−5 minutes for the 60 km geospatial area

and 7− 12 minutes for the 120 km geospatial area.

11In this thesis, a target vessel refers to the vessel of interest. It is the vessel whose state is being estimated, or
whose trajectory is being predicted (the vessel a specific algorithm is applied to).
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Rong et al. (2019) proposed a probabilistic trajectory prediction model based on a Gaussian Process

(GP). The GP can describe the uncertainty of a vessel’s future position along the predicted route,

using continuous probability density functions (pdfs). The GP is a non-parametric data-driven

Bayesian model. The proposed model decomposes a vessel’s movement into longitudinal and lati-

tudinal directions, and a positional pdf is fitted for both and independent of each other. Rong et al.

(2019) also proposed a route-fitted coordinate system that allows them to better describe a vessel’s

motion. The route-fitted system consists of a centerline of a specific traffic route. The traffic route

denotes an area with specific traffic flow historically, similar to a highway where there is a clear re-

gion where vessels have travelled. The traffic route was obtained from historic vessel trajectories of

AIS data12. The centerline is calculated by the Dynamic Time Warping (DTW) algorithm (Müller,

2007). The route-fitted system converts the LAT and LON coordinates to their route-fitted space.

An acceleration pdf is created based on the analysis of historic AIS data. The longitudinal motion

pdf, of a vessel, is calculated as an integral of its acceleration (Rong et al., 2019). A GP regression

(GPR) model is then applied to the acceleration pdfs, to estimate the pdf of a vessel’s position

in the latitudinal direction. The hyperparameters of the GP are obtained from historic vessel tra-

jectories and is regarded as prior knowledge of a vessels position derived from historic traffic flow.

Clear traffic flow can be seen in the historic data used by Rong et al. (2019), allowing them to

estimate the pdfs. The GPR model can forecast the pdf over the future trajectory of a vessel,

resulting in a pdf that describes the future position of a vessel and the associated certainty thereof.

The aforementioned pdf is two-dimensional and is created by combining the two one-dimensional

pdfs of the respective movement directions (Rong et al., 2019). The proposed model can be applied

in real-time and can predict a pdf of a vessel’s future location and the uncertainty thereof. The

real-time prediction is made by iteratively updating the prior pdfs as new observations are observed

from the vessel. Given a prediction horizon of 120 minutes, the latitudinal and longitudinal errors

were 800 m and 1700 m, respectively. A prediction horizon of 60 minutes is recommended when

using the proposed method, as Rong et al. (2019) reported that a longer prediction horizon results

in an exponential increase in prediction error.

Forti et al. (2020) made use of a Deep Learning (DL) Neural Network (NN) approach to predict

trajectories of vessels. A sequence-to-sequence Recurrent Neural Network (RNN) model, that

12The vessels Rong et al. (2019) used for their proposed model, all travelled within the traffic route and are in the
same spatial range of the historic data. They also only considered one route to showcase the proposed method.
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utilises a Long Short-Term Memory (LSTM) encoded-decoder Recurrent Neural Network (RNN)

is proposed. Historic AIS data is used to train the LSTM model. The method aims to learn the

predictive distribution of maritime traffic patterns using historic AIS data. Learning the predictive

patterns enables the model to predict more accurately. It was shown that the model could predict

more accurately than the OU process, given a time window of 20 observations.

Liu et al. (2020) proposed an Online Multiple outputs Least-Squares Support Vector Regression

model based on a Selection Mechanism (SM-OMLSSVR). The SM-OMLSSVR is based on an offline

Multiple outputs Least-Squares Support Vector Regression (MLSSVR) model, introduced in Xu

et al. (2013). The Least-Squares Support Vector Regression (LSSVR) model, is a Support Vector

Regression (SVR) model (proposed by Vapnik (1999)), where the inequality constraints are replaced

with equality constraints by the addition of slack variables (proposed by Suykens et al. (2002), also

see Saunders et al. (1998), Suykens and Vandewalle (1999)). For in depth information on SVR

see Hastie et al. (2009). The SM-OMLSSVR is a modified version of the MLSSVR to an online

hybrid model that can incorporate new updates received from a vessel when deemed necessary.

The incorporation of new updates depends on the selection mechanism. The implemented selection

mechanism can be explained as follows: once a new observation is observed the error of the MLSSVR

model is calculated, and if the error is not within allowable range (as set by Liu et al. (2020)) the

LSSVR model is used to add the new samples to the training set of the MLSSVR, in turn updating

the model. If the error is in an acceptable range, the offline model (MLSSVR) continues to predict.

The selection model essentially decides when to incorporate new information, turning the MLSSVR

into an online method until an acceptable error is obtained. The SM-OMLSSVR was compared to

an RNN LSTM model, a NN and a traditional LSSVR model in terms of prediction accuracies. The

methods were tested on six sample trajectories whose trajectories’ time ranges between three to six

hours. Prediction errors within [5−30] m were recorded. One should note that the SM-OMLSSVR’s

training set updates as new observations are received for improved prediction accuracies.

Murray and Perera (2020) presented a novel dual linear autoencoder (AE) approach to predict a

vessel’s trajectory. The method predicts a future trajectory using historic AIS data. The proposed

method predicts an entire trajectory, where all the vessel states are predicted simultaneously. The

method estimates a latent distribution of the possible future trajectories of the target vessel. By

sampling from the latent distribution, multiple trajectories can be predicted together with their
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uncertainties. For a prediction horizon of 30 min, the median prediction error was found to be 2.5%,

where the error is calculated as the distance from the mean µj of the corresponding distribution

P j and the true position (pj) at that state. P j is a normal distribution fitted to all the predicted

positions of each predicted state. The error is presented as a percentage of the actual distance

travelled by the target vessel.

Suo et al. (2020) proposed a DL framework that uses a Gate Recurrent Unit (GRU) model to predict

vessel trajectories. A series of trajectories together with vessel information (spatial location, SOG

and COG) is extracted from AIS data. The main trajectories are then derived by applying the

Discovering Clusters in Large Spatial Databases with Noise (DBSCAN) algorithm introduced by

Ester et al. (1996). A trajectory information correction algorithm is also applied, which utilises

symmetric segmented-path distance. The applied algorithm eliminates large amounts of redundant

data and optimises incoming trajectories. A GRU model is then applied to predict real-time vessel

trajectories. Historic AIS data was used to train and test the model. The GRU was compared to

an LSTM model. The GRU had improved computational time efficiency with similar prediction

accuracy to that of the LSTM. Suo et al. (2020) noted that the current model’s recursive nature is

computationally expensive when applied to long-distance trajectory prediction.

Wang et al. (2020) proposed a vessel berthing trajectory prediction model based on a Bidirectional

Gated Recurrent Unit (Bi-GRU). The proposed model learns from historic AIS data of vessels

located in the Tianjin port in China. Wang et al. (2020) extracts the LAT, LON SOG, COG and

time from the historical data to build a set of vessel berthing trajectories to train, validate and test

the proposed model. The Bi-GRU model requires the previous four consecutive trajectory points

of the target vessel. The Bi-GRU shows promising results when compared to an LSTM and GRU

for short distance predictions in port waters and has a smaller error and higher accuracy.

Xiao et al. (2020) did an extensive review of maritime knowledge mining and traffic forecasting

technologies. An LRM is compared to several non-linear approaches. Three broad categories of

non-linear algorithms are considered: machine learning approaches, knowledge-based approaches

and control theory assisted methods. The predictions range from long to short-term predictions.

It is also shown that more complex methods are more accurate at a higher computational cost.

Xu (2020) presented a context-based trajectory prediction algorithm utilising LSTM networks.
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Real-valued target trajectories are converted into discrete path sets from historical data, and dis-

tinctive patterns are clustered hierarchically. Two models are compared, a RNN consisting of one

LSTM and another RNN consisting of k LSTMs. In the RNN with k LSTMs, an LSTM is created

for each distinct path that exists. The proposed LSTM network outperformed the standard LSTM

network.

Zhang et al. (2020) proposed an AIS data-driven model for vessel final destination prediction and not

the trajectory leading up to the final destination. The proposed model is based on a Random Forest

(RF), which utilises the similarity between a vessel’s current trajectory and its historic trajectory

to predict the vessel’s final destination. The historic destination, whose associated trajectory is the

most similar to that of the current vessel’s trajectory, will be returned by the RF, as the predicted

final destination. To validate the performance of the proposed model, 11 trajectory similarity based

measurement methods and two different decision strategies were compared and implemented. Eight

conventional similarity measures were used, namely Fréchet Distance (Har-Peled et al., 2002), Edit

distance with real penalty (Chen and Ng, 2004), Edit distance on a real sequence (Chen et al.,

2005), Longest Common Subsequence (Gruber et al., 2009), Dynamic Time warping (Wang et al.,

2013), Hausdorff Distance (Magdy et al., 2015), Discrete Fréchet (Gudmundsson and Valladares,

2014), and Symmetrized segment-path distance (Besse et al., 2016). Three ML similarity measures

were used, namely the Naive Bayes classifier, Multi-layer perceptron, and the Independently RNN.

The two decision strategies were the: maximum similarity-based decision strategy and the port

frequency-based decision strategy. The proposed method achieved a prediction accuracy of 70% for

port-based prediction and 80% for city-based predictions when implemented on a five-day prediction

horizon.

Alizadeh et al. (2021) proposed three novel prediction methods based on historic AIS data . The

first method proposed is a Point-based Similarity Search Prediction (PSSP), which was inspired

by Wijaya and Nakamura (2013). The historical points are measured in terms of their spatial

location, SOG and COG. The second method proposed is called Trajectory-based Similarity Search

Prediction (TSSP), where each recorded AIS trip is regarded as a trajectory. The PSSP is a

point-based method, whereas the TSSP is a trajectory-based method. Lastly, a Trajectory-based

Similarity Search Prediction is proposed using an RNN LSTM (TSSPL). Alizadeh et al. (2021)

point out that vessel movement is affected by external movements such as wind, waves, and sea
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currents. The PSSP and the TSSP are not able to account for these external factors. Another

RNN LSTM model was, therefore, built to take this into account (i.e. TSSPL). The TSSPL has an

additional input, a measure of similarity between trajectories (similar to what was done by Tang

et al. (2019)). Prediction horizons of 10, 20, 30, and 40 min were considered on 89 different vessel

trajectories. The TSSPL had decreased errors of 53.6%, 54.2%, 55.8%, and 55.2% at the different

time intervals when compared to the PSSP and TSSP. When comparing the prediction errors over

time the TSSP recorded a reduced error of 40.85% when compared to the PSSP. The TSSPL had

a reduced error of 23% when compared to the TSSP.

Bautista-Sánchez et al. (2021), presented a sample method to select historic AIS data on vessel-

specific routes, named Select Best AIS Data in Prediction Vessel Movements and Route Estimation

(PreMovEst). The method’s goal is to optimise the computational performance of vessel spatial

location prediction and for real-time trajectory estimation. The method makes use of an ANN and

AIS data from a VTS database. The PreMovEst method consists out of four components divided

into two different stages: training and discovering. The first stage consists of three components:

acquiring AIS data, the processing thereof, and selecting the best routes through a statistical

behavioural selection process, called Chi-squared selection. The final stage consists of finding and

predicting the position of vessel movements, consisting of two techniques. The first is an RNN with

LSTM, where historical data is used as continual input streams for trajectory prediction. The second

technique employs a Multivariate Imputation by Chained Equations (MICE), a statistical method

used for handling missing data (Bautista-Sánchez et al., 2021). MICE allows for the approximation

of the full predicted path. The PreMovEst method had reasonable prediction accuracies of between

80.5− 84%.

Gao et al. (2021) proposed a novel Multistep Prediction Long Short-Term Memory (MP-LSTM)

model which was inspired by the Trajectory Proposal Network for Motion Prediction (TPNet)

framework created by Fang et al. (2020a). TPNet is a multi-step prediction method proposed for

vehicle trajectory prediction and assumes that future trajectories are cubic splines. TPNet utilises

a Convolutional Neural Network-based Encoder and Decoder to predict future curves (trajecto-

ries). TPNet predicts two points, the curvature (pivot) point and an endpoint. Gao et al. (2021)

combined the TPNet and an LSTM; using the LSTM to predict the curvature control point. The

determination of the aforementioned point is regarded as a regression problem rather than a classi-
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fication problem in TPNet, as such, it was relabelled to “support point”. The trajectory endpoint

is obtained under the hypothesis that the values generated from the reference trajectory and the

current trajectory are approximately equal. The reference trajectory is created from the vessel’s

motion parameters using historical data. Gao et al. (2021) also proposed an automatic genera-

tion method for the reference trajectory. The proposed prediction method predicts in constant

time displacement intervals and was created to overcome the two disadvantages that trajectory

prediction algorithms have; namely, they make use of complex relationship mappings and require

large amounts of data to work. The method was verified on four different navigational states:

the straight, turning, acceleration, and deceleration motion states. The accuracy was measured

using the final and average displacement error. The method was compared to four other methods;

namely, the dual linear AE proposed by Murray and Perera (2020), the EKF, the Support Vector

Regression Model, and an LSTM. Overall, the MP-LSTM outperformed the various other models

in terms of accuracy for each of the four navigational states.

Murray and Perera (2021) presented a DL framework to aid in regional ship behaviour prediction,

with the help of historic AIS data. Regional refers to the region in which the framework will

be deployed, and the historic patterns and behaviours observed in the region. The framework

was created to aid in collision avoidance for improved maritime transport safety. The presented

framework consists of grouping historical vessel behaviour in given geospatial areas into clusters,

where each cluster contains vessel trajectories with similar behavioural characteristics. A model

is created for each unique cluster, modelling the unique behaviour specific to each cluster. The

clustering is performed by a variational Recurrent AE (Murray and Perera, 2020), and a Hierarchical

Density-Based Spatial Clustering of Applications with Noise algorithm (Campello et al., 2013).

The historical behaviour of a vessel is classified as belonging to the most likely cluster behaviour

based on the softmax distribution (also known as the normalised exponential distribution). The

softmax gives a probability distribution over all the possible classes and is used in this study to

identify a distribution over all the vessel behavioural clusters the trajectory segments most likely

belong to. A probability is assigned to each cluster. Murray and Perera (2021) implemented a

threshold when considering a cluster as a behavioural cluster, only clusters with a softmax output

over 0.1 (a probability of 10%) were considered. More information on the softmax function and its

characteristics can be found in Géron (2019). Each local model consists of a sequence-to-sequence
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RNN (Forti et al., 2020). The presented DL framework requires the historic trajectory of a vessel

as an input; it then predicts the most likely future trajectory. It utilises the aforementioned most

likely cluster whilst predicting. The presented framework was compared to a global model given

in Forti et al. (2020). A global model refers to a model trained on all the available data in a given

region. In the presented framework, a local model was trained on the data belonging to each cluster

identified, using the same sequence-to-sequence architecture as used by Forti et al. (2020). Given

a prediction horizon of 30 min, a root mean squared error of 436 m and 576 m were observed for

the presented and the global models, respectively.

Wang and He (2021) proposed a Generative Adversarial Network (GAN) with Attention Module

and Interaction Module (GAN-AI) to predict the trajectories of multiple vessels. The idea behind

the GAN-AI is to improve the ability of the network to extract effective data at multiple time points.

The GAN-AI infers all future vessel trajectories simultaneously when they are in the same spatial

area and is trained by competition for better convergence. An interactive module was designed to

extract group motion features13 of multiple vessels (Wang and He, 2021). The interaction model

was designed in such a way to extract group monition features of multiple vessels, to achieve

better performance in complex vessel behavioural patterns. The proposed method was tested with

prediction horizons of 90s and 180s, and compared to an LSTM, a plain GAN and a Kalman

model. The prediction accuracy, respectively, improved by 20%, 24% and 72% when the GAN-AI

is compared to the aforementioned models. The trajectory prediction accuracy was evaluated by

utilising the average distance and final distance errors.

The purpose of this thesis is to develop a simple first-order model that incorporates historic AIS data

in such a way that does not require a lot of model training and parameter tuning. The developed

model should be pragmatically easy to implement from an operational point of view, computation-

ally efficient and accurate compared to other models with similar programmatic complexity. The

overall goal of the thesis is to contribute a simple model to the literature as the majority of recent

developments are rather complex models (as outlined in the literature review).

Figure 2.3, depicts a visual representation of the citations received for each study in the literature

review. The circles’ sizes are logarithmically proportional to the number of citations received. The

colours of the circles can be interpreted as follows: circles in black > 100 citations, blue > 50

13Motion features are any features that describe the movement of a vessel, i.e. SOG, COG, vessel status and ROT.
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citations, green > 15, orange > 5, and yellow ≥ 0 citations.

Figure 2.3: Visual representation of the citations each study mentioned in the literature review
achieved14. The circle size is proportionate to the number of citations. Note that the exact citations
matching the study can be seen in Table 2.6, which also provides a summary.

14The symbol #, in the Figure 2.3, denote the count.
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Note that although many of the studies we included in our literature review make use of a variety

of Machine Learning (ML) techniques, we do not discuss these techniques any further in this thesis.

An in-depth presentation of all these methods is beyond the scope of the thesis. We refer the reader

to the following textbooks if any clarification on any of the techniques mentioned in this literature

review is sought: “Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow” (Géron,

2019), “Deep Learning” (Goodfellow et al., 2016), “Artificial Intelligence: A Modern Approach”

(Russell and Norvig, 2002), and “The Elements of Statistical Learning: Data Mining, Inference,

and Prediction” (Hastie et al., 2009). Having said this, it should, however, also be noted that we do

discuss the particular ML/AI techniques that are relevant to our study in more detail in Chapter

4.

2.3 SUMMARY

The goal of this chapter is to provide background information on the different types of transponder

based tracking technologies that currently exist. The chapter should enable the reader to have

a more in-depth understanding of the different technologies, how they work, and what they are

specifically used for. Complementary technologies to transponder based technologies are also pre-

sented. We compared the technologies, showcasing their drawbacks and advantages. A summary of

the technology comparison is given in Table 2.5. From this comparison, it was concluded that AIS

is the primary system being used for vessel tracking. Therefore we did a deep dive into AIS, more

specifically methods used to predict vessel locations and trajectories utilising AIS data currently

in the literature. The literature review should provide the reader an in-depth overview of vessel

prediction methods, how they work, the type of methods they utilise, their prediction accuracies

and time horizons. In the next chapter, the dataset used for our experiments is introduced together

with SMs.
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CHAPTER 3

DATASET

In this chapter, we introduce the AIS dataset we use for all our experiments and the pre-processing

steps applied. We will also introduce the SMs, what they are and how they were constructed from

the AIS data.

Ray et al. (2019) published an opensource dataset that consists of AIS messages from vessels that

traversed the Celtic Sea, the North Atlantic Ocean, the English Channel and the Bay of Biscay

(France) from October 2015 to March 2016. The publicly available dataset has lead to various

studies being published, a few of these studies are on the following topics:

• Anomaly detection: (Anneken et al., 2018), (Machado, 2018), and (Iphar et al., 2020).

• Classification: (Li et al., 2020) and (Pitsikalis et al., 2021).

• Trajectory compression: (Fikioris et al., 2020a) and (Fikioris et al., 2020b).

• Trajectory clustering: (Theodoropoulos et al., 2019) and (Tampakis, 2020).

• Trajectory prediction method comparison: (Burger et al., 2020).

In Figure 3.1, a visual representation of the data’s geospatial range can be seen. The specific vessels

we tested the presented methods in this paper on, contained within the dataset, are summarised

in Appendix C in Table C.1 and C.2.

Type Details

Number of Observations 19 035 630
Number of attributes 9

File Type Comma Separated Values File (.csv)
File Size 1.04 GB

Table 3.1: Dataset characteristics and information

In Table 3.1, important information pertaining to the dataset is given, and in Table 3.2, the dataset

attributes used is introduced.
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Figure 3.1: Visual expand of the spatial range of the data in Ray et al. (2019) is given - Courtesy
of Google Earth 2021. Let the abbreviations and their coordinates be defined as: Upper left-
hand corner (ULHC) (10, 51), Upper right-hand corner (URHC) (0, 51), Lower right-hand corner
(LRHC) (0, 45), and Lower left-hand corner (LLHC) (10, 45).

Attributes Description

Description Measurement Unit Attribute Range

MMSI 9-digit values
Latitude DD.dddd [-10.00, 0.00]
Longitude DD.dddd (UTM) [45.00, 51.00]

COG Degrees 0◦ - 360◦

SOG knots (kt) 0◦ - 110◦

Date Time Stamp Coordinated Universal Time (UCT) [ 2015-10-01 00:00:00, 2016-03-31 23:59:59 ]
Ship Type [10, 99]

Table 3.2: Dataset Attributes

3.1 DATASET CLEANING

Data cleaning steps are applied to the dataset to make it more usable for the experiments imple-

mented throughout this thesis. In this section, we discuss some of the steps that we take to perform

the cleaning (pre-processing).

The first step is to remove observations from the dataset that do not adhere to the following criteria:
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• Ship type within the inclusive interval [70, 89], where Cargo vessel types are in [70, 79] and

Tankers in [80, 89]

• SOG > 0.5 kt, removing stationary observations, including stationary vessels experiencing

drift due to currents and other natural phenomena due to being anchored.

• SOG < 60 kt, observations with high speeds are likely outliers as Cargo and Tanker vessels

move at relatively low speeds. If more than 60 kt is observed for Cargo or Tanker vessels, it

is most likely due to technical errors in the recorded AIS data.

The remainder of the data is grouped according to the vessel MMSIs and sorted in ascending order

according to the recorded time of each observation. All trajectories with less than 20 observations

or those that span less than five minutes in total are removed. The data spans over a period of six

months, as denoted in Table 3.2, which implies that there will be more than one trajectory for a

given vessel at different time periods and spatial locations. The data cleaning is done to remove

any non-sensical data that may skew models applied to it.

3.1.1 Dataset Statistics

In this subsection, we discuss some dataset statistics, giving the reader an overview of the afore-

mentioned data cleaning steps’ effect on the dataset.

3.1.1.1 Vessel Types

In Table 3.3, a breakdown of the number of unique vessels belonging to each vessel type is shown.

Vessel Type Count % Observations

Cargo 2871 57.29
Tankers 1119 22.33
Fishing 30 0.60

Passanger 64 1.28
Other 927 18.5

Total 5011 100

Table 3.3: A breakdown of the unique vessels per type.

As part of this thesis, we only focus on Cargo and Tanker vessels, utilising 79.62% of the dataset

as-is. A further breakdown of Cargo and Tanker vessel types is listed in Table 3.4.

The effect of cleaning the data is presented in Table 3.4. We observe that 44% of all observations
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Vessel
Type

Description
# Observations # Unique MMSIs

Before
Cleaning

<0.5kt >= 60kt
After

Cleaning
Before

Cleaning
After

Cleaning

70 Cargo 1 673 130 726 534 5 320 941 276 1550 1529
71 Cargo Hazard A 228 341 27 571 37 200 733 236 236
72 Cargo Hazard B 10 067 0 0 10 067 19 19
73 Cargo Hazard C 15 770 6 666 1 9 103 10 10
74 Cargo Hazard D 27 201 1 918 0 25 283 32 31
75 Cargo 30 0 0 30 2 2
76 Cargo 40 0 0 40 4 4
77 Cargo 1 695 75 0 1620 4 4
78 Cargo 17 0 0 17 1 1
79 Cargo 220 793 59 059 64 161 670 306 301
80 Tanker 518 253 319 012 341 198 900 369 365
81 Tanker Hazard A 64 795 25 816 2 38 977 73 72
82 Tanker Hazard B 317 878 249 446 2 68 430 97 86
83 Tanker Hazard C 12 046 1 313 1 10 732 32 32
84 Tanker Hazard D 47 634 13 448 3 34 183 38 37
85 Tanker 0 0 0 0 0 0
86 Tanker 0 0 0 0 0 0
87 Tanker 0 0 0 0 0 0
88 Tanker 2 698 71 2 2 625 1 1
89 Tanker 228 812 68 182 2 160 628 200 200

Total 3 369 200 1 499 111 5 775 1 864 314 2 974 2930
% of Original Observations 100% 44% 0.17% 55% 100% 98.5%

Table 3.4: Observation breakdown before and after cleaning.

recorded were considered as stationary observations. When a vessel is anchored or moored, they

still send AIS messages albeit at a reduced frequency. There were 0.17% observations with an SOG

of more than 60 kt which are outliers for the use case of Cargo and Tanker vessels. After all the

cleaning is done, enforcing the first two cleaning steps of Section 3.1 (SOG and ship type) only 55%

of the original dataset remains, containing 2974 unique vessel MMSIs. After dropping vessels with

less than 20 observations or a trajectory that spans less than 5 min, the remainder is 2930 unique

vessel MMSIs; a 1.48% reduction. The final dataset contains 45% of the original data points.

3.1.1.2 SOG breakdown

In Figure 3.2 and 3.3, the number of observations belonging to an SOG interval is shown as a

percentage. Figure 3.2 is associated with the original dataset, while Figure 3.3 is associated with

the cleaned dataset. Both figures denotes the % observations per SOG interval.

When looking at Figure 3.2, we see that the majority of observations are within the 0−5 kt interval.
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Figure 3.2: Distribution of SOG before dataset pre-processing.

This is due to numerous stationary observations being present in the dataset. In Figure 3.3, we

see the distribution changes dramatically where the 5− 10 kt interval now containing the majority

observations. In Figure 3.2, 99% of the observations fall within the 0 − 30 kt interval and < 1%

in the 30− 70 kt interval (0% in the Figures represent a percentage > 0%). A similar observation

follows from Figure 3.3, 99% of the observations fall between 0−30 kt and < 1% of the observations

in the 30− 60 kt interval. The distribution of observations as seen in Figure 3.3 at different speed

intervals, are more representative of a dataset with Cargo and Tanker vessels that are in movement.

3.1.1.3 Longitude and Latitude

In Figure 3.4 below, we see a spatial distribution map (SDM) of all the observations in the dataset

(including all vessel types). An SDM can be thought of as a matrix, where each cell in the matrix

denotes the count of vessels recorded in a specific geospatial area over a period of time. Figure 3.5

denotes an SDM of only Cargo and Tanker vessels of the cleaned dataset. The spatial dimensions

of the SDM are noted in Table 3.2 (with 1250× 1250 cells). Each cell of the SDM denotes a square

spatial area of longitude and latitude size 0.008× 0.008 degrees.

The SM projections throughout this section were all generated with the Open Source Geographic

Information System software (QGIS), a free and opensource tool (QGIS Development Team, 2021).
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Figure 3.3: Distribution of SOG after pre-processing.
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Figure 3.4: An SDM projection of the dataset before any cleaning steps have been applied.

Figure 3.5: An SDM projection of the dataset after the cleaning steps have been applied.
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Figures 3.4 and 3.5, represent the projection of the SDMs on a map. The yellowish areas denote

an area containing many observations and are most likely ports or harbours or are close to them.

Various vessels are in close proximity for extended periods of time in these regions. The count

of observations per cell is dependent on a vessel’s SOG. A slower moving vessel will record more

observations over the same spatial area than a faster moving vessel, as AIS messages are reported

at regular time intervals.

Figure 3.4 represents an SDM before any cleaning steps have been applied to the dataset (the dataset

as is), where Figure 3.5 denotes the SDM after the cleaning steps have been applied. With respect

to Figure 3.5 we can see there is a clear difference, with some paths being more visible/prominent

(represented by yellow) compared to Figure 3.4.

Figure 3.6 and 3.7 depicts a zoomed in view of Figure 3.4 and 3.5, respectively. The zoomed in view

is of a harbour in Brest, France. Comparing Figure 3.7 to 3.6, a clear path highlighted in yellowish

tint is now visible. The visibility of the path is due to the removal of stationary observations. We

observe that there are more observations closer to landmass. This is due to better T-AIS coverage,

and due to vessels moving slower to avoid collisions with the shore or other vessels. In Table 3.5 an

example1 of the time it takes for vessels to stop is shown, the explaining why vessels move slower

closer to shorelines.

Vessel Type Speed (kt) Average Stopping Distance

Cargo 10 2 NM
Tanker 10 4.5 NM

Table 3.5: Example of Cargo and Tanker Stopping Distance

In the next section we introduce a trajectory interpolation algorithm, to have a more representative

set of vessel trajectories and their true paths. The interpolation allows us to generate SMs that will

be more representative of the actual paths vessels took, and increase the representation of vessels

in areas of weak signal coverage between vessels and T-AIS stations.

1The example was obtained from: https://www.knowledgeofsea.com/stopping-distance-turning-circle-

ships-manoeuvring/

44

Stellenbosch University https://scholar.sun.ac.za



Figure 3.6: A zoomed in version of Figure 3.4 of the harbour in Brest, France.

Figure 3.7: A zoomed in version of Figure 3.5 of the harbour in Brest, France.
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3.2 SPATIAL MAPS

We define a Spatial Map (SM) as a two-dimensional grid that spans the earth’s surface. Each cell

in the two-dimensional grid is associated with a specific range of latitudinal (ϕ) and longitudinal

(λ) coordinates.

In this thesis our SMs are set up from the observations recorded in the dataset introduced earlier,

which spans a latitude and longitude of ϕ ∈ [45◦, 55◦] and λ ∈ [−10◦, 0◦], respectively. We only

use the observations from the Cargo and Tanker vessels as these are our target vessels. SMs help

us to visualise the historical paths where vessels traversed and identify highways - paths commonly

travelled historically (Grobler and Kleynhans, 2019). The SMs can be thought of as a data reduction

method, where each cell in the SM represents a summary of a specific spatial area. SMs in this

thesis will be used to represent a priori information and can be used as an input to an algorithm.

For the sake of simplicity we assume throughout this thesis that the SMs are square maps, meaning

the SM’s width (nlc) and length (nlr) have the same number of cells. Let the dimensions of the

SMs be defined by nlc × nlr , where [nlc , nlr ] ∈ N †. The dimensions of the SMs, are based on

the dataset introduced in Section 3. The SMs used throughout the thesis have the dimensions of

1250 × 1250 cells which translates to 10◦ × 10◦ square degrees, based off of the range of the LAT

and LON. The spatial resolution for each cell, therefore, is equal to 0.008◦ × 0.008◦ square degrees.

An extract of the upper left-hand corner of an artificially created SM is depicted in Figure 3.8. The

figure denotes the number of recorded observations in a cell, within a longitude and latitude range

based on the historic AIS data. On the x - and y-axis of Figure 3.8 the longitudes and latitudes are

denoted for the created SM.

†N refers to natural numbers, where N = {1, 2, 3, 4, ... }.
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Figure 3.8: SDM matrix example extract.

Let the Haversine distance between two coordinates be defined as:

d = 2r · arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos(ϕ1) · cos(ϕ2) · sin2

(
λ2 − λ1

2

))
, (3.1)

where

• r, represents the mean radius of the earth (≈ 6371km).

• ϕ1 and ϕ2 represent the latitudinal coordinates of two observations, point one and two re-

spectively.

• λ1 and λ2 represent the longitudinal coordinates of two observations, point one and two

respectively.

Given Equation 3.1, the area associated with each cell is roughly 0.89 × 0.89 square kilometres,

where 0.89 km ≈ 0.48 NM. When we first constructed the SMs, our first observation was that

the SMs were very sparse when created from only Cargo and Tanker vessels after pre-processing.

Therefore we interpolated vessel trajectories allowing for more representative SMs. We present

three SMs in the remaining next few sections. The first SM that we discuss is the Vessel Counts
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SM (K), followed by the Course Over Ground SM (COGSM, represented by Ψ) and the COG

standard deviation (COG SD) SM (Σ).

3.2.1 Vessel Interpolation for Spatial Maps

After pre-processing the data, an augmented dataset is constructed by interpolating between ob-

servations for each unique vessel MMSI, creating less sparse trajectory observations for each vessel.

This augmented dataset is then used to construct physically realistic and usable SMs of the dataset

in question. The original dataset is too sparse (as is) for a meaningful and usable SM to be created

from it. The sparsity of the original data is due to several reasons. Observational interpolation was

only performed in the following cases:

• The time difference between the two observations is no longer than six hours.

• The distance between the two observations is within 15 km and

• The distance between observations is no smaller than the size of one grid cell. The grid cell

size used was 0.88km× 0.88km. This specific constraint prevents the over-representation of a

grid cell, only adding one observation to a cell if the interpolated trajectory passes through

it.

We make use of a linear interpolation model; we used the software package scikit-learn (Pedregosa

et al., 2011). The LAT, LON and SOG were interpolated if the cases above were met. Gaussian

filtering is also used to obtain smoother versions of the SMs.

The COG of the interpolated and recorded observations is calculated via:

ψt = arctan

(
ϕt−1 − ϕt
λt−1 − λt

)
(3.2)

We do not make use of the recorded COG values present in the dataset, as these values are inac-

curate. The COG was calculated based on the LAT and LON. Having a new augmented dataset

with a better representation of the historical locations and trajectories, we can create representative

SMs.
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3.2.2 Vessel Counts SM (K)

The vessel counts SM, represents the number of observations recorded within each grid cell. Each

grid cell in K records the number of observations that were historically within the longitude and

latitude range of that specific cell. The cell counts will be higher in spatial areas where vessels

are sailing slower than those where vessels are sailing faster. Figure 3.9 shows the logarithmically

scaled SDM of the vessel counts for each cell.

Figure 3.9: Vessel Counts SM K. Each colour denotes the number of observations per cell on a
continuous log-scale.

3.2.3 COG (Ψ) and COG SD (Σ) SMs

The second SM that we introduce is the COG SM, represented by Ψ. Each cell of Ψ represents

the mean COG value recorded in that cell. COG is measured in degrees, periodic in [0◦ − 360◦]

and will always be positive (ψ(iϕ,iλ)j > 0).

The third and last SM that we introduce is the COG standard deviation (COG SD) SM, represented
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by Σ. The COGSD SM supplements the COG SM. The value of each cell is calculated as follows:

Σiϕ,iλ =

√√√√ 1

n

n∑
j=1

(
ψ(iϕ,iλ)j −Ψiϕ,iλ

)2
(3.3)

where,

• n, represents the number of observations observed in a cell as determined by K.

• iϕ, iλ, represents the index values associated with ϕ and λ respectively on the SM grid.

• Ψiϕ,iλ , represents the mean COG at a specific index value on the SM grid.

• ψ(iϕ,iλ)j , represents the j
th COG value in the cell with index values iϕ, iλ.

• Σiϕ,iλ , refers to the COG standard deviation at index value iϕ, iλ.

Loosely speaking, the entries in Σ can be interpreted as how “confident” we ought to be in the

corresponding entry inΨ. Higher cell values inΣmean that historically many vessels were travelling

in different directions, as the SD is higher. Σ allows us to have a type of uncertainty value associated

with the a priori information.

Figure 3.10: Course over Ground SM Ψ, the colours represent observations from 0 − 360◦ as
indicated by the legend.
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In Figure 3.10, we can see a visual representation of Ψ. Looking at the figure, we can see that

Cargo and Tanker vessels move in a specific direction, in certain geographic locations. Two distinct

highways are clearly visible close to the centre of Figure 3.10 (Grobler and Kleynhans, 2019). A

highway is a route that many vessels traverse. The light green highway is used by Cargo and

Tankers to travel upwards (North), while the blue/aqua-green highway is used to travel downward

(South).

In Figure 3.11, we see a visual representation of Σ, whose analytic expression is given in Equation

3.3. The standard deviation (SD) of the areas that contain more traffic in different directions

are larger than those containing less traffic (this is especially true for areas surrounding harbours).

Yellowish colours represent higher SD values. The highways mentioned, however, are not associated

with high SD values. This implies that these highways are highly directional, as shown in Figure

3.11.

Figure 3.11: A visual projection of the COG Standard Deviation SM Σ. Each colour represents a
standard deviation range, as noted by the legend.
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3.3 TRAJECTORY VISUALISATION

Throughout this thesis we refer to linear and non-linear trajectories. In Figure 3.12, we provide a

visualisation of these two types. The vessels visualised are from Table C.1 and C.2 in Appendix

C. Furthermore, to put the size of the trajectories in perspective, the non-linear trajectory spans

82.16 nautical miles (NM). The linear trajectory span 20.05 NM.

Figure 3.12: Visualisation of a Linear and Non-linear trajectory, belonging to vessels with MMSIs
304927000 and 304805000 respectively.

To showcase the size of the vessels we are working with, in Figure 3.13 we show an example of a

Cargo vessel’s (Maersk Edinburgh class) length compared to the Eiffel tower’s height.
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Figure 3.13: A visualisation of a Cargo vessel’s length compared to the Eiffel Tower’s height.

3.4 SUMMARY

In this chapter we introduced the dataset used throughout this thesis to test and evaluate all the

implemented algorithms. The dataset contains AIS data, from the region depicted in Figure 3.1.

The dataset cleaning (pre-processing) steps are also discussed. We introduce SMs, as they are

generated from the aforementioned AIS dataset. With respect to the SMs, trajectory interpolation

steps are also presented to allow for more representative SMs. We also showcase the difference

between a linear and non-linear trajectory. The next chapter introduces the trajectory prediction

methods implemented in this thesis, the non a priori and a priori methods that utilise the dataset

and SMs introduced in this chapter.
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CHAPTER 4

METHODOLOGY

In this chapter we discuss the methods that we implemented to conduct our experimental analysis.

Each method will be discussed in detail. First we discuss the unit conversions necessary for the

methods to work. Then we present two AIS prediction algorithms that do not make use of a priori

information, namely the Discrete Kalman Filter (DKF) in Section 4.2, and the Linear Regression

Model (LRM) in Section 4.3. We end the chapter with two AIS prediction algorithms that uses a

priori information whilst predicting, namely the Single Point Neighbour Search (SPNS) in Section

4.4, and a novel method the Linear Regression Model with a priori COG information (LRMAC)

in Section 4.5.

4.1 UNIT CONVERSIONS

In order for the algorithms to run as intended, the unit conversion of some of the attributes in

the cleaned AIS dataset has to take place. In particular, the recorded coordinates and the SOG

observations.

4.1.1 Coordinates

The non a priori methods, the DKF and the LRM, require the conversion of the LAT and LON

coordinates from degrees (DD.dddd) to Universal Transverse Mercator∗ (UTM) coordinates (mea-

sured in metres).

The a priori methods, the LRMAC and the SPNS, do not convert the coordinates recorded by the

AIS transmitter, and they are used as-is, i.e. in degrees (DD.dddd).

4.1.2 Speed

Let V ′
t represent the SOG recorded by an AIS transmitter. Let the unit conversion of the SOG

from knots to metre per second (m/s) be shown by:

∗UTM refers to the projection of coordinates on a two-dimensional plane. LAT and LON denote coordinates on
a sphere in our case, the earth.
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Vt = 0.514̇ · V ′
t (4.1)

The DKF, LRM, and SPNS make use of the SOG in this converted form. The LRMAC, however,

requires a different conversion which is discussed in more detail in Section 4.5.1.

4.2 DISCRETE KALMAN FILTER (DKF)

Rudolph E. Kalman invented the Kalman Filter (KF) in 1960 and published the following seminal

paper: “A new approach to Linear Filtering and Prediction Problems” (Kalman, 1960). Numerous

applications of the KF exist. In this section, a KF, more specifically the DKF, is used to predict

the trajectory of a vessel in regular time intervals. In Appendix A, the DKF is discussed in detail.

The DKF works by continuously estimating the state of a system and the uncertainty of the

estimation made. All calculations are done on a recursive basis by evaluating two sets of equations:

predictor- and measurement update equations. The two sets of equations allow for online prediction.

The predictor equations estimates (predicts) the current state of a system and the uncertainty

thereof. The measurement update equations update the estimate by using an observation. The

error between the estimated observation and the true observation (when observed), is calculated

and incorporated in such a way to determine the accuracy of the DKF (through the covariance

matrices).

The aforementioned alternating procedure of the DKF is depicted mathematically in Figure 4.1,

which was originally created by Welch et al. (1995). The meanings of all the symbols are discussed

in the following section.
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Figure 4.1: The DKF operation visualised.

The DKF assumes that both the process (Q) and the observation (R) noise are normally distributed.

It is important to note that the DKF requires regular sampled data points across time (Kalman

(1960)).

4.2.1 DKF for vessel trajectory prediction

In this section, we describe the DKF approach used in Jaskolski (2017) to predict vessel trajectories.

Let xt denote the state vector of the DKF. For the AIS use case, it is defined as follows:

xt =
[
xt yt Vt · cos(ψt) Vt · sin(ψt)

]T
, (4.2)

where,

• xt and yt are the true LON and the LAT of a vessel at time-step t.

• ψt and Vt are the true COG (measured in degrees) and SOG (kt) of a vessel at time step t,

respectively.

• The superscript (·)T refers to taking the transpose.
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The predictor equations of the DKF are:

x̂−
t = A · x̂t−1 +B · ut, (4.3)

and

P−
t = A · P t−1 ·AT +Q. (4.4)

The variables in the above equations are defined below:

• x̂−
t denotes the predicted state estimate using all observations up until time-step t− 1.

• x̂t−1 denotes the updated state estimate using all observations up until time-step t− 1.

• A is the state transition matrix.

• B is the output matrix, a constant matrix that forms part of the predicted state.

• ut is the control variable vector at time-step t.

• P−
t denotes the predicted error covariance estimate using all observations up until time-step

t− 1.

• P t−1 denotes the updated error covariance estimate using all observations up until time-step

t− 1.

• Q denotes the covariance of the process noise.

The measurement update equations of the DKF are:

Kt = P
−
t ·HT · (H · P−

t ·HT +R)−1, (4.5)

x̂t = x̂
−
t +Kt · (zt −H · x̂−

t ), (4.6)

and

P t = (I −Kt ·H) · P−
t . (4.7)

The variables in the above equations are defined below:

• H denotes the transformation matrix, allowing for the mapping of our state-space to our

observed space.
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• R denotes the covariance associated with the observational noise.

• Kt denotes the Kalman gain at time-step t.

• x̂t denotes the updated state estimate using all observations up until time-step t.

• zt denotes the observed measurement at time-step t.

• P t denotes the updated error covariance estimate using all observations up until time-step t.

• The difference (zt−H · x̂−
k ) is called the residual, the difference between the actual measure-

ment and the predicted measurement.

If there are no measurements at a specific time-step the measurement update equations are skipped,

and the predictor equations are re-evaluated. When using the DKF for AIS trajectory prediction,

Jaskolski (2017) suggested to initialise our state vector and error covariance as follows:

x̂0 =
[
0m 0m 0m/s 0m/s

]T
, (4.8)

and

P 0 =
[
σ2x σ2y σVx

2
σVy

2
]T

·
[
σ2x σ2y σVx

2
σVy

2
]
. (4.9)

In the above equation:

σx = 10, σy = 10, σVx = 0.3, σVy = 0.3. (4.10)

Jaskolski (2017) also proposed that we use the following matrices and vector to evaluate Equation

4.3 – 4.7, they are chosen specifically for the problem at hand:

• For A:

A =


1 0 ∆kt 0

0 1 0 ∆kt

0 0 1 0

0 0 0 1

 . (4.11)

In the above equation, ∆kt denotes the time difference between each predicted time step

(regular time steps). Therefore, A is responsible for obtaining the displacement of a vessel

after ∆kt seconds have passed. In this thesis we assumed ∆kt = 1s (predicting each second).
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• For B · uk:

B · ut =
[
ax · ∆k2t

2 ay · ∆k2

2 ax ·∆kt ay ·∆kt
]T
, (4.12)

where

ax =
Vk · cos(ψt + φt ·∆kt)− Vk−1 · cos(ψk−1)

∆kt
, (4.13)

ay =
Vk · sin(ψt + φt ·∆kt)− Vk−1 · sin(ψk−1)

∆kt
, (4.14)

B =



∆k2t
2 0 0 0

0
∆k2t
2 0 0

0 0 ∆kt 0

0 0 0 ∆kt

 , (4.15)

and

uk =
[
ax ay ax ay

]T
. (4.16)

In the above equations:

– ax and ay denote the acceleration of a vessel in the x and y direction respectively mea-

sured in m/s2.

– B can be seen as a constant valued matrix, and the product thereof with ut converts

the accelerations to displacement and speed in the x (LON) and y (LAT) direction.

– φt denotes the ROT (degrees/s) of a vessel at time-step t.

• For H:

H =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (4.17)
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• For R:

R =


σ2x 0 0 0

0 σ2y 0 0

0 0 σVx
2

0

0 0 0 σVy
2

 (4.18)

• For Q:

Q ∼= P 0. (4.19)

The matrices Q and R of the DKF are used in the predictor and measurement update parts of the

DKF respectively. For the DKF to perform well, care should be taken in choosing the initial values

of the aforementioned matrices.

4.2.1.1 The Kalman gain

Let the Kalman gain be denoted by Kt (see Equation 4.5). Kt is responsible for weighting the

measurement error (see Equation 4.6), also known as the residual. The gain is influenced by matrices

R, P−
t and indirectly by Q (see Equation 4.4). The influence of the aforementioned matrices is

further explained in this section.

The measurement covariance matrix R, is a constant for the vessel trajectory prediction use case

we are considering in this thesis. Smaller values of R will result in the actual measurement (zk),

as well as the residual, being weighted more (“trusted” more). Smaller values will also weigh the

predicted measurement H · x̂−
k less (“trusted” less). The same will be true for the reverse case.

The a priori estimate error covariance matrix P−
t is calculated by Equation 4.4. Smaller values of

P−
t will result in Kk assigning less weight in the actual measurement zt (i.e. less “trust” is given

to the measurement), while the predicted measurement H · x̂−
k is weighed more (see Equation 4.6).

The same will be true for the reverse case as well.

The matrix Q is part of the predictor equations, in the a priori covariance matrix estimate (see

Equation 4.4). An increase thereof, will lead to an increase in P−
t .

The effect of different values of R and P−
t can be seen in more detail in the Appendix Section A.2,

and the effect of Q in Section A.5.
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It is well known that choosing Q and R can be problematic and that this is highly problem

dependent. We remind the reader that the constant matrices R and Q were assigned the values

presented in Jaskolski (2017). We could further improve upon our results by fine-tuning these two

matrices (for more on the fine-tuning, see Appendix A Section A.5). This, however, is beyond the

scope of the current work.

4.3 LINEAR REGRESSION MODEL (LRM)

In this section, we present an LRM based approach for predicting linear vessel trajectories. The

LRM approach works by estimating Vt using a rolling window linear model. The Vt estimate is

used to predict the location of a vessel since the time interval (∆kt) and Vt between two subsequent

observations is known. The LRM thus differs from the DKF, as the DKF tracks the physical

location and speed. In Appendix B, we provide a deeper dive into the LRM and how the Least

Squares fit is used to obtain the best fit of the LRM.

We present the LRM approach similarly to the DKF, using two sets of equations - the predictor

and measurement update equations (for ease of comparison). The LRM will also only be able to

predict in regular time intervals, as determined by ∆kt.

Let the vector xt be defined as§:

xt =
[
λt ϕt

]T
, (4.20)

where

• λt and ϕt, denote the exact LON and the LAT of a vessel, in UTM coordinates at time-step

t.

• If there is no observation at t, we assume xt to be an all-zero vector.

Let the predictor equations of the LRM be defined by Equations 4.21 and 4.22:

x̂−
t = x̂t−1 + V̂ω,t ·Λt , (4.21)

V̂ω,t = ∇V̂ω,t−1 · kt + V̂ω,ct−1 , (4.22)

§The symbol xt is being reused, it should not be confused with the state vector of the DKF.
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where

Λt =
[
cos(ψt) sin(ψt)

]T
. (4.23)

The variables of Equations 4.21 - 4.23 are defined below:

• x̂−
t , denotes the predicted position vector using all observations up until time-step t− 1.

• x̂t−1, denotes the updated estimated position vector using all observation up until time-step

t− 1.

• ω, denotes the window size of the LRM (i.e. the number of historic observed observations to

take into account).

• V̂ω,t, denotes the vessel’s predicted SOG using all observations up until time-step t− 1, given

a window size of ω.

• ∇V̂ω,t−1, denotes the updated estimated gradient of the LRM using all observations up until

time-step t− 1, given a window size of ω.

• V̂ω,ct−1 , denotes the updated estimated y-intercept of our LRM using all observations up until

time-step t− 1.

• ψt, denotes the COG (degrees) of a vessel at time step t, ψt remains constant until a new

COG is recorded from the target vessel.

• kt, denotes the elapsed time in seconds at time-step t.

Let the measurement update equations of the LRM be defined by Equations 4.24 - 4.26:

x̂t = x̂
−
t + (xt − x̂−

t ) = xt , (4.24)

∇V̂ω,t =

∑nt

i=1nt>ω(nt−ω) (Vi − V̄ ω)(ki − k̄ω)∑nt

i=1nt>ω(nt−ω)(ki − k̄ω)
, (4.25)

and

V̂ω,ct = V̄ ω −∇V̂ω,t · k̄ω . (4.26)

Where,

1nt>ω =


1, if nt > ω

0, otherwise

, (4.27)
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V̄ ω =
1

nω

nt∑
i=1nt>ω(nt−ω)

Vi , (4.28)

k̄ω =
1

nω

nt∑
i=1nt>ω(K−ω)

ki , (4.29)

and

nω =


nt, if nt < ω

ω, otherwise

. (4.30)

The variables in Equations 4.24 - 4.30 are defined below∗∗:

• Vi, denotes the ith true SOG observation that was recorded for a particular vessel. In this

study, we assumed V0 = 4m/s, meaning we assume that the vessel is already in movement

once we start predicting.

• ki, denotes the total time that has elapsed after having recorded the ith recorded observation.

• nt, denotes the total number of true observations that were recorded after ∆kt · t seconds.

The measurement update equations are only updated once a new observation is recorded. If no

new observations are recorded, the algorithm will evaluate the predictor equations. The LRM also

assumes that the COG remains unchanged until a new observation is observed. Moreover, the

predicted position vector at t− 1 is used to obtain a new estimate of the position vector at t.

4.4 SINGLE POINT NEIGHBOUR SEARCH (SPNS)

In this section, a complete summary of the method presented by Hexeberg et al. (2017) is pre-

sented. Note, the variables and symbols used in this section should not be confused with those

used throughout the rest of the thesis.

Let,

X =
[
X1 X2 ... XM

]T
, (4.31)

∗∗Note that in this section the subscript t is used as a time-step index, while subscript i is used as an observational
index.
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be defined as a matrix with all the historic AIS data observations, where M indicates the number

of AIS messages recorded.

Moreover let,

Xi =
[
MMSIi ti pTi χi vi

]
, (4.32)

be defined as a vector, where i denote the observation number, i ∈ {1, 2, ...,M}. We then define,

• MMSIi, as the MMSI of i,

• ti, the timestamp of i,

• pTi , the position vector of i (at time ti), where pi = [λi, ϕi, ]
T which denotes the LON and

LAT at i, respectively.

A predicted trajectory consists out of Ks predicted positions with different time-instances. At

every iteration k a prediction is made, where k ∈ {1, ...,Ks}. The predicted state is divided into

an a priori state X̂
k−
i and a posteriori state X̂

k+
i . Let the states be denoted as,

X̂
k−
i =

[
MMSIi t̂k p̂k χ̂k− v̂k−

]
, (4.33)

and

X̂
k+
i =

[
MMSIi t̂k p̂k χ̂k+ v̂k+

]
. (4.34)

The only difference between Equations 4.33 and 4.34 above, is the COG and SOG. The predicted

χ̂k− and v̂k− in the a priori state, represent the predicted COG and SOG between the previous

position p̂k−1 and p̂k. In the case of the a posteriori state, the difference between the current

position p̂k and the next position p̂k+1.

The SPNS makes use of a close neighbour (CN) search, where a radius parameter, rc, is defined.

Observations within a radius of rc are queried, given that the observations adhere to a set of

predefined constraints. All the close neighbours (CNs) are extracted from historic AIS data. Let

the CN set at prediction step k be defined as:

Ck = {Xi | d(p̂k,pi) ≤ rc, χi ∈ S, Xi ∈X} (4.35)

where,
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• d(p̂k,pi) is defined as the Haversine distance (see Equation 3.1) between the LON and LAT

of p̂k and pi.

• rc is a predefined parameter defined as the search radius in metres, to search for all the CNs

within rc of the current position.

• S is defined as the interval of course angles. Only observations within this interval will be

included in the CN set.

Let the course angles S be defined as:

S = [χ̂k− −∆χ, χ̂k− +∆χ] (4.36)

where ∆χ > 0, is a predefined parameter defined as the maximum allowable course deviation.

The above pre-processing steps of the distance and COG deviation filter out all the observations of

the CN set, that is not needed for the remaining steps of the SPNS. Let every state that belongs

to the set of CNs at prediction step k be denoted as Xk
c ∈ Ck, where Xk

c = [MMSIkc tkc χk
c vkc ]

and c ∈ {1, ..., Cn}. Cn indicates the number of CNs at k.

Let the predicted trajectory T̂ i at state Xi be defined as,

T̂ i = {[p̂1 t̂1], [p̂2 t̂2], ..., [p̂K
s
t̂K

s
]} (4.37)

Let the true trajectory T i given state Xi be defined as,

T i = {[p1 t1], [p2 t2], ..., [pL tL]} (4.38)

where,

• Ks denote the number of predicted states.

• L denote the number of AIS states recorded.

Note that Ks and L are not necessarily equal, as several prediction steps can be made between two

subsequent AIS messages. The first element in T̂ i and T i are equal, as they are the starting point

given by state Xi, mathematically we denote this as T̂ 1 = T 1
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4.4.1 Position prediction

A new parameter is introduced, ∆l, which denotes the step length from the current observation to

the next predicted observation in meters. ∆l decides how far the next position should be propagated

from the current position. Let the predicted position be denoted by,

p̂k+1 = pk +∆l · [sin(χ̂k+) · f(ϕ̂k) cos(χ̂k+) · g(ϕ̂k)]T , (4.39)

where f(ϕ̂k) and g(ϕ̂k) are functions of the current LAT (ϕ̂k), which transforms the LON and

LAT from metres to degrees, respectively (Hexeberg et al., 2017). The step length ∆l reflects the

curvature of the sea lanes ahead.

4.4.2 Course prediction

The COG value, χ̂k+, is used when calculating the predicted position p̂k+1. The a priori course

χ̂k+ is calculated from the CN set at position pk. Note that the course is periodic in [0◦, 360◦];

therefore, special care must be taken when calculating the CN set’s mean COG. Let χc denote a

COG value in the CN set. The mean COG of the CN set is calculated as follows:

χ̄c =


tan−1( s̄c̄ ) if s̄ > 0, c̄ > 0

tan−1( s̄c̄ ) + 180◦ if c̄ < 0

tan−1( s̄c̄ ) + 360◦ if s̄ < 0, c̄ > 0

, (4.40)

where

s̄ =
1

C

C∑
c=1

sin(χc), (4.41)

and

c̄ =
1

C

C∑
c=1

cos(χc) . (4.42)

A constant velocity model is used whenever Ck ̸∈ ℜ (an empty set). The median course χ̃c can be

calculated by calculating s̃ and c̃ instead, it is recommended by Hexeberg et al. (2017) to use the

median when considering non-linear trajectories, as done throughout this thesis.
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4.4.3 Speed prediction

The median speed ṽc of the CNs set is used to calculate the predicted speed (the speed is inferred

from this set). The predicted speed ṽc is used to calculate the time passed between the current

observation and the predicted observation. Let the time passed be denoted by ∆l
v̂k+

. The time

update equation is defined as,

t̂k+1 = t̂k +
∆l

v̂k+
, (4.43)

where

• t̂k denotes the current time.

• ∆l denotes the distance between the current and the predicted observation (location).

• v̂k+ = ṽc given the set Ck at k.

With this time update, the SPNS predicts in regular distance intervals ∆l, and then calculates the

time it took to travel between two subsequent predictions based on the a priori speed, calculated

from the CN set. The entire SPNS algorithm is presented in Algorithm 4.1.

Algorithm 4.1 Single Point Neighbour Search Prediction

Require: Xi, the state predicted from
Set:

∆l, Step length [m]
rc, Search radius [m]
∆χ, Maximum course angle deviation [deg]
Ks, Number of prediction steps.

X̂
k−
i =Xi

for k in [1, 2, ...,Ks] do

Find all CNs Xk
c around X̂

k−
i

Calculate X̂
k+
i by:

Calculating χ̂k+ and v̂k+ based on the observations in Xk
c

Calculate the next predicted position at its predicted point in time:
Calculate p̂k+1 with Equation 4.39
Calculate t̂k+1 = t̂k + ∆l

v̂k+

Set: X̂
(k+1)−
i = [MMSIi p̂

k+1 χ̂k+ v̂k+]
end for
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The set of hyperparameters we used in this study is listed in Table 4.1. They are the same as those

used within the original study of Hexeberg et al. (2017), ideal for curved trajectory prediction.

Decision Parameter Value Explanation

rc 50m Search radius for the CNs
∆l 2rc Prediction step length [m]
∆χ 25◦ Maximum course deviation

χ̂k+
i χ̃c Course prediction used at every iteration k

v̂k+i ṽc Speed prediction used at every iteration k

Table 4.1: Curved Trajectory Prediction Decision parameters of the SPNS

4.4.4 SPNS query setup

Since the SPNS algorithm requires querying historic observations within a specified radius, all the

data was loaded into a PostgreSQL database (PostgreSQL, 2021). An extension was added to Post-

greSQL called PostGIS, which allows for improved spatial queries with a datatype called geometry

(PostGIS, 2021). The PostGIS plugin uses a unique kind of indexing. Querying observations in

PostgreSQL with PostGIS allows for vessels within a given radius from the search point to be

extracted (i.e. Ck can be constructed).

4.5 LINEAR REGRESSION MODEL WITH A PRIORI COG INFORMA-

TION (LRMAC)

In this section, we present a novel algorithm called the LRMAC, as mentioned before, this method

uses historic (a priori) AIS data to predict vessel trajectories. The LRMAC is an extension of the

LRM, allowing for the prediction of non-linear trajectories (as shown in Figure 3.12). Spatial Maps

(SMs) are used as a priori information (introduced in Section 3.2). First, we discuss some unit

conversions that the algorithm requires and then introduce the LRMAC.

4.5.1 LRMAC unit conversions

The LRMAC does not require the conversion of the LAT, LON coordinates as the non a priori

methods do. However, the LRMAC converts the SOG from m/s to degrees/s, working in the LAT

and LON degrees domain. This allows the LRMAC, more specifically the underlying LRM, to

predict a vessel’s displacement in terms of degrees LAT and LON for each unit of time.
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Assuming that the SOG (Vt) is in m/s (as converted by Equation 4.1), the LRMAC requires an

extra conversion of the SOG in order for it to work as intended. Equation 4.44, shows the conversion

of the SOG from m/s to degrees/s (◦/s).

V
′′
t =

Vt
l̄

(4.44)

with:

l̄ =
2π

360
× 6378000 = 111137m (4.45)

The constant l̄ can be interpreted as the average number of metres that one degree of LAT and

LON span on Earth. It is assumed for the remainder of the thesis that when we refer to the SOG,

with respect to the LRMAC, its unit is ◦/s, reusing the symbol Vt.

Since LRMAC is an extension of the LRM the same assumptions hold, except for the constant

COG assumption. The LRMAC also predicts in regular time intervals (∆kt = 1s), and a constant

velocity is assumed based on LRM fit. The velocity will be updated, once an update is received

from the target vessel.

4.5.2 The proposed method

The proposed method uses SMs (as a priori information) to update the COG, improving prediction

accuracy and allowing for non-linear trajectory prediction. Programmatically speaking, SMs can

easily be loaded into memory, and their sizes are relatively small given the information they contain.

The symbols in this section continue from those used in Section 4.3, due to the LRMAC being an

extension of the LRM.

The COG value is dynamically updated using three SM matrices: K, Ψ, and Σ. The COG is used

to determine the SOG in the respective latitudinal, and longitudinal directions (see Equation 4.21),

and the update thereof allows for the non-linear trajectory prediction.

The predictor equations of the LRM are modified to obtain the LRMAC. The COG value is calcu-

lated whilst predicting, computed at step t. However, it is only applied during step t+ 1 when the

LRM predicts the next location as the COG is used in calculating the displacement of a vessel in

the respective latitudinal and longitudinal directions.
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Let x̂−
t be the predicted position vector as in Equation 4.21. Let

nϕ̂, λ̂ = [nϕ̂, nλ̂] (4.46)

denote the SM index positions associated with x̂−
t = [λ̂, ϕ̂]T . In other words with [nϕ̂, nλ̂] we can

extract the values in K, Ψ, and Σ associated with (ϕ̂, λ̂)†, by making use of matrix subscripting‡.

Let us construct an index matrix H:

H =



nϕ̂−η·κ, λ̂−η·κ . . . nϕ̂−η·κ, λ̂ . . . nϕ̂−η·κ, λ̂+η·κ
...

. . .
...

...
...

nϕ̂, λ̂−η·κ . . . nϕ̂, λ̂ . . . nϕ̂, λ̂+η·κ
...

...
...

. . .
...

nϕ̂+η·κ, λ̂−η·κ . . . nϕ̂+η·κ, λ̂ . . . nϕ̂+η·κ, λ̂+η·κ


(4.47)

where,

• η denotes the neighbourhood parameter, and

• κ represents the width and length of a SM cell, as shown on the axes of Figure 3.8.

The index matrixH is used to select a specific sub-grid/matrix subset fromK and Σ, at the index

locations contained in H.

Let the a priori cell counts, of the area surrounding x̂−
t , be denoted by

KH , where KH ⊂K. (4.48)

The size of the aforementioned area is determined by η. Moreover, let the a priori average COG

associated with x̂−
t , be denoted by,

Ψnϕ̂, λ̂
, where Ψnϕ̂, λ̂

∈ Ψ. (4.49)

†The brackets of (ϕ̂, λ̂) indicate that they are coordinates.
‡Matrix subscripting refers to extracting values at the corresponding index locations in the associated matrices,

similar to matrix slicing in NumPy (Harris et al., 2020).
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Lastly, let the COG SD associated with x̂−
t , be defined as,

Σnϕ̂, λ̂
, where Σnϕ̂, λ̂

∈ Σ. (4.50)

4.5.3 Updating the COG using a priori information

We first need to calculate the confidence we have in the a priori COG value Ψnϕ̂, λ̂
. This confidence

measure (ρ) ranges between zero and one ([0, 1]), and is used to scale the contribution of the a

priori COG information. It is determined by the number of observations in the neighbourhood, as

shown by Equation 4.51.

The scaling factor allows us to determine how much of the a priori information at the predicted

cell should contribute to the COG update. If the a priori count for the current cell (in SM K)

is higher compared to the other cells in the neighbourhood, we can more confidently say that the

predicted location is in an area where historically, many vessels have travelled before. If the current

cell count is lower compared to the surrounding cells, the a priori COG information will contribute

less, assigning more weight to the previously used COG. This, in effect, allows a vessel to stay in

the highways. The confidence factor is calculated as follows:

ρ = 1Ψ ·
Knϕ̂, λ̂

max(KH)
, (4.51)

where

• ρ denotes the confidence (scaling factor) that we have in our prediction as determined by the

current predicted position of a vessel, x̂−
t .

• Knϕ̂, λ̂
denotes the cell count value associated with (ϕ̂, λ̂). The index nϕ̂, λ̂ is used to extract

the count from K.

• 1Ψ denotes the indicator function that sets ρ to zero. The indicator function enforces the

restrictions that we impose on whether the COG should be updated or not.

If ρ is close to one, we can be confident in the a priori value Ψnϕ̂, λ̂
, and if it is close to zero, the

opposite as seen in Equation 4.53. Two factors influence ρ:

1. If few vessels have traversed the cell associated with xt relative to its neighbouring cells,
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Kn
ϕ̂, λ̂

max(KH) would be relatively close to zero, indicating that the a priori COG information

should have less impact in updating Ψt+1. The same is true in the opposite case, values

closer to one would have a more significant contribution to updating Ψt+1.

2. The value of the indicator function in Equation 4.52. Let

1Ψ =



0, if Ψnϕ̂, λ̂
̸∈ ℜ

0, if Σnϕ̂, λ̂
̸∈ ℜ

0, if Σnϕ̂, λ̂
> 10◦

0, if max(KH) = 0

1, otherwise

, (4.52)

where 1Ψ evaluate to zero if:

• Ψ or Σ contains no information at index nϕ̂,λ̂ (i.e. ̸∈ ℜ). This implies that there is no

a priori information available for us to make use of.

• The COG SD at nϕ̂,λ̂ is larger than 10◦ §. This implies that many vessels have traversed

through the cell associated with x̂−
t , all going in different directions. Implying the a

priori COG value is less reliable.

The COG value that will be used at the next iteration can now be updated as follows:

ψ̂t+1 = (1− ρ)ψt + ρΨnϕ̂,λ̂
, (4.53)

where

• (1− ρ) indicates the role that the previous observed COG should have in the COG update.

• ψt denotes the previously observed or predicted COG. An observed COG will always receive

preference over a predicted COG, as the COG value is updated in the measurement update

equations.

• Ψnϕ̂,λ̂
denotes the a priori COG scalar value at index nϕ̂,λ̂ of the current predicted x̂−

t .

§An SD of 10◦ was chosen as our threshold as it yielded good results, the optimisation of this threshold was
deemed out of scope for the thesis and is considered as future work.
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The LRMAC calculates the COG in the current step t, but it is only used in the next step t + 1

of the predictor equations. The constant COG in Equation 4.23 is replaced with the COG value

calculated in Equation 4.53. Let Equation 4.54 replace Equation 4.23 for the LRMAC, with the

updated COG.

Λt =
[
cos(ψ̂t) sin(ψ̂t)

]T
, (4.54)

where ψ̂t, refers to the a priori COG calculated at the previous iteration. Note that ψ̂t+1 at the

previous time-step (t − 1), is equal to ψ̂t at the current time-step (t) if no new COG value is

observed.

The LRMAC in effect adds two additional equations to the LRM. The first equation added, is a

predictor equation (Equation 4.53) which allows for the COG to be updated by a priori information.

The second equation is an alteration of an existing equation. Equation 4.23 is replaced by Equation

4.54, when no new COG value is observed. Equation 4.23 is used otherwise.

4.5.4 A flow diagram representation of the LRMAC

In Figure 4.2, a flow diagram of the LRMAC methodology is depicted. The diagram shows the

LRM and how a priori course (COG) information is added to extend the LRM into the LRMAC.

Initialisations are in green, functions are in blue, the predicted location is in grey and parameter

extracts are denoted in orange. It is assumed that all pre-processing has already been applied to

the dataset.

The first step is to construct the SMs from the dataset containing all historic AIS data and initialise

all parameters (see Section 3.2). The last ω recorded observations are used as additional input

parameters in the LRM, specifically for the measurement update equations. The LRM consists of

two sets of equations, measurement update and predictor equations. The measurement equations

are used to update the predictor parameters and the predictor equations to predict the next set of

coordinates.

The algorithm starts at the indicated red dot in the flow diagram. The LRM is used to estimate

the LAT and LON at the next time step. All predictions are made at regular spaced time intervals

∆kt. The LRM assumes a constant SOG and COG, based on the last ω observations.

Given the predicted LAT and LON, we extend the LRM into the LRMAC by dropping the constant
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COG assumption. The COG will now be updated based on a priori COG information at the

location predicted by the LRM. The updated COG will only be incorporated at the next iteration

when the LRM predicts the new location. The COG is used to calculate the SOG in the respective

LAT and LON directions. The extension of the LRM allows the predictions to follow historic

movement trends in the SMs, allowing for non-linear trajectory prediction.

The COG update is done as follows:

1. Given the predicted location x̂−
t , the corresponding index nϕ̂,λ̂ in the SMs can be calculated,

and the neighbouring indexes matrix H.

2. Using nϕ̂,λ̂ and H, the a priori values: KH , Ψnϕ̂,λ̂
, Σnϕ̂, λ̂

, and Knϕ̂,λ̂
is extracted and used

in Equation 4.51 and Equation 4.52 to calculate the updated COG value (ψ̂t+1).

The LRMAC allows the COG to be updated dynamically based on historic AIS data, allowing

the LRMAC to follow historic movement patterns of vessels. All other parameters, including the

COG, will update once new observations are received from the vessel, updating the measurement

equations.
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Figure 4.2: LRMAC flow diagram of extending the LRM into the LRMAC.
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4.6 SUMMARY

In this chapter, we discussed all the methods implemented in this thesis, both non a priori and

a priori methods. The necessary unit conversions that these methods require are also discussed.

First, we discussed the non a priori methods which include the DKF and the LRM, followed by

the a priori methods, the SPNS and the LRMAC. A flow diagram is also presented to show how

the LRM was extended into the LRMAC (see Figure 4.2). Each method is discussed in detail

and should enable the reader to understand the inner workings of each. In the next chapter, a

comparison between the two non a priori methods is made, followed by a comparison between the

two a priori methods.
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CHAPTER 5

RESULTS

In this chapter, we compare all the methods introduced in Chapter 4. First, we discuss the trajectory

subsets the methods were compared on. In Section 5.2, we present the results of a comparison

study between the DKF and the LRM. In Section 5.3, we present the results obtained after having

compared the LRMAC and the SPNS algorithm with each other. These two sections follow a

similar layout; the experimental setup is first discussed, then the trajectories considered, and they

end with empirical results. We end the chapter by comparing the algorithmic complexities between

all the methods.

5.1 TRAJECTORY TEST SETS

The sets of unique vessel trajectories the methods were tested on (consisting of Cargo and Tanker

vessel trajectories) can be found in Table C.1 and C.2 in Appendix C. The trajectories in both the

aforementioned tables were extracted from the dataset which was published by (Ray et al., 2019),

after the cleaning steps in Section 3.1 were applied.

The non a priori methods were tested on 30 linear vessel trajectories, while the a priori methods

were tested on 40 non-linear vessel trajectories. These trajectories were similar to those depicted

in Figure 3.12.

Vessel trajectory subsampling methods were implemented for all of the methods. This effectively

increases the number of trajectories the methods were tested on. The subsampling methods are

discussed in Section 5.2.1.1 and 5.3.1.2, respectively.

The extracted trajectories for the a priori methods are vessels from both highways depicted in

Figure 3.9, consisting of Cargo and Tanker vessels. These areas provide us with many curved

trajectory examples, which we require to compare LRM, LRMAC and SPNS with one another.
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5.2 NON A PRIORI METHODS

In this section we compare the LRM (see Section 4.3) to the DKF (see Section 4.2). We discuss the

experimental design for testing the methods, followed by the comparison between the two methods.

5.2.1 Experimental Design

In this section, we discuss how we generated multiple trajectory subsets to test the methods on,

hyperparameter selection, and how we measured prediction accuracy.

5.2.1.1 Trajectory subsampling method

Consider linear trajectories similar to the linear trajectory in Figure 3.12, but more specifically

those in Table C.1. Below we present a trajectory subsampling approach that will allow us to

increase the number of trajectories on which we can test the performance of the LRM and the

DKF. The method will create undersampled trajectories that span different time lengths. The

main aim of this augmentation is to make it possible to evaluate the performance of the LRM and

the DKF for different prediction horizons and trajectory sparsity levels.

Let the time-intervals (prediction horizons) that are considered be represented by the set:

δs = {240s, 300s, 360s, · · · , 1800s}, (5.1)

and the undersampling rate (observational step-sizes) be represented by the set:

λs = {2, 3, 4, ..., 21}. (5.2)

Moreover, let nδ = |δs| and nλ = |λs| denote the number of time intervals and step-sizes, respec-

tively.

Let T denote the list of trajectories in Table C.1. Furthermore, let Ti denote the ith trajectory in

T . Moreover, let CT i denote the set that is constructed by undersampling trajectory Ti using all

possible combinations of time-intervals and step-sizes contained within δs and λs. Lastly, let C be

the set that contains all possible CT i . The algorithm for constructing C is presented in Algorithm

78

Stellenbosch University https://scholar.sun.ac.za



5.1. Algorithm 5.1 makes use of Algorithm 5.2. Algorithm 5.2 describes how a trajectory is

undersampled given an interval size δsi and step size λsi . Algorithm 5.2 generates multiple subsets

of trajectories which are undersampled by slicing up a trajectory up into different interval lengths

(δsi), and undersampling within each sub sample (λsi). Subsampling, mimics vessels that enter

weak AIS reception areas or that send minimal status updates. This method of subsampling allows

us to compare the performance of the LRM with the DKF with respect to different scenarios.

Algorithm 5.1 Generating C
Require: T , δs, λs, C
C = ∅ ▷ Where ∅ represents an empty set
for T i in T do

CT i = ∅
for δsi in δs do

for λsi in λs do
CT i .append(SubSampleTraj (T i, δsi , λsi)) ▷ As in Algorithm 5.2

end for
end for
C.append(CT i)

end for

Algorithm 5.2 SubSampleTraj() - generating an undersampled trajectory of T i

Require: T i , δsi , λsi
n = |T i| ▷ The observational length in seconds of T i

ι = 0 ▷ Interval starting point (s)
α = ∅
seq = sequence(start = 0, end = δsi , step = λsi) ▷ Index array to perform undersampling

while ι ≤ n do
T iinterval = extract(T i, ι, (ι+ δsi)) ▷ Extract a new observational subset from T i

T iUndersample
= T iinterval [seq] ▷ Extracting undersampled trajectory from T iinterval

α.append(T iUndersample
) ▷ Appending subset from T iinterval according to the λsi to the set

ι = ι+ δsi ▷ Update the starting point for next iteration
if (ι+ δsi) > n then ▷ Check to see if we can generate another undersampled subset

return(α)
end if

end while

The reasoning behind the constant time intervals for subset generations is because AIS transponders

transmit messages at regular time intervals (Jaskolski, 2017). However, the data is not always sent

to receivers on time, and signals can be interrupted. We chose to use constant time intervals to

subdivide our trajectories as it is more realistic, than constant displacement intervals. The reason
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is that constant displacement intervals would result in nonsensical conclusions being drawn because

the velocities of the vessels differ. Keeping time a constant, allows us to evaluate the prediction

performance on similar time frames due to the constant AIS time intervals.

5.2.1.2 DKF Hyperparameters

The Q and R matrices can be thought of as the hyperparameters for the DKF. The reason being,

that the DKF’s performance is dependent on the initialisation of these matrices.

How Q, R and P 0 were initialised are discussed in Section 4.2.1.1.

5.2.1.3 LRM Hyperparameters

The LRM only has one hyperparameter, the window size (ω). Throughout all the experiments of

the LRM the window size was set to three, ω = 3. This ensures that the results that are reported

remain consistent. The value, however, was determined via experimentation (see Section 5.3.1.4).

5.2.1.4 Prediction Accuracy Measurement

Both the DKF and the LRM are applied to every trajectory in every undersampled set CTi , generated

by Algorithm 5.1. For each method and undersampling rate, we calculated the Mean Euclidean

Distance (MED) as follows:

MEDT i,λsi
=

1

n · nδ

nδ∑
j=1

n∑
k=1

√
(xT i,k − x̂T i,k,δsj ,λsi

)2 + (yT i,k − ŷT i,k,δsj ,λsi
)2 , (5.3)

and

MEDλsi
=

1

|T |
∑

T i∈ T

MEDT i,λsi
. (5.4)

The variables in the above two equations are defined below:

• n, denotes the length of the original trajectory.

• x and y, denote the original trajectory observations (LON, LAT).

• x̂ and ŷ, denote the estimated x- and y-coordinate values of trajectory T i.

• T i, denotes trajectory i in Table C.1.
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• MEDλsi
, denotes the average MED over all the trajectories for every undersample rate in λs.

5.2.2 LRM and DKF Comparison

In this section, we compare the overall performance of the LRM and the DKF. We compare the

prediction accuracy of both methods for each undersampling rate. A larger undersampling rate

translates into more sparse trajectories. The purpose of this comparison is to see if there are any

significant differences in the prediction accuracy of the LRM and the DKF.

Figure 5.1 depicts the computed MEDλsi
values (as calculated by Equation 5.3) and the corre-

sponding standard deviations. The error at each λsi is the mean error for all time frames δs. This

is calculated as the difference between the predicted coordinate and the observed coordinate.

Figure 5.1: MEDλsi
values for the DKF and the LRM methods in metres.

First, let us put the errors shown in Figure 5.1 in perspective. The physical length of Cargo vessels

ranges from 137m to 400m (Rodrigue et al., 2016), and for Tanker vessels from 205m to 405m

(Notteboom et al., 2020) (see Figure 3.13 to put the size of one of these vessels in perspective).

That being said, when inspecting the errors of both the DKF and the LRM in Figure 5.1, we see no

significant difference in prediction error between the two methods. We also see that the confidence

interval of the LRM and the DKF encapsulates each other’s MED values.

As the undersampling rate increases, the LRM’s error and standard deviation increase at an almost
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constant rate, while the error of the DKF and its associated standard deviation bands increases

non-linearly. When looking at the MED of the DKF and the LRM between λsi = 13 and λsi = 17

it looks as if the DKF outperforms the LRM. However, a prediction difference of 200m with respect

to Cargo and Tanker vessels, is the difference between a vessel’s bow or stern being in the predicted

location (due to their size).

Figure 5.2: Zoomed-in undersampling rates of Figure 5.1.

Figure 5.2 depicts a sub-region of Figure 5.1 (the region associated with undersampling rates

{2, 3, 4, 5}). Even though it visually looks as if the DKF outperforms the LRM, the difference

is insignificant due to the size of Cargo and Tanker vessels.

However, the most important conclusion is that the DKF does not perform significantly better than

the LRM on near-linear trajectories, given the size of vessels and that the confidence intervals of

both methods almost always overlap. The DKF is also more complex to implement compared to

the LRM.

5.2.3 Case Study - A Comparison between the LRM and DKF

Given the overall results we now investigate a specific case study. We showcase an example where

the LRM outperforms the DKF in terms of prediction accuracy (does not happen often). The aim

behind this section is to enable the reader to better understand the overall results presented in
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Section 5.2.2.

The vessel with MMSI 304927000 and sub-trajectory where λsi = 3 was used for this case study,

summarised in Table C.1.

5.2.3.1 Model ability to predict vessel SOG

First, we remind the reader that both methods update their estimates as new observations are

observed from a vessel. In Figure 5.3, a plot is shown of the SOG associated with MMSI 304927000

for each recorded observation of the trajectory in question. Note that the time intervals between

each observation are not regular. We observe an average speed pf 10.39 kt and a median speed of

10.5 kt, and a short period of rapid decrease in speed after observation 429. Note when we refer

to the speeds in the longitudinal and latitudinal directions here, we actually mean velocity, i.e. the

measured values we report, can become negative.

Figure 5.3: SOG per observation MMSI - 304927000 as denoted in Table C.1
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Figure 5.4, depicts the latitudinal speed predicted by the LRM. We observe that the LRM (blue)

is able to closely track the historical observed speeds (in red). The LRM is able to provide a

good estimate of the SOG. When looking at the DKF’s estimation in Figure 5.5, we see that the

predictions are far more erratic compared to the LRM. The erratic SOG predictions of the DKF are

most probably due to matrices P−
t and Kt not being able to converge (reach a form of stability)

in the presence of noisy observations (see Section 4.2.1.1).

Looking at the prediction performance of the DKF in Figure 5.5, it looks as if both of the afore-

mentioned matrices are overcorrecting for the errors made once an update is received from the

target vessel. As new observations are received from the vessel, the DKF updates through the

measurement updates. We even note that the DKF predicts a negative SOG value (i.e. the vessel

is moving backwards or in the complete opposite direction than it was moving in at first). This

negative SOG occurs due to DKF trying to correct an off-course prediction after receiving an actual

observation.

Figure 5.4: Latitudinal speed prediction by the LRM of MMSI 304927000, λsi = 3.

When looking at Figure 5.5 above, one might assume that the erratic prediction of the SOG that

the DKF made will result in an erratic coordinate prediction. This, however, is not always the

case. The DKF jointly predicts the SOG and the vessel’s coordinates, whereas the LRM predicts
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Figure 5.5: Latitudinal speed (velocity) prediction by the DKF of MMSI 304927000, λsi = 3.

the SOG and derives the coordinates from the predicted speed as the time elapsed is known.

Note that the x-axis denotes the observation number in Figure 5.3, and in Figures 5.4 and 5.5 the

x-axis denotes elapsed time (the observations are not regularly spaced in time).

5.2.3.2 Model ability to predict vessel trajectories

In Figure 5.6, we see that the LRM was able to predict the trajectory of the vessel belonging to

MMSI 304927000. When compared with the predicted DKF trajectory in Figure 5.7, we observe

that the DKF predictions are more noisy compared to the LRM. The reasons being that matrixKt

has not yet converged (reaching a form of stability) and is over-correcting during the measurement

updates. The undersampling rate, λsi = 3, results in longer periods of time where no updates are

received by the DKF, and the corresponding matrices taking longer to update and converge.

Due to the constant COG assumption that both the LRM and the DKF makes, we expect linear

trajectories to have a constant COG. If the initial COG is incorrect, the speed in the respective

directions will be derived incorrectly. The role that the COG plays in the calculations for the LRM

is shown in Equation 4.23 an for the DKF in Equation 4.2.
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Figure 5.6: LRM trajectory prediction of MMSI 304927000, λsi = 3.

Figure 5.7: DKF trajectory prediction of MMSI 304927000, λsi = 3.

5.2.3.3 Model error comparison

We now compare the errors made by both models. The errors are calculated by computing the

difference in the predicted longitude and observed as well as the predicted latitude and observed.
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We also include the Euclidean distance error between the predicted and observed coordinates. We

do not use the Haversine distance as our error measure, as the UTM coordinate system is a flat two

dimensional projection. The error introduced by using the Euclidean distance will be marginal.

Figure 5.8 and 5.9 denote the distribution of errors for the LRM and the DKF respectively.

Figure 5.8: LRM error made per observation, when λsi = 3.

Figure 5.9: DKF error made per observation, when λsi = 3.
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We observe that the error distribution of the DKF has a larger variance (more spread out) compared

to the LRM. By looking at the spread of the errors over time and how they are centred, we can

infer that the errors are probably normally distributed. The error plots confirm that the LRM is

outperforming the DKF for MMSI 304927000 when λsi = 3.

Figure 5.10 denotes the overall error comparison (MED) for vessel MMSI 304927000, where the

error for each undersampling rate is shown. The error associated with each λsi is the MED (shown

in Equation 5.3).

When comparing the DKF and the LRM for each undersampling rate, we observe that the LRM

errors increase less dramatically compared to the errors associated with the DKF. For undersample

rates, 7− 12, the LRM errors remain nearly constant, whereas the DKF errors keep on increasing.

Figure 5.10: Error for each prediction interval λsi of MMSI 304927000

It will not always be the case that the LRM outperforms the DKF. However, this case study shows

an example where it does. Overall our results show that the DKF usually marginally outperforms

the LRM method. LRM only outperformed the DKF for 30% of the trajectories in Table C.1, i.e.

for only 12 vessels.
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5.3 A PRIORI METHODS

In this section the LRMAC (introduced in Section 4.5) which is an extension of the LRM (introduced

in 4.3) is compared to the SPNS (introduced in Section 4.4). The SPNS has a similar programmatic

complexity to that of the LRMAC.

As in the case of Section 5.3.1 we first present the experimental setup we employed. This is followed

by a comparative study in which we compare the LRMAC and the SPNS with one another (see

Section 5.3.3). We then present a specific test case (see Section 5.3.4).

5.3.1 Experimental Design

Our experimental design section has a similar outline to the one given in Section 5.2.1. In particular,

we will compare the LRM and the LRMAC. This is followed by a comparison study that involves

the LRMAC and the SPNS. The following comparison metrics is considered: prediction accuracy

and execution time.

5.3.1.1 System Specifications

The SPNS and LRMAC were tested independently on the same system to avoid any processing or

querying bottlenecks. Table 5.1 denotes the system specifications∗ of the system they were tested

on.

Description Name Specification

CPU Intel i7-10700K 8 core 16 threads @ 5.1 GHz
Memory Corsair Vengeance LPX DDR4 @ 3600 MHz
Storage HP EX920 NVMe M.2 SSD @ 512 GB
Software Python 3.8.5
Database PostgreSQL 12.6

Database plugin PostGIS 3.1.1
Operating System Ubuntu Desktop 20.04 LTS

Table 5.1: Testing system specifications

∗The system specifications are not shown for the DKF and the LRM as execution times were not compared. The
purpose of the DKF and LRM comparison was to see if the LRM will be a viable solution for trajectory prediction,
as stated in our problem statement.
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5.3.1.2 Trajectory subsampling method

A trajectory subsampling method was implemented to ensure that we have a large number of

trajectories on which we could test the LRMAC and the SPNS. This method (presented below)

effectively creates multiple trajectories from each observed trajectory.

A given trajectory T i will be subsampled into different time subsets of time lengths h. Each time

subset’s starting observation will differ by one hour compared to the subset that directly precedes

it. We refer to this hour difference as a stride step. The symbol s defines the starting point of every

stride of T i. Stride values are measured in hours. This method allows us to extract multiple sub

trajectories Ts, h from T i. Let the number of sub trajectories that can be created with a prediction

length of h from T i be denoted by,

#Th = ⌊max(tT i)⌋hour − h+ 1 (5.5)

and let the total number of sub trajectories from T i with different starting positions s be denoted

by,

#Ts, h =

⌊max(tT i
)⌋

hour∑
h=1

#Th (5.6)

where,

• ⌊max(tT i)⌋hour denotes the closest floored hour to the maximum observed time in T i, where

tT i is a vector of all the time steps in T i.

• h refers to the prediction length, where h ∈ {1, 2, ..., ⌊max(tT i)⌋hour}, and

• s denotes to the stride starting position measured in hours, s ∈ {1, 2, ..., ⌊max(tT i)⌋hour − h}

This method of sub-trajectory sampling allows us to have multiple trajectories to compare the

prediction and time performance between the LRMAC and the SPNS model. The prediction

performance is determined by the Haversine distance between the expected spatial location and

predicted spatial location at time t. The Haversine distance is defined in Equation 3.1, which is

the distance on a sphere (in this case, the earth).
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In Figure 5.11, the subsampling method is visualised for a six-hour trajectory. Let s denote the

starting hour, starting at hour 0, and h represent the prediction length in terms of time. We see

that the subsampling method will generate six sub-trajectories each of a length of one hour. The

maximum length (in terms of time) for the a trajectory in this example will be six hours.

Figure 5.11: Subsampling visualised of a hypothetical six-hour long trajectory

5.3.1.3 SPNS hyperparameters

The values of the hyperparameters for the SPNS are presented in Table 4.1 Section 4.4.3.

5.3.1.4 LRMAC hyperparameters estimation

The hyperparameters for the LRMAC were introduced in Section 4.5.2. They are η which is

the neighbourhood size of the SMs, and ω which denotes the window size (number of historic
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observations to fit the LRMAC on).

A grid search was performed to find the best possible choice for ω and η. The combination of η

and ω that resulted in the lowest overall Haversine distance error will be selected as the ideal set of

hyperparameters. The considered parameter values were: η = [1, 2, 3, 4, 5] and ω = [1, 3, 5, 7, 9],

resulting in 20 parameter combination pairs.

Figure 5.12: Average median Haversine distance error (over the prediction horizons of 5−360 min)
for each hyperparameter combination of the LRMAC.

Figure 5.12 depicts the average of the median Haversine distance for all the trajectories for each

hyperparameter pair considered. Note that the hyperparameter tuning was performed by utilising

all of the trajectories (as in Table C.2) and their sub-trajectories (discussed in Section 5.3.1.2)

The pairs that yielded the best results were ω = 3 and η = 1, i.e. no other pair resulted in

a significant increase in performance. However, it should be noted that although the average

Haversine error did decrease when η = 4, none of the hyperparameter pairs where η is equal to 4

was selected. The reason being, even though the error is lower, it is only marginally so, while the

computational cost on the other hand would increase (the search neighbourhood grid increases from

a 3×3 grid to a 9×9 grid). The aforementioned hyperparameter choice has the lowest computational

complexity of all the other hyperparameter pairs tested. In Section 5.4 the algorithmic complexities

are discussed.

Smaller values of ω mean that our function is more flexible to incorporate new information, as
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fewer historic elements are considered for the LRM fit. Large values of ω will mean that our

algorithm is less flexible, using more observed observations from the current trajectory to make a

prediction (increase in elements to fit the underlying LRM). Larger values of η mean that a larger

search neighbourhood has to be considered (an increase in the number of SMs cells that must be

included).

5.3.1.5 SPNS Prediction adjustment

Since the SPNS predicts in constant distance intervals ∆l instead of constant time intervals as the

LRMAC does, we had to adjust the final prediction of the SPNS to allow for an exact comparison

at h (prediction horizon) when measuring the performance between the SPNS and the LRMAC.

In order to get the predicted spatial location after h an extra step was added to the SPNS to allow

it to predict the spatial location at h. The steps are denoted below.

• Let the SPNS predict until the first observation where t̂k+1 > h. If it is equal to h, no further

steps are required.

• Calculate the total time that passed (in seconds) between the two predicted observations∗∗

X̂
(k)
i and X̂

(k+1)−
i , where the time is indicated by t̂k and t̂k+1 respectively. Note that the

two time components should have the following characteristics: t̂k < h < t̂k+1. Let the total

time which have passed (in seconds) be denoted by ∆t|t̂k+1−t̂k|.

• Since the SPNS predict in constant distance intervals and we know the distance between

observations X̂
(k)
i and X̂

(k+1)−
i is denoted by ∆l, we can calculate the distance travelled per

second as the time passed during ∆l between the two observations is now known.

• We also need to calculate the time difference (in seconds) between between h and t̂k, and let

it be denoted by ∆t|h−t̂k|.

• We can now calculate the distance that should be travelled from the observation at t̂k to the

observation at h as follows:

∆l|h−t̂k| = ∆l ×
∆t|h−t̂k|

∆t|t̂k+1−t̂k|
(5.7)

• Given the new interval distance ∆l|h−t̂k|, we can now re-run the SPNS, where ∆l = ∆l|h−t̂k|

∗∗The symbols used are identical to those used in Section 4.4, where the SPNS is introduced.
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starting at observation X̂
(k)−
i for one iteration. The result will be the predicted spatial

location at h, where t̂k+1 = h as determined by Equation 4.43.

The reason why we do not do straight line imputation and derive the approximate location, is so we

can be fair to the SPNS. We allow it to utilise historic information to predict the spatial location

up until h.

5.3.1.6 Prediction Accuracy Measurement

Algorithm 5.3 below shows how we calculated the prediction errors for both the LRMAC and SPNS

on each sub-trajectory pair Ts,h. We used the median error results for each predicted time frame h

(prediction horizon) to compare the prediction performance between the two methods.

Algorithm 5.3 A priori methods prediction performance comparison

Set:
ω = 3 ▷ LRMAC window size
η = 1 ▷ LRMAC SM neighbours
ϵLRMAC = [ϵLRMAC1 , ... , ϵLRMACmax(h)

] ▷ Jagged array† for the LRMAC
ϵSPNS = [ϵSPNS1 , ... , ϵSPNSmax(h)

] ▷ Jagged array for the SPNS

for T i in T do
Get T s, h which is a set of sub trajectories from T i

for h in [1, 2, ... , ⌊max(tT i)⌋hour] do
for s in [0, 1, 2, ... , (⌊max(tT i)⌋hour − h)] do

Tinit = get initial(Ts, h) ▷ Initial observations for both the LRMAC and SPNS

λ̂LRMAC, ϕ̂LRMAC = LRMAC(Tinit, η, ω, h)
λ̂SPNS, ϕ̂SPNS = SPNS(Tinit, h)

# Calculate the respective prediction errors to the corresponding h array
ϵLRMAC append harvdist(T s, h, λ̂LRMAC, ϕ̂LRMAC)

ϵSPNS append harvdist(T s, h, λ̂SPNS, ϕ̂SPNS)
# Where harvdist calculates the Harversine distance according Equation 3.1

end for
end for

end for

Algorithm 5.3, results in two jagged arrays, one for the SPNS and one for the LRMAC. Both these

jagged arrays will contain the errors for each h. To evaluate the overall performance per h the

median error per array for each h was calculated.

†A jagged array refers to an array that contains a collection of arrays. The arrays contained in the jagged array
does not have to have the same length. The number of arrays contained in the jagged array used in this thesis will
be equal to the maximum trajectory prediction length in terms of hours (h).
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5.3.2 The LRM and LRMAC comparison

The LRMAC is an extension of the LRM, allowing for the prediction of non-linear trajectories.

In this section, we do an overall comparison between the LRM and the LRMAC. The Haversine

distance is used as our error measure between the expected and predicted location.

Figure 5.13: LRM and LRMAC error comparison, over a six-hour prediction horizon.

In Figure 5.13, the median Haversine error is shown for both the LRM (red) and LRMAC (blue).

The error was calculated over all the sub-trajectories for each time horizon (h), together with the

standard deviation (SD‡) from the median.

When comparing the two methods, we see that the LRMAC has a reduced SD and median error

compared to the LRM, making it an improvement over the LRM.

We see that the LRM and LRMAC are not significantly different in terms of short-term prediction

accuracy. Shorter prediction periods mean that the subsets of a trajectory will be near-linear as

Cargo and Tanker vessels have a slow rate of turn. We also do not expect a vessel trajectory to

stay linear for long periods of time, as there are obstacles like landmasses and other vessels.

With respect to longer prediction time horizons (> 120 min), the LRMAC has an improved error

‡Note that the SD is plotted around the median, instead of the mean absolute deviation. This was done to reflect
the algorithmic stability.
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of up to 9km. To further support the improvement of the LRMAC over the LRM, when looking at

Figure 5.14, we can see that the LRMAC reproduced the trajectory, and the LRM went off course.

Figure 5.14 showcases that the model errors can have significantly different meanings, i.e. a 3.48

km difference in predicted error (as seen in Figure 5.14), with one method on the trajectory and

the other off-course. We remind the reader that the LRMAC and the LRM both assume a constant

velocity model. The background of Figure 5.14 depicts the vessel counts SM K, shown in Figure

3.9.

Figure 5.14: LRM vs LRMAC trajectory prediction visualisation projected on an SDM (MMSI
419689000)

We expect that the LRMAC will be able to predict accurately with any SM that has highways

exhibiting directionality, as shown in Figure 5.14. Note that the LRMAC algorithm can be applied

to linear and non-linear trajectories.
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5.3.3 The LRMAC and SPNS comparison

In this subsection we compare the LRMAC with the SPNS, as mentioned both are easy to implement

and similar in nature.

Figure 5.15: SPNS vs LRMAC prediction results

In Figure 5.15, the median prediction error of the LRMAC (blue) is compared to the SPNS (green).

Similar to the LRM and LRMAC comparison, the median error and SD for each time horizon (h)

were calculated. Figure 5.15 is a more accurate and representative comparison of the LRMAC

with another method (the SPNS), as both methods follow the historic route, through a priori

information. This is in contrast with the LRM that went off course, which utilises no a priori

information.

Looking at Figure 5.15, for short time horizons there are no significant difference in the prediction

performance between the LRMAC and the SPNS. However, when considering longer time horizons

(> 120min), the median prediction error and SD of the LRMAC is far lower than that of the SPNS.

The LRMAC had a reduced error of 17 km for the five-hour prediction time horizon, which in

perspective, is a lot. Furthermore, when we look at the SPNS, we see that its SD starts to increase

dramatically, compared to the LRMAC’s SD, which increases at a lower rate. When looking at the

prediction interval [5, 15] min (the recommended time prediction horizon for the SPNS), we see

that it has a smaller SD compared to the LRMAC.
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h LRMAC time SPNS time Time difference

min s min s min min

5 0.11 0.0018 30.92 0.5154 -0.5135
15 0.33 0.0055 95.68 1.2614 -1.5892
30 0.66 0.0110 193.07 3.2178 -3.2068
60 1.31 0.0218 371.87 6.1978 -6.1760
120 2.64 0.0440 712.29 11.8715 -11.8275
180 3.98 0.0663 1026.38 17.1063 -17.0399
300 6.56 0.1093 1724.46 28.7410 -28.6317

Table 5.2: The run time of the LRMAC compared to the SPNS. The median prediction time for
each prediction period h is shown.

In Table 5.2, the run time complexity of both methods for each prediction length h is listed. The

time was measured over all the sub-trajectories, and the median time is shown. The SPNS takes

significantly longer to calculate the predicted trajectory compared to the LRMAC. The speed of the

SPNS is limited by the time it takes to query the sets of CNs from the database. Larger database

table sizes will lead to more significant query times as there are more observations to search through.

The LRMAC uses SMs whose sizes stay fixed, even if more observations are recorded the same LAT

and LON range. The SM sizes will only increase if its resolution increase, or the LAT and LAT

increase with the cell sizes of the SMs staying fixed.

Looking at Figure 5.15 and Table 5.2, we see that the LRMAC outperforms the SPNS in not only

the prediction accuracy for longer time horizons, but also having a significantly shorter execution

time. We see that the SPNS has a smaller SD for smaller time horizons compared to the LRMAC.

We believe that in higher density areas closer to harbours, the SPNS will have more accurate

prediction results as the set of CNs will only contain vessels moving in the same direction, where

the LRMAC would default to the LRM as the a priori COG SD value in the corresponding spatial

location, will be large. Vessels tend to move slower in areas closer to harbours/ports, and prediction

time frames are usually shorter with increased AIS coverage. We think that the SPNS can be used

together with the LRMAC. If the LRMAC encounters a cell with a high SD, the SPNS can be

deployed until a cell with a lower SD is encountered. A hybrid approach between the SPNS and

LRMAC may improve prediction times and prediction accuracy in areas with a significant amount

of traffic in different directions. The implementation of such a hybrid approach is deemed out of

the scope of the current work.
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5.3.3.1 LRMAC limitations

It should be noted that the LRMAC is limited by the spatial resolution of the SMs it employs. In

the case of sparse historic data, the SMs generated from this data would be inaccurate, resulting in

a decrease in the performance of the LRMAC. Also, when the prediction time interval between two

consecutive predictions is too large, the LRMAC will skip past important a priori information and

have inaccurate prediction results. Furthermore, the LRMAC was only tested on Cargo and Tanker

vessels in this study, as the movement of other vessel types (such as Fishing vessels) is erratic, and

the SMs that will reflect this behaviour. The result will be SMs containing values in their cells with

an associated high SD.

5.3.3.2 LRMAC applications

The LRMAC can be used to predict trajectories of vessels or to impute historic trajectories. The

LRMAC would be more accurate as observations are recorded, and the observations in the window

size ω is updated. Currently, the predictions of the LRMAC and SPNS were done on the assumption

that only the first ω observations’ information will be used, simulating AIS transponders that are

switched off for extended periods of time.

5.3.4 Case Study - A Comparison between the LRM, LRMAC and SPNS

In this section, we compare the LRM, LRMAC and SPNS with each other on a specific case study.

The purpose is to provide further insight into how these methods work, visualising the predicted

trajectories after h = 360 min.

We do not show the performance on multiple trajectory subsampling rates, as done with the LRM

and DKF case study. The reason being, the LRM and DKF testing was done to see if the LRM

will be a viable solution to a specific problem set (short term prediction with sporadic observations

being recorded). Here the problem is long term prediction without any observation other than the

first few (i.e. non-linear trajectories are considered).
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5.3.4.1 Model ability to predict vessel trajectories

In this section, we compare the trajectory prediction performance of both the LRM, LRMAC and

SPNS. The LRM is included as the LRMAC is an extension thereof.

Figure 5.16: Three six-hour predicted trajectories which were predicted by the LRM, LRMAC and
SPNS for vessel with MMSI 304805000.

Figure 5.16 denotes the predicted trajectories of the methods being compared. The background

of Figure 5.16 represents the vessel counts Spatial Map, visualising the historic information at the

respective spatial locations. Note that the SM visualisation is log-scaled. The SM that allows for

the non-linear predictions is the COG SM Σ, as it can be associated with the historic directions

vessels pursued.

Looking at Figure 5.16, we see that both the LRMAC and SPNS prediction remains mostly on-
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course. The LRMAC performs the best in terms of recreating the trajectory and slightly under

predicts the final location of the vessel. We observe that the SPNS remains on course for most of

the prediction. However, it starts to deviate slightly at the end of the six-hour prediction period.

As expected, the LRM predicted a linear trajectory and did not follow the expected non-linear

course over time.

5.3.4.2 Model error comparison

The respective prediction errors made by the methods in Figure 5.16 are presented in Table 5.3

below. A zoomed in figure of the trajectory prediction endpoints is also given in Figure 5.17.

Figure 5.17: Zoomed in view of the LRM, LRMAC and SPNS trajectory predictions of vessel MMSI
304805000.

Method Time (h) Error (km)

LRM 6 32.936
LRMAC 6 8.381
SPNS 6 6.323

Table 5.3: Haversine distance error for each prediction method for vessel MMSI 304805000
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Looking at the prediction errors for the six-hour period in Table 5.3, we observe that the SPNS

had the lowest error, followed by the LRMAC. The LRM had the largest prediction error as it went

off-course. The differences between the LRMAC and the SPNS errors are marginal, especially when

the time complexity of both algorithms are taken into consideration (discussed in Section 5.3.3).

We observed that the error does not always indicate the true nature of the predicted trajectories as

the LRMAC’s predicted trajectory showed a higher degree of similarity to the original trajectory

compared to the SPNS. The LRM’s limitation of linear trajectories puts it at a disadvantage for

long term predictions which is to be expected.

5.4 ALGORITHMIC COMPLEXITIES

Algorithmic complexity can be defined as expressing algorithmic running time in terms of the basic

computer steps (Dasgupta et al., 2006). It is a more reliable metric than using the time it takes for

an algorithm to execute, as algorithms are dependent on the hardware they run on.

The algorithmic complexities are shown below for each of the implemented methods. Algorithmic

complexities are expressed using Big-O notation.

5.4.1 DKF

The DKF has a complexity of O(n2.376f ), where nf refers to the length of the state vector (Montella,

2011). In terms of the DKF, the state vector has a length of nf × 1, and square matrices of size

nf × nf . For the DKF implemented in this thesis nf = 4 (see Equation 4.2).

5.4.2 LRM

The computational complexity for multiple linear regression‡ that uses ordinary least squares is

O(dl · n2l ) (Lorena et al., 2018). The aforementioned variables are defined as follows:

• nl is defined as the number of observations used to create the model from.

• dl is defined as the number of features

‡Multiple linear regression (MLR), is similar to linear regression, but it has more than one feature that has to be
estimated in order to get the best fit. MLR with one feature is simple Linear Regression (the LRM).
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The LRM used in this thesis is based on simple linear regression, where the number of features are

one (dl = 1), therefore the LRM has a complexity of O(n2l ). The number of historic observations

used in this thesis was ω = 3 (See section 5.2.1.3). Therefore, the complexity will only increase if

the number of historic observations included (ω) increases.

5.4.3 LRMAC

The LRMAC is an extension of the LRM, therefore having a complexity of at least O(n2m)§.

We now, however, have to calculate the complexity added to the LRM by the addition of the COG

update, which turns it into the LRMAC. Due to the addition of the COG update, the component

that contributes the most is the SMs. In order to update the COG, one has to search through the

SMs to extract the information at the corresponding index locations.

The index values of the SMs are sorted in ascending order. We remind the reader that ndr and

ndc indicate the number of rows and columns, respectively. The SMs will always have one of the

following properties (dependent on how the SMs were set up):

• ndr < ndc

• ndr = ndc

• ndr > ndc

where [ndr , ndc ] ∈ N, and the dimensions of the SMs (K,Ψ, and Σ ) will always be equal.

The extraction of the a priori information from the SMs can be done with the Binary search

algorithm¶ (BSA). The BSA has an algorithmic complexity of O(log nd) (Dasgupta et al., 2006),

where nd in the case of the LRMAC is defined as the maximum value between the number of rows

and columns in the SMs (nd = max{ndr , ndc}).

Since the LRMs complexity is dependent on ω and the complexity of the added SMs dependent on

nd, the complexity of the LRMAC is problem-dependent. Two factors will determine the complexity

of the LRMAC:

• Do the chosen resolution of the SMs and the complexity associated with the choice outweigh

§Note that in the case for the LRMAC nl is replaced with nm for the LRM part of the LRMAC.
¶The Binary search algorithm, is an algorithm that can efficiently search through a sorted array for a specific

value, see Dasgupta et al. (2006) for more on the BSA.
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the complexity of fitting the LRM?

• Does the complexity of fitting the LRM (size of ω) outweigh the cost that is incurred due to

having to search for a value in the SM?

Upon the examination of Figure 5.12, we see that the increase in ω does not lead to a significant

increase in prediction performance of the LRMAC. We, therefore, do not expect the LRMAC to

be fitted on more than ω = 3 observations. Therefore, it can be assumed that the overall worst-

case complexity of the LRMAC is O(log nd), due to the SMs. In this thesis, nm = ω = 3, and

nd = ndr = ndc = 1250. Note that we exclude the complexity of generating the SMs as we are

discussing run-time complexity, and the SMs are constructed beforehand.

5.4.4 SPNS

The complexity for the SPNS is determined by the extraction of the CN set; obtaining the a priori

data for its equations.

The SPNS has to search through all the observations in the dataset (to build the CN set) and

compare two sets of parameters, i.e. linear search‖. The two parameters are the spatial location of

an observation (LAT and LON) and whether it is within a predefined radius of the current predicted

location (see Section 4.4 for more details). Therefore, the SPNS’s worst-case complexity is O(ns),

where ns denotes the number of observations present in the dataset, given that the observations

are also unsorted.

5.4.5 On the algorithmic complexities

In Table 5.4, a summary of the worst case algorithmic complexities of all methods presented in this

thesis, is given.

However, these complexities obscure important detail and should not just be taken at face value.

The complexities are dependent on the values chosen for each of the parameters.

‖Linear search, is when each value of an array is checked in sequential order from the start of an array to the
finish.

∗∗The number 1 864 314, denotes the number of cleaned observations present in the dataset (database that the
SPNS had to search through whilst predicting), see Table 3.4 in Section 3.1.1
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Method Complexity Description Values in Thesis

DKF O(n2.376f ) nf = state vector dimensions nf = 4

LRM O(n2l ) nl = # observations used to fit the LRM nl = 3
LRMAC O(log nd) nd = max{ndr , ndc} nd = 1250
SPNS O(ns) ns = # observations in the dataset ns = 1 864 314∗∗

Table 5.4: Complexities of the methods presented in this Thesis.

5.5 SUMMARY

In this chapter, we compared the non a priori methods with each other as well as the a priori

methods. The experimental design for the comparison of a priori and non a priori methods were

discussed. For the comparison of the non a priori methods, an additional trajectory subsampling

method was presented and discussed, which simulated vessels from which minimal updates were

received, to test the ability of the DKF and LRM to predict and update once new information were

received. A case study for both the non a priori and a priori methods was also discussed. In the

next chapter we conclude the thesis, the drawbacks and trade-offs for each of the methods will be

discussed, followed by a conclusion.
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CHAPTER 6

CONCLUSION AND DISCUSSION

In this final chapter, we give a brief overview of the study conducted. Recall, we first compared

the DKF with the LRM on linear trajectories, since the main use case of this study was Cargo

and Tanker vessels which have piecewise linear trajectories. We concluded that there was no

significant difference between the LRM and the DKF for this use case. After this comparison

study yielded promising results, we decided to extend the LRM into the LRMAC, which utilises

a priori information in the form of spatial maps for improved vessel trajectory prediction. The

LRMAC allows for the non-linear predictions of vessel trajectories over extended periods. The

method predicts the whole trajectory given the assumption that the vessel will maintain a constant

speed from the moment of the first prediction to the last. An a priori method from literature, with

a similar programmatic complexity to that of the LRMAC, the SPNS was then used to compare

the LRMAC to. The LRMAC showed improved performance in long-term prediction accuracy and

overall execution speed. The SPNS’s and the LRMAC’s short-term prediction accuracy was not

significantly different.

6.1 TRADE-OFFS, DRAWBACKS AND ADVANTAGES

In this section, we discuss the trade-offs, drawbacks and advantages associated with each of the

models we investigated in this study.

6.1.1 DKF

When predicting, the DKF provides the uncertainty that is associated with a prediction or mea-

surement update in the form of covariance matrices. The matrices Q and R of the DKF can be

problematic, as the performance of the DKF is dependent on the choice thereof. Choosing Q and

R is highly problem-dependent, and if fine-tuned, can greatly improve the accuracy of the DKF.

These matrices are used in the predictor and measurement update equations of the DKF, respec-

tively. The matrices are also used when calculating the error covariance P−
t and Kalman gain Kt.

If Q and R is chosen in such a way that wrongly represents the problem at hand, the matrices P−
t

and Kt will not converge, and would result in incorrect predictions (see Appendix A, Section A.5
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for more details on the DKF parameter tuning).

6.1.2 LRM

The LRM is an easy to implement and a straightforward model with minimal hyperparameters to

optimise. The only parameter to optimise is the window size ω, a scalar. Compared to the DKF,

which has matrices Q and R. In the presence of outlying SOG observations, the LRM predictions

will become unstable, as the estimation of the gradient (slope) of the LRM (see Appendix B) is

only fitted on the last ω = 3 observations. Therefore, an outlier will significantly affect the LRM

as it is very sensitive to new information. We remind the reader that the LRM estimates the SOG

of a vessel in both the latitudinal and longitudinal directions.

Given that the SOG in the respective directions are estimated and the amount of time passed is

known (∆kt = 1s), the vessel’s displacement in the respective directions can be calculated, result-

ing in the predicted coordinate. If it is known that a particular vessel often records rapid/outlying

observations, the ω can be specifically tuned accordingly, as larger values of ω reduce the model’s

flexibility (sensitivity). The LRM is also limited by the fact that it can only predict linear trajec-

tories due to the constant COG assumption based on the last COG update from a vessel. Once a

new COG value is observed, the prediction direction will update.

6.1.3 SPNS

The SPNS is an algorithm which is highly similar in nature to the LRMAC. The execution speed

of SPNS is most affected by the time it takes to query the set of CNs from a database. Larger

database table sizes will significantly increase query times as there are more observations to search

through. In contrast, the LRMAC uses SMs whose sizes stay fixed, even if more observations

become available for a specific geographical area.

6.1.4 LRMAC

The LRMAC has minimal added complexity when predicting by the inclusion of SMs for the COG

update. However, more pre-processing steps are required to make the data suitable for the SMs

which means that when the SMs are constructed from this data, they will be a good representation

of the a priori information in a given spatial area. The LRMAC, however, is also limited by the
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spatial resolution of the SMs. In the case of limited historic data, the SMs generated from this

data would be inaccurate, resulting in a decrease in performance of the LRMAC; with minimal a

priori information, the LRMAC will default to the LRM. Additionally, when the prediction time

interval between two consecutive predictions is too large, the LRMAC will skip past important a

priori information resulting in inaccurate prediction results. Due to the fact that the size of the

SMs stay the same no matter the number of observations recorded, the LRMAC’s run-time stays

constant with an increase in data points. In contrast, the SPNS has more observations to search

through, slowing its execution time. The size of an SM will only increase if its resolution increases,

or the latitude and longitude span increases (the cell size/resolution stays fixed). The SMs size is

not affected by the number of historic observations recorded.

6.2 CONCLUSION

Recall that the main research questions of this study were presented in Section 1.2. In this section,

we investigate whether we have adequately addressed them.

We have shown that the LRM does not perform significantly worse than other more complex

prediction models for the Cargo and Tanker use case, thus being a viable option when we have

linear trajectories. As new observations are recorded from the target vessel, the LRM will adapt

to the incoming data as it is refitted on the latest ω observations.

There is no significant difference in the performance of the DKF (Section 4.2) and the LRM (Section

4.3) when they were used to predict observations over short prediction intervals. The results from

this comparison was presented in Section 5.2.2. Furthermore, the LRM is easier to configure than

the DKF, since the LRM only has one parameter ω to optimise (the window size) compared to the

non-trivial optimisation of both the R and Q matrices in the case of the DKF. In conclusion, the

LRM approach is a sufficient short term trajectory prediction algorithm for the use case of Cargo

and Tanker vessels (since the majority of the route segments of these vessels are linear). This then

answers research question one.

The LRMAC (see Section 4.5) was created by extending the LRM, by incorporating a priori infor-

mation in the form of SMs (see Section 3.2); allowing for improved vessel trajectory prediction for

long periods of time. We found that the LRMAC out performs an existing method that also use a
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priori information, with respect to long term predictions. The LRMAC achieves good prediction

accuracies with a relatively low time and algorithmic complexity, especially as the volume of historic

data increases. Answering both research questions two and three.

The LRMAC had a smaller incurred prediction error and associated standard deviation than the

LRM. The LRMAC could predict a trajectory which were more representative of the actual trajec-

tory, where the LRM went off course. The LRMAC was compared to the SPNS (see Section 5.3.3),

which is very similar in nature to the LRMAC, for the use case of predicting Cargo and Tanker

vessel trajectories up to six hours into the future. The LRMAC outperformed the SPNS both in

terms of the prediction accuracy as well as execution time (see Section 5.3.3 and 5.4). The LRMAC,

therefore, can be used to predict trajectories of vessels or impute vessel trajectories. Future work

includes exploring the possibility of a hybrid approach between the LRMAC and SPNS.

Lower complexity models still have an important role to play in modern problems. Modern problems

do not always need to be solved by the newest, most popular approaches; as is clear from the case

study presented here, a simple linear model with some added information still results in a useful

and scalable algorithm that can achieve a sufficient prediction accuracy.

We have to ask ourselves, is it really necessary to use the most advanced, cutting edge algorithm

currently available for the specific problem at hand? Or should we start simple and work our

way up, considering more advanced algorithms? The trade-off between using complex models over

less complex models has to be considered, and whether the increase in performance of using a

more complex model is significant enough to be justified. From a sustainability perspective, more

complex models incur a higher cost of implementation and have a larger environmental impact when

compared to less complex models. Therefore, we conclude with a question: “Is it necessary to use

a more complex model over a less complex model, with an insignificant increase in performance?”

109

Stellenbosch University https://scholar.sun.ac.za



REFERENCES

Achiri, L., Guida, R. and Iervolino, P. (2018). SAR and AIS fusion for maritime surveillance.

In: 2018 IEEE 4th International Forum on Research and Technology for Society and Industry

(RTSI), pp. 1–4. IEEE.

Alizadeh, D., Alesheikh, A.A. and Sharif, M. (2021). Vessel trajectory prediction using historical

automatic identification system data. Journal of Navigation, vol. 74, no. 1, p. 156–174.
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Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Con-

cepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media.

Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep learning. MIT press.

Gordon, N.J., Salmond, D.J. and Smith, A.F. (1993). Novel approach to nonlinear/non-Gaussian

Bayesian state estimation. IEE Proceedings F (Radar and Signal processing), vol. 140, no. 2, pp.

107–113.

Grobler, T. and Kleynhans, W. (2019). Extracting high-volume traffic routes from AIS spatial

distribution maps. In: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing

Symposium, pp. 10031–10034.

Gruber, C., Gruber, T., Krinninger, S. and Sick, B. (2009). Online signature verification with

support vector machines based on LCSS kernel functions. IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), vol. 40, no. 4, pp. 1088–1100.

Gudmundsson, J. and Valladares, N. (2014). A GPU approach to subtrajectory clustering using
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GLOSSARY

anchored

A action of a vessel being hold in place by its anchor, whilst floating on water.

bathymetry

The measurement of the depth of water in oceans, rivers, or lakes.

berthing

The action or process of mooring a ship in its allotted place.

bow

Refers to the most front part of a vessel, the part that usually first break waves at sea.

caution area

An area identified by VTS operators in which numerous vessel route intersections exist to-

gether with high traffic flow.

Digital Selective Calling

A standard for the transmission of predefined digital messages via different radio systems,

such systems include the medium-, high-, and very-high frequency systems.

Haversine distance

The angular distance between two coordinates on the the surface of a sphere (earth in this

thesis).

heading

The compass direction a vessel’s bow is pointed at.

moored

When a vessel is secured by ropes, cables or an anchor to keep it in place, usually at ports

and marinas.
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port

A facility usually at shore, where vessels uploads or offloads cargo or passengers.

stern

Refers to most the back part of a vessel, where the propellers are.
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APPENDIX A

THE DISCRETE KALMAN FILTER

The Kalman Filter (KF) can take on various forms, one of which is the so called discrete KF (DKF).

The DKF (also known as the classic KF) can be applied to linear systems. The DKF is introduced

in Chapter 4 as an AIS trajectory prediction algorithm. In this thesis, the terms KF and DKF are

used interchangeably. The KF was originally proposed by Kalman (1960). The material presented

in this appendix closely follows the content contained in Welch et al. (1995). An example from

Russell and Norvig (2002) is also presented.

A KF allows for the continuous estimation of a state, continuously adjusting itself, as new obser-

vations are recorded. The inner workings of the DKF are discussed in the sections that follow.

The in-depth presentation in the remaining sections of this Appendix should enable the reader to

obtain a better understanding of the DKF. In short, the KF is a set of mathematical equations

that provides an efficient recursive computational solution to the least-squares problem. The DKF

can estimate past, present and future states, and it can do these estimations even when the precise

nature of the modelled system is unknown.

A.1 THE PROCESS TO BE ESTIMATED

The DKF allows for the estimation of the state x ∈ ℜn of a discrete time controlled process governed

by the linear stochastic difference equation (Welch et al., 1995):

xk+1 = Akxk +Buk + wk, (A.1)

with a measurement z ∈ ℜm that is

zk =Hkxk + vk. (A.2)

The random variables wk and vk represent the process and measurement noise respectively. Both

wk and vk are independent, white and normally distributed (N ), i.e. :

p(w) ∼ N (0,Q), (A.3)

125

Stellenbosch University https://scholar.sun.ac.za



p(v) ∼ N (0,R). (A.4)

• Matrix A (n× n) in difference Equation A.1, relates the state at time step k to the state at

k + 1, in the absence of either a driving function or process noise. Therefore, we refer to A

as the transition matrix. The value of matrix A is dependent on the problem at hand.

• Matrix B (n × l) relates the control input u ∈ ℜl to the state x. Therefore, it is called the

output matrix. Matrix B is also problem dependent.

• Matrix H with dimensions (m × n) in measurement Equation A.2, relates the state to the

measurement zk, and as such is known as the transformation matrix. H should be chosen in

such a way to minimise the second moment E[(xk − x̂k)(xk − x̂k)
T ] = P k, where “E” refers

to the expectation operator, and “(·)T ” denotes the transpose operator

Note that x̂−k+1, x̂k and uk will not always be scalars. For the multivariate DKF case, they are

vectors of size n.

A.2 THE COMPUTATIONAL ORIGINS OF THE FILTER

Let x̂−
k ∈ ℜn (note the superscript: “−”) be defined as the a priori state estimate at step k, given

the knowledge of the process prior to step k. Let x̂k ∈ ℜn be the a posteriori state estimate at

step k given measurement zk.

Let the a priori and a posteriori estimate errors be defined by,

w−
k ≡ xk − x̂−

k ,

and

ek ≡ xk − x̂k.

The a priori estimate’s error covariance is then defined by:

P−
k = E[e−k e

−T
k ], (A.5)

and the a posteriori estimate’s error covariance by:

P k = E[eke
T
k ]. (A.6)
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During the derivation of the equations for the DKF, the first goal is to find an equation that

computes an a posteriori state estimate x̂k, as a linear combination of an a priori estimate x̂−
k

and a weighted difference between an actual measurement zk and a prediction of said measurement

Hkx̂
−
k (shown in Equation A.7 below). The probabilistic origin and justification of Equation A.7

can be found in Section A.3.

x̂k = x̂−
k +K(zk −Hkx̂

−
k ) (A.7)

The difference (zk − Hkx̂
−
k ) in Equation A.7 is referred to as the residual, also known as the

measurement error. The residual reflects the difference between the actual measurement zk and

the measurement prediction Hkx̂
−
k at time step k. If the residual is equal to the zero means that

the two are in complete agreement.

The matrix K (n ×m) in Equation A.7 is referred to as the Kalman gain (blending factor) that

minimises the a posteriori covariance in Equation A.6. It can be computed using the following

steps:

1. Substitute Equation A.7 into the definition for ek shown above,

2. substitute that into Equation A.6,

3. perform the indicated expectations,

4. take the derivative of the trace∗ of the result with respect to K,

5. set the result equal to zero, and

6. finally solve for K.

One possible solution forK which minimises Equation A.6 is given by Equation A.8. It is important

to note, the KF equations can be manipulated into several forms, i.e. Equation A.8 is just one

popular form of the Kalman gain and is the form which is used throughout the thesis.

Kk = P−
kH

T
k (HkP

−
kH

T
k +Rk)

−1 =
P−

kH
T
k

HkP
−
kH

T
k +Rk

. (A.8)

Inspecting Equation A.8, we notice that as the measurement covariance Rk approaches zero, then

the Kalman gain K weighs the residual more heavily. Specifically,

∗The trace of a matrix is only defined for square matrices and is the sum of the elements on the diagonal,
mathematically we express this as tr(S) =

∑N
i=1 Sii
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limRk→0Kk =H−1
k .

In other words, as the measurement error covariance Rk approaches zero, the actual measurement

zk is “trusted” more and more, while the predicted measurement Hkx̂
−
k is trusted less and less.

As the a priori estimate error covariance P−
k approaches zero, K weighs the residuals less and less.

Specifically,

limP−
k →0Kk = 0 .

In other words, as the a priori estimate error covariance P−
k approaches zero, the measurement zk

is trusted less and less, while the predicted measurement Hkx̂
−
k is trusted more and more.

A.3 PROBABILISTIC ORIGINS OF THE FILTER

The justification of Equation A.7 is rooted in the probability of the a priori estimate x̂−
k conditioned

on all prior measurements zk, i.e. in Bayes’ rule.

We point out that the DKF maintains the first two moments of the state distribution, where the

first moment reflects the mean and the second moment the variance. The moments are defined

below:

E[xk] = x̂k

E[(xk − x̂k)(xk − x̂k)
T ] = P k.

The a posteriori estimate in Equation A.7 reflects the mean of the state distribution which is

normally distributed if the conditions in Equations A.3 and A.4 have been met. The a posteriori

estimate error covariance in Equation A.6 reflects the state of the distribution (Welch et al. (1995)).

In other words:

p(xk|zk) ∼ N (E[xk], E[(xk − x̂k)(xk − x̂k)
T ])

= N (x̂k,P k)

The following resources has more on the probabilistic origins of the DKF, Maybeck (1982), Chen

(1992) and Jacobs (1974).

Russell and Norvig (2002) contains a thorough explanation on the DKF. We summarise this section

below.
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A.3.1 A simple one-dimensional KF example

In this section we present a simple one dimensional DKF example. This example should enable the

reader to better understand the DKF itself and its probabilistic origins. The example presented

here is a modification of the one presented in (Russell and Norvig, 2002).

The example below is a univariate example, with the general case being shown in the next section.

Showcasing how the DKF is tied to the mathematical properties of Gaussian distributions.

Let us consider a temporal model which describes a random walk of a single continues state xk

with a noisy observation zk. For example xk could denote the “consumer confidence index” at time

step k, which is measured by a random survey zk.

Let the prior distribution of the state model with mean µ0 and variance σ20 be equal to:

P (x0) = α e
− 1

2

(
(x0−µ0)

2

σ2
0

)
,

where α represents a normalising constant throughout this section (it greatly simplifies the equa-

tions). Moreover, assume that the state transition model adds a Gaussian perturbation of constant

variance σ2x , i.e

P (xk+1|xk) = α e
− 1

2

(
(xk+1−xk)2

σ2
x

)
. (A.9)

Furthermore, let the measurement model be described by:

P (zk|xk) = α e
− 1

2

(
(zk−xk)2

σ2
z

)
,

We can now compute the following:

P (x1) =

∫ ∞

−∞
P (x1|x0)P (x0)dx0

= α

∫ ∞

−∞
e
− 1

2

(
(x1−x0)

2

σ2
x

)
e
− 1

2

(
(x0−µ0)

2

σ2
0

)
dx0

= α

∫ ∞

−∞
e
− 1

2

(
σ2
0(x1−x0)

2+σ2
x(x0−µ0)

2

σ2
0σ

2
x

)
dx0 .

(A.10)

It should be noted that the exponent in the last equation of A.10 is the sum of two expressions

which are quadratic in x0 and hence itself quadratic in x0. Using completing of the square allows

us to rewrite any quadratic equation ax20 + bx0 + c as a the sum of a squared term a(x0 − −b
2a )

2 and
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residual term c− b2

4a which is independent of x0 (Russell and Norvig (2002)). If we take the factor

associated with the residual term out of the integral in A.10 we obtain:

P (x1) = αe
− 1

2

(
c− b2

4a

) ∫ ∞

−∞
e−

1
2(a(x0−−b

2a
)2)dx0. (A.11)

The integral factor of A.11, equates to one (it is the integral of a Gaussian curve over its full range).

We are thus left with the factor associated with the residual term, which is quadratic in x1. After

some simplification we obtain:

P (x1) = αe
− 1

2

(
(x1−µ0)

2

σ2
0+σ2

x

)
. (A.12)

To complete the update step of the DKF, we need to condition on the observation at the first time

step z1, i.e.

P (x1|z1) = αP (z1|x1)P (x1)

= αe
− 1

2

(
(z1−x1)

2

σ2
z

)
e
− 1

2

(
(x1−µ0)

2

σ2
0+σ2

x

) (A.13)

If we now combine the exponents in A.13 and then complete the square in the resulting exponent

we find:

P (x1|z1) = αe

− 1
2

 (x1−
(σ2

0+σ2
x)z1+σ2

zµ0

σ2
0+σ2

x+σ2
z

)2

(σ2
0+σ2

x)σ2
z/(σ

2
0+σ2

x+σ2
z)


(A.14)

After one update cycle, a new Gaussian distribution is obtained for the state variable. In general,

the new mean and standard deviation of the state variable can thus be computed from the old

mean and standard deviation via the following equations:

µk+1 =
(σ2k + σ2x)zk+1 + σ2zµk

σ2k + σ2x + σ2z
, (A.15)

and

σ2k+1 =
(σ2k + σ2x)σ

2
z

(σ2k + σ2x + σ2z)
. (A.16)

Looking at Figure A.1, we see that one update cycle is shown of the DKF for specific values of the
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Figure A.1: The stages of the DKF update cycle are given in this example. The a priori state
distribution is parameterised by µ0 = 0.0 and σ0 = 1. The transition noise is given by σx = 2,
while the measurement noise is given by σz = 1. The first observation is z1 = 2 (marked by the
dashed line). The prediction of P (x1) is flattened out, relative to P (x0) by the transition noise.
The mean of the posterior distribution P (x1|z1) is a bit more to the left of the observation z1, due
to the mean being a weighted average of the prediction and the observation.

transition and measurement models. Going through this example in more detail:

1. Let the calculation of the new mean µk+1 be interpreted as a weighted mean of the new

observation zk and old mean µk. If the observation made is unreliable to the corresponding

variance σ2z will be large, the old mean would be weighted more. If the old mean is unreliable,

where σ2k is large, or where the process is unpredictable where σ2x is large, more weight will

be given to the observed observation.

2. The update of the variance σ2k+1 is independent of the observation observations, we can

therefore compute the sequence of variance values in advance.

3. The sequence of variance values converges quickly to a fixed value, depending only on σ2x and

σ2z , thereby substantially simplifying the subsequent calculations.
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A.4 THE DKF ALGORITHM

In this section the Discrete Kalman Filter (DKF) algorithm is discussed at a high-level, for the

multivariate use case.

The DKF estimates a process using feedback control: the filter estimates a state at a given time

point and then obtains feedback in the form of measurements in the presence of noise. The two

sets of equations that make up of the DKF is the predictor and measurement update equations.

The DKF has two sets of equations, predictor and measurement update equations. These two sets

of equations are denoted in Figure A.2 and in Equations A.17 A.18, A.19, A.20 and A.21 below. The

time update in Figure A.2 refers to the predicted state at a specific time step, and the measurement

update refers to the corrector equations updating the underlying Gaussian distribution functions.

The predictor equations are responsible for projecting forward the current state and associated error

covariance estimates, to obtain the a priori estimate at the next time step k+1. The measurement

update equations are responsible for the feedback, incorporating the new measurement of the current

state into the a priori estimate, resulting in an improved a posteriori estimate.The final algorithm

resembles a predictor-corrector algorithm for solving numerical problems, as shown in Figure A.2

indicated by the arrows.

Equation A.17 and A.18 below denotes the predictor equations.

x̂−
k+1 = Akx̂k +Buk (A.17)

P−
k+1 = AkP kA

T
k +Qk (A.18)

These equations project the state and covariance from time step k to k + 1. Matrices Ak and B

are from Equation A.1, while Qk is from Equation A.3.

The measurement update equations are represented by Equations A.19, A.20, and A.21:

Kk = P−
kH

T
k (HkP

−
kH

T
k +Rk)

−1 (A.19)

x̂k = x̂−
k +K(zk −Hkx̂

−
k ) (A.20)
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P k = (I −KkHk)P
−
k (A.21)

The first objective during the measurement update, is to compute the Kalman gainKk. The process

is then measured obtaining zk, and then the a posteriori state can be estimated by incorporating

the measurement, as in Equation A.20. The final step is to obtain the a posteriori error covariance

via Equation A.21 (Welch et al. (1995)). Note that Equation A.19 and A.20 is similar to Equation

A.8 and A.7 respectively, they are repeated for completeness.

After each predictor and measurement update pair, the process is repeated where the previous a

posteriori estimates are used to predict the new a priori estimates. The recursive nature of the

DKF makes it suitable for practical implementations and more feasible compared to other methods

such as the Weiner filter (Chen, 1992). The Weiner filter was designed to operate on all data

directly for each estimate, where the KF recursively conditions the current state estimate on all

past measurements, not having to fit a model on all the data at every iteration. Figure A.2 is a

complete overview of the recursive nature of the KF and the equations belonging to the predictor

and measurement updates are shown. Please note that Figure A.2 is similar to Figure 4.1 with

different subscripts.

Figure A.2: The recursive Kalman filter operation with equations (Welch et al., 1995).
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A.5 FILTER PARAMETERS AND PARAMETER TUNING

The process noiseQk given by Equation A.3 and the measurement error covariance matrixRk given

by Equation A.4, can be measured prior to employing the DKF. In the case of the measurement error

covarianceRk this makes sense, since we need to be able to measure the process while implementing

the DKF. One can measure the process and get an initial estimate of the error covariance, by taking

some off-line sample measurements to determine the variance of the measurement error.

In the case of the process noise Qk the choice is more often than not, less deterministic. As an

example, the noise source is often used to represent uncertainty in the process model given by

Equation A.1. Sometimes a poor model can be used, by simply inserting enough uncertainty via

the selection of Qk. In this case one would hope that the measurements of the process is reliable.

Whether or not we have a rational basis for choosing the parameters, often times superior filter

performance (from a statistical point of view) can be obtained by tuning the parameters Qk and

Rk. The tuning process is usually an off-line procedure and can be done by implementing a DKF

on the off-line observations.

Under the conditions where Qk and Rk are constant, both the estimation error P k and the Kalman

gainKk will stabilise quickly and remain constant. If it is the case that they remain constant, these

parameters can be pre-computed by running the filter off-line, or for example solving Equation A.18

for a steady state value of P k, by defining P−
k ≡ P k and solving for P k.

It is very common that the measurement error does not remain a constant. For example, when

receiving signals from vessels to AIS receivers, vessels closer to the receiver will have less noise

compared to the vessels further away from the receiver. The process noise Qk, sometimes changes

dynamically during the operations of the DKF in order to adjust to different dynamics. For example,

when we are tracking a vessel, we might lower the magnitude of Qk if the vessel is moving slowly,

and increase its magnitude if the dynamics starts changing rapidly. In such a case, Qk can be used

not only to model the uncertainty of the underlying model, but also the uncertainty of the vessel’s

movement.
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A.6 A SIMPLE 1-D REAL-WORD DKF EXAMPLE

We now show an example of a DKF tracking the location of a constant velocity speed boat model

over time. The speedboat is moving away from the harbour and we are able to measure the location

of the boat in discrete time intervals of 0.2s. Let the underlying real trajectory of the speedboat

with a constant velocity be denoted by y = 3
20

(
t2 − 3t

)
.

Figure A.3: A constant velocity speedboat model in one-dimension (1-D) and the DKF tracking
over time

Investigating Figure A.3, we see the the measurements of the speedboat’s location is denoted in

blue (in reality Gaussian noise was added to the true model to simulate sensor noise). The true

movement model (denoted in red) is also shown, from which the noisy measurement were sampled

from.

Looking at the purple line we see the ability of the DKF to track the location of the speedboat in

the presence of noise, closely modelling the underlying function. We see that the DKF prediction

for the first 2.6s is slightly erratic, but starts to be less erratic as the corresponding error covariance

matrices start to converge and the underlying function is being modelled in the presence of noise.
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APPENDIX B

LINEAR REGRESSION MODEL

The Linear Regression Model (LRM) presented in this appendix is a summary of Chapter 3 from

the book “An Introduction to Statistical Learning” by James et al. (2013).

The purpose of this appendix is to give a short overview of the LRM and its origins to equip the

reader with enough information to understand the LRM (see Section 4.3) and LRMAC (see Section

4.5).

B.1 SIMPLE LINEAR REGRESSION

Linear regression is a method that allows for the prediction of a numerical value (qualitative vari-

able). The predicted value is referred to as the response variable, on the basis of a predictor variable.

Let Y denote the response variable and X denote the predictor variable.

Let the LRM be mathematically denoted by:

Y ≈ β0 + β1X (B.1)

where ≈ denotes the approximation of Y given the regression coefficients β0 and β1 and predictor

X.

The regression coefficients β0 and β1 represents the intercept and slope of the linear model respec-

tively. The values of β0 and β1 are unknown and estimated based on the problem at hand.

The LRM is trained (estimated) by a set of recorded predictors and response variables, where the

regression coefficients β0 and β1 are estimated. The LRM can be classified as a supervised machine

learning method, that obtains the best linear fit (relationship) between the predictors and the

response variables as found by some measure.

Let the trained LRM be denoted by:

ŷ = β̂0 + β̂1x (B.2)

where ˆ (“hat”) denotes the estimated value of the response and coefficients. Let ŷ indicate the

prediction of Y when X = x.
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B.1.1 Example Problem

Figure B.1 depicts the test score of 35 students. The figure reflects the score obtained for their

mathematics examination versus the total time they spent studying for the test. In reality, the

observations (in teal) were generated from y = 5
3x+ 10 with random white Gaussian noise added.

The true model is denoted in red and the estimated LRM denoted in purple.

Figure B.1: A hypothetical problem. The amount of time 35 learners studied for a test and the
corresponding test score each student obtained is depicted.

Throughout the remainder of this appendix we refer back to this problem set, as the LRM is

explained.

B.1.2 Coefficient Estimation

In order to create a functioning LRM we have to estimate the coefficients β0 and β1. Let the

mathematical representation of the values present in Figure B.1 be denoted by

(x1, y1), (x2, y2), ... , (xn, yn), (B.3)

where n = 35 for this particular problem. The sequence represents the recorded observation pairs

of the predictor and response variables.
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The goal of the LRM is to estimate the coefficients β̂0 and β̂1 in such a way that fits the data well,

closely modelling the underlying function of the data. The goal is to find the values of the intercept

β̂0 and slope β̂1 such that the resulting line is as close as possible to all the n = 35 data points.

The most common approach to estimate the regression coefficients involves minimising the least

squares criterion.

B.1.3 Least Squares Minimisation

Figure B.2: Least Squares visualisation of the LRM

In short, the minimisation of the Least-Squares (LS) criterion can be best explained by making

reference to Figure B.2, which illustrates the notion of minimising the error (distance) from the

observed observations to the fitted line.

Let yi = β̂0+ β̂1xi be the prediction for Y based on the ith value of X. Let the ith error (also known

as the residual) ei be denoted by ei = yi − ŷi, the difference between the predicted observation by

the LRM at x and the observed observation at x. Let the residual sum of squares (RSS) be defined

by:

RSS = e21 + e22 + ...+ e2n, (B.4)
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which can also be written as:

RSS = (y1 − β̂0 − β̂1x1)
2 + (y2 − β̂0 − β̂1x2)

2 + ...+ (yn − β̂0 − β̂1xn)
2. (B.5)

The LS approach chooses the values of β̂0 and β̂1 in such a way to minimise the RSS. The minimisers

are defended below:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
, (B.6)

β̂0 = ȳ − β̂1x̄, (B.7)

where both ȳ =
∑n

i=1 yi and x̄ =
∑n

i=1 xi represent the respective sample means. Equations B.6

and B.7 defines the LS coefficient estimates for the simple LRM. A derivation of these coefficients

can be seen in Chapter 14 of Rice (2006).

The values of β̂0 and β̂1 resulting in the smallest RSS will be the ideal set of coefficients as deter-

mined by the LS estimate. We want to fit a model where the LRM in B.2 has the the smallest

overall distance to all the observations. The LS minimises the distance between the fitted line

and the all the observations. Therefore, the result of the LS will be one where the error/distance

between the observations the fitted line are the smallest, resulting in the best linear fit (the error

is denoted in orange in Figure B.2, and the sum of these errors are minimised by the LS).

Given the example in Figure B.1, the LRM coefficient pair that resulted in the best fit (smallest

error) using LS were β̂0 = 15.559 and β̂1 = 1.528 with an associated error of 43.173.

Figure B.3, contains a 3 dimensional surface of the errors associated with each coefficient pair.

With the knowledge that the pair with the smallest error will result in the best fit the goal will be

to find the minimum value of the surface in the z-axis (lowest point).

The lowest point of the surface in Figure B.3 is represented by a red dot. The coordinates of the

dot is equal to that of the coefficients and the calculated error from the LRM.

In Rice (2006) and James et al. (2013), more information on the model assumptions and measures

for the quality of a fit for the LRM can found.

The LRM fitted throughout this thesis, including in the LRMAC, was done with the help of scikit-

139

Stellenbosch University https://scholar.sun.ac.za



learn’s linear regression model∗ (Pedregosa et al., 2011).

Figure B.3: Loss Function visualisation for different coefficient combinations β̂0 and β̂1 with the
associated errors

∗Scikit-learn is a popular ML library for the Python programming language. The library has various supervised
and unsupervised learning models.
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APPENDIX C

TRAJECTORIES USED

In this appendix, the datasets used to carry out the experiments are listed.

In Table C.1 below∗, we denote the linear trajectories that the DKF and LRM were tested on to

compare both methods. We denote the subsets that were linear from the paths, as both the LRM

and DKF are linear methods. The vessels and data can be found in the dataset published by Ray

et al. (2019).

Table C.1: Vessel extracted trajectory statistics for the LRM and DKF comparison

MMSI
Number of

Observations
Total time
(seconds)

Minimum
Longitude
(UTM)

Maximum
Longitude
(UTM)

Minimum
Latitude
(UTM)

Maximum
Latitude
(UTM)

Trajectory
from

Observation

Trajectory
to

Observation

538004506 339 3749 357377.938 372795.416 5343054.260 5350213.777 10 350

226105000 399 4661 347730.771 367452.230 5322232.509 5342445.685 420 850

235097013 199 2000 366276.749 369020.055 5347739.500 5355559.711 200 400

305714000 594 9269 348355.850 365699.479 5332172.500 5345131.707 5 600

304519000 449 4510 351732.188 373527.179 5345997.028 5350864.895 300 750

304927000 449 7269 348404.971 383371.404 5337055.240 5355671.446 300 750

636092331 491 5159 353566.873 365997.282 5333301.686 5344310.035 4358 4850

224389000 246 2592 364813.604 375080.329 5332247.399 5334147.887 128 375

220540000 439 4399 353023.745 377274.679 5330971.559 5334506.093 120 560

211286440 589 6097 354106.758 381920.651 5343457.627 5354947.954 2210 2800

207138000 439 4430 370761.799 391446.494 5349534.776 5358391.650 150 590

207138000 409 4100 370572.790 391001.242 5331631.927 5340167.846 790 1200

215901000 549 5921 354645.501 378062.302 5343001.012 5353829.393 50 600

227146400 539 6240 351890.805 379493.479 5332266.859 5346617.394 960 1500

314237000 499 7580 361252.193 387443.920 5344364.725 5357101.506 1000 1500

565494000 529 5779 349407.899 381515.888 5340629.108 5353520.956 20 550

244740921 398 4558 366109.231 382399.802 5349243.974 5355239.578 5200 5600

227330000 499 5301 358668.372 378879.619 5332689.010 5345856.820 50 550

227372000 409 6800 346026.235 378985.611 5331207.008 5339311.246 10 420

228130000 439 5469 356236.883 374059.358 5315182.721 5333469.559 20 450

228727000 399 3802 361453.774 383768.460 5347210.130 5355820.092 100 500

227988000 399 4070 373132.546 390953.780 5353627.921 5358073.197 1600 2000

244925000 449 5862 347661.989 372561.225 5335426.938 5351905.947 0 450

247224200 409 7117 340494.880 379971.192 5330172.298 5352693.834 210 620

249104000 449 4690 357631.456 377990.623 5346277.881 5352193.874 200 650

518866000 449 4692 358539.516 379077.364 5330651.551 5336750.802 350 800

276700000 399 4370 357459.972 374261.397 5342192.870 5350238.688 300 700

577228000 449 5239 367031.244 373072.270 5331947.203 5339918.516 300 750

227558000 449 4630 361334.439 375995.696 5331412.653 5338926.491 350 800

227364000 354 4250 355706.086 370294.428 5320749.824 5333984.934 495 850

In Table C.2 below, the list of vessel MMSIs are shown. The table shows the sub-trajectories used

from Ray et al. (2019) for the experiments in this thesis. For replication purposes regarding the

starting and end observation columns, assume that data for each vessel are sorted from the oldest

∗Note the trajectories belong to UTM zone 30U
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date-time observation to the newest. E.g. Regarding vessel MMSI 220503000, observation 0’s

associated timestamp (counting starts at 0) is older than the timestamp at observation at 99. The

observation starting point is inclusive and the end point exclusive. The extracted sub-trajectories

belong to the highways denoted in the SM in Figure 3.9, where N to S means that a vessel was

travelling from the North to the South (“downward”) and S to N the opposite. The vessel type

and the total observational length (in seconds) is also shown for each MMSI.
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MMSI
Starting

Observation
End

Observation
# Observations

Total Time
(seconds)

Vessel Type
Travelling
Direction

220503000 0 100 100 25836 Cargo S to N

220603000 0 154 154 35428 Tanker S to N

228337700 0 118 118 37219 Tanker S to N

229605000 55 400 345 25231 Cargo N to S

235080328 0 250 250 28492 Cargo N to S

235084729 0 250 250 36295 Cargo N to S

235094794 0 85 85 42313 Tanker S to N

236339000 310 375 65 11703 Cargo S to N

236386000 0 150 150 44124 Cargo S to N

236481000 2 220 218 32404 Cargo N to S

236668000 2 620 618 53707 Tanker S to N

240411000 0 143 143 29867 Tanker S to N

241066000 0 300 300 42584 Cargo S to N

244424000 90 350 260 32697 Cargo S to N

244703000 0 95 95 39922 Cargo N to S

247078800 450 1050 600 47399 Cargo N to S

248689000 0 200 200 83114 Cargo N to S

249017000 100 380 280 26867 Cargo S to N

249622000 5 200 195 45589 Cargo N to S

249957000 160 370 210 45615 Tanker N to S

250000963 0 150 150 32721 Cargo N to S

255804890 0 667 667 16719 Tanker S to N

256582000 0 300 300 58547 Cargo N to S

256891000 350 800 450 47088 Cargo S to N

256934000 0 40 40 21920 Tanker N to S

258977000 0 210 210 38364 Cargo S to N

271040029 0 52 52 39280 Tanker S to N

271040594 3 160 157 57892 Cargo N to S

271043873 0 197 197 39939 Tanker S to N

275457000 740 880 140 39567 Cargo N to S

304057000 0 215 215 97502 Cargo N to S

304805000 263 450 187 39584 Cargo N to S

304924000 0 250 250 123307 Cargo S to N

319025300 1 110 109 47086 Tanker S to N

319541000 0 43 43 18001 Tanker N to S

353952000 0 59 59 43211 Tanker S to N

419689000 0 79 79 50999 Tanker S to N

565407000 0 97 97 38281 Tanker S to N

566030000 0 450 450 57936 Tanker N to S

636014352 0 205 205 61239 Tanker N to S

Table C.2: All the vessel MMSIs used to evaluate the performance of the LRM, LRMAC and SPNS.
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