
Implementation and Evaluation of Publicly Verifiable

Proofs of Data Replication and Retrievability for Cloud

Storage

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Master of Science

in the

University of Canterbury

by

Hao Li

University of Canterbury

2022

Abstract

Cloud storage is a mature and widely used cloud technology. Behind this,

it involves the proofs of the retrievability of files stored on the server, which

allows the client to remotely check whether its files are correctly stored on the

cloud server. In 2020, Gritti proposed the first publicly verifiable Proofs of

Retrievability and Reliability (P-PORR). P-PORR combined Proofs of Re-

trievability (POR) with Verifiable Delay Functions (VDF) providing a fast

verification and allowing anyone to verify the server’s behavior, not just the

client. We built a realistic cloud test environment, implemented and tested P-

PORR in this environment. This paper describes the implementation process,

analyzes the performance of P-PORR from multiple perspectives, such as the

total time spent before files are uploaded to the server, verification time and

financial considerations. We stand in the perspective of the client and server

to discuss the effect of the results. The results show that P-PORR has a sim-

ilar performance to another PORR, with private verification, called Mirror.

It even outperforms Mirror in processing small files. Therefore, P-PORR is

suitable for cloud storage services. In the long run, this paper provides a prac-

tical application instance of VDF and a performance comparison benchmark

for later PORR research.

Table of Contents

List of Figures iii

List of Tables iv

Chapter 1: Introduction 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 Motivation . 3

1.4 Research Question . 4

1.5 Publication . 4

1.6 Thesis Structure . 4

Chapter 2: Literature Review 5

2.1 Proof of Data Possession . 5

2.2 Proofs of Retrievability . 9

2.3 Verifiable Delay Functions . 12

2.4 Proofs of Data Replication and Retrievability 15

2.5 Summary . 17

Chapter 3: Definition 18

3.1 Protocol Setup . 20

3.2 File Replication . 21

3.3 Challenge Generation . 23

3.4 Response Generation . 23

3.5 Response Verification . 23

Chapter 4: Experiment Design 25

4.1 Implementation . 25

4.2 Parameter Selections . 26

4.3 Network Environment Design 29

Chapter 5: Result Analysis 32

5.1 Performance at File Preparation 32

5.2 Performance at Verification 33

5.3 Performance at Puzzle Evaluation 34

5.4 Performance at Response Generation 35

5.5 Performance at Different Block Sizes 37

5.6 Performance at Different Sector Sizes 38

5.7 Financial Considerations . 39

Chapter 6: Conclusion 40

6.1 Discussion . 40

6.2 Limitations . 41

6.3 Conclusion and Future Work 41

References 43

Appendices 51

ii

List of Figures

2.1 Protocol for provable data possession 6

2.2 Dynamic cloud data storage model 7

2.3 POR sentinel system model 10

2.4 Merkle hash tree authentication of data elements 12

2.5 Verifiable Delay Functions model 14

3.1 PORR protocol workflow diagram 22

4.1 Experimental environment topology 26

4.2 Caption for LOF . 28

4.3 Network storage and sharing protocols. 30

5.1 File preparation time . 33

5.2 Verification time (verifier) . 34

5.3 Puzzle evaluation time . 35

5.4 Response generation time . 36

5.5 Latency at different block sizes 37

5.6 Latency at different sector sizes 38

5.7 Financial costs on cloud service providers 39

iii

List of Tables

3.1 Symbols and meanings . 20

4.1 Default parameter selections in the experiment environment . 27

iv

Acknowledgments

I received a lot of assistance and support during the writing of this thesis.

I would first like to thank my senior supervisor, Dr Clementine Gritti, for

her passion and expertise in my field of study, for her work in formulating

the research question, valuable advice on methodology and for writing this

thesis. Her insightful and deep feedback inspired me and took my work to a

higher level.

I would like to thank my co-supervisor, Professor Andreas Willig, for

giving me all further research opportunities, and the right guidance when

setting up my cloud testing environment, allowing me to do my best work

with limited time.

I would like to thank Kat Bell and Sophia Rabara for showing enough

concern for my life and helping me with any computer hardware issues.

Finally, I would like to thank my parents for their love, determination and

support. As an international student, it would have been completely impos-

sible for me to complete this dissertation without their selfless dedication.

v

Chapter I

Introduction

1.1 Background

Internet-based cloud services are widely welcomed by individuals and indus-

tries, because of their obvious advantages such as convenience, security, and

low cost. It can reduce capital expenditures and convert them into operating

costs [1]. As a common and important cloud service, cloud storage is also

accepted by many parties. The cloud storage server can flexibly store and

access files according to the particular type of service requested. Because

the cloud provider has absolute control over the server, the behavior of the

server and the cloud provider can be understood as consistent, and the cloud

provider or the server mentioned later is the same party. Due to the value of

data itself, cloud storage servers have become vulnerable targets. However,

the risk from cloud storage often includes more than external hacker attacks

[2], misoperation and misconfiguration of internal users can also lead to catas-

trophic consequences. For example, a company called Front Edge CNC found

that the online production data which had been saved in Tencent cloud stor-

age was completely lost, the estimated incident resulted in the loss of nearly

10 million RenMinBi(RMB) in the platform data. For this reason, Tencent

cloud stated that the incident was caused by a Silent Data Corruption (in-

consistent writing and reading data) error caused by a bug in the firmware

version of the physical hard disk, and the metadata of the file system was

corrupted [3, 4].

Therefore, disaster recovery is a basic function to assure customers. As a

backup method, cloud file replicas make storing cloud files more secure, these

replicas are usually stored in different places. When cloud files are damaged or

attacked by ransomware, replicas can effectively prevent file loss. For instance,

1

since the original file and the replicas are stored on different servers, even if

some servers fail, data recovery and availability can be ensured. Generally

speaking, cloud service providers charge users based on the redundancy level

(file recovery capability) [5]. For instance, storage services such as Amazon

S3 and Google FS can withstand up to two concurrent server failures [6].

1.2 Problem Statement

The key characteristics of files stored in the cloud are retrievability and in-

tegrity. Even large cloud companies have vicious incidents related to these

characteristics [2, 7], such as the Tencent Cloud mentioned before. Such in-

cidents mean that retrievability and integrity cannot be easily guaranteed,

which is the main reason why users do not trust cloud storage. Previous

research has defined two schemes: Proof of Data Possession (PDP) [8, 9] and

Proof of Retrievability (POR) [10, 11]. They both provide integrity assurance

for clients’ files stored in the cloud. PDP enables the client to verify that an

untrusted server is storing the client’s data without accessing the entire file

from the server. Cryptographic integrity assurance allows clients to detect

unauthorized modifications to partial files upon retrieval. This basic form of

integrity assurance cannot detect modification or deletion of files before they

are retrieved or on an ongoing basis. POR aims to provide this higher level

of assurance [10].

The variants of the PDP schemes also check for replicas of files [12, 13, 14].

However, existing solutions require the client to create replicas of the file it-

self, perform appropriate preprocessing on the replicas, and finally upload

all processed replicas with the file to the server. In uploading original files

and replicas to the server, cloud providers consume much bandwidth to pro-

cess requests as the number of replicas increases. For cloud providers, much

bandwidth means increased operating costs [15].

In the actual operation process, there will be some unavoidable malicious

behaviors. The client seems to have implicit trust in the cloud provider

and cloud technology, and there is negligence in reading the service level

agreements [16, 17]. The cloud provider can take advantage of the client’s

human behavior to act dishonestly. For example, the files or replicas were not

2

stored according to the agreements. Some malicious clients may abuse their

rights by generating replicas locally and uploading fake replicas to gain more

storage space. For example, Amazon S3 charges its clients nearly 25% of the

basic storage cost required for additional replication [17, 18], so it is cheaper

to upload fake replicas than other original files. Since the data uploaded

by the clients is usually encrypted, the provider cannot identify whether the

uploaded content is indeed a replica.

1.3 Motivation

Armknecht et al. addressed the issues mentioned above in [15] and extended

POR, called Proof of Retrievability and Reliability (PORR). PORR sup-

ports correct storage verification of files and replicas and allows the server

to build replicas, which will effectively avoid similar behaviors of malicious

clients seeking economic benefits by uploading fake replicas, and can reduce

the bandwidth cost of the server. However, the PORR system in [15], called

Mirror, supports private verification, only the client has permission to check

that the server has correctly stored its files and their replicas. Gritti pro-

posed a new public PORR protocol in [16], we call it P-PORR. P-PORR

gives the same storage correctness guarantee as PORR and provides public

verification for the client. Anyone (person/organization) can act as a verifier

to check whether the server stores the client’s data correctly. P-PORR has

been theoretically proven feasible, but has not been implemented and applied

in a cloud environment to test its performance.

A theoretically feasible protocol does not bring practical benefits to hu-

mans. We first need to consider whether the functions of this protocol are

feasible in a realistic cloud environment, followed by user experience, security

and financial considerations. In continuous implementation and testing, we

will gradually discover the strengths and shortcomings of the protocol. We

can actively use its strengths to appropriate areas and improve the shortcom-

ings exposed in the test. As the first PORR protocol that supports public

verification, we focus on whether P-PORR satisfies the client’s security needs

and the server’s financial considerations. The test results will bring great

reference metrics to future researchers in related fields.

3

1.4 Research Question

This research aims to implement and evaluate P-PORR by designing a re-

alistic cloud framework and executing multiple benchmarks of the solution,

comparing the experimental results obtained with the existing private PORR

in the cloud, namely Mirror. Therefore, the research question of this study is:

Does the evaluation of the new prototype proposed in [16] for proving data

replication and retrievability in the cloud show acceptable performance results

in a realistic cloud setting?

1.5 Publication

The work of this Master’s research has been accepted for publication by the

Advances in Science, Technology and Engineering Systems Journal (ASTESJ).

1.6 Thesis Structure

The structure of the thesis is presented as follows:

• Chapter 2 provides a literature survey related to this paper, and back-

ground knowledge is introduced to help readers better understand the

contents of this paper.

• Chapter 3 describes each algorithm of the protocol P-PORR.

• Chapter 4 describes how we set up a realistic cloud test environment

and how we implement P-PORR.

• Chapter 5 analyzes our experimental results and compares them with

existing work.

• Chapter 6 concludes the research implications, limitations, and future

work of this paper.

4

Chapter II

Literature Review

This chapter introduces the research progress of related work in the same

field, as well as various variants of the same scheme. Different protocols

usually offer particular features, such as protecting client data integrity, re-

trievability, seamless access to dynamic data, and public verification.

2.1 Proof of Data Possession

Ateniese et al. introduced the concept of Proof of Data Possession (PDP)

[8, 9]. PDP is concerned with verifying whether an untrusted server stores

client data without retrieving data from the server. There is also no need for

the server to access the entire file. As shown in Figure 2.1, the client (data

owner) preprocesses the file, which includes generating metadata (fingerprint)

stored locally, and Homomorphic Verifiable Tags (HVTs) are added to each

data block of the file. The processed file is finally uploaded to the server.

During the verification process, the client first generates a challenge, in which

the client specifies the blocks for which it wants possession proof, then sends

the challenge to the server. The server uses the public key to generate a

possession proof for the block specified in this challenge and returns it to the

client. The client will finally verify the proof with the metadata (fingerprint)

and public and private keys kept locally to determine whether the server has

kept the file.

The above method belongs to the classic PDP concept, which uses asym-

metric cryptography. The public key and private key are required in the

protocol, which improves the security, but when PDP is used to prove that it

has a large amount of data, it will bring a lot of large I/O and computational

burden to the server [8, 9]. In summary, [8, 9] lay a theoretical foundation

for later related work, but there is still space for improvement.

5

Figure 2.1: Protocol for provable data possession

Ateniese et al. constructed an efficient and provably secure PDP tech-

nique based entirely on symmetric key cryptography [19] based on the prob-

lems exposed in previous studies. Compared with previous PDP techniques,

this version of the PDP technique allows uploading of dynamic data, it ef-

fectively supports operations such as block modification, deletion, and ap-

pending. Supporting such operations means that this version of PDP is more

practical, as many cloud storage services are not limited to static or warehouse

data. For example, multiple authorized users (users who have the right to

access the client’s file) in Figure 2.2 want to access the files stored in the cloud

server by the client at the same time, dynamic data operations are required

in this scenario. There is another difference from the previous works is that

the scheme in [3] is completely based on symmetric key cryptography, and the

symmetric encryption algorithm operates fast, it requires less computational

resources, but is not suitable for public (third-party) verification.

The main idea of [19] is that the client precomputes a certain number of

short possession verification tokens before uploading, each covering some set

of data blocks. When the client wants to obtain proof of data possession, it

selects a random set of block indexes and challenges the server, which must

compute a short integrity check on the specified block (corresponding to the

index) and assign it to return to the client. The returned integrity check

must match the corresponding value precomputed by the client for the proof

6

Figure 2.2: Dynamic cloud data storage model

to hold. However, the disadvantage of this scheme is that a fixed number

of verification will be set when the protocol is initialized, that is to say, the

client cannot send unlimited challenges to the server. If we want to increase

the number of verification, we will need to re-initialize the protocol. In turn,

the data needs to be re-uploaded to the server. Nevertheless, the authors

argues that is not a problem in practice and with the default settings of this

protocol, it enables the client to verify possession every 15 minutes for the

next 16 years [19].

In recent years, due to the increasing demand for multiple replicas of cloud

storage, the proof of data possession is not only limited to the file itself also

extended to the replicas of the file [12, 13, 14]. Curtmola et al. first proposed

a Multi-Replicas Provable of Data Possession (MR-PDP) scheme that extends

previous work on PDP for a single file in a client/server storage system [8].

MR-PDP can create multiple replicas of client’s files and verify them. The

MR-PDP scheme improves data availability, and corrupted replicas of data

can be rebuilt using replicas on other servers at an acceptable cost. However,

the MR-PDP scheme only supports private verification, that is, only the client

can check the possession of the data and does not consider the interaction

between authorized users and cloud service providers. Public verifiability is a

7

crucial feature of remote data inspection schemes. Possible disputes between

client and cloud service providers can be avoided. Delegating the verification

process to a trusted and professional third party for data integrity will reduce

the likelihood of exposing keys, also resolve such disputes.

Ayad et al. proposed a Pairing-Based Provable Multi-Replica Data Pos-

session (PB-PMDP) scheme that provides clients with proof that all replicas

are stored and kept intact [13]. In addition, it allows authorized users to

access replicas of files stored by cloud service providers seamlessly, supports

public verifiability, and allows unlimited verification. The structure can be

referred to Figure 2.2.

The overall process of this scheme is similar to the standard PDP [8, 9],

the main difference is that the core of this scheme is to generate unique dif-

ferentiable replicas for data files. Identical data replicas enable cloud service

providers to trick the client into storing only one replica and pretend it stores

multiple replicas. PB-PMDP utilizes the diffusive properties of any secure

encryption scheme to generate different replicas to deal with similar misbe-

haviour. If there is a single bit change in the plaintext, there will be an un-

predictable complete change in the ciphertext. At the same time, PB-PMDP

also introduces the concept of Homomorphic Linear Authenticators (HLAs)

in Proof of Retrievability (POR) [11, 20, 21], the research content of POR will

be introduced in detail later. The experimental results of PB-PMDP show

that the performance of PB-PMDP is better than that of MR-PDP, which is

reflected in the computing time of cloud service providers and the verification

time of verifiers. Especially in the latter case, the time in the PB-PMDP

scheme does not change much due to the increase in the number of replicas.

The PB-PMDP scheme has high computational efficiency in verifying a large

number of file replicas.

In a later study, Ayad et al. proposed a Mapping-Based Provable Multi-

Replica Dynamic Data Possession (MB-PMDDP) scheme [14]. It continued

the features of the previous PB-PMDP [13], authorizes users to access replicas

of files stored by cloud service providers, exposes public verifiability, and

allows unlimited verification. The difference is that MB-PMDDP enables

the client to update and extend blocks of file replicas uploaded to servers.

Verifying such replicas of dynamic data requires the knowledge of the block

8

versions to ensure that the data blocks in all replicas are identical with the

most recent modifications issued by the client. The verifiers should be familiar

with the block indices to guarantee that the server inserted or added a new

block at the requested position in all replicas. To this end, this scheme is

based on using a small data structure (metadata), which is called a map-

version table. This scheme is the first to handle multiple replicas of dynamic

data.

2.2 Proofs of Retrievability

Proofs of Retrievability (POR) is similar to PDP but stronger, because it

supports the data recovery [12]. It was first proposed by Juels and Kaliski [10].

POR is mainly concerned with data retrievability and data integrity, which

enables the server to generate concise proof to prove to the client can retrieve

a specific file, that is, the server retains and transmits the file data reliably

enough to allow the user to recover the entire file. The existing cryptographic

integrity guarantees allow verifiers to detect unauthorized modifications to

parts of a file when retrieving files, such as various variants of PDPs. However,

this basic form of integrity assurance cannot detect modification or deletion

of files prior to file retrieval or on an uninterrupted basis. The goal of POR

is to provide this higher level of assurance on remote files without requiring

users to download the file themselves [10].

The original POR protocol [10] will generate a key in the beginning, and

this key will be kept locally by the verifier for later challenge-response pro-

tocol. This key is also used to encrypt the file and randomly embeds a set

of check blocks of random values called sentinels. The use of encryption here

makes it impossible for the server to distinguish the sentinel from other data

blocks. The verifier challenges the server by specifying the sentinel set’s loca-

tion and asking the server to return the relevant sentinel value. If the server

modifies or deletes part of the file, it is most likely that sentinels are also

included, therefore unlikely to respond to the verifier correctly. The model

is shown in Figure 2.3. POR also employs error-correcting codes to avoid

a particular part of the file being corrupted by the server due to unknown

factors, significantly increasing the protocol’s robustness. One disadvantage

9

Figure 2.3: POR sentinel system model

of the POR protocol is that the server needs to preprocess/encode the file

before uploading it to the cloud (besides the overhead of simple encryption

or hashing), which adds some extra computational overhead. Embedding of

sentinels will occupy about 2% of the space of the encoded file, as well as

error-correcting codes, which increases a lot of storage overhead.

The recent research on POR gradually made up for some of the weak-

nesses of sentinels-based POR. For example, sentinels-based POR is mainly

used for static data storage and does not support public verification. Shacham

and Waters gave two POR schemes [11, 22]. The first scheme is built from

Boneh–Lynn–Shacham (BLS) signature and secure in the random oracle model,

it has the shortest query and response of any POR scheme with public ver-

ifiability. The second scheme is built on a pseudorandom Function (PRF).

It is secure in the standard model, with the shortest responses (but longer

queries) of any POR scheme with private verifiability. Both schemes rely on

homomorphic properties to aggregate proofs into a small authenticator value.

To help with better understanding, here is an introduction to the standard

model and the random oracle model:

10

• Standard model is a computational model where the adversary is limited

by the available time and computational power. Since cryptographic

schemes are usually based on complexity assumptions, some problems,

such as factorization, cannot be solved in polynomial time. A scheme

that is provably secure using only complexity assumptions is called a

secure in the standard model [23].

• Random oracle model is a black box in theory that responds to each

unique query with a truly random response uniformly chosen from its

output domain. If the query is repeated, it will respond the same way

to the submitted query every time. In other words, a random oracle is

a mathematical function that is uniformly chosen at random, that is,

a function that maps every possible query to a fixed random response

from its output domain [24].

The two POR schemes of Shacham and Waters expand the adaptability

of the POR scheme when dealing with different needs. They provides the

shortest query and response time but still takes up a lot of storage space.

Because an equal length authenticator accompanies each data block, this

adds two times the overhead over erasure codes. The server’s response in

the POR protocol is two times the length of the authenticator [11, 22]. The

increase of storage undoubtedly increases the operating cost of the server,

which is unfavourable for the server.

The recent studies not only focus on the retrievability of static data only,

they also focuses on dynamic data [25, 26]. Qian et al. performed block

tag authentication by manipulating the classical Merkle Hash Tree (MHT)

construction [25]. It improves the original POR model [10] and supports

public verifiability and dynamic data manipulation. Specifically, the original

POR scheme does not consider dynamic data manipulation and does not

support block insertion at all.

This is because the construction of the signature involves file index infor-

mation. Therefore, the computational overhead is unacceptable once a file

block is inserted since the signatures of all the following file blocks should

be recomputed with the new index. In order to solve this limitation, Qian

et al. delete the index information when generating the signature [25], use

11

Figure 2.4: Merkle hash tree authentication of data elements

the hash value of the data block as the label of this block, then store it on

the leaf of the MHT, finally use the MHT to verify the value and location

of the data blocks. So individual data operations on any data block do not

affect others. MHT structure can refer to Figure 2.4 that depicts an exam-

ple of verification. We assume the two black filled circles {x2, x7} are the

received blocks for verification, the verifier firstly computes the h(x2), h(x7),

hc = h(h(x1)||h(x2)), hf = h(h(x7)||h(x8)), ha = h(hc||hd), hb = h(he||hf),
and hr = h(ha||hb), then checks whether if the calculated hr/root is the same

as the expected one.

2.3 Verifiable Delay Functions

Verifiable Delay Functions (VDF) were first introduced by Boneh et al. [27].

VDF requires a specified number of sequential steps to evaluate, and any par-

ties with parallel computing resources or specialized hardware cannot shorten

the evaluation time. Finally, a unique output is generated that can be pub-

licly and efficiently verified. The model is shown in Figure 2.5. The three

specific algorithms of VDF are as follows:

• Setup(λ, t)→ public parameters pp = (evaluation key ek, verification key vk)

12

is a randomized algorithm. The required input parameters are a security

parameter λ and a desired puzzle difficulty t. The produced output is

public parameters pp, which consists of an evaluation key ek and a veri-

fication key vk. VDF requires Setup(λ, t) to be polynomial-time within

λ. By convention, public parameters specify an input space X and an

output space Y. Setup(λ, t) may require secret randomness, resulting

in a scheme requiring a trusted setup. In order to achieve meaningful

safety, the puzzle difficulty t is constrained to be sub-exponentially sized

in λ.

• Eval(ek, x)→ {output y, proof π} is a deterministic algorithm. It takes

an input (puzzle) x ∈ X, produces an output y ∈ Y and a proof π.

Eval(ek, x) can generate the proofs π using random bits, but not to

compute y. For all pp generated by Setup(λ, t) and all x ∈ X, the

algorithm Eval(ek, x) must run in parallel time t of the poly(log(t), λ)

processors.

• V erify(vk, x, y, π) → {Y es,No} is a deterministic algorithm. The re-

quired input parameters are the verification key vk, the puzzle x and

its solution y, and the proof π. If the y is an expected output of x,

the output of Verify(vk, x, y, π) would be ”Yes”; otherwise ”No”. Ver-

ify(vk, x, y, π) must run in the total time polynomial of logt and λ. We

notice that Verify(vk, x, y, π) is much faster than Eval(ek, x).

VDF can be applied in a wide range of scenarios, such as decentralized

applications, Internet of Things (IoT), network attack detection and block

chain [28, 29, 30]. As early as the 1990s, Rivest et al. designed a time-

lock puzzle [31], which involves computing an inherently sequential function

whose purpose is to encrypt a message so that no one, not even the sender,

can decrypt it until a predetermined time has elapsed, even if a continuously

running computer at least cannot be solved such computational problems

for a certain time either. The only solution is to use repeated squaring in

the RSA group as a time-locked puzzle. However, time-lock puzzles are not

required to be universally verifiable, and the verifier uses its secret state to

prepare each puzzle and verify the result. In contrast, a VDF may require

13

Figure 2.5: Verifiable Delay Functions model

an initial trusted setup, but then must be able to be used for any randomly

chosen input [27].

Attias et al. proposed a rate-limiting protocol based on a modular expo-

nential VDF [29], which can reduce network overhead and provide protection

for transaction generation between nodes in IoT networks. Nodes in IoT

networks can be an IoT device or a smartphone, each node participates in

the generation and verification of transactions, which transfer tokens between

two nodes, or just carry data. Since this kind of transaction generation is not

limited by any fees, if there is no proper access control mechanism, a node

may theoretically generate an infinite number of transactions per second, that

is, this node is being DoS attacked, resulting in network interruption. Exper-

imental results by Attias et al. demonstrate that VDF can also be used to

prevent denial of service attacks in IoT networks [29], which is an instance of

applying a mathematical framework to real-world problems.

VDF can also be applied to the block chain field. Zhou et al. found

that the Difficulty Adjustment Algorithm (DAA) embedded in the proof of

work (PoW) block chain algorithm often fluctuates when generating blocks

[30], resulting in the generated blocks either not generating blocks for a long

time, or generating multiple blocks in a short time. In addition, this strategy

will also lead to potential attacks on DAA (such as selfish attacks, jumping

mining attacks, etc.) [30]. To address these issues, Zhou et al. propose an

14

improved block chain consensus protocol that utilizes PoW with Distributed

Verifiable Delay Function (DVDF). This protocol can retain the proof-of-work

mechanism to ensure the probability of finding a suitable block. Furthermore,

using DVDF, this protocol can ensure that all miners perform a computation

that takes a relatively constant amount of time despite their sizable hash rate.

Therefore, this scheme can eliminate the fluctuation of the block chain hash

rate caused by DAA.

2.4 Proofs of Data Replication and Retrievability

PORs and PDPs that support storing additional replicas of files require the

client to process, structure and upload replicas of their files by themselves.

This step brings additional bandwidth overhead to both the server and the

client, and also brings new security risks to the server [15]. Specifically, since

uploaded files are usually encrypted, the server cannot identify whether the

uploaded content is a replica of the particular file. This situation limits the

business models available on the server-side. For example, the price charged

for storing a replica is often lower than the price for storing the original file,

which can be abused by malicious users who upload non-replica, even though

they claim to be a replica. Armknecht et al. propose a solution that conforms

to the current cloud model to Proofs Data Replication and Retrievability

(PORR) in the cloud, called Mirror [15]. Mirror utilizes a tunable replication

scheme. The scheme is based on a combination of Linear Feedback Shift

Registers (LFSRs) with the RSA-based puzzles of Rivest [31]. By doing so,

Mirror shifts the burden of building replicas onto the server, so server are likely

to appreciate it because it allows server to trade relatively cheap computing

resources for expensive bandwidth resources. We will mainly compare our

experimental results with Mirrors in Chapter 5.

In a recent study, Guo et al. claimed that Mirror is vulnerable to sub-

stitution and forgery attacks [32], creating new security risks for cloud users.

The attacks are described in detail as follows:

• Storage saving attack : The attack is made possible because all sectors

of each challenged replicated block are appended to their correspond-

ing labels in the form of products. The rational server can only store

15

products of all sectors of each replicated block rather than the data sec-

tor itself, thus greatly saving storage resources. Therefore, the rational

cloud provider only invests less storage cost compared to the honest

cloud provider, however, the client will not notice such behaviour, and

the verification result is still showing the rational cloud provider stores

the data correctly. In this case, Mirror is no longer safe [32].

• Substitution attack : The authors of Mirror claim that if the challenge

parameter R = 0 (R indicat which replicas will be involved in the chal-

lenge), only Proof of Retrievability (POR) is performed without check-

ing the replica. In this case, however, rational cloud providers can

replace some of the challenged blocks (possibly deleted) with other in-

tact blocks that the client cannot detect due to a lack of block index

authentication [32].

• Forgery attack : Given all valid block-tag pairs, a rational cloud provider

can easily forge another valid block-tag pair without the client’s secret

key by multiplying some of these blocks with their corresponding tags.

The rational cloud provider can then replace any block-tag pairs in the

original file with a fake pair, compromising the integrity of the original

file. However, the client cannot detect the misbehaviour [32].

To sum up, the first attack defeats the security goal of storage allocation,

and the latter two attacks defeat the security goal of retrievability. In response

to these problems, Guo et al. developed an Improved Proofs of Retrievability

and Replication (IPOR2) scheme to overcome security issues in Mirror [32].

The idea to deal with the storage saving attack is to randomly sample a non-

empty appropriate subset S of s sectors for each replicated block involved,

it indicates which sectors of each involved replica block will be checked in

the challenge. So rational cloud providers cannot pass the challenge just by

storing the product value of each replica. The authors in [32] prove that the

number of checked sectors |S| is set to s - 1 is an optimal choice, which imposes

a significant storage overhead on the server while achieving the maximum

probability of misbehaviour detection. Guo et al. prevent substitution attacks

16

and forgery attacks by designing a secure authentication tag by binding block

index information.

In 2020, Gritti proposed a publicly verifiable PORR by combining the

POR scheme and the exponential-based VDF scheme in a finite group [16].

This scheme retains the characteristics of VDF, the puzzle evaluation is slow,

but it is easy and fast to verify the evaluation output. It thus ensures that

the server stores both the original file and its replicas at rest, rather than

dynamically computing them when requested to prove correct storage. The

two PORR schemes mentioned above, Mirror and IPOR2, only support pri-

vate authentication. That is, only the client can challenge the server. Gritti’s

PORR scheme allows anyone to challenge the cloud provider, not just the

client. As far as we know, this is the first PORR scheme that offers public

verification.

2.5 Summary

PDP is the first proposed scheme to verify whether untrusted servers store

client data. Later, it gradually expanded the client data replicas and seamless

access to dynamic data. However, some schemes still have some problems of

high I/O and computational overhead [8, 12, 14]. Later POR schemes not

only focus on the integrity of data and replicas, but more research focuses on

ensuring the data recovery. Recent PORR schemes combine the character-

istics of PDP and POR and shift the construction of replicas burden to the

cloud provider, providing the convenience of use for the client, and it allows

the server to trade relatively cheap computing resources from expensive band-

width resources, which also brings economic benefits to the cloud provider.

PORR with public verification can greatly improve the applicability of the

scheme [16].

17

Chapter III

Definition

This chapter introduces our implementation steps of Gritti’s P-PORR

scheme. In general, it can be divided into two phases, the storage phase

and the verification phase. The storage phase includes protocol setup and

file replication; the verification phase includes challenge generation, response

generation and response verification. The specific workflow refers to Figure

3.1. We describe in detail what roles the client and server will play in each

phase, what parameters are required for each phase, and the parameters re-

turned.

Symbol Meaning

p, q Prime numbers used for RSA Setup

N RSA modulus

d RSA private key

e RSA public key

G Full-domain hash function

H Full-domain hash function

ZN {0, 1, 2, · · · , N − 1}

Z∗N ZN\{0}

t VDF delay parameter

B VDF security parameter

L First t odd prime numbers

18

P The product of all elements of L

w {1, 2, · · · , B}

M Original file, {0, 1}∗

n Number of blocks

s Number of sectors

r Number of replicas

i Block index

j Sector index

k Replica index

mi,j Sector

T File tag

σi File authenticators for each block

M∗ Processed file

x
(k)
i,j Puzzle

y
(k)
i,j Solution of puzzle

L
(k)
i,j Mapping to puzzles of size κ

S
(k)
i,j Mapping to puzzles of size κ

P
(k)
i,j Product of L

(k)
i,j

g
(k)
i,j Product of gw for w ∈ S(k)

i,j

m
(k)
i,j k-th replica of mi,j

I A set in [1, n] of l elements

vi Random elements ∈ ZN for i ∈ I

(Q,R) Challenge

19

(µj, σ) Response

l Number of challenged blocks

Table 3.1: Symbols and meanings

3.1 Protocol Setup

This phase first initializes the POR and VDF protocols and generates the

required keys. Then it splits the file into blocks and sectors, finally encrypts

and encodes them with an erasure code. All steps in this phase will be

implemented by the client.

We use (RSA.KeyGen, RSA.Sign, RSA.Verify) as an RSA digital signa-

ture scheme. Let κ = (κ1, κ2) be the security parameter. We choose two

random prime numbers p and q, they satisfy that p, q ∈ [2κ1−1, 2κ1 − 1]. Let

N = pq be the RSA modulus such that 2κ1−2 < N < 2κ1 and the bit length of

N is the modulus size. We randomly pick a prime number e of length 2κ1+κ2

bits as the RSA public key, and d = e−1 mod φ(N) as the RSA private key

[16].

Let G : {0, 1}∗ → Z∗N and H : Z→ ZN be full-domain hash functions, seen

as random oracles. The Z is a set of integers, ZN is the set of {0, 1, 2, · · · , N−
1}, and Z∗N is ZN\{0} [16].

We set t be the delay parameter and B be the security parameter for

VDFs. Let L = {l1 = 3, l2 = 5, · · · , lt} be the first t odd prime numbers and

P = l1 × l2 × · · · × lt, the parameter P is a large integer with about t log t

bits. The client computes hw = H(w) and gw = h
1/P
w for w ∈ [1, B] [16].

The client executes RSA.KeyGen(κ) to generate the signing and verifica-

tion key pair (ssk, spk).

We assume the file that is uploaded to the server is M ∈ {0, 1}∗. File M

is encrypted and encoded with erasure codes. The encryption of files ensures

sufficient privacy and effectively avoids man-in-the-middle attacks, even cloud

20

service providers have no right to know the contents of files. Encoding guar-

antees the file extractability and the recovery of the entire specific file [10].

The file M is split into n blocks, and further into s sectors. Each sector is de-

noted as mi,j ∈ ZN , for i ∈ [1, n] and j ∈ [1, s]. In order to achieve an unique

extractability [15], the bit representation of each sector mi,j is supposed to

contain a characteristic pattern, such as a sequence of zero bits. The pattern

length depends on the size of the file and should be larger than log2(n · s)
[16].

The client also generates file tag and authenticators. Each file has a

unique file tag and n authenticators (depending on the number of blocks).

First, the client chooses a random file identifier id ∈ ZN . Then client picks

random s non-zero elements u1, u2, · · · , us ∈ ZN . The client computes T0 =

id||n||u1||u2|| · · · ||us, finally the file tag is T = T0||RSA.Signssk(T0). For the

file authenticators σi, the client calculates σi = (G(id||i)·
∏s

j=1 u
mi,j

j)d mod N

for i ∈ [1, n]. All operations above are done in the multiplicative group Z∗N
of invertible integers modulo N , this rule is working for the following phase

as well [16].

We assume that the client requires the server to generate r replicas of

the original file M . In this case, the puzzles for VDF are denoted as x
(k)
i,j

for i ∈ [1, n], j ∈ [1, s] and k ∈ [1, r]. The client uploads the processed file

M∗ = ({mi,j}i∈[1,n],j∈[1,s], {σi}i∈[1,n]) to the server [16].

In summary, the public parameters are {N, κ, L,B, P, {gw}w∈[1,B],

{x(k)i,j }i∈[1,n],j∈[1,s],k∈[1,r]}. They are shared between client, server and any pari-

ties who are interested to be a verifier. In addition, the verification parameters

are {T, spk, e,G,H}, they are shared between client and verifier. In the end,

the client keeps a set of private parameters {ssk, d}. There are more symbols

that will appear in the subsequent phases. All symbols and meanings are

shown in Table 3.1 later.

3.2 File Replication

As what we mentioned before, the burden of building replicas is shifted onto

the cloud provider, so after the server receives the processed fileM∗ and public

parameters, it starts generating the agreed-upon r replicas. The server needs

21

Figure 3.1: PORR protocol workflow diagram

to evaluate the VDF puzzles x
(k)
i,j and get the corresponding solutions y

(k)
i,j .

The server firstly uses a random hash function to map the x
(k)
i,j to L

(k)
i,j ⊆ L of

size κ and the random subset S
(k)
i,j of κ values in [1, B]. The server secondly

computes the product P
(k)
i,j of all primes in L

(k)
i,j and g

(k)
i,j =

∏
w∈S(k)

i,j
gw. Then

the server can computes y
(k)
i,j = (g

(k)
i,j)P/P

(k)
i,j ∈ ZN . Finally, the server can

build the replicas m
(k)
i,j of the original sectors mi,j for k ∈ [1, r], it is done by

computing m
(k)
i,j = mi,j + y

(k)
i,j [16].

The server has now completed the generation of the replicas, and it will

also retain the puzzle solutions for future challenges. The above steps are

assumed to be the behaviours of an honest server, and a rational server that

does not take these steps will most likely not be able to respond to the

challenge appropriately. Indeed the rational server needs to calculate the

solutions of all puzzles in the required data block on the fly after receiving

the challenge, this will take some easily observable and unreasonable time.

22

3.3 Challenge Generation

Gritti’s PORR [16] supports public verification, therefore the client and any

authorized verifiers can generate a challenge to the server. If the verifier is not

the client, it will be shared with the verification parameters {T, spk, e,G,H}
to complete the challenge generation.

Due to security risk, we need the verifier to check the signature first to

confirm that the data sent from the client have not been tampered during

transit [33]. The file tag is given by T = T0||RSA.Signssk(T0). The verifier

firstly executes RSA.Verifyspk(T0,RSA.Signssk(T0)) to check if the signature

is valid, if not, the verifier halts the process; if so, the verifier recovers the

elements id||n||u1||u2|| · · · ||us from the file tag. Then the verifier randomly

chooses a block index set I ⊂ [1, n] of l elements, it denotes that the verifier

is about to send one challenge on l blocks, with blocks’ indices in the set I.

The verifier also randomly picks vi ∈ ZN , for i ∈ I, and sets Q = {(i, vi)}i∈I
where i corresponds to the index of a block mi. The verifier finally chooses a

random set R ⊂ [1, r] as the replica indexes must be checked. The challenge

is set as chal = (Q,R) and sent it to the server.

3.4 Response Generation

Once the server receives the chal = (Q,R) from verifier, the server starts

to generate the response resp for the challenge. The server firstly computes

µj =
∑

(i,vi)∈Q vimi,j ∈ Z and σ =
∏

(i,vi)∈Q(σi ·
∏s

j=1

∏
k∈R u

m
(k)
i,j

j)vi mod N .

The response resp is set as resp = ({µj}j∈[1,s], σ) and send it back to the

verifier. If a rational cloud provider runs the server, it might compute the

puzzle solution y at this phase to respond to the challenge correctly. But

since the VDF requires a specified number of sequential steps to evaluate the

puzzles [27], even if the server uses powerful hardware for parallel computing,

it cannot significantly reduce computing time to cover up the misbehaviour.

3.5 Response Verification

This phase is important, it theoretically only takes a short time to complete,

and finally confirms whether the behavior of the server is genuine. After the

23

verifier receives resp = ({µj}j∈[1,s], σ) from server, the verifier first checks if

µj satisfies that 0 ≤ µj ≤ l ·N · (N − 1) for all j ∈ [s]. If any values are not

in the range, the verifier treats this response resp as failure and outputs 0.

Otherwise the verifier computes P
(k)
i,j and S

(k)
i,j for each puzzle (include in the

challenged blocks) x
(k)
i,j for i ∈ I, j ∈ [s] and k ∈ [R], also h

(k)
i,j =

∏
w∈S(k)

i,j
H(w)

[16].

In the end, the verifier checks whether the following equation holds, if so,

the verifier outputs 1; otherwise 0. The correctness of the protocol has been

proved in Appendix [16].

σe =
∏

(i,vi)∈Q

G(id||i)vi×
s∏
j=1

u
µj(1+|R|e)
j ×

(∏
(i,vi)∈Q

s∏
j=1

∏
k∈R

u
vi(h

(k)
i,j)

1/P
(k)
i,j

j

)e
mod N

24

Chapter IV

Experiment Design

This chapter first describes our overall experimental environment and the

configurations of the test host, then introduces the default parameter settings

of P-PORR in the experiments, finally explains how to simulate a realistic

Wide Area Network (WAN) environment in the experiments.

4.1 Implementation

In order to comprehensively analyze the performance of P-PORR and the

different behaviours of honest and rational cloud providers, we design and

implement a P-PORR scheme. Most of our experimental settings follow a

similar work [15] for more accurate and meaningful comparisons. Our code

is written in Python 3.8 and we rely on a hash function SHA-256 and Py-

Cryptodome’s built-in random number generator. We used the Python li-

brary Zfec to implement an erasure code, it can be parameterized to choose

in advance the number of elements whose loss it can tolerate. The proportion

between redundant blocks and data blocks was set to third, which means that

as long as the lost data blocks do not exceed one-third of the total data blocks

(redundant and data blocks), it is recoverable.

We deployed the entire test environment on a PC running Intel Core i7-

9700 with 32GB Random Access Memory (RAM). Four Virtual Machines

(VMs) were created on this PC to design our test environment. The specific

structure topology is like Figure 4.1:

• One VM represents the client that owns the files stored on the cloud

storage provider (server), and it has two-way communications with the

server, including uploads and downloads. It also represents verifiers

that are allowed to generate challenges to the server.

25

Figure 4.1: Experimental environment topology

• One VM represents a cloud storage provider (server) that provides cloud

storage services, and it uploads and downloads data on storage nodes

according to client’s needs.

• Two VMs representing two storage nodes, they connect to the cloud

storage provider and store the client’s data at rest.

4.2 Parameter Selections

For more meaningful comparisons with existing similar works, our default

parameter selections are similar to [15]. As the core algorithm in P-PORR,

the setting of the RSA key will significantly affect the performance of P-PORR

due its size. The early recommend modulus size of RSA was 512 [34], the

specific evaluation of its security at that time showed that the cracking cost

might not be lower than $1,000,000 and 8 months of effort [34]. With the rapid

development of computer hardware, the cracking efficiency of hackers has

significantly improved. The latest research shows that the recommended key

size is 1024 bits for personal use and 2048 bits for companies use [35, 36, 37].

26

Parameter Default value

RSA modulus size |N | 2048 bits

RSA prime size |p| 1024 bits

RSA prime size |q| 1024 bits

Pre-processing parameter B 230

Delay parameter t 216

File size 64MB

Block size 8192 Bytes

Sector size 256 Bytes

Number of replicas r 2

Number of challenges |I| 40

Table 4.1: Default parameter selections in the experiment environment

A giant security key will bring more security. However, it will also affect

the user experience in encryption/decryption time, power consumption and

memory usage, so we finally chose 2048-bit RSA modulus size and 1024-bit

prime numbers p and q.

The pre-processing parameter B is used to ensure that the VDF is safe

against bounded pre-computing attacks. Our VDF scheme is secure for B

challenges as long as the adversary cannot run a long pre-computation during

a period, between the time that the public parameters are made public and

the time when the VDF is evaluated, after which new public parameters need

to be generated [27, 16]. The recommended setting for B is 230 in [27], in

which case a client can store up to 2000 files using one VDF setting, or about

128GB size of files [16]. The free storage size provided by Amazon AWS is

100GB [38], which can be understood as the basic needs of ordinary clients.

The default file size in our experiment is 64MB (the file size will change in

different experiments). The file size of 128GB is larger than both previous

situations, so 230 for B is acceptable. Delay parameter t defines that an honest

cloud provider can evaluate a puzzle in t sequential steps. At the same time,

a parallel machine adversary with a polynomial number of processors cannot

27

distinguish the output y from random in a smaller number of steps. We set

the delay parameter t equal to 216 [27].

A block size of 8KB provides the most balanced average performance

in cloud storage [15, 39], so we set the default block size to 8KB. A file

with a default size of 64MB was split into 8000 blocks; each block is divided

into 32 sectors, each sector’s size is 256 Bytes, and each sector corresponds

to a puzzle. The default number of replicas is 2, so the server needs to

evaluate 8000 * 32 * 2 puzzles. The default number of challenges is 40, which

also means that each challenge will randomly select 40 blocks of data for

verification.

Figure 4.2: Open Systems Interconnection (OSI) 7-layer model1

We tested three commonly used network storage and sharing protocols on

the already built environment .

• File Transfer Protocol (FTP): The FTP works at the Application Layer

in the Open Systems Interconnection Model (OSI) model, shown in Fig-

1 https://www.imperva.com/learn/application-security/osi-model/

28

ure 4.2. The client needs to use a particular FTP client to communicate

with the server. It can work on any operating system and protect our

data by asking the user name and password as login credentials, but by

default FTP will transfer the credentials unencrypted [40, 41].

• Server Message Block (SMB): It is mainly used but not limited to com-

puters running Microsoft Windows. It also provides an authenticated

Inter-Process Communication (IPC) mechanism. The client does not

need any technical knowledge to share folders and download files. How-

ever, because of its security vulnerabilities, it will be used by hackers

as a backdoor attack [42, 43].

• Network File System (NFS): It is mainly used but not limited to com-

puters running Unix or Unix-like computers (such as Linux). The imple-

mentation of NFS uses the Remote Procedure Call (RPC) mechanism,

so that the client can call the function of the server. The operating

system kernel sends the call request of the NFS file system to the NFS

service of the server through TCP/IP, and related operations are exe-

cuted. The server then returns the result of the operation to the client

[41].

We tested the upload speed of files of different sizes under the three pro-

tocols, and the experimental results are shown in the Figure 4.3. Due to the

instability of network transmission, the upload speed results show inevitable

and acceptable fluctuations. Nevertheless, it can still be seen that the FTP

has the fastest speed of these three protocols. The average upload speed of

FTP is 17.4 MB per second, which is about 1 second faster than NFS and

about 3 seconds faster than SMB. It also has stable security. Therefore, FTP

is selected as the default transmission protocol in our experiments.

4.3 Network Environment Design

Network emulators are widely-used test tools in developing network protocols

and applications. An important reason for their popularity is their ability to

29

Figure 4.3: Network storage and sharing protocols.

perform tests under tightly controlled network conditions that would be diffi-

cult to achieve in real networks. Network emulation can be implemented us-

ing specialized hardware or through software, usually requiring support from

the operating system kernel [44, 45]. Software-based emulators can provide

a high accuracy regardless of network traffic load and are more accessible.

The NetEm is a popular version of software-based emulators that is part of

Linux kernel 2.6 and above [46]. It provides the ability to accurately simu-

late most network parameters such as simulating packet delay, packet loss,

duplication and re-ordering through the Linux Traffic Control (tc) tools, and

utilizes Token Bucket Filters (tbf) to simulate rate control [44].

To simulate a real Wide Area Network (WAN), the communication be-

tween the VMs is bridged using a 100 Mbps switch. All traffic exchanged in

the environment is shaped by NetEm [47], and the specific network parame-

ters are set as follows:

• We set the packet loss rate at 0.1%, and the correlation rateof lost

packets at 0.001% [48, 49, 50].

• We set the delay rate to fit normal distribution with a mean of 20ms

30

and a variance of 4ms [51].

• We set the packet corruption rate at 0.1% [52].

• We set the rate of the package being out of order at 0.2% [53].

31

Chapter V

Result Analysis

In this chapter, we analyze the measurement results obtained under the ex-

perimental configuration in the previous chapter from multiple perspectives.

It includes the time consumption of P-PORR at different stages, how differ-

ent block and sector sizes affect P-PORR’s performance, and the financial

impact on cloud service providers. The experiment results prove that the

PORR protocol from [16] generates fair computing and communication over-

head on the client, cloud provider, and verifier, which means that this solution

is practically applicable in a cloud storage environment. Each data point in

our following plots is averaged by 5 independent measurements; where appro-

priate, we also show the corresponding 95% confidence intervals.

5.1 Performance at File Preparation

The file preparation time is showing the total time spent on a file before

storing it on the cloud. It includes the time spent on key generation, tag

generation and puzzle evaluation. Results are shown in Figure 5.1. When

creating two replicas of a 64MB file, the overall preparation time in our case

is about 180 seconds. The plot of the Mirror shows that it will take about

727 seconds to replicate two replicas of a 64MB file [15], P-PORR seems to

show a significant advantage. We conducted a further comparison. When

Mirror creates eight additional replicas for a 64MB file, the total file size

that needs to be processed is 512MB, which is the same as the 256MB file

with two replicas in our case. With this parameter configuration, Mirror only

consumed about 765 seconds [15], while our situation consumed about 723

seconds. P-PORR still maintains a weak advantage, but it can be seen that

the increase in P-PORR file preparation time has become evident as the file

size increases. While the increase in Mirror is not much, it replicates six

32

Figure 5.1: File preparation time

additional files only adds 38 seconds of expense [15].

Once the number of additional replicas exceeds eight, the Mirror replica-

tion time rise begins to be exponential increase. It causes a delay of approx-

imately 1250 seconds when 16 additional file replicas are created [15]. This

situation is because Mirror uses multiple threads for replication, which can

be executed in parallel. However, with the increase in the number of con-

current replication requests, the eight threads in the thread pool have been

exhausted, and the system will be saturated. It took 2887 seconds to prepare

files of the same size in our case, which remained the same as the previous

trend.

5.2 Performance at Verification

Clients’ most frequently used service is to verify along with the original file

are correctly stored at rest. To this end, we measured the total time required

for the server to generate the response and the client to verify the response.

A bigger number of challenges will increase the probability that a rational

server’s malicious behaviour will be detected. Thus, the number of challenges

is variable; it is calculated as half of the file size (MB). For example, 32

33

Figure 5.2: Verification time (verifier)

challenges are requested for a 64MB file. According to the default parameter

settings, the verifier thus checks 128KB of data for each MB of file data. The

experimental results are shown in Figure 5.2.

In our case, when the file size is 64MB, the number of challenges initiated is

32, which is roughly the number of challenges in Mirror (set to 40) in Mirror

[15]. The verification time seen by the client in our case is 0.57 seconds;

it is 0.8 seconds in Mirror [15]. As our file size increases, the number of

corresponding challenges increases. For example, when the file size is 128MB,

the number of challenges is 64, and the verification time rises to 1.14 seconds.

The number of challenges increases the latency for client, but it ensures stable

security. In Mirror’s experiment, the number of challenges is fixed at 40,

independent of the file size. It is the main reason why the verification time

remains 0.8 seconds. It provides an instant verification speed, but the security

risk of large files becomes high with that.

5.3 Performance at Puzzle Evaluation

The puzzles directly restrict the misbehaviours of the server. Preparing the

puzzles takes the longest time in file preparation. It contributes about 72% of

34

Figure 5.3: Puzzle evaluation time

the file preparation. Thus, we measure the time spent for puzzle evaluation

only. The experimental results are shown in Figure 5.3. In the default con-

figuration, a 64MB file requires 180 seconds of file preparation time, of which

131 seconds are spent on puzzles evaluation. As the file size increases, the

number of sectors also increases, which leads to the continuous linear growth

of puzzle evaluation.

5.4 Performance at Response Generation

We measure the time required for the server to generate a response based on a

different number of challenges. The experimental results are shown in Figure

5.4. We consider the behaviours of rational cloud providers and honest cloud

providers. The former requires more time to generate a response because it

requires the dynamic calculation of puzzle solutions. On the other hand, since

honest cloud providers have calculated solutions to puzzles and stored them

in a static state, their response generation speed is significantly faster.

In our case, under the same number of challenges, the response generation

time of a rational server is roughly twice that of an honest server. The re-

sponse generation time continues to rise as the number of challenges increases.

35

Figure 5.4: Response generation time

The response generation time given in Mirror is based on one (bitlength of co-

efficients) of the blind factors, which is different from our analysis of response

generation time based on the number of challenges. However, the authors of

Mirror claim that as long as the blind factors are greater or equal to 70, the

rational server should not gain any (reasonable) advantage in misbehaving.

According to that, we know that when the bitlength of coefficients is equal to

70, the rational server in Mirror takes about 1 second to generate the response

of 40 challenges [15]. While the rational server in our case took 0.63 seconds

to generate the response of 40 challenges, at this time, the honest server took

only 0.31 seconds. In this comparison, the number of challenges in Mirror

and our case are both 40. Our case has the advantage of response speed in

this context.

If we observe the difference between Mirror and P-PORR at the highest

security level, we will find that the rational server in Mirror only takes about

2.8 seconds [15]. In our case, the rational server reached 4.86 seconds. In

this situation, we launched 200 challenges for a 64MB file. The rational

server needs to calculate more puzzle solutions on the fly, and Mirror still

launches 40 challenges. The security method Mirror uses in order to increase

36

the computational cost of a rational server is the increase of the bitlength of

the blind factors.

5.5 Performance at Different Block Sizes

Figure 5.5: Latency at different block sizes

According to the block sizes, we tested the time required for response

generation and verification. The default sector size is 256 Bytes. The exper-

imental results are shown in Figure 5.5. We notice that a smaller block size

gives a shorter time. Indeed, block size and challenge number are related,

meaning that response generation and verification are faster when the block

size decreases.

There is a related plot in Mirror showing that it has the same trend as ours

[15], but our trend is more obvious. When the block size in Mirror is 2048

Bytes, the client verification time is about 1.1 seconds, compared to 1 second

at 1024 Bytes hence a difference of 0.1 seconds. In our case, the verification

time is around 0.1 seconds for a 1024 Bytes block size, when the block size is

2048 Bytes, the time increased by 50%, which is about 0.2 seconds. This is

still more optimistic than [15]. The previous comparison also shows that our

situation has more advantages in handling small files.

37

5.6 Performance at Different Sector Sizes

Figure 5.6: Latency at different sector sizes

We tested the time required for response generation and verification ac-

cording to the sector sizes. The default block size in the experiment is 8192

Bytes. The smaller sector size means more number of sectors for a given block

size. The number of blocks and challenges are fixed as the default setting. It

affects the verification time since the verifier must check more data from the

challenges. The experimental results are shown in Figure 5.6.

Mirror does not explicitly analyze the effect of sector size on its protocol,

so our discussion is mainly based on our case. In general, when the sector size

decreases, the server response time and client verification time will increase.

This will also significantly improve security because under the same number

of challenges (blocks), a smaller sector size means that more data will be

verified. We finally chose 256 Bytes as the default sector size to balance

verification time and security. It only takes 0.36 seconds for the client to get

the verification result. At the same time, the sector size of 32 Bytes will take

15 times slower than the default setting on verification.

38

5.7 Financial Considerations

Figure 5.7: Financial costs on cloud service providers

The financial benefit is an aspect that cloud service providers attach im-

portance to. We calculated the financial costs of P-PORR and Mirror in

preparing files. The Mirror data comes from the replicating process, which

is the same as the file preparation time in our case. The experimental re-

sults are shown in Figure 5.7. We assume that the server provides a large

general-purpose instance from Amazon EC2 at US$0.404 per hour, equiva-

lent to US$0.000112 per second and multiplied by our file preparation time

(in seconds).

When the file size is 384MB, both P-PORR and Mirror will incur costs

of approximately US$0.18 [15]. From a financial point of view, our case is

more competitive when processing files smaller than 384MB, which can save

approximately 2 to 15 times compared to [15]. Once the file size exceeds

384MB, Mirror gradually gains an advantage due to its slow increase when

preparing files. Most of the previous technical results show that our case is

competitive in handling small files, which also maps to finances.

39

Chapter VI

Conclusion

In this chapter, we discuss our main findings and their implications. We

also examine limitations in our work and future research directions.

6.1 Discussion

The experimental results in Chapter 4 show that P-PORR exhibits acceptable

results in realistic cloud environments. Rational cloud providers take a sig-

nificantly longer time to respond to verification than honest cloud providers,

demonstrating that the combined usage of VDF and POR is successful and

can be applied to proofs of data replication and retrievability in the cloud.

Achieving a fast response verification time is also consistent with our ini-

tial assumptions when combining VDF with POR. The experimental results

show the similar performance of P-PORR and related research at this stage

in many aspects, which proves the practicability of P-PORR. Especially when

dealing with small files, whether it is the time for the server to prepare the

file, the time for the server to generate the response, the time for the client

to verify the response, or financial considerations, P-PORR all showed better

performance than similar solutions at this stage, such as Mirror. Especially

P-PORR is proven to be publicly verifiable, and the verifier only needs a

few parameters to complete the challenge-verification process. This feature

fully guarantees the client’s privacy because the verifier cannot know any file

content of the client through these parameters. However, it brings enough

convenience to the client because it could help the client who has a weak

security awareness to supervise the cloud provider.

This experiment provides new insights into the relationship between VDF

and data replication and retrievability proofs in the cloud. VDF was usu-

ally used for rate or network traffic filtering in the past. We can focus more

40

research on VDF on cloud storage proof in the future. As the first imple-

mentation of public PORR, the experimental results in Chapter 4 also helps

us to clearly understand the difference between public PORR/P-PORR and

private PORR/Mirror in usage. They have their characteristics, such as P-

PORR is always faster at file preparation time and verification for small files.

At the same time, Mirror initially takes longer on multi tests than P-PORR,

but its rise is slow and eventually has an advantage in verifying large files.

6.2 Limitations

Any researches have some limitations, and ours is no exception. We deploy

the test environment of Chapter 4 in order to make more meaningful com-

parisons with similar studies. The purpose of our test environment is to

simulate the realistic cloud storage and network environment as much as pos-

sible, but this is not 100% true due to time constraints. The most popular

open-source cloud platform is OpenStack, which uses pooled virtual resources

to build and manage private clouds and public clouds. The tools that make

up the OpenStack platform are called ”projects” and handle core cloud com-

puting services such as compute, networking, storage, identity, and image

services [54, 55, 56]. OpenStack is supporting more than 75 other public

cloud providers around the world, including well-known companies such as

Dell, HP, and IBM [57, 58]. Building and testing P-PORR with OpenStack

should yield a more objective experimental result so that the performance of

P-PORR can be more comprehensively analyzed from multiple perspectives.

6.3 Conclusion and Future Work

In this paper, we implemented and tested the first public PORR solution

P-PORR, which combines a POR scheme and an exponentiation-based VDF

scheme [11, 27]. It is used for the client/verifier to check whether the original

file and its replicas are stored correctly on the server. We mainly compared

the experimental results with a similar private PORR solution, called Mirror

[15], and the results show that P-PORR has acceptable performance in a real

cloud environment, especially in the replicas generation and verification of

small files in terms of time, both are better than the Mirror scheme.

41

In future work, we will focus on the following points:

• Increasing the retrievability of dynamic data by referring to the Merkle

Hash Tree concept.

• Expanding more research on how to increase the robustness of P-PORR

in the face of security threats, such as ensuring that the contents of the

data packets transmitted between the verifier and the server are not

tampered with, and that no one pretends to be a verifier or the server

transmitting wrong information to deceive each other.

• Using the OpenStack platform to implement and evaluate the protocol

more realistically and comprehensively.

42

References

[1] Xhemal Zenuni, Jaumin Ajdari, Florije Ismaili, and Bujar Raufi. Cloud

storage providers: A comparison review and evaluation. In ., Comp-

SysTech ’14, page 272–277, New York, NY, USA, 2014. Association for

Computing Machinery.

[2] BBC. Google loses data as lightning strikes. https://www.bbc.com/

news/technology-33989384, 2015. Accessed on 11/04/2021.

[3] Medium. Tencent was claimed ten million for data loss due to

cloud hard drive glitch. https://medium.com/genaro-network/

tencent-was-claimed-ten-million-for-data-loss-due-to-cloud-hard-drive-glitch-344a26449fe2,

2018. Accessed on 11/04/2021.

[4] Computer Weekly. Enterprises exposed to data loss by cloud configu-

ration errors. https://www.computerweekly.com/news/252471175/

Enterprises-exposed-to-data-loss-by-cloud-configuration-errors,

2019. Accessed on 11/04/2021.

[5] Amazon. Amazon s3 service level agreement. https://aws.amazon.

com/cn/s3/sla/, 2019. Accessed on 11/04/2021.

[6] Yadi Ma, Thyaga Nandagopal, Krishna P. N. Puttaswamy, and Suman

Banerjee. An ensemble of replication and erasure codes for cloud file

systems. In 2013 Proceedings IEEE INFOCOM, pages 1276–1284, 2013.

[7] Dell. Protect data stored and shared in public cloud stor-

age. https://i.dell.com/sites/doccontent/shared-content/

data-sheets/en/Documents/Dell_data_protection_cloud_

edition__data_sheet_HR.pdf, 2013.

43

https://www.bbc.com/news/technology-33989384
https://www.bbc.com/news/technology-33989384
https://medium.com/genaro-network/tencent-was-claimed-ten-million-for-data-loss-due-to-cloud-hard-drive-glitch-344a26449fe2
https://medium.com/genaro-network/tencent-was-claimed-ten-million-for-data-loss-due-to-cloud-hard-drive-glitch-344a26449fe2
https://www.computerweekly.com/news/252471175/Enterprises-exposed-to-data-loss-by-cloud-configuration-errors
https://www.computerweekly.com/news/252471175/Enterprises-exposed-to-data-loss-by-cloud-configuration-errors
https://aws.amazon.com/cn/s3/sla/
https://aws.amazon.com/cn/s3/sla/
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell_data_protection_cloud_edition__data_sheet_HR.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell_data_protection_cloud_edition__data_sheet_HR.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell_data_protection_cloud_edition__data_sheet_HR.pdf

[8] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea

Kissner, Zachary Peterson, and Dawn Song. Provable data possession

at untrusted stores. In Proceedings of the 14th ACM Conference on

Computer and Communications Security, CCS ’07, page 598–609, New

York, NY, USA, 2007. Association for Computing Machinery.

[9] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring,

Osama Khan, Lea Kissner, Zachary Peterson, and Dawn Song. Remote

data checking using provable data possession. ACM Trans. Inf. Syst.

Secur., 14(1), June 2011.

[10] Ari Juels and Burton S. Kaliski. Pors: Proofs of retrievability for large

files. In Proceedings of the 14th ACM Conference on Computer and

Communications Security, CCS ’07, page 584–597, New York, NY, USA,

2007. Association for Computing Machinery.

[11] Hovav Shacham and Brent Waters. Compact proofs of retrievability. J.

Cryptol., 26(3):442–483, July 2008.

[12] R. Curtmola, O. Khan, R. Burns, and G. Ateniese. Mr-pdp: Multiple-

replica provable data possession. In 2008 The 28th International Con-

ference on Distributed Computing Systems, pages 411–420, 2008.

[13] Ayad F. Barsoum and M. Anwar Hasan. Integrity verification of multi-

ple data copies over untrusted cloud servers. In 2012 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (ccgrid

2012), pages 829–834, 2012.

[14] Ayad F. Barsoum and M. Anwar Hasan. Provable multicopy dynamic

data possession in cloud computing systems. IEEE Transactions on In-

formation Forensics and Security, 10(3):485–497, 2015.

[15] Frederik Armknecht, Ludovic Barman, Jens-Matthias Bohli, and Ghas-

san O. Karame. Mirror: Enabling proofs of data replication and re-

trievability in the cloud. In Proceedings of the 25th USENIX Conference

44

on Security Symposium, SEC’16, page 1051–1068, USA, 2016. USENIX

Association.

[16] Clementine Gritti. Publicly verifiable proofs of data replication and re-

trievability for cloud storage. In 2020 International Computer Sympo-

sium (ICS), pages 431–436, 2020.

[17] G.S. Prasad and Vidya Gaikwad. A survey on user awareness of cloud

security. International Journal of Engineering and Technology(UAE),

7:131–135, 05 2018.

[18] Cloudflare. The relative cost of bandwidth

around the world. https://blog.cloudflare.com/

the-relative-cost-of-bandwidth-around-the-world/, 2014.

Accessed on 11/04/2021.

[19] Giuseppe Ateniese, Roberto Di Pietro, Luigi V. Mancini, and Gene

Tsudik. Scalable and efficient provable data possession. In Proceedings

of the 4th International Conference on Security and Privacy in Commu-

nication Netowrks, SecureComm ’08, New York, NY, USA, 2008. Asso-

ciation for Computing Machinery.

[20] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of retrievability

via hardness amplification. In Proceedings of the 6th Theory of Cryptog-

raphy Conference on Theory of Cryptography, TCC ’09, page 109–127,

Berlin, Heidelberg, 2009. Springer-Verlag.

[21] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage

from homomorphic identification protocols. In Proceedings of the 15th

International Conference on the Theory and Application of Cryptology

and Information Security: Advances in Cryptology, ASIACRYPT ’09,

page 319–333, Berlin, Heidelberg, 2009. Springer-Verlag.

[22] Hovav Shacham and Brent Waters. Compact proofs of retrievability.

In Josef Pieprzyk, editor, Advances in Cryptology - ASIACRYPT 2008,

pages 90–107, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

45

https://blog.cloudflare.com/the-relative-cost-of-bandwidth-around-the-world/
https://blog.cloudflare.com/the-relative-cost-of-bandwidth-around-the-world/

[23] Wikipedia. Standard model (cryptography). https://en.wikipedia.

org/wiki/Standard_model_(cryptography), 2021. Accessed on

20/01/2022.

[24] Wikipedia. Random oracle. https://en.wikipedia.org/wiki/

Random_oracle, 2022. Accessed on 20/01/2022.

[25] Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. Enabling

public verifiability and data dynamics for storage security in cloud com-

puting. In Michael Backes and Peng Ning, editors, Computer Security –

ESORICS 2009, pages 355–370, Berlin, Heidelberg, 2009. Springer Berlin

Heidelberg.

[26] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. Practi-

cal dynamic proofs of retrievability. In Proceedings of the 2013 ACM

SIGSAC Conference on Computer and Communications Security, CCS

’13, page 325–336, New York, NY, USA, 2013. Association for Comput-

ing Machinery.

[27] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable

delay functions. In Annual international cryptology conference, pages

757–788. Springer, 2018.

[28] Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two verifiable

delay functions. Cryptology ePrint Archive, Report 2018/712, 2018.

https://ia.cr/2018/712.

[29] Vidal Attias, Luigi Vigneri, and Vassil Dimitrov. Preventing denial of

service attacks in iot networks through verifiable delay functions. CoRR,

abs/2006.01977, 2020.

[30] Mi Zhou, Xiaoming Lin, Ao Liu, and Yiying Che. An improved

blockchain consensus protocol with distributed verifiable delay function.

In 2021 IEEE International Conference on Electronic Technology, Com-

munication and Information (ICETCI), pages 330–337, 2021.

46

https://en.wikipedia.org/wiki/Standard_model_(cryptography)
https://en.wikipedia.org/wiki/Standard_model_(cryptography)
https://en.wikipedia.org/wiki/Random_oracle
https://en.wikipedia.org/wiki/Random_oracle
https://ia.cr/2018/712

[31] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-

release crypto. Technical report, Massachusetts Institute of Technology,

USA, 1996.

[32] Wei Guo, Sujuan Qin, Jun Lu, Fei Gao, Zhengping Jin, Qiaoyan Wen,

and Daniele Sgandurra. Improved proofs of retrievability and replication

for data availability in cloud storage. The Computer Journal, 63(1):1216–

1230, 2020.

[33] Eliza Paul. Linux file sharing services ftp, nfs and samba. https://www.

emptrust.com/blog/benefits-of-using-digital-signatures/#:

~:text=Digital%20signatures%20can%20provide%20proof,

been%20tampered%20with%20during%20transit.&text=Digital%

20signatures%20are%20significantly%20more,other%20forms%

20of%20electronic%20signatures., 2017. Accessed on 30/01/2022.

[34] M.J.B. Robshaw. Security estimates for 512-bit rsa. In Proceedings of

WESCON’95, pages 409–, 1995.

[35] Hadeal Abdulaziz Al Hamid, Sk Md Mizanur Rahman, M. Shamim Hos-

sain, Ahmad Almogren, and Atif Alamri. A security model for pre-

serving the privacy of medical big data in a healthcare cloud using a

fog computing facility with pairing-based cryptography. IEEE Access,

5:22313–22328, 2017.

[36] Aniruddha Bhattacharjya, Xiaofeng Zhong, and Xing Li. A lightweight

and efficient secure hybrid rsa (shrsa) messaging scheme with four-

layered authentication stack. IEEE Access, 7:30487–30506, 2019.

[37] Raza Imam, Qazi Mohammad Areeb, Abdulrahman Alturki, and Faisal

Anwer. Systematic and critical review of rsa based public key cryp-

tographic schemes: Past and present status. IEEE Access, 9:155949–

155976, 2021.

[38] Amazon Web Services. Aws free tier. https://aws.amazon.com/

free/?nc1=h_ls&all-free-tier.sort-by=item.additionalFields.

47

https://www.emptrust.com/blog/benefits-of-using-digital-signatures/#:~:text=Digital%20signatures%20can%20provide%20proof,been%20tampered%20with%20during%20transit.&text=Digital%20signatures%20are%20significantly%20more,other%20forms%20of%20electronic%20signatures.
https://www.emptrust.com/blog/benefits-of-using-digital-signatures/#:~:text=Digital%20signatures%20can%20provide%20proof,been%20tampered%20with%20during%20transit.&text=Digital%20signatures%20are%20significantly%20more,other%20forms%20of%20electronic%20signatures.
https://www.emptrust.com/blog/benefits-of-using-digital-signatures/#:~:text=Digital%20signatures%20can%20provide%20proof,been%20tampered%20with%20during%20transit.&text=Digital%20signatures%20are%20significantly%20more,other%20forms%20of%20electronic%20signatures.
https://www.emptrust.com/blog/benefits-of-using-digital-signatures/#:~:text=Digital%20signatures%20can%20provide%20proof,been%20tampered%20with%20during%20transit.&text=Digital%20signatures%20are%20significantly%20more,other%20forms%20of%20electronic%20signatures.
https://www.emptrust.com/blog/benefits-of-using-digital-signatures/#:~:text=Digital%20signatures%20can%20provide%20proof,been%20tampered%20with%20during%20transit.&text=Digital%20signatures%20are%20significantly%20more,other%20forms%20of%20electronic%20signatures.
https://www.emptrust.com/blog/benefits-of-using-digital-signatures/#:~:text=Digital%20signatures%20can%20provide%20proof,been%20tampered%20with%20during%20transit.&text=Digital%20signatures%20are%20significantly%20more,other%20forms%20of%20electronic%20signatures.
https://aws.amazon.com/free/?nc1=h_ls&all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=*all&awsf.Free%20Tier%20Categories=*all/
https://aws.amazon.com/free/?nc1=h_ls&all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=*all&awsf.Free%20Tier%20Categories=*all/
https://aws.amazon.com/free/?nc1=h_ls&all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=*all&awsf.Free%20Tier%20Categories=*all/

SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%

20Types=*all&awsf.Free%20Tier%20Categories=*all/, 2022. Ac-

cessed on 13/01/2022.

[39] Alireza Yazdanpanah and Mahmoud Reza Hashemi. A new compres-

sion ratio prediction algorithm for hardware implementations of lzw data

compression. In 2010 15th CSI International Symposium on Computer

Architecture and Digital Systems, pages 155–156, 2010.

[40] Bertel King. Which file transfer method is best for your home network?

https://www.makeuseof.com/tag/file-transfer-home-network/,

2019. Accessed on 14/01/2022.

[41] Develop Paper. Linux file sharing services ftp,

nfs and samba. https://developpaper.com/

linux-file-sharing-services-ftp-nfs-and-samba/, 2020. Ac-

cessed on 14/01/2022.

[42] Guohang Lu, Yi Liu, Yifei Chen, Chengwei Zhang, Yayu Gao, and Guo-

hui Zhong. A comprehensive detection approach of wannacry: Prin-

ciples, rules and experiments. In 2020 International Conference on

Cyber-Enabled Distributed Computing and Knowledge Discovery (Cy-

berC), pages 41–49, 2020.

[43] Stephen B. Wicker. The ethics of zero-day exploits—: The nsa meets

the trolley car. Commun. ACM, 64(1):97–103, dec 2020.

[44] Ying Li, Radim Bartos, and Chunchao Liang. Are containers coupled

with netem a reliable tool for performance study of network protocols?

In 2019 SoutheastCon, pages 1–7, 2019.

[45] Hemminger Stephen. Network emulation with netem. 2005 Proceedings

of the 6th Australia’s National Linux Conference, pages 1–8, 04 2005.

[46] Audrius Jurgelionis, Jukka-Pekka Laulajainen, Matti Hirvonen, and

Alf Inge Wang. An empirical study of netem network emulation function-

48

https://aws.amazon.com/free/?nc1=h_ls&all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=*all&awsf.Free%20Tier%20Categories=*all/
https://aws.amazon.com/free/?nc1=h_ls&all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=*all&awsf.Free%20Tier%20Categories=*all/
https://aws.amazon.com/free/?nc1=h_ls&all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=*all&awsf.Free%20Tier%20Categories=*all/
https://www.makeuseof.com/tag/file-transfer-home-network/
https://developpaper.com/linux-file-sharing-services-ftp-nfs-and-samba/
https://developpaper.com/linux-file-sharing-services-ftp-nfs-and-samba/

alities. In 2011 Proceedings of 20th International Conference on Com-

puter Communications and Networks (ICCCN), pages 1–6, 2011.

[47] NetEm. Netem, the linux foundation. http://www.linuxfoundation.

org/collaborate/workgroups/networking/netem, 2021. Accessed on

11/04/2021.

[48] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan,

Neal Cardwell, Yuchung Cheng, Ankur Jain, Shuai Hao, Ethan Katz-

Bassett, and Ramesh Govindan. Reducing web latency: The virtue of

gentle aggression. In Proceedings of the ACM SIGCOMM 2013 Con-

ference on SIGCOMM, SIGCOMM ’13, page 159–170, New York, NY,

USA, 2013. Association for Computing Machinery.

[49] Michael Dahlin, Bharat Baddepudi V. Chandra, Lei Gao, and Amol

Nayate. End-to-end wan service availability. IEEE/ACM Trans. Netw.,

11(2):300–313, April 2003.

[50] Srikanth Sundaresan, Walter de Donato, Nick Feamster, Renata Teix-

eira, Sam Crawford, and Antonio Pescapè. Broadband internet perfor-

mance: A view from the gateway. SIGCOMM Comput. Commun. Rev.,

41(4):134–145, August 2011.

[51] Dan Dobre, Ghassan Karame, Wenting Li, Matthias Majuntke, Neeraj

Suri, and Marko Vukolić. Powerstore: Proofs of writing for efficient and

robust storage. In Proceedings of the 2013 ACM SIGSAC Conference on

Computer amp; Communications Security, CCS ’13, page 285–298, New

York, NY, USA, 2013. Association for Computing Machinery.

[52] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho Förster,

Arvind Krishnamurthy, and Thomas Anderson. Understanding and mit-

igating packet corruption in data center networks. In Proceedings of the

Conference of the ACM Special Interest Group on Data Communication,

SIGCOMM ’17, page 362–375, New York, NY, USA, 2017. Association

for Computing Machinery.

49

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

[53] Vern Paxson. End-to-end internet packet dynamics. SIGCOMM Comput.

Commun. Rev., 27(4):139–152, October 1997.

[54] Red Hat. Understanding openstack. https://www.redhat.com/en/

topics/openstack, 2021. Accessed on 05/02/2022.

[55] Zhu Kai, Liu Youyu, Lv Qi, Shi Cheng Hao, and Zhang Liping. Build-

ing a private cloud platform based on open source software openstack.

In 2020 International Conference on Big Data and Social Sciences

(ICBDSS), pages 84–87, 2020.

[56] Arsalan Saghir and Tahir Masood. Performance evaluation of openstack

networking technologies. In 2019 International Conference on Engineer-

ing and Emerging Technologies (ICEET), pages 1–6, 2019.

[57] Brandon Butler. 15 most powerful openstack compa-

nies. https://www.networkworld.com/article/2176960/

15-most-powerful-openstack-companies.html, 2014. Accessed

on 05/02/2022.

[58] Sean Michael Kerner. Openstack now powers 75 pub-

lic clouds worldwide. https://www.eweek.com/cloud/

openstack-now-powers-75-public-clouds-worldwide/, 2018.

Accessed on 05/02/2022.

50

https://www.redhat.com/en/topics/openstack
https://www.redhat.com/en/topics/openstack
https://www.networkworld.com/article/2176960/15-most-powerful-openstack-companies.html
https://www.networkworld.com/article/2176960/15-most-powerful-openstack-companies.html
https://www.eweek.com/cloud/openstack-now-powers-75-public-clouds-worldwide/
https://www.eweek.com/cloud/openstack-now-powers-75-public-clouds-worldwide/

Appendices

Given h
(k)
i,j =

∏
w∈S(k)

i,j
H(w) and y

(k)
i,j = (g

(k)
i,j)P/P

(k)
i,j ∈ ZN , so:

(y
(k)
i,j)P

(k)
i,j = ((g

(k)
i,j)P/P

(k)
i,j)P

(k)
i,j = ((h

(k)
i,j)1/P)P = h

(k)
i,j mod N

From a challenge set chal = (Q,R) and response set resp = ({µj}j∈[1,s], σ).

We get the following

σ =
∏

(i,vi)∈Q

(σi ·
s∏
j=1

∏
k∈R

u
m

(k)
i,j

j)vi

=
∏

(i,vi)∈Q

σvii ×
∏

(i,vi)∈Q

s∏
j=1

∏
k∈R

(u
m

(k)
i,j

j)vi

=
∏

(i,vi)∈Q

(G(id||i) ·
s∏
j=1

u
mi,j

j)vid ×
∏

(i,vi)∈Q

s∏
j=1

∏
k∈R

(u
mi,j+y

(k)
i,j

j)vi

=
∏

(i,vi)∈Q

(G(id||i)vi ·
s∏
j=1

u
vimi,j

j)d ×
∏

(i,vi)∈Q

s∏
j=1

∏
k∈R

u
mi,jvi
j ×

∏
(i,vi)∈Q

s∏
j=1

∏
k∈R

u
y
(k)
i,j vi
j

=
(∏

(i,vi)∈Q

G(id||i)vi ×
s∏
j=1

u
(
∑

(i,vi)∈Q vimi,j)

j

)d
×

s∏
j=1

∏
k∈R

u
(
∑

(i,vi)∈Q vimi,j)

j ×
∏

(i,vi)∈Q

s∏
j=1

∏
k∈R

u
vi(h

(k)
i,j)

1/P
(k)
i,j

j

=
(∏

(i,vi)∈Q

G(id||i)vi ×
s∏
j=1

u
µj
j

)d
×

s∏
j=1

u
|R|µj
j ×

∏
(i,vi)∈Q

s∏
j=1

∏
k∈R

u
vi(h

(k)
i,j)

1/P
(k)
i,j

j

and so

σe =
∏

(i,vi)∈Q

G(id||i)vi ×
s∏
j=1

u
µj
j ×

(s∏
j=1

u
|R|µj
j ×

∏
(i,vi)∈Q

s∏
j=1

∏
k∈R

u
vi(h

(k)
i,j)

1/P
(k)
i,j

j

)e
=

∏
(i,vi)∈Q

G(id||i)vi ×
s∏
j=1

u
µj(1+|R|e)
j ×

(∏
(i,vi)∈Q

s∏
j=1

∏
k∈R

u
vi(h

(k)
i,j)

1/P
(k)
i,j

j

)e
mod N

51

Deputy Vice-Chancellor’s Office
Postgraduate Research Office

Co-Authorship Form - Masters

This form is to accompany the submission of any thesis that contains research reported in co-
authored work that has been published, accepted for publication, or submitted for publication. A
copy of this form should be included for each co-authored work that is included in the thesis.
Completed forms should be included at the front (after the thesis abstract) of each copy of the thesis
submitted for examination and library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-authored work
and provide details of the publication or submission from the extract comes:
Chapter IV and Chapter V have been used in the paper entitled ‘Efficient Publicly Verifiable Proofs
of Data Replication and Retrievability Applicable for Cloud Storage’ accepted for publication in the
Advances in Science, Technology and Engineering Systems Journal

Please detail the nature and extent (%) of contribution by the candidate:

Certification by Co-authors:
If there is more than one co-author then a single co-author can sign on behalf of all
The undersigned certifies that:
 The above statement correctly reflects the nature and extent of the Masters candidate’s

contribution to this co-authored work
 In cases where the candidate was the lead author of the co-authored work he or she wrote the

text

Name: Clementine Gritit Signature: CGritti Date: 18 February 2022

	List of Figures
	List of Tables
	Introduction
	Background
	Problem Statement
	Motivation
	Research Question
	Publication
	Thesis Structure

	Literature Review
	Proof of Data Possession
	Proofs of Retrievability
	Verifiable Delay Functions
	Proofs of Data Replication and Retrievability
	Summary

	Definition
	Protocol Setup
	File Replication
	Challenge Generation
	Response Generation
	Response Verification

	Experiment Design
	Implementation
	Parameter Selections
	Network Environment Design

	Result Analysis
	Performance at File Preparation
	Performance at Verification
	Performance at Puzzle Evaluation
	Performance at Response Generation
	Performance at Different Block Sizes
	Performance at Different Sector Sizes
	Financial Considerations

	Conclusion
	Discussion
	Limitations
	Conclusion and Future Work

	References
	Appendices

