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ABSTRACT

The aim of this research was to develop a method for recording ground truth with
performance comparable to motion capture, in order to produce high-quality outdoor
visual odometry datasets. A novel fiducial marker system was developed, featuring a
smooth pattern which is used in an optimisation process to produce refined estimates.
On average, precision was increased by 27 % compared to traditional fiducial markers.
To investigate the limit of the increase in pose estimation precision possible with this
method, the marker was modelled as a dense grid of checkerboard corners and the
Cramér-Rao lower bound of the corresponding estimator was derived symbolically. This
gave a lower bound for the variance of a pose estimated from a given image. The model

was validated in simulation and using real images.

The distribution of the error for a common checkerboard corner detector was eval-
uated to determine whether modelling it using independent and identically distributed
Gaussian random variables was valid. In a series of experiments where images were
collected from a tripod, a robot arm, and a slider-type electric actuator, it was deter-
mined that the error is usually normally distributed but its variance depends on the
amount of lens blur in the image, and that any amount of motion blur can produce
correlated results. Furthermore, in images with little blur (less than approximately one
pixel) the estimates are biased, and both the bias and the variance are dependent on
the location of the corner within a pixel. In real images, the standard deviation of the
noise was around 80 % larger at the pixel edges than at the centre. The intensity noise
from the image sensor was also found not to be identically distributed: in one camera,
the standard deviation of the intensity noise varied by a factor of approximately four

within the region around a checkerboard corner.
This research suggests that it is possible to significantly increase fiducial marker
pose estimation precision, presents a novel approach for predicting and evaluating pose

estimation precision, and highlights sources of error not considered in prior work.
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PREFACE

This research was aligned with the 2016-2018 MBIE Smart Ideas project, UOCX1601
“Autonomous forest pruning and data collection of tree metrics”. When I helped put
that bid together, we aimed to address the issue of clearwood supply in the New Zealand
forestry industry. In short, for a variety of complicated reasons, the forestry sector has
been steadily moving toward growing pine trees as quickly and cheaply as possible in

order to export bulk unprocessed logs. This is impacting the timber processing industry,

which relies on a steady supply of clearwood (wood with few knots or defects) in order to

Figure 1 A late prototype of the tree pruning robot, shown in the indoor aerial pruning test en-
vironment we set up in the motion capture lab. Visible on the prototype from left to right are: the
sixth iteration of the pruning tool, the camera stabilisation rig for visual odometry cameras (with the
front camera missing) and its integrated pruner gimbal, the pruner motion controller I designed and
programmed, the second generation of the custom airframe, and the IMU stabilisation rig (below the
onboard computer). Out of view is the custom interface board I designed for the IMU and the 120 W
power supply I designed to power the onboard computer from the flight battery.
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produce appearance-grade wood products. Producing clearwood has several downsides.
The trees must be pruned several times throughout their lifetime: an operation that
is physically difficult, time-consuming, and somewhat hazardous. The trees must be
planted further apart in order to maximise clearwood production per tree, which reduces
the amount of wood overall, and even then only the wood that grows over the pruned
area on each tree is clearwood. Finally, the value of a plantation must be estimated
several decades in advance to determine profitability, and that value depends on political

and geopolitical factors which are hard to predict.

Our idea was to develop an aerial robot that could prune trees. This would largely
eliminate a job that the forestry industry does not particularly want, increase clearwood
production per tree by making it practical to prune further up the trunk than usual,
and encourage better land utilisation by enabling pruning on land too steep for human
pruners to practically operate on. The idea garnered a lot of interest from Scion, who
want to restructure the forestry industry around high-value products; the New Zealand

Forest Owners Association and various sawmill owners, who want more pruned logs;

TRl

Figure 2 A photo from a field trip to a commercial forest plantation near Hatepe, Waikato, in the
North Island of New Zealand. These trees are around the age at which they would have their second
pruning, which is the first we envisioned performing in our project (since the first pruning begins at
ground level and it would be difficult for a UAV to access the trunk). Note the heavy undergrowth,
and imagine trying to navigate from tree to tree with a medium-sized UAV without getting stuck in
the brush. Thanks to Richard Parker from Scion for organizing the trip and for this photo, and to Lake
Taupo Forest Trust for welcoming us onto their land.
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and several large forest managers, who want methods for pruning their trees which will
stay economically feasible despite uncertain clearwood prices. As a side benefit, the
robots could collect extremely detailed data as they navigate through the forest, which

forest managers were equally interested in.

The concept for the robot was a multirotor UAV that would localise itself, map,
and navigate inside a forest, using 3D SLAM and simple semantic models of the trees.
A swarm of these robots bearing lightweight pruning tools would collaborate to cover a
specified block of forest, pruning all the branches one by one until whatever criteria the
forest manager chooses are satisfied. At the time, we thought the hardest part would
be developing and testing the SLAM algorithm. My personal concern was that we
would lack a good evaluation method for it, given that none of the usual techniques for
recording ground truth camera poses work well in that environment, which lead to the
research in this thesis. As it turned out, the hard part was all the practical things, and
we spent year after year iterating on UAV airframes and pruning tool designs and so on
and ran out of time to do much relevant research. We did end up with an impressive-
looking prototype (as shown in Figure 1), and performed various convincing-looking
demonstrations of fully autonomous tree pruning for a variety of audiences, both in the

lab and in pine forests.

Field trips to our industry collaborators’ various plantations (see Figure 2) im-
pressed upon us the sheer scale of the challenge we had undertaken. For example, some
areas are so heavily vegetated that forestry workers habitually use their ladders to
clamber over the undergrowth. Since the project officially started in late 2016, the focus
in visual odometry research has gone from mostly increasing performance in indoor
and urban environments to a broad push for robustness in all environments (fuelled
in part by the explosion in UAV research at around the same time), even including
groups demonstrating UAVs flying along tramping tracks through the woods. Even so,
the state of the art in 2021 still falls well short of what is needed for an application
like this. The other area we wildly underestimated was the actual interaction with the
pruner. We assumed that once we had an appropriately equipped UAV and a system
for precisely estimating the positions of the UAV and a branch, we could just make
one intersect with the other and move on. Once we developed a reliable gimbal system
so we could move the UAV without the tilt throwing out our pruner positioning, went
to great lengths to ensure the physical gimbal matched our digital models so we could
position the tool exactly, and carefully tuned the gimbal controller to achieve low latency
without jerking the UAV around through reaction torque, we found that our UAV’s
position control capability was insufficient for performing cuts without exceeding the
industry 5 mm branch stub limit. We were right up against the physical limits imposed
by the propulsion system itself, and even after a redesign that sacrificed battery life for
agility we failed to achieve better than a few centimetres of hover precision, which was
(and still is) in line with the state of the art for small multirotor UAVs.
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As it turned out, we had stumbled into the field of aerial manipulation, where an
increasingly large community of researchers have spent over a decade chipping away at
problems similar to ours. When we visited several UAV research centres and attended
an aerial manipulation workshop at a large robotics conference in Europe, we discovered
a rich history of workarounds (but not really solutions) for the same core problems we
were struggling with. After the Smart Ideas project wound down we revised our goal,
and are now collaborating with engineers and scientists across the country to develop a
simplified, robust aerial manipulation platform that would help NZ’s robotics industry

bring automation to new niche applications.

Meanwhile, my research progressed in a different direction. I intended to whip up a
method for collecting accurate ground truth for visual odometry in a forest, then go on
to develop a visual odometry algorithm that would let us jump straight from pruning
tree stand-ins in the lab to pruning real trees in the field. After some initial exploration
in which I found very little existing work, I developed a new kind of high-precision
fiducial marker in the hope that it would be precise enough to solve the ground truth
problem. It was not, so I then examined the factors that determine the precision of pose
estimates (using checkerboards as a generic stand-in), and then went one level deeper
and examined the noise distribution of corner estimates. The four papers I published

on those topics form the main four chapters of this thesis:

EpwarDs, M.J., HAYEs, M.P. AND GREEN, R.D. (2016), ‘High-accuracy
fiducial markers for ground truth’, In 2016 International Conference on Image and
Vision Computing New Zealand (IVCNZ), IEEE, Palmerston North, New Zealand,

pp. 1-6.
EDpWARDS, M.J., HAYEs, M.P. AND GREEN, R.D. (2017), ‘Statistical Lower
Bound for Variance of Checkerboard Pose Estimate’, In 2017 International Conference

on Image and Vision Computing New Zealand (IVCNZ), IEEE, Christchurch, New
Zealand, pp. 1-6.

EpwARDs, M.J., HAYES, M.P. AND GREEN, R.D (2018), ‘Error Distribution
of Estimated Checkerboard Corner Location’, In 2018 International Conference on

Image and Vision Computing New Zealand (IVCNZ), IEEE, Auckland, New Zealand,
pp. 1-6.

EpwaArDs, M.J., HAYEs, M.P. AND GREEN, R.D. (2020), ‘Experimental
Validation of Bias in Checkerboard Corner Detection’, In 2020 International Confer-
ence on Image and Vision Computing New Zealand (IVCNZ), IEEE, Wellington, New
Zealand, pp. 1-6.

Further to my work on the tree pruning project and my research, I built the Computer

Science department’s UAV lab from a storage room and a cupboard of old hand tools
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into a fully equipped mechatronics workshop with a collection of commercial and custom-
made UAVs, a motion capture system, a test flight cage, a high-end 3D printer, a virtual
reality setup, and a dedicated research engineer/drone operator; spent a semester as a
lecturer for the final-year embedded systems paper while a colleague was on sabbatical;
gave a few lectures in the final-year robotics and computer vision papers; did extensive
course development for the final-year embedded systems and robotics papers; supervised
six final-year engineering group projects, five summer students, and one Master’s student,
and guided a few more Master’s and PhD students less officially; and helped write six
significant MBIE grant applications. I helped my colleagues and students with another

three papers:

SCHOFIELD, S.D., EDWARDS, M.J. AND GREEN, R.D. (2017), ‘Sensitivity
analysis of multirotor position control’, In 2017 International Conference on Image
and Vision Computing New Zealand (IVCNZ), IEEE, Christchurch, New Zealand, pp.
1-6.

SCHOFIELD, S.D., EDwWARDS, M.J. AND GREEN, R.D. (2018), ‘Calibration
for Camera—Motion Capture Extrinsics’, In 2018 International Conference on Image
and Vision Computing New Zealand (IVCNZ), IEEE, Auckland, New Zealand, pp.
1-6.

LEeE, D., MUIR, W., BEESTON, S., BATES, S., SCHOFIELD, S.D., ED-
WARDS, M.J. AND GREEN, R.D. (2018), ‘Analysing Forests Using Dense
Point Clouds’, In 2018 International Conference on Image and Vision Computing
New Zealand (IVCNZ), IEEE, Auckland, New Zealand, pp. 1-6.

Overall, this thesis quantifies the performance of checkerboard pose estimators and
examines the limitations of pose estimation in computer vision with regard to precision,

combining original research with concepts from other fields.






Chapter 1

INTRODUCTION

Visual odometry (VO) is the process of estimating the motion of an object relative to its
environment (its egomotion) using one or more cameras or other visual sensors (LiDAR,
time-of-flight, etc.) attached to it [Scaramuzza and Fraundorfer 2011]. The change in
pose is calculated for each pair of successive camera frames, producing a locally consistent
trajectory. The frame-to-frame errors accumulate over time, causing the estimated
trajectory to drift away from the real path. In visual-inertial odometry (VIO), inertial
measurement units (IMUs) are used as well, which is particularly useful in monocular
VO where scale is otherwise unobservable, and when visual approaches struggle, for

example, over illumination changes, through textureless areas, and when there is motion

Figure 1.1 An artist’s impression of a UAV flying through a forest, with the high-precision fiducial
markers from Chapter 3 used to capture ground truth for evaluating its visual positioning system.
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blur [Qin et al. 2018]. Visual simultaneous localisation and mapping (SLAM) extends
visual odometry by also building up a map of the environment. Detecting when a
previously visited area is re-visited (loop closure) allows the map and trajectory to be
jointly optimised, eventually producing a geometrically consistent map and a trajectory
with little long-term drift [Campos et al. 2020]. In practice, VO algorithms often
maintain a map of recently observed features and perform real-time local optimisation
to reduce short-term drift—blurring the line between VO and visual SLAM—and visual
SLAM algorithms are often implemented as an addition to a VO algorithm that performs
loop closure and global optimisation. The distinction is that the goal of VO is egomotion

estimation, while the goal of SLAM is to build a map and localise within it.

This work is motivated by the lack of VO datasets with accurate ground truth for
a niche application: flying small multi-rotor unmanned aerial vehicles (UAVs) through
commercial forest plantations. VO and visual SLAM algorithms are commonly evaluated
indoors using motion capture systems [Fraundorfer et al. 2012, Geneva et al. 2019, Kneip
et al. 2011a, Qin et al. 2018, Rosinol et al. 2020, Shen et al. 2013, 2015], which typically
measure pose with precision on the order of 0.5 mm and 0.05 degrees. However, motion
capture systems require a controlled environment and do not have large enough tracking
volumes for outdoor use. The EuRoC MAV dataset [Burri et al. 2016], a widely used
stereo visual-inertial dataset collected using a small UAV, comprises sequences from two
environments: a motion capture lab which is 8m x 8.48 m x 4m and a machine hall
which is approximately 15m x 20m. In the machine hall, the only pose ground truth
is low-rate 3D position measured using a robot total station,! the accuracy of which
was described by the authors as “deteriorating under very dynamic motions” such as

those exhibited in some of the sequences.

The KITTI outdoor VO dataset [Geiger et al. 2012b] uses a high-end inertial navi-
gation system (INS) that fuses real-time kinematic (RTK) Global Positioning System
(GPS) solutions with a 6-axis IMU for its ground truth. The manufacturer specifies an
open-sky position error of 0.1 m and an orientation error of 0.03, 0.03 and 0.1 degrees
for pitch, roll and heading, with a total weight of 3.4 kg and power consumption of 20 W.
This represents the best-case scenario for GPS ground truth: open sky, clear line of
sight to an RTK base station, and no limit on size, weight, power, or cost. Even so,
the authors had to modify their benchmarking procedure to work around bias in the
ground truth positions.? In a review of GPS accuracy under a forest canopy, Kaartinen
et al. [2015] found that even their reference receiver (a survey-grade INS much like the
one used for the KITTI dataset) had 0.7m RMS error, which gives some indication of

1 A robot total station uses a laser to measure the angle and range of a retroreflector with millimetre
accuracy, but cannot measure orientation.

2 The VO page on the website for the KITTI dataset says “On 03.10.2013 we have changed the
evaluated sequence lengths from (5, 10, 50, 100, . .. ,400) to (100, 200, ...,800) due to the fact that the
GPS/OXTS ground truth error for very small sub-sequences was large and hence biased the evaluation
results” [Geiger et al. 2012a).



the performance of high-end GPS in less ideal conditions.

A meaningful evaluation requires ground truth that is more accurate than the VO
algorithm. Currently, the best-performing VO algorithm on the popular KITTI au-
tonomous driving VO benchmark (SOFT [Cvisi¢ et al. 2018]) has a translational error of
0.38 %—0.85 % (average 0.57 %) and rotational error of 0.0005 °/m—0.0021 °/m (average
0.0010°/m).? That means that on average, the accumulated error after travelling 100 m
would be 0.57m and 0.1 degrees. This is approaching the nominal orientation accuracy
for the KITTI dataset’s ground truth, which suggests that the KITTI dataset is no
longer sufficient for evaluating state-of-the-art VO algorithms. A similar survey-grade
INS operating in a forest environment would perform dramatically worse, not to mention
that it would be too large and heavy to carry on a UAV small enough to fly between

trees, so this is not useful for the forestry application.

The ETH3D multi-view stereo dataset [Schops et al. 2017] captured a high-resolution
colour point cloud of the environment using a laser scanner, and two sets of images:
high-resolution images taken with a DSLR and stereo images taken with a set of four
synchronised global-shutter machine vision cameras. The images were then aligned with
the point cloud using offline structure-from-motion methods. There is no ground truth
for the resulting camera poses, but the authors described the disparity images as “gen-
erally pixel-accurate” compared to the structure ground truth. For the PennCOSYVIO
visual-inertial dataset [Pfrommer et al. 2017], the environment was prepared with 170
AprilTag fiducial markers, with the marker poses recorded using manual measurement
and corrected using recent architectural models of the building and surrounds. Four
image sequences were captured using a seven-camera rig, with the marker placement and
trajectory carefully planned such that wide-baseline triangles of markers were visible
throughout to improve pose estimation performance. Three of the cameras were used
to estimate ground truth camera poses using a pose graph optimisation method. The
resulting trajectory was described by the authors as “accurate to better than 10 cm

along most of the path.”
Other possible methods include simply taking off and landing at the same place

(as precisely as possible) then comparing the estimated start and end locations (as
demonstrated by Engel et al. [2012]), starting and ending the flight in a motion capture
volume (as demonstrated by Schubert et al. [2018]), and starting and ending with a
camera calibration sequence (as Schops et al. [2019] did for their outdoor sequences).
These do at least give a good measure of total accumulated drift. Total stations can
be used for position ground truth, but only within line of sight, which is an issue

in a forest environment. LiDAR odometry algorithms are sometimes used as ground

3 SOFT is the best-performing algorithm on the KITTI benchmark, excluding the algorithms that use
LiDAR. The method is named “SOFT2” in the KITTI table, which is an improved version of the
original SOFT [Cvisic and Petrovic 2015], as mentioned in the SOFT-SLAM publication [Cvisi¢ et al.
2018].



4 CHAPTER 1 INTRODUCTION

truth, but perform only slightly better than visual odometry in recent work (see e.g., V-
LOAM [Zhang and Singh 2015] vs. SOFT [Cvisi¢ et al. 2018]). Manually drawing a
trajectory on an aerial map is arguably useful for ground vehicles on roads but much
less so for UAVs under tree cover. Thus, in order to rigorously evaluate the performance
of visual odometry algorithms in forest environments, a new ground truth method is

required.

This thesis is an investigation into high-precision pose estimation using corner

detection.

1.1 MAJOR CONTRIBUTIONS

There are three major contributions.

First, a new approach to pose estimation using fiducial markers is proposed that is
more precise than existing algorithms. Rather than using only corners or edges for pose
estimation, the marker has a radial sinusoid pattern that has a predictable appearance
under perspective projection. The marker pose is initially estimated using traditional
methods, then refined using a novel optimisation method in which a rendering of the
marker is compared with the image. On average, pose estimation precision was increased
by 27 % compared to traditional fiducial markers. This approach is a promising avenue

for future research.

Second, an analytic model is derived for the Cramér-Rao lower bound (CRLB) of
pose estimation using a checkerboard (or fiducial marker) pose estimator. The model
gives a lower bound for the variance (and covariance) of the estimate, which effectively
predicts the precision of the most accurate pose estimate from a given set of data.
Both a Monte Carlo simulation and real data validate this model. The model can both
predict estimator precision before data is available and evaluate the performance of a
real estimator on real data compared to the theoretical precision limit. One significant
finding is that generalising measurements of pose estimation precision is difficult: results
from different cameras are not directly comparable, and the performance for a marker
in one pose does not trivially predict the performance for another pose. This method
for predicting and evaluating pose estimation precision has not been considered in prior

research.

Third, OpenCV’s sub-pixel corner refinement algorithm is found to introduce signif-
icant bias and noise which is dependent on the sub-pixel corner location. In real images,
the standard deviation of the noise ranged from around 0.013 px at the pixel centre to
0.0072 px at the edges, a difference of around 1.8x. The bias could not be determined
from the real images due to residual lens distortion, so the images were reproduced in
simulation, where the bias had a maximum magnitude of 0.043 px. The overall noise

variance depends on the amount of lens blur in the image, so images that are not equally
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sharp throughout (for example, images with checkerboards at different depths or im-
ages which have been rectified) can have different noise distributions in different image
regions. In images with significant (more than approximately one pixel) lens blur, the
sub-pixel-dependent component is swamped by independent noise. Furthermore, corner
refinement in images with any amount of motion blur can produce correlated results.
These effects make the OpenCV sub-pixel corner refinement algorithm unsuitable for

some precision applications.

1.2 THESIS STRUCTURE

The rest of this thesis is structured as follows: Chapter 2 outlines the notation and
background theory for the subsequent chapters; Chapter 3 presents the fiducial marker
system; in Chapter 4, a theoretical lower bound is derived for checkerboard pose estima-
tion variance and used to investigate its dependence on various parameters; in Chapter 5,
simulations are used to show that the estimation noise and bias of OpenCV’s sub-pixel
corner refinement algorithm measurably depends on the sub-pixel location of the corner;
in Chapter 6, that effect is demonstrated in realistic conditions using a real camera and
examined in the context of research from other areas; and Chapter 7 summarises the

findings and gives recommendations for future work.






Chapter 2

BACKGROUND

This chapter introduces the notation used in the subsequent chapters and outlines

background theory.

Aside: Asides
Details in these sections are not strictly necessary for the following chapters, but

provide a deeper understanding and may help when reading related work.

2.1 BASIC NOTATION

Scalars are notated as lower-case letters, e.g., s. Vectors are notated as lower-case
bold letters, e.g., v. Matrices are notated as upper-case bold letters, e.g., M. Random
variables and processes are notated as upper-case letters, e.g., R. Some scalar constants
are also notated as upper-case letters, e.g., N and M. Random vectors and matrices
(and multivariate random processes) are notated as upper-case bold letters and are

explicitly distinguished from matrices where necessary.

2.2 ROTATIONS

The coordinate systems used are all right-handed. Points are represented as column

vectors from the origin to a position. Pre-multiplying a point by a rotation matrix,
R(0.,0y,0,) = R, (0,)Ry(6,)R.(6.), (2.1)
where R;, Ry, and R, are the elemental rotations

1 0 0
R;(0z) = |0 cosf, —sinf,|, (2.2)

0 sinf, cosb,
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cosf, 0 sinf,
R,0,)=| 0 1 0 |, (2.3)

—sinf, 0 cos0,

and
cosfl, —sinf, 0
R.(0.) = |sinf, cosf, 0], (2.4)
0 0 1

rotates the point around the origin by 6, counterclockwise about the z-axis, then 6,
counterclockwise about the y-axis, then 6, counterclockwise about the z-axis. For

example,

R(0°,0°,90°)

oS = O

0
=10
1

Rotation matrices can also represent an orientation (as a rotation from some ref-
erence frame) or change the reference frame in which a point is represented. Rotation
matrices are generally referred to without their arguments (i.e., R, instead of R, (6,)).
A rotation can also be represented using just the arguments (6, 6y, 6,); these are often
referred to as Fuler angles, although not entirely correctly. In general, rotations can
also be represented in various other useful ways: Davenport angles, axis-angle, unit

quaternions, Rodrigues vectors, and so on [Terzakis et al. 2018].

Aside: More about rotation matrices

A real, square matrix R is a rotation matrix if and only if it is orthogonal (RTR =
I) and has determinant 1 (det R = 1). The inverse of an orthogonal matrix is its
transpose (R™! = RT). Rotations are not commutative, apart from 2D rotations
about the same point. The special orthogonal group SO(3) is the set of all 3D

rotation matrices.

A square, real, orthogonal matrix with determinant —1 is an improper rotation
matrix, which performs a rotation and a reflection. These are sometimes referred

to as rotation matrices (but not here).

A rotation matrix can be considered as representing an active transformation
that changes the position of a point or a passive transformation that changes
the coordinate system in which a point is described.® Both senses are used here.
A rotation matrix can either pre-multiply a column vector or post-multiply a

row vector, producing rotations in opposite directions.® Only column vectors and
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pre-multiplication are used here.

A rotation matrix as defined in (2.1) performs a counterclockwise rotation
in a right-handed coordinate system (as used here) or a clockwise rotation in a

left-handed coordinate system.

A 3D rotation matrix performs a change of basis from the standard basis,

1 0 0
0 9 1 ) 0 Y
0 0 1

to a new set of basis vectors (the columns of the matrix) which are related to the

standard basis by a rotation.¢ For example, the basis for an z-axis rotation is

1 0 0
0],|cosb,|,|—sinb, ]
0 sin 6, cos 0,

which is each element of the standard basis rotated by 6, counterclockwise about

the z-axis.

Decomposing a general rotation into elemental rotations is ambiguous; there
are many sequences of three elemental rotations that can represent any 3D rotation.
These sequences are called Davenport rotations. Davenport rotations are either
made up of three rotations about different axes (e.g., x, then y, then z) or a
rotation about one axis, then another, then the first again (e.g., x, then y, then
x). Rotations about three different axes are called Tait-Bryan rotations, and
rotations about two different axes are called Fuler rotations. The angles of each
rotation from a sequence are called Davenport angles, Tait-Bryan angles, and
FEuler angles. Note that the term “Euler angles” is commonly used to specifically

refer to Tait-Bryan angles rather than strict Euler angles.

A sequence of rotations can be extrinsic or intrinsic. Extrinsic rotations are
performed using a fixed coordinate system. Intrinsic rotations are performed using
a rotating coordinate system, which is initially aligned with the fixed coordinate
system and moves with each rotation. An intrinsic rotation about the x-axis, then

the y-axis, then the z-axis is produced by the rotation matrix
R=R,R/R..

This rotation sequence is referred to as z-y’-z”. Each pre-multiplication rotates

its operand with respect to the fixed axes, so R, performs a rotation about the
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fixed z-axis, R, performs a rotation about the now-rotated y-axis (y'), and R,
performs a rotation about the now-twice-rotated z-axis (z”). Note that this is the
same rotation as the extrinsic sequence z-y-z. The roll-pitch-yaw angles used in
aviation are a commonly used intrinsic rotation sequence. Sometimes, the term
“Euler angles” is used to mean the angles of an intrinsic (rather than extrinsic)

rotation sequence.

% Active transformations are sometimes called alibi transformations, and passive transformations
are sometimes called alias transformations.

b That is, Rv and v'R" represent the same rotation.

¢ In the passive-rotation sense, the new basis vectors point in the directions of the axes of a new
reference frame.

2.3 TRANSFORMATIONS

A reference frame consists of a set of coordinate axes and an origin point. Reference
frames are notated by a lowercase letter in braces. The world (static/fixed) frame is
{w}; all other frames are defined by their orientation and origin with respect to {w}.
A frame {b} is represented as the transformation from another frame {a} to {b}: a
rotation R, € SO(3), the orientation of {b} in {a}, followed by a translation t,, € R3,
the origin of {b} in {a}.! The transformation from the world frame to a frame is notated
with a single subscript (e.g., T, =T,;)-

A point p in a frame {b} is notated as

by,

)

Lists of points are notated as
(4)
pb,x

Py = | o) |- (2.6)

py)

where 7 is an index. The transformation (R, t,,) can be used to change the frame in

which a point is represented:

Pq = Rabpb + tab' (27)

It can be notated more conveniently using homogeneous coordinates as the 4 x 4 trans-

! The orientation of {b} in {a} is the rotation from R, the orientation of {a} in the world frame,
{w}, to R, the orientation of {b} in {w}. The origin of {b} in {a} is the translation from the origin
of {a} in {w} to the origin of {b} in {w}.
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formation matrix

R, t
T,=| * . (2.8)
0o 1
Then,
Pe) =, 7 (2.9)
1 1

For convenience, homogeneous coordinates and Cartesian coordinates are used inter-

changeably.? Thus, (2.9) can be expressed as
P, = Typby.- (2.10)

Note that T, represents the transformation from {a} to {b}, but pre-multiplication by

it transforms a point from {b} into {a}.

Aside: More about transformation matrices
The inverse of a transformation matrix T, is

T;bl =T,

a
1 1
Rab -R b tab

0 1

Although a transformation matrix can perform arbitrary linear, affine, and
projective transformations, only rigid-body transformations (rotation and trans-
lation) are used here. The special Euclidean group SFE(3) is the set of all such
transformation matrices.
is

The action of a transformation matrix that represents a frame (e.g., T,,,)

to convert a point from one frame to another (e.g., from {a} to {w}). Consider a
point p,. It is defined relative to the orientation and origin of {a}, so the point it
represents in world coordinates is a weighted sum of the basis vectors of {a} plus

the origin vector of {a}:

1 0 0
Py = pa,waa 0]+ pa,waa 1]+ pa,sza 0]+ twa
0 0 1
= Rwapa + 1-’wa'

The pose (position and orientation) of an object is represented by a frame attached

2 That is, p, could refer to (pbmpb’y,pbyz)T or (pb’gc,pb’y,pbyz7 l)T depending on the context.
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to it, so the pose of an object {b} in a frame {a} is T . Transformation matrices can

also change the frame in which a frame is represented, e.g.,
Tac = TabTbc’ (211)

or represent the motion of a point or frame. For more background on rigid-body motions,
see Lynch and Park [2017].

Yuw

{w}

N
. N
L7 Rw Tw >~ Ya

) t, L T

Yo Th Za
Zb
Figure 2.1 A diagram showing the relationship between the world frame {w} and the two frames {a}

and {b} used in Section 2.3.1, including their coordinate axes (Zw, Yw, zw) and so on. The translation
vectors are t, = (5,0,0)T and t, = (O,O,S)T.

2.3.1 Example

Let {a} have its origin at (5,0,0) and its orientation rotated 90° about the y-axis
with respect to {w}. Let {b} have its origin at (0,0,5)" and its orientation rotated 90°
about the z-axis with respect to {w}. These coordinate frames are shown in Figure 2.1.

The transformations representing {a} and {b} are

o T
oo R0 (50,0 .12

and
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T, can be calculated from (2.12) and (2.13):
T, =T, 'T,
= Tt_ucllwa
= Tawwa (214)

R, (—90°) R, (90°) (—5,0,-5)T
0 1

Consider a point p = (2,0,2), as shown in Figure 2.2. Pre-multiplication by T, ! and
T, ! gives its coordinates in {a} and {b},

Py = TouwPy

= TP
=T,'p
=(-2,0,-3)"

(2.15)

and
p,=T,'p

30 (2.16)

This result is shown in Figure 2.2.

Yw

La

Yo Lp

Zb

Figure 2.2 A diagram showing the point p = (2,0,2)" used in Section 2.3.1 and its representations
in {a‘} and {b}a P, = (72707 73)T and Py = (27 7370)’1"
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24 PROJECTIVE GEOMETRY

Historically, the pinhole camera (or camera obscura) is the predecessor to the modern
camera: a box or darkened room with a small hole in an outside wall such that an
inverted image is projected onto the opposite wall or a screen [Klette 2014], as shown
in Figure 2.3. In projective geometry, an ideal pinhole camera is a point-sized aperture
(the focal point) through which a scene is projected onto a plane (the image plane).
Here, the camera frame {c} has its origin at the focal point, its z-axis pointing out
toward the scene (along the camera’s optical axis or principal axis), its z-axis pointing
right, and its y-axis pointing down, as shown in Figure 2.4. The image plane is parallel
to the xy-plane at a distance f* (the camera’s focal length) back along the optical axis
from the focal point. The image frame {:} is aligned with {c} but has its origin at the

point where the optical axis intersects the image plane (the principal point).

Figure 2.3 A seventeenth-century drawing of a camera obscura, showing outside objects projecting
through small holes in the outside wall onto thin screens [Kircher 1646].

When viewed through the camera, a point p, in the camera frame projects to the

point where a line from p, through the focal point intersects the image plane,

_ _f* pc,:c

(2.17)
Pez \pey

P;

This represents the mirrored image produced by a real pinhole camera, as shown in Fig-

ure 2.5. For mathematical convenience, the image plane is often moved in front of
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Optical axis
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Figure 2.4 A diagram of a pinhole camera showing the image plane, principal point, image frame
{i}, principal plane, focal point (pinhole), camera frame {c}, optical axis (principal axis), and focal

length f*.

b;

F

Pc

P

P, -

)

Figure 2.5 A diagram of a pinhole camera showing how a ray passing through the focal point and

T
the point p, intersects the image plane at p;. In this case, p, = —f*/p... (pcyz,pcyy) .
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Figure 2.6 A diagram of a pinhole camera showing how a ray passing through the centre of projection
and the point p, intersects the frontal image plane at p,. In this case, p; = f*/pe,. (pc”,,:,pc,y)T.

the focal point® as shown in Figure 2.6, producing an unmirrored image where points

project as
_ (P

(2.18)
pc,z Pe y

| 8%

Analogously to (2.9), the projection operation can be expressed in homogeneous

coordinates as

0 0 0
Dp; P
“Ipe.=10 f* 0 0 “l. (2.19)
1 1

0 0 10

Converting the result of (2.19) back into Cartesian coordinates (i.e., dividing by p, ,
and dropping the third component) gives p,.

An ideal digital camera samples the image on a pinhole camera’s image plane at a
grid of points (as shown in Figure 2.7a), resulting in a digital image which is a matrix of
intensity values (as shown in Figure 2.8). A pixel coordinate u = (u,v) in the resulting

image is related to a point p; on the image plane by

: S
we [Pl (2.20)

Pi,y/Sy

where s = (s;,sy) is the distance between sampling points and ug = (ug,vo) is the

3 The focal point in this system is referred to as the centre of projection or optical centre. The image
plane is sometimes referred to as the frontal image plane or virtual image plane.



2.4 PROJECTIVE GEOMETRY 17

Sz Sz
A
. . . Sy
Sy 3
(a) A diagram of an ideal image sensor showing (b) A diagram of a more realistic image sensor,
the sampling points and sampling point spacing. showing the sensor elements (as squares) and the

sampling grid size.

Figure 2.7 Diagrams of ideal and more realistic 5 x 5 image sensors. Commercially available cameras
have much higher resolution. Note that (b) has sensor elements slightly smaller than the sampling grid
size, so there are gaps between the sensor elements.

Uo

’

NN . Centre of

projection

Figure 2.8 A diagram of a 5 x 5 image showing the pixel coordinate axes (u,v) and the principal
point ug. The origin (0,0) is at the centre of the top left pixel. In the diagram, the optical axis passes
through the centre of the middle pixel, so ¢ = (2, 2).
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principal point in pixel coordinates. A real digital camera uses an image sensor con-
sisting of a matrix of tiny light sensors, so the value of each pixel represents the average
intensity in a region on the image plane (as shown in Figure 2.7b) rather than the

intensity at a point on the image plane, and s is the size of the sensor elements.®

In practice, the physical focal length and sensor element size are generally lumped
together as
f=f"s (2.21)

and referred to as the focal length (in pixels).® Combining (2.19) to (2.21) gives

p
u fz 0 wy O o
p
v |Pe=10 fy, vo O “1,
Pe,»
1 0 0 1 0 (2.22)
1
u P,

K[I|0] L)

De,z

)

where u = (u, v)T is the location of p,. in pixel coordinates and K is called the intrinsic
matrix or camera calibration matrix.” This operation (projecting a point in the camera

frame into pixel coordinates) is notated

u = proj (p,) - (2.23)

In the rest of this thesis, cameras are assumed to have square pixels and zero principal
point, so f, = f, = f and u = fp,.
Combining (2.9) and (2.23) gives an expression for projecting a point in an arbitrary

coordinate frame {a} into pixel coordinates,

| &
pc,z =K [I | O] Tca ¢ ) (2'24)

1

or simply

u = proj (Tcapa) . (2'25)

4 Note that some texts incorrectly give (2.20) as u =s - p; + uo.

5 A real camera may have sensor elements whose active areas do not reach all the way to the edge (so
s is the sample grid size rather than the sensor element size), but this is generally ignored.

The physical focal length and sensor element size are difficult to measure, while the focal length
in pixels can be readily determined through intrinsic calibration. In some situations, calibration
results can be approximately verified using manufacturer specifications (for example when using a
fixed-focal-length lens with a machine vision camera).

7 Many authors include a skew term as Ki2; it is omitted here as it is irrelevant for most cameras.

6
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The matrix P, = K[I | 0] T,,, is sometimes called the projection matrix.®:? For more
background on cameras and projective geometry, see chapter 6 of Klette [2014] or
chapter 2 of Szeliski [2011].

2.5 POSE ESTIMATION USING 3D-TO-2D
CORRESPONDENCES

An image of a known object can be used to estimate its pose (in the camera frame) by

matching each of a set of NV known 3D points on the object,

{po} = {p{".p,....pMN}

to estimates of their locations in the image,

i} = {p".p".....p{"}.

For example, when the object is a checkerboard or fiducial marker (see Chapters 3
and 4), the object points are the 3D positions of the corners (in the object frame) and
the image points are their locations in image coordinates as estimated by a corner
detection algorithm [e.g., Duda and Frese 2018, Harris and Stephens 1988]. The same
formulation is used in VO, with the object points being the estimated 3D position of
each feature in the previous image, the image points being the estimated locations of
the corresponding features in the current image, and the object frame being the pose

of the camera when the previous image was taken [Scaramuzza and Fraundorfer 2011].

The objective is to find a transformation from the camera frame to the object frame,

T, which minimises the image reprojection error:

A

T, =

co

T,,eSE(3 ~ proj (TCO ‘(’k))H (2.28)

This is known as the perspective-n-point problem (PnP), and it has been studied ex-
tensively [Fischler and Bolles 1981, Lepetit et al. 2009, Lu et al. 2000]; Terzakis and
Lourakis [2020] present a good review. Estimating pose using three point correspon-

dences (the minimum required, using a fourth point to disambiguate multiple solutions)

8 P and K are both sometimes called the camera matrix.
9 Defining the projection matrix as

K
P, = [ 0] T, (2.26)
0 1

u
1 DPec,z = Pcpv (227)
d

where d = 1/p,. . is the disparity (inverse depth).

instead gives
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is the perspective-three-point problem (P3P) [Ke and Roumeliotis 2017, Kneip et al.
2011b]. Pose can also be estimated using 2D-to-2D or 3D-to-3D correspondences. For
more detail on any of these pose estimation methods, see Huang and Netravali’s [1994]

review, Scaramuzza and Fraundorfer’s [2011] tutorial, or chapters 6-7 of Szeliski [2011].



Chapter 3

HIGH-PRECISION FIDUCIAL MARKER SYSTEM

In this chapter, which is based on published work [Edwards et al. 2016], a fiducial
marker system that uses a smooth pattern to enable high-precision pose estimation is
presented. The performance of this marker is evaluated in the context of existing work,

and its strengths and weaknesses are examined.

3.1 INTRODUCTION

VO algorithms are typically evaluated indoors using ground truth from motion capture
systems [Fraundorfer et al. 2012, Geneva et al. 2019, Kneip et al. 2011a, Qin et al.
2018, Rosinol et al. 2020, Shen et al. 2013, 2015]. However, this requires a controlled
environment and cannot extend to large-scale outdoor operation. GPS/INS ground
truth can be used in some outdoor environments. This is not always practical due to
the high size, weight and power requirements of high-end equipment, and requires open
sky to perform well. An alternative solution is to prepare the environment with fiducial
markers: specially designed objects which, when visible to a camera, can be used to
estimate the camera’s pose relative to the object. The fiducial markers commonly used
in the field of augmented reality incorporate unique identifiers, enabling localisation
within an environment when visible. However, they only produce a precise pose estimate
when close to the camera. In this chapter, a new kind of fiducial marker with increased
pose estimation precision is proposed. A system that performs outdoor localisation
using a combination of traditional markers (which provide a low-precision global pose
estimate, since they are distinguishable) and the proposed markers (which would provide
a high-precision relative pose estimate) would be a convenient solution to the problem
of recording ground truth for evaluating VO algorithms in forests. An implementation
with real-time performance would also have other applications, such as general robotic

localisation and low-cost motion capture.

The rest of this chapter is organised as follows. Related work is described in Sec-
tion 3.2. Section 3.3 presents preliminary work done while exploring the ideas of this

chapter, and Section 3.4 introduces relevant background information. Section 3.5 out-
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lines the fiducial marker system and experiments performed in this chapter. Section 3.6
presents the experimental results and discusses the limitations of the algorithm, and

conclusions are drawn in Section 3.7.

3.2 RELATED WORK

Square planar fiducial markers, like the ones shown in Figures 3.1a to 3.1c, have
been used in the field of augmented reality for many years. ARToolkit [Kato and
Billinghurst 1999] is perhaps the most well-known, as it was one of the first to be released
as open-source software. The basic steps of the algorithm are image thresholding,
finding quadrilateral-shaped regions, using the corners to calculate a homography, and
performing correlation-based template matching on the marker image to identify the
marker within a pre-configured library of markers. The template matching system has
many downsides (complicated training procedure, high false positive/negative and inter-
marker confusion rates which get worse as the library size increases, computation time
increases with library size, etc), so various approaches were proposed which replaced it
with barcode-like patterns incorporating error correction codes, notably ARTag [Fiala
2005] and ARToolkitPlus [Wagner and Schmalstieg 2007].

Recent research has focused on robustness. For ArUco, Garrido-Jurado et al. [2014]
proposed an algorithm for generating marker dictionaries that maximise inter-marker
distance (i.e., the number of bit flips between any two marker patterns in a dictionary).
An ArUco marker is shown in Figure 3.1b. The basic algorithm steps are similar
but incrementally improved, and the authors also refined the common practice of using
multiple markers together by using detected markers in a scene to help identify partially
occluded markers. Similarly, Olson [2011] proposed a detection method for AprilTag
that is robust to occlusion and a coding system that is robust to rotation (shown

in Figure 3.1c).
RUNE-Tag [Bergamasco et al. 2011] is a high-precision fiducial marker using con-

centric rings of dots, as shown in Figure 3.1d. It has excellent occlusion resistance and
is resilient to noise, blur and uneven illumination. The authors claim its pose estimation
precision in simulation is an order of magnitude better than ARToolkit, but they do
not give much detail on their methodology and only appear to consider the angles,
ignoring the translation. The section of their paper titled “Behaviour with Real Images”
is rather short and largely lists its shortcomings. An open-source implementation of
the algorithm was not released until 2017, which may explain why it received little

attention.

Fourier Tag [Xu and Dudek 2011] features a radial sinusoid pattern as shown
in Figure 3.1e, in which it stores information using phase-shift keying. It uses the
circular shape of the marker to calculate its pose, and the authors do not focus on (or

even evaluate) precision.
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(a) An Artoolkit marker [Kato (b) An ArUco marker
and Billinghurst 1999]. [Garrido-Jurado et al. 2014].
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(¢) An AprilTag marker [Olson (d) A RUNE-Tag marker
]. [Bergamasco et al. 2011].
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(e) A Fourier Tag [Xu and (f) A WhyCode marker
Dudek 2011]. [Lightbody et al. 2017].

(g) An STag marker
[Benligiray et al. 2019].

Figure 3.1 A selection of other fiducial markers.
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WhyCode [Lightbody et al. 2017] uses a circular pattern for fast and precise locali-
sation, with an inner Binary Necklace pattern for identification and rotation estimation,
as shown in Figure 3.1f. It was found to be much faster, more robust, and more precise
than AprilTag and ARTag, but unfortunately, it was not tested against the much-newer
ArUco, although the authors did acknowledge it as being state-of-the-art at the time.

STag markers [Benligiray et al. 2019] have a square outline that is used for marker
detection in a similar way to previous square markers, and an inner circular border that
is used in a pose refinement step for better estimation stability, as shown in Figure 3.1g.
The authors claim it is more precise and robust than ArUco (but a bit slower), and

much more robust and almost as precise as RUNE-Tag (and much faster).

After the research presented in this chapter was performed, Hannemose et al. [2019]
proposed a camera calibration technique which uses a similar rendering and optimisation
process to the one presented here. In their method, a standard checkerboard-based
camera calibration technique is used for initial calibration, then the rendering and
optimisation process is used to refine the calibration parameters. They convolve the
calibration pattern with a Gaussian kernel in order to obtain a smooth, differentiable
pattern, and make use of this property by computing the derivatives for the numerical

optimisation algorithm.

3.2.1 Sinusoid parameter estimation

Estimating the parameters of a sinusoid signal is a problem that comes up in many fields.
Rife and Boorstyn [1974] considered this problem from the then-novel perspective of
“data set testing, telephone transmission system testing, radar, and other measurement

situations”, in which there is a real-valued continuous signal consisting of a single tone,

s(t) = by cos (wot + 6p) , (3.1)

where by is the amplitude, wq is the angular frequency, and 6 is the phase offset. The
signal is sampled at a constant rate of 1/T" (where T is the sample period) with the first
sample taken at t = g, and the samples include independent Gaussian noise with zero
mean and variance o2. They found the CRLB! for estimating the amplitude, frequency,
and phase of the signal from the samples under various conditions (estimating each
with and without knowledge of the others). The simplest form for each is the bound

for estimating w with 6 unknown,

Var () (3.2)

! The CRLB gives the variance of the lowest-variance unbiased estimator. For more, see Section 4.2.1.
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and the bound for estimating 6 with w known,

2

Var (é) > 2N’ (3.3)
0

Q

where N is the number of samples. The bound for estimating b is the same whether or

not the other parameters are known,

2

Var ((3) > UN. (3.4)

3.2.2 High-precision one-dimensional markers

Roberts et al. [2015] proposed the concept of a “structured marker” which uses a one-
dimensional marker with a sinusoid pattern for distance estimation. They required the
marker to be parallel to the camera and in the centre of its frame. Their algorithm is
relatively simple: they sampled a row of pixels along the centre of the image, applied
a Gaussian window, took the Fourier transform, used the peak as an estimate of the
spatial frequency of the marker, then used the ratio of that frequency to the (known)
spatial frequency of the marker in world units (along with the camera intrinsics) to
calculate the distance. To evaluate the performance of their method, they compared

their results (from simulation) to the CRLB, as shown in Figure 3.2.

101 T T T
100 ¢

o = 0.005

1071

102k Simulation results

10—3_

Cramer-Ra

Normalized error of frequency measurement

SNRI[dB] ]
102520 45 10 5 0 5 10 15 20

Figure 3.2 The best simulation results from Roberts et al. [2015], for signals of length 10, 50, and 100
(number of periods N =1, 5, and 10). The exponential drop-off rate for the Gaussian window function
is @ = 0.005. The point labelled “A” marks the performance of the technique described by Grishin
[2010], which was the inspiration for Roberts et al. [2015]. Note that the rapid increase in error at low
SNR is a well-known effect in non-linear frequency estimators [Rao 2013]. Figure © 2015 IEEE.
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3.3 PRELIMINARY WORK

Before beginning design of the novel fiducial marker presented in this chapter, several
preliminary steps were taken: a localization system was built and tested with existing
fiducial markers, the noise distribution of the camera to be used was investigated, and

improvements were made to the method proposed by Roberts et al. [2015].

3.3.1 Fiducial localization prototype

A prototype of a fiducial marker-based localisation system was implemented using ArUco
markers [Garrido-Jurado et al. 2014], the g20 graph optimisation library [Kiimmerle
et al. 2011], and Robot Operating System (ROS) [Quigley et al. 2009]. The system
consists of three nodes. The first node subscribes to camera messages, detects markers
in each camera frame, and publishes the list of detected markers. The second node is
used to set up a map of the markers in an area; it builds up a pose graph with a vertex
for each camera position and each marker and an edge for each observation of a marker
in a camera frame, and uses g2o to optimise the graph. Once the graph contains loops
(e.g., markers 1 and 2 have been observed together, markers 2 and 3 have been observed
together, and markers 1 and 3 have been observed together), the graph optimisation
process is constrained enough that it outperforms a simple average. The graph is saved
and used by the third node, which simply uses the map and any observed markers
to estimate the camera position. Initially, a constant-valued and isotropic covariance
model was used for each observation; investigation into the noise properties of fiducial
markers (detailed in Section 3.4.2) is what inspired the high-precision marker approach.
If an appropriate (i.e., anisotropic and distance-dependent) covariance model was used,
the graph optimisation would correctly take into account the decreased precision of

distant markers.

3.3.2 Image sensor noise distribution

An experiment was performed to investigate the noise distribution in images from a
Point Grey (now Flir) Bumblebee2 BB2-0852C global shutter machine vision camera. A
marker was set up so that it was approximately in the centre of the image frame of the
left head of the camera, first at about 2 m then at about 4 m from the camera. No special
lighting was used, just overhead fluorescent lights. Over 400 8-bit colour images with
1024 px x 768 px resolution were captured in each position, with the first of each shown
in Figure 3.3. For analysis, each frame was converted to greyscale, corrected for lens
distortion, and cropped to only the area containing the marker (as shown in Figure 3.4).
Each array of cropped frames can then be considered as a time-varying signal. The
standard deviation o of each pixel intensity (I € [0,255]) gives a measure of the noise

intensity for that pixel. The standard deviations range from about 0.4 to 1.3, with a
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(a) The first image taken at 2m from the (b) The first image taken at 4m from the
camera. camera.

Figure 3.3 The first image in each of the two sets of images captured for the camera noise analysis
experiment.

mean of 0.8. Plotting the standard deviations as an image shows that there is a clear
link between intensity value and standard deviation (see Figure 3.5). Assuming the
image noise is predominately shot noise would lead to a square root model; this fits
well, as shown in Figure 3.6.2 One side-effect is that the signal-to-noise ratio of a pixel
is dependent on its intensity. Since the marker pattern is fixed and known, brighter
areas could be given more weight in the optimisation process. Whether this would have

an effect on estimation precision requires further investigation.

3.3.3 High-precision one-dimensional markers

A few simple changes can be made to the method proposed by Roberts et al. [2015] which
drastically improve its performance. Zero-padding the signal to length 24 before taking
the fast Fourier transform (FFT) and using quadratic interpolation when measuring
the peak (to reduce spectral leakage) brings the error very close to the CRLB when
the signal-to-noise ratio (SNR) is greater than 0 dB. Furthermore, using the Levenberg-
Marquardt algorithm [Levenberg 1944, Marquardt 1963 to fit a signal directly achieves
errors close to the CRLB for the full SNR range that was considered. These results are

shown in Figure 3.7.

3.4 BACKGROUND

This section gives an overview of the geometric distortion and noise processes involved

in a fiducial marker system and presents a sensitivity analysis of pose estimation.

2 This is examined in greater detail (but with different equipment) in Section 6.3.1.
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Figure 3.4 The images from Figure 3.3 after converting to greyscale, correcting for lens distortion,
and cropping to only the area containing the marker.
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Figure 3.5 The standard deviations of the intensity of each pixel in the two sets of images.
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Figure 3.6 Scatter plots of the standard deviations of the intensity of each pixel in the two sets of
images. The mean is calculated by sorting the intensities into 40 bins and taking the mean of the
standard deviations in each bin. The model is o = 0.13 + 0.07v/I, which was fitted using least squares
to illustrate that a square-root-shaped model fits the data.
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Figure 3.7 Simulation results for the improved methods presented in Section 3.3.3 when applied to
a signal of length 100 (number of periods N=10), for comparison with Figure 3.2. The three methods
shown are a least-squares fit of frequency, phase, and amplitude, Fourier frequency estimation with
zero-padding to length 2% and quadratic peak interpolation, and the same Fourier method using a
Gabor window with « = 0.00005.

3.4.1 Image distortion and noise

Many processes take place between generating a marker and detecting it in an image,
each of which introduces distortion or noise. When a marker is printed, the intensity
of each pixel is translated into the density of the pattern of dots on the paper. Since
printers only have black ink (ignoring colour printers, since the marker is greyscale),
this is the only way to print shades of grey. From sufficient distance, the printed pattern
resembles the original pattern, and from up close, the individual dots are visible (as
shown in Figure 3.8). When examined carefully, however, there are visible bands in the
intensity gradient. Black areas are neither completely black nor particularly uniform
(instead, a textured dark grey), and they have specular reflections in some lighting

conditions as toner is slightly reflective.

Within the camera, the lens assembly of the camera adds perspective projection
(like an ideal pinhole camera) as well as various distortions [Hartley and Zisserman 2004,
sections 6.2 and 7.4]. Depending on the exposure, the intensity of the marker pattern is
scaled and offset. Gamma correction is often applied [Szeliski 2011, section 2.3]. There
may also be blur, depending on the camera’s focal length, the distance from the camera
to the marker, and any relative motion of the camera and marker. The camera sensor
itself adds various types of noise—thermal noise, electronic noise, amplifier noise and
quantisation noise [Forne 2007]. Since the sensor elements are rectangular rather than

point-like, there is an additional blurring process.

These processes can be divided into geometric effects (perspective projection and
lens distortion), noise processes, and transformations of the marker’s intensity. Using

camera calibration, the geometric effects can be reduced to those of a pinhole cam-
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Figure 3.8 A photograph of the printed marker, enlarged to show printing artefacts.

era [Hartley and Zisserman 2004, section 7.4]. The noise processes are modelled well
by a Gaussian distribution with intensity-dependent variance (see Section 6.3.1). The
intensity transformations could be modelled as a combination of processes, but in this
work, they are simply corrected using histogram matching [see Gonzales and Fittes
1977].

3.4.2 Parameter sensitivity

The precision of an estimate of a parameter is the inverse of its variance [Gelman et al.
2013, section 2.5]. It is well-known that when estimating the position of an object
visually, the estimated distance along the camera’s optical axis is less precise than the
distances along the two axes perpendicular to the optical axis. The basic mechanism
behind pose estimation in most square fiducial markers is to solve the PnP problem
using the detected marker corners and their known relative positions (see Section 2.5).
To investigate the trend in each parameter’s precision with distance, a Monte Carlo
simulation of fiducial marker pose estimation was performed. The positions of the
corners of a marker at various distances from the camera were projected into image
coordinates, then independent and identically distributed (i.i.d.) zero-mean Gaussian
noise was added and the solvePnP function from the OpenCV library [Bradski 2000]
was used to estimate the marker’s pose. This was repeated 1000x for each distance,
and the standard deviation of each pose parameter was taken as a measure of precision.
The results are shown in Figure 3.9. An approximately linear increase with increasing

distance is visible in the z- and y-axis translations and the z-axis rotation 6,, and an
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Figure 3.9 The results of a Monte Carlo simulation of fiducial marker pose estimation, showing the
standard deviation of each pose parameter as a function of the marker’s distance from the camera. Each
parameter is normalised such that the first point’s standard deviation is one. In (b), the area between
linear functions (o  z) and quadratic functions (o o 2?) is shaded.

approximately quadratic increase is visible in the z- and y-axis rotations 6, and 6, and

the z-axis translation.?

Consider a featureless square marker held in the centre of an image, parallel to
the focal plane. A movement of the marker left or right (or up or down) will produce
more visual difference than a movement of the same distance forward or back. Similarly,
a rotation of the marker about the camera’s optical axis will produce more visual
difference than a rotation through the same angle about either of the other axes. Note
that although this effect will vary depending on the pose of the marker, the same
basic trends still apply. Thus, a high-precision fiducial marker system should aim to
improve on the estimation precision for z, ¢, and 6,. The marker pattern presented
here is invariant under z-axis rotation (up to outline), so can not be used to estimate 6,
(beyond the PnP result). Since 6, is one of the parameters which can be estimated with
reasonable precision from the marker corners alone, this rotational invariance reduces

the dimensionality of the optimisation problem without sacrificing much precision.

3.4.3 Pattern design

The proposed marker uses a radial sinusoid pattern, as shown in Figure 3.10. Every
pixel of the pattern is used to estimate the marker’s pose, in contrast to traditional
markers where only corners or edges are used. When considering the design of this
pattern, an analogy can be made to various aspects of sinusoid parameter estimation.
For a marker that is parallel to the camera, estimating its distance to the camera is a
similar problem to estimating the frequency of a sinusoid signal as in Section 3.2.2, the
CRLB for which, (3.2), depends largely on SNR and number of samples. Estimating

the marker’s horizontal and vertical position is similar to estimating the time delay of

3 See also Section 4.3.2, where this relationship is arrived at more rigorously.
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Figure 3.10 A section of the radial sinusoid pattern used in the proposed fiducial marker. In the
final marker, the number of periods in the pattern was limited to produce a solid outline that could be
detected reliably, as discussed in Section 3.5.3.

a wave. The time delay is related to frequency and phase by
0 = wr. (3.5)

When finding the time delay there is an ambiguity due to phase unwrapping. Assuming

the ambiguity is resolved, the time delay is

0
Using (3.3) to find the CRLB for 7 (with known frequency),
Var <é>
Var (7) > 0 (3.7)
2
o
= N (3.8)

it is clear that the variance of this estimate decreases with increasing frequency. This
is a useful observation for the design of the marker: increasing the spatial frequency of
the pattern ought to improve the estimation precision for at least some pose parameters
in some circumstances, assuming the spatial frequency is still sufficiently low as to be
sampled adequately. This is also analogous to sonar and radar, where higher-frequency

signals produce more precise range estimates [Rihaczek 1996].

3.5 METHOD

The image is initially rectified to remove lens distortion. Then, the marker outline
is detected with an algorithm based on the one proposed by Garrido-Jurado et al.

[2014]. Once a marker has been detected in the image, the corner locations are used to
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Figure 3.11 An image of the proposed marker with 9 periods of the sinusoid pattern mounted on
the rail at 1200 mm from the camera, as used in the experiment.

produce a coarse pose estimate (z,y, z, 6, 60,,0.), where (z,y, ) is the position of the
marker centre in camera coordinates, 0, and 6, are the rotations of the marker about
its z- and y-axis, and 6, is the rotation about its z-axis (which is perpendicular to the
marker surface). Histogram matching is used to match the intensity distribution of the
camera image to that of the rendered marker. Then, the coarse pose estimate is refined
through a series of non-linear optimisations. Each time, a subset of the parameters
is refined using Nelder-Mead optimisation [Nelder and Mead 1965]. The optimisation
process compares the image from the camera to a rendering of the marker at the current
estimated pose, as described in Sections 3.5.3 and 3.5.4. The resulting optimised pose

estimate is significantly more precise than the coarse pose estimate.

3.5.1 Data collection

The three markers used were the proposed marker with nine periods of the sinusoid

pattern (shown in Figure 3.11), the proposed marker with five periods (shown in Fig-
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(a) An image of the proposed marker with (b) An image of an ArUco marker mounted
5 periods of the sinusoid pattern mounted on the rail at 600 mm from the camera.
on the rail at 600 mm from the camera.

Figure 3.12 Rectified images of the other markers used in the experiment.
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Figure 3.13 The estimated intensity mapping that transforms the intensity distribution of Fig-
ure 3.14a to match Figure 3.14b.



3.5 METHOD 35

ure 3.12a), and an ArUco marker [Garrido-Jurado et al. 2014] (shown in Figure 3.12b).
Each marker was laser-printed on plain A4 paper and mounted in turn to a vertical plate
attached to a guide rail. A Point Grey (now Flir) Grasshopper3 GS3-U3-41C6NIR-C
global shutter machine vision camera with a 16 mm Sony lens set to 1 m focus and 8 mm
aperture was arranged such that the marker was 600 mm =+ 50 mm from the lens and in
the centre of the image, and the rail ran approximately parallel to the camera’s optical
axis. The camera was set to 15 fps, 8-bit monochrome format, zero gain, and the max
shutter time of 67 ms. The exposure was left on automatic mode. The marker was then
moved along the rail in 300 mm + 1 mm steps (up to 2400 mm), and 150 images were
taken at each position. This was repeated for each marker, then the whole experiment
was repeated without moving the equipment, for a total of 2100 images of each marker.
The position of the marker in each image was calculated, and the standard deviation
for each position was calculated for each parameter and used as a measure of estimation

precision.

3.5.2 Histogram matching

In order for the sum of squared intensity differences to be a reliable objective function,
the image needs to have approximately the same intensity distribution as the rendering.
This is ensured using histogram matching. The histogram matching algorithm is as
follows [Gonzales and Fittes 1977]. Take a template image and a sample image. Let I
be a list of the intensity values of each pixel of the template image, and let I; be the
same for the sample image. Let the empirical cumulative distribution function Fi(i) be

defined as . ..
e li <y

Fi(i) = P (39

and let Fy(7) be the same for the sample image. To perform histogram matching, for

each intensity is in the sample image, the corresponding intensity 4; is found such that
is <y iff  Fs(is) < Fi(ig). (3.10)

These correspondences then form a mapping that, when applied to the intensity of each
pixel in the sample image, produces an image with an intensity distribution much like

that of the template image.

In this case, the sample image is a section of an image that contains the marker (as
shown in Figure 3.14a) and the template image is a marker rendering of the same size
using the coarse pose estimate (as shown in Figure 3.14b). The histogram matching
process is performed on one image in the dataset and the resulting intensity mapping
is re-used for the others, as all the images have similar intensity distributions. Fig-
ure 3.14c¢ shows the image in Figure 3.14a after the intensity mapping, which is shown

in Figure 3.13, has been applied. Figure 3.15 shows the intensity along corresponding
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(a) The section of the image (b) A marker rendering to match the image section
in Figure 3.11 containing the marker. in Figure 3.14a using the coarse pose estimate.
The cropped area has been expanded

slightly for illustration purposes; in the

optimisation process, only the area

inside the marker is used.

- —20

—40
[ —60

T
=)
Intensity difference

(c¢) A histogram-matched image (d) The difference between the
produced by applying the intensity histogram-matched image in Figure 3.14c and
mapping in Figure 3.13 to the image the marker rendering in Figure 3.14b.

section in Figure 3.14a.

Figure 3.14 Images showing each stage of the optimisation process, using the image in Figure 3.11
as an example.
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(b) A close-up of one section near the middle, showing one period of the pattern, showing

that the intensity of the histogram-matched image closely follows that of the rendered

image.
Figure 3.15 The intensity along a horizontal line through the centres of the image section in Fig-
ure 3.14a, the corresponding marker rendering in Figure 3.14b, and the histogram-matched image

section in Figure 3.14c.
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horizontal lines through the centres of the image section in Figure 3.14a, the corre-
sponding marker rendering in Figure 3.14b, and the histogram-matched image section

in Figure 3.14c.

3.5.3 Marker rendering

The pattern on the marker plane is given by

P(z,y) = cos (27m\/1‘2 + y2> , (3.11)

where p,,, = (z,y) is a point on the marker plane and n is the spatial frequency of the
pattern. Evaluating this function at each point on a grid in image coordinates renders

an image of the proposed marker, with the marker in some pose T This can be

cm:

performed by inverting
u = proj (T,,,,Prm) » (3.12)

where u is a point in image coordinates. The rendering has one major flaw: the pattern
extends all the way to the edges (as shown in Figure 3.10), which interferes with the
marker outline detection algorithm used for coarse pose estimation. To work around
this, the sinusoid section of the pattern was limited to a whole number of periods chosen

such that the centre of each edge is an intensity minimum:

P(z,y) = cos (27m min (\/x2 + 92, z;)) , (3.13)

where T is the number of periods of the pattern from the centre to the edge. This

produces the “bullseye” pattern shown in Figure 3.11.

3.5.4 Optimisation process

The objective function is the sum of squared differences between the intensities of the
pixels in the section of the image containing the marker and a marker pattern rendered

using the current parameter estimate:
e(B) =Y M(u,v; B) (I — R(u,v; B))*, (3.14)
u,v

where 8 = (z,v, 2, 0,0y, 0.) is the parameter vector, I, is the pixel at position (u,v)
in the image, R(u,v;8) is a function which gives pixels from a rendering of the marker

pattern on an infinite plane with the given parameters, and

1, (u,v) inside marker
M (u,v; ) = (3.15)
0, otherwise
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Figure 3.16 The error surface for the first step in optimising the pose estimate for the marker
in Figure 3.11 (optimising « and y only, using the central section of the marker), showing the path the

optimiser took as it converged.
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Figure 3.17 A scatter plot of the distribution of z- and y-coordinates in the coarse and optimised pose
estimates for the set of 150 images containing Figure 3.11. The optimised estimates have significantly

lower spread than the coarse estimates, and also a different mean.
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is a mask function. The optimum parameter estimate is then given by

B = arg min e(3), (3.16)

B
which is found using Nelder-Mead optimisation [Nelder and Mead 1965]. An example
of the (unsquared) difference image used here is shown in Figure 3.14d. Note that
although the optimisation process does not vary @, it is required in order to produce

the correct mask.

The main limitation in this process is that the error surface must be sufficiently
smooth and convex for the optimisation process to converge to a useful result. In practice,
this is only true when the parameters are close to the true values, so to work around
this, a series of optimisations are performed in which only a subset of the parameters
are refined while the others are held constant to reduce the dimensionality of the error
surface. In the first step, « and y are refined. This step is not as sensitive to error in the
other parameters; error in 6, and 6, have a greater effect further from the centre, so only
the central section of the marker is used. The error surface and convergence path for
this step in refining the pose for the marker from Figure 3.11 are shown in Figure 3.16.
Next, z is refined, then z, y, and z together. Finally, 6, and 60, are refined using the
whole marker, then all five parameters together. In Figure 3.17, the distributions of
x and y before and after optimisation for the set of images containing Figure 3.11 are

compared.

3.6 RESULTS AND DISCUSSION

The position of the marker in each image was estimated (as described in Section 3.5)
for each of the six datasets (one with the nine-period marker, one with the five-period
marker, one with an ArUco marker, then a replication of each), and the standard devi-
ation for each parameter-distance-dataset combination was calculated. In Figure 3.18,
the standard deviations are plotted against distance for each dataset. In Table 3.1, the
standard deviations for each of the three markers (i.e., the average of standard devia-
tions for the two runs for each marker) are shown. The same data is shown normalised
by the ArUco standard deviation for each point in Figure 3.19, such that normalised
standard deviations below one are improvements on ArUco’s performance. In Table 3.2,
the ratio of the nine-period marker results to the ArUco marker results from Table 3.1
are shown. The nine-period marker generally does better than the five-period marker,
which is unsurprising given that the sinusoid pattern is well-sampled throughout (ap-
proximately 25 pixels peak-to-peak for the nine-period marker at the greatest distance)
but the nine-period marker has high spatial frequency, as discussed in Section 3.4.3.
The nine-period marker estimates 6, 0, x, and z with significantly more precision than

ArUco. Overall, the nine-period marker has 13.8 %—48.4 % lower standard deviation
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Figure 3.18 The standard deviations of the estimates of each parameter for each dataset and distance.
There are two datasets for each marker type, as each experiment was repeated twice. Note that 6, is
not optimised beyond the coarse estimate, so its three estimates use effectively the same method.
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Table 3.1 The standard deviation for each parameter (in millimetres and degrees) at each distance,
averaged between the two datasets for each of the three markers evaluated. The lowest standard
deviation for each parameter-distance pair appears in boldface.

Distance (mm) Mean
600 900 1200 1500 1800 2100 2400

xz 0.0013 0.0031 0.0044 0.0055 0.0068 0.0093 0.011 0.0059

) 0.018 0.013 0.013 0.013 0.014 0.015 0.018 0.015

9 periods z 0.012 0.013 0.027 0.037 0.047 0.058 0.08 0.039
6, 0.0085 0.014 0.021 0.024 0.033 0.042 0.063 0.029

¢, 0.0078 0.012 0.019 0.024 0.036 0.047 0.097  0.035

0, 0.0055 0.0034 0.0032 0.0037 0.0034 0.0048 0.0054 0.0042

x 0.002 0.004 0.0056  0.0058 0.007  0.009 0.0095 0.0061

) 0.025 0.017 0.014 0.016 0.013 0.015  0.017 0.017

5 periods z 0.017 0.036 0.13 0.058 0.082 0.11 0.34 0.11
0. 0.012 0.028 0.044 0.049 0.085 0.11 0.17 0.071

0y 0.01 0.018 0.031 0.035 0.048 0.054 0.13 0.046

0, 0.0055 0.0033 0.0029 0.0032 0.004 0.0042 0.0051 0.0041

x 0.014 0.0085 0.0082  0.0089 0.012 0.012 0.015 0.011

Y 0.017 0.0097 0.0092 0.0097 0.012 0.013 0.017 0.013

ArUco z 0.054 0.042 0.05 0.071 0.13 0.15 0.22 0.1
0, 0.041 0.038 0.046 0.05 0.078 0.083 0.11 0.064

0y 0.034 0.028 0.034 0.036 0.049 0.063  0.068 0.045

6. 0.0042 0.0032 0.0029 0.003 0.0037 0.0045 0.0054 0.0038

w

Table 3.2 Normalised standard deviations of the estimate of each parameter for the nine-period
marker at each distance, presented as the ratio of the mean of the two nine-period datasets divided by

the mean of the two ArUco datasets.

Distance (mm) Mean
600 900 1200 1500 1800 2100 2400

x 0.09 036 054 0.62 058 0.8 074 0.53
Y 1.04 137 145 133 117 117 1.04 1.22
z 023 032 054 052 037 039 036 0.39
0. 021 037 045 047 043 050 0.58 043
0y 0.23 043 055 0.65 0.73 0.75 1.44  0.68
0. 1.30 1.07 1.12 123 090 1.06 1.00 1.10
Mean 0.52 0.65 0.78 080 0.70 0.v8 0.86 0.73
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Figure 3.19 The standard deviations of the estimates of each parameter for each dataset and distance
as in Figure 3.18, but with each data point normalised by the standard deviation for the corresponding
ArUco marker. There are two datasets for each marker type, as each experiment was repeated twice.
Note that 6, is not optimised beyond the coarse estimate, so its three estimates use effectively the same

method.
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than the ArUco marker (average 27.4 %).

Note that the camera is not sharply focused for the first few distances, as can be
seen by comparing the edges in Figures 3.12a and 3.12b to those in Figure 3.11. This
makes comparing the proposed marker to ArUco a bit unfair since neither claims to

provide precise estimates in blurry images.

The similarity in 6, between ArUco and the proposed marker is because 6, is not
optimised in the procedure described in Section 3.5.4. In fact, a shortcoming of the
proposed algorithm is that the marker outline is only used for the coarse pose estimate.
If the optimisation process incorporated the edge or corner locations of the marker,
then 6, could be jointly optimised along with the other parameters, which could result

in better estimation overall.

The experiment was initially carried out with both an ArUco marker and an April-
Tag marker [Olson 2011], but the AprilTag detection algorithm failed in many of the

images so the results are not included here.

This experiment gives a measure of precision, not accuracy; evaluating accuracy
would require a method for measuring the position of the camera’s focal point with
sub-millimetre accuracy and the direction of the camera’s optical axis with sub-degree
accuracy. A robot arm could be used to evaluate relative positioning accuracy; this
could be performed in future work. Another issue with the experimental design is that
estimation precision was only evaluated for markers in the centre of the image, oriented
parallel to the camera. In Chapter 4, it is shown in simulation that this is the worst
case for estimating 0, and 0, with a checkerboard. This finding most likely applies to
the ArUco marker and may or may not apply to the proposed marker; a more thorough
experiment would include a variety of positions and angles in order to avoid unfairly

favouring one marker over another.

The sinusoid pattern was originally chosen with the hope that frequency-domain
methods could be used (in a similar way to Roberts et al. [2015]), however, this approach
did not give good results. In the one-dimensional case (i.e., when estimating only
distance with every other parameter held constant) frequency-domain methods are
perfectly adequate, and this could be extended to four parameters (all but 6, and 6,)
without much trouble using the proposed marker. As soon as the marker is not parallel
to the camera there is no longer a single dominant spatial frequency in the image, and
since the only advantage of the frequency-domain method is its simplicity, there remains

no motivation for its use.

It should be noted that, unlike many other markers, this system does not allow
markers to be identified individually. Although it is possible to modify the marker design
to add this function, it is not strictly required for use as ground truth—an accurate
relative position is sufficient. An easier solution for other applications could be to

simply use these markers in conjunction with standard fiducial markers, or incorporate



3.7 CONCLUSION 45

a standard fiducial marker into the design.

The sinusoid pattern is also convenient because it can be rendered pixel-by-pixel,
which is fast for small markers. Simply warping the marker texture gives similar runtime
performance and precision in many cases (although comparing the optimised perspective
warp routine from OpenCV with the reasonably naive Python marker renderer is unfair
and a detailed comparison has yet to be made), so this may not be an advantage. In
particular, Hannemose et al. [2019] later developed a camera calibration routine with
a very similar approach to the pose estimation algorithm presented here (rendering
an image, updating parameters to minimise squared image difference, and repeating
until convergence) but simply used a checkerboard pattern with Gaussian blur, which
improved performance slightly over previous methods for checkerboard-based camera
calibration. The simpler calibration pattern let them produce analytical derivatives for
the rendering function, which is a significant advantage for the numerical optimisation
process. Similarly, Schops et al. [2020] developed a new Siemens star-like feature
for their camera calibration routine, with a rendering and optimisation-based feature
refinement method. First, approximate feature locations are calculated relative to a
central AprilTag. Then, these locations are refined by evaluating a rendering function
at each of a large set of random points within a local window, comparing the intensities
to the image, then optimising for a translation and a brightness transformation. This
is followed by a further refinement step which exploits the symmetry of the feature to
optimise a local homography, notably using random supersampling to avoid introducing
bias from bilinear interpolation. These improvements could be incorporated into the
approach presented here to further increase performance and robustness, although it is

unclear how close this approach is currently to achieving the highest possible precision.

3.7 CONCLUSION

A new approach to pose estimation using fiducial markers was proposed that is more
precise than existing algorithms. Rather than using only corners or edges for pose
estimation, the marker has a radial sinusoid pattern that has a predictable appearance
under perspective projection. The marker pose is initially estimated using traditional
methods, then refined using a novel optimisation method in which a rendering of the
marker is compared with the image. On average, pose estimation precision was increased
by 27 % compared to traditional fiducial markers. Future work could investigate al-
ternate marker patterns and evaluate the algorithm’s performance in less-controlled

conditions.

4 See Chapter 6.






Chapter 4

CHECKERBOARD POSE ESTIMATION PRECISION

In Chapter 3, a fiducial marker system was developed that attempted to estimate pose
with high precision by effectively increasing the salient area from only the corners to
the whole face of the marker. This could be conceptualised as the limiting case when
increasing the number of features used for pose estimation until the marker is filled with
features. The resulting marker did give increased precision, but it was not the “magic
bullet” for outdoor ground truth that was its motivation. In this chapter, which is
based on published work [Edwards et al. 2017], checkerboards are used as generic, easily
modellable substitutes to reason about the effects of various characteristics of a fiducial
marker /camera system on its pose estimation precision. First, a statistical lower bound
is derived analytically for the variance of an optimal pose estimate performed using a
checkerboard. This bound is then used, along with simulations and some real imagery,
to broadly illustrate how the maximum achievable precision for each pose parameter
(i.e., z-/y-/z-axis translations and rotations) depends on the corner estimation noise

and the checkerboard’s pose, size, and number of squares.

4.1 INTRODUCTION

A checkerboard is a grid of alternating black and white squares, as shown in Figure 4.1.
Checkerboards are most commonly used in computer vision for camera calibration [as in
Zhang 2000],! where the camera’s intrinsic parameters are estimated using a collection
of images of a checkerboard in different poses, but they can also be used for pose

estimation [Siebert and Bogustaw 2009].

A fiducial marker is an object used to determine relative camera pose. The analysis
in this chapter applies to square planar fiducial markers (as shown in Figures 3.1a
to 3.1c), which use the marker corners for pose estimation, and other fiducial mark-
ers that estimate pose from a series of interest points (like RUNE-Tag, as shown
in Figure 3.1d), but not necessarily to markers using conics or other methods for pose

estimation (like the less typical markers shown in Figures 3.1e to 3.1g).

L Although Zhang [2000] used a slightly different pattern to the modern checkerboard, the method
remains the same.
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Figure 4.1 An 8 x 6 checkerboard (with 9 x 7 squares).

From a pose estimation perspective, a square planar fiducial marker is equivalent
to a checkerboard, in that for either object, visual methods are used to estimate the
image locations of a set of known points on the marker, the points are matched to their
known 3D structure, and then these 3D-to-2D correspondences are used to solve the
PnP problem (see Section 2.5). Many VO algorithms contain a 3D-to-2D matching

step [Scaramuzza and Fraundorfer 2011] which is also equivalent.

When designing a system around any of these fiducial markers, it is desirable to
have a predictive model of pose estimation performance, and for sensor fusion, a full
covariance model is required. Mihalyi et al. [2013] presented models of the rotation
and translation covariances for a fiducial marker, which were then used in a pose graph
optimisation problem. Swapna et al. [2009] performed a Design of Experiments study
of camera calibration using a checkerboard and gave the distribution of each intrinsic
parameter in a particular configuration. Matsunaga and Kanatani [2000] presented
some analysis of the problem of estimating camera pose and focal length from an
infinite checkerboard pattern, including deriving an estimate of the CRLB from the
residual. Their formulation enables reliability analysis given actual data but cannot
make predictions for a scenario before data is collected. Davis et al. [2003] presented an
error propagation study of the pose estimation precision for two specific optical tracking
probes (and then verified their results experimentally), but only considered marker size
and detection noise and did not fit a model to their results. Kanatani and Ohta [2001]
derived an analytic model for the CRLB for visual localisation but did not evaluate

it in practice. Rohde et al. [2016] proposed an analytical model of an upper bound
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for localisation uncertainty in terms of odometry covariance, landmark covariance, and
observation probability. Their method does not use PnP, but instead compares landmark
observations to a map with the same dimensionality. The lower bounds on precision for
related visual estimation problems, for example, sub-pixel image registration [Robinson
and Milanfar 2004, Uss et al. 2014] and homography estimation [Acuna and Willert
2018, Chen and Suter 2009], have been studied in depth.

Some notable related research was published after the research presented in this
chapter was performed. Acuna and Willert [2018] focused on planar pose estimation via
homography decomposition, a special case of the pose estimation problem considered
here which is specific to images of planes.? Their main contribution is a method for
finding optimal point configurations, which was informed by a CRLB for homography
estimation. The conclusion was that the optimal point configuration for a given situation
is the one in which the points are the greatest distance apart. Zhang and Scaramuzza
[2018] focused on trajectory planning for UAVs, presenting a navigation system that
includes perception quality in its trajectory search (active SLAM). For each trajectory it
considered, the Fisher information matrix (FIM) for each pose along the trajectory was
calculated; the combined information was used as a measure of perception quality for
the trajectory. They later extended this approach with a new information representation
(the Fisher information field) to dramatically reduce the computation required [Zhang

and Scaramuzza 2019].

The rest of this chapter is structured as follows: Section 4.2 introduces notation
and background theory, Section 4.3 derives the CRLB for checkerboard pose estima-
tion, Section 4.4 presents and discusses results from models, simulations, and real image

data, and Section 4.5 draws conclusions.

4.2 BACKGROUND

An N x M checkerboard is an N x M grid of corner points, X = [T, Yn, O]T, where
k=mN+nandm=0,1,... M —1,n=0,1,... N — 1. In this context, a “corner”
specifically refers to the internal corners of the checkerboard, i.e., the points where the
corners of two squares touch. Each of the (N + 1) x (M + 1) squares has width and

height d, so the positions of the corners relative to the centre of the checkerboard, c(()m),

e M- 1)d
M = md — ( ; )
n (N —1)d 4.1
Co,y) =nd— — (4.1)
Coy = 0,

2 Although this chapter is about estimating pose using images of planes, the method analysed here
does not depend on the points being planar.
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where m =0,1,...,.M —1 and n = 0,1,..., N — 1. The method for estimating the
pose of a checkerboard from an image is the same as for a fiducial marker,? as discussed

in Section 2.5.

4.2.1 The Cramér-Rao lower bound

The Fisher information matrix is a measure of the information that a sequence of obser-

vations carries about a parameter to be estimated. Given a sequence of observations,
{X} = (Xo, X1, ... Xk),

where each observation X, is a random variable, a parameter vector 8 = (51, f2, - . ., Bp),
and an unbiased estimator 3 (X), the FIM is the expected value of the Hessian of the

negative log-likelihood of the observations,

2 n .
1o, = - PR, (42)

where [({X} ;) is the likelihood function. Note that the expectation is taken with
respect to [({X};3), and the true value of 8 is used. The Cramér-Rao lower bound
gives the minimum variance of any unbiased estimator [Kay 1993, chapter 3|, which

can be found as the diagonal elements of the inverse of the FIM:
var (3) > L) (4.3)

More generally, the covariance matrix of any unbiased estimator cannot be made smaller
than the inverse of the FIM [Watanabe 2009, chapter 1].

4.3 CHECKERBOARD CRLB DERIVATIONS

In this section, the CRLB for the variance of a checkerboard pose estimate is derived,
first for a simplified 1D case then for the full case. The pose is parametrised as 8 =
(x,y,2,04,0y,0,), where x is a translation along the z-axis, y is a translation along the
y-axis, z is a translation along the z-axis, 0, is a rotation about the z-axis, 0, is a

rotation about the y-axis, and 6, is a rotation about the z-axis.

For an N x M checkerboard, the observations are a sequence of measured corner

locations,

{U}: {UOaUl)"'aUNM}a

3 Although almost any checkerboard has more corner points than a fiducial marker.
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in image coordinates. Each observation,

U;
U, =
() »

= u; +Wl7

is a random vector, where u; is the true corner location and W; is an additive random
noise vector. Assuming each observation is independent, the likelihood function for the

measured data is
NM

L({U}:8) =[] 7 (U B), (4.5)

i=1
where f (U;; 8) is the probability distribution function (PDF) of U;. Since the noise is
additive, the joint PDF of U is

f(U;8) = fw, (Ui —w). (4.6)

Assuming the noise is zero-mean Gaussian, the joint noise PDF is

1 1 _
P V/(2m)? det (Sw,) o (_2W?2W1iw"> ’ (4.7

where Y, is the noise covariance matrix for the ith observation. Assuming the noise

is independent for the u- and v-coordinates of each observation,
Yw, = Io?, (4.8)

where I is a 2 x 2 identity matrix, so the joint noise PDF is

fw (wi) L p(—%;w?wi). (4.9)

= 2r02
The joint PDF of U; is then

1
202

F(UaB) = 5o (505 (U - w) (U - w)). (1.10)

Substituting (4.10) into (4.5) gives the likelihood function

NM 1 -
1)) = ] g (5 (U w) @i mw). @
and hence the log-likelihood function is
NM , 1 .
In (LU} ) = Y (~n2ae® = o2 (Ui— ) (Ui —w) ). (@12

=1
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Figure 4.2 A 1 x 6 checkerboard (with 2 x 7 squares), as in the simplified CRLB derived in Sec-
tion 4.3.1.

4.3.1 Simplified 1D case

Consider a simplified case with an 1 x M “checkerboard” (as illustrated in Figure 4.2)
and all parameters aside from z and z fixed to 0 and not estimated. The positions of

the corners relative to the centre of the checkerboard (i.e., in the object frame, {0}),
(m)

Co , are
M—-1
c((m) =md — ( 5 )d (4.13)
Coy = Co,» = 0, (4.14)

where d is the width of the checkerboard. The positions in world coordinates are

Cp, =C,+t,, (4.15)
Cop T
= 0 ; (4.16)
z

note that variables are referred to without their indices except when necessary to avoid
ambiguity. Given a pinhole camera at the origin of the world frame, {w}, the image

location w,, = (um, vy) of each corner is given by

C
w= At [Cwe (4.17)
cw,z Cw,y
f
— Z(CO7$ +x) ’ (418)
0

as in Section 2.4.

Once an image of the checkerboard has been taken, a corner detection algorithm is

used to estimate the corner locations in image coordinates,

U= g(cow +x)+ W, (4.19)
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where W is a zero-mean Gaussian random process that models the corner detection
errors.? Assuming the errors are i.i.d.® with variance o2, the likelihood function for the

measured data is

M-1

1 1 fea\?
(v, - 122) ), 4.2
=0 202 exp ( 202 (U z ) > (4.20)

[{uy:8) =11

where 3 is the parameter vector (z, z) and xp = x + x,,. The Hessian of the negative

log-likelihood is

f f2? —(2fxpa —uz)z

0224

1
(4.21)
m=0

—(2fza —uz)z  3fri —2urpz

Substituting (4.13) and the expected value of U, then evaluating the sum gives the
FIM,

Mf?| z —z
1(8) = 0223 1 2 2 2 (4.22)
-z 15z (M? —1)d* +122°)
Taking the inverse gives the CRLB matrix,
120222 L(M2—1)+22 2z
11 (8) = oz iz ( ) (4.23)
M (M?—1)d?f? oo 52

The diagonal elements give lower bounds for the variances of the estimates of x and z:

((M? —1) d* + 1222) 0222
M (M?%—-1)d2f2
120224

M (M2 —1)d2f?

Var (2) > (4.24)

Var (2) > (4.25)
Note that & or & ({U}) is a random variable representing an estimator of x from the
measured data {U}, and so on for 2 and later the other parameters. For large M, this
simplifies to

Var (&) o252 Md? + 1222

> 7% (4.26)
Var(3)) ~ MPd*f? 1222

A clearer expression can be obtained by combining the focal length and square size

into one variable roughly equivalent to the width (and height) of each square in pixels,°

4 From (4.19) onward, the v-coordinate is neglected for simplicity; & and 2 are estimated from the
u-coordinate alone.

5 Isotropy, homogeneity, and independence are not trivial assumptions; see Chapters 5 and 6.

5 For a marker that is parallel to the camera, this description is accurate. For a marker that is rotated
about the z- or y-axis, d; is the size in pixels of a square placed parallel to the camera at the centre
of the marker. Either way, it is easier to reason about than camera focal length.
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4 =L, (4.27)

giving
Var (2) - o2 Md? + 1222

> -7 (4.28)
Var (2) M?d;? 1222

These results show that the precision of the pose estimate increases with increasing
corner detection precision, number of corners, and square size in pixels. Thus a checker-
board with more corners should give a better estimate. However, the corners need to

be resolvable, which places an upper limit on the number of corners for a given size.

4.3.2 Full case

Consider now the full problem, where the parameter vector to be estimated is 8 =
(x,y,2,0z,0y,0,) and the checkerboard has N x M corners. The corner positions in

world coordinates are

x
cy =Ry (02,0,,02)co+ |y | (4.29)
z
and the image location of each corner is
u = g(c,;B)
[ Cwa (4.30)

Corner detection is used to measure their locations in image coordinates,
U = gley: B) + W, (4.31)

where W is a zero-mean multivariate Gaussian random process that models the corner
detection errors. Assuming again that the errors are i.i.d. with variance o2, the likelihood

function for the measured data is

N-1M-1

1{uy;8) = 11 11 5 02 ( ;ﬂA%,nAm,n) (4.32)

n=0 m=0

where
Ay = Upn — g(cim™): ). (4.33)
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The FIM is

821l ({U} ; B)] (4.34)

1 (5)]1‘]‘ =L [ 9B:05;

which, when evaluated symbolically, is too complicated to print. It is also too compli-

cated to invert symbolically, although it is computable numerically.

Some insight into the effect of the various parameters on estimation variance can
be obtained by fixing some parameters in order to simplify the FIM expression. Setting
M=N,y=0,0, =60, =0, =0 (that is, considering a square checkerboard held
parallel to the camera moving sideways along the z-axis) is enough to allow the CRLB
to be calculated symbolically using the Sympy computer algebra system [Meurer et al.
2017], giving

Var (%) (N2 —1) (TN? —13) d* + 12 (N? — 4) d*2? + 180z*
Var (9) (N? —1) ((TN? — 13) d* + 152?%) d?
Var (2) 9 ((3N? —17) d* 4 202?) 2*
Z a(0-7d7f7$7z’N)
Var (6.) 9 (3N2 —7) d2 + 18022
Var (0;) 36022
Var (9;,) 36022
(4.35)
where 5 o
20°z
d N) = . 4.36
alod f, 2.2 N) = S N ST (BNZ = 1) @ & 1050) 212 (4.36)
For large IV, this simplifies to
it
6
Var () 7
Var (§) 6
Var (2) 9d?2?
ar (2 N2
> a*(o,d, f,z,N) 2N , (4.37)
Var (9;) %
X 2N?2
Var (6 6022
Var ( Ay> Nt
6022
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where )
N 4oz
(6] (0—7d7f727N):3N27d4f2' (438)
Simplifying again using (4.27) gives
402
O/(O', d, di,Z,N) = m, (439)

which shows the same trend as (4.28) with some additional dependence on d.

4.4 RESULTS AND DISCUSSION

This section presents three kinds of data. Firstly, numerical calculation of the CRLB for
various checkerboard configurations was performed by evaluating and inverting (4.34).
Secondly, Monte Carlo simulations were performed in which Gaussian noise was added
to the true 2D points and the OpenCV solvePnP function [Bradski 2000] was used to
calculate the pose in the same way as for a real checkerboard. These simulations are
representative of real pose estimation implementations, assuming the corner detection
noise distribution matches the model used here and there is no estimation bias. Finally,
an experiment was performed in which a real checkerboard was imaged with a camera,
its pose was estimated using a similar process, and the variances of the resulting pose

estimates were compared to the numerically obtained CRLB.

Where not specified, the results presented in this section use o = 0.05px, f =
2952px, d = 0.12m, M = N = 2, and 8 = (0,0,1,0,0,0). These values are chosen

0.25
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g <
2 0

0.05 -

0.00

—-2.0 —-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x translation (m)

Figure 4.3 Simulation results and numerically obtained bound for a checkerboard moved along the
z-axis, showing the dramatic variation with pose.
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to match the real checkerboard used in the experiment. The figures show standard

deviation rather than variance to make the trends more visible.

4.4.1 Numerical and simulation results

In Figures 4.3 to 4.6 and 4.8 to 4.11, simulation results and numerically obtained bounds
are compared for various checkerboard configurations. Figures 4.7, 4.12 and 4.13 show
the numerically obtained bounds only. The simulation results closely follow the CRLB
in every scenario (even for the figures in which simulation results are omitted), which

verifies that the model correctly predicts pose estimation precision.

In Figures 4.3 and 4.4, the checkerboard is moved along or rotated around various
axes. Setting x = 0 and varying y gives the same graph as Figure 4.3 but with z and

y reversed. Figures 4.3, 4.4a and 4.4b show that roll and pitch estimation is imprecise
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0. rotation (rad)
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Figure 4.4 Simulation results and numerically obtained bounds for a 2 x 2 checkerboard moved along
or rotated around various axes.
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Figure 4.5 Simulation results and numerically obtained bounds for checkerboards of the same physical
size with varying numbers of squares, from 2 x 2 to 21 x 21.

when the checkerboard is parallel to the image plane and near the centre of the image.
This effect is well known in the context of fiducial markers [e.g., Tanaka et al. 2012].
Figure 4.4c shows that the estimation precision for all parameters (but particularly 6,
and 6,) decreases rapidly as the distance from the camera increases. Figure 4.4d shows
that rotations around the z-axis do not affect estimation precision (for a checkerboard

parallel to the image plane).

In Figures 4.5 and 4.6, non-pose parameters are varied. Figures 4.5 and 4.6a
shows that estimation precision increases as the number of corners or the checkerboard
size increases, but with rapidly diminishing returns. Figure 4.6b simply illustrates

estimation precision decreasing linearly as corner detection precision decreases.

In Figure 4.7, the checkerboard is rotated about the z-axis in two different positions,
with the position and orientation parameters graphed separately, illustrating how the
high variance at the centre of the image observed above decreases as the checkerboard
moves away from the origin. This is further illustrated in Figures 4.8 to 4.11, which
repeat the plots from Figures 4.3 to 4.6 but with the checkerboard positioned at y = 0.5

instead of y = 0, showing similar effects across most parameters.

Figure 4.12 illustrates the increase in estimation precision for a checkerboard of the
same size with more squares, as in (4.37). Figure 4.13 shows how the estimation precision
varies for each orientation parameter depending on which rotation parametrisation is

used (z —x—y,z—y—xo0ory—z—x).

Another property to consider is the covariance, which is more intuitively expressed

as the correlation between parameters in each estimate. The correlation coefficient of
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Figure 4.6 Simulation results and numerically obtained bounds for varying corner estimation noise
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Figure 4.7 Numerically obtained bounds for a 2 x 2 checkerboard rotating around the z-axis at x = 0
and z = 0.5, with (z,y, z) and (0,0,,0.) on separate axes.
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Figure 4.8 Simulation results and numerically obtained bound for a checkerboard moved along the
z-axis at y = 0.5. Note that the axis scale is not the same as in Figure 4.3.

two random variables X and Y is defined as

~ Cov(X,Y)
Corr (X,Y) = Var (X) Var (V) (4.40)

The correlation coefficient is 0 for uncorrelated variables, 1 for perfectly positively
correlated variables, and —1 for perfectly negatively correlated variables. The correlation

coeflicient matrix is defined as
[Cl;; = Corr (Bs, ;) - (4.41)

Since the CRLB gives a lower bound for each element of the covariance matrix [Watanabe
2009, chapter 1], it can be used to calculate the correlation coefficient matrix for
a minimum-variance unbiased estimator using isotropic, homogeneous, independent
corner position estimates. The correlation coefficient matrix for d = %m andx =y =0

is

1

0

0
(4.42)

0

0

0

o O O = O O
o O = O O o

0
1
0
0
.71
0

-0.71
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Figure 4.9 Simulation results and numerically obtained bounds for a 2 x 2 checkerboard moved along
or rotated around various axes at y = 0.5. Note that the axis scales are not the same as in Figure 4.4.
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Figure 4.10 Simulation results and numerically obtained bounds for checkerboards with varying
numbers of squares, from 2 x 2 to 21 x 21, at y = 0.5. Note that the axis scale is not the same as
in Figure 4.5.
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Figure 4.11 Simulation results and numerically obtained bounds for varying corner estimation noise
standard deviations and checkerboard square sizes, at y = 0.5. Note that the axis scales are not the
same as in Figure 4.6.
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Figure 4.12 Numerically obtained bounds for 2 x 2 and 20 x 20 checkerboards of the same size
rotating around the x-axis, with (z,y, z) and (0, 0y, 0.) on separate axes. Note that the axis scales are
not the same as in Figure 4.7.
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With z =y =0.11it is

[ 1 —002 015 021 —0.12 —0.54]
—0.02 1 015 —021 054 0.12
015  0.15 1 0  —0.32 0.32

C-= , (4.43)
021 —021 0 1 —032 —0.32
—0.12 054 —032 —032 1 0
—0.54 012 032 —032 0 1

and with x =y = 0.5 it is

[ 1 087 094 005 —048 0.37 ]
087 1 094 —0.05 —0.37 0.48
094 094 1 0  —0.49 0.49

C= . (4.44)
0.05 —0.05 0 1 —049 —0.49
048 —0.37 —0.49 —049 1 0
1037 048 049 —049 0 1

These correlation coefficient matrices are representative of the general case: the cor-
relation between the estimate of each parameter is high.” Although not shown here,
Corr (2,6.) and Corr (6;,6,) increase as 0., 6, or 6, increase. From this it can be
concluded that most of the parameters are correlated with each other to some extent,
depending on the marker position. Thus, for an application like sensor fusion that uses
a full covariance matrix, the proposed model is more accurate than a model of estimate

variance that assumes zero covariance.

4.4.2 Real data

A Point Grey (now Flir) Grasshopper3 GS3-U3-41C6NIR-C global shutter machine
vision camera was mounted on a tripod. An 8 x 5 checkerboard with 35 mm squares,
professionally printed on aluminium composite board, was mounted on a whiteboard
and lit from the side with an overhead projector. 150 images with a resolution of
1024 px x 768 px were taken at a series of 15 distances, moving from the distance at
which the checkerboard filled the image (as shown in Figure 4.14) to the distance at
which the squares began to be hard to resolve (as shown in Figure 4.15) in approximately

0.1 m steps, with the marker approximately (but not precisely) in the centre of the frame

T A full analysis of the correlation between parameters is beyond the scope of this chapter, but would
be useful future work.
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Figure 4.14 An image taken from the closest distance (approximately 0.5 m), where the checkerboard
fills the image but is still detectable (the checkerboard corner detection algorithm fails when the
checkerboard is any closer to the edges of the image). Notice how the edges are slightly out of focus;
this distance is likely too short for the lens. The two black objects on the lower right of the checkerboard
are adhesive bases for motion capture markers (not used here).

Figure 4.15 An image taken from the furthest distance (approximately 2.1m), just before the
checkerboard squares become too small for checkerboard detection to be reliable. The lighting patterns
from the overhead projector and the room’s ceiling lights are visible.
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Figure 4.16 The standard deviation of each parameter of the estimated poses from 150 images of
checkerboard at 15 distances, compared to the bound obtained by evaluating (4.34) using the mean of
the estimated poses and inverting. In this graph, it is expected that the bound does not form a smooth
curve as in the simulations, since the camera is not moving in a perfectly straight line (rather, the
camera parameters at each point are all approximate, as described in Section 4.4.2).

at each point. Each image was rectified,® then for each image, the checkerboard corners
were detected using the OpenCV function findChessboardCorners and refined to sub-
pixel precision using cornerSubpix, then the checkerboard pose was estimated in the

same way as in the simulation.

In order to evaluate the CRLB, the mean of all the standard deviations of each
estimated corner at each distance was used as the corner detection error noise standard
deviation ¢, the camera focal length obtained from camera calibration was used as f,
and the mean of the estimated poses at each distance was used as the pose for that
distance, then the FIM was evaluated and inverted as in the simulations. In Figure 4.16,
the square root of this bound is compared to the standard deviation of the pose estimates
at each distance. The variances of the estimates generally lie near the CRLB, although
not above it as they should (due either to bias or poor modelling of corner detection
noise), and there are some significant spikes. Given that the OpenCV implementation
is not necessarily unbiased and the corner detection noise is not entirely uncorrelated
(as discussed in Chapters 5 and 6), this is a good result. Overall, the model successfully

predicts the best-case precision of checkerboard pose estimation from real images.

8 Note that rectification introduces a non-linear blurring to the image. The effect this has on corner
detection is examined in Section 5.3.1.

9 This is potentially problematic: in the close-up images the edges appear blurred (so those images
likely have higher corner detection error), and since rectified images are used, the corners nearer the
edges of the image will be less sharp than those in the centre. Nevertheless, the results as presented
are sufficient to demonstrate that the CRLB derived here is a reasonable fit for real data. The details
of corner detection error distribution are explored in greater detail in Chapters 5 and 6.
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4.4.3 Discussion

This work aimed to investigate how each characteristic of a fiducial marker/camera
system affects pose estimation performance, in the context of the fiducial marker system
from Chapter 3. The relationship between minimum pose estimation variance and
the checkerboard configuration, checkerboard pose, camera focal length, and corner
detection noise variance derived here is a powerful tool for this investigation. It shows
that increasing the number of corners of a checkerboard, which is roughly equivalent
to the approach from Chapter 3, gives rapidly diminishing returns. Increasing the
size of the checkerboard or decreasing the distance to the checkerboard has a similar
effect at the cost of taking up more of the image; a significant issue when recording
ground truth for vision algorithms. Reducing corner detection noise variance directly
reduces pose estimate variance. It is difficult to improve on the precision of modern
checkerboard corner detection algorithms, but pose estimation using other features like
circles [Benligiray et al. 2019, Bergamasco et al. 2011, Lightbody et al. 2017, Xu and
Dudek 2011] (and possibly the continuous circular pattern from Chapter 3) may still
offer some potential. Another approach is to use markers augmented with lenses or
gratings to produce Moiré patterns [Armstrong et al. 2007, Banks et al. 2019, Banks
2020, Tanaka et al. 2012, 2015, 2017]. These markers vary their appearance depending
on viewing angle, allowing their orientation to be estimated more precisely. The final
issue is that the precision to which each pose parameter can be estimated for a single
checkerboard varies substantially depending on the checkerboard’s pose (as shown in,
for example, Figures 4.3 and 4.7). This is a serious issue for a system where the aim is
to estimate the pose of a camera with bounded precision using a single view of a distant

marker.

One implication of these findings is that measuring the pose estimation performance
of a fiducial marker, or comparing the performance of two fiducial markers, must be
done with great care. If a marker is evaluated in one pose, or in a series of poses where
few parameters change (as in Section 3.5.1), its performance will not be representative
of the general case. Consider, for example, the dramatic difference in performance
resulting from the small translation between Figure 4.7c and Figure 4.7d. Furthermore,
pose estimation performance depends on the characteristics of the camera, lens, and
lighting used.!® In practice, any precision result given in a paper is so specific to the
authors’ situation that comparisons to results from other papers are of questionable
validity.

Common advice for using checkerboards for camera calibration is to use a large cali-
bration target with as many features as can be imaged reliably, to use good lighting and

an appropriately focused camera, and to collect images with a variety of poses [Wilm

10The focal length of the lens affects the variance of the pose estimate directly. The other characteristics
(camera resolution, sensor noise, lens resolution, and lighting quality) affect corner detection noise
variance.
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2018]. This follows from the findings here: estimation variance decreases with checker-
board size and number of squares and increases with corner detection noise variance,
and different poses have very different variance characteristics. Note that many factors
are linked; for example, the camera field of view, calibration target size, number of
squares, and maximum working distance all affect the square size in pixels. In particular,
choosing parameters to achieve a minimum square size in pixels implicitly depends on
the window size for the corner refinement algorithm, which can impact corner estimation
noise (which is modelled here as independent), which is also dependent on image sharp-
ness and noise, which are dependent on the camera, lens, and lighting as mentioned
above. Note also that the optimisation problem involved in camera calibration is a
superset of the problem examined here,'! so this analysis may not translate directly; a

full model for camera calibration precision would be useful future work.

Knowing the precision of a pose estimate is important for many applications, for ex-
ample, sensor fusion and active SLAM. The approach in this chapter has the advantage
of giving a symbolic result, but the disadvantage of being computationally intensive and
specific to a particular object structure. For real-time applications, numerical approaches
which use point correspondences directly to calculate a single covariance matrix [e.g.,

Kanatani and Ohta 2001, Zhang and Scaramuzza 2019] are more appropriate.

4.5 CONCLUSION

In this chapter, an analytic model was derived for the CRLB of pose estimation using
a checkerboard (or fiducial marker) pose estimator. The model gives a lower bound for
the variance (and covariance) of the estimate, which effectively predicts the precision
of the most accurate pose estimate from a given set of data. Both a Monte Carlo
simulation and real data validate this model. The model can both predict estimator
precision before data is available and evaluate the performance of a real estimator on
real data compared to the theoretical precision limit. One significant finding is that
generalising measurements of pose estimation precision is difficult: results from different
cameras are not directly comparable, and the performance for a marker in one pose does
not trivially predict the performance for another pose. This approach for predicting
and evaluating checkerboard pose estimation precision has not been considered in prior

research.

1In camera calibration, the parameters for the optimisation problem are the pose of the calibration
target in each frame along with the parameters of the camera model.






Chapter 5

CORNER DETECTION ERROR MODELLING

In Chapter 4, a theoretical lower bound was derived for checkerboard pose estimation
error and used to investigate its dependence on various parameters. This bound assumed
that the error from corner detection could be modelled as zero-mean, independent, and
identically distributed Gaussian random variables. The aim of this chapter, which is
based on published work [Edwards et al. 2018], is to evaluate the suitability of that

model.

5.1 INTRODUCTION

In computer vision, the terms corner, feature, and interest point are used interchangeably
to refer to the intersection of two edges, or a point with low self-similarity, or one of
many similar concepts.! In this chapter, corner detection refers to the process of finding
the approximate location of checkerboard corners in an image using Suzuki and Abe’s
[1985] contour detection algorithm, as implemented in the findChessboardCorners
function in version 4.4 of the OpenCV library [Bradski 2000], then refining each corner’s
location to sub-pixel precision using the Forstner operator [Forstner and Giilch 1987],
as implemented in OpenCV’s cornerSubPix function. The difference between the result

of this process and the corner’s true location is the corner detection error.

The general approach for sub-pixel corner refinement is to take a window around
a coarse estimate and then either interpolate between pixels in the image to find the
saddle point [Lucchese and Mitra 2002] or construct an estimate directly as a function
of the pixel values [Chen and Zhang 2005].

There has been some previous work on sources of error for checkerboard corner
detection. Mallon and Whelan [2007] investigated two sub-pixel detection strategies
for checkerboard patterns and two for circle patterns, evaluating their robustness to

perspective distortion, lens distortion, and blur. They concluded that lens and per-

! This can lead to phrasing which is confusing out of context, for example using a corner detector to
detect spots.
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spective distortion were the most significant source of bias for most methods.? Strobl
and Hirzinger [2008] pointed out that off-the-shelf printing equipment generally prints
with slightly incorrect scale in each direction and proposed a camera calibration routine
that estimated scale and aspect ratio (and improved accuracy). Albarelli et al. [2010]
went further, finding that fully estimating the checkerboard geometry gave further im-
provements in calibration accuracy. Ha et al. [2017] presented a camera calibration
method using a triangle grid, where the corner detection process was shown to be
dramatically more robust to blur, image noise, and perspective distortion than tradi-
tional checkerboards. Duda and Frese [2018] presented a new method for checkerboard
corner detection and showed it to be consistently more accurate than the OpenCV
method. Hannemose et al. [2019] presented a camera calibration method that uses a
similar rendering and optimisation process to the one in Chapter 3 and showed it to
be significantly more accurate than the OpenCV method and slightly more accurate
than the method from Ha et al. [2017]. Schops et al. [2020] presented a camera cali-
bration method using a target with Siemens star-like features (as shown in Figure 5.1),
including a corner detector that was specifically designed to minimise bias. These new
targets and algorithms offer significant advantages for camera calibration, and should be
preferred over traditional methods when precision is required. However, checkerboards

are still widely used in practice, and the underlying sub-pixel corner refinement method

is common in other applications as well, hence the focus of this chapter.
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Figure 5.1 An example of the camera calibration target introduced by Schops et al. [2020] that uses
Siemens star-like features instead of traditional checkerboard corners.

2 Note that Mallon and Whelan [2007] found estimation bias increases slightly with blur kernel size
(which they described as “remaining relatively constant”), while the results in this chapter show that
the bias in a blurred image decreases with blur kernel size.
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The rest of this chapter is structured as follows: Section 5.2 presents background
theory, Section 5.3 outlines the methods used for simulation and data collection and

presents experimental results, and Section 5.5 summarises the results.

5.2 BACKGROUND

Forstner and Giilch [1987] proposed a method for precisely locating corners that cal-
culates the intersection of the edges within an image window using a sum of pixel
gradients. This was an improvement on the state of the art at the time (Moravec’s
[1980] corner detection algorithm, one of the earliest such algorithms), but was followed
by the Harris [Harris and Stephens 1988] and Shi-Tomasi [Shi and Tomasi 1994] corner
detectors, which are still widely used. The lasting contribution of Forstner and Giilch
[1987] is a method for calculating the location of a corner with sub-pixel precision

(see Appendix A).

An intuitive understanding of this method can be reached by considering the pixels
in an image window containing a checkerboard corner. Each pixel falls either on an
edge or in a flat-colour region. For a pixel in a flat-colour region, the image gradient is
approximately zero. In a window centred exactly on a corner, the edge is a straight line
through the pixel toward the centre and the image gradient at the pixel is perpendicular

to that line, so their dot product is zero. Otherwise, their dot product is non-zero.

This can be formalised as an error function. For an M x N image window I with

Ty
with the image gradient D® at the point is

T ,
a corner at ¢ = (c c ) , the dot product of a vector from a point p(? to the centre ¢

el = pOT (c - p(i)> , (5.1)
where e(® is the error for the ith pixel. Note that the ith pixel in the window has pixel

indices (m,n) and so
p = pmn)

- (pé’“)) (5:2)
Py

The gradient images are calculated using the central difference:

(5.3)



74 CHAPTER 5 CORNER DETECTION ERROR MODELLING

The error, (5.1), can be expanded as

e = D (e~ p)

. . o o (5.4)
— DY, + D, — DY o) — DY 10,
and so the error vector can be expressed as
o) Dél)p:(rl) I Dl(/l)p?(Jl) _Dél) Dz(/l)_
e D@ D2 | D D@ | fe
e= =— . + ' . , (5.5)
: : : : cy
o(MN) ngM) pg:M) + Dz(/N) pg(,N) _Dg([;M) D?(JN)_
or in vector form,
e=u+ Ac. (5.6)

Minimising this error function finds an estimate ¢ of the corner. Since (5.6) is linear in

the corner position, the least-squares estimate is given by?

-1
&= (ATA) ATu. (5.7)

This can be expressed as

¢ =G b, (5.8)
where

G=ATA (5.9)
and

b=A%u. (5.10)

The G matrix can be expressed as

Y
G=|t " 7 ol - (5.11)
=000 5 (of)

Similarly, the b vector can be expressed as

N2 . . . .
Z (ngz)) p:(vl) + Z D;S:z)Dg(;) ng)
b=|? i

D) @) (i \2 (i (5.12)
ZD;)Dz(;)pa(c)‘i'Z(D?(;)) Pz(/)

3 Note that with this method it is assumed that the residuals are i.i.d. Given that the noise power for
each pixel depends on its intensity (as discussed in Section 6.3.1), weighted least squares may give
slightly better results.
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Thus the estimate of ¢, is

A 2 N\ 2 ) . . ) ) B N N\ 2
5 (000) (S (00) W, 20047 ) -, 0007 (£, 005804 (007) 40 )
A\ 2 N\ 2 - N 2 .
=(p2) . (087) (£ o0l

~

T

(5.13)

The estimate for Cy is similar.

The OpenCV sub-pixel corner refinement implementation (cornerSubPix) uses
Forstner’s method to estimate the corner location then uses bilinear interpolation to
get a window centred on the new estimate, repeating until the estimate converges. This
is true for all OpenCV versions dating back to at least 2002, beyond which the project
history is lost.4

5.3 METHOD AND RESULTS

Multiple approaches were used to examine various characteristics of the distribution of
checkerboard corner detection error. Real images of checkerboards in various configu-
rations were collected and used to analyse the distribution of corner detection error in
practice. Monte Carlo simulations of estimating the location of a checkerboard corner in
a noisy image were performed for a range of true corner locations in order to investigate

the effect of small changes in corner location.

Figure 5.2 The checkerboard used in data collection, shown as configured for the follow-up study
in Chapter 6.

4 The earliest version remaining online is at https://github.com/opencv/opencv_attic/blob/
27e20eea2591744£fa37317£aeb3783794784862c/opencv/src/cv/cvcornersubpix.cpp. The original im-
plementation was likely by Jean-Yves Bouguet, as he worked at Intel at the time OpenCV was first
released, was credited for camera calibration [Intel Corporation 2001], and already had an implemen-
tation in his MATLAB camera calibration toolkit [Bouguet 1996].


https://github.com/opencv/opencv_attic/blob/27e20eea2591744fa37317faeb3783794784862c/opencv/src/cv/cvcornersubpix.cpp
https://github.com/opencv/opencv_attic/blob/27e20eea2591744fa37317faeb3783794784862c/opencv/src/cv/cvcornersubpix.cpp
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5.3.1 Real data

An 8 x 5 checkerboard pattern with 35 mm squares, offset-printed on aluminium com-
posite board (as shown in Figure 5.2), was fixed to a wall and lit with diffused LED
panels (as shown in Figure 5.3). Initially, a Point Grey (now Flir) Bumblebee2 BB2-
08S2C global shutter machine vision camera on a tripod was used, positioned such
that the checkerboard was centred and parallel to the image plane with a precision of
lcm and 3 degrees. The camera was used to capture 1000 8-bit colour images with
1024 px x 768 px resolution, which were rectified using the Point Grey factory calibra-
tion. The OpenCV findChessboardCorners function was used to estimate the location
of each checkerboard corner in each image, and the OpenCV cornerSubPix function was
used to refine each corner’s location to sub-pixel precision. The true corner locations
are unknown, so neither the corner detection error for each image nor the overall bias
could be calculated. The variances of the estimated locations for each of the 40 corners
were calculated, which, assuming the corner detection error is independent and normally

distributed and the corner location is constant, are the error variances.

Next, the camera was mounted on a Universal Robotics URb robot arm, which was
used to position and orient the camera precisely. First, images were captured with the
checkerboard parallel to the camera, initially positioned in the centre at the image and

then positioned at each point in a grid with 50 mm spacing which extended 350 mm

Figure 5.3 The experimental setup used for collecting the real data, showing the UR5 robot arm
and teach pendant (centre), wall-mounted checkerboard (top), and LED panels (left, right). Another
LED panel is out of frame, pointing up from below.
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Figure 5.4 A selection of representative corner detection error distributions from the robot arm
images, shown with the same axis scale.
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Figure 5.5 A heatmap of the standard deviations of the estimates of the z-coordinate of each corner
in the upper right quadrant of the images from the first robot arm dataset, displaying a sharp increase
towards the corner. The areas in white are where the image is sufficiently blurry that the initial corner
detection process fails to consistently return the same (integer-valued) result, and so after sub-pixel
refinement, the result is a group of clusters spaced 1 pixel apart.

along the x-axis and 300 mm along the y-axis, such that the resulting checkerboard
corner locations spanned the upper right quadrant of the image. Then, another dataset
was collected where the checkerboard started in the centre of the image and moved

50 mm along the z-axis in 0.5 mm steps.

The corner detection error is generally normally distributed, as shown in Figure 5.4.
However, the variance is not uniform, as shown in Figures 5.5 and 5.6. The variance
increases towards the edge of the image. This is likely a result of the warping operation
used to correct for radial lens distortion during rectification, which resulted in images
that are increasingly blurry toward the edges. When an image is too blurry, the corner
detection process produces multiple clusters of results rather than a single result; in
this case, a Gaussian distribution is inappropriate. The variance does not increase
smoothly toward the edges, however; the inconsistency is likely due to the sub-pixel

effects discussed in Section 5.3.2.

In the tripod images, the noise distributions for the z- and y-coord estimates
for each corner are similar—although not identical—and approximately uncorrelated
(|Corr (X,Y)| < 0.2). Figure 5.7a shows the distribution of the ratio of standard
deviations; for most corners, 0.8 < g—; < 1.2. Similarly, the estimates of each corner’s
location are independent from the other corners’, as shown in Figure 5.8. The cross-

correlation between any two corners, |Corr (Xj,Y;)|, is generally less than 0.2.
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Figure 5.6 The standard deviation of the estimate of the z-coordinate of each corner in the second
robot arm dataset (in which the camera moves 50 mm along the z-axis in 0.5 mm steps), plotted as
a function of image location. The checkerboard has five rows of eight corners; each row is plotted
separately, with the corners within each row are distinguished by colour. The spatial variability shown
in this graph is the reason the contour plot in Figure 5.5 has such inconsistent contours.
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(a) The distribution of g—§ for the tripod (b) The distribution of Z—;’( for the robot arm
images (1,000 images). For most corners, dataset, a total of 4,000 corners (with 1,000
0.8 < 2 < 1.2, which indicates they have images of each). For most corners,
a similar noise distribution. 0.5 < g—; < 2.

Figure 5.7 The estimate of the z- and y-coordinate of each corner have normally distributed noise
with standard deviation ox and oy. These graphs show histograms and kernel density estimates for
the overall distribution of the ratio of the two standard deviations, Z—;, which indicates how close each
corner is to having the same noise distribution. The vertical line is at ox = oy; which would indicate
identical noise distributions. The long tail in (b) is likely due to vibration in the robot arm, as discussed

in Section 5.3.1.
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Figure 5.8 Correlation matrices for the estimates of each corner’s location in the tripod images,
shown as heatmaps. The off-diagonal elements are small, indicating that estimates of the location of
each corner are approximately uncorrelated with estimates of the locations of the other corners.
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Figure 5.9 Correlation matrices for the estimates of each corner’s location in an example from the
robot arm images. These matrices show significant correlation between corners, particularly for the
y-coordinates.

This is not true for the robot arm images, likely due to vibration.® The noise
distributions for the z- and y-coord estimates for each corner are dissimilar, as illustrated
by the Z—)’; distribution shown in Figure 5.7b. Most of the corners satisfy 0.5 < g—; < 2;
there is a bias towards larger oy as the robot arm is oriented with the most-loaded joints
moving vertically. Figures 5.4b and 5.4c show examples of corners where ox # oy, and
Figure 5.4d shows an example of a highly correlated corner. Figure 5.9 shows that the

correlation between corners is high, particularly for the y-coord estimates.

5 Although the images are not visibly blurry, the vibration in the arm while it is stationary is perceptible
by touch. This vibration was not measured quantitatively due to external constraints, but doing so
would be useful future work.
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5.3.2 Simulated data

A simulation for corner detection of a single checkerboard corner was developed.® First,
a 2000 px x 2000 px image of a checkerboard corner was generated, then a Gaussian
blur was applied to simulate a lens [as in Lucchese and Mitra 2002], then the image
was divided into a 20 x 20 grid of 100 px squares and each grid section was averaged
to simulate a camera sensor array. Each step of this process is shown in Figure 5.10.
This was repeated with the corner at each location in a grid spanning one pixel in the
centre of the resulting image. For each of these images, a Monte Carlo experiment was
performed in which i.i.d. Gaussian intensity noise was added to simulate image sensor
noise” and then the OpenCV cornerSubPix function was used to produce a corner

estimate in the same manner as for the real images [as in Chen and Zhang 2005].

The resulting corner detection error distribution is not uniform across each pixel.
Figure 5.11 shows the result of a simulation with 0.2 px of lens blur (i.e., the Gaussian
blur kernel used on the high-resolution image had o = 20 px). There is significant bias
in the estimates which depends on their location within the pixel. The variance of the
estimates is also dependent on location. In a simulation with 1px of lens blur,® the

bias is negligible and the variance is higher (as shown in Figure 5.12).

To visualise the dependence of variance on location, the same simulation was
performed with a much denser grid of corner locations, and the resulting z- and y-
coordinate estimate standard deviations were plotted as heatmaps (shown in Figures 5.13
and 5.14). These show that the standard deviation of the error in each coordinate is
lowest when the corresponding edge is at the edge of a sensor element (i.e., the vertical
edge for the z-coordinate and the horizontal edge for the y-coordinate) and highest when
the edge is at the centre of a sensor element. The standard deviation varies by a little
over 30 % across the sensor element. Note that the overall distribution of distributions
is not Gaussian, as shown in Figure 5.15. Horizontal cross-sections of Figure 5.13 with
an offset of 0, 0.1, 0.2, and 0.5 pixels from the centre are shown in Figure 5.16. This
shows that the standard deviation for the z-coordinate has a weak dependence on the

value of the y-coordinate (the converse is also true).

5.3.3 Mathematical modelling

Recall that (5.13) gives an expression for the estimated x-coordinate of a corner given

an image window. Given a corner location (z,y) within the central pixel of the window

6 Since no checkerboard corner detector is used, this is really a simulation of sub-pixel refinement, but
since the last step in both cases is sub-pixel refinement, the results should have the same statistical
properties.

” Note that real image sensor noise has intensity-dependent variance, as discussed in Section 6.3.1.

8 For comparison, the camera used in Chapter 6 was found to have around 0.6 px of lens blur.
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(d) The resulting 20 x 20 px image, with the
corner at (9.5,9.5), i.e., exactly between the
pixels at (9,9) and (10, 10).

Figure 5.10 Images of each step in the checkerboard corner image generation process from the

simulation in Section 5.3.2.
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Figure 5.11 The results of a checkerboard corner detection simulation with 0.2 px lens blur, plotted
over a single pixel. Simulated images of a checkerboard corner with the corner located at each of the
outlined points were generated, such that the true corner locations fall on an 11 x 11 grid spanning the
pixel at (9,9). For each location, the corresponding cloud shows the results of adding Gaussian noise to
the image 1000 times and estimating the corner location from each noisy image. The lines point from
the true location to the mean of the estimates; that is, they are the bias vectors. The magnitude of the
bias is up to 0.08 px. Note how the bias and variance of the estimates depend on the location within

the pixel.
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Figure 5.12 The results of a checkerboard corner detection simulation similar to the one in Figure 5.11
but with 1 px lens blur and a 7 x 7 grid of corner locations. Note how the bias is significantly smaller
and the variance is significantly larger.
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Figure 5.13 The results of a checkerboard corner detection simulation similar to the one in Figure 5.12,
but with a 100 x 100 grid of corner locations. In this graph, the standard deviations of the estimates of
the z-coordinate of each corner are plotted as a heatmap, showing how the estimate variance depends
on the location within the pixel.
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Figure 5.14 A heatmap of the standard deviations of the estimates of the y-coordinate of each corner
from the simulation shown in Figure 5.13.
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Figure 5.15 A histogram and kernel density estimate showing the overall distribution of z-coordinate
standard deviations in Figure 5.13. In Chapter 4, it was assumed that the corner detection error had
constant variance; this simulation shows that that assumption does not hold.
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Figure 5.16 A graph of horizontal cross-sections through Figure 5.13 with offsets of 0, 0.1, 0.2, and
0.5 px from the centre of the pixel, showing how the z-coordinate standard deviation depends on the
z-coordinate, and to a lesser extent, the y-coordinate. A similar relationship holds for the y-coordinate
standard deviation. Note that the curve is not quite Gaussian-shaped; a Pearson VII model fits it well.
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where x,y € [—0.5,0.5], an image window can be constructed as follows:

CHAPTER 5 CORNER DETECTION ERROR MODELLING

! 1 r+1 0 0]
1 1 T+ 3 0 0
I=l-y+3 —y+3 —2oy+5 y+3 y+y (5.14)
0 0 —z+3 1 1
0 0 —r+gy 1 1
This assumes a perfectly sharp lens. Substituting (5.14) into (5.13) gives
4z
r=——-. 5.15
T 213 (5.15)

That is, the model predicts that sub-pixel corner refinement is biased depending on where
the corner falls within the pixel. This appears in simulation, as shown in Figures 5.11
and 5.17.

Applying a 3 x 3 averaging filter to (5.14) to simulate lens blur and solving again

for & gives
102

P=—. 5.16
YT 249 (5.16)
The general solution for an L x L averaging filter is
Nz
P=———— 1
TR N1 (5.17)
where
4L —2, for L > 1,
N = (5.18)
4, for L = 1.

That is, the model predicts that the bias decreases with increasing lens blur, as shown

in Figure 5.18. This also appears in simulation, as shown in Figure 5.12.

5.4 DISCUSSION

The main result from these experiments is that i.i.d. Gaussian noise is not an accurate
model for checkerboard corner detection error; in practice, the variance of the error is
not identical for every corner or image location, and the corner error distributions are
not always identical. This is unfortunate for work like that in Chapter 4 which needs a

simple error model.

The robot arm experiment was problematic. Universal Robotics specifies the re-
peatability of the URbS robot arm as +0.1 mm, so the idea was to use it to capture images
from a wide variety of camera poses as recommended in Chapter 4. Unfortunately, the

ROS driver did not come close to achieving this (at the time). In the experiment,
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Figure 5.17 Sub-pixel refinement introduces a corner location-dependent bias. This graph of x-
coordinate bias as a function of the corner location’s z-offset from the centre of a pixel compares
the bias observed in the simulation results from Section 5.3.2 with the bias predicted by the model
from Section 5.3.3. For this graph, both the simulation and model used a 1 x 1 averaging filter. The
increased bias in the simulation compared to the model is likely because the sub-pixel refinement process
in the simulation (that is, the OpenCV cornerSubPix function) applies the Forstner operator and linear
interpolation repeatedly until the estimate converges, while the model predicts the bias from a single
application of the Forstner operator.
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Figure 5.18 The sub-pixel refinement bias predicted by the model from Section 5.3.3 with 1 x 1,
3x3,5x5,and 7 x 7 averaging filters used to simulate different levels of lens blur.
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move commands were issued repeatedly until the desired pose was reached in order
to work around a collection of driver bugs, but even after extensive troubleshooting,
the repeatability was never consistently below a few millimetres. Another problem was
that vibration in the robot arm produced motion-blurred images, resulting in correlated
estimates. This was discovered late in the process, and due to time constraints the
only mitigation used was to pause after movement while the transient response died
down; a better workaround may be possible. The Universal Robotics ROS driver has
since matured significantly; re-evaluating the suitability of the Universal Robotics robot
arms for imaging research would be useful future work. A similar phenomenon likely
occurs with images captured from a mobile platform, which could be an issue in, for
example, ground truth for VO algorithms; this would also be useful future work. An-
other limitation of the robot arm experiment is that rather than performing hand-eye
calibration to determine the pose of the checkerboard with respect to the robot arm
base, the robot arm was simply moved until the checkerboard detector returned the
desired pose each time. In this case, the position control was so imprecise that it would
not have made a difference, but a future experiment with a better robot arm should

use a proper calibration procedure.

The simulation results show that corner detection error has variance and bias which
substantially depend on the location of the corner within a pixel and that this dependence
decreases as lens blur increases. This can result in different variance and bias in different
image regions in, for example, scenes with checkerboards at different distances so the
lens blur varies and rectified images where some areas are warped significantly to
correct radial distortion. The main limitation of the simulation experiment is that
rotation, perspective distortion, and lens distortion were not considered. There is likely
a similar effect in more general scenarios; investigating this would be useful future work.
The mathematical model allows the bias to be predicted symbolically, with a further
limitation: it predicts the bias from a single application of the Foérstner operator, while
the full sub-pixel refinement process repeatedly alternates the Forstner operator with

linear interpolation (which is also known to introduce bias, as discussed in Chapter 6).

5.5 CONCLUSION

Modelling checkerboard corner detection error with i.i.d. Gaussian random variables is

a good first approximation, with the following caveats:

e Corner detection error variance depends on the amount of lens blur in the im-
age, so images that are not equally sharp throughout (for example, images with
checkerboards at different depths or images which have been rectified) can have

different error variance in different image regions.
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e Corner detection in blurry images can produce results with outliers or multiple

clusters, in which case a Gaussian distribution is not appropriate.

e Corner detection in images with any amount of motion blur can produce correlated

results.

o In images with little blur (less than approximately one pixel), corner detection
error has variance and bias which depends on the location of the corner within a

pixel.






Chapter 6

SUB-PIXEL-VARYING BIAS AND ERROR IN
CORNER REFINEMENT

In Chapter 5, simulations were used to show that the estimation noise and bias of
OpenCV’s sub-pixel corner refinement algorithm measurably depend on the sub-pixel
location of the corner. In this chapter, which is based on published work [Edwards
et al. 2020], that effect is demonstrated in realistic conditions using a real camera and

examined in the context of research from other areas.

The rest of this chapter is structured as follows: Section 6.1 presents background
theory, Section 6.2 outlines the methods used for data collection and simulation, Sec-
tion 6.3 examines each aspect of the distribution of corner detection error, and Section 6.4

summarises the results.

6.1 BACKGROUND

The OpenCV corner refinement implementation relies on bilinear interpolation for cal-
culating sub-pixel aligned windows (as explained in Section 5.2). In other areas of image
processing, bilinear interpolation (and interpolation in general) is known to introduce
amplitude attenuation and phase noise that depend on sub-pixel position [Bailey et al.
2005, Jahne 2004, Schops et al. 2020, Wang et al. 2016]. In particle image velocimetry,
the tendency for estimated particle positions to be biased toward certain locations
relative to pixel edges is known as “peak-locking” or “pixel-locking” [Michaelis et al.
2016, Raffel et al. 2018].

6.2 METHOD

A large dataset of real images was collected using a camera on a slider and then
reproduced in simulation for further analysis. These datasets were used to examine the

error distribution of checkerboard corner estimation.
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Figure 6.1 Equipment used in data collection, from left to right: LED panel, laptop, camera on
slider, Aprilgrid used for camera calibration, and checkerboard on stand.

Figure 6.2 Data collection setup, showing positions and lighting used. From left to right: laptops,
camera on slider, LED panels, and checkerboard on stand.
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6.2.1 Real data

A Flir Chameleon3 CM3-U3-13Y3M-CS camera with a Computar M0814-MP2 lens was
mounted on an SMC LEFB25T-500 slider-type electric actuator controlled by an Arcus
Performax PMX-2ED-SA USB motion controller, allowing it to be moved in 0.06 mm
steps along a fixed axis perpendicular to its optical axis (see Figure 6.1). A 720 mm
9 x 9 Aprilgrid calibration target offset-printed on aluminium composite board mounted
in an aluminium extrusion frame was used for camera intrinsic calibration, with the
Kalibr calibration software [Furgale et al. 2013]. An 8 x 5 checkerboard pattern with
35mm squares, offset-printed on aluminium composite board (as shown in Figure 5.2),
was mounted on a stand and aligned manually with the camera such that it was initially
positioned in the centre of the image (within 0.5mm) and aligned with the camera’s
horizontal and vertical axes (within 4, 0.4, and 0.1 degrees about the z, y, and z axes).
Two LED panels were used to light the checkerboard approximately evenly from both
sides (see Figure 6.2). The camera exposure time was adjusted such that the brightest
image regions did not quite reach the maximum intensity value. The camera was
moved 4 mm in total along the slider in 0.06 mm steps, taking 1000 12-bit monochrome

images with 1280 px x 1024 px resolution of the checkerboard at each of the 70 steps

Figure 6.3 An example image from the first slider dataset showing the checkerboard on the stand
under controlled lighting.
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Figure 6.4 A zoomed-in section of Figure 6.3 showing the intensity values (as a percentage of the
full-scale intensity) around a single corner. False colour is used to to distinguish mid-range values.

(see Figures 6.3 and 6.4). The slider is belt-driven, so in order to avoid backlash, the
controller was set to never perform corrections after moves (i.e., to only ever move in
one direction). This occasionally resulted in moves where the reported slider position
did not change;! in these cases, the images from that camera position were not used
for analyses involving camera movement.

The images were not rectified, in order to preserve their original sharpness charac-
teristics. After processing, the images were found to be overexposed (see Figures 6.6
and 6.7), and the precise horizontal alignment resulted in gaps in the corner distribution
(see Figure 6.11). To remedy this, the procedure was repeated with the camera exposure
time reduced and the checkerboard rotated by two degrees about the z-axis (so that the
corners were distributed more evenly across the pixel space as shown in Figure 6.12a).

These two sets of images are referred to as the first and second slider datasets.

6.2.2 Simulation

Precise alignment is difficult with measured data and so a supplementary synthetic
dataset was generated. This dataset was parametrised by the measured data from the

second slider dataset, using the following method:

e For each camera position, the mean of all the images was taken.

! The reported position is rounded down to the nearest step, so for a move from, for example, 0.6 mm
to 0.659 mm, the start and end points are both reported as 10 steps.
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e The checkerboard was detected in the mean image using the findChessboardCorners
function from OpenCV 4.4 [Bradski 2000].

¢ Sub-pixel refinement was performed on each detected corner using the cornerSubPix

function.

e The refined corner locations were used to estimate the checkerboard position

relative to the camera using the solvePnP function.

e A ray-casting algorithm was used to render an image of a checkerboard the same
size and shape in the same position with the same camera intrinsics as the real

camera (including lens distortion).

e Gaussian blur was added to approximate the real camera’s lens blur, and the
image intensities were transformed to match the intensity distribution in the real

images (see Section 6.2.3).

e 1000 simulated images were produced by adding intensity-dependent Gaussian
intensity noise with the same distribution as the intensity noise distribution in

the real images (see Section 6.3.1) to the render.

Adaptive supersampling was used to accurately render edge pixels (see Section 6.3.2).
Supersampling levels over 1000x (i.e., sampling a 1000 x 1000 grid of points for each
edge pixel in the final image) were found to be computationally infeasible. For the final
simulation 100x supersampling was chosen, producing renderings that matched the

1000 x-supersampled renderings to within 0.1% of the intensity range.

6.2.3 Estimation of lens blur and affine intensity transformation

The mean of the 1000 images from the first camera position in the second slider dataset
was taken as a template image. Simulated images using Gaussian blurs with a range of
standard deviations were rendered. For each simulated image, numerical optimisation
was used to find the affine intensity transformation al +b that minimised the root-mean-
square (RMS) error between the checkerboards in the template image and transformed

render. The results are shown in Figure 6.5.

6.3 RESULTS AND DISCUSSION

The real image datasets were used to analyse the intensity noise distribution. An
experiment was performed to determine how much supersampling is required to render
the checkerboard edges accurately. The results of these were used to generate the
simulated dataset. Finally, the real image datasets and the simulated dataset were used

to analyse the corner detection error distribution.
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Figure 6.5 An illustration of the blur/intensity error surface for the second slider dataset, showing
the minimum at 0.6 px blur, 3.44% offset and 0.85x scale. The upper plot shows the optimal intensity
transformation for each blur value, and the lower plot shows the corresponding RMS error.

6.3.1 Intensity noise distribution

The real images are contaminated by noise, the statistical distribution of which is
needed for the simulation. Noise from a digital image sensor comes from a variety of
sources (shot noise, thermal noise, flicker noise, etc.), and can be generally divided into
a Poissonian component (which depends on the intensity) and a Gaussian component
(which does not) [Foi et al. 2008]. In practice, this noise can be modelled as a zero-
mean Gaussian random variable with standard deviation ¢ = v/al + b, where I is the
intensity and a and b are parameters. The image noise was calculated as the difference
between each image and the mean for the 1000 images from the first camera position
in the first slider dataset.? To confirm that a Gaussian distribution is appropriate, the
pixels were grouped by intensity into 256 bins, a Gaussian distribution was fitted to the
intensity noise of the pixels in each bin, and percentile-percentile plots [Thode 2002]
for the resulting 256 distributions were produced (see Figure 6.6). Aside from a few

outliers due to over-exposure, the distributions fit the data.

To investigate the relationship between intensity and the standard deviation of the
noise, the sample standard deviation of the noise for each pixel was plotted against the
mean intensity for that pixel (see Figure 6.7). The resulting curve is not a good fit for

a simple Poissonian-Gaussian model (it resembles the Poissonian-Gaussian model with

2 Only the first camera position was used, due to memory constraints: the full dataset is
70 x 1000 x 1280 x 1024 x 2 bytes (about 171 GB). Repeating the procedure for other single camera
positions gave similar results and the calculations for the percentile-percentile plot are inconvenient
to perform incrementally, so it was concluded that using the whole dataset was unnecessary.
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Figure 6.6 Percentile-percentile plots (one for each intensity bin) of the distribution of intensity
noise in the 1000 images from the first camera position in the first slider dataset. These show that the
noise distribution for nearly all intensity bins is normally distributed. The outliers are the top few bins,
which are affected by overexposure. Other subsets of the dataset give similar results; the whole dataset
was not used due to memory constraints.
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Figure 6.7 The sample standard deviation of the intensity noise for each pixel plotted against the
mean intensity of that pixel for the first slider dataset, along with the mean of the standard deviations
for the pixels in each intensity bin for both slider datasets. Note that the images are affected by
overexposure, as indicated by the steep drop in intensity noise near 100% intensity.
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Figure 6.8 The standard deviation of the intensity noise in the region around one checkerboard
square in the first slider dataset. At the edges, it is approximately 0.9% of the intensity range, and in
the black squares, it is approximately 0.2%.

clipped observations presented by Foi et al. [2008] but with additional variation),? so a
lookup table of the mean standard deviation of the noise for the pixels in each intensity
bin was created. Images from every camera position were used to create the lookup
table (not just the first), ensuring that even the least frequent intensities (the mid-greys
that only show up in the edges of checkerboard squares) had at least 10,000 samples.

This lookup table was used to generate noise in the simulated dataset.

Note that the standard deviation of the intensity noise varies by a factor of approx-
imately four in the region around a corner (as shown in Figure 6.8); modelling image

noise as an identically distributed Gaussian random variable may give poor results!

6.3.2 Supersampling

An important consideration for computer graphics rendering is anti-aliasing. For this
simulation, adaptive supersampling was used; pixels containing edges were split into
a grid of subpixels and a sample was taken from the centre of each. To determine
an appropriate supersampling level, a simple image was rendered with edge pixels
supersampled at 20 levels between 1x (i.e., no supersampling) and 1000x inclusive,
and the difference between each rendering and the 1000 x-supersampled rendering was

calculated (see Figures 6.9 and 6.10). The results showed that relatively high levels

3 The source of the high-frequency component of the curve in Figure 6.7 is not clear. It is consistent
between camera positions and lighting conditions. Ideally, the intensity noise distribution would be
characterised using images of a flat matte-white wall at a range of light levels. Although this particular
camera’s datasheet does not mention it, other Flir cameras use proprietary calibration procedures in
order to achieve a desired intensity response, which could produce peaks and troughs in the intensity
noise distribution.
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Figure 6.9 Two close-up renderings used to evaluate the effect of supersampling, one with no super-
sampling (left) and one with 1000x supersampling (right), showing the difference in intensity for edge
pixels.
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pling) and 1000x.
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of supersampling are required to accurately render simulated images in this context;
the maximum error reaches 1% of the intensity range at around 8x supersampling (as

shown in Figure 6.10).

6.3.3 Corner detection error distribution

In Chapter 5 it was demonstrated that checkerboard corner detection error is normally
distributed and uncorrelated. Those simulations showed that the mean and standard

deviation of corner detection error is dependent on the sub-pixel location of the corner,

X' = (z =[],y = ly]), (6.1)

where |x] is « rounded to the nearest integer. Physically, this is the location within an

individual sensor element in the camera to which the corner’s position projects.

The datasets collected in Section 6.2.1 have camera motion with sufficient precision
to demonstrate this phenomenon. Figures 6.11 to 6.13 show the standard deviations
of the z- and y-coordinate estimates (i.e., the estimation noise power) as a function of
sub-pixel corner location. These figures clearly show the same shape as in Figures 5.13
and 5.14: the standard deviation of the error in each coordinate is lowest at the corre-
sponding edge of a pixel (i.e., the vertical edge for the z-coordinate and the horizontal
edge for the y-coordinate) and highest when the edge is at the centre of a pixel. The
standard deviation varies by a factor of approximately 1.8 x depending on the sub-pixel
position. The influence of the y-coordinate on the z-coordinate standard deviation is

visible in the simulated data, but in the real data, it is hidden by noise.

The mean of the corner detection error (i.e., the estimation bias) is also dependent
on the sub-pixel location of the corner. This can be shown in simulation by using
the camera calibration and the checkerboard pose estimate to reproject the corners
and then plotting the reprojection error in terms of sub-pixel location (6.1), as shown
in Figure 6.14. The figure shows a clear (although small) bias, which varies in magnitude
and direction depending on the sub-pixel corner location. Producing the equivalent plot
using the real images (see Figure 6.15) shows a combination of the estimation bias and
the effect of any lens distortion un-modelled by the distortion model used in camera
calibration. To show a result as clear as that of the simulation, the camera calibration
process would need to fit a lens distortion model with reprojection error on the order of
0.01 px; otherwise, the bias would be hidden in the rectification noise. The RMS bias
magnitude in Figure 6.14 is 0.026 px and the RMS reprojection error from the camera
calibration (across a much broader set of corners) is 0.45 px, so it is not surprising that
Figure 6.14 and Figure 6.15 do not match. Using a generic (rather than parametric)
camera calibration method such as the one presented by Schops et al. [2020] could

reduce the residual lens distortion enough to show this bias using real images. It is also
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Figure 6.11 A scatter plot of estimated sub-pixel corner locations for the first slider dataset, coloured
by their z-coordinate standard deviations. The standard deviations range from around 0.013 px at the
pixel centre to 0.0072 px at the edges, a difference of around 1.8x. The gaps are due to the precision
with which the checkerboard was aligned with the camera: each band is the path of one row of corners
as they move from left to right across the image, and the corresponding vertical motion is only a fraction
of a pixel. In Figure 6.12a, where the checkerboard was purposefully rotated by a few degrees in the
image plane, the corner y-coordinates are more evenly distributed.
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Figure 6.12 Scatter plots of estimated sub-pixel corner locations for the second slider dataset and
the simulated dataset, coloured by their xz-coordinate standard deviations. The standard deviations in
the real data range from around 0.013 px at the pixel centre to 0.0072 px at the edges, a difference of
around 1.8X.
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Figure 6.13 A scatter plot of estimated sub-pixel corner locations coloured by their y-coordinate

standard deviations.
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Figure 6.14 A plot showing estimation bias in the simulated dataset. The bias has a maximum
magnitude of 0.043 px and an RMS magnitude of 0.026 px. Each line is from the mean estimated
location to the projected location for each corner, coloured by the number of the corner it represents
(numbered row-wise from top left). The projected corner locations for each frame were calculated by
estimating all the corner locations, using them to estimate the checkerboard pose, then using the camera
intrinsics (including lens distortion) and the pose to project the (known) 3D corner positions back into
pixel coordinates. This has the effect of averaging out the biases of all the individual corner location
estimates.
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Figure 6.15 A plot showing a combination of estimation bias and residual lens distortion in the
second slider dataset. Each line is from the mean estimated corner location to the projected corner
location, coloured by the number of the corner it represents (numbered row-wise from top left). This
plot does not show the same trend as Figure 6.14 due to insufficiently accurate camera calibration. The
bias and residual combined have a maximum magnitude of 0.2 px and an RMS magnitude of 0.088 px.

possible to calibrate out the estimation bias, although achieving this with a real camera
would be challenging.*

Another way of showing the estimation bias in the real images is to compare the
estimated location for each corner at each camera position to the location predicted
using the camera position ground truth from the slider. If the checkerboard were aligned
perfectly with the slider, then this prediction would be

x,—xz—i—%(i—é), (6.2)

where z; is the z-coordinate of a corner’s location (in pixels) at camera position i,
denotes the mean, f, is the camera’s z-axis focal length, z is the distance from the
camera to the checkerboard (in metres), and ¢; is the camera’s displacement down
the slider at camera position i (in metres). Plotting the prediction residual #; — x;

against sub-pixel location z;— | x;] (as shown in Figure 6.16) then shows a combination of

4 The magnitude of the bias depends on the sharpness of the image, which for most cameras varies
depending on the distance to the object. The bias function may also depend on other parameters,
such as the number of corner refinement iterations. Verifying the improvement from estimation bias
calibration would require an extremely well-calibrated camera. In most scenarios, a better way of
reducing corner detection bias would be to use a more modern corner detection algorithm, as discussed
in Section 5.1.
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Figure 6.16 A scatter plot showing z-coordinate bias in the second slider dataset (calculated using
camera position ground truth) as a function of sub-pixel location, coloured by corner number. The error
due to misalignment shows as spread and offset, leaving the bias clearly visible. Note the resemblance
to Figure 5.18, and to the biases in particle image velocimetry [e.g., Michaelis et al. 2016, fig. 6].

estimation bias and prediction error due to misalignment. The error due to misalignment

shows as spread and offset, leaving the bias clearly visible.

In practice, for pose estimation with sufficiently randomly distributed poses, corner
detection error could reasonably be modelled as unbiased. The bias is only noticeable
in specific situations, such as the one in Chapter 5 where the corners all move by the

same distance in image space each frame.

The goal of this chapter was to validate the results in Chapter 5 using real images,
and this goal was achieved, but a limitation of the analysis is the limited set of checker-
board poses used. The approach used here could be repeated with a wider range of
checkerboard poses to investigate the variance and bias effects for corners subjected
to rotation, perspective distortion, and lens distortion. It could also be extended to
replace the robot arm method in Chapter 4, which would result in much more precise
camera positioning but require much more effort to set up than an ideal robot arm

would.

6.4 CONCLUSION

OpenCV'’s sub-pixel corner refinement algorithm was found to introduce significant
bias and noise which is dependent on the sub-pixel corner location. In real images,
the standard deviation of the noise ranged from around 0.013 px at the pixel centre to
0.0072 px at the edges, a difference of around 1.8x. The bias could not be determined

from the real images due to residual lens distortion, so the images were reproduced in
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simulation, where the bias had a maximum magnitude of 0.043 px. Further research is

required to determine the effect this has on pose estimation.

Intensity noise in digital images should not be modelled with identically distributed
Gaussian random variables, especially when considering black-and-white targets. For
the camera used in this research, the standard deviation of intensity noise was found to
vary by a factor of approximately four within the region around a checkerboard corner.

Supersampling should be used when producing simulated imagery if sub-pixel accu-
racy is required; 8x supersampling was found to have around 1% intensity error when

rendering a checkerboard.






Chapter 7

CONCLUSION

A new approach to pose estimation using fiducial markers was proposed that is more
precise than existing algorithms. Rather than using only corners or edges for pose
estimation, the marker has a radial sinusoid pattern that has a predictable appearance
under perspective projection. The marker pose is initially estimated using traditional
methods, then refined using a novel optimisation method in which a rendering of the
marker is compared with the image. On average, pose estimation precision was increased
by 27 % compared to traditional fiducial markers. This approach is a promising avenue

for future research.

An analytic model was derived for the CRLB of pose estimation using a checkerboard
(or fiducial marker) pose estimator. The model gives a lower bound for the variance
(and covariance) of the estimate, which effectively predicts the precision of the most
accurate pose estimate from a given set of data. Both a Monte Carlo simulation and real
data validate this model. The model can both predict estimator precision before data is
available and evaluate the performance of a real estimator on real data compared to the
theoretical precision limit. One significant finding is that generalising measurements
of pose estimation precision is difficult: results from different cameras are not directly
comparable, and the performance for a marker in one pose does not trivially predict the
performance for another pose. This approach for predicting and evaluating checkerboard

pose estimation precision has not been considered in prior research.

A series of experiments were performed to investigate the error distribution for the
OpenCV checkerboard corner detection algorithm. Modelling it using i.i.d. Gaussian

random variables was found to be a good first approximation, with the following caveats:

e Corner detection error variance depends on the amount of lens blur in the im-
age, so images that are not equally sharp throughout (for example, images with
checkerboards at different depths or images which have been rectified) can have

different error variance in different image regions.

e Corner detection in blurry images can produce results with outliers or multiple

clusters, in which case a Gaussian distribution is not appropriate.
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e Corner detection in images with any amount of motion blur can produce correlated

results.

In particular, OpenCV’s sub-pixel corner refinement algorithm was found to introduce
significant bias and noise which is dependent on the sub-pixel corner location. This is the
dominant component of the error in images with little lens blur (less than approximately
one pixel). In real images, the standard deviation of the noise ranged from around
0.013 px at the pixel centre to 0.0072 px at the edges, a difference of around 1.8x. The
bias could not be determined from the real images due to residual lens distortion, so
the images were reproduced in simulation, where the bias had a maximum magnitude
of 0.043 px.

Additionally, intensity noise in digital images should not be modelled with identically
distributed Gaussian random variables, especially when considering black-and-white
targets. For the camera used in this research, the standard deviation of intensity
noise was found to vary by a factor of approximately four within the region around a
checkerboard corner. Supersampling should be used when producing simulated imagery
if sub-pixel accuracy is required; 8x supersampling was found to have around 1%

intensity error when rendering a checkerboard.

In summary, the results presented in this thesis are relevant in many areas of
computer vision. Section 7.1 gives recommendations for specific aspects which could be

explored further.

7.1 IDEAS FOR FUTURE WORK

The work presented here opens many avenues for future research.

Fiducial markers for ground truth

The original problem that spawned the work in this thesis—collecting ground truth
for VO in difficult environments—is still open for solutions. The fiducial marker pre-
sented in Chapter 3 showed promise; recent papers achieved good results in camera
calibration using similar matching-based refinement techniques, albeit with different
patterns and more effective algorithms [Hannemose et al. 2019, Schops et al. 2020]. The
results from Pfrommer et al. [2017] suggest that using a network of fiducial markers to
achieve greater pose estimation precision than recent VO algorithms requires marker
pose estimation precision to increase by at least an order of magnitude. The results
from Chapter 4 suggest that although it is possible to further increase precision over
traditional fiducial markers, this increase alone is unlikely to make pose estimation using
a single fiducial marker sufficient for VO ground truth without requiring the marker

to be so large as to dominate the scene. One solution could be to precisely measure
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the relative poses of two or more markers and use these measurements as known val-
ues to refine the camera pose estimate for an image containing multiple markers; this
could give precision more like a single very large marker (albeit with a more complex
setup procedure). Another solution worth investigating is markers augmented with
lenses or gratings to produce Moiré patterns (as discussed in Chapter 4), as they show

significantly increased precision.

Evaluation of state-of-the-art fiducial marker performance

Many of the existing fiducial markers discussed in Chapter 3 claim to improve over one
or more of the others in specific ways. The results in Chapter 4, which showed that
pose estimation precision is heavily dependent on the marker pose and the camera, lens,
and lighting used, suggest that even when publications use the same methodologies in
their evaluations (which they generally do not), it is likely the results are not directly
comparable. As such, a thorough review comparing the performance of the latest
fiducial markers would be a valuable contribution to the field. The evaluation of pose
estimation precision could involve extending the precise camera positioning methods
used in Chapters 5 and 6, or simply imaging markers with a wide enough variety of
poses to sufficiently sample the space of possible poses. Evaluating pose estimation
accuracy is more difficult. Relative accuracy could be measured with a robot arm or
slider; for absolute accuracy, capturing ground-truthed images using an image-assisted

total station could work.

Implications of corner estimation bias

Chapters 5 and 6 found that one common checkerboard corner estimation method
exhibits bias and noise that is dependent on sub-pixel corner location. It is likely,
although not investigated here, that other methods [e.g., Duda and Frese 2018] have
similar issues, especially in light of recent work in generic models for bias-free camera
calibration [Schops et al. 2020]. This may also extend to corner detectors that are not

specific to checkerboard corners, such as those used in VO [e.g., Rublee et al. 2011].

One unexplored implication of this is the effect, if any, on pose estimation using

the biased corner estimates; investigating this would be a useful next step.

Sub-pixel effects and noise distribution in simulated datasets

In the process of reproducing the experiment from Chapter 6 in simulation, two side
experiments were performed: one to characterise the intensity noise distribution of the
camera, and another to determine the level of supersampling required to accurately
reproduce edges in the images. It would be useful to perform a simulation like the one

in Section 6.2.2 with identically distributed intensity noise and then intensity-dependent
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noise and compare the results in order to determine whether using a realistic intensity
noise distribution is important. This could be extended to include more general scenes,
which have less significant intensity changes. It would also be useful to evaluate the
level of supersampling required to reproduce more general scenes. Synthetic datasets
for VO (and machine learning) are becoming increasingly common, so the effect could

be quantified in terms of estimation performance.
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Appendix A

THE FORSTNER OPERATOR

The only available version of Forstner and Giilch’s [1987] manuscript is the original
typewritten one, so the following lightly edited excerpts are provided for context.

A.1 MATHEMATICAL MODEL

The task can be written as a least squares problem in the form of a Gauss-Markov
model for the n observed values contained in the vector x and the v unknowns contained
in the vector y:

x+e=Ay, D(kx)=C=c’W1 (A.1)

with normal equations for the estimates, y,
ATWAy = ATWx, (A.2)
and the estimate for the variance factor,
o2 =e"We/r, (A.3)

derived from the residuals, e, where r = n — u is the redundancy of the system. The
n X u design matrix, A, is assumed to have full rank. The weight matrix, W is assumed
to be known. It may be derived from the variances, ¢;;, in the covariance matrix, C,
assuming an arbitrary variance factor, 08.

The only unknowns are the row, rg, and the column, cg, of a point, thus y* = (g, co).
Each pixel, (7, c), within a small window, g(r, ¢), say between 5 x 5 and 16 x 16 pixels,
contributes to the solution in the same manner.

A.1.1 Intersection of edge elements, corners

Let the edge element (edgel) at each pixel be defined as a straight line passing through
the centre of the pixel with an orientation derived from the gradient, vg(r, c) =
(gr (r,c), ge (r,c)), using any appropriate operator for determining the partial derivatives
of g (see Figure A.1). A corner, C(rg, cg), can then be estimated from the intersection
of all edgels. The straight line can be represented by

rcos® +csin® — [ =0, (A.4)
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Figure A.1 Edge element (edgel) at position (r, ¢) for determining the intersection point (7o, ¢,) [Forst-
ner and Giilch 1987].

where [ is the distance of the origin from the line and ® is the angle of this direction.
Note that ng = |vg4| - (cos ®,sin ®). The linear model for this intersection point can
then be written as

l(r,c) + ey(r,¢) = rgcos ®(r, c) + ¢ sin D(r, c). (A.5)
The weight of the edgel is intuitively proportional to the absolute gradient square,
wi(r,e) = |v,l2 (A.6)

This can be proven by again assuming the variance of the gray-level noise to be o2,
thus constant, and observing that |vy| = |dg/dl| thus o; = 05, /|vg].

A.1.2 Weighted centre of gravity

Let each pixel in a window contribute to the centre of gravity of that window by using
the gradient as weight. We immediately obtain the linear model

r+e. =7 (A7)

c+e. = .

The weight of each coordinate, r and ¢, depends on the direction of the local gradient
vg(r, ¢). By rotating the vector (|vg4|,0) into v4(r, c) using the rotation matrix Re, one
obtains the weight matrix for the pixel (7, c),

cos? & cos ®@ sin &
W, e(r,c) = |Vg|2 [

cos & sin ® sin? ®

=vy- ng (A.8)

_ [ g2(r,e)  grelr,c)ge(r, C)] ‘
gr(r,€)ge(ric) g2 (r,c)

If, for example, the edge is horizontal, then ® = 0 and only the row coordinate
contributes to the centre of gravity.

The derivation of the singular weight matrix uses the propagation of weight matrices.

If x has covariance matrix C,,, the covariance of y = Ax is C,y = AC,,AT. Thus we
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can use Wy, = A"TW,, A~! if an inverse of A exists. The gradient v, results from
rotation of e = (|vg4|,0) by

cos® —sind
> = [ ] ; (A.9)

sin® cos®

thus vy = Rg - (|vg[,0). If now the component of e in the row direction has weight
|v¢|? and the component in the column direction has weight zero then

20
W%:['Vg' O]. (A.10)

With A = Ry, this finally leads to Wy, = (Rg)” " We, (Ro) " in (A.8).

A.1.3 Normal equations

The normal equation systems for the intersection of all edgels and the weighted centre
of gravity are the same:

[EQ? Zgrgc] [7’0] _ [ngwrzgrgccm
ZngC Zgz ZgrgcTJng?C

The sums have to be taken over all pixels within the window.

) (A.11)
co

A.2 DISCUSSION

The weighted centre of gravity is identical to the intersection of the edgels. Both
interpretations have their advantage. The intersection point is geometrically intuitive.
The formulation as weighted centre of gravity is more simple, as the design matrix, A,
consists of only 2 x 2 unit matrices.

The intersection of edgels can also be interpreted as linear regression in Hough
space. Each edgel at (r,¢) corresponds to a point, (tan ®(r,c), I(r,c)/cos®(r,c)), in
Hough space. The edgels of one edge form a cluster in Hough space. If several edges
intersect, the corresponding clusters lie on a straight line. The model used here is to
take the slope, tan @, of the edgel as fixed and the intercept, a = [/ cos ®, as observed
value (see Figure A.1), with a standard deviation o, = 0;/cos® = 1/|g,|. Then the
linear model for the fitting line in Hough space can be written as

a(r,c) + eq(r,c) = 19 + co tan ®(r, ¢) (A.12)

with weights
wa(r,¢) = gi(r, ¢), (A.13)

which leads to the same normal equation system as (A.5) and (A.6).
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