
Citation: Pambudi, D.; Kawamura,

M. Constructing the Neighborhood

Structure of VNS Based on Binomial

Distribution for Solving QUBO

Problems. Algorithms 2022, 15, 192.

https://doi.org/10.3390/a15060192

Academic Editor: Mauro Castelli

Received: 10 May 2022

Accepted: 30 May 2022

Published: 2 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Constructing the Neighborhood Structure of VNS Based on
Binomial Distribution for Solving QUBO Problems
Dhidhi Pambudi 1,2,* and Masaki Kawamura 1

1 Graduate School of Science and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida,
Yamaguchi 753-8512, Japan; m.kawamura@m.ieice.org

2 Department of Mathematics Education, Faculty of Teacher Training and Education, Sebelas Maret University,
Surakarta 57126, Indonesia

* Correspondence: dhidhipambudi@staff.uns.ac.id

Abstract: The quadratic unconstrained binary optimization (QUBO) problem is categorized as an
NP-hard combinatorial optimization problem. The variable neighborhood search (VNS) algorithm
is one of the leading algorithms used to solve QUBO problems. As neighborhood structure change
is the central concept in the VNS algorithm, the design of the neighborhood structure is crucial.
This paper presents a modified VNS algorithm called “B-VNS”, which can be used to solve QUBO
problems. A binomial trial was used to construct the neighborhood structure, and this was used with
the aim of reducing computation time. The B-VNS and VNS algorithms were tested on standard
QUBO problems from Glover and Beasley, on standard max-cut problems from Helmberg–Rendl,
and on those proposed by Burer, Monteiro, and Zhang. Finally, Mann–Whitney tests were conducted
using α = 0.05, to statistically compare the performance of the two algorithms. It was shown that
the B-VNS and VNS algorithms are able to provide good solutions, but the B-VNS algorithm runs
substantially faster. Furthermore, the B-VNS algorithm performed the best in all of the max-cut
problems, regardless of problem size, and it performed the best in QUBO problems, with sizes less
than 500. The results suggest that the use of binomial distribution, to construct the neighborhood
structure, has the potential for further development.

Keywords: QUBO; max-cut; VNS; neighborhood; binomial

1. Introduction

Combinatorial optimization has attracted a good deal of attention, as it has many
applications in various fields [1]. However, it is not always easy to solve combinatorial
optimization problems, especially in some cases, classified as NP-hard problems. In this
kind of situation, the use of the approximation method is a reasonable option [2]. One of the
approximation methods that has attracted a great deal of attention in modern optimization
is the metaheuristic method [3], which is designed to obtain good solutions within a
reasonable time frame [4]. Even though it is not easy to prove that a solution obtained
using the metaheuristic method is a global optimum [5], the results are, often, very close to
the global optimum.

Depending on the case, a combinatorial problem can be formulated in various ways, so
that it can be be easily solved. One method is the use of a Boolean or binary vector, which,
despite its simplicity, is a compelling method for solving many combinatorial problems. A
specific binary formulation forms a major optimization problem category, called “quadratic
unconstrained binary optimization (QUBO)”, or “Ising model optimization” in some of
the literature [6]. In the QUBO problem, given Q = (qij) is a symmetric n-square matrix of
coefficients, the objective is to maximize the function:

f (X) = XT QX =
n

∑
i=1

n

∑
j=1

qijxixj (1)

Algorithms 2022, 15, 192. https://doi.org/10.3390/a15060192 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15060192
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6797-2785
https://orcid.org/0000-0001-8189-4672
https://doi.org/10.3390/a15060192
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15060192?type=check_update&version=1

Algorithms 2022, 15, 192 2 of 15

where X = (xi) is an n-dimensional vector of binary variables, i.e., xi ∈ {0, 1} for
i = 1, 2, ..., n. QUBO problems are categorized as NP-hard problems [7], and their de-
cision form is NP-complete [6]. The implementation of the QUBO formulation can be
found in many combinatorial problems, e.g., graph coloring, partition, and maximum cut
(max-cut) [6], which were included in Karp’s original 21 NP-complete problems [8]. More
applications of QUBO were described by Glover and Kochenberger [9].

It is as difficult to solve QUBO problems as it is to solve other NP-hard problems.
Many metaheuristic algorithms have been devised to solve them, based on the requirement
that they are solved within a reasonable amount of time. Examples of these are simulated
annealing [10], tabu search [11], genetic algorithm [12], and local search [13] algorithms.
One particular metaheuristic algorithm that uses local search is the variable neighborhood
search (VNS) algorithm [14]. The VNS algorithm can solve various problems, including
QUBO problems.

As a single-trajectory-based algorithm, the VNS algorithm has the advantage that it
is resource-efficient. Furthermore, its memory requirements are relatively low, compared
to population-based metaheuristic algorithms. Therefore, the VNS algorithm is suitable
for use in solving large-scale problems and does not need large memory allocations. It is a
simple concept, and the VNS algorithm is, often, used in its original form, a modified form,
or hybridized with another algorithm [15,16].

The VNS algorithm has been shown to perform well in various problems. Its applica-
tions include the max-cut combinatorial problem [17,18], the scheduling problem [19,20],
the layouting problem [21], the vehicle routing problem [22], and the multiprocessor
scheduling problem with communication delays [23]. It has, also, been used to tune
proportional–integral–derivative controllers in cyber–physical systems [24]. Not only has
the VNS algorithm been applied in numerous ways, but it has, also, been, often, used
in combination with other algorithms to obtain combined performance. It is possible to
hybridize the VNS algorithm with other metaheuristic algorithms, such as with the genetic
algorithm [25], the particle swarm optimization algorithm [26], the migrating birds opti-
mization algorithm [27], and the simulated annealing algorithm [28]. The VNS algorithm
can also be implemented in parallel programming, by using a graphical processing unit [29]
to leverage its performance.

Many factors determine the performance of the VNS algorithm, i.e., the initializa-
tion method, neighborhood structure construction, local search procedures, and update
mechanisms. Although there are many determining factors, neighborhood structure is the
central concept of the VNS algorithm that significantly influences its performance. One
version of the VNS algorithm is based on the dynamic neighborhood model, proposed
by Mladenović and Hansen [14]. Changing the neighborhood structure during a search
enables the algorithm to escape the local optimum trap [30], as it allows the algorithm to
move from one basin of search to another. The construction of a neighborhood is, thus,
crucial to the performance of the VNS algorithm. However, in terms of solving the QUBO
problem, previous research reports regarding neighborhood construction are difficult to
find. The Hamming distance is commonly used in the basic VNS algorithm to construct the
neighborhood, when solving a QUBO problem [5,17,31].

The VNS algorithm uses a strictly monotonic increasing neighborhood structure, when
the local search does not yield a better solution. As a result, the basic VNS algorithm takes
quite a long time to yield a good solution. A new version called “Jump VNS” was intro-
duced, to speed up the neighborhood construction process. It enables the neighborhood
structure to leap ahead, in accordance with parameter kstep ∈ N [32]. The basic VNS
algorithm, which does not have the jump ability, is obtained by setting kstep = 1. The
performance of the Jump VNS algorithm does not appear to have been previously reported.

The VNS algorithm is simple, and the ability to slowly change the neighborhood
structure is an advantage of its use. However, this is, also, a weakness of the VNS algorithm.
This gradual but slow change may impact the length of computation time. Although it may
be sped up with Jump VNS, the thorough search behavior may be lost. For example, setting

Algorithms 2022, 15, 192 3 of 15

the maximum distance on a VNS algorithm to 100 results in 100 times neighborhood-
structure change, at most, but setting kstep = 2 on Jump VNS results in only 50 times
neighborhood structure change. This value is even less if a larger kstep is used. So, the VNS
and Jump VNS algorithms are not flexible.

This paper elaborates on the basic VNS algorithm and introduces a new method
of improving it by focusing on the neighborhood structure by implementing binomial
distribution. Instead of a strictly monotonic increase in neighborhood structure, the neigh-
borhood distance follows a binomial distribution. Although the binomial distribution will
cause a non-monotonic increase, the trend of a widening structure will remain the same.
We investigated the potential of our proposed algorithm to be used in some QUBO and
max-cut problems.

2. VNS Algorithm

The VNS algorithm is a well-known metaheuristic algorithm that utilizes dynamic
neighborhood structure changes. The simple implementation of the VNS algorithm starts
from a non-deterministic guest initial point and, then, attempts refinements using a local
search. The algorithm shifts from its initial point to a neighboring point, before a local
search is carried out. The algorithm should move to another neighborhood structure, when
the local search does not yield a better solution. The algorithm systematically exploits the
following observations [33]:

Observation 1: A local minimum for one neighborhood structure is not necessarily so
for another;
Observation 2: A global minimum is a local minimum for all of the possible neighbor-
hood structures;
Observation 3: For many problems, local minimums for one or several neighborhoods
are relatively similar to each other.

In other words, according to observation 1, a local minimum for a specific neighbor-
hood structure is not necessarily a local minimum for other neighborhood structures. Other
neighborhoods may have other local optimums. The second observation means that the
global minimum will only be found after examining all of the possible local optimums,
which requires the examination of all of the possible neighborhood structures. Other neigh-
borhoods should be examined, if a local minimum is not the global minimum. The last
observation is an empirical observation that suggests a local optimum, usually, provides
information that helps determine the global optimum [33]. For example, in the case of a
multi-variable function, several variables, often, have the same value in the local optimum
as in the global optimum [33].

There are several versions of the VNS algorithm; the most prominent is the dynamic
neighborhood model, proposed by Mladenović and Hansen [14]. They proposed a random
shift to a neighboring point X ′, which would be used instead of the initial point X, as the base
point of a local search. They called this shifting “shaking”. In this model, if the local search
does not yield an improvement, the neighborhood structure is expanded. This change enables
the algorithm to move to another basin to be exploited. To retain efficiency, the change must
be limited by a parameter that defines the maximum number of neighborhood structures
examined. If the local search yields an improvement, the structure is, suddenly, shrunk back to
the first structure. The use of this clever expand-and-shrink neighborhood structure, during a
search, enables the VNS algorithm to avoid the local optimum trap [30] because the algorithm
moves from one basin to another. Figure 1a shows the searching process [32] in the context of
minimization. The pseudocode of the VNS algorithm is shown in Figure 1b.

A change in neighborhood structure can be illustrated as an expanded disc, with
point X at the center. The neighborhood structure expands, following variable k ∈ N. As
proposed elsewhere [17,31,34], neighborhood structure N is associated with variable k,
which is limited by parameter kmax ∈ N. Thus, Hamming distance d increases, following k,
when solving QUBO problems. Accordingly, a point X ′ ∈ Nk(X) means that the Hamming
distance d(X ′, X) = |X ′ − X| is exactly k. This neighborhood structure is the standard that

Algorithms 2022, 15, 192 4 of 15

is used in solving QUBO problems. The neighborhood structure of the basic VNS algorithm
for use in solving QUBO problems is formulated as

Nk(X) = {Y : |Y − X| = k}, (2)

for k = 1, 2, ..., kmax.

(a) Searching process. (b) Pseudocode.

Figure 1. VNS algorithm. (a) The algorithm gradually expands its neighborhood structure according
to k for going out from a local optimum trap [32]. (b) The distance of k is gradually increased by one
to build a broader neighborhood structure.

3. Proposed Neighborhood Structure

The strictly monotonic expanding neighborhood structure used in the VNS algorithm
is tenable. However, there is no guarantee that this expansion type will always result in a
better solution. To exploit this technique to solve any QUBO problem, we propose the use
of binomial distribution to create a neighborhood structure. As the proposed algorithm is
based on the VNS algorithm, it takes advantage of the characteristics of the VNS algorithm,
while aiming to reduce the computation time required.

Our proposed structure enables the algorithm to expand the neighborhood, by follow-
ing a random schema. However, it is good to maintain a gradual expansion trend. In the
basic VNS algorithm, the neighboring point X ′ ∈ Nk(X) is obtained by flipping k numbers
of the element of X. The flipped elements are chosen randomly. As a result, some elements
are changed, from 1 to 0 or vice versa, while some remain. Instead of applying this basic
neighborhood structure, we propose a mechanism of determining whether each element
should be flipped or not. Each element will be flipped, by considering a flip probability.
The proposed neighborhood structure is as follows: we define a trial T, to flip each element
of a vector X = (x1, x2, ..., xn), to obtain X ′ = (x′1, x′2, ..., x′n) ∈ N(X), in accordance with
the following rule:

x′i =

{
f lip(xi) , with probability p ∈ [0, 1]
xi , with probability (1− p)

, (3)

where

f lip(xi) =

{
1− xi , for {0, 1} encode
−xi , for ±1 encode

. (4)

This trial satisfies binomial requirements, as it is repeated n times, where n corresponds
to the vector length and sets a fixed probability p. Suppose a random variable A represents
the number of flipped elements, and let a random variable D represent the obtained
Hamming distance d. Then, there is a clear correspondence between random variable A
and D. Take any vector X and generate a vector Y, by following Equation (3), and suppose
that m random elements of X were flipped based on this process; from this supposition,
we have d(X, Y) = |X − Y| = m. As the flip is controlled by probability p, by following
binomial distribution we have

Algorithms 2022, 15, 192 5 of 15

µD = np, (5)

σD =
√

np(1− p). (6)

Based on binomial distribution, the distance at approximately np has a high probability
of occurring.

In the VNS algorithm, the distance is equal to variable k and is limited by the parameter
kmax. Therefore, kmax is the maximum distance that can be reached, when constructing a
neighborhood structure. To replace this concept, our proposed method uses a parameter
pmax ∈ [0, 1] as a limitation. To apply the gradual expansion mechanism, we divide the
pmax into several equal chunks. Then, we ensure that the flip probability p corresponds to
these chunks.

pc = cpmax/C, (7)

for c = 1, 2, .., C, where C ∈ N is a parameter for chunk size. This construction is applied
every time a neighboring point X ′ needs to be generated. Thus, this binomial neighbor-
hood structure does not depend on variable k but, instead, on flip probability pc, which
corresponds to chunk c.

Nc(X) = {Y : D(Y,X) ∼ Binom(pc, n)}, (8)

for c = 1, 2, ..., C considering (7), D(Y,X) is the Hamming distance between Y and X, where
Y is generated by applying Equation (3).

The distribution of the obtained neighboring point X ′ corresponds to the probability
density function of the binomial distribution, as shown in Figure 2. The concept is advanta-
geous because the distance of neighboring points X ′ can be estimated, even though they
are random. The proposed neighborhood structure is illustrated in Figure 3a. Note that the
illustration is a simple version, as X ′ can be obtained in any direction. The neighborhood
expansion corresponds to flip probability pc, following the variable chunk c. The distance
between neighboring point X ′ and X will be random, even though it will follow the charac-
teristic of binomial distribution. In contrast, in the basic VNS algorithm, the neighborhood
structure can be illustrated as an expanded disc, as shown in Figure 3b. In the basic VNS
algorithm, the expansion corresponds to variable k and results in d(X ′, X) being exactly k.

The complete implementation of our proposed method for solving QUBO problems
is similar to that of the VNS algorithm, except for differences in the neighborhood con-
struction. Unlike the basic VNS algorithm, we use parameter pmax to control the distance.
However, just like VNS, neighborhood structure change should be limited. Therefore, we
use parameter chunk size C. Thus, we only change the construction of the neighborhood
structure. For simplicity, we call our proposed algorithm “B-VNS”, while “VNS” refers to
the basic VNS algorithm [14,17,31,34].

Changing the construction of the neighborhood structure will change the behavior.
The B-VNS algorithm is more flexible than the VNS algorithm. In terms of kmax in the VNS
algorithm, the B-VNS algorithm can reach almost the same neighborhood structure, by
setting up the parameter pmax that

µD = npmax ≡ kmax. (9)

However, the B-VNS algorithm is more flexible than the VNS algorithm. The chunk
size C can be set as equal to kmax, to give an almost equal condition. However, the chunk
size C can be set as either larger or less than kmax. Setting the chunk size C to less than kmax
may have the potential to speed up the computation time.

In addition to the potential advantages of B-VNS, there are, also, potential weaknesses. Like
the Jump VNS algorithm, in the B-VNS algorithm, thorough search behavior may be lost. The
VNS algorithm, as described by Hansen and Mladenović [5,31] and Festa et al. [17], performs a
thorough search, by starting with the nearby neighborhood structure and slowly expanding it,

Algorithms 2022, 15, 192 6 of 15

when the local search fails to improve the solution. In contrast, in the proposed algorithm, a
random pattern of the distance of the neighborhood structures is seen. This random characteristic
can be advantageous, as it can increase the exploration search. However, a drawback is that it
causes B-VNS to miss basins that the global optimum may be in. Consequently, this random
characteristic has a possibility of incurring a longer searching time than the basic VNS algorithm.

Figure 2. Distribution of X ′ related to p. A neighboring point X ′ having distance npc has a high
probability of appearing.

(a) B-VNS. (b) Basic VNS.

Figure 3. Neighborhood structure. (a) The neighborhood structure of B-VNS becomes wider accord-
ing to probability pc, while (b) the neighborhood structure of basic VNS becomes wider according to
variable k = 1, 2, ..., kmax [32].

4. Benchmarking

Considering that the B-VNS algorithm is a modification of the basic VNS algorithm, it
is fair and appropriate to investigate the performance of our proposed B-VNS algorithm,
alongside the VNS algorithm [17,30] alone. The investigation did not involve any other
algorithms. Therefore, the impact of our modification can be evaluated, by using VNS
algorithm performances as the bases.

The investigation was conducted by running simulations on some standard QUBO
problems. The QUBO problems were taken from OR-Library [35] available at [36]. The
best-known objective functions for those problems were compiled from [10–12,37,38].
We, also, tested the B-VNS algorithm, to solve some standard max-cut problems. We
used problems from Helmberg–Rendl [39] that can be downloaded from [40]. Those
problems were generated using a machine-independent graph generator, called rudy,
which Giovanni Rinaldi developed. We, also, tested the B-VNS algorithm on problems
proposed by Burer, Monteiro, and Zhang [41], as they have different problem constructions.
Helmberg–Rendl problems consist of random, planar, and toroidal graphs, while those
from Burer et al. are cubic lattice graphs that represent Ising spin-glass models [34].

Algorithms 2022, 15, 192 7 of 15

Problems by Burer et al. can be downloaded from [42]. The best-known max-cut values
were summarized from [34,43–46]. It is worth noting that all of those best-known values
for QUBO and max-cut problems are open for improvement and may change in the future.

The simulation program used, practically, the same program code written in Fortran
for both the VNS and B-VNS algorithms. The only difference was in the neighborhood
construction section, where the remaining sections were the same. Therefore, we could accu-
rately measure the performance difference between our proposed neighborhood structure
and the standard VNS algorithm structure.

The simulation was compiled and run on a CentOS 8 system, powered by an Intel Core
i7-8700 processor with 16 GB RAM. The simulation was, independently, run 30 times for each
problem (NSim = 30). Therefore, the sample size for both the VNS and B-VNS algorithms
on each test item was 30, which was sufficient for the conduction of statistical tests. The
best objective value and computation time, obtained for each iteration and simulation, were
recorded. We used three criteria to evaluate the performance. After obtaining the best-known
values, we calculated the difference (BestDi f) between the best-known value and the best
value, obtained from 30 simulations. If BestDi f = 0, then the algorithm obtained the best-
known value. A value of BestDi f > 0 means the algorithm failed to obtained the best-known
value. On the other hand, BestDi f < 0 means the algorithm exceeded the best-known value.

BestSim = max({ fSimi : i = 1, 2, ..., NSim}), (10)

BestDi f = BestKnown− BestSim. (11)

We calculated the average differences (AvgDi f) between the best-known and obtained
objective values, involving all 30 simulations.

AvgDi f =
∑NSim

i=1 (fSimi − BestKnown)
NSim

. (12)

Lastly, we calculated the average computation time (AvgT). Regarding all of the
criteria, the algorithm that gives the lowest results is the best one. However, as the direct
comparison of samples by their average values may have led to a biased conclusion, we
conducted statistical analysis to precisely compare the results, using JASP [47].

4.1. Test on QUBO Problems

The local search, as described in [37], was used in the tested algorithms. Figure 4
shows the pseudocode of the local search, used for QUBO problems. We applied equal
conditions for the VNS and B-VNS algorithms. We aimed to reduce the values of all of the
parameters, to reduce the computation time, while obtaining high-quality solutions.

Figure 4. Local search for QUBO [37].

In the preliminary step, we used four problems for parameter tuning: two problems
each, from Glover and Beasley, with sizes of 100. We started from larger parameter values

Algorithms 2022, 15, 192 8 of 15

and, gradually, reduced them. We found that kmax = 0.02n was adequate for the VNS algo-
rithm to obtain good solutions within short computation times. Hence, we set pmax = 0.002
on the B-VNS algorithm, to make it equal. The number of iterations was set at 0.2n, for
both the VNS and B-VNS algorithms. The variable n was the problem size that was equal
to the length of the solution vector. For the B-VNS algorithm, parameter chunk size C was
set at 0.02n, so that it was equal to kmax in the VNS algorithm. All of these settings made
an equal condition for the VNS and B-VNS algorithms. Table 1 shows the test results for
Glover problems [11], while Table 2 showsthe test results for Beasley problems [37].

Tests regarding Glover problems show that the B-VNS algorithm was able to give
the same good results as the VNS algorithmm in terms of objective function values. Both
algorithms obtained the best-known value in almost all of the problems and only failed in
the 6b problem. The statistical analysis shows that the differences between the B-VNS and
VNS algorithms were insignificantm in all of the Glover test cases, as seen from the p-value
greater than 0.05. The Mann–Whitney test (α = 0.05) was used because most samples did
not satisfy the normality and homoscedasticity assumption. In terms of computation time,
for tests on Glover problems, statistical analyses show that the B-VNS algorithm was faster
than the VNS algorithm, specifically in problems with sizes up to 200. In problems with
sizes of 500, the B-VNS algorithm was comparable to the VNS algorithm.

The test results regarding the Beasley problems, also, show a similar trend to the tests
on the Glover problems. However, the B-VNS algorithm could obtain all of the best-known
values, while the VNS algorithm failed on problems bqp50_1, bqp100_1, and bqp250_8 (The
notation bqpn_m refers to the Beasley problem, which has size n and number m). Like the
test on the Glover problem, as the differences were insignificant, both B-VNS and VNS
algorithms were shown to be good algorithms, for use in solving Beasley problems.

Statistical analyses for computation time, regarding Beasley problems with n < 500,
show that the B-VNS algorithm was significantly faster than the VNS algorithm. The
computation times of the two algorithms were only statistically the same in problems
bqp50_1, bqp50_5, bqp50_6, bqp100_8, and bqp250_7. For problems where n > 500, the
computation speeds for the B-VNS and VNS algorithms were comparable.

All of the tests regarding QUBO problems under equal conditions show that the the
B-VNS and VNS algorithms are good, as they reached most of the best-known values, with
some exceptions for the VNS algorithm, due to its failures. Moreover, the B-VNS algorithm
ran substantially faster than the VNS algorithm, particularly on problems with sizes less
than 500. Therefore, the B-VNS algorithm is best suited for problems with sizes less than
500 and is comparable to the VNS algorithm for larger problems.

Table 1. Results for Glover [11] problems.

Problem
Number n Best

Known
VNS B-VNS Test (p-Value) *

BestDif AvgDif Time ** BestDif AvgDif Time ** Dif Time

1a 50 3414 0 1.667 0.003 0 1 0.003 0.459 ***
2a 60 6063 0 0 0.012 0 0 0.011 - 0.006
3a 70 6037 0 8.9 0.017 0 11.467 0.016 0.773 ***
4a 80 8598 0 0 0.035 0 0 0.030 - 0.009
5a 50 5737 0 0 0.004 0 3.867 0.003 - 0.041
6a 30 3980 0 0 *** 0 0 *** - ***
7a 30 4541 0 0 *** 0 0 *** - ***
8a 100 11,109 0 1.467 0.128 0 0 0.121 - ***

1b 40 133 0 18.033 *** 0 21 *** 0.512 -
2b 50 121 0 0.733 *** 0 2.667 *** 0.096 ***
3b 60 118 0 4.667 0.001 0 8.533 0.001 0.065 0.401
4b 70 129 0 13.867 0.004 0 18.733 0.003 0.112 0.005
5b 80 150 0 0 0.012 0 0 0.011 - ***
6b 90 146 13 35.933 0.021 13 37.833 0.016 0.277 ***
7b 80 160 0 0 0.027 0 2.533 0.025 - ***
8b 90 145 0 6.633 0.062 0 5.433 0.053 0.307 ***
9b 100 137 0 2 0.156 0 2.433 0.141 1 ***
10b 125 154 0 0.233 0.467 0 0.233 0.414 1 ***

Algorithms 2022, 15, 192 9 of 15

Table 1. Cont.

Problem
Number n Best

Known
VNS B-VNS Test (p-Value) *

BestDif AvgDif Time ** BestDif AvgDif Time ** Dif Time

1c 40 5058 0 0 0.001 0 0 0.001 - 0.507
2c 50 6213 0 0 0.003 0 0 0.003 - 0.107
3c 60 6665 0 0 0.015 0 0 0.013 - 0.003
4c 70 7398 0 0 0.020 0 0 0.017 - ***
5c 80 7362 0 0.867 0.035 0 0 0.028 - ***
6c 90 5824 0 27.467 0.048 0 21.167 0.047 0.186 0.043
7c 100 7225 0 0 0.134 0 0 0.123 - ***

1d 100 6333 0 16.9 0.135 0 13.733 0.129 0.583 0.006
2d 100 6579 0 31.967 0.152 0 19.633 0.145 0.214 0.022
3d 100 9261 0 14.567 0.157 0 16.067 0.144 0.658 ***
4d 100 10,727 0 5.367 0.166 0 9.067 0.151 0.056 ***
5d 100 11,626 0 11.633 0.179 0 14.7 0.166 0.471 0.001
6d 100 14,207 0 5 0.171 0 1.667 0.155 0.313 ***
7d 100 14,476 0 8.9 0.194 0 7.733 0.173 0.763 ***
8d 100 16,352 0 0 0.176 0 0 0.162 - ***
9d 100 15,656 0 1.13 0.180 0 0.3 0.164 0.305 ***
10d 100 19,102 0 0 0.184 0 0 0.170 - ***

1e 200 16,464 0 12.833 4.689 0 11.767 4.237 0.576 ***
2e 200 23,395 0 8 5.635 0 7.067 5.232 0.579 0.001
3e 200 25,243 0 0 6.172 0 0 5.731 - ***
4e 200 35,594 0 0.533 5.071 0 0.533 4.697 1 ***
5e 200 35,154 0 20.33 5.995 0 31.233 5.924 0.127 0.264

1f 500 61,194 0 2 578.194 0 1.2 559.644 0.679 0.004
2f 500 100,161 0 0.1 545.884 0 0.2 521.028 0.570 ***
3f 500 138,035 0 38.967 521.415 0 37.9 521.502 0.594 0.971
4f 500 172,771 0 33.6 440.721 0 18 450.550 0.354 0.050
5f 500 190,507 0 2.833 499.021 0 3.3 511.853 0.513 0.04

*: Mann–Whitney test; the difference is significant if p-value < α, (α = 0.05). **: average computation time
(second). ***: <0.001.

Table 2. Results for Beasley [37] problems.

n Problem
Number

Best
Known

VNS B-VNS Test (p-Value) *
BestDif AvgDif Time ** BestDif AvgDif Time ** Dif Time

50 1 2098 68 127.3 0.003 0 93.867 0.003 0.062 0.305
2 3702 0 15 0.003 0 22.967 0.003 0.497 0.006
3 4626 0 11.367 0.003 0 19 0.003 0.248 0.025
4 3544 0 21.533 0.003 0 19.733 0.003 0.863 0.006
5 4012 0 10.667 0.003 0 2.933 0.003 0.170 0.677
6 3693 0 1.933 0.003 0 2.9 0.003 0.654 0.190
7 4520 0 4.6 0.003 0 4.867 0.003 0.288 0.031
8 4216 0 18 0.003 0 7.333 0.003 0.117 -
9 3780 0 19.367 0.005 0 20.267 0.003 0.887 ***

10 3507 0 27.733 0.005 0 32.867 0.003 0.602 ***

100 1 7970 42 150.867 0.080 0 173.133 0.076 0.163 0.034
2 11,036 0 15.333 0.083 0 19.333 0.078 0.732 0.001
3 12,723 0 0 0.071 0 0 0.068 - 0.039
4 10,368 0 8.333 0.078 0 11.533 0.072 0.984 ***
5 9083 0 44.467 0.085 0 49.167 0.079 0.682 0.006
6 10,210 0 2.067 0.088 0 4.767 0.080 0.910 0.006
7 10,125 0 24.467 0.082 0 26.533 0.072 0.770 ***
8 11,435 0 8.867 0.079 0 9 0.077 0.820 0.139
9 11,455 0 0.6 0.081 0 0.6 0.075 1 0.004

10 12,565 0 18.667 0.078 0 12.933 0.069 0.247 ***

Algorithms 2022, 15, 192 10 of 15

Table 2. Cont.

n Problem
Number

Best
Known

VNS B-VNS Test (p-Value) *
BestDif AvgDif Time ** BestDif AvgDif Time ** Dif Time

250 1 45,607 0 8 11.873 0 10.133 10.890 0.458 ***
2 44,810 0 59.267 12.123 0 45.033 11.429 0.147 0.005
3 49,037 0 0 8.996 0 0 8.662 - 0.045
4 41,274 0 20.6 10.539 0 33.133 9.743 0.067 ***
5 47,961 0 15.933 9.672 0 10.933 8.808 0.611 ***
6 41,014 0 8.6 11.766 0 11.5 10.973 0.876 ***
7 46,757 0 0 10.624 0 0 10.191 - 0.050
8 35,726 52 214.200 13.311 0 177 12.196 0.297 ***
9 48,916 0 23.100 11.330 0 27.233 10.341 0.433 ***

10 40,442 0 3.533 12.526 0 2.2 11.211 0.688 ***

500 1 116,586 0 5.333 586.406 0 6.267 592.798 0.677 0.398
2 128,339 0 2.5 459.926 0 4.4 455.013 0.402 0.374
3 130,812 0 0 501.773 0 0 496.806 - 0.432
4 130,097 0 28.933 518.133 0 26.733 523.351 0.486 0.321
5 125,487 0 10.4 521.381 0 2.6 516.252 0.380 0.300

*: Mann–Whitney test, the difference is significant if p-value < α, (α = 0.05). **: average computation time
(second). ***: <0.001.

4.2. Test on Max-Cut Problems

The representation of the max-cut problem in the QUBO problem can be found in [9].
Instead of using the QUBO form, we used the common formula for max-cut. Given
undirected graph G = (V, E), with node set V = {v1, v2, ..., vn} and non-negative weight
wij = wji on edge (i, j) ∈ E, a partition of G into two disjoint node subsets S and Sc, which
maximized the cut value, was found.

cut(S, Sc) = ∑
α∈S,β/∈S

wαβ. (13)

This definition corresponds to the following forms:

max cut(S, Sc) =
1
2 ∑

i<j
wij(1− xixj), (14)

s.t. xi, xj ∈ {−1, 1}, (15)

or

max cut(S, Sc) = ∑
i<j

wij(xi − xj)
2, (16)

s.t. xi, xj ∈ {0, 1}. (17)

The ±1 encoding was used on this test. We applied the local search process reported
elsewhere [15,30] on both the VNS and B-VNS algorithms. The local search process was
carried out as follows: with X as the current solution that corresponds to partition (S, Sc), a
new partition was defined (S′, Sc ′).

(S′, Sc ′) =

{
(S \ {i}, Sc ′ ∪ {i}) if node i ∈ S
(S ∪ {i}, Sc ′ \ {i}) if node i ∈ Sc (18)

For each node i ∈ V, a function δ associated with solution X was defined as

δ(i) = ∑
j∈S

wij − ∑
j∈Sc

wij. (19)

In order to improve the objective value, a node i made a movement from a subset of V
to another subset, regarding these situations:

Algorithms 2022, 15, 192 11 of 15

1. if i ∈ S ∧ δ(i) > 0, then S = S \ {i}, Sc ′ = Sc ′ ∪ {i};
2. if i ∈ Sc ′ ∧ δ(i) < 0, then Sc ′ = Sc ′ \ {i}, S = S ∪ {i}.

This local search examined all of the possible movements starting from the first node.
For Burer et al. problems, parameter kmax was set at 0.1n, while pmax was set at 0.1.

The number of iterations was set at 0.5n, for both the VNS and B-VNS algorithms. We
designed different test conditions for Helmberg–Rendl problems. Parameter kmax in the
VNS algorithm was set at 100, for all of the Helmberg–Rendl problems used in the test,
regardless of problem size, as suggested in [34]. Therefore, the parameter pmax in the
B-VNS algorithm was set at 100/n, which enabled the B-VNS algorithm to reach an equal
maximum neighborhood structure, as in the VNS algorithm. We found that setting the
iterations to 0.2n was adequate to obtain good solutions, while reducing computation times.

Unlike the tests for QUBO problems, we applied a non-equal condition by setting the
chunk size C = 0.9kmax for Helmberg–Rendl problems as well as for Burer et al. problems.
This non-equal condition was used to investigate the impact of setting the chunk size to
less than kmax. This setting has a risk, that the B-VNS algorithm will be much less thorough
than the VNS algorithm, but it was used with the aim to be faster. Table 3 shows the test
results for Helmberg–Rendl problems, while Table 4 shows the test results for Burer et al.
problems. The Mann–Whitney test with α = 0.05 was conducted, as most samples did not
satisfy the normality and homoscedasticity assumption.

Table 3. Results for Helmberg–Rendl [39] problems.

Graph Problem n Best
Known

VNS B-VNS Test (p-Value) *
BestDif AvgDif Time ** BestDif AvgDif Time ** Dif Time

Random G1 800 11624 0 0.033 180.13 0 2.533 158.702 *** ***
G2 800 11620 0 7.133 185.804 0 6.8 162.854 0.830 ***
G3 800 11622 0 1.733 195.169 0 2.833 172.003 0.222 ***
G4 800 11646 0 0.567 193.595 0 0.633 175.664 0.507 ***
G5 800 11631 0 5.133 191.32 0 4.433 169.104 0.654 ***

Random (±1) G6 800 2178 0 1.867 203.065 0 2.2 136.156 0.299 ***
G7 800 2006 0 4.533 195.770 0 5.2 169.933 0.286 ***
G8 800 2005 0 3.4 154.650 0 2.733 164.133 0.845 ***
G9 800 2054 0 4.3 195.341 1 4.6 169.740 0.622 ***

G10 800 2000 0 3.2 160.173 0 2.333 141.589 0.191 ***

Toroidal G11 800 564 14 25.267 66.274 20 27.733 44.726 0.001 ***
G12 800 556 18 24.4 66.716 16 24.133 57.920 0.916 ***
G13 800 582 16 22.8 68.079 18 24.067 62.023 0.127 ***

Planar G14 800 3064 29 37.733 78.656 32 39.6 69.983 0.087 ***
G15 800 3050 31 38.633 77.195 32 39.867 67.350 0.179 ***

Random G43 1000 6660 1 8.967 431.314 1 9.733 381.073 0.323 ***
G44 1000 6650 3 8.467 428.178 2 9.533 375.822 0.114 ***
G45 1000 6654 0 12.067 425.304 1 11.033 374.124 0.445 ***
G46 1000 6654 9 16.1 410.047 5 16.633 373.864 0.494 ***
G47 1000 6654 9 20.433 415.607 13 20.267 370.332 0.472 ***

Planar G51 1000 3846 39 47.433 194.891 39 49.533 192.633 0.070 0.007
G52 1000 3849 41 49.1 126.208 42 50.033 110.035 0.265 ***

*: Mann–Whitney test; the difference is significant if p-value < α, (α = 0.05). **: average computation time (second).
***: <0.001.

Although the B-VNS algorithm is much less thorough, the results show that the B-VNS
algorithm was, still, able to provide solutions as satisfactorily as the VNS algorithm. Setting
the chunk size C to smaller than kmax had an insignificant effect on the ability of the B-VNS
algorithm, to achieve the objective values. Moreover, the B-VNS algorithm was shown to
be substantially faster than the VNS algorithm, in all of the tested problems, regardless
of the size. Therefore, the B-VNS algorithm was shown to clearly perform better than the
VNS algorithm, on max-cut problems.

Algorithms 2022, 15, 192 12 of 15

Table 4. Results for Burer et al. [41] problems.

Problem n Best
Known

VNS B-VNS Test (p-Value) *
BestDif AvgDif Time ** BestDif AvgDif Time ** Dif Time

sg3dl052000 125 112 0 1.2 0.042 0 1.8 0.039 0.058 ***
sg3dl054000 125 114 0 1.333 0.043 0 2.133 0.039 0.158 ***
sg3dl056000 125 110 0 1.333 0.041 0 1.467 0.038 0.803 ***
sg3dl058000 125 108 0 1.333 0.043 0 1.6 0.039 0.312 ***
sg3dl0510000 125 112 0 3.267 0.042 0 2.4 0.039 0.030 ***

sg3dl102000 1000 900 20 28.867 402.421 18 30.200 350.943 0.237 ***
sg3dl104000 1000 896 18 28.667 431.393 20 28.733 351.443 0.928 ***
sg3dl106000 1000 886 24 31.267 359.999 28 34.467 322.743 0.004 ***
sg3dl108000 1000 880 16 26.867 380.613 20 28.600 311.638 0.058 ***
sg3dl1010000 1000 890 18 28.800 390.797 20 29.733 354.691 0.397 ***

*: Mann–Whitney test, the difference is significant if p-value < α, (α = 0.05). **: average computation time
(second). ***: <0.001.

4.3. Discussion

We tested the basic VNS and B-VNS algorithms, using simulations on several QUBO
and max-cut problems. QUBO problems from Glover and Beasley as well as max-cut
problems from Helmberg–Rendl and Burer et al. were chosen for the test, since they are
benchmarking standards. Thus, our simulations gave a good overview of the performance
of the two algorithms.

When solving the QUBO problems, the parameters of the two algorithms were set to
be equivalent. Compared to the problem size n, the parameters of both algorithms were
set to very small values. We used kmax = 0.02n and pmax = 0.02. As a result, the kmax in
the VNS algorithm and the maximum µD in the B-VNS algorithm only ranged from 1 to
10, while n ranged from 30 to 500. As the number of iterations was set at 0.2n, the number
of iterations was in the range of 6 to 100. However, both the VNS and B-VNS algorithms
were able to obtain the best-known values. The failure on just a few problems that was
observed is understandable, due to the small values used for the parameters. The result
would be improved, by enlarging the parameter values, i.e., by increasing kmax in the VNS
algorithm, pmax in the B-VNS algorithm, and the number of iterations. However, increasing
the parameter values may result in a longer computation time.

For QUBO problems that apply equal conditions, the B-VNS algorithm was shown to
be substantially faster than the VNS algorithm, for problems with sizes of less than 500.
Moreover, the B-VNS algorithm was able to provide good solutions to all of the tested
problems. Solving the standard QUBO problem, under equal conditions, showed that the
B-VNS algorithm is able to match the VNS algorithm even better and faster. This trend, also,
occurred in the tests for max-cut problems, even though the parameter settings were under
non-equal conditions that risked the B-VNS algorithm being less thorough. However, the
experiments show that reducing the thorough search behavior, by setting the chunk size
C = 0.9kmax in the B-VNS algorithm, did not lessen the solution quality, and it even ran
substantially faster in all of the max-cut problems tested.

Setting the parameter chunk size C to less than kmax has the risk of lowering the accuracy
of the B-VNS algorithm. The characteristic of binomial distribution, which results in a pattern
of randomly increasing distances, may, also, reduce accuracy. Small chunk size and binomial
distribution can cause the algorithm to jump too far and miss some basins. However, our
experiments and statistical analysis show that the B-VNS algorithm was, still, able to provide
solutions, as satisfactorily as the VNS algorithm. Therefore, setting the chunk-size parameter
to slightly less than kmax is advantageous for solution quality and efficiency.

The flexible design, implemented by parameter chunk size C, gives the B-VNS algo-
rithm the potential to be faster than the VNS algorithm. Even though it is known that
there is a risk of the B-VNS algorithm losing its thorough search characteristic, which may
result in longer computation times, our experiments showed that this was not the case. The
experiment results indicate that setting the B-VNS algorithm’s parameters as equal to the
VNS algorithm’s parameters can avoid this risk.

Algorithms 2022, 15, 192 13 of 15

All of the tests involving standard QUBO and standard max-cut problems show that
the B-VNS and VNS algorithms are good. The VNS and B-VNS algorithms achieved most
of the best-known values or were very close to them. It should be noted that the referenced
best-known values were obtained using specific modified algorithms or by setting larger
parameter values. The tests show that the B-VNS algorithm performed best in all of the
max-cut problems, regardless of problem size, and it was shown to be best suited to QUBO
problems, with sizes less than 500.

We tested the B-VNS and VNS algorithm to investigate their performances. However,
there are limitations to this study. First, we used the most basic form of VNS algorithm.
We did not use the advanced or hybrid form because we focused on the construction
mechanism of the neighborhood structure. Many studies regarding the VNS algorithm
have been carried out, previously, but reports on the use of alternative neighborhood
structures to solve QUBO problems are very rare. Therefore, our study is useful for,
fundamentally, developing the VNS algorithm. Even though we used small parameter
settings, this was sufficient to observe the potential of both the B-VNS and VNS algorithms.
Festa reported that the VNS algorithm is sensitive to problem characteristics, so early
iterations can be used to predict the potential of the algorithm [34]. The results in this
paper were, also, inseparable from the simulation we used. One of the crucial factors in
metaheuristic simulation is the random-number generator. We used the Fortran language
and applied a dynamic random seed. Random seeds change over time. Each time a
random number function is called, it will use a different seed, to avoid generating specific
patterns of random numbers. It is worth considering that the programming approach
applied in simulation codes may, also, impact the results. Our tests only involved small- to
medium-sized problems. However, our experiments show that using binomial distribution
can, potentially, enhance the VNS algorithm. Thus, experimenting on much larger cases
becomes a challenge. Considering that hybrid models tend to be more powerful, the hybrid
form of the B-VNS algorithm is worth studying. Considering the successful implementation
of parallel programming of the VNS algorithm [48], the potential of the B-VNS algorithm
can be further developed, by applying a suitable hybrid model.

5. Conclusions

The B-VNS algorithm is a VNS algorithm that is modified by applying binomial distribution
to construct the neighborhood. As a result, the expansion of the neighborhood structure is no
longer strictly monotonous but random, following the characteristics of binomial distribution.
Our experiments used QUBO problems from Glover [11] and Beasley [37] as well as max-cut
problems from Helmberg–Rendl [39] and Burer et al. [41]. We confirmed that the B-VNS and
VNS algorithms are suitable for use in solving QUBO and max-cut problems. The experiment
results show that both algorithms can provide good solutions, but the B-VNS algorithm runs
faster. Furthermore, the B-VNS algorithm performed best in all of the max-cut problems,
regardless of problem size, and it performed best in QUBO problems, with sizes less than 500.
Although we did not test large-sized problems, our results suggest that the use of binomial
distribution to construct neighborhood structures can improve performance by reducing speed.
We are currently designing a hybrid algorithm that combines the B-VNS algorithm with a
population-based metaheuristic algorithm, while implementing parallel programming.

Author Contributions: Conceptualization, D.P. and M.K.; Formal analysis, D.P.; Funding acquisition,
M.K.; Investigation, D.P.; Methodology, D.P.; Project administration, M.K.; Resources, M.K.; Software,
D.P.; Supervision, M.K.; Validation, M.K.; Visualization, D.P.; Writing—original draft, D.P.; Writing—
review and editing, M.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Japan Society for the Promotion of Science grant number
20K11973.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Algorithms 2022, 15, 192 14 of 15

Data Availability Statement: Data has been presented in the main text.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Paschos, V.T. Applications of Combinatorial Optimizations; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014. [CrossRef]
2. Talbi, E.G. Metaheuristics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009. [CrossRef]
3. Yang, X.S. Metaheuristic Optimization: Algorithm Analysis and Open Problems. In Proceedings of the Experimental Algorithms;

Pardalos, P.M., Rebennack, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 21–32.
4. Sörensen, K.; Glover, F.W., Metaheuristics. In Encyclopedia of Operations Research and Management Science; Gass, S.I., Fu, M.C., Eds.;

Springer: Boston, MA, USA, 2013; pp. 960–970. [CrossRef]
5. Glover, F.; Kochenberger, G.A. (Eds.) Handbook of Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2003.
6. Papalitsas, C.; Andronikos, T.; Giannakis, K.; Theocharopoulou, G.; Fanarioti, S. A QUBO Model for the Traveling Salesman

Problem with Time Windows. Algorithms 2019, 12, 224. [CrossRef]
7. Date, P.; Arthur, D.; Pusey-Nazzaro, L. QUBO formulations for training machine learning models. Sci. Rep. 2021, 11, 10029.

[CrossRef] [PubMed]
8. Karp, R.M., Reducibility Among Combinatorial Problems. In 50 Years of Integer Programming 1958–2008: From the Early Years to the

State-of-the-Art; Springer: Berlin/Heidelberg, Germany, 2010; pp. 219–241. [CrossRef]
9. Glover, F.; Kochenberger, G.; Du, Y. A Tutorial on Formulating and Using QUBO Models. CoRR 2018, Available online: http:

//xxx.lanl.gov/abs/1811.11538 (accessed on 6 May 2022).
10. Katayama, K.; Narihisa, H. Performance of simulated annealing-based heuristic for the unconstrained binary quadratic

programming problem. Eur. J. Oper. Res. 2001, 134, 103–119. [CrossRef]
11. Glover, F.; Kochenberger, G.A.; Alidaee, B. Adaptive Memory Tabu Search for Binary Quadratic Programs. Manag. Sci. 1998,

44, 336–345. [CrossRef]
12. Merz, P.; Freisleben, B. Genetic Algorithms for Binary Quadratic Programming; Morgan Kaufmann Publishers Inc.: San Francisco,

CA, USA, 1999; GECCO’99; pp. 417–424.
13. Boros, E.; Hammer, P.L.; Tavares, G. Local search heuristics for Quadratic Unconstrained Binary Optimization (QUBO). J.

Heuristics 2007, 13, 99–132. [CrossRef]
14. Mladenović, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [CrossRef]
15. Duarte, A.; Sánchez, A.; Fernández, F.; Cabido, R. A Low-Level Hybridization between Memetic Algorithm and VNS for the

Max-Cut Problem. In Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, Washington, DC,
USA, 25–29 June 2005; Association for Computing Machinery: New York, NY, USA, 2005; GECCO’05; pp. 999–1006. [CrossRef]

16. Kim, S.H.; Kim, Y.H.; Moon, B.R. A Hybrid Genetic Algorithm for the MAX CUT Problem. In Proceedings of the 3rd Annual
Conference on Genetic and Evolutionary Computation, San Fransisco, CA, USA, 7–11 July 2001; Morgan Kaufmann Publishers
Inc.: San Francisco, CA, USA, 2001; GECCO’01; pp. 416–423.

17. Festa, P.; Pardalos, P.; Resende, M.; Ribeiro, C. GRASP and VNS for Max-Cut. In Proceedings of the Extended Abstracts of the
Fourth Metaheuristics International Conference, Porto, Portugal, 16–20 July 2001; pp. 371–376.

18. Resende, M. GRASP With Path Re-linking and VNS for MAXCUT. In Proceedings of the 4th MIC, Porto, Portugal, 16–20 July
2001.

19. Ramli, M.A.M.; Bouchekara, H.R.E.H. Solving the Problem of Large-Scale Optimal Scheduling of Distributed Energy Resources
in Smart Grids Using an Improved Variable Neighborhood Search. IEEE Access 2020, 8, 77321–77335. [CrossRef]

20. Wang, F.; Deng, G.; Jiang, T.; Zhang, S. Multi-Objective Parallel Variable Neighborhood Search for Energy Consumption
Scheduling in Blocking Flow Shops. IEEE Access 2018, 6, 68686–68700. [CrossRef]

21. Garcia-Hernandez, L.; Salas-Morera, L.; Carmona-Muñoz, C.; Abraham, A.; Salcedo-Sanz, S. A Hybrid Coral Reefs Optimiza-
tion—Variable Neighborhood Search Approach for the Unequal Area Facility Layout Problem. IEEE Access 2020, 8, 134042–134050.
[CrossRef]

22. He, M.; Wei, Z.; Wu, X.; Peng, Y. An Adaptive Variable Neighborhood Search Ant Colony Algorithm for Vehicle Routing Problem
With Soft Time Windows. IEEE Access 2021, 9, 21258–21266. [CrossRef]

23. El Cadi, A.A.; Atitallah, R.B.; Mladenović, N.; Artiba, A. A Variable Neighborhood Search (VNS) metaheuristic for Multiprocessor
Scheduling Problem with Communication Delays. In Proceedings of the 2015 International Conference on Industrial Engineering
and Systems Management (IESM), Seville, Spain 21–23 October 2015; pp. 1091–1095. [CrossRef]

24. Silva, G.; Silva, P.; Santos, V.; Segundo, A.; Luz, E.; Moreira, G. A VNS Algorithm for PID Controller: Hardware-In-The-Loop
Approach. IEEE Latin Am. Trans. 2021, 19, 1502–1510. [CrossRef]

25. Phanden, R.K.; Demir, H.I.; Gupta, R.D. Application of genetic algorithm and variable neighborhood search to solve the facility
layout planning problem in job shop production system. In Proceedings of the 2018 7th International Conference on Industrial
Technology and Management (ICITM), Oxford, UK, 7–9 March 2018; pp. 270–274. [CrossRef]

26. Dabhi, D.; Pandya, K. Uncertain Scenario Based MicroGrid Optimization via Hybrid Levy Particle Swarm Variable Neighborhood
Search Optimization (HL_PS_VNSO). IEEE Access 2020, 8, 108782–108797. [CrossRef]

http://doi.org/10.1002/9781119005384
http://dx.doi.org/10.1002/9780470496916
http://dx.doi.org/10.1007/978-1-4419-1153-7_1167
http://dx.doi.org/10.3390/a12110224
http://dx.doi.org/10.1038/s41598-021-89461-4
http://www.ncbi.nlm.nih.gov/pubmed/33976283
http://dx.doi.org/10.1007/978-3-540-68279-0_8
http://xxx.lanl.gov/abs/1811.11538
http://xxx.lanl.gov/abs/1811.11538
http://dx.doi.org/10.1016/S0377-2217(00)00242-3
http://dx.doi.org/10.1287/mnsc.44.3.336
http://dx.doi.org/10.1007/s10732-007-9009-3
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1145/1068009.1068178
http://dx.doi.org/10.1109/ACCESS.2020.2986895
http://dx.doi.org/10.1109/ACCESS.2018.2879600
http://dx.doi.org/10.1109/ACCESS.2020.3010577
http://dx.doi.org/10.1109/ACCESS.2021.3056067
http://dx.doi.org/10.1109/IESM.2015.7380290
http://dx.doi.org/10.1109/TLA.2021.9468443
http://dx.doi.org/10.1109/ICITM.2018.8333959
http://dx.doi.org/10.1109/ACCESS.2020.2999935

Algorithms 2022, 15, 192 15 of 15

27. Zhang, S.; Gu, X.; Zhou, F. An Improved Discrete Migrating Birds Optimization Algorithm for the No-Wait Flow Shop Scheduling
Problem. IEEE Access 2020, 8, 99380–99392. [CrossRef]

28. Zhang, C.; Xie, Z.; Shao, X.; Tian, G. An effective VNSSA algorithm for the blocking flowshop scheduling problem with makespan
minimization. In Proceedings of the 2015 International Conference on Advanced Mechatronic Systems (ICAMechS), Beijing,
China, 22–24 August 2015; pp. 86–89. [CrossRef]

29. Montemayor, A.S.; Duarte, A.; Pantrigo, J.J.; Cabido, R.; Carlos, J. High-performance VNS for the Max-cut problem using
commodity graphics hardware. In Proceedings of the Mini-Euro Conference on VNS (MECVNS 05), Tenerife, Spain, 23–25
November 2005; pp. 1–11.

30. Ling, A.; Xu, C.; Tang, L. A modified VNS metaheuristic for max-bisection problems. J. Comput. Appl. Math. 2008, 220, 413–421.
[CrossRef]

31. Hansen, P.; Mladenović, N.; Brimberg, J.; Pérez, J.A.M. Variable Neighborhood Search. In Handbook of Metaheuristics; Gendreau,
M., Potvin, J.Y., Eds.; International Series in Operations Research & Management Science; Springer: Berlin/Heidelberg, Germany,
2010; Chapter 3, pp. 61–184.

32. Hansen, P.; Mladenović, N.; Moreno Pérez, J.A. Variable neighbourhood search: Methods and applications. 4OR 2008, 6, 319–360.
[CrossRef]

33. Hansen, P.; Mladenović, N. A Tutorial on Variable Neighborhood Search; Technical report; Les Cahiers Du Gerad, Hec Montreal and
Gerad: Montreal, QC, Canada, 2003.

34. Festa, P.; Pardalos, P.; Resende, M.; Ribeiro, C. Randomized heuristics for the Max-Cut problem. Optim. Methods Softw. 2002,
17, 1033–1058. [CrossRef]

35. Beasley, J.E. OR-Library: Distributing Test Problems by Electronic Mail. J. Oper. Res. Soc. 1990, 41, 1069–1072. [CrossRef]
36. Beasley, J.E. OR-Library. 2004. Available online: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files (accessed on 22 September

2021).
37. Beasley, J.E. Heuristic Algorithms for the Unconstrained Binary Quadratic Programming Problem; Technical report; The Management

School, Imperial College: London, UK, 1998.
38. Wiegele, A. Biq Mac Library—A Collection of Max-Cut and Quadratic 0-1 Programming Instances of Medium Size; Technical report;

Alpen-Adria-Universität Klagenfurt, Institut für Mathematik, Universitätsstr: Klagenfurt, Austria, 2007.
39. Helmberg, C.; Rendl, F. A Spectral Bundle Method for Semidefinite Programming. SIAM J. Optim. 2000, 10, 673–696. [CrossRef]
40. Ye, Y. Gset. 2003. Available online: https://web.stanford.edu/~yyye/yyye/Gset (accessed on 22 September 2021).
41. Burer, S.; Monteiro, R.D.C.; Zhang, Y. Rank-Two Relaxation Heuristics for MAX-CUT and Other Binary Quadratic Programs.

SIAM J. Optim. 2002, 12, 503–521. [CrossRef]
42. Martí; Duarte; Laguna. Maxcut Problem. 2009. Available online: http://grafo.etsii.urjc.es/optsicom/maxcut/set2.zip (accessed

on 22 September 2021).
43. Kochenberger, G.A.; Hao, J.K.; Lü, Z.; Wang, H.; Glover, F.W. Solving large scale Max Cut problems via tabu search. J. Heuristics

2013, 19, 565–571. [CrossRef]
44. Wang, Y.; Lü, Z.; Glover, F.; Hao, J.K. Probabilistic GRASP-Tabu Search algorithms for the UBQP problem. Comput. Oper. Res.

2013, 40, 3100–3107. [CrossRef]
45. Palubeckis, G.; Krivickienė, V. Application of Multistart Tabu Search to the Max-Cut Problem. Inf. Technol. Control 2004, 31,

29–35.
46. Boros, E.; Hammer, P.L.; Sun, R.; Tavares, G. A max-flow approach to improved lower bounds for quadratic unconstrained binary

optimization (QUBO). Discret. Optim. 2008, 5, 501–529. In Memory of George B. Dantzig. [CrossRef]
47. JASP Team. JASP, Version 0.16; Computer software; JASP Team. 2021. Available online: https://jasp-stats.org/faq/ (accessed on

6 May 2022).
48. Kalatzantonakis, P.; Sifaleras, A.; Samaras, N. Cooperative versus non-cooperative parallel variable neighborhood search

strategies: a case study on the capacitated vehicle routing problem. J. Glob. Optim. 2020, 78, 327–348. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.2997379
http://dx.doi.org/10.1109/ICAMechS.2015.7287134
http://dx.doi.org/10.1016/j.cam.2007.08.018
http://dx.doi.org/10.1007/s10288-008-0089-1
http://dx.doi.org/10.1080/1055678021000090033
http://dx.doi.org/10.1057/jors.1990.166
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files
http://dx.doi.org/10.1137/S1052623497328987
https://web.stanford.edu/~yyye/yyye/Gset
http://dx.doi.org/10.1137/S1052623400382467
http://grafo.etsii.urjc.es/optsicom/maxcut/set2.zip
http://dx.doi.org/10.1007/s10732-011-9189-8
http://dx.doi.org/10.1016/j.cor.2011.12.006
http://dx.doi.org/10.1016/j.disopt.2007.02.001
https://jasp-stats.org/faq/
http://dx.doi.org/10.1007/s10898-019-00866-y

	Introduction
	VNS Algorithm
	Proposed Neighborhood Structure
	Benchmarking
	Test on QUBO Problems
	Test on Max-Cut Problems
	Discussion

	Conclusions
	References

