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Abstract 

Attention lapses (ALs) and microsleeps (MSs) are complete lapses of responsiveness in which 

performance is completely disrupted for a short period of time, but consciousness is retained 

in the case of ALs. ALs are behaviourally different from MSs, as in an AL the eyes remain 

open whereas in a MS eyes are partially or completely closed. Both ALs and MSs can result in 

catastrophic consequences, especially in the transportation sector. 

Research over the past two decades has investigated the AL and MS phenomena using 

behavioural and physiological means. However, both ALs and MSs need further investigation 

to separate the different types of ALs physiologically, and to explore the neural signature of 

MSs in relation to normal sleep and drowsiness. Hence, the objective of this project was to 

understand the underlying physiological substrates of endogenous (internal) ALs and MSs 

which could potentially result in differentiating types of ALs and provide more understanding 

of MSs.  

Data from two previous Christchurch Neurotechnology Research Programme (NeuroTech™) 

studies (C and D) were combined resulting in a total of 40 subjects. During each session, 

subjects performed a 2-D continuous visuomotor tracking (CVT) task for 50 min (Study C) 

and 20 min (Study D). For each participant, tracking performance, eye-video, EEG, and fMRI 

were simultaneously collected. A human expert visually inspected the tracking performance 

and eye-video recordings to identify and categorize lapses of responsiveness for each 

participant. 

Participants performed the 2-D CVT task without interruptions. The repetitive nature of the 

task and the lack of a motivational factor made the task monotonous and fatiguing. As a result, 

it was more likely to introduce boredom leading to task-unrelated thoughts (TUTs), which 

divides attention between the task and the internal thoughts unrelated to the task, also fatigue 

which will introduce a trend of vigilance decrement over time. 

The project had hypotheses focusing on the changes in the brain’s activity compared to the 

baseline of good responsiveness tracking. We expected a decrease in dorsal attention network 

(DAN) activity during ALs due to a decoupling of attention from the external environment. 

Furthermore, we hypothesized that the ALs were due to involuntary mind-blanks. As such, we 

expected no change in default mode network (DMN) activity, as would have otherwise been 

expected if the ALs were due to mind-wandering. Functional connectivity (FC) of the brain 
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was also investigated between the networks of interest which were the DMN, DAN, 

frontoparietal network (FPN), sensorimotor network (SMN), visual network (VSN), salience 

network (SN), eye-movement network (EMN), and working memory network (WMN), by 

analysing data from fMRI. EEG data were also used to perform analysis on ALs and MSs, by 

analysing changes in power in the delta, theta, alpha, beta, and gamma bands. 

Voxel-wise fMRI throughout the whole brain, group-ICA, haemodynamic response (HR) over 

the regions of interest (ROIs), and FC analyses were performed to reveal the neural signature 

during ALs. In voxel-wise analysis, a significant increase in activity was found in two regions: 

the dorsal anterior cingulate cortex (dACC) and the supplementary motor area (SMA). The 

group-ICA analysis did not show any significant results but did show a trend of increased 

activity in an independent component (IC) that was spatially correlated with SMN.  

Dynamic HR analysis was performed to further investigate findings from the voxel-wise 

analysis. Our results were not significant but there were strong trends of change. There was a 

trend of increased HR 7.5 s after the onset of the AL in the left intraparietal sulcus (IPS) of the 

DAN. There was also a decrease of 2.5 s before the onset of the AL in the right posterior 

parietal cortex (PPC) of the FPN. There was also an increase in the HR 5 s after the onset of 

the AL in the dACC of the SN. Finally, an increase in the HR 15 s before the onset of ALs in 

the left inferior parietal lobule (IPL) of the DMN is a major finding, as it is an indication that 

a lapse is about to happen. The HR analysis provided consistent findings with the voxel-wise 

analysis. 

FC analysis showed increases in FC within all networks of interest during the ALs. On looking 

at FC between networks, there was an increase in FC between the DMN and the FPN, no 

change between the DAN and the FPN, a decrease in FC between the SMN and the FPN, and 

an increase in FC between the FPN and the VSN. The EMN had an increased FC with the 

DMN, while it had both increases and decreases in FC with the DAN. There was also an 

increase in FC between the SN and the DAN, and no change between the SN and the DMN. 

Finally, a decrease in FC was found between the WMN and the DMN. These findings indicate 

an overlap between decoupling due to ALs and the process of recovery from ALs. 

The EEG analysis showed no significant change in the relative difference between average 

spectral power during ALs and their average baselines for any band of interest for ALs.  

During MSs, there was a significant increase in power relative to responsive baselines in the 

delta, theta, alpha, beta, and gamma bands. However, we could not be completely sure that all 
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motion-related artefacts had been removed. Hence, we investigated this further by removing 

the effect of the global signal, which left only an increase in gamma activity, in addition to a 

trend of decreased activity in the alpha band. 

The significant increase in BOLD seen in the voxel-wise analysis is considered to represent the 

recovery of responsiveness following ALs. This was also seen in trends in group ICA and HR 

analyses. Overall, findings from the FC analysis show that, in addition to decoupling during 

ALs, and recovery from ALs, it is highly likely that the ALs during the 2-D CVT task were 

due to involuntary mind-blanks. This is supported by three major findings: (1) no significant 

increase in DMN activity in both voxel-wise and HR analyses, (2) the decrease in the HR in 

the FPN prior to the onset of the AL, and (3) the decrease in FC between the DMN and the 

WMN. This is further supported behaviourally by the short average duration of ALs (~ 1.7 s), 

in contrast to what would be likely during mind-wandering. 

Finally, the significant results from the EEG analysis of MSs, agreed with the literature in delta, 

theta, and alpha bands. However, increased power in beta and gamma bands was an important 

finding. We consider this increased high-frequency activity reflects unconscious ‘cognitive’ 

activity during a MS aimed at restoring consciousness after having fallen asleep during an 

active task. This highlights a key behavioural and physiological difference between MSs and 

sleep. Even after removing the effect of the global signal, we still believe that MSs and sleep 

are physiologically different in the recovery process. 

To summarize our key findings: (1) this is the first study to demonstrate that ALs during a 

continuous task are likely to be due to involuntary mind-blanks, (2) the increase in the HR in 

the DMN 15 s before the onset of AL could be a predictive signature of these lapses, and finally 

(3) MSs are physiologically different from sleep in terms of the recovery process. 

This project has improved our understanding of endogenous ALs and MSs and taken us a step 

closer to accurate detection/prediction systems which can increase prevention of fatal 

accidents.  
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Dedication 

This project is an essential step towards substantially reducing the adverse consequences of 

lapses of responsiveness, which will benefit road safety and help save lives. 

  



P a g e  | v 

 

Preface 

This thesis is submitted for the degree of Doctor of Philosophy in Electrical and Electronic 

Engineering at the University of Canterbury. The research for this thesis was completed 

between March 2018 and December 2021 while I was enrolled in the Department of Electrical 

and Computer Engineering at the University of Canterbury. The work was carried out as part 

of the Christchurch Neurotechnology Research Programme at the New Zealand Brain Research 

Institute and was supervised by Professor Richard Jones, Dr. Reza Shoorangiz, Dr. Le Yang, 

and Dr. Govinda Poudel. I was supported by a University of Canterbury Doctoral Scholarship. 

Prof. Richard Jones kindly supported me to attend an Advanced Academic Writing course at 

Christchurch College of English Language in addition to the Computational Neuroscience 

course by Neuromatch Academy in July 2020, also, registration fees of EMBC20 and 21. Dr. 

Le Yang kindly funded me for an eight-month extension of my PhD. The New Zealand Brain 

Research Institute kindly funded me to attend the FSL course in Dunedin in February 2019. 

CONTRIBUTION 

In this project, I analysed data from studies C and D, which were acquired before by other 

researchers. My focus was on the attention lapses data, which had not been previously analysed. 

I performed voxel-wise, group ICA, haemodynamic response, and functional connectivity 

analyses using the fMRI data, in addition to source reconstruction analysis using the EEG data. 

Also, I performed EEG source reconstruction analysis on the microsleep data, which had not 

been done previously. However, the microsleep data had been heavily analysed by other 

researchers. 

PUBLICATIONS 

Conference papers 

• Zaky, M. H., Shoorangiz, R., Poudel, G. R., Yang, L., & Jones, R. D. (2021). 

Investigating the neural signature of microsleeps using EEG. Proceedings of 

International Conference of IEEE Engineering in Medicine and Biology Society, 43, 

6293-6296. 

• Zaky, M. H., Shoorangiz, R., Poudel, G. R., Yang, L., & Jones, R. D. (2020). Neural 

correlates of attention lapses during continuous tasks. Proceedings of International 

Conference of IEEE Engineering in Medicine and Biology Society, 42, 3196-3199. 

 



P a g e  | vi 

 

PRESENTATIONS 

• July 2020, IEEE Engineering in Medicine and Biology Conference (EMBC), Montreal, 

Canada. Oral presentation (Virtual, pre-recorded). 

• November 2021, IEEE Engineering in Medicine and Biology Conference (EMBC), 

Guadalajara, Mexico. Oral presentation (Virtual, pre-recorded). 

• Visualize your thesis (VYT) 2020, and 2021 (where I won the people’s choice award). 

Link: https://www.youtube.com/watch?v=RauH-CjjthI 

• Three-minute thesis (3MT) 2020, and 2021. 

• Health Research Society of Canterbury (HRSC) poster expo 2020, and 2021.  

https://www.youtube.com/watch?v=RauH-CjjthI


P a g e  | vii 

 

Acknowledgements 

I would like to start by thanking Allah for all the chances I got, and the challenges I had in my 

PhD journey (الحمدلله). I consider myself the luckiest student to be blessed with my supervisory 

team. They supported me with all the chances I got and helped me to pass all the challenges I 

went through in my PhD journey. 

Prof. Richard gave me the opportunity to be in NZ doing my PhD under his supervision. He 

helped me in every single step since I first contacted him. His support was even beyond 

academic work; he helped me overcome the many problems I had on a personal level. He did 

not save any effort to teach me and guide me in my PhD work especially in writing. He is the 

best mentor I ever had in my life. 

Dr. Reza, since my first day in NZBRI, was supporting me. I was able to fix most of the 

technical problems in my codes with his guidance, he helped me enhancing the way I think and 

analyse my data. On a personal level, he always gave me the needed advice at the right time. 

Thanks to Dr. Le and Dr. Govinda for sharing their insightful comments, technical expertise, 

and encouragement. My special thanks to Dr. Le for financially supporting me to extend my 

studies for eight months to be able to work on a very important part of my project and enhance 

my thesis. 

I wish to thank my colleagues at NZBRI, for their friendship, feedback, and advice. I would 

like to thank Beth Alias, Dr. Michael MacAskill, and Dee Niles for all their help in getting my 

visas sorted after the many obstacles I had been facing. I would like to thank Dr. Mustafa 

Almuqbel and Dr. Tracy Melzer for their valuable suggestions and constructive advice during 

the initial phase of my research. I would like to thank Traci Stanbury for helping me prepare 

for the "Three Minute Thesis" competition. Finally, I would like to thank Emma Eason, 

Rebecca Lee, and the rest of my colleagues in NZBRI for being very supportive. 

I would like also to thank Deborah Erueti from ECE, who was always there for my support in 

all UC matters, provide the advice and information, and even acting on my behalf when needed. 

She helped me sorting all the issues I contacted her for without me worrying about anything. 

I would like to extend my thanks to my close friends Honey Htet Htet, Niebert Blair, Ben 

Wamamili, and Elaine Yeo who made my journey in NZ the best experience. I am very grateful 

for their friendship and support. Finally, I would like to thank my family for their continuous 

encouragement, support, and sacrifice throughout my life journey. I am so super grateful to my 



P a g e  | viii 

 

parents who did their best so that I can achieve higher education levels. They were always the 

source of my power. I also wish to thank my sister and my brother-in-law for their constant 

encouragement.  



P a g e  | ix 

 

Table of Contents 

Abstract ........................................................................................................................................ i 

Dedication .................................................................................................................................. iv 

Preface ........................................................................................................................................ v 

Acknowledgements.................................................................................................................... vii 

List of Abbreviations .................................................................................................................. xv 

 Introduction ....................................................................................................... 1-1 

1.1 Motivation ............................................................................................................................ 1-1 

1.2 Lapses of responsiveness ..................................................................................................... 1-3 

1.2.1 Microsleeps ............................................................................................................. 1-3 

1.2.2 Attention lapses ...................................................................................................... 1-4 

1.3 Objectives............................................................................................................................. 1-8 

 Lapses of Responsiveness: A Behavioural Review ............................................... 2-10 

2.1 Significance of research on lapses of responsiveness ....................................................... 2-10 

2.2 Behavioural characteristics of attention lapses ................................................................. 2-10 

2.2.1 Mind-wandering .................................................................................................... 2-10 

2.2.2 Mind-blanking ....................................................................................................... 2-12 

2.3 Behavioural characteristics of microsleeps ....................................................................... 2-13 

2.4 Individual differences ......................................................................................................... 2-14 

2.4.1 Vigilance ................................................................................................................ 2-14 

2.4.2 Working memory capacity .................................................................................... 2-15 

2.4.3 Fluid intelligence ................................................................................................... 2-15 

2.4.4 Tendency to mind-wander .................................................................................... 2-15 

2.5 Influence of motivation ...................................................................................................... 2-16 

2.6 Summary ............................................................................................................................ 2-16 

 Understanding fMRI .......................................................................................... 3-17 

3.1 Introduction to fMRI .......................................................................................................... 3-17 

3.1.1 Magnetic resonance signal ................................................................................... 3-17 

3.1.2 MRI image formation ............................................................................................ 3-19 

3.1.3 BOLD signal ........................................................................................................... 3-20 

3.1.4 fMRI artefacts and noise ....................................................................................... 3-21 

3.1.5 Spatial and temporal characteristics of fMRI ........................................................ 3-22 

3.1.6 fMRI study design.................................................................................................. 3-23 

3.1.7 Data acquisition protocol ...................................................................................... 3-24 

3.2 Pre-processing pipeline for fMRI ....................................................................................... 3-24 



P a g e  | x 

 

3.2.1 fMRI data acquisition ............................................................................................ 3-24 

3.2.2 Realignment .......................................................................................................... 3-26 

3.2.3 ICA data exploration ............................................................................................. 3-28 

3.2.4 Slice-time correction ............................................................................................. 3-28 

3.2.5 Filtering ................................................................................................................. 3-29 

3.3 Co-registration and normalization ..................................................................................... 3-31 

3.3.1 Co-registration ...................................................................................................... 3-31 

3.3.2 Normalization ........................................................................................................ 3-31 

3.4 Statistical analysis for fMRI ................................................................................................ 3-32 

3.4.1 General linear models ........................................................................................... 3-32 

3.4.2 Within-subject analysis ......................................................................................... 3-34 

3.4.3 Group analysis ....................................................................................................... 3-35 

3.5 Group-ICA analysis ............................................................................................................. 3-37 

3.6 Functional connectivity ...................................................................................................... 3-37 

3.7 Summary ............................................................................................................................ 3-38 

 Understanding EEG ........................................................................................... 4-39 

4.1 Introduction to the Electroencephalogram (EEG) ............................................................. 4-39 

4.1.1 What is EEG? ......................................................................................................... 4-39 

4.1.2 What does the EEG device measure? ................................................................... 4-39 

4.1.3 Brain rhythms ........................................................................................................ 4-40 

4.1.4 EEG recording ........................................................................................................ 4-41 

4.2 Pre-processing pipeline of EEG .......................................................................................... 4-42 

4.2.1 MR-induced EEG artefacts .................................................................................... 4-43 

4.2.2 Temporal filtration ................................................................................................ 4-44 

4.2.3 Down sampling ...................................................................................................... 4-44 

4.2.4 Referencing ........................................................................................................... 4-44 

4.2.5 Bad electrodes removal ........................................................................................ 4-44 

4.2.6 EEG-specific artefacts ............................................................................................ 4-45 

4.2.7 Blind source separation ........................................................................................ 4-46 

4.3 EEG source reconstruction and localization ...................................................................... 4-46 

4.3.1 The forward problem ............................................................................................ 4-47 

4.3.2 The inverse problem ............................................................................................. 4-49 

4.4 Spectral and statistical analysis of EEG .............................................................................. 4-52 

4.4.1 Data epoching ....................................................................................................... 4-52 

4.4.2 Frequency representation of EEG ......................................................................... 4-52 

4.4.3 Statistical test and correction ............................................................................... 4-53 



P a g e  | xi 

 

4.5 Summary ............................................................................................................................ 4-53 

 Lapses of Responsiveness: A Physiological Review ............................................. 5-54 

5.1 Neural signatures of attention lapses ................................................................................ 5-54 

5.1.1 Mind-wandering .................................................................................................... 5-54 

5.1.2 Mind-blanking ....................................................................................................... 5-60 

5.2 Neural signature of microsleeps ........................................................................................ 5-62 

5.2.1 fMRI Analysis ......................................................................................................... 5-62 

5.2.2 EEG Analysis .......................................................................................................... 5-62 

5.3 Summary ............................................................................................................................ 5-63 

 Aims and Hypotheses ........................................................................................ 6-65 

6.1 Gaps in knowledge ............................................................................................................. 6-65 

6.1.1 Attention lapses .................................................................................................... 6-65 

6.1.2 Microsleeps ........................................................................................................... 6-65 

6.2 Key questions ..................................................................................................................... 6-65 

6.3 Aim ..................................................................................................................................... 6-66 

6.4 Hypotheses ........................................................................................................................ 6-66 

6.4.1 Neural signatures of endogenous attention lapses. ............................................. 6-66 

6.4.2 Mind-blanks versus mind-wandering ................................................................... 6-71 

6.4.3 Microsleeps and sleep .......................................................................................... 6-72 

 Project Datasets ................................................................................................ 7-74 

7.1 Study C ............................................................................................................................... 7-74 

7.2 Study D ............................................................................................................................... 7-75 

7.3 fMRI recording ................................................................................................................... 7-77 

7.4 EEG recording ..................................................................................................................... 7-78 

7.5 Eye-video recording ........................................................................................................... 7-78 

7.6 Task .................................................................................................................................... 7-78 

7.7 Events rating ...................................................................................................................... 7-79 

7.7.1 Microsleeps ........................................................................................................... 7-79 

7.7.2 Attention lapses .................................................................................................... 7-79 

7.7.3 Drowsiness-related impaired-responsiveness events (DIREs) .............................. 7-80 

7.7.4 Voluntary behaviour impacting performance (VBIP) ............................................ 7-80 

7.8 Events of interest in studies ............................................................................................... 7-80 

7.8.1 Attention lapses .................................................................................................... 7-80 

7.8.2 Microsleeps ........................................................................................................... 7-81 

 fMRI Voxel-Wise Analysis of Attention Lapses ................................................... 8-82 

8.1 Introduction ....................................................................................................................... 8-82 



P a g e  | xii 

 

8.2 Method .............................................................................................................................. 8-82 

8.2.1 Data ....................................................................................................................... 8-82 

8.2.2 Voxel-wise analysis ............................................................................................... 8-82 

8.2.3 Group-level ICA analysis ........................................................................................ 8-86 

8.3 Results ................................................................................................................................ 8-86 

8.3.1 Voxel-wise group-level analysis ............................................................................ 8-86 

8.3.2 Group ICA analysis ................................................................................................ 8-87 

8.4 Discussion ........................................................................................................................... 8-89 

8.5 Summary ............................................................................................................................ 8-91 

 Haemodynamic Response ROI Analysis for Attention Lapses .............................. 9-93 

9.1 Introduction ....................................................................................................................... 9-93 

9.2 Method .............................................................................................................................. 9-93 

9.2.1 Analysis data ......................................................................................................... 9-93 

9.2.2 Pre-processing and registration ............................................................................ 9-93 

9.2.3 Haemodynamic response analysis ........................................................................ 9-93 

9.3 Results ................................................................................................................................ 9-95 

9.3.1 Haemodynamic response analysis of the significant voxel-wise cluster .............. 9-95 

9.3.2 Haemodynamic response analysis of the regions of interest ............................... 9-95 

9.4 Discussion ......................................................................................................................... 9-101 

9.5 Summary .......................................................................................................................... 9-103 

 fMRI Functional Connectivity Analysis of Attention Lapses ............................. 10-104 

10.1 Introduction ................................................................................................................... 10-104 

10.2 Method .......................................................................................................................... 10-105 

10.2.1 Analysis tool ...................................................................................................... 10-105 

10.2.2 Pre-processing and registration ........................................................................ 10-105 

10.2.3 Subject (1st-level) analysis ................................................................................. 10-106 

10.2.4 Group (2nd-level) analysis .................................................................................. 10-107 

10.3 Results ............................................................................................................................ 10-107 

10.3.1 FC analysis for attention lapses versus baseline of good tracking .................... 10-107 

10.3.2 Changes in functional connectivity between attention lapses and microsleeps10-114 

10.4 Discussion ....................................................................................................................... 10-114 

10.5 Summary ........................................................................................................................ 10-117 

 EEG Analysis of Attention Lapses ................................................................... 11-119 

11.1 Introduction ................................................................................................................... 11-119 

11.2 Method .......................................................................................................................... 11-119 

11.2.1 Data ................................................................................................................... 11-119 



P a g e  | xiii 

 

11.2.2 Data acquisition ................................................................................................ 11-119 

11.2.3 Pre-processing and denoising ........................................................................... 11-120 

11.2.4 Source reconstruction ....................................................................................... 11-123 

11.2.5 Statistical analysis ............................................................................................. 11-125 

11.3 Results ............................................................................................................................ 11-125 

11.3.1 Marginal changes in beta band during attention lapses .................................. 11-126 

11.3.2 Marginal changes in gamma band during attention lapses .............................. 11-127 

11.4 Discussion ....................................................................................................................... 11-128 

11.5 Summary ........................................................................................................................ 11-130 

 EEG Analysis of Microsleeps .......................................................................... 12-131 

12.1 Introduction ................................................................................................................... 12-131 

12.2 Method .......................................................................................................................... 12-131 

12.3 Results ............................................................................................................................ 12-131 

12.3.1 Changes in activity in delta band during microsleeps ....................................... 12-131 

12.3.2 Changes in activity in theta band during microsleeps ...................................... 12-132 

12.3.3 Changes in activity in alpha band during microsleeps ...................................... 12-134 

12.3.4 Changes in activity in beta band during microsleeps........................................ 12-135 

12.3.5 Changes in activity in gamma band during microsleep .................................... 12-136 

12.4 Global signal removal ..................................................................................................... 12-137 

12.4.1 Trend of activity changes in alpha band during microsleeps after global signal 

regression .......................................................................................................................... 12-138 

12.4.2 Changes in activity in gamma band during microsleep after global signal regression12-

139 

12.5 Discussion ....................................................................................................................... 12-140 

12.6 Summary ........................................................................................................................ 12-144 

 General Discussion ........................................................................................ 13-145 

13.1 Summary of analyses ..................................................................................................... 13-145 

13.2 Summary of all results ................................................................................................... 13-145 

13.2.1 Attention lapses ................................................................................................ 13-145 

13.2.2 Microsleeps ....................................................................................................... 13-146 

13.3 Physiological analysis – Best practice ............................................................................ 13-146 

13.4 Visuomotor task ............................................................................................................. 13-147 

13.5 Views on lapses of responsiveness ................................................................................ 13-148 

13.5.1 Attention lapses ................................................................................................ 13-148 

13.5.2 Microsleeps ....................................................................................................... 13-153 

 Conclusion and Future Research .................................................................... 14-157 



P a g e  | xiv 

 

14.1 Summary and key findings ............................................................................................. 14-157 

14.2 Review of hypotheses .................................................................................................... 14-160 

14.3 Limitations...................................................................................................................... 14-162 

14.4 Future research .............................................................................................................. 14-164 

References ............................................................................................................................... 167 

Appendix A: EEG Pipeline Validation using an Artificial Signal ................................................... 195 

 

  



P a g e  | xv 

 

List of Abbreviations 

ACC Anterior cingulate cortex 

AInsula Anterior insula 

AL Attention lapse 

BEM Boundary element model 

BOLD Blood-oxygen-level dependent 

CONN Functional connectivity toolbox 

CSF Cerebral spinal fluid 

CVT Continuous visuomotor tracking 

DAN Dorsal attention network 

DICS Dynamic imaging of coherent sources 

DIRE Drowsiness-related impaired-responsiveness event 

DMN Default mode network 

DOF Degree of freedom 

EEG Electroencephalogram 

eLORETA Exact low-resolution electromagnetic tomography 

EMN Eye movement network 

EPI Echo-planar imaging 

FC Functional connectivity 

FDR False discovery rate 

FEAT fMRI expert analysis tool 

FEF Frontal eye field 

FEM Finite element model 

FFT Fast Fourier transform 

fMRI Functional magnetic resonance imaging 

FPN Frontoparietal attention network 

FSL FMRIB’s software library 

GA Gradient artefact 

GLM General linear model 

GM Grey matter 

HR Hemodynamic response 



P a g e  | xvi 

 

HRF Hemodynamic response function 

ICA Independent component analysis 

IFT Inverse Fourier transform 

IPL Inferior parietal lobule 

IPS Intra-parietal sulcus 

LCMV Linear constraint minimum variance 

LORETA Low-resolution electromagnetic tomography 

LPC Lateral parietal cortex 

LPFC Lateral prefrontal cortex 

MNE Minimum norm estimates 

MNI Montreal Neurological Institute 

MS Microsleep 

PA Pulse artefact 

PCC Posterior cingulate cortex 

PFC Prefrontal cortex 

PPC Posterior parietal cortex 

PVT Psychomotor vigilance task 

RF Radio frequency 

ROI Region of interest 

SART Sustained attention to response task 

SLC Sensorimotor lateral cortex 

sLORETA Standard low-resolution electromagnetic tomography 

SMA Supplementary motor area 

SMG Sensorimotor gyrus 

SMN Sensorimotor network 

SN Salience network 

SNR Signal-to-noise ratio 

SSC Sensorimotor superior cortex 

STM Short-term memory 

TE Echo time 

TFCE Threshold free cluster enhancement 

TR Repetition time 



P a g e  | xvii 

 

TUT Task-unrelated thought 

VBIP Voluntary behaviour impacting performance 

VLC Visual lateral cortex 

VMC Visual medial cortex 

VOC Visual occipital cortex 

VSN Visual network 

WM White matter 

WMC Working memory capacity 

WMN Working memory network 

WT Wavelet transform 

 

 



P a g e  | 1-1 

 

 

 Introduction 

1.1 Motivation 

When doing a task that requires an intensive focus, especially in applications in which 

humans cannot be replaced totally by machines given our current technologies (Szikora & 

Madarász, 2017), having a complete lapse of responsiveness (‘lapses’) can lead to a 

catastrophic event (Cheyne et al., 2006). There are many important but monotonous 

occupations which are high-risk in terms of potential serious accidents, such as truck drivers, 

train drivers, pilots, health professionals, and process-control workers (Sagberg, 1999). 

These kinds of occupations require workers to remain alert for extended periods, despite the 

challenge of keeping focus especially when the task is boring or exhausting (Thomson et al., 

2015a). 

Even if we start at a high-performance level in a task, we are unlikely to sustain the same 

level of performance over an extended period (McKinley et al., 2011). The reason for the 

drop in performance is that our ability to respond becomes impaired (Peiris et al., 2006; 

Poudel et al., 2010a). Our performance is likely to drop with time-on-task (Bogler et al., 

2017), which can lead to accidents. For example, in the transportation sector many fatal 

accidents are due to sudden drops in performance. Estimates of accidents on the road in 

France are 10% due to fatigue (Philip et al., 2001), 21% in USA due to drowsiness (Tefft, 

2014), 25% in Australia due to sleep (Naughton & Pierce, 1991), and 2% due to sleepiness 

in Norway (Philip et al., 2010). 

This performance impairment has different grades (Schad et al., 2012), which differs in the 

decoupling levels (zero to high) from the task, as we might be able to do the task although 

our performance has decreased. Hence, the impaired response has two main categories: 

partial and complete (Anderson et al., 2010; Jones et al., 2018). The key point in 

differentiating between partially and completely impaired responsiveness is performance 

(Peiris et al., 2004). A simple definition of partial or reduced responsiveness is that the task 

is being performed but with a poor performance (Jones et al., 2010). Low performance may 

be due to drowsiness (Huang et al., 2015) or due to attention being divided between the task 

and other external or internal stimuli (Benedek et al., 2017). Figure 1-1 (Jones et al., 2018) 

provides an overall taxonomy of impaired responsiveness events. 
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Figure 1-1 The taxonomy of impaired responsiveness events. 
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1.2 Lapses of responsiveness 

Completely-impaired responsiveness, also called lapses of responsiveness (Jones et al., 

2010), can happen when we are disconnected from our surroundings, which means zero 

performance (Peiris et al., 2011). This event might take one of two possible forms: either we 

are in a microsleep (MS) (Innes et al., 2010) or our attention is not on the task at hand 

(Unsworth & McMillan, 2014). Compared to partial/reduced responsiveness, complete 

lapses of responsiveness (‘lapses’) can result in fatal accidents, especially in tasks such as 

driving (Yanko & Spalek, 2013). 

Researchers have investigated lapses in performance (Jones et al., 2010; Peiris et al., 2006), 

analysed behavioural cues and task-related performance (Peiris et al., 2005), and recorded 

brain activity using different tools (Davidson et al., 2007; Poudel et al., 2010b). Their work 

has defined lapses as momentary episodes of disturbance in performance in which the subject 

is unintentionally unable to respond to a task. 

The general definition of a lapse has evolved over time, as researchers have started dividing 

it into different subcategories according to their research findings (Jones, 2011; Jones et al., 

2010). Based on behavioural cues and performance on a task, two main subcategories have 

been identified: MSs and attention lapses (ALs) (Buckley et al., 2016; Peiris et al., 2011). 

1.2.1 Microsleeps 

Harrison and Horne (1996) defined MSs physiologically as “a short period (between 5 and 

14 s) of sleep identified by an electroencephalogram (EEG) dominated by theta activity (4—

7 Hz), and an absence of alpha activity (8—l2 Hz)”. Poudel et al. (2014) concluded that 

losing the struggle to stay awake means having shifted from the drowsiness state to the sleep 

state. The sleep state can be divided into two parts based on duration: sleep event (> 15 s) 

and MS (<15 s), with the latter falling under the definition of a complete lapse because of its 

specific albeit arbitrary time limits (Jones, 2011). MSs can be observed through behavioural 

cues, such as head nodding, eye-closure, and loss of response to external stimuli (Davidson 

et al., 2005).  

MSs are usually associated with increased response time on monotonous tasks (Poudel et 

al., 2010a) and sleep deprivation (Innes et al., 2013; Poudel et al., 2021; Poudel et al., 2012, 

2013, 2018), although they can occur in non-sleep-deprived subjects (Peiris et al., 2006; 

Poudel et al., 2014). They are directly involved in many fatal accidents in driving (Akerstedt, 

2008; Vanlaar et al., 2008). 
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1.2.2 Attention lapses 

MSs and ALs are similar in that they cause a complete failure to respond on tasks for short 

periods of time (Jones, 2011). Moreover, their occurrences are positively correlated with 

time-on-task (Buckley et al., 2016; Derosière et al., 2015). However, MSs and ALs differ in 

oculometric features (Anderson et al., 2010; Benedek et al., 2017). In a MS, eyes are partially 

or completely closed (Jones et al., 2010), whereas an AL usually occurs with eyes open 

(Anderson et al., 2010; Buckley et al., 2016; Jones, 2011). 

The causes and consequences of falling asleep during driving have been substantially 

discussed in the literature due to their massive effect on human safety (Dawson & Reid, 

1997; Harrison & Horne, 1996; Horne & Reyner, 1995; Naughton & Pierce, 1991; Sagberg, 

1999). In contrast, there has been much less research on ALs, despite their fatal 

consequences in the transportation sector (Yanko & Spalek, 2013). 

Looking more specifically at ALs, we can perceive that if participants are not focusing on 

the task while they are awake then their attention might have shifted to something else 

(Unsworth & McMillan, 2014). It might be external, like looking from the car's window or 

being busy with other stuff inside the car (Anderson et al., 2010; Unsworth & McMillan, 

2014), or something internal where our attention has been prisoned in our thoughts chamber 

(D'Mello et al., 2016). The task’s nature (boring, fatiguing, etc.) (Larue et al., 2015), time-

on-task (Poudel et al., 2013), and individual differences (Unsworth & McMillan, 2014) are 

important factors that should also be taken into account in studying any type of lapse. 

The literature currently discusses two opposing theories of vigilance decrement: boredom or 

mindlessness and resource depletion or mental exhaustion (Helton & Warm, 2008). 

According to the boredom or mindlessness explanation, the vigilance deficit occurs as a 

result of a lack of exogenously supported attention during vigilance tasks (Manly et al., 1999; 

Robertson et al., 1997). As a result, the subject must maintain endogenously motivated 

attention to the key stimuli. In vigilance tasks, rare crucial signals are separated by extended 

periods; subjects may lose their focus of attention during these intervals. Subjects then 

develop a mindless, automatic attitude towards their vigilant job. Later, subjects become 

overtaken by task-unrelated thoughts (TUTs), as awareness drifts away from the task 

(Giambra, 1995; Smallwood et al., 2004). Thus, from this perspective, the fundamental 

mechanism for detecting faults in vigilance settings is the subject’s disengagement from the 

task due to preoccupation with TUTs and the subject’s subsequent automated approach to 
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the job. This idea is borne out by phenomenological observations indicating that many 

subjects find vigilance tasks tedious (Scerbo, 1998). 

The alternative resource depletion or mental exhaustion theory of vigilance attributes 

detection failures in vigilance mostly to a loss in available attention resources. According to 

research, there are only a finite number of cognitive resources accessible for information 

processing (Kahneman, 1973; Matthews et al., 2000). This limited resource concept has been 

extensively used to explain vigilance task findings (Davies & Parasuraman, 1982; Hancock, 

1989; Helton & Warm, 2008; Temple et al., 2000; Warm et al., 2008). During vigilance 

tasks, subjects must make active, continuous distinctions between signal and noise stimuli 

(target vs. non-signal stimuli) in the face of considerable ambiguity. There are few 

opportunities for rest. The continual nature of mental labour required for alertness precludes 

resource replenishing. As a result, the resources deplete with time, resulting in a decrease in 

performance efficiency. Recent research has supported the resource theory of vigilance by 

demonstrating that the vigilance decline is followed by a decrease in cerebral blood flow 

velocity, a possible physiological resource indicator (Hitchcock et al., 2003; Schnittger et 

al., 1997; Shaw et al., 2009). 

In addition, another theoretical model for explaining the link between subjective effort and 

performance outcomes has been developed by Kurzban et al. (2013). A major assumption of 

this paradigm is that using an executive control system on a long-term basis incurs a "cost" 

in the form of effort. As a result, the degree to which a subject retains executive control is 

defined by a function representing this mental cost, which is compared against the subject's 

prospective rewards. Executive control processes may deteriorate with time in the context 

of vigilance-like activities, as the ‘gains’ associated with maintaining regulated processing 

over time may be subjectively modest (because this effort yields no benefits on the vast 

majority of trials). Indeed, it may make perfect sense to refer to declining executive control 

over time in such tasks as ‘adaptive’ (for a similar argument see (Hancock, 2013), and to see 

mind-wandering as a behavioural by-product of this adaptive process. In other words, 

motivation wanes with time as a result of the monotonous and unrewarding character of 

vigilance activities. As a result, the mind-wanders more frequently. It is even possible that 

mind-wandering occurs early in the activity regardless of the goal to focus on the task (i.e., 

it is spontaneous in nature), but that later in the task, when motivation wanes, mind-

wandering occurs as a result of a lack of effort to focus on the task (i.e., it is intentional or 

deliberate in nature). 
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Helton and Russell (2011) explored the two explanations for ALs through a feature 

present/absent sustained attention to response task (SART): (1) task monotony that leads to 

expanding distraction because of TUTs (i.e., mind-wandering), (2) task demands that lead 

to exhausting the resources of information-processing required for performing the task. They 

found that ALs are more likely to be caused by resource depletion and cognitive overloading, 

although they did not totally reject the possibility of mindlessness and boredom.  

Recently, Thomson et al. (2015a) investigated two possible explanations for sustained ALs. 

According to one theory, monotony in the task results in a growing engagement with internal 

thought (i.e., mind-wandering). By another theory, task demands result in the exhaustion of 

information-processing resources required to complete the task. To reconcile seemingly 

contradictory findings regarding whether vigilance declines are caused by mind-wandering 

or resource depletion, they combined elements of attentional-resource (Smallwood, 2010; 

Smallwood & Schooler, 2006) and control-failure (McVay & Kane, 2010) theories of mind-

wandering. They contended that neither a mind-wandering form of the underload theory 

(based on attentional resources) nor a resource-depletion variant of the overload hypothesis 

can adequately account for the process. They provided a novel paradigm for explaining ALs 

as a function of time-on-task by merging elements of two distinct theories of mind-

wandering: attentional-resource theory (Smallwood & Schooler, 2006) and control-failure 

theory (McVay & Kane, 2010). They then used their ‘resource-control’ theory to account 

for declines in performance on sustained-attention tasks. They argued that their resource-

control theory accounts not only for recent findings in the literature on sustained attention, 

vigilance, and mind-wandering, but also for classic empirical findings. 

Propensity for ALs varies substantially between subjects, based on cognitive abilities and 

other individual differences (Unsworth et al., 2010) and environment factors (Burdett et al., 

2016). ALs can occur during simple every-day activities, such as reading a book and 

watching television, without any consequences or can occur during an active task such as 

driving and lead to catastrophic accidents (Weissman et al., 2006). 

1.2.2.1 Diverted-attention lapses 

The dangerous consequences of MSs and ALs are quite clear, especially when it comes to 

health and safety (Galéra et al., 2012; Terry & Terry, 2015). Diverting our attention from 

task-related thoughts to task-unrelated thoughts (TUTs) is linked to some factors: (1) finite 

attention resources which decrease with time-on-task (Derosière et al., 2015), (2) the effect 

of highly automated systems on human operators, known as human-machine 
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miscommunication (Gouraud et al., 2017). The issue emerges when operators are 

experiencing the effects of carelessness and alertness decrement; subsequently, when 

computerization does not carry on as required, understanding the framework or reclaiming 

manual control might be challenging (Gouraud et al., 2017), (3) the task nature if not 

cognitively stimulating (Larue et al., 2015), and (4) competing internally and externally 

directed cognition because of limitations of processing capacity (Benedek et al., 2017).  

Exogenous 

External distraction is simply a stimulus not related to the task that usually affects visual 

attention as it attracts eye movements (Domkin et al., 2013), it can also be auditory and affect 

the overall performance (Wood et al., 2006; Ziegler et al., 2018). 

Endogenous 

Endogenous distraction refers to mind-wandering and mind-blanking. Mind-wandering, 

where attention shifts from task at hand to self-generated thoughts (Huijser et al., 2018), may 

be voluntary, in which a participant chooses to divide his/her attention between task-related 

thoughts and TUTs (D’Mello, 2016; Ottaviani et al., 2015) and usually does not completely 

decouple attention from the external world, such as driving back from work while thinking 

about what to have for dinner. This event is characterized by maintaining responsiveness 

while doing the task, although the performance may or may not be affected, as other factors 

like driving experience will play an important role in the scene (Zhang & Chan, 2014). This 

should not be considered as a complete impaired-responsiveness event but partial.  

Mind-wandering can also be involuntary, where our thoughts conquer our mind and 

decouple us from the external world while shifting our attention in a time-oriented manner 

(Smallwood & Schooler, 2015), or a personal trait (Burdett et al., 2016; Gil-Jardiné et al., 

2017). These events are commonly called mind-wandering (Chaudhary et al., 2017; Daniel 

et al., 2010; Ward & Wegner, 2013; Weinstein et al., 2017), daydreaming (Wang et al., 

2009), and TUTs (Unsworth & McMillan, 2014). These type of lapses have a long history 

with the occurrence of accidents (Yanko & Spalek, 2013). 

Mind-blanking, in which the mind ‘goes away’ (Ward & Wegner, 2013), is a lapse in which 

there is a complete loss of attentional focus while being awake, where we do not remember 

when and why it started, when it ended, and what happened in between, or what brought us 

out of it. Mind-blanking has been considered to be an extreme case of decoupling of 

perception and attention (Ward & Wegner, 2013), which is different than moments of meta-

cognitive failures where the mind fails momentary to monitor the surroundings. This 
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phenomenon has been called mind-blanking (Ward & Wegner, 2013), ALs (Buckley et al., 

2016), sustained-attention lapses (Head & Helton, 2012; Jones et al., 2010), blank-in-mind 

(Moraitou & Efklides, 2009), attentional blink (Gillard‐Crewther et al., 2007), and lost 

attention lapses (Jones et al., 2018). 

Whether we are engaged in a task-related thought or TUT, our memory will be a key factor, 

as we either use our experience to call information needed for the task, or we find ourselves 

thinking about other thoughts from past or future (Hutchinson & Turk-Browne, 2012) such 

as in mind-wandering. However, mind-blanking is more likely to be associated with failure 

in memory processes (Efklides & Touroutoglou, 2010; Moraitou & Efklides, 2009). 

Investigation of ALs has challenges, as it is very difficult to distinguish between the two 

types of endogenous ALs, i.e., mind-wandering and mind-blanks, and accurately classify 

them using behavioural cues only, such as performance on a task or any extracted 

oculometric features (Ward & Wegner, 2013).  

1.3 Objectives 

This chapter has provided a general overview of the types of lapses of responsiveness. These 

lapses have a significant effect on safety when they occur during tasks like driving. Two 

main categories of complete lapses of responsiveness were introduced: MSs and ALs. 

Details were also given on diverted ALs, externally and especially internally, including 

mind-wandering and mind-blanking. 

Although the literature has investigated ALs and MSs during various tasks, there remains a 

lack of understanding of these two phenomena. Given their association with a high risk of 

fatal accidents, and as driving is a continuous task, we should investigate these lapses within 

a continuous task. ALs can be broken into mind-wandering and mind-blanking, but mind-

blanking has been far less investigated than mind-wandering. Also, are MSs simply brief 

instances of sleep or are they physiologically different? To achieve this, both the strengths 

of fMRI, with its high spatial resolution, and EEG with its high temporal resolution, were 

considered.  

An important contribution is to reveal the neural signature of lapses of responsiveness when 

performing the 2-D continuous visuomotor tracking (CVT) task, which is demanding as it 

requires maintaining attention to the task at all times, and also monotonous as it keeps 

repeating its pattern. In addition to not interfering with the task by using thought probes, and 

depend only on the behavioural features and tracking performance to rate the lapses. 
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This project aimed to provide more understanding of the two phenomena of ALs and MSs. 

The main interest was to reveal what happens inside the brain during these two lapses. Voxel-

wise, group independent component analysis (ICA), haemodynamic response (HR) of 

regions of interest (ROIs), functional connectivity (FC), and reconstructed brain sources 

were analysed to assist answering the “what” question. This helped us to draw conclusion 

about these lapses within a continuous task without interrupting the participants while 

performing the task.   
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 Lapses of Responsiveness: A Behavioural Review 

2.1 Significance of research on lapses of responsiveness 

Although it might appear trivial, as lapses are something that occurs daily and in different 

situations where they cause no harm. Conversely, ALs can result in severe injuries and 

deaths. In a study by Galéra et al. (2012), 955 drivers injured in a vehicle crash were 

interviewed between 2010-2011, in which 52% reported mind-wandering just before the 

crash, and its content was highly distracting (defined as intense mind-wandering) in 13%. 

Another study by Gil-Jardiné et al. (2017), interviewed 954 drivers injured in a vehicle crash 

over 2013–2015, where 39% of respondents were classified with a mind-wandering trait and 

13.5% reported a disturbing thought just before the crash. 

Falling asleep while driving has a dramatic effect on safety. Royal (2003) reported the results 

of a national survey on drowsy driving, with an estimate of 0.8 to 1.88 million sleep-related 

accidents between 1997 and 2002. In England, a police report on vehicle accidents showed 

that 679 were sleep-related between 1987 to 1994 (Horne & Reyner, 1995). A report from 

Norway estimated that 146 accidents were sleep-related (Philip et al., 2010). Finally in 

Thailand, approximately 1212 accidents over a six-month period were sleep-related 

(Leechawengwongs et al., 2006). 

2.2 Behavioural characteristics of attention lapses 

2.2.1 Mind-wandering 

Our consciousness rarely keeps one topic in mind for a long period without change, as its 

dynamic nature causes our minds to unintentionally decouple from perceptual information 

(Schad et al., 2012; Smallwood & Schooler, 2015) and external stimuli completely (Huijser 

et al., 2018). Then shifts to inner thoughts (Berthié et al., 2015) that can be emotional or 

distractive (Lemercier et al., 2014), based on the content of the thoughts (Critcher & 

Gilovich, 2010). This is the mind-wandering phenomenon, which is characterized by a brief 

failure of attention to the task at hand, and results in impaired performance and increased 

reaction time (He et al., 2011).  

Many studies on mind-wandering have been based on correlations with oculometric features 

to investigate behavioural cues. In reading comprehension tasks, which are widely used in 

mind-wandering studies, Schad et al. (2012) investigated episodes of mind-wandering by 

detecting longer eye-gaze duration while reading and found that attention decouples in a 

graded rather than dichotomous fashion. The same conclusion of longer fixation duration in 
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reading while mind-wandering was also reached by Foulsham et al. (2013b), Bixler and 

D’Mello (2016), and Reichle et al. (2010). A high eye-blink rate has also been shown to be 

associated with mind-wandering (Daniel et al., 2010). In addition, Pepin et al. (2018) 

concluded that gaze fixation is higher during mind-wandering episodes while performing a 

problem-solving task and also in a driving simulator; while driving in a straight line through 

an urban residential area, participants were interrupted by right and left bends. Anagram and 

sentence generation tasks have also been used to show that mind-wandering is associated 

with increased duration of fixations and saccades (Benedek et al., 2017). 

Unsworth and Robison (2016b) examined pupil metrics during the psychomotor vigilance 

task (PVT) and concluded that participants had smaller pupil diameters when off-task 

compared to on-task. These results are inconsistent with previous research by Franklin et al. 

(2013), who noted that when off-task, participants had large-pupil diameters compared to 

on-task. The reason behind these contradictory results might be in the tasks used, as in 

Franklin et al. (2013), participants were performing a reading task. Therefore, differences 

may appear because of how challenging the tasks are, as in PVT, the participants are required 

to keep attention on-task while in the reading task there are opportunities to intentionally 

divert attention from the task. 

In a recent study, using four experiments based on PVT with each experiment customized to 

result in a different arousal level, Unsworth and Robison (2018a) investigated the relation 

between arousal and different stages of mind-wandering using pupillometry. They showed 

that mind-wandering has a heterogeneous nature and suggested that each form of mind-

wandering is related to a different arousal state (low, intermediate, or high) and different 

pupil metrics and that behavioural and pupillary measures can be consumed to trace mind-

wandering states. They also found that mind-wandering and mind-blanking have similar 

tonic pupil diameters while increasing external attention to the task. However, while 

increasing internal attention (more active mind-wandering), tonic pupil diameter was larger 

in mind-wandering than in mind blanking. 

In addition to objective (indirect) techniques of measuring mind-wandering such as 

oculometric features and reaction times, subjective (direct) techniques have also been used. 

Subjective techniques are based on the subject's engagement in evaluating the current state 

of mind. These techniques require the subject to report the mind's state and have two models 

of reporting: (1) self-caught where the subject indicates any shift in attention and reports 
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freely within the task, (2) probe-caught, which is more popular, once the task is stopped after 

observing a lack of performance, the subject is asked to choose the most applicable option 

from a list (Weinstein, 2018). These choices can be classified into four categories: (i) binary, 

giving the participants only one choice (e.g., mind-wandering) and participants decide 

whether it applies to them by answering yes or no;  (ii) dichotomous, giving participants two 

contrasting choices (on-task vs. mind-wandering); (iii) categorical, giving participants 

multiple choices of what they are focusing on (e.g., the lecture, the time, the computer, or 

something else); and (iv) scale, where participants express their thought on a scale such as a 

6-point Likert scale from on-task to off-task (Weinstein et al., 2017). 

Although the probe-caught technique appears rational, for more than a decade researchers 

have not agreed on a single method of using it (Weinstein et al., 2017). The findings of 

previous works are not comparable due to variations in the probe-caught-techniques used. 

Another major shortcoming is that it depends on the subject's report (Weinstein, 2018). 

Hence, any misunderstanding from the subject regarding the current mind state can lead to 

inaccurate results (Gouraud et al., 2017; Unsworth & McMillan, 2014; Ward & Wegner, 

2013). Additionally, studies in the literature have used slightly different definitions for mind-

wandering, which is likely to lead to conflicting findings (Seli et al., 2018a). Another 

problem is that this technique has not been tested in continuous tasks but given that it 

depends on stopping the subject while doing the task to ask about his/her thoughts, it will 

interfere with a continuous task, such as continuous visuomotor or driving, and turn it into a 

discrete task. 

2.2.2 Mind-blanking  

Mind-wandering is characterized by more importance being given to TUTs at the expense 

of reduced attention on the task. Essentially, our attention simply drifts from the task at hand 

to the endogenous train of thoughts. In contrast, instead of our thoughts wandering, in mind-

blanks, our thinking stops, and we enter a blank state. 

Moraitou and Efklides (2009) used different questionnaire strategies to compare the 

experience of blank-in-mind with the experience of lack of knowledge when a failure to 

produce a proper response occurs. They found that the blank-in-mind experience comes with 

failure in cognition and memory compared to the lack of knowledge experience. In the case 

of the blank-in-mind, no attempt is made to retrieve information due to potential disruption 
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of brain networks, whereas no related information is available to retrieve with the lack of 

knowledge. 

Other researchers have called the blank-in-mind phenomenon mind-blanking. Using seven 

experiments, Ward and Wegner (2013) provided evidence that mind-blanking exists and is 

distinct a mental state from mind-wandering. Mind-blanking has also been investigated in 

neurological disorders. Van den Driessche et al. (2017) found that children (ages 6–12) with 

attention-deficit/hyperactivity disorder reported higher mind-blanks compared to mind-

wandering during a go/no-go task. 

Unsworth and Robison (2018a) using four different PVTs to examine mind-wandering and 

mind-blanking in terms of their similarities and differences. Their results show that, 

compared to mind-wandering, mind-blanking is less likely to happen, and slower reactions 

are also related to mind-blanking. Regarding pupil diameter, in events where attention is 

directed externally, both mind-wandering and mind-blanking show the same tonic pupil 

diameters, but when attention is directed endogenously (internally), tonic pupil diameter is 

greater in mind-wandering than mind-blanking. 

2.3 Behavioural characteristics of microsleeps 

The detection of MSs through behavioural measures is relatively easier than ALs, due to a 

major feature of MSs being eye closure with a duration long enough not to be considered a 

long blink (Anderson et al., 2010). Head movements with MSs can also be helpful, although 

this needs high-computational hardware (Al-Rahayfeh & Faezipour, 2013). Some studies 

(Ghosh et al., 2015; Malla et al., 2010) have used video-based measures to detect eye closure. 

This method depends on the identification of the top and bottom eyelids, after identification 

of the eye from the face, followed by classification of the image into three states: eyes 

opened, eyes closed, and eyes partially closed. Or, if the algorithm is more advanced, it can 

estimate the percentage of eyes closure. However, this method can face issues like the correct 

detection of one of the lids and lighting conditions. Also, it should be noted that eye-video 

will perform better on individuals compared to a system that can be generalized to many.  

Poudel et al. (2021) recorded the right-eye movement of participants who were performing 

a 2-D CVT task, they found that the pupil size reduces by 20% in association with MSs. 

Other studies (McIntire et al., 2013; Wilkinson et al., 2013) considered using an eye-tracer 

device, which is a camera attached to an eyeglass frame which can provide measures like 

blink frequency, and blink duration, and percentage of eye closure. The behavioural system 
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of sleep/MSs detection is important not only to reduce critical accidents, but also for the 

fitness to drive assessment (Skorucak et al., 2020).  

2.4 Individual differences 

As all humans have unique biometrics that differentiate them from everyone else, even an 

identical twin, and cognitive abilities also differ between humans, it is naïve to expect 

subjects to perform exactly the same in any task. The relationship between ability at 

sustained attention/cognition and cortical structure on individual differences was studied by 

Mitko et al. (2019). They found an association between enhanced sustained attention and 

increased cortical thickness over the visual, somatomotor, frontal, and parietal regions in the 

right hemisphere. The regions involved were identified to be parts of dorsal attention, ventral 

attention, somatomotor, and visual networks. Also, Clemente et al. (2021) investigated the 

relationship between the white matter (WM) pathways and the susceptibility to ALs. Their 

findings indicated that there is an association between ALs and the variation of 

microstructure of frontoparietal WM tract. 

McAvinue et al. (2012) examined age-related changes in the central aspects of visual 

attention: namely, sustained attention, attentional selectivity, and attentional capacity. SART 

was employed to measure sustained attention, and theory of visual attention-based 

assessment to measure attentional selectivity and capacity. They found evidence of age-

related decline in each of the measured variables. The same association was concluded by 

Morris and Dawson (2008). 

Rosenberg et al. (2016) used FC as a neuromarker of sustained attention. They identified 

functional brain networks whose strength during a sustained attention task predicted 

individual differences in performance. Finally, Roebuck et al. (2016), through a continuous 

performance task, showed that error propensity and reaction time variations on continuous 

performance tasks cannot solely be interpreted as evidence of inattention. They reflect 

individual differences due to stimulus-specific influences that must be considered when 

studying deficits in sustained attention. Here, the main factors that create the individual 

differences are listed. 

2.4.1 Vigilance 

Vigilance is the term used by psychologists and cognitive neuroscientists to refer to the 

sustained attention ability in a task even an extended period of time (Davies & Parasuraman, 

1982; Parasuraman et al., 1998) , where vigilance decrement has been defined as "the decline 
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in attention requiring performance over an extended period of time" (Mackworth, 1964). 

Robison and Brewer (2019) did a meta-analysis study by analysing six different datasets and 

comparing the results, in which they found that vigilance can be seen as a trait-level cognitive 

ability.  

2.4.2 Working memory capacity 

Engle (2002) hypothesized that working memory capacity (WMC) “is about using attention 

to maintain or suppress information”. Engle et al. (1999) also argued that WMC “is not really 

about storage or memory per se, but about the capacity for controlled, sustained attention in 

the face of interference or distraction”. Theories of WMC, which are the attention-based, 

suggest that executive-control capabilities play an important role in performing tasks that 

require WMC and higher-order cognition (Braver et al., 2007; Hasher et al., 2007; Hasher 

& Zacks, 1988; Kane et al., 2007; Unsworth & Engle, 2007; Unsworth & Spillers, 2010). 

The impact of ALs on WMC measures was examined by Unsworth and Robison (2016a). 

Their results supported the idea that ability to pay attention to a task and resisting ALs is 

essential to performance, as found by the WMC measures. 

2.4.3 Fluid intelligence 

General fluid ability/intelligence has been described as being able to solve unfamiliar 

problems using conventional thinking methods” (Carroll, 1993; Cattell, 1963). It usually 

conflicts with general crystallized ability, defined as “the ability to answer questions or solve 

problems in familiar domains using knowledge and strategies acquired through education, 

training, or acculturation” (Kyllonen & Kell, 2017). Crawford (1991) performed a memory 

task and an attention test to explore the relation between sustained attention and fluid 

intelligence, and found that fluid intelligence is not automatic mental processing but is based 

on mental capabilities. Holm et al. (2011) used a simple rhythmic motor task to investigate 

the relation between intelligence and reaction time, and found that temporal variability in 

reaction time is related to cognitive performance. 

2.4.4 Tendency to mind-wander 

Albert et al. (2018) used SART to predict risky driving among young drivers. They found 

an association between tendency to mind-wander and individual differences between drivers. 

A similar conclusion on the association between mind-wandering and individual differences 

was found by Neigel et al. (2019a), although they linked propensity to mind-wander to 

reduced performance. 



P a g e  | 2-16 

 

 

Thomson et al. (2015b) used SART to show that individuals who have a high tendency to 

mind-wander, and who under-invest attention in the external environment, will have less 

attentional blinks, which were shown to be a momentary loss of control rather than a lapse 

due to limited attentional resources (Di Lollo et al., 2005; Gillard‐Crewther et al., 2007).  

2.5 Influence of motivation 

Motivation can boost sustained attention through increased effort (Massar et al., 2018). 

Esterman et al. (2016) used two tasks with two different motivational scales: one with small 

monetary loss and one with large loss. They showed that the possibility of large loss can 

attenuate the vigilance decrement. The same conclusion was reached by Massar et al. (2016) 

and Neigel et al. (2019b). According to Esterman et al. (2017), by comparing motivated 

(rewarded) and unmotivated blocks on a sustained attention task, the motivated blocks 

induced more activation in task-positive regions of the brain. 

Based on a prolonged SART study by Reteig et al. (2019), increased motivation cannot fully 

restore attentional performance caused by vigilance decrement. Also, using a sustained 

attention task, Seli et al. (2017) showed that motivation to do the task can reduce mind-

wandering, whether intentional or unintentional. 

2.6 Summary 

This chapter focused on behavioural understanding of lapses of responsiveness —ALs and 

MSs— plus the significance of lapse research. There was also a general overview of the 

individual differences based on cognitive abilities such as vigilance, WMC, fluid 

intelligence, and tendency to mind-wander. Also mentioned was the relationship between 

motivation and sustained attention.  
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 Understanding fMRI 

3.1 Introduction to fMRI 

fMRI is a non-invasive technique used in neuroimaging for studying functioning and 

structure of the human brain. Ogawa et al. (1990) showed that fMRI can visualize brain 

function by measuring the blood-oxygen-level dependent (BOLD) signal. This chapter lists 

the methods used to carry out the analysis of fMRI data. We used FMRIB’s software library 

(FSL) (Jenkinson et al., 2012) available at (www.fmrib.ox.ac.uk/fsl). 

3.1.1 Magnetic resonance signal 

An MRI scanner is a cylindrical tube surrounded by an extremely strong electromagnet. For 

example, the magnetic field strength used in the clinical studies is mostly 3T, almost 50,000 

times stronger than that of the earth’s magnetic field. The scanner’s magnetic field affects 

atomic nuclei. 

  
Figure 3-1 (a) Magnetic resonance imaging (MRI) Scanner, (b) MRI scanner gradient magnets. The 

internal structure of the MRI scanner (from Coyne, 2018).  

From Figure 3-1, the parts of the scanner are: (1) radio frequency (RF) coil: a transceiver 

that transmits and receives RF signals, (2) main magnet coil: generates a homogeneous time-

invariant magnetic field, and (3) gradient coils (magnets): (i) X magnet coil: generates a 

fluctuating magnetic field from left to right, (ii) Y magnet coil: generates a fluctuating 

magnetic field from top to bottom, and (iii) Z magnet coil: generates a fluctuating magnetic 

field from head to toe (Buxton, 2013; Woolrich et al., 2016). With the strong external 

magnetic field from the scanner, the nuclear magnetic moments are changed from being 

randomly oriented to being aligned with the field. This results in the creation of a net 

longitudinal magnetization following the same direction of the field, and this net 

magnetization is large enough to be measured (Buxton, 2013; Woolrich et al., 2016), see 

Figure 3-2. 
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Figure 3-2 Nuclear magnet: (a) without external magnetic field, (b) with external magnetic field. The 

effect of the external magnetic field on the nuclei (from Lindquist & Wager, 2013). 

3.1.1.1 What MRI measures? 

MRI detects the magnetic signal from each hydrogen nucleus in water (H2O) as the nuclei 

consists of only one proton. The idea is that the signal strength of the hydrogen nuclei 

changes with the surroundings, and that smooths the discrimination between WM, grey 

matter (GM), and cerebral spinal fluid (CSF) in structural brain images. The protons are 

shown as positively charged spheres that keep spinning. As a result, a net magnetic moment 

rises along the spins' axis (Buxton, 2013; Woolrich et al., 2016), see Figure 3-3. 

 

Figure 3-3 Protons magnetic properties. Behaviour of a proton (from Lindquist & Wager, 2013). 

A single proton magnetization cannot be measured using MRI, but the net magnetization M 

inside a volume can be. It can be shown as a vector represented by two components (Buxton, 

2013; Woolrich et al., 2016), see Figure 3-4. 

 

Figure 3-4 The net magnetization and its components. Adapted (from Lindquist & Wager, 2013). 

The hydrogen nuclei precess with a random phase about the field and with an angular 

frequency specified by Larmor frequency (Horowitz, 2012), see Figure 3-5. The phases of 

all nuclei are aligned and then the nuclei are 'tipped over' using an RF pulse. As a result, the 
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longitudinal magnetization is decreased, and a new transverse magnetization is established 

(Buxton, 2013; Woolrich et al., 2016). 

   
Figure 3-5 From longitudinal magnetization to transversal magnetization. The radio frequency 

effect on the nuclei (from Lindquist & Wager, 2013). 

Following the RF pulse, the system returns to equilibrium, during which the transverse 

magnetization disappears gradually (transversal relaxation), and the longitudinal 

magnetization rises gradually back to its original magnitude (longitudinal relaxation). 

Within this process, a signal is created, and the RF receiver coil measures it (Buxton, 2013; 

Woolrich et al., 2016). 

• Longitudinal relaxation: happens when the spins get back to their parallel state and 

as a result, the net magnetization is restored along the longitudinal direction, 

represented by a time constant T1 (Buxton, 2013; Woolrich et al., 2016), see Figure 

3-6. 

• Transverse relaxation: is the absence of net magnetization in the transverse plane 

because of the lack of phase coherence, represented by a time constant T2 (Buxton, 

2013; Woolrich et al., 2016), see Figure 3-7. 

  
Figure 3-6 Longitudinal relaxation following the 

radio frequency (RF) pulse (from Lindquist & 

Wager, 2013). 

Figure 3-7 Transverse relaxation after 

removing the RF (from Lindquist & Wager, 

2013). 

3.1.2 MRI image formation 

The objective of MRI is to build a picture or a grid of numbers that relate to spatial areas. 

3.1.2.1 K-space 

In k-space, the spatial frequencies of the MR image are represented by an array of numbers. 

The spatial resolution of the image is impacted by the number of k-space measurements. An 

MR image is the inverse Fourier transform (IFT) of k-space (Jenkinson & Smith, 2006; 

Lindquist, 2008), see Figure 3-8. 
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Figure 3-8 MRI image construction. Inverse Fourier transform (IFT) should be applied to 

transform the numbers into an image of the brain (from Lindquist, 2008). 

T1-weighted and T2-weighted images are different for different tissues. The difference lies 

in echo time (TE) and repetition time (TR) used to produce each image as they are longer in 

T2 than T1, they can clarify boundaries between CSF, which appears to be dark in T1 and 

bright in T2, GM and WM. Likewise, because T2*, which is the impact of the interaction 

between T2 and local inhomogeneities in the magnetic field, is sensitive to flow and 

oxygenation, it is used in functional brain imaging. 

3.1.3 BOLD signal 

The BOLD signal is not a direct measure of neural activity. Instead, it allows us to measure 

the ratio of oxygenated to deoxygenated haemoglobin in the blood by measuring the 

metabolic demands (oxygen consumption) coming from active neurons. Neurons receive 

oxygen through haemoglobin in capillary red blood cells. An increased demand of oxygen 

in blood flow going to regions that are active occurs when the neural activity increases. The 

haemoglobin changes its magnetic state based on the oxygenation process, this change in 

magnetic property results in a change in the MR signal of blood based on the degree of 

oxygenation (Pauling & Coryell, 1936), and this can be used for brain activity detection. 

This form of MRI is known as BOLD fMRI imaging (Bijsterbosch et al., 2017; Buxton, 

2013; Glover, 2011; Lindquist, 2008; Wager & Lindquist, 2015; Woolrich et al., 2016), see 

Figure 3-9. 
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Figure 3-9 The blood oxygenated level dependent (BOLD) signal. HbO2 represents red blood cells 

that are fully oxygenated (red circles) and Hb represents red blood cells that are fully deoxygenated 

(blue circles). HbO2 will replace Hb when there is a neural activity as it consumes more oxygen 

(from Glover, 2011). 

3.1.3.1 Hemodynamic response function (HRF) 

It is important to highlight the changing direction of oxygenation with increased activity. It 

is expected that blood oxygenation will increase because of activation, but the reality is not 

that simple. A transient decrease in blood oxygenation, known as the "initial dip", occurs 

first following an increase in the neural activity. The "initial dip" is then followed by a 

dramatic increase in the blood flow that overcompensates the oxygen demand, such that the 

blood oxygenation substantially increases after neural activation, reaching a peak at about 6 

s before falling slightly below the baseline, known as "post-stimulus undershoot" (Buxton, 

2001; Lindquist, 2008; Rosa et al., 2015; Wager & Lindquist, 2015; Woolrich et al., 2016; 

Woolrich et al., 2004b), see Figure 3-10. 

 

Figure 3-10 HRF is a delayed response after a stimulus occur (from Elster, 2016).  

3.1.4 fMRI artefacts and noise 

The BOLD fMRI signal contains multiple sources of noise related to the hardware and 

participants themselves. Sources of noise are: (1) thermal noise caused by the motion of free 

electrons in the system, (2) spikes caused by instability of the gradient and magnetic fields, 

(3) interaction between head movement and the magnetic field, (4) physiological effects, 
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like heartbeat and respiration. All fMRI data contain artefacts, and it is very difficult to deal 

with major artefacts during analysis, so one aims to avoid or minimize them during data 

acquisition (Huettel et al., 2004; Wager & Lindquist, 2015; Woolrich et al., 2016). 

3.1.5 Spatial and temporal characteristics of fMRI 

fMRI, like other brain imaging techniques, is characterized by temporal resolution and 

spatial resolution (Huettel et al., 2004; Wager & Lindquist, 2015), see Figure 3-11. 

 

Figure 3-11 Comparison of spatial and temporal resolutions. The fMRI has a relatively good spatial 

resolution and acceptable temporal resolution (from Liu et al., 2016). 

Spatial resolution defines the ability to localize BOLD activity to a particular area of the 

brain. Voxel size is the primary measure of spatial resolution in fMRI. Each voxel is a 3-D 

cube or rectangular prism. Each brain volume consists of thousands of voxels. The MRI 

brain volume is a function of field of view, matrix size, and slice thickness used to acquire 

the fMRI data. The field of view defines the coverage of the imaging volume within a slice. 

The number of voxels in a 2-D plane is determined by the matrix size, which is normally in 

powers of 2 to facilitate the use of the fast Fourier transform (FFT) in the image 

reconstruction. Slice thickness is the third parameter, which determines the depth of each 

voxel, see Figure 3-12. 

 

Figure 3-12 Spatial resolution terminologies (from Wager & Lindquist, 2015). 
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Temporal resolution is the shortest duration of neural activity separated out by fMRI. For a 

typical pulse sequence in fMRI, one brain volume is acquired per TR. TR typically takes 1–

3 s. 

3.1.6 fMRI study design 

The goal is to induce the human subject to carry out tasks or experience psychological states 

that will be studied and effectively detect related brain signals related to those psychological 

states (Lindquist, 2008; Wager & Lindquist, 2015; Woolrich et al., 2016). 

3.1.6.1 Controlled experiments 

Controlled experiments are conducted by presenting carefully-timed experimental 

conditions of pre-defined duration during fMRI scanning. The type of experimental 

conditions depends on the research questions being asked; at least two types of condition: 

task and baseline are required, see Figure 3-13. 

 

Figure 3-13 fMRI study design (from Lindquist, 2008).  

Block design 

Multiple repetitions of a given experimental condition are strung together in a block, 

alternating between one or more condition blocks and one or more control/resting blocks. 

Event-related design 

In an event-related design, the experimental conditions are presented in a randomized order, 

rather than being blocked. As a result, responses to individual events are separable because 

of the temporal sequencing. 

3.1.6.2 Behaviourally-driven experiments 

In behaviourally-driven experiments, behaviours of interest, such as sleep, eye-blinks, 

drowsiness, MSs, and ALs, are uncontrolled and spontaneous while doing a task such as the 

2-D CVT task (Poudel, 2010). 
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3.1.7 Data acquisition protocol 

The most commonly used fMRI data acquisition pulse sequence technique is the echo-planar 

imaging (EPI). In the EPI sequence, rapid gradient switching allows fast acquisition of the 

brain data, which increases temporal resolution, making it the pulse-sequence of choice in 

most fMRI studies (Amaro & Barker, 2006). 

3.2 Pre-processing pipeline for fMRI 

Pre-processing uses many image/signal processing techniques to minimize the noise and 

artefacts in the raw MR data. These steps are critical to achieve a valid statistical analyses 

and to greatly boost the power of the following analyses (Bijsterbosch et al., 2017; Jenkinson 

& Smith, 2006; Lindquist, 2008; Smith et al., 2004; Wager & Lindquist, 2015; Woolrich et 

al., 2016), see Figure 3-14. 

 

Figure 3-14 Preprocessing pipeline. Adapted (from Lindquist, 2008). 

3.2.1 fMRI data acquisition 

After acquiring the MR scans, there are three types of images for each subject: structural, 

functional, and field maps (Wager & Lindquist, 2015). 

3.2.1.1 Structural 

An anatomical image, also called a T1-weighted image, is a 

single image captured for each subject. It has a very high 

spatial resolution and clearly shows the contrast between the 

WM and the GM of the brain. The acquisition takes ~5 min, 

see Figure 3-15. 
 

Figure 3-15 Structural image 

of brain. 
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3.2.1.2 Functional 

In BOLD images, also called T2*-weighted images, are 

captured from each subject in a time series. They have a lower 

spatial resolution than T1 images, but still acceptable, and 

have a much shorter acquisition time of ~2.5 s., see Figure 

3-16. 
 

Figure 3-16 Functional 

image of brain. 

3.2.1.3 Field maps 

Field maps are maps of magnetic field inhomogeneities in the 

scanner. They are images captured at two different echo times 

(TE1 and TE2), which show how the magnetic field varies 

within the scanner. If needed, they are used only in pre-

processing, see Figure 3-17. 
 

Figure 3-17 Field map 

image of brain. 

3.2.1.4 Basic terminology of fMRI 

Before presenting the data analysis, the following terms need to be understood (Wager & 

Lindquist, 2015), see Figure 3-18, Figure 3-19, and Figure 3-20. 

fMRI experiment hierarchy 

 

Figure 3-18 fMRI experiment hierarchy.  A number of voxels creates a slice, then slices create a 

volume, then volumes create a run, and runs create a session. There can be multiple sessions for the 

same subject. Finally a single experiment will include many subjects, adapted (from Wager & 

Lindquist, 2015).  
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Brain organization 

 
Figure 3-19 Brain organization. A 3-D view of a volume, it is a complete scan of the brain in three 

different coordinates (from Wager & Lindquist, 2015).  

BOLD image 

Each BOLD image consists of ~100,000 voxels, the image is represented by 4 dimensions 

(3-D space and 1-D time). A short time duration TR (2-3s) separates each full scans of the 

brain. The intensity of each voxel might change with each scan and these changes are 

combined to produce a time-series (Lindquist, 2008). 

 

Figure 3-20 BOLD voxel time series. The signal captured from a single voxel is presented in the 

form of time series with numbers changing for each volume (from Wager & Lindquist, 2015). 

3.2.2 Realignment 

Because people often move their head during the scanning session, a realignment of each of 

the images in a functional time series is needed so that they are all in the same orientation 

(Jenkinson & Smith, 2006; Lindquist, 2008). 
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3.2.2.1 Motion correction 

When a participant’s head moves during the fMRI scanning session, the brain’s position will 

change over time. This means that any voxel’s time series does not always correspond to the 

same point in the brain. Within a session, motion correction works on finding an orientation 

to apply for all images and resampling the original data to the new orientation. This is done 

by applying a separate 3-D image registration to each image, separately but in order, with a 

previously determined reference image (usually image 1 but not always recommended) 

(Jenkinson et al., 2002; Kim et al., 1999), see Figure 3-21. 

As all images in an fMRI experiment are from the same object, taken with the same MR 

sequence, rigid body transformation is recommended. This transformation is based on 6 

parameters which varies with time. They include 3 sets of translations and 3 sets of rotations, 

in total 6 degrees of freedom (DOF), along with intra-modal voxel-similarity functions (like 

normalized correlation) which are typically used to model the change between one image 

and the next. The aim is to align the input image with the target image, see Figure 3-22.  

 

 

 
Figure 3-21 Motion correction role.  

Adapted (from Jenkinson et al., 2002). 

Figure 3-22 Rigid body transformation - 6 

degrees of freedom (DOF). Adapted (from 

Jenkinson et al., 2002). 

3.2.2.2 Brain extraction 

In this step, non-brain parts are eliminated (e.g., skull, CSF, etc.), by element-wise 

multiplying the original image with a brain mask (Smith, 2002), see Figure 3-23. 

 

Figure 3-23 Brain extraction procedures. 
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3.2.2.3 Distortion correction 

Motion correction solves the voxel correspondence problem – the same voxel now contains 

the same bit of the brain over the entire time series. However, it doesn’t solve all movement-

related problems. Interactions between movement and field inhomogeneity remains. 

Inhomogeneities in the magnetic field affect both signal strength and spatial encoding of 

signals, causing dropouts and distortions (Hong et al., 2015; Jenkinson, 2003). 

To correct for distortion, an unwarping step is needed. Unwarping aims to estimate the 

effects of interactions between field inhomogeneity and movement, and compensate for 

them. The field map images are used in this step (Jenkinson, 2003; Jezzard, 2012), see Figure 

3-24.  

 

Figure 3-24 The unwarping process: A field map, obtained by comparing the phase differences of 

two gradient echo images taken with different TEs, depicts the spatial fluctuation of the magnetic 

field and can be used to compute a voxel displacement map and unwrap the distorted EPI images. 

3.2.3 ICA data exploration 

ICA can be applied to decompose the 4-D fMRI images into independent components, then 

these components are manually labelled as signal or noise components (Griffanti et al., 

2017), and the noise components are removed. This technique of noise removal was followed 

based on Caballero-Gaudes and Reynolds (2017) recommendation, as the other alternative 

of accounting for regressors that represents motion parameters has the problem of ignoring 

the motion that happened between volumes, which is the case in the fMRI expert analysis 

tool (FEAT). 

3.2.4 Slice-time correction 

Most functional sequences collect data in discrete slices. This means that each slice is 

captured in a time allocated for that slice only. Slice timing correction aims to align all voxels 

to a common timing by adjusting each of the voxel time-series (Jenkinson et al., 2002). The 
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first slice timing is usually chosen to be the reference timing. The temporal adjustment is 

usually done by moving the values of the time series in the time domain slightly forward or 

backward (as all corrections are less than one TR), using some form of interpolation 

(Jenkinson & Smith, 2006; Lindquist, 2008; Parker et al., 2017; Sladky et al., 2011), see 

Figure 3-25. 

 

Figure 3-25 Slice-time correction: Individual slices of hemodynamic responses are obtained at 

different moments in time (top), resulting in an aberration in the scanned data (bottom). In slices 

obtained later, the observed time courses of a hemodynamic response reach their maximum 

amplitude earlier. Without sufficient correction, this results in biased estimators in fMRI analyses. 

(from Sladky et al., 2011). 

3.2.5 Filtering 

Filtering removes unwanted frequency components from the fMRI data (Jenkinson & Smith, 

2006; Lindquist, 2008). Through FEAT, high-pass filtering and spatial smoothing can be 

done. 

3.2.5.1 Spatial filtering (smoothing) 

This step is applied to each of the functional brain volumes. Smoothing (averaging) replaces 

the value at each voxel with a weighted average of the values surrounding that voxel. This 

increases the signal-to-noise ratio (SNR) by reducing the random noise which gives more 

validity to statistical results. The only problem is that the spatial resolution is reduced. The 

most commonly used technique is Gaussian filtering (Mikl et al., 2008), see Figure 3-26. For 

spatial smoothing, the value of the spatial filter’s width is in mm; based on Jenkinson and 

Smith (2006), a width between 3—10 mm is recommended to increase SNR.  
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Figure 3-26 Smoothed version of brain image.  

3.2.5.2 Temporal filtering 

This step is applied to each voxel’s BOLD time series, see Figure 3-27 for illustration on a 

sine wave.  

 

Figure 3-27 Raw data decomposed into different components.  

High-pass filtering 

High-pass filtering aims to remove all slowly-varying unwanted signals in each voxel’s time 

series. These unwanted signals can be due to physiological effects, such as heartbeat and 

breathing, or drifts coming from the scanner that can be attributed to hardware instability. 

Low-pass filtering 

Low-pass filtering aims to reduce high-frequency noise in each voxel’s time series, without 

affecting the desired signal. When using high- and low-pass filtering together, it is necessary 

to design the filter carefully, so that it removes the noise only and keeps the desired signal. 

Low-pass filtering, however, is not always recommended, as when used with event-related 

experiments, it can cause problems as these desired signals are changing rapidly. The 

smoothness of the time-series is another issue, as low-pass filtering increases smoothness 

(“smoothness” makes the intensity of each time point closer to the values of its neighbours 

more than the values of any point elsewhere) after smoothing and leads to loss of valuable 
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information. More analysis is needed to correct for the low-pass filtering effect, as the 

significances are more likely to be overestimated, which can lead to false positives (Caparelli 

& Tomasi, 2008). 

3.3 Co-registration and normalization 

This step is needed to compare individuals by mapping all the separate scans of each subject 

to a single template, which is essential for group analysis (Jenkinson et al., 2002; Jenkinson 

& Smith, 2006; Lindquist, 2008). 

3.3.1 Co-registration 

This process registers low-contrast functional T2* images with high-contrast structural T1 

images. This allows one to visualize single-subject task activations overlaid on the 

individual’s anatomical information. It also facilitates transforming fMRI images to a 

standard brain atlas more straightforward (Jenkinson & Smith, 2001), see Figure 3-28. 

 

Figure 3-28 Registering a functional image to structural image for each subject. 

3.3.1.1 Functional to structural 

In this step, the functional 4D images are registered to their structural (anatomical) image as 

a first step towards transferring them to standard space.  

3.3.1.2 Structural to standard 

In this step, the structural image is registered to standard space.  

3.3.2 Normalization 

3.3.2.1 Functional to standard 

This process registers between subject’s functional/structural data to a standard space data 

set. All brains are different, so, basically, normalization tries to fit the images to the standard 

brain by stretching, squeezing and warping each brain. The most commonly used template 

(atlas) is the Montreal Neurological Institute 152 (MNI152; averaged from T1 MRI images 

of 152 subjects). This process can reduce the spatial resolution, see Figure 3-29. 
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Figure 3-29 Registering functional/structural images of each subject to MNI152 template. 

3.4 Statistical analysis for fMRI 

Statistical analysis is applied to fMRI data to achieve multiple goals: (1) localize task-

activated brain areas, (2) determine networks related to certain brain function, and (3) predict 

the psychological states or predict disease progression. Statistical maps are generated by 

converting the statistics to a probability value based on the DOF or the number of 

unconstrained data points and appropriate thresholding (Smith, 2004; Wager & Lindquist, 

2015; Woolrich et al., 2016), see Figure 3-30.  

This step is involved in both subject level and group level statistical analysis. Through this 

step, the BOLD signal can be represented as accurately as possible with multiple explanatory 

variables and confounds plus an error term. A good representation will help the algorithm to 

find the significant regions of the brain (if any) that follow a certain contrast. 

 

Figure 3-30 fMRI statistical analysis illustrated. Adapted (from Woolrich et al., 2016).  

3.4.1 General linear models 

The basic idea behind general linear models (GLM)-based analysis of a subject’s fMRI data 

is that the observed data is equal to a weighted combination of several predictor variables 

plus an additive error term. The model functions are assumed to have known shapes (i.e., 

straight line, or known curve), but their amplitudes (i.e., slopes) are unknown and need to be 

estimated (Pernet, 2014; Poline & Brett, 2012; Wager & Lindquist, 2015; Woolrich et al., 

2016; Woolrich et al., 2001), see Figure 3-31. 

Specify Model

Simplification: 
"linear 

relationship"

Estimate

Find slope, 
intercept

Statistical 
Inference

Test slope: P-
value

Multiple 
Comparison 
Correction

Applying 
threshold

Scientific 
Interpretation

Meaning of 
relationship?



P a g e  | 3-33 

 

 

 

Figure 3-31 General linear model (GLM) illustrated. (Adapted (from Woolrich et al., 2016).  

GLM is a univariate method, which builds models for independent voxels’ time series 

(Smith, 2004). On the other hand, multivariate methods use all the data at once to build the 

model (Friston et al., 1994). GLM, although being a simple and strong method for modelling 

data, it is highly affected by mismodelling (Lindquist, 2008), which could lead to power loss 

and increase in the false positive rates, it also depends on assumptions that might not be valid 

always (Monti, 2011; Poline & Brett, 2012). However, multivariate methods are highly 

affected by subject-related artefacts, such as motion-related artefacts, compared to GLM 

(Zhang et al., 2009; Zhang et al., 2008). We cannot assume that the GLM used has covered 

all the regressors needed to minimize the residual errors. But since the distortion correction 

step, which is one of the motion-related artefacts, has not been done due to lack of data, 

using the GLM approach is more valid. Also, since a motion censoring instead of a motion 

regression approach was used to correct for motion artefacts, the quality of denoising is 

highly improved (Siegel et al., 2014). 

In analysis, regressors are normally generated by convolving the time-course of the 

experimental paradigm, known as explanatory variables, with the HRF, see Figure 3-32. 

 

Figure 3-32 The design matrix is the result of convolution of the HRF basis function and the onsets 

of each event during the experiment (from Wager & Lindquist, 2015). This generates regressors that 

best account for the changes in the actual BOLD signal. The differences between the actual and 

estimated BOLD signals are the residuals. 

There are two types of regressors: (1) experimental regressors, that represent those variables 

which you control based on your experiment, the type of variable used affects how it will be 

represented in the design matrix, (2) regressors of no interest or nuisance regressors, which 

Regressors 
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represent those variables you did not manipulate but you know or suspect may have an effect, 

such as the 6 movement regressors (3 rotations & 3 translations), motion outliers matrix, or 

physiological factors (e.g., heart rate and breathing). By including nuisance regressors in the 

design matrix, the amount of error will be decreased. 

3.4.2 Within-subject analysis 

The aim of the first-level statistical analysis is to calculate how much each regressor factor 

X affects the observed (BOLD signal) value of Y by determining β which represents the 

regressor factor's weight.  

3.4.2.1 Building the GLM 

A good design matrix will best represent the BOLD fMRI signal (Monti, 2011), see Figure 

3-34. Hence, regressors explaining much of the BOLD signal will have high magnitude 

parameter weights (larger β values), whereas regressors explaining little of the BOLD signal 

will have parameter weights close to zero. The residual (ε) is the residual error term. It is the 

difference between the actual data and the value predicted for it with the model, where the 

intercept is the mean level of fMRI signal over time, and across all conditions, for a particular 

voxel. The GLM can be simply represented via matrix notation (Monti, 2011), as Figure 

3-33: 

 

Figure 3-33 GLM for 1st-level analysis. Adapted (from Monti, 2011). 

After fitting the GLM as in Figure 3-34, the estimated parameters (β) are used to create the 

contrast image, so significant activations present in the voxel can be determined.  
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Figure 3-34 The effect of beta value. Changing the beta parameters to get the best fit, adapted (from 

Woolrich et al., 2016).  

Using FEAT, a GLM model can be built by accounting for events-of-interest regressors, 

task-related regressors, and their temporal derivatives. The model can then be temporally 

filtered based on FEAT recommendations. In the model setup, the shape of the events-of-

interest regressors file has a three-column format (onset, duration, last column is by default 

1), and one-column format for task-related regressors, then the regressors are convolved with 

an HRF function. A double-Gamma HRF can then be used as is commonly the case (Wager 

& Lindquist, 2015; Woolrich et al., 2016).  

3.4.2.2 Contrasts 

In this step, the scientific question (hypothesis) is addressed by setting the contrasts to certain 

condition/s, for example event A relative to baseline or event A relative to event B. After 

having the GLM model ready, FEAT can estimate the signal magnitude in response to a 

certain condition. 

3.4.3 Group analysis 

Group analysis can follow two strategies: one is only limited to the sample (i.e., subjects) of 

a certain study whereas and the other allows one to make valid inferences based on the 

population that the sample was taken from (Monti, 2011; Wager & Lindquist, 2015; 

Woolrich et al., 2016). The aim of this analysis is to generalize the results to a population of 

unobserved data by performing analysis on a group of subjects from the same experiment. 

Group analysis of fMRI data can be performed using fixed-effect or mixed-effect analysis, 

see Figure 3-35. Fixed-effect analysis assumes that the experimental effect is the same for 

all subjects. It ignores any inter-subject variance in the BOLD data, taking only within-

subject variance into account. All subjects are modelled using a single linear model assuming 

only one variability source. Fixed-effects analysis restricts statistical inference to the 

particular sample of subjects. The results are highly sensitive to outliers. Thus, the use of 

fixed-effect group analysis is thus generally discouraged in multi-subject fMRI studies. 
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In contrast, the mixed-model approach, which is a parametric approach, takes both the 

within-subject and inter-subject variances into account. It is based on the two-stage summary 

statistics approach which has two stages (Friston et al., 1998). In stage one, the data from 

each subject is analyzed separately, resulting in individual means and within-subject 

variances that will be fed into the group model. Stage two uses all the individual means and 

within-subject variances to estimate the between-subject variance, and then supplies group 

inferences (Beckmann et al., 2003; Monti, 2011; Woolrich et al., 2004a). 

 

Figure 3-35 Schematic illustration of fixed-effect and mixed model analysis (from Mumford & 

Poldrack, 2007). 

3.4.3.1 Corrections for multiple comparisons 

In fMRI data, each brain volume contains thousands of voxels. Since a statistical test is 

conducted on each individual voxel, the possibility of false-positive results is high. To reduce 

the chances of false positives, multiple comparison correction must be applied (Monti, 2011; 

Wager & Lindquist, 2015; Woolrich et al., 2016). 

Choosing a suitable threshold value is important to decide whether voxels are ‘active’ or not. 

The standard method to perform multiple comparisons is by controlling the probability of 

achieving a false positive for each statistical test through tuning the threshold for every voxel 

in the brain simultaneously. In neuroimaging, many approaches have been suggested by 

researchers to control the false positive rate. The major difference between methods is 

whether they are based on family-wise error rate, which is the chance of obtaining one or 

more false positive voxels (or clusters) anywhere in the brain, or for the false discovery rate 

(FDR), which is the proportion of false positives among all rejected tests (Wager & 

Lindquist, 2015; Woolrich et al., 2016). 
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Threshold-free cluster enhancement (TFCE) (Smith & Nichols, 2009) is also used to correct 

for multiple comparisons as it addresses the problems of threshold dependence and 

localisation in cluster inference compared to cluster-extent based thresholding (Woo et al., 

2014). Also, the widely used cluster-extent based thresholding method, as reported in 

(Yeung, 2018), has been shown to produce corrected results that are erroneous (Eklund et 

al., 2016), which calls into question the validity of these published results.  

3.5 Group-ICA analysis 

Hypothesis-driven analysis methods like voxel-wise analysis in fMRI have a limitation: 

given that the BOLD signal is a complex mixture of signal sources, some might be of interest 

and the majority might be noise due to different reasons. The main idea is to best represent 

the BOLD signal through the model, which is usually a GLM (Worsley & Friston, 1995), 

and for that to happen, the most accurate information, in the form of regressors (conditions 

which are tested against the null hypothesis) and confounds needs to be available. However, 

this is not always the case. The main problem comes from the model assuming it has all (or 

at least the majority) of information needed which represents the spatiotemporal 

characteristics of the BOLD signal. But since many parts of the signal are not even modelled, 

they will bias the parameter estimation and cause an inflation to the residual error, which 

might largely remove any chance of finding a significant result.  

ICA (Comon, 1994) is an exploratory technique which can be applied to fMRI as an 

alternative method to the hypothesis-driven method. ICA can find maximally statistically-

independent spatial sources which reconstructs the data (Beckmann et al., 2000; McKeown 

et al., 1998). It has been shown to outperform hypothesis-driven methods in challenging data 

(Calhoun et al., 2006; McKeown et al., 2003). 

3.6 Functional connectivity 

The human brain is an efficient and complex network, formed by from multiple brain regions 

each performing a unique function, in addition to the continuous process of sharing 

information between these brain regions. In the past, a major interest in brain research was 

to investigate the functionality of the brain regions. However, as the development of research 

tools has progressed, a new interest on functionally exploring interactions between brain 

regions has emerged. FC has been defined as “temporal dependence of neuronal activity 

patterns of anatomically separated brain regions” (Aertsen et al., 1989; Friston et al., 1993). 

In other words, to measure the similarity between two brain regions through the signals 
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generated in each of them by using a correlation method, for example, so that if the signals 

from two regions are correlated, this can indicate two regions being connected (Shirer et al., 

2012).  

FC can reveal a deep understanding of the brain and how different brain networks 

communicate and collaborate in the form of networks, where we can explore the underlying 

mechanisms of the brain during a human behaviour or when facing a neurodegenerative 

diseases (Bullmore & Sporns, 2009; Greicius, 2008). FC has been shown to be practical 

during resting-state studies by investigating the co-activation level through a functional time-

series of different brain regions (Biswal et al., 1995; Damoiseaux et al., 2006; Greicius et 

al., 2003; Lowe et al., 2000; Salvador et al., 2005). There are two main types of FC analysis: 

(1) voxel-based methods, and (2) node-based methods (Bijsterbosch et al., 2017), each of 

which can answer specific research questions. The key rule is whether the analysis is 

primarily interested in certain brain regions, which might form a well-known network, or 

not, because if the ROIs are known, then the node-based methods will be more appropriate. 

But if there are no specified ROIs, voxel-based methods can be used. 

3.7 Summary 

In this chapter, the physical and neurophysiological bases of fMRI, its spatiotemporal 

characteristics, and its application to investigating brain function have been reviewed.  The 

MR signal is generated by application of an external magnetic field and electromagnetic 

energy to the subjects. The BOLD signal is observed due to changes in the oxyhemoglobin-

deoxyhemoglobin ratio during neuronal activity. 

The BOLD fMRI data need to be pre-processed to reduce the variability in the BOLD signal 

and prepare the data for statistical analysis. Statistical analysis of fMRI involves 

identification of the brain regions that show a significant change in BOLD activity during 

the time periods of interest within each subject and determining the significance of the effect 

within and across subjects. The BOLD fMRI technique can provide an unparalleled insight 

into brain function, by using voxel-wise, group ICA, and FC analyses. The brain mechanisms 

underlying spontaneous behaviours such as MSs and ALs can be investigated by recording 

multiple behaviours and physiological characteristics simultaneously with fMRI data.  



P a g e  | 4-39 

 

 

 Understanding EEG 

4.1 Introduction to the Electroencephalogram (EEG) 

The optimum brain imaging technique will have both high spatial and temporal resolutions, 

be portable, inexpensive, and non-invasive; however, this does not exist (yet). fMRI is well 

known for its high spatial resolution, but lacks high temporal resolution. EEG can add the 

missing part by its high temporal resolution  (Tatum IV, 2014). 

4.1.1 What is EEG? 

EEG is a non-invasive imaging technique that measures the electrical activity of the brain 

from multiple locations on the scalp based on a standard spatial system. These measures 

primarily reflect neuroelectric activity generated in the cortex (Tong & Thakor, 2009). 

4.1.2 What does the EEG device measure? 

EEG measures a synchronized electrical activity of a populations of neurons, where the 

neuron is the building block of the central nervous system (Bear et al., 2007). 

4.1.2.1 The neuron 

A neuron consists of three main parts: (1) the cell body (soma) which contains the nucleus, 

receives the stimuli from other neurons, processes them, and, after reaching a certain 

threshold, the cell fires a pulse through the axon to transmit the information to other neurons, 

(2) the axon, a medium that the pulse of the cell passes through to the axon terminals, and 

(3) the dendrites, which connect with the axon terminals of other neurons (Bear et al., 2007), 

see Figure 4-1. 

 

Figure 4-1 Structure of a typical neuron (from Atwood & MacKay, 1989). 

Dendrites are not physically connected to the axon terminals of other neurons, but instead, 

the connection occurs through a small cleft called the synaptic gap. The dendrites of one 
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neuron can be connected to millions of axons from other neurons (Martini & Bartholomew, 

1998). 

EEG cannot measure the signal coming from one neuron, the cerebral cortex neuron named 

pyramidal cell to be exact (Bear et al., 2007), as it is too small. The brain has plentiful number 

of neurons that are constantly active. To achieve a certain goal in the brain, a large group of 

neurons work together, and this produces a sudden large electrical current that can be 

measured by the EEG. However, some conditions need to be fulfilled for this to happen 

(Wessel, 2006), as illustrated schematically in Figure 4-2. 

 

Figure 4-2 Cross section of the head: The activity from the neurons in the green circle only can be 

measured (from Wessel, 2006). 

• To achieve the best measurement of signal by the EEG, the group of neurons must 

produce an electric current perpendicular to the scalp. 

• The group of neurons must fire in parallel. 

• The group of neurons must fire with the same polarity, otherwise they cancel each 

other out. 

Because of these constrains, the majority of neuronal activities cannot be measured by the 

EEG. 

4.1.3 Brain rhythms 

Based on frequency ranges, there are five major spectral bands: delta (δ), theta (θ), alpha (α), 

beta (β), gamma (γ) (Hammond, 2007; Kirmizi-Alsan et al., 2006; Niedermeyer & da Silva, 

2005; Tatum IV, 2014; Teplan, 2002), see Table 4-1. 
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Table 4-1 Brain waves. 

Wave Frequency 

(Hz) 

Mental State Location 

Delta 2–4 Hz Deep sleep Center cerebrum and 

parietal lobes 

Theta 4–8 Hz Consciousness but drowsy Positions not related 

to activity 

Alpha 8–14 Hz Relaxation without paying attention Occipital and 

parietal lobes 

Beta 14–30 Hz External active attention Parietal and frontal 

lobes 

Gamma ≥ 30 Hz Associated with cognitive and 

memory 

Somatosensory 

cortex 

4.1.4 EEG recording 

EEG uses electrodes with high conductivity (low impedance, preferred to be less than 5 kΩ) 

for scalp recordings. These electrodes are set according to a spatial standard known as 10-

20 system, where electrodes are separated by 10-20 % of the total head’s circumference 

distance. The number of electrodes is usually 16-20, although other systems exist with 32, 

64, 128, and even 256 electrodes (Klem et al., 1999). Previously, the electrodes were placed 

manually which was time-consuming and not practical, but currently, readymade caps with 

the electrodes attached to their proper positions are used; these caps are easily fit for different 

subjects (Fisch & Spehlmann, 1999), see Figure 4-3. 

 

Figure 4-3 The electrodes in the 10-20 international electroencephalogram (EEG) replacement 

system (from Niedermeyer & da Silva, 2005). 
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4.1.4.1 Montages 

The recorded EEG signal is the difference between an electrode and a reference. This set up 

can be in two montages: (1) monopolar, which is the difference between the electrode of 

interest and a reference of a passive electrode such as (A1 or A2) or a reference that represents 

the average of all electrodes, (2) bipolar, which is the difference between two adjacent 

electrodes. The standard notation for electrodes uses capital letter and numbers, with odd 

numbers representing the left side, the letter F represents electrodes above the frontal lobe, 

P for parietal lobe, T for temporal lobe, O for occipital lobe, C for the central part of the 

brain, and Z for the midline (Teplan, 2002), see Figure 4-4. 

   

Figure 4-4 EEG recording montages. The image at the left is monopolar with earlobe A2 electrode as 

a reference. The image in the middle is monopolar with an average of all electrodes as a reference. 

The image on the right is bipolar between two electrodes. 

4.1.4.2 Electrodes 

Electrodes are simply a mean to sense electric potential on the scalp to the input of 

amplification and filtration circuits of the EEG machine. To provide the best EEG 

recordings, a good contact should exist between the electrode and head. Electrodes are 

generally made from different types of metal. However, the conductivity is affected by the 

electrode-scalp impedance, so a conducting solution such as gel or paste is placed between 

the electrode and the head, although some electrodes are gel-free (dry) (Fisch & Spehlmann, 

1999). Some of the popular electrodes types are: (i) the electrode caps with disposable 

electrodes (no gel or pre-gelled) usually used in medical applications for hygienic 

precautions, (ii) electrode caps with reusable disc electrodes (gold, silver, stainless steel, or 

tin), which are used in research mostly, (iii) headbands/headsets which are commercial and 

used by public, and (iv) needle electrodes which are used in invasive recordings (Sanei & 

Chambers, 2007). 

4.2 Pre-processing pipeline of EEG 

After the acquisition of the raw EEG data, the data should be pre-processed for enhancement. 

Noise sources, which commonly contaminate the EEG signal can be physiological such as 

sweating, movement, cardiac pulse, and muscle activity, or non-physiological such as 

power-line noise and bad/broken electrode contact (Michel & Brunet, 2019). In order to 

achieve a high SNR, these noise sources and artefacts should be identified carefully then 
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removed. Doing this manually by visually inspecting the data is the most guaranteed way, 

although it can require considerable time and hard work. However, with the increasing need 

to analyse larger datasets, automatic noise removal techniques are highly used but should 

still be followed by visual inspection for validation (Pernet et al., 2018). The following 

describes the main pre-processing pipeline steps, see Figure 4-5. 

 

Figure 4-5 EEG Pre-processing pipeline. 

4.2.1 MR-induced EEG artefacts 

The simultaneous EEG-fMRI data recordings introduce artefacts into the EEG. Here the 

magnetic resonance artefacts affecting the EEG are discussed. There are two main types of 

this noise: gradient artefacts (GAs) and pulse artefacts (PAs) (Abreu et al., 2018). 

4.2.1.1 Gradient artefacts 

During fMRI scanning, the time-varying magnetic field gradients in the scanner (Allen et 

al., 2000; Niazy et al., 2005) induce an electromotive force into the conducting loop between 

the EEG and the subject’s head. Hence, an artificial voltage, called GA, is created on the 

EEG electrodes (Grouiller et al., 2007). This artefact has a voltage amplitude which is higher 

than the average EEG amplitude, and has a similar frequency spectrum to that of the EEG 

signal. So, removing this GA is not a straightforward process. 

4.2.1.2 Pulse artefacts 

The PAs, also known as ballistocardiogram artefact, are one of the major artefacts in 

simultaneous EEG-fMRI recordings. Inside the scanner’s static magnetic field, blood 

pulsation in the arteries of the scalp causes electrode movement which creates the artefact. 

PA is hard to remove due to being: (1) highly non-stationary, (2) shares the same frequency 

range as EEG signal, (3) dependant on the spatial configuration of the electrodes in the 
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magnetic field, and (4) dependant on changes with the strength of the scanner’s static 

magnetic field (Debener et al., 2008; Iannotti et al., 2015).   

The concept behind the methods used to remove these two major artefacts is based on the 

temporal variations of these artefacts. Using temporal principal component analysis, a set of 

basis functions can be identified. These basis functions can describe the temporal variations 

of these artefacts, which will then be fitted to and subtracted from the raw EEG signals, 

which will result in artefacts-free results (Niazy et al., 2005). 

4.2.2 Temporal filtration 

A temporal filter will remove all frequencies not related to the signal of interest; this can be 

done by a band-pass filter. In addition, notch filters can be used to remove specific 

frequencies (power-line noise ~ 50 Hz) if they fall within the range of interest (Michel & 

Brunet, 2019; Tong & Thakor, 2009). The range of filtering is range based on the question 

of the study; the focus of the research guides the scope of the filter’s band, and also the 

technique (Jiang et al., 2019; Urigüen & Garcia-Zapirain, 2015).  

4.2.3 Down sampling 

After temporal filtering, as most of the frequencies not related to the study are removed, the 

EEG can be down-sampled. This can help dramatically in reducing the size of the data and 

save on storage space. Based on the Nyquist theorem, the down-sampling frequency should 

be at least double the highest remaining frequency in the data. Practically, as filters are not 

perfectly sharp, the recommended value for the down-sampling frequency is four times the 

highest remaining frequency in the data (Michel & Brunet, 2019). 

4.2.4 Referencing 

Based on the EEG acquisition device, this step can be avoided. For example, the Neuroscan 

headset does its own referencing directly. To attain optimal signals, referencing is needed to 

reject the common mode signal in post processing. Choices for referencing includes: (1) 

using the signal from a certain channel as a reference (e.g. mastoid electrode), or averaging 

the two mastoids electrodes, (2) choose the reference to be the overall average signal 

(Bigdely-Shamlo et al., 2015; Gabard-Durnam et al., 2018). 

4.2.5 Bad electrodes removal 

Due to displacement while recording or high impedances, some electrodes are best removed 

from further analysis because of data corruption. However, these electrodes can be 



P a g e  | 4-45 

 

 

interpolated in later processing using nearby electrodes (Bigdely-Shamlo et al., 2015; 

Gabard-Durnam et al., 2018). 

4.2.6 EEG-specific artefacts 

Regardless of having fMRI recordings alongside the EEG, other artefacts can still 

contaminate the EEG data (Tong & Thakor, 2009; Urigüen & Garcia-Zapirain, 2015). A 

broad knowledge of the types of these artefacts is necessary to exclude them efficiently. 

4.2.6.1 Large artefacts rejection 

Another step, which is validated by the visual inspection of continuous data, is reject obvious 

large artefacts from the EEG data, usually large electrode movement or muscle artefacts 

which have a transient high frequency, discontinuity in the data, or other events such as 

linear drifts.  

4.2.6.2 Ocular artefacts 

Ocular artefacts have a significant impact on EEG data. They originate from eye movement 

and blinking, and share similar amplitude and frequency ranges, as EEG (Schlögl et al., 

2007; Tong & Thakor, 2009; Wallstrom et al., 2004). 

4.2.6.3 Muscle artefacts 

Muscle artefacts are well known to be a tough problem because different muscles are 

involved (Urigüen & Garcia-Zapirain, 2015). Activities like talking, sniffing, and 

swallowing produce muscle activities which are close to the EEG recording sites on the scalp 

(Goncharova et al., 2003; Tong & Thakor, 2009).  

4.2.6.4 Cardiac artefacts 

Cardiac artefacts are generated when an electrode is placed on top of or close to a blood 

vessel which expands or shrinks due to the heart working cycle (Hamal & bin Abdul 

Rehman, 2013; Tong & Thakor, 2009). 

4.2.6.5 Extrinsic artefacts 

Besides the artefacts listed above, external artefacts can also introduce interference into the 

EEG signal: 

• Instrument artefacts: Caused by misplacement of electrodes and movement of cables. 

• Electromagnetic interference: Caused by surroundings devices and power lines. 
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• Volume conduction artefacts: As multiple EEG electrodes are used for acquisition; 

an artefact will be introduced because of the coherence between the EEG electrodes 

(Nolte et al., 2004). 

4.2.7 Blind source separation 

EEG signals acquired from all electrodes can be decomposed into components that represent 

these signals (Ohara et al., 2004; Zhukov et al., 2000). One of the methods widely used is 

ICA (Winkler et al., 2014b), which decomposes the signals from multi-electrodes 

components so that they become as statistically independent as possible (Vigário, 1997). 

This helps identify irrelevant and noisy components so that they can be subsequently 

removed (Qin et al., 2004). After removing the unwanted components, the data can be 

reconstructed (Coyle et al., 2004).  

As best practice in denoising EEG data with ICA (Grin-Yatsenko et al., 2010; Piazza et al., 

2016), the non-stereotyped artefact (e.g., signal discontinuity) should be rejected before 

applying ICA, as this improves the performance of ICA at distinguishing common artefacts 

from neural signals. This denoising process, as suggested by Rong-Yi and Zhong (2005), 

can be enhanced when ICA is followed by a subsequent wavelet transform (WT) (Bentley 

& McDonnell, 1994), a process called wavelet-enhanced ICA (W-ICA), which is ideal for 

biomedical applications.  

The pipeline of W-ICA is based on three stages: (1) decomposing the EEG data using ICA, 

(2) applying the WT to remove low-amplitude artefacts based on a threshold from each 

component without removing the component, then the components will be translated back 

into EEG signal format (Castellanos & Makarov, 2006), finally (3) another run of ICA to 

separate the neural components from the artefact components, and removal of the artefact 

components will be carried out after the contrast between the neural and artefacts 

components is increased due to wavelet thresholding (Castellanos & Makarov, 2006). 

4.3 EEG source reconstruction and localization 

The drawback of EEG is its relatively low spatial resolution. In order to study the 

physiological activity of the brain using EEG alone, it is necessary to overcome, as good as 

possible, the low spatial resolution. Hence, precise localization of the activity source is a 

major task (Michel & Brunet, 2019). However, this is an ill-posed problem, as there is no 

unique solution, due to the number of sources being many times greater than the number of 

electrodes. 
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To localize the activity, the analysis needs to solve two models: (1) the forward model from 

the cortical source to the signal at each electrode, (i.e.) the signal measured at the scalp is a 

linear combination of multiple sources in the brain (Brookings et al., 2009), see Figure 4-6, 

and (2) the inverse model which represents the opposite direction. 

 

Figure 4-6 EEG sources linear combination (from Singh, 2018). 

4.3.1 The forward problem 

In order to explain how the activities from neural sources combine to create electrical 

potentials measured by external EEG electrodes, given the different conductivities of 

essential head tissues (WM, GM, CSF, skull, and scalp), we need to solve the forward 

problem. This is achieved by creating a volume conduction model, which is used to estimate 

the field distribution based on channel positions, a source model, and a head model. The 

more accurate these are, the higher quality the forward model will be, see Figure 4-7. For a 

review on the mathematical models, see Hallez et al. (2007). 

 

Figure 4-7 Forward model of EEG. 

4.3.1.1 The geometrical description 

Given that the highest accuracy is desired, it is desirable to use the subject’s anatomical MRI 

if available. This allows extraction of realistic information on the skin, skull, CSF, GM, and 

WM, when the T1 image is segmented into different tissues. If not available, a standard atlas 

can be used. The segmented head can be used to create a mesh for each tissue, with the mesh 

being triangulation or hexahedron. 
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4.3.1.2 The head model 

Forming the volume conduction model is a critical process which is not straightforward, and 

which can require assumptions regarding the conductivity of each tissue. The main 

physiological challenge is that the electrical potentials are not evenly distributed on the scalp, 

due to differences in the skull’s thickness across the head. 

The head model can also be represented as a sphere with uniform conducting material or a 

three-shell model consisting of three spheres representing the brain, skull, and scalp, or even 

more accurate with multiple spherical layers. However, commonly used models, which are 

more realistic, are boundary element model (BEM) (Akalin-Acar & Gençer, 2004), and finite 

element model (FEM) (Wolters et al., 2006). 

Both of these latter methods can be used with a subject’s MRI, although, in terms of 

computational complexity, BEM with its three layers is much faster compared to FEM. 

However, as FEM takes the different tissues of the brain (WM, GM, CSF) into consideration, 

it produces to more accurate results (Miinalainen et al., 2019; Vorwerk et al., 2014; Vorwerk 

et al., 2012). 

The EEG electrodes also need to be aligned with the same coordinates as the volume 

conduction model. This process might require a manual alignment according to the 

anatomical landmarks if the volume conduction model is based on the subject’s MRI. If not, 

an EEG electrode template can be used. Finally, the head model can be calculated based on 

the volume conduction model and the aligned electrodes. 

4.3.1.3 The source model 

The source model, also called the grid, determines the 3-D coordinates (XYZ) of dipoles on 

the 3-D cortical surface (source space). It basically assumes that the signals measured by the 

EEG electrodes are approximately generated by dipoles, or layers of dipoles to cover a larger 

cortical area, that represent sources. The source model is commonly be limited to GM 

sources. In addition, different distributions for the number of sources can be used. 

4.3.1.4  Lead field 

The previous acquired properties (head model, source model, and the aligned electrodes) 

allow the creation of what is called “lead field”. The lead field relates the activity measured 

on a specific electrode to different brain sources. All of this leads to more precise localization 

(Michel & He, 2012).  
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4.3.2 The inverse problem 

The goal here is to estimate strength and location of signal sources (dipoles) that generate 

the EEG signals measured at the electrodes, see Figure 4-8. As there are extremely large 

number of signal sources, these sources can be merged in a similarly large number of ways 

to generate the same activity patterns measured by the electrodes. This is what makes the 

inverse problem ill-posed. This means that it is not possible to invert the forward model 

without applying prior assumptions to the model. For a more review of the mathematical 

model, see Grech et al. (2008).  

 

Figure 4-8 Inverse model of EEG. 

4.3.2.1 Solving the inverse problem 

Two categories of methods are used to solve the inverse problems (Baillet et al., 2001; Grech 

et al., 2008; Yao & Dewald, 2005): (a) parametric and (b) non-parametric. Parametric 

methods (also called spatial filtering methods) priory assume a fixed number of dipoles, then 

extract all the model’s information in some parameters. After that there is no need for the 

data. In non-parametric methods (also called distributed source models), both the parameters 

and the data’s current state are used to locate the sources. 

4.3.2.2 Non-parametric methods 

The solution space for the distributed source model is based on points distribution in 3-D 

space. A uniform grid is constructed throughout the brain, and the points which fall on the 

cortical surface are retained. Next, a current density vector, whose moment components are 

unknown, is placed at each point on the remaining grid. In each grid point, the total electric 

neuronal activity filling the volume that surrounds the grid point, also known as voxel, is 

represented by the current density vector. (Tong & Thakor, 2009). 

Commonly used non-parametric methods are minimum norm estimates (MNE) and their 

generalizations (Dale & Sereno, 1993), low-resolution electromagnetic tomography 

(LORETA) (Marqui et al., 1994), standardized low-resolution brain electromagnetic 

tomography (sLORETA) (Pascual-Marqui, 2002), exact low-resolution brain 
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electromagnetic tomography (eLORETA) (Pascual-Marqui, 2007, 2009), and local 

autoregressive average (LAURA) (Michel et al., 2004).  

LORETA is a linear method that allows the 3-D reconstruction of sources in the brain to 

solve the inverse problem, which was shown to be a valid method from a neurophysiological 

perspective (Marqui et al., 1994). It uses a spherical head model that constitutes of three 

shells (skin, skull, and cortex) and is registered to a Talairach human brain atlas (Talairach, 

1988). A 3-D grid will represent the brain volume, where each grid point (voxel) holds a 

source with a fixed position, however, the solution is limited to GM and hippocampus only. 

The electromagnetic field measured on the scalp determines the intensity and direction of 

the electrical activity at each source. One of the assumptions of this method is giving a higher 

probability for neighbouring neurons to be simultaneously active. LORETA method results 

in low spatial resolution images, which means the location with maximum activity will be 

affected by dispersion, this is because LORETA applies a spatial smoothing using a discrete 

spatial Laplacian operator. Although LORETA has a low spatial resolution, it was shown to 

have a high localizing accuracy, especially with deep sources (Pascual-Marqui, 1999), also 

it outperforms MNE by reconstructing deep sources as important as surface ones (Grech et 

al., 2008), in addition, the referencing method used while recording the EEG does not affect 

the reconstruction process (Pascual-Marqui, 1999). The mathematical background is 

provided here (Tong & Thakor, 2009).  

Pascual-Marqui made the first modification on LORETA and proposed a new method called 

sLORETA (Pascual-Marqui, 2002), it standardizes the current density used to estimate the 

source localization and does not use the Laplacian operator, which is similar to what was 

suggested by Dale (Dale et al., 2000). In sLORETA, the MNE approach is used to estimate 

the current density, which will then be standardized using its expected standard deviation, 

as standard deviation is originated by measurements noise and also biological noises from 

actual sources. The technique proposed by Dale results in a systematic nonzero localization 

error even when the noise levels are small Although, sLORETA is similar to Dale’s method, 

as MNE is used to estimate the current density and the standardized values of the current 

density estimates determine the localization inference. There is a difference in how 

sLORETA adopts the standardization for current density, which will result in a lower 

localization error when compared to Dale’s technique. However, sLORETA is still affected 

by the low resolution, because of regularization in solution for stability purpose. Also, when 
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the sources to be estimated have their spreads overlapped, sLORETA will fail to localize 

them (Jatoi & Kamel, 2018). 

Another enhancement was made to minimize the localization error, especially with deeper 

sources by introducing a weight matrix; eLORETA method was introduced to achieve a 

zero-mean localization error (Pascual-Marqui, 2007), while keeping the standardized nature 

of sLORETA. The eLORETA method is not affected by the existence of noises such as 

measurement and biological related, in addition it was shown to be an adaptive technique 

which depends on data (Jatoi & Kamel, 2018). 

4.3.2.3 Parametric methods 

Beamforming is an adaptive spatial filtering technique for source localization. Its estimate 

of activity is calculated based on the weighted sum of the potentials of the scalp from 

different locations. The goal is to maintain the desired signal’s components from a certain 

location, while preventing interference from other locations (Van Hoey et al., 1999). This 

method seems to be linear in the first sense, but as the weights used in the calculation are 

based on time-varying EEG measures, this method cannot be linear. The beamformer is 

efficient when a low number of dipoles are involved in the generation of the EEG activity, 

on the condition that the time series of these dipoles have low correlations. However, it will 

fail if the sources are correlated. It is important to highlight that this imaging method cannot 

estimate current density, so one cannot control to what extent the image will comply with 

real EEG measures (Tong & Thakor, 2009). Beamformers are highly sensitive to electrode 

misplacement (Dalal et al., 2014), unrealistic model of head volume (Neugebauer et al., 

2017), and errors of forward models in general, in addition, estimating a covariance matrix 

from noisy data is challenging (Hosseini et al., 2018). Beamformer was shown to have a 

high performance when applied to ROI, which is hypothesis driven, this is very important 

when the prior knowledge of the research question is available (Oswal et al., 2014). 

Commonly used parametric methods are beamforming techniques such as linear constraint 

minimum variance (LCMV) (Van Veen et al., 1997), dynamic imaging of coherent sources 

(DICS) (Gross et al., 2001), brain electric source analysis (BESA) (Hoechstetter et al., 2004), 

and subspace techniques such as multiple-signal classification algorithm (MUSIC) (Mosher 

& Leahy, 1998, 1999). 

LCMV (Van Veen et al., 1997) strictly applies the idea of enhancing the desired sources 

while supressing the rest. It uses the adaptive spatial filters, after calculating their weights 
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by means of a covariance matrix of the EEG’s time series (Barnes & Hillebrand, 2003), 

regardless of the noise covariance (Vrba & Robinson, 2001). Isolating the calculation of the 

signals generated at different brain areas leads to independent solution at each point. LCMV 

can be however, highly affected by any small mismatches between true and estimated 

models (Hossein Hosseini et al., 2018; Vorobyov et al., 2003). DICS (Gross et al., 2001) 

enhances over LCMV; it used cross-spectral density instead of covariance matrix to compute 

the spatial filter in frequency domain based on realistic head models, where it will be applied 

at the sensor level. However, DICS has two major drawbacks: (1) the assumptions of 

unconstrained single dipole model that does not correlate linearly with other dipoles, which 

will only be valid in the case of intermediate coherence and sufficient SNR (Gross et al., 

2001), (2) the self-coherence is one in all defined regions. 

4.3.2.4 Comparisons of inverse techniques 

Halder et al. (2019) compared parametric and non-parametric source localization technique. 

This comparison led to no clear winner, although, some techniques were superior in certain 

situations. DICS and eLORETA were used to compute the sources underlying 40-Hz 

activity. For the distributed dipole scenario, the focal width of eLORETA was better than 

DICS with higher SNR. Also, eLORETA had greater control of the false positive ratio, but 

the localization error of DICS was less than eLORETA. Jatoi et al. (2014) compared 

eLORETA and sLORETA, and showed that eLORETA is superior for localizing sources 

with sharper images compared to sLORETA. Also, the ability to suppress less significant 

sources is higher for eLORETA compared to sLORETA (Jatoi et al., 2014). 

4.4 Spectral and statistical analysis of EEG 

4.4.1 Data epoching  

Focusing on events of interest, a time-window is applied to the continuous EEG data in order 

to extract these epochs (Möcks & Gasser, 1984), so the result will be a matrix of [electrodes 

x time x epochs], where time is the duration of the epoch, and epochs is the number of events 

extracted from the continuous EEG data. 

4.4.2 Frequency representation of EEG 

The spectral content of EEG is of central interest. Spectral analysis methods commonly used 

in EEG for this purpose include FFT, Hilbert transform, and WT. The study objective 

determines whether frequency analysis, time-frequency analysis, or wavelet is most 

appropriate. Details on the three methods applied to EEG are provided by Freeman and 
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Quiroga (2012). Since the interest is to see the change of power in defined EEG bands, a 

basic FFT will be enough, as Bruns (2004) has shown that FFT, Hilbert transform, and WT 

give similar spectral amplitude in practical application to neural signals. 

After extracting epochs related to the event of interest, and transforming them into the 

frequency domain, the EEG band of interest will be extracted through a band pass filter with 

limits defined based on the band. The mean power of the band of interest related to the 

chosen event can then be calculated for each source of the inverse model of each subject 

separately.  

4.4.3 Statistical test and correction 

The final part of the analysis is to compare the average of events to the average of their 

baselines statistically. After calculating an average event and an average baseline for each 

subject, each having the same number of sources with one value for each source. The relative 

difference between the average event and average baseline can then be calculated for each 

subject to be used in the group stats. Source statistics should be applied to compare the 

percentage change to the null hypothesis of zero. Statistical analyses can be performed using 

permutation tests (Maris & Oostenveld, 2007; Maris et al., 2007), and the results corrected 

for multiple comparisons over sources and bands of interest, using a method such as family-

wise cluster correction (Maris & Oostenveld, 2007) or TFCE (Mensen & Khatami, 2013). 

4.5 Summary 

In this chapter, the physical and neurophysiological basis of EEG, its spatiotemporal 

characteristics, and its application to investigating brain function were reviewed. Following 

a standard setup, EEG measures electrical activity on the scalp generated by multiple sources 

in the brain. The measured EEG signal must be cleaned and denoised from MR-related noise 

and EEG-specific artefacts. Because of the low spatial resolution of the EEG, a brain-model 

needs to be created to find the sources of the signals by means of source localizations and 

reconstruction methods. EEG signals can be split into defined frequency bands. Statistical 

analysis can be performed on the band of interest after epoching the time slots of the event 

of interest. The strength of EEG is in its high temporal resolution. Hence, in the case of short-

duration type of events, where fMRI cannot catch the changes in neural signature, EEG is 

up to the challenge. Brain mechanisms underlying spontaneous behaviours such as MSs and 

ALs can be investigated by recording multiple behaviours and physiological measures, such 

as EEG simultaneously.  
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 Lapses of Responsiveness: A Physiological Review 

5.1 Neural signatures of attention lapses 

5.1.1 Mind-wandering 

For increased understanding of the mind-wandering phenomenon, several studies have 

looked at neural activities related to this mind state.  

5.1.1.1 fMRI Analysis 

Brain imaging techniques such as fMRI have been used widely in studies on mind-

wandering. Mind-wandering has been found to be positively associated with activity in 

default mode network (DMN), which has been shown to have increased activity during the 

resting wakefulness when not engaging in any external task (Andrews-Hanna, 2012; 

Andrews-Hanna et al., 2010; Mason et al., 2007; Zhou & Lei, 2018).  

Smallwood et al. (2012) hypothesized that perceptual information from dorsal attention 

network (DAN), along with autobiographical information from the DMN, steers the 

frontoparietal network (FPN) to either maintain attention to endogenous (internal) trains of 

thought and lose focus on external stimuli creating the mind-wandering process or vice-

versa. FPN is associated with the regulation process of changing from external to internal 

attention and vice versa by changing its FC between DMN and DAN (Chica et al., 2013; 

Cole et al., 2013; Dixon et al., 2018; Macaluso & Doricchi, 2013; Spreng et al., 2010; Zanto 

& Gazzaley, 2013). 

Also, Esposito et al. (2018) and Chai et al. (2012) concluded that the DMN and DAN 

typically show negatively correlated activity during both spontaneous oscillations and task 

execution. Fox et al. (2005) and Fox et al. (2006) showed that the DAN sustains external 

attention, as there is an association between DAN activity and processing information from 

the external world. On the other hand, the DMN is activated when we are decoupled from 

the external world, and our attention has shifted to process TUTs (mind-wandering) (Mason 

et al., 2007). Also, research by Kawagoe et al. (2019) showed that in mind-wandering, in 

thoughts related to both past and future, a bilateral increase in activity was found partially 

found in DMN regions in medial superior frontal gyrus and anterior cingulate cortex 

(ACC)/medial prefrontal cortex. 

Through a resting-state study, Godwin et al. (2017) found an association between the trait of 

mind-wandering and increased FC within the DMN, as well as increased FC between DMN 
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and FPN. He et al. (2021), through a longitudinal resting-state study, explored FC during 

mind-wandering. They found a stable association between mind-wandering and the FC 

between FPN and DMN, also a positive correlation between the frequency of mind-

wandering and the FC within DMN. Increased FC within the DMN and between the DMN 

and the salience network (SN) have also been shown to be associated with mind-wandering 

in an fMRI study by Kucyi et al. (2017) using a tapping task. The SN aids in the detection 

of significant environmental cues and prioritises the most important among internal and 

extra-personal stimuli in order to guide behaviour. Thus, the SN facilitates the creation of 

appropriate behavioural responses to salient stimuli by target brain regions. When a salient 

event is noticed, the SN plays a vital and causal role in switching between task-related 

networks and the DMN to allow access to attention and working memory resources. What 

distinguishes the SN is that it initiates a cascade of cognitive control signals that have a 

significant impact on how such a stimulus is processed later (Menon & Uddin, 2010). 

Finally, Zhou and Lei (2018) used SART and found an association between mind-wandering 

and increased FC between DMN and visual network (VSN), while FC between FPN and 

VSN decreased.  

The working memory network (WMN) plays an important role in mind-wandering. Mind-

wandering is defined as a state in which attention is diverted to internal thoughts unrelated 

to the task (Ward & Wegner, 2013). These thoughts might be related to the past or future 

(Hartmann et al., 2014), which means the brain’s memory is involved.  

Wang et al. (2009) used fMRI in a task-free state followed by a memory task to hypothesize 

that offline memory reprocessing, in which the mind is disconnected from external input and 

starts looking at older memories, overlaps with the process of mind-wandering and is 

associated with high activity in the DMN. The DMN appeared to contain spontaneous 

thought-process networks consisting of the left precuneus, the left angular gyrus/superior 

occipital gyrus, the left inferior parietal lobule (IPL), the medial prefrontal gyrus, and the 

left hippocampus/para-hippocampus region. These networks appeared to be correlated with 

the frequency of occurrences of mind-wandering during natural resting and offline memory 

reprocessing states.  

In summary, the DMN plays a substantial role in the mind-wandering process, whether 

through its increased activation or increased FC within its core regions and with other 

networks such as the FPN, VSN, and SN. On the other hand, the DAN, which is anti-
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correlated with the DMN, takes a major part in the external attention process, through its 

increased activation, and FC with other networks such as the FPN. A summary of fMRI 

literature on mind-wandering is in Table 5-1. 

5.1.1.2 EEG Analysis 

Increased EEG alpha activity over task-related brain regions is correlated with low levels of 

attention and poor performance (Macdonald et al., 2011). Also, when attention is externally 

directed in demanding tasks, the alpha EEG activity is reduced over the task-related brain 

areas (Rajagovindan & Ding, 2011; Sauseng et al., 2005). Molina et al. (2019) used a PVT 

and found that an increase in power in the alpha, theta, and beta bands in central-medial, 

parieto-occipital, and frontal regions of the brain was correlated with slow reaction time. 

Alpha band activity, which is inversely correlated with the activity in task-related regions 

(Liu et al., 2014), plays an important role in mind-wandering. Alpha activity increase has 

also been found to be associated with mind-wandering during demanding cognitive tasks, 

such as the speeded performance task (Compton et al., 2019) and the switching task (Arnau 

et al., 2020). 

Research on mind-wandering by Baldwin et al. (2017) used a 20-min monotonous freeway-

driving scenario. Mind-wandering events were characterized by reduced speed and increased 

lane-variability. They found that mind-wandering was associated with increased power in 

the alpha band. In a resting state study, Mo et al. (2013) used EEG-fMRI simultaneously, 

found an association between increased alpha power and increased DMN activity with 

opened eyes, which could be associated with mind-wandering process. This increased power 

was associated with an increase in DMN activity related to ALs/mind-wandering (slow 

reaction time) (Mason et al., 2007; Weissman et al., 2006).  

The low-frequency EEG bands (delta and theta) were also hypothesized to be associated 

with mind-wandering. Andrillon et al. (2019) proposed that ALs could be explained by local-

sleep phenomena, which is different from MS according to the authors. Local sleep was 

introduced by Huber et al. (2004) in sleep-related research and Vyazovskiy et al. (2011) in 

wakefulness-related research. What makes local sleep a unique state is that it carries 

combined transient and neurophysiological features from wakefulness and the different 

stages and depths of sleep as it is local in both space and time (Andrillon et al., 2019). 

Andrillon et al. (2019) hypothesised that if local sleep, defined by increases in delta and/or 

theta activities (slow-wave power), occurs within attentional networks, it could triggers the 
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deactivation of attentional networks, and hence the activation of DMN (Chai et al., 2012; 

Esposito et al., 2018), which is associated with mind-wandering (Andrews-Hanna, 2012; 

Andrews-Hanna et al., 2010; Mason et al., 2007). So, it can cause mind-wandering.  

Andrillon et al. (2021) used EEG to study ALs while performing GO/NoGo tasks. Thought 

probes were used as an indicator for the mental state. Mind-wandering was defined as a shift 

of attention from task-related to task-unrelated thoughts. They found that slow waves, which 

are known to be associated with transitioning to sleep (Siclari et al., 2014) or local sleep 

(Andrillon et al., 2019; Bernardi et al., 2015; D’Ambrosio et al., 2019; Hung et al., 2013; 

Vyazovskiy et al., 2011), preceded reports of mind-wandering over the frontal EEG 

electrodes. 

Braboszcz and Delorme (2011) investigated mind-wandering, and suggested it is associated 

with low alertness and decreased sensory processing. In a breath-counting task, they found 

increased theta and delta activity during mind-wandering, while alpha and beta activities 

decreased. An increase in delta activity was also found by Harmony et al. (1996) when 

shifting attention to internal processing of mental tasks. 

van Son et al. (2019a) looked at the association between mind-wandering and the ratio 

between theta and beta activities, they used a breath-counting task, and found that the frontal 

theta/beta ratio is correlated with mind-wandering. The same task was used by van Son et 

al. (2019b), where fMRI data were collected, they found that FC during mind-wandering is 

associated with the theta/beta ratio, in which there was an increase in FC within the DMN 

and a decrease within central executive network.  

Gamma band activity has also been found to be positively associated with mind-wandering. 

Qin et al. (2011) investigated, using EEG, the difference between subjectively-reported 

mind-wandering, which is based on thought probes, and behaviourally-indexed mind-

wandering, which is based on performance errors. They used time-frequency analysis and 

found higher gamma activity in bilateral frontal-central areas in subjectively-reported 

relative to behaviourally-indexed mind-wandering. To investigate further, they used 

beamformer source imaging, and found that the gamma band had higher activity in the 

bilateral frontal cortices, supplemental motor area, paracentral cortex, and right inferior 

temporal cortex in subjectively-reported compared to behaviourally-indexed mind-

wandering. In addition, beta activity was higher over bilateral frontal and central-parietal 

areas, and alpha activity was lower over medial central-parietal areas during subjectively-
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reported mind-wandering, whereas during behaviourally-indexed mind-wandering, alpha 

band activity was higher over medial frontal areas and theta activity was also high over left 

frontal-temporal areas. Their findings indicate that subjectively-reported mind-wandering is 

associated with processes of executive control. 

Simultaneous recording of EEG-fMRI was used to investigate mind-wandering while 

performing a fast-paced SART (Groot et al., 2021). Participants were told to self-report 

mind-wandering. Groot et al. (2021) found that the neural signature of mind-wandering, 

when compared to responsive external attention, to be a deactivation in DMN, and an 

activation in the task-related network. Their result in the task-related network was not 

surprising, as task-related network has been shown to be involved in spontaneous thought 

processes (Christoff et al., 2009; Dixon et al., 2018; Fox et al., 2015). In contrast, DMN 

which is known to be activated during mind-wandering, was found to be inversely associated 

with the “in-the-zone” or good performance, while DAN was found to be associated with 

“out-of-zone” or weak performance (Esterman et al., 2014; Kucyi et al., 2017; Yamashita et 

al., 2020). Also, they found decreased FC within both DMN and the task-related network, 

and an increased FC between these two networks. In addition, delta, theta, and alpha bands 

had widespread increases, in contrast, beta was reduced. 

To summarize, increased alpha activity is associated with lower attention levels in general, 

plus mind-wandering, which is correlated with the increased activity in DMN. Low-

frequency EEG bands (delta and theta) were also associated with mind-wandering if they 

increased over the attention-related regions. In addition, increased beta and gamma activities 

were correlated with subjectively-reported mind-wandering. A summary of EEG literature 

on mind-wandering is given in Table 5-2. 

Table 5-1 Summary of fMRI physiological findings on mind-wandering. 

Research fMRI Findings 

(Andrews-Hanna, 2012) • Increased DMN activity. 

(Andrews-Hanna et al., 2010) 

(Mason et al., 2007) 

(Zhou & Lei, 2018) 

(Kawagoe et al., 2019) 

(Wang et al., 2009) 

(Fox et al., 2005) 
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(Fox et al., 2006) • Increased DAN activity. 

(Spreng et al., 2010) • FPN acts as a hub that manages the change from 

external to internal. (Dixon et al., 2018) 

(Esposito et al., 2018) • DMN and DAN are anticorrelated. 

(Chai et al., 2012) 

(Godwin et al., 2017) • Increased FC between FPN and DMN. 

(He et al., 2021) 

(Godwin et al., 2017) • Increased FC within DMN. 

(He et al., 2021) 

(Kucyi et al., 2017) 

(Kucyi et al., 2017) • Increased FC between DMN and SN. 

(Zhou & Lei, 2018) • Increased FC between DMN and VSN.  

• Decreased FC between FPN and VSN. 

Table 5-2 Summary of EEG physiological findings on mind-wandering. 

Research EEG Findings 

(Compton et al., 2019) • Increased alpha EEG activity. 

(Arnau et al., 2020) 

(Baldwin et al., 2017) 

(Mo et al., 2013) • Increased alpha EEG activity. 

• Increased DMN activity. 

(Andrillon et al., 2021) • Slow waves preceded reports of mind-wandering 

over the frontal EEG electrodes. 

(Andrillon et al., 2019) • Hypothesised increases in delta and/or theta EEG 

activities, occurs in the task-related networks is 

associated with mind-wandering. 

(Braboszcz & Delorme, 

2011) 

• Increased theta and delta EEG activities. 

(van Son et al., 2019a) • Frontal theta/beta ratio is correlated with mind-

wandering. 
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(van Son et al., 2019b) • Frontal theta/beta ratio is correlated increased FC 

within DMN, and decreased FC within central 

executive network. 

(Qin et al., 2011) • Association between subjectively-reported mind-

wandering and increased gamma and beta EEG 

activities. 

• Association between behaviourally-indexed mind-

wandering and increased alpha and theta EEG 

activities. 

(Groot et al., 2021) • Decreased DMN activity. 

• Increased task-related network activity. 

• Increased delta, theta, and alpha EEG activities. 

• Decreased beta EEG activity. 

5.1.2 Mind-blanking 

For increased understanding of the mind-blanking phenomenon, several studies have 

investigated neural activities related to this mind state. Based on subjective reports of ALs 

from subjects, Ward and Wegner (2013) concluded that mind-wandering and mind-blanking 

are two distinct mental states. Unsworth and Robison (2016b, 2018a) considered that mind-

wandering has multiple levels and is different from the mind-blanking (inattentive) state 

behaviourally. In addition, mind-wandering is operationally different from mind-blanking, 

although both of them are common when it comes to decoupling attention from external 

tasks. Mind-blanking is defined as an empty mind state which more likely does not involve 

memory recall (Ward & Wegner, 2013). 

5.1.2.1 fMRI Analysis 

Research by Kawagoe et al. (2019) showed through a resting-state study that the mind-

blanking state can be intentionally achieved by simply trying to think of nothing. The neural 

signature of mind-blanking was represented by changes in activity of DMN: activation in 

the bilateral ventral ACC and medial prefrontal cortex, and deactivation in the left Broca’s 

area, left hippocampus, and bilateral superior frontal gyrus/supplementary motor area 

(SMA). A summary of fMRI literature on mind-blanking is in Table 5-3. 
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5.1.2.2 EEG Analysis 

Andrillon et al. (2019) hypothesised that if local sleep, defined by increases in delta and/or 

theta activities, occurs in the DMN, it can cause mind-blanking. Their hypothesis was based 

on previous findings that associated the reduction of endogenous thoughts with the increase 

of slow-wave power over DMN regions. Also, when local sleep occurs within regions such 

as precuneus or posterior cingulate cortex (PCC) defined as “hot zone” (Siclari et al., 2017), 

could lead to a minimal experience of thoughts (blank), which is the case in white dreams 

within sleep (Fazekas et al., 2019; Windt et al., 2016).  

Andrillon et al. (2021) used EEG to study ALs while performing GO/NoGo tasks. Thought 

probes were used as an indicator for the mental state. Mind-blanking was defined as an empty 

mind (absence of thoughts). They found that slow waves, which are known to be associated 

with transitioning to sleep (Siclari et al., 2014) or local sleep (Andrillon et al., 2019; Bernardi 

et al., 2015; D’Ambrosio et al., 2019; Hung et al., 2013; Vyazovskiy et al., 2011), preceded 

reports of ALs (mind-blanking) over frontal and posterior EEG electrodes. Castiglione et al. 

(2019) have explored beta activity when intentionally clearing the mind from any thoughts. 

They used a think/no-think task while recording EEG and found an increase in activity in 

right frontal beta in the successful versus the unsuccessful trials. A summary of EEG 

literature on mind-blanking is in Table 5-4. 

Table 5-3 Summary of fMRI physiological findings on mind-blanking. 

Research fMRI Findings 

(Kawagoe et al., 2019) • Changes in activity of DMN. 

• Activation in the bilateral ventral ACC and medial 

prefrontal cortex. 

• Deactivation in the left Broca’s area, left hippocampus, 

and bilateral superior frontal gyrus/SMA. 

Table 5-4 Summary of EEG physiological findings on mind-blanking. 

Research EEG Findings 

(Andrillon et al., 2021) • Slow waves preceded reports of mind-blanking (no 

thoughts in mind) over the frontal and posterior EEG 

electrodes. 



P a g e  | 5-62 

 

 

(Andrillon et al., 2019) • Hypothesised increases in delta and/or theta EEG 

activities, occurs in the DMN is associated with mind-

blanking (no thoughts in mind). 

(Castiglione et al., 2019) • Increased beta EEG activity is associated with the state 

of (no thoughts in mind). 

5.2 Neural signature of microsleeps 

For a more in depth understanding of the microsleep phenomenon, a few studies have 

investigated the neural signature of microsleeps. 

5.2.1 fMRI Analysis 

Using a 2-D CVT task while recording fMRI, MSs was found to be associated with a 

decrease in BOLD activity in the bilateral thalamus, posterior cingulate gyrus, and medial 

frontal cortex, and an increase in BOLD activity in the inferior frontal cortex, posterior 

parietal cortex, and parahippocampal regions (Jones et al., 2010; Poudel et al., 2014; Poudel 

et al., 2009). Poudel et al. (2014) also investigated the correlation between the activity of 

BOLD signal and MSs while accounting for EEG theta and alpha activities as regressors. 

They found a positive correlation between post-central theta activity and MSs, in addition to 

a negative correlation between the occipital alpha activity and MSs. A summary of fMRI 

literature on microsleeps is in Table 5-5. 

5.2.2 EEG Analysis 

Peiris et al. (2006) used a 1-D CVT task with non sleep-deprived participants while recording 

EEG, and found that an increase in spectral power for delta, theta, and alpha bands, while 

beta and gamma bands had reduced spectral power. Poudel et al. (2010a) studied the 

relationship between MSs detected while performing a 2-D CVT task and the EEG theta 

band. They found a correlation between tracking error and theta activity at the Pz EEG 

electrode, but after removing the MSs from the data, that the correlation dropped 

substantially, showing that MSs heavily contribute to the performance fluctuations during 

the task. 

Jonmohamadi et al. (2016) also used a 2-D CVT task while recording EEG. They found that 

MSs are more likely to be associated with spindles of alpha activity, generated in the bilateral 

anterior temporal gyri and hippocampi. These spindles were very similar to spindles in stage 

II sleep. Also, theta activity was generated from the bilateral frontal-orbital cortex.  
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Wang et al. (2020) used a flight simulator, as a practical real-time application, with 

participants who were pilots. The task had a monotonous nature which facilitated the 

occurrence of MSs. There was no change in activity in either the beta or theta bands, while 

there was a reduction in activity in delta and increased activity in alpha. A summary of EEG 

literature on microsleeps is in Table 5-6. 

Table 5-5 Summary of fMRI physiological findings on microsleeps. 

Research fMRI Findings 

(Poudel et al., 2009) • Decrease in activity in the bilateral thalamus, posterior 

cingulate gyrus, and medial frontal cortex. 

• Increase in activity in the inferior frontal cortex, posterior 

parietal cortex, and parahippocampal regions. 

(Jones et al., 2010) 

(Poudel et al., 2014) 

Table 5-6 Summary of EEG physiological findings on microsleeps. 

Research EEG Findings 

(Peiris et al., 2006) • Increased delta, theta, and alpha EEG activities. 

• Decreased beta and gamma EEG activities. 

(Poudel et al., 2010a) • Association between theta EEG activity and MSs. 

(Jonmohamadi et al., 2016) • Association between MSs and spindles of alpha 

activity. 

• Association between MSs and theta activity. 

(Wang et al., 2020) • Increased alpha EEG activity. 

• Decreased delta EEG activity. 

• No evidence of change was found in beta and theta 

EEG activities. 

5.3 Summary 

This chapter focused on the physiological side of MSs and on endogenous ALs, and its two 

types: mind-wandering and mind-blanking. It showed how these lapses have been measured 

physiologically to reveal neural signatures using by looking at changes in activation (fMRI) 

or power (EEG) in the brain networks of interest. Plus, changes in FC within and between 

various brain networks. 

One of the key findings of mind-wandering literature is the activity increase of DMN, which 

is anticorrelated with DAN, in addition to the increased FC between DMN and FPN. In 
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addition to the power increase of the EEG alpha band. Mind-blanking was correlated with a 

partial activity increase of DMN. Finally, MSs were correlated with activity increase in 

frontal and posterior parietal areas, in addition to decrease activity in the thalamus. Also, 

MSs were correlated with the power increase of delta, theta, and alpha EEG bands.  
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 Aims and Hypotheses 

6.1 Gaps in knowledge 

6.1.1 Attention lapses 

Research on ALs needs further investigations into their underpinning physiological 

mechanisms. Investigations of endogenous ALs in a more definitive, instead of generalized, 

approach will lead to better understanding of different types of ALs. Compared to mind-

wandering, little research has investigated mind-blanking. In particular, to the best of our 

knowledge, mind-blanking has been poorly understood from a physiological perspective. 

Therefore, more research employing brain imaging techniques such as fMRI and EEG are 

needed to better understand ALs which could be due to mind-blanking and/or mind-

wandering. Previous studies have used the subjective ‘think-of-nothing’ state (Kawagoe et 

al., 2019), a reading comprehension task (Ward & Wegner, 2013), and discrete tasks like the 

go/no-go task (Van den Driessche et al., 2017) to investigate mind-blanking, but no study 

has used a continuous task (e.g. like visuomotor tracking), which can best detect the 

presence, onsets, and offsets of ALs (mind-blanking and/or mind-wandering). 

6.1.2 Microsleeps 

The phenomenon of MSs is still far from being fully understood. Behaviourally, they are 

similar to sleep, although the difference in duration makes them distinct. However, there is 

much more to discover on the physiological side. MSs were found to be associated with 

stage II sleep (Jonmohamadi et al., 2016), however, given the behavioural differences in 

terms of duration to come out of sleep, MSs might represent a stage of relief from sleep 

pressure (Poudel et al., 2018), and not a deactivation process similar to normal sleep (Poudel 

et al., 2014). Hence, the relation between MSs and sleep should be further investigated on a 

wider scale. 

6.2 Key questions 

From gaps in the literature, there are several important questions we aim to explore in this 

project: 

• What are the neural signatures of endogenous ALs during a continuous visuomotor 

tracking? 

• Are endogenous ALs during a continuous visuomotor tracking mind-blanks or mind-

wanderings? 



P a g e  | 6-66 

 

 

• Are MSs physiologically different from sleep? 

6.3 Aim 

The objective of this project was to increase our understanding of the behavioural 

characteristics and physiology underlying lapses of responsiveness —MSs and endogenous 

ALs— during a 2-D CVT task.  

6.4 Hypotheses 

6.4.1 Neural signatures of endogenous attention lapses. 

Q1: Are ALs associated with decreased DAN activity during a 2-D CVT. 

• Hypothesis 1: In a 2-D CVT task, there is lower neural activity in DAN during 

endogenous ALs. 

• Rationale: Fox et al. (2005) showed that the DAN has higher neural activity during 

focused external attention, whereas endogenous ALs are considered to occur when 

attention is decoupled from external stimuli (Buckley et al., 2016). This implies that 

when the tracking performance drops to zero without the loss of consciousness 

during an AL, a complete decoupling from external environment is expected, which 

correlates with reduced activity in DAN. 

• Significance: Improving our understanding of the physiological aspects of 

endogenous ALs during a 2-D CVT. 

• Study Outline: We will use Study C and Study D (Rested), in which momentary 

drops in tracking performance with opened eyes (i.e., ALs) were identified by an 

expert. We will use fMRI data to perform a voxel-wise analysis to analyse ALs and 

check the activity in the DAN compared to baseline of good responsive tracking. 

FEAT (GUI and scripting) from FSL (Jenkinson et al., 2012) will be used to do the 

analysis. In addition, ROI analysis will be performed on the DAN specifically by 

analysing the average time series in each region of the DAN. 

Q2: During a 2-D CVT, will endogenous ALs be associated with decreased FC between 

FPN and DAN? 

• Hypothesis 2: In a 2-D CVT, FC between FPN and DAN decreases during ALs. 

• Rationale: In endogenous ALs there is a complete decoupling from the external 

environment, in which DMN is highly associated with internal processes (Eichele et 

al., 2008; Kawagoe et al., 2019; Weissman et al., 2006). On the other hand, the 
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relation between increased activity of DAN and external attention is well stablished 

(Chai et al., 2012; Fox et al., 2006; Fox et al., 2005; Vossel et al., 2014). Since FPN 

is involved in the process of changing from attention externally to internally directed 

and vice versa by changing its FC between DMN and DAN (Dixon et al., 2018; 

Spreng et al., 2010), it is expected that FC between FPN and DAN will decrease 

during ALs. 

• Significance: Improving our understanding of the physiological aspects of 

endogenous ALs during a 2-D CVT. 

• Study Outline: We will use Study C and Study D (Rested), in which momentary 

drops in tracking performance with opened eyes (i.e., ALs) were identified by an 

expert. We will use fMRI data to perform a FC analysis to analyse ALs and examine 

the FC between the FPN and DAN when comparing ALs to the baseline of good 

responsiveness tracking. The FC toolbox (CONN) (Whitfield-Gabrieli & Nieto-

Castanon, 2012) will be used to do the analysis. 

Q3: During a 2-D CVT, will endogenous ALs be associated with decreased FC between 

FPN and sensorimotor network (SMN)? 

• Hypothesis 3: In a 2-D CVT, FC between FPN and SMN decreases during ALs. 

• Rationale: During ALs, there is complete decoupling from the external world and 

the subject is unable to perform the task. The 2-D CVT requires visuospatial 

coordination in order to keep tracking, which involves SMN (Cavina-Pratesi et al., 

2006; Shibasaki et al., 1993; Wildgruber et al., 1997). The FPN is associated with 

the coordination of visuospatial attention (Lückmann et al., 2014; Marek & 

Dosenbach, 2018; Scolari et al., 2015), in addition, during an AL there is decoupling 

from external attention, which will stop performing the visuomotor task. This 

suggests that FC between FPN and SMN will decrease.  

• Significance: Improving our understanding of the physiological aspects of 

endogenous ALs during a 2-D CVT. 

• Study Outline: We will use Study C and Study D (Rested), in which momentary 

drops in tracking performance with opened eyes (i.e., ALs) were identified by an 

expert. We will use fMRI data to perform a FC analysis to analyse ALs and examine 

the FC between the FPN and SMN when comparing ALs to the baseline of good 

responsiveness tracking. CONN (Whitfield-Gabrieli & Nieto-Castanon, 2012) will 

be used to do the FC analysis. 
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Q4: During a 2-D CVT, will endogenous ALs be associated with decreased FC between 

FPN and VSN? 

• Hypothesis 4: In a 2-D CVT, FC between FPN and VSN decreases during ALs. 

• Rationale: During ALs, there is complete decoupling from the external world and 

the subject will be unable to perform the task. The 2-D CVT requires visuospatial 

coordination in order to keep tracking, which will involve VSN (Desimone & 

Duncan, 1995; Helfrich et al., 2013) while performing the task. The FPN is 

associated with the coordination of visuospatial attention (Lückmann et al., 2014; 

Marek & Dosenbach, 2018; Scolari et al., 2015), in addition, during an AL there will 

be a decoupling from external attention, which will stop performing the visuomotor 

task. This suggests that FC between FPN and VSN will decrease.  

• Significance: Improving our understanding of the physiological aspects of 

endogenous ALs during a 2-D CVT. 

• Study Outline: We will use Study C and Study D (Rested), in which momentary 

drops in tracking performance with opened eyes (i.e., ALs) were identified by an 

expert. We will use fMRI data to perform a FC analysis to analyse ALs and examine 

the FC between the FPN and VSN when comparing ALs to the baseline of good 

responsiveness tracking. CONN (Whitfield-Gabrieli & Nieto-Castanon, 2012) will 

be used to do the FC analysis. 

Q5: During a 2-D CVT, will endogenous ALs be associated with decreased FC between 

DAN and EMN? 

• Hypothesis 5: In a 2-D CVT, FC between DAN and EMN decreases during ALs. 

• Rationale: Coiner et al. (2019) introduced a network called the eye movement 

network (EMN) which includes cortical regions such as ventral precuneus and PCC 

of DMN, frontal eye field (FEF) of DAN, lateral prefrontal cortex (LPFC) of FPN, 

and medial and occipital of VSN. During ALs, there is complete decoupling from the 

external world and the subject will be unable to perform the task. The 2-D CVT 

requires visual fixation on a disc on a screen, which will force the eye to move. Given 

the decoupling, it is expected that the FC between DAN and EMN will decrease. 

• Significance: Improving our understanding of the physiological aspects of 

endogenous ALs during a 2-D CVT. 
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• Study Outline: We will use Study C and Study D (Rested), in which momentary 

drops in tracking performance with opened eyes (i.e., ALs) were identified by an 

expert. We will use fMRI data to perform a FC analysis to analyse ALs and examine 

FC between the DAN and EMN when comparing ALs to the baseline of good 

responsiveness tracking. CONN (Whitfield-Gabrieli & Nieto-Castanon, 2012) will 

be used to do the FC analysis. 

Q6: During a 2-D CVT, will endogenous ALs be associated with decreased FC between 

DMN and WMN? 

• Hypothesis 6: In a 2-D CVT, FC between DMN and WMN decreases during ALs. 

Rationale: A recent finding showed that memory and attention actually lapse 

together (deBettencourt et al., 2019). The relation between working memory and 

attention is important, as working memory serves as a space where attention can 

maintain relevant information to be used in a task (Chun, 2011). Zokaei et al. (2014) 

added that the resources needed to perform a demanding task and also maintain 

information in the visual working memory are common.  

Mind-wandering is operationally different from mind-blanking, although both are 

common when it comes to decoupling attention from external tasks. Mind-wandering 

is defined as a state in which attention is diverted to internal thoughts unrelated to 

the task (Burdett et al., 2016; Huijser et al., 2018; Ottaviani et al., 2015; Weinstein 

et al., 2017). These thoughts might be related to the past or future, which means that 

attention is focused on memories (Hutchinson & Turk-Browne, 2012; Wang et al., 

2009). On the other hand, memory processes are more likely not to be associated 

with mind-blanking, which is s state of an empty mind while being behaviourally 

awake (Kawagoe et al., 2019; Ward & Wegner, 2013). 

WMN defined by Piccoli et al. (2015), has four regions right and left LPFC of FPN, 

and right and left IPS of DAN. Using a visuo-spatial working memory paradigm, 

Piccoli et al. (2015) focused on the dynamic FC between DMN and WMN, they 

found that the FC between DMN and WMN changes with task phases (encoding, 

maintenance, and retrieval). Although they were not studying any ALs, but during 

the maintenance phase, which has a similar behaviour to mind-wandering, DMN and 

WMN were found to be anti-correlated. So, it is expected that the FC between WMN 

and DMN will decrease due to ALs during 2-D CVT task.  
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• Significance: Improving our understanding of the physiological aspects of 

endogenous ALs during a 2-D CVT. 

• Study Outline: We will use Study C and Study D (Rested), in which momentary 

drops in tracking performance with opened eyes (i.e., ALs) were identified by an 

expert. We will use fMRI data to perform a FC analysis to analyse ALs and examine 

FC between the DMN and WMN when comparing ALs to the baseline of good 

responsiveness tracking. CONN (Whitfield-Gabrieli & Nieto-Castanon, 2012) will 

be used to do the FC analysis. 

Q7: During a 2-D CVT, will endogenous ALs be associated with increased EEG alpha 

activity? 

• Hypothesis 7: In a 2-D CVT, EEG alpha power increases in the posterior brain area 

during endogenous ALs. 

• Rationale: There is an association between increased visual alpha power and 

increased DMN activity (Mo et al., 2013) when eyes are opened in a resting state, 

while the increased activity of DMN is associated with decoupling from external 

environment (Eichele et al., 2008; Weissman et al., 2006). In addition, increased 

EEG alpha power over task-related brain regions is correlated with low levels of 

attention and poor performance (Macdonald et al., 2011). Also, when attention is 

externally directed to demanding tasks, alpha EEG activity is reduced in task-related 

brain areas (Rajagovindan & Ding, 2011; Sauseng et al., 2005).  

A study on ALs using PVT showed a positive correlation between increased (slow) 

reaction time and increase in activity of alpha EEG band over parieto-occipital, 

central-medial, and frontal regions (Molina et al., 2019). Using a Simon task, there 

was a power increase in the alpha band in parieto-occipital regions during ALs (van 

Driel et al., 2012). This indicates that the alpha power is related to the process of ALs 

through various tasks, which might be the case for the continuous task too. 

• Significance: Improving our understanding of the physiological aspects of 

endogenous ALs during a 2-D CVT. 

• Study Outline: We will use Study C and Study D (Rested), in which momentary 

drops in tracking performance with opened eyes (i.e., ALs) were identified by an 

expert. We will use EEG data to perform a source-reconstruction analysis to analyse 

ALs and statistically to the baseline of good responsiveness tracking. EEGLAB 

toolbox (Delorme & Makeig, 2004) will be used to do the pre-processing and 
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Fieldtrip (Oostenveld et al., 2011) will be used to do the source-reconstruction and 

statistical analysis. 

6.4.2 Mind-blanks versus mind-wandering 

Q8: Are the ALs during a 2-D CVT task due to involuntary mind-blanking? 

• Hypothesis 8: ALs during a 2-D CVT are due to involuntary mind-blanking. 

• Rationale: An AL is considered a state of complete loss of performance which is 

associated with decoupling (Schad et al., 2012; Smallwood & Schooler, 2015). This 

decoupling results in disconnecting attention from the external environment 

(performing the task), and complete loss of attention, in the case of mind-blanking 

(Ward & Wegner, 2013), that could also be voluntary where the mind is intentionally 

cleared from thoughts (Kawagoe et al., 2019). Kawagoe et al. (2019) found an 

increase in DMN activity due to voluntary mind-blanking (clearing the mind of any 

thought). The fact that "Kawagoe et al. (2019) found an increase in DMN activity 

due to voluntary mind-blanking" is because (i) it was voluntary and (ii) the likely 

impossibility of being able to think of 'nothing', and hence their so-called voluntary 

mind-blanks were actually a form of mind-wandering. So, we expect no increase in 

DMN activity during involuntary mind-blanks during a CVT task. 

In the case of mind-wandering, FC between FPN and DMN increases (Godwin et al., 

2017; He et al., 2021), which supports the generation of internal thoughts, which is 

the opposite of what happens during mind-blanking, in which there is nothing in 

mind while remaining awake (Ward & Wegner, 2013). The FPN is associated with 

two important memory functions: declarative memory retrievals and updating of 

working memory (Borst & Anderson, 2013). These functions seem to be involved in 

the mind-wandering phenomenon, which is voluntary by nature. So, it is expected 

that FC between FPN and DMN will decrease due to involuntary mind-blanking 

during 2-D CVT task. 

Coiner et al. (2019) introduced a network called EMN which includes cortical 

regions such as ventral precuneus and PCC of DMN, FEF of DAN, LPFC of FPN, 

and medial and occipital of VSN. Mind-wandering is associated with eye movements 

(Hartmann et al., 2014), and in addition shows different oculometric features than 

mind-blanking, except in low arousal (Unsworth & Robison, 2018a). So, it is 

expected that FC between EMN and DMN will decrease due to involuntary mind-

blanking during a 2-D CVT. 
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While awake, the brain through local sleep performs sleep-related cognitive 

functions, such as cellular maintenance, by giving neurons a break for maintenance 

after being activated for long (Vyazovskiy & Harris, 2013). Research by Andrillon 

et al. (2019) on ALs and their relation to the local sleep phenomenon which is 

different than MS according to the authors, they hypothesised that local sleep could 

be used as a model to explain ALs; if local sleep, defined by an increase in delta 

and/or theta (slow-wave) activities, happened within DMN will lead to the reduction 

of endogenous thoughts, which will cause mind-blanking. So, it is expected that 

involuntary mind-blanking will be correlated with the increase of delta/theta EEG 

activity within DMN due to local-sleep during 2-D CVT task. 

• Significance: Improving our understanding of the behavioural and physiological 

aspects of mind-blanking and getting us a step closer to having accurate 

detection/prediction systems. 

• Study Outline: We will use Study C and Study D (Rested), in which momentary 

drops in tracking performance with opened eyes (i.e., ALs) were identified by an 

expert. We will use fMRI data to perform a voxel-wise analysis to analyse ALs 

compared to baseline of good responsive tracking. FEAT (GUI and scripting) from 

FSL (Jenkinson et al., 2012) will be used to do the analysis. In addition, ROI analysis 

will be performed by analysing the average time series at each region. We will use 

fMRI data to perform a FC analysis to analyse ALs and examine the FC when 

comparing ALs to the baseline of good responsiveness tracking. CONN (Whitfield-

Gabrieli & Nieto-Castanon, 2012) will be used to do the FC analysis. We will use 

EEG data to perform a source-reconstruction analysis to analyse ALs statistically to 

the baseline of good responsiveness tracking. EEGLAB (Delorme & Makeig, 2004) 

will be used to do the pre-processing and Fieldtrip (Oostenveld et al., 2011) will be 

used to do the source-reconstruction and statistical analysis. 

6.4.3 Microsleeps and sleep 

Q9: Are microsleeps physiologically different from normal sleep? 

• Hypothesis 9: Microsleeps during a 2-D CVT task are brief instances of sleep but 

are physiologically different from normal sleep. 

• Rationale: At a certain level of drowsiness, the state of the brain shifts from 

wakefulness to sleep (Poudel et al., 2014), if the sleep state was (<15 s), it is 



P a g e  | 6-73 

 

 

considered a MS (Jones, 2011). MS is behaviourally different from normal sleep in 

terms of duration. There is a correlation between increased activities in low-

frequency (delta, theta, and alpha) EEG bands and MSs (Peiris et al., 2006), also 

sleep (De Gennaro et al., 2001). So, the difference is not so much in the process of 

going from wake/drowsiness to sleep (i.e., they have in common the brain’s need for, 

and drive to, sleep. Rather, the difference is the reverse process of going from sleep 

to wake i.e., a ‘consequence’ centre in the unconscious brain recognizes that the brain 

has gone to sleep during an active task and ‘tells’ the brain that it needs to wake up 

to continue the task. Hence, the brain initiates a wake-up process to recover 

consciousness and, hence responsiveness. Physiological support for this recovery 

process was found by Poudel et al. (2014), where there is increased BOLD activity 

in several areas of cortex during MSs. Also, while shifting from wakefulness to deep 

sleep and slow-wave sleep, a reduction was found in different cortical and subcortical 

areas (Kaufmann et al., 2006).  

Olcese et al. (2018) found that the brain could perform cognitive functions that are 

more related to the awake state of the brain by responding, up to a certain level, to 

the sensory stimulations. As beta (Cannon et al., 2014; Schmidt et al., 2019) and 

gamma (Carr et al., 2012; Fries, 2009; Melloni et al., 2007; Rouhinen et al., 2013; 

Tallon-Baudry, 2009; Windt et al., 2016) are associated with higher cognitive 

functions during wakefulness. This indicates that a positive correlation might exist 

between MSs and high-frequency (beta and gamma) EEG bands as part of the 

recovery process. 

• Significance: Improving our understanding of the physiological aspects of MSs and 

getting us a step closer to having accurate detection/prediction systems. 

• Study Outline: We will use Study C and Study D (Rested), in which MSs were 

identified by an expert. We will use EEG data to perform a source-reconstruction 

analysis to analyse MSs and statistically analyse these sources when comparing MSs 

to the baseline of good responsiveness tracking. EEGLAB (Delorme & Makeig, 

2004) will be used to do the pre-processing and Fieldtrip (Oostenveld et al., 2011) 

will be used to do the source-reconstruction and statistical analysis. 
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 Project Datasets 

This research does not require new data collection as we have the data we need: 

• Two previous studies in the Christchurch Neurotechnology Research Programme 

(NeuroTech™) on MSs and ALs which include fMRI plus EEG recordings i.e., 

Study C (Poudel, 2010; Poudel et al., 2010a; Poudel et al., 2014; Poudel et al., 2010b) 

and Study D (Innes et al., 2013; Poudel et al., 2012, 2013, 2018), which are 

immensely valuable for our research. 

However, as a result of using data from our previous studies: 

• Our behavioural gold standard of identifying the lapses events is limited to MSs and 

to non-specific ALs — i.e., we are unclear as to whether the ALs are a result of mind-

blanking or mind-wandering or even MS without eye closure. 

• We have difficulty extracting useful oculometric features due to low-quality eye-

video recordings from camera in MRI scanner. 

7.1 Study C  

The description of the experiment is in Table 7-1, 

Table 7-1 Study C summarized. 

Participants - Twenty healthy participants (10M, 10F). 

- Ages between 21 and 45 years (average 29.3 years). 

- No history of neurological, psychiatric, or sleep disorders. 

Experiment Before the experiment: 

- Participants were required to wear an Actiwatch (Mini Inc. Bend 

OR, USA) for the 6 days and 5 nights before the experiment to record 

their sleep/wake habits. 

- Participants were required to go to bed between 10 PM and 12 AM 

daily and sleep for 7.0-8.5 hours. 

- In the 4 hours before the session, stimulants, and depressants 

(alcohol, coffee, and nicotine) were not allowed. 

- Participants were served instant noodles for lunch before the 

session. 
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- Participants were given earplugs to reduce the high acoustic noise 

coming from the scanner, in addition to pads on both sides to 

minimize head motion. 

Task Description and Signal Acquisition: 

- Sessions were held within the timeframe of 1 PM — 4 PM. 

- Participants performed 2-D CVT task in which they tracked a disk 

on a computer screen using a finger-based joystick for 50 min. 

- The whole brains of the participants were imaged simultaneously 

using a Signa HDx 3.0 T MRI Scanner (GE Medical Systems, TR 2.5 

s) with an eight-channel head coil and 64-ch. EEG (MagLink). In 

addition, a video of the right eye was continuously recorded using a 

Visible EyeTM system (Avotec Inc.). 

Ethical Approval New Zealand South B Regional Ethics Committee 

 

Data from this study were used in previous analyses and publications on MSs: behavioural 

(Innes et al., 2010), using fMRI (Poudel et al., 2014; Poudel et al., 2010b), and EEG (Poudel 

et al., 2010a; Toppi et al., 2016). 

7.2 Study D 

The description of the experiment is in Table 7-2, 

Table 7-2 Study D summarized. 

Participants - Twenty right-handed healthy participants (10M, 10F). 

- Ages between 20 and 37 years (average 24.9 years). 

- No history of neurological, psychiatric, or sleep disorders. 

Experiment Before the experiment: 

- Participants were required to wear an Actiwatch for the 6 days and 

5 nights before the experiment to record their sleep/wake habits. 

- Participants were required to go to bed between 10 PM and 12 AM 

daily and sleep for 7.0-8.5 hours. 

- Participants went to the laboratory three times (one week separates 

between each visit). In the first visit, they became familiar with the 

experiment protocol, were informed to wear an Actiwatch 

(Respironics Inc., PA, USA), and were asked to keep records of their 
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sleep habits for the 6 days and 5 nights before each session. They 

were asked to record the time of intake of caffeine, alcohol, and food 

daily. 

- Rested and sleep-restricted imaging sessions occurred in the 

second and third visits, their order was counterbalanced between 

participants. 

- In the week prior to the rested session as well as the week prior to 

the sleep-restricted session, participants were required to sleep 

normal hours. In the sleep-restricted session, participants were asked 

to reduce their time in bed to 4 hours (3:00 - 7:00 AM) in the night 

before the scanning. 

- After sleep-restriction, participants were asked not to perform any 

activity that might affect their safety such as driving. Furthermore, 

participants were asked not to consume alcohol, caffeine, and 

nicotine in any of the imaging sessions' days. 

- On each scanning day, the participants were at the laboratory an 

hour prior to the scanning session. 

- The records of the Actiwatch and the sleep diary were checked 

before each scanning session to confirm that the participants 

followed the sleep schedule instructions required for the study. 

- A lunch of hot noodles was served to the participants before each 

session. 

- Participants were given earplugs to reduce the high acoustic noise 

coming from the scanner, in addition to pads on both sides to 

minimize head motion. 

Task Description and Signal Acquisition: 

- The sessions started at 1 PM and lasted for one hour and a half. 

- In each session (rested and sleep restricted), participants performed 

2-D CVT task in which they tracked random continuously moving 

disk on a computer screen using a finger-based joystick for 20 min. 

- The whole brains of the participants were imaged simultaneously 

using a Signa HDx 3.0 T MRI Scanner (GE Medical Systems, TR 

2.5 s) with an eight-channel head coil and 64-ch. EEG (MagLink). 
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In addition, a video of the right eye was continuously recorded using 

a Visible EyeTM system (Avotec Inc.). 

Ethical Approval New Zealand South B Regional Ethics Committee 

Data from this study were used in previous analyses and publications on MSs: behavioural 

(Innes et al., 2013), and  fMRI (Poudel et al., 2012, 2013, 2018). 

7.3 fMRI recording 

A Signa HDx 3.0T MRI Scanner (GE Medical Systems, Waukesha, WI) was used for 

structural and fMRI scanning, see Table 7-3.  

Table 7-3 Details of data collected from the MRI scanner. 

Image type Details 

T1-weighted • It is the structural image of the brain with high resolution. 

• TR: 6.5 ms. 

• TE: 2.8 ms. 

• Inversion time (TI): 400 ms 

• FOV: 225x250 mm. 

• Matrix: 512x512. 

• Slice thickness: 1 mm. 

• Number of slices: 158. 

• Scan time: 4.5 min. 

T2*-weighted • EPI was used to acquire these functional images. 

• To allow for T1 equilibration, The first five images of each 

session were discarded. 

• TR: 2.5 s. 

• TE: 35 ms. 

• FOV: 220x220 mm. 

• Slice thickness: 4.5 mm. 

• Number of slices: 33. 

• Number of volumes: 240. 

• Scan time: 10 min. 
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Field map • To correct for the EPI distortion, which is caused by the 

magnetic field inhomogeneity, this image was acquired per 

subject. 

• Echo spacing: 700 µs.  

• TR: 580 ms. 

• TE: 6.0 ms and 8.2 ms. 

7.4 EEG recording 

Continuous EEG was acquired using a Neuroscan Maglink cap (64 Channel), SynAmps2 

amplifiers, and Scan 4.4 software (Compumedics Neuroscan, Charlotte, NC, USA), in 

addition the following were recorded: 

• Vertical EOG using Ag-AgCl bipolar electrodes that were placed above and below 

the left eye.  

• Bipolar chest ECG and pulse oximetry. 

7.5 Eye-video recording 

Eye-video was captured using a Visible Eye™ system incorporating a fibre-optic camera 

(Avotec Inc., Stuart FL, and USA). The video was recorded on a PC at 25 fps using custom 

software. 

7.6 Task 

To sample visuomotor response with high temporal resolution (60 Hz), a 2-D CVT task was 

used, see Figure 7-1.  

 

Figure 7-1 2-D Continuous visuomotor tracking (CVT) task (from Poudel et al., 2008). 

Target disc 

Tracking disc 
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The subjects were asked to keep track of a target continuously moving on a computer screen, 

based on a pseudo-random 2-D pattern, and with no flat spots. Seven sinusoids, whom 

frequencies were evenly spaced from 0.033 to 0.231 Hz, were added to generate the 

horizontal and vertical components of the target. Then to fit the 1024 x 760 pixels resolution 

screen, the target amplitude was scaled. This produced a 2-D periodic target trajectory (T = 

30 s) with a velocity range of 63–285 pixels/s (Poudel et al., 2008). The tracking task was 

presented via SV-7021 fibre-optic glasses (Avotec, Stuart, FL, USA) at a resolution of 1024 

x 768 pixels and an 18 x 13° field of view. The target disc was 0.7°, and response disc was 

0.6° of visual angle in diameter. 

7.7 Events rating 

By means of video recording of the right eye of each subject, the behavioural data from each 

study were rated to as follows (Poudel, 2010): 

7.7.1 Microsleeps 

1- Definition: A MS is a brief (≲ 15 s) involuntary lapse in consciousness in which a person 

has a suspension of performance and falls asleep momentarily. 

2- Operational: (1) flat/incoherent tracking > 500 ms [nearly all flat during at least part of 

event], full or partial phasic eye closure, except for blinks, and clear behavioural 

indications of drowsiness/sleepiness. If this event’s duration exceeds 15 s, it is 

considered a sleep episode. 

7.7.2 Attention lapses 

An AL is a lapse in responsiveness in which performance is completely disrupted but 

consciousness is retained. There are two primary types of AL: 

Lost-attention lapse (Mind-blank) 

1- Definition: A lost-AL is a lapse in which there is a loss of conscious attentional focus 

but with no loss of consciousness. They include ‘mind-blanks’ and ‘auto-pilots’ but don’t 

necessarily correspond to complete losses of attention – i.e., a level of subconscious 

attention is retained (e.g., driving on autopilot). They appear as complete brief cessations 

of performance on tasks with continuous stimuli or as substantially delayed responses on 

tasks with intermittent stimuli. 
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2- Operational: (1) flat/incoherent tracking > 500 ms, (2) no phasic eye closure other than 

normal blinks, (3) not directly related to level of arousal and, hence, can occur when 

being alert, fatigued, or drowsy. 

Diverted-attention lapses 

1- Definition: A diverted AL is a lapse in which attentional focus is retained but which has 

been diverted onto something other than the primary task. There are two sub-types of 

diverted-ALs: (1) internal/endogenous distraction (mind-wandering) – e.g., thinking 

about something else, and (2) external/exogenous distraction – e.g., looking at the radio 

while driving. 

2- Operational: (1) flat/incoherent tracking > 500 ms, (2) no phasic eye closure other than 

normal blinks, and (3) not directly related to the level of arousal and, hence, can occur 

when being alert, fatigued, or drowsy. Either (A) extended gaze away from the task 

(exogenous distraction), or (B) minimal eye movement (endogenous distraction) 

(difficult to differentiate from a lost-AL). 

7.7.3 Drowsiness-related impaired-responsiveness events (DIREs) 

1- Definition: A distinct drowsiness-related transient reduction – but not complete loss – of 

performance. 

2- Operational: (1) epoch of very poor, but not incoherent, tracking relative to baseline 

tracking for > 500 ms, and (2) full or partial phasic eye closure, except for blinks. 

7.7.4 Voluntary behaviour impacting performance (VBIP) 

1. Definition: A voluntary behaviour which adversely impacts performance. 

2. Operational: (1) can be fatigue-related (e.g., voluntary eye closure [excluding 

blinks], rubbing eyes, squeezing eyes shut), (2) can be non-fatigue-related (e.g., 

sneezing, cramp in hand), (3) usually flat/incoherent tracking > 500 ms but can be 

partially compensated for via predictive motor planning, (4) clearly voluntary (e.g., 

temporary relief from fatigue). 

7.8 Events of interest in studies 

7.8.1 Attention lapses 

7.8.1.1 Study C 

• Duration (mean, range): (2.14, 0.52 – 8.13) s. 

• Total number of events: 68 
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• Total number of subjects with ALs: 16 out of 20. 

7.8.1.2 Study D (Rested) 

• Duration (mean, range): (1.52, 0.53 – 3.2) s. 

• Total number of events: 29 

• Total number of subjects with ALs: 11 out of 20. 

7.8.2 Microsleeps 

7.8.2.1 Study C 

• Duration (mean, range): (3.6, 0.52 – 14.4) s. 

• Total number of events: 1314 

• Total number of subjects with MSs: 14 out of 20. 

7.8.2.2 Study D (Rested) 

• Duration (mean, range): (2.5, 0.72 – 9.72) s. 

• Total number of events: 319 

• Total number of subjects with MSs: 11 out of 20. 
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 fMRI Voxel-Wise Analysis of Attention Lapses 

8.1 Introduction 

In this chapter, fMRI data were used to answer hypotheses 1 and part of 8. The aim was to 

reveal the changes in activity in regions from the whole brain. Voxel-wise and group ICA 

were performed. The chapter is structured as follows: the analysis pipelines were first 

introduced, then the results of each analysis, and finally, the findings were discussed, and 

hypotheses were answered. 

8.2 Method 

8.2.1 Data 

To increase the statistical power, the combination of the two studies was necessary. Study C 

fMRI tracking data were split into two runs (25 min each) because of the machine limitations, 

both runs represent the same session. Only subjects who had at least 2 ALs per run were 

considered for analysis from each study. Study C only had 11 subjects who experienced at 

least two ALs (62 ALs) with an average duration of 1.82 (0.52—8.13 s.). Study D had rested 

and sleep-deprivation sessions, but we only focused on the rested session. The same selection 

criteria to was applied to Study D rested session, where the subjects who had corrupted data 

were rejected, there were 6 subjects (23 ALs) with an average duration of 1.6 (0.53—2.72 

s.). Combining two studies resulted in a total number of 17 subjects and a total number of 

85 ALs with a mean duration of 1.74 s (0.52-8.13 s). 

8.2.2 Voxel-wise analysis 

Voxel-wise analysis was done using FEAT v6.00 from FMRIB’s software library (FSL) 

(Jenkinson et al., 2012) available at (www.fmrib.ox.ac.uk/fsl). 

8.2.2.1 Pre-processing and denoising 

Motion correction in our analysis was done using the toolbox MCFLIRT (Jenkinson et al., 

2002), which linearly registers all functional volumes in a run to the middle one. Brain-

extraction step was performed using BET (Jenkinson et al., 2005; Smith, 2002). We could 

not perform distortion correction as most of the field map images were not available. 

A 5-mm spatial smoothing, was chosen according to Jenkinson and Chappell (2018), as 

approximately 1.5-2 times the voxel size, which is the length of any side of the isotropic 

voxel, is preferred to balance between SNR and being able to find significant activity in 

small regions. The 100-s was chosen for the temporal filtering. Based on Zarahn et al. (1997) 
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and Mitra and Pesaran (1999); 100 s is sufficient to remove low frequency noise, but not 

remove frequency components related to the task, in which the target pattern repeats every 

30 s.  

Through FEAT, MELODIC ICA (Smith et al., 2004) was used to perform the denoising of 

fMRI BOLD signals. The noise components were identified through visual inspection 

(Griffanti et al., 2017; Kelly et al., 2010; Salimi-Khorshidi et al., 2014). ICA-AROMA 

(Pruim et al., 2015), which is a toolbox capable of automatically identifying noise 

components caused by head movements, was used to visually inspect and validate the 

components labelled for rejection. The noisy components removal was repeated twice, as 

recommended by Caballero-Gaudes and Reynolds (2017), which is more efficient in 

revealing all noise components.  Slice time correction was done after the denoising step to 

detect any motion occurred between slices and remove it (Caballero-Gaudes & Reynolds, 

2017). 

8.2.2.2 Registration 

Registration between functional and structural images was done using FMRIB’s linear image 

registration tool (FLIRT) (Jenkinson et al., 2002; Jenkinson & Smith, 2001) using a rigid-

body transformation — 6 DOF, which includes 3 rotations, and 3 translations. The FEAT 

default MNI152-2 mm was used as a standard space. The linear registration between 

structural images and MNI was carried out using FLIRT with 12 (affine) DOF. The 

normalization step between functional images and MNI was done through FEAT by 

transferring the 4-D images to standard space. 

8.2.2.3 Statistical analysis 

To test the hypotheses, statistical analyses were performed. Data from studies C and D were 

combined, as they were collected from the same MRI machine with exactly the same setup, 

and the subjects were doing the same task under the same conditions. 

First-level analysis 

The GLM model was built in this stage for each run per subject. The comparison conditions 

were set up to compare ALs versus the baseline of good tracking, also verses MSs, see Figure 

8-1. Also, this model accounted for all the explanatory variables and other parameters 

determined by the experimenter. In the analysis of ALs, MSs, DIREs, Sleep, ALs, and VBIP, 

and their temporal derivatives were accounted for (Woolrich et al., 2001).  
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In addition, task-related parameters such as: target speed-variability (63–285 pixels/s), poor-

responsive tracking, as defined below, and their temporal derivatives were accounted for, 

see Figure 8-2.  

• The target speed-variability regressor is the tracking-target related speed-variability, 

the regressor was calculated as follows: the average target speed-variability during 

each TR (2.5 s) was calculated using a moving-window of 2.5 s without overlap, then 

the average target speed-variability time-series was scaled to a unit height. This 

regressor was accounted for to remove the effect of changing the target speed from 

the baseline. 

• The poor-responsive tracking regressor is based on the error of tracking response 

relative to the target, the tracking error was calculated based on the following formula 

at each time point.  

Tracking error = √(YTar − YRes)2 + (XTar − XRes)2  

The regressor was calculated as follows: (1) the average tracking-error during each 

TR (2.5 s) was calculated using a moving-window of 2.5 s without overlap, (2) the 

average tracking-error time series was scaled to a unit height, (3) the regressor, which 

is a binary array having a value of one during poor tracking, was defined using a 

threshold calculated based on tracking error in the first 2 min of the session. This 

threshold is the mean tracking error of the first 2 min plus two standard deviations of 

the tracking error in the first 2 min. This aids in comparing the event of interest 

against the durations of only good responsive tracking. 

 

Figure 8-1 Contrasts setup, which determines the comparisons made. 
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Figure 8-2 Design matrix of the first-level stats analysis. The regressors in the model are: 

behavioural microsleeps (BM), Target-speed-variability, voluntary behaviour impacting 

performance (VBIP), attention lapses (AL), drowsiness-related responsiveness events (DIRE), Sleep, 

and Bad tracking. 

Second-level analysis 

This step was an intermediate stage to average the runs per subject where there was more 

than one run (Woolrich et al., 2001). This was applied to subjects from Study C who had 

ALs in two runs. 

Group-level analysis 

The last step was to average over all subjects (Woolrich et al., 2004a). As we were interested 

only in the GM of the brain, a segmentation step was applied to the BOLD images from the 

second-level stage using FAST (Zhang et al., 2001). The test for significance was done using 

permutation test via Randomise (Winkler et al., 2014a), which is nonparametric (Nichols & 

Holmes, 2002). Nonparametric methods have been shown to outperform parametric ones 

under varying smoothness, thresholds, and degrees of freedom (Hayasaka & Nichols, 2003; 

Holmes et al., 1996; Thirion et al., 2007). After performing the permutation test, correction 

for multiple comparisons was applied using TFCE at p < 0.05 (two-tailed) to determine the 

activation and deactivations regions (Friston et al., 1995; Worsley, 2001). This step was done 

using scripting of FSL’s Randomise function. Based on online documentation of the 
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Randomise function, with less than 20 subjects in the group analysis, like our case of 17 

subjects, then variance smoothing of 5 should be applied. 

8.2.3 Group-level ICA analysis 

In addition to voxel-wise analysis, which when corrected for multiple comparisons reduces 

the chances of getting significant results, we analysed the group ICA for the subjects of 

interest. Then we used spatial correlation to match the resulting components to the networks 

of interest (if any). Then we checked the significance of each component. To do that we used 

MELODIC toolbox v3.15 (Beckmann et al., 2005; Beckmann & Smith, 2004, 2005) from 

FSL. The analysis was done for the 17 subjects of interest in the combined studies. 

8.2.3.1 Pre-processing and registration 

Pre-processing was done based on section 8.2.2.1 and registration based on section 8.2.2.2 

for the combined studies through FSL. 

8.2.3.2 Group independent components 

We visualized different numbers of ICs (10, 15, 20, 25, and 30), and after visual inspection 

of each level, and the spatial correlation of the ICs with different resting-state networks of 

CONN (Whitfield-Gabrieli & Nieto-Castanon, 2012), 25 ICs were chosen as the best 

representation of networks. 

8.2.3.3 Dual-regression 

To estimate each subject’s spatial maps out of the group-level ICs, dual regression was 

applied to the group average ICs (Beckmann et al., 2009; Nickerson et al., 2017). 

8.2.3.4 Statistical analysis 

A GLM was created for each subject to see which components were significant under the 

contrasts made. Then, for the group-analysis, permutation testing was done using Randomise 

to test for significance, this step gave us a t-value for each IC which was then converted to 

p-value for the next step. The p-values from all ICs were corrected for multiple comparisons 

using FDR (Benjamini & Hochberg, 1995; Benjamini & Yekutieli, 2001). 

8.3 Results 

8.3.1 Voxel-wise group-level analysis 

This analysis was done to discover the neural signature of ALs relative to the baseline of 

good tracking. In addition, ALs were compared to MSs. 
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8.3.1.1 Attention lapses versus baseline of good tracking 

The group analysis of ALs versus baseline of good tracking revealed only activations, see 

Table 8-1 and Figure 8-3. 

Table 8-1 Significant clusters of increased BOLD activity during attention lapses. 

Cluster Voxels Z-MAX MAX X (mm) MAX Y (mm) MAX Z (mm) 

1 199 3.49 8 8 38 

 

 

Figure 8-3 Group-level significance result of the increased BOLD activity for attention lapses versus 

the baseline of good responsive tracking. The cluster is labelled in MNI coordinates. The activities in 

the cluster are circled in green for axial, sagittal, and coronal slices. 

The Atlasquery toolbox was used to report brain regions related to the cluster following 

Randomise. The Harvard-Oxford cortical atlas was the reference, and only major regions 

that contributed to more than 50% of the cluster were reported in Table 8-2. 

Table 8-2 Regions forming clusters of increased BOLD activity during attention 

lapses. 

Clusters Regions Lobe Side 

1 Juxtapositional Lobule Cortex (formerly Supplementary 

Motor Area) 

Frontal L,R 

Cingulate Cortex, anterior division Frontal L,R 

8.3.1.2 Attention lapses versus microsleeps 

The one-sample t-test group analysis for ALs versus MSs did not reveal any significant 

results. 

8.3.2 Group ICA analysis 

Group-level ICA analysis was done to discover the neural signature of ALs relative to 

baseline of good tracking. In addition, ALs were compared to MSs. 
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8.3.2.1 Attention lapses versus baseline of good tracking 

The group analysis for ALs versus the baseline of good tracking was done using Randomise, 

it did not reveal any significant results after correction for multiple comparisons using FDR 

correction over the ICs. However, it revealed a trend of activation in one IC with a t-value 

of 2.477.  

After spatially correlating the IC with resting state networks (DMN, DAN, FPN, SN, VSN, 

and SMN) from CONN, we found a correlation of 0.25 between the IC and SMN, see Table 

8-3 and Figure 8-4, 

Table 8-3 Clusters representing a trend of increased BOLD activity during attention 

lapses from group ICA. 

Cluster Voxels Z-MAX MAX X (mm) MAX Y (mm) MAX Z (mm) 

1 9597 7.64 54 6 24 

2 3570 7.28 -44 4 26 

 

 

Figure 8-4 Group-level trend of activity change of increased BOLD activity for attention lapses 

versus baseline of good responsive tracking within two clusters representing one independent 

component. The clusters are labelled in MNI coordinates. 

The Atlasquery toolbox was used to report brain regions related to each cluster following 

Randomise. The Harvard-Oxford cortical and subcortical atlases were the reference, and 

only major regions that contributed to more than 50% of each cluster are reported in Table 

8-4. 

Table 8-4 Regions forming clusters representing a non-significant trend of increased 

BOLD activity within an IC during attention lapses. 

Clusters Regions Lobe Side 

1 
Precentral Gyrus Frontal L 

Postcentral Gyrus Parietal L 
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Supramarginal Gyrus, anterior division Parietal L 

Inferior Frontal Gyrus, pars opercularis Frontal L 

Central Opercular Cortex Parietal L 

Parietal Operculum Cortex Parietal L 

Caudate Subcortical L 

2 

Precentral Gyrus Frontal R 

Postcentral Gyrus Parietal R 

Supramarginal Gyrus, anterior division Parietal R 

Inferior Frontal Gyrus, pars opercularis Frontal R 

Central Opercular Cortex Parietal R 

Parietal Operculum Cortex Parietal R 

Putamen Subcortical R 

8.3.2.2 Results of attention lapses versus microsleeps 

The group analysis, done using randomise, for ALs versus MSs did not reveal any significant 

results after correction for multiple comparisons over the ICs using FDR correction. 

8.4 Discussion 

The neural signature of ALs during 2-D CVT task has been investigated in the combined 

studies. Our results revealed activation in one cluster (Figure 8-3 and Table 8-1). The regions 

dorsal ACC and SMA, found by voxel-wise analysis, fell partially within 2 brain networks: 

SN and SMN. We also found the insignificant IC from the group ICA analysis to be spatially 

correlated with SMN (Table 8-3, Table 8-4, and Figure 8-4). No deactivations were found. 

In terms of duration of the ALs, 27 subjects had an average duration of 1.98 s, with a 

minimum duration of 0.51 s and a maximum of 8.13 s. Hence, the majority (78%) of ALs, 

were shorter than the TR (2.5 s) of the fMRI. In our fMRI analysis, a total of 17 subject were 

included, each with at least 2 ALs. The total number of ALs was 85 with an average duration 

of 1.74 s.  

An AL is considered a state of complete loss of performance associated with the process of 

decoupling (Schad et al., 2012; Smallwood & Schooler, 2015). This decoupling process will 

result in disconnecting attention from the external environment (performing the task), and 

either divert the attention internally, in the case of mind-wandering (Berthié et al., 2015), or 

lose the attention completely, in the case of mind-blanking (Ward & Wegner, 2013). This 

behavioural change is reflected in physiological changes in several brain networks. 
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Performing the task requires external attention which is associated with activation in DAN 

(Fox et al., 2006; Fox et al., 2005; Vossel et al., 2014). Also, shifting attention internally to 

focus on spontaneous thoughts (mind-wandering) (Andrews-Hanna, 2012; Andrews-Hanna 

et al., 2010; Mason et al., 2007) is correlated with the increased activity in DMN, and DMN 

activity was shown to be associated with spontaneous thoughts (Wang et al., 2009), which 

indicates the involvement of memory. In addition, voluntary mind-blanking (intentionally 

freeing the mind from thoughts) is associated with activation of ventral ACC and medial 

prefrontal cortex (mPFC) of DMN (Kawagoe et al., 2019). However, the memory processes 

are more likely not to be involved in involuntary mind-blanking (Efklides & Touroutoglou, 

2010; Moraitou & Efklides, 2009). So, we expected to see a decreased activity in DAN due 

to ALs, and no change in activity in DMN due to involuntary mind-blanks. 

Limitations of our analysis, (1) low statistical power, (2) we did not know whether ALs were 

mind-wandering or mind-blanking or a mixture of both, and (3) the average duration of ALs 

was less than the TR of fMRI. The task we used in both studies was a 2-D CVT task, in 

which the subjects were asked to track with a finger joystick, which implies that participants 

used their fingers, while inside an MRI (Poudel et al., 2008) for 50 min in Study C and 20 

min in Study D. This task is both monotonous, as the pattern of the task is repeatable, and 

fatiguing, as it requires continuous performance at a high level. We did not use a thought 

probe technique to estimate the type of AL, but used observations of simultaneous tracking 

performance and eye-video recording for each subject. A human expert labelled these lapses 

into multiple categories including MSs and ALs. 

Our analysis did not reveal any significant changes in either DMN or DAN. However, a 

significant activity increase was found in two regions: dorsal ACC which is part of SN, and 

SMA which is part of SMN. Increased activation in SMA is associated with the finger 

movement (Shibasaki et al., 1993; Wildgruber et al., 1997) and both preparation and 

execution of eye movement (Coiner et al., 2019), which is the case in our task as the subjects 

use their fingers for tracking. Bogler et al. (2017) supported this by concluding that 

activation in the SMA is unlikely to reflect task-unspecific vigilance. In addition, Kawagoe 

et al. (2019) found a decrease in activity in SMA due to voluntary mind-blanks which is the 

opposite of what we found, this supports that our ALs are more likely to be involuntary 

mind-blanks. 
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Activation in the dorsal ACC is associated with brief ALs (Weissman et al., 2006), as it is 

responsible for bringing attention back to the normal state (Banich et al., 2000; MacDonald 

et al., 2000; Paus, 2001; Weissman et al., 2005), which is performing the task in our case 

which involve oculomotor control (Coiner et al., 2019), after the drop in attention that 

happened because of the AL. Altogether, our results were not, possibly because of the 

temporal limitation, related to the duration of the ALs, but more likely to be after ALs, which 

would explain finger planning to continue performing the task by finding an increased 

activity in SMA. Increased activation in SN is also associated with low performance 

(Esterman et al., 2013; Esterman et al., 2014). 

Given that the average duration of ALs was less than the TR of the fMRI, some of the 

changes due to ALs are more likely not to be revealed. Also, the low statistical power might 

have affected finding significant changes in DAN and DMN. However, our significant 

finding is still associated with ALs, decoupling from external task, and the cessation of 

performance in general. In addition, no significant deactivation was found in any brain 

region. This might be due to the low statistical power, and the short average duration of ALs 

compared to the TR of MRI which might cause the fMRI not to be able picking any signature 

of ALs in the deactivation side. 

Group ICA did not reveal any significance, however, after correction for multiple 

comparisons, there were a trend of increased activity in one IC, which was spatially 

correlated with SMN. Which supports the idea that what we found is more likely to be related 

to what happen after the AL. 

We hypothesized in this chapter: during endogenous ALs in a 2-D CVT task there will be 

lower neural activity in DAN. Also given the literature of mind-wandering and voluntary 

mind-blanks, there will no change in activity in DMN if ALs were due to involuntary mind-

blanks. Based on our lack of voxel-wise and group ICA findings, we found no evidence to 

accept Hypothesis 1, however, we partially accept Hypothesis 8. We also did not find any 

physiological evidence that ALs are different from MSs. 

8.5 Summary 

This chapter started by describing the data used to analyse ALs, then introducing the analysis 

pipeline in detail for both voxel-wise and group ICA starting by pre-processing, co-

registration and normalization, and finally first-level and group-level statistical analyses. 

Two Hypotheses (H1 and part of H8) was explored in this chapter, H1 could not be accepted 
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based on findings, but H8 was partially accepted. In addition, no evidence was found through 

testing the DMN activity to associate the ALs in our task with mind-wandering or voluntary 

mind-blanks. However, our significant findings were discussed in the light of literature and 

how they relate to ALs.  
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 Haemodynamic Response ROI Analysis for 

Attention Lapses 

9.1 Introduction 

In the previous chapter, voxel-wise analysis was performed on the whole brain to reveal the 

brain regions associated with ALs. According to the hypotheses, we expected to see decrease 

in activity in DAN, in addition, an increase in activity in DMN if ALs were due to mind-

wandering or voluntary mind-blanks. However, there was no significant change in either of 

these networks. In this chapter, ALs were further analysed and the focus is on the dynamics 

of the HR in spherical ROIs, rather than the whole brain.  

9.2 Method 

9.2.1 Analysis data 

Same as section 8.2.1. 

9.2.2 Pre-processing and registration 

The pre-processing was done as in section 8.2.2.1 and registration as in section 8.2.2.2 for 

the combined studies through FSL. 

9.2.3 Haemodynamic response analysis 

The pre-processed, denoised, and registered-to-MNI BOLD images from each subject were 

used. Binary spherical masks of 10-mm radius (515 voxels) were created around coordinates 

that represented each region. These coordinates were based on the literature of ALs (Fox et 

al., 2015; Kawagoe et al., 2019; Mittner et al., 2014; Rosenberg et al., 2015) following a 

recommendation from Poldrack (2007) and Mumford (2012) on how to choose the ROIs – 

see Table 9-1. The processed functional images and spherical masks were used to generate 

average time series of all of the voxels within each mask, per ROI for each subject. The 

average of the time series was converted to percentage (Liu et al., 2017). The regressors 

(MSs, DIRE, VBIP, and Sleep) and the confounds (Target Speed and Bad Tracking) were 

first convolved with a canonical HRF from SPM toolbox, then regressed out of the average 

time series. The onsets of ALs were synchronized at t = 0 s, and windows of -20 s to 20 s 

were clipped around the onsets. These windowed ALs were then averaged per subject for 

each ROI. Finally at each time point (2.5 s spacing), the median of the average ALs time 

series (-20 s to 20 s) over all subjects was calculated, in addition to the first and third 

quartiles. 
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To explore the change of the median HR of ALs at each ROI, a permutation test was 

performed, in which the median HR of ALs at each ROI was compared to random events. 

The same process used to generate the percentage time series of ALs was followed, but with 

random events (i.e., not synchronized with AL onsets). For each subject, 2000 (number of 

permutations) random time series were generated. Then 2000 medians were calculated over 

subjects to be statistically compared to the median of ALs for each time point (-20 s to 20 s 

with a step of TR) (Winkler et al., 2014a), and a p-value was calculated at each time point. 

These p-values were not corrected for multiple comparisons; hence, we used a threshold of 

p < 0.01 as a measure of trend of change. For visualization, the median of ALs (plotted in 

red) was overlaid on the 2000 medians of random events (plotted in grey). This process was 

done for each ROI separately. 

We focused primarily on the 5-s after the onset of the AL, as, according to Lindquist and 

Wager (2007), the peak of the HRF occurs approximately 5-s after the onset of the event 

(impulse or step). 

Table 9-1 MNI coordinates of the region of interest used based on attention lapses 

literature. 

Network Region Max-X (mm) Max-Y (mm) Max-Z (mm) 

DMN 

PCC -1 -55 26 

Medial PFC 0 60 -5 

Precuneus -8 -56 39 

Left IPL -46 -72 25 

Right IPL 56 -51 33 

DAN 

Left IPS -60 -36 40 

Right IPS 59 -35 41 

Left FEF -32 1 49 

Right FEF 32 0 50 

FPN 

Left PPC -46 -58 49 

Right PPC 52 -52 45 

Left DLPFC -37 38 23 

Right DLPFC 38 42 15 

SN 
Dorsal ACC 8 8 38 

Ventral ACC -2 42 0 
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9.3 Results 

9.3.1 Haemodynamic response analysis of the significant voxel-wise cluster 

To visualize the time series of ALs found in the significant cluster (199 voxels) resulted from 

the voxel-wise analysis, we used the binary mask of the cluster. The time series of the 

significant cluster is shown in Figure 9-1. As expected, the maximum peak was at the 5-s 

time point, and had a p-value at the threshold 0.01. 

 

Figure 9-1 Average of haemodynamic response in significant regions during attention lapses. 

9.3.2 Haemodynamic response analysis of the regions of interest 

To investigate hypotheses 1 and 8 further, we looked at the trend of change of the HR time-

series in the brain ROI of DMN in Figure 9-2, DAN in Figure 9-3, FPN in Figure 9-4, and 

SN in Figure 9-5. DMN was represented by medial PFC (MPFC), PCC, Precuneous, and 

right and left IPL. DAN was represented by right and left FEF and right and left IPS. While 

FPN was represented by right and left posterior parietal cortex (PPC), and right and left 

dorsolateral-prefrontal cortex (DLPFC). Finally, SN was represented by dorsal and ventral 

ACC.  

For DMN, only left IPL had p-values less than the p = 0.01 threshold at -15 s (p = 0.008) 

and -12.5 s (p = 0.005), where the HR had a trend of increase. DAN showed a trend of 

increase in HR around 7.5 s in left IPS (p = 0.004). FPN showed a trend of decrease at -2.5 

s (p = 0.009) in the right PPC. Finally, the dorsal ACC of SN, which has the same peak 

coordinates as the significant cluster, showed a trend of increased HR at 5 s (p = 0.002) and 

7.5 s (p = 0.001). 

 



P a g e  | 9-96 

 

 

 

 

 



P a g e  | 9-97 

 

 

 

 

Figure 9-2  Average of haemodynamic response in regions of default mode network during attention 

lapses. 
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Figure 9-3  Average of haemodynamic response in regions of dorsal attention network during 

attention lapses. 
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Figure 9-4  Average of haemodynamic response in regions of frontoparietal network during 

attention lapses. 

 

 

Figure 9-5  Average of haemodynamic response in regions of salience network during attention 

lapses. 
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9.4 Discussion 

In the previous chapter, voxel-wise analysis did not reveal any significant changes in HR in 

either DMN or DAN. However, a significant increase in activity was found in a small cluster 

which partially included two regions: posterior/dorsal ACC and interior SMA based on the 

Harvard-Oxford atlas. To explore further, we looked at trends of dynamic changes in the 

BOLD time-series in the spherical ROI in both DMN, DAN and SN, in addition to FPN. We 

also further explored our findings by looking at the significant voxel-wise cluster in SN. 

Based on Lindquist and Wager (2007), BOLD changes due to HRF should be seen from 5 

to 10 s after the onset, where the onset of ALs is at 0. As expected, there was an increased 

HR around the 5-s timepoint in the significant cluster. The time series of the left IPL of DMN 

showed a trend of change at around 15-s before the onset of ALs. In contrast, a substantial 

increase in activity would have been expected if the AL was due to mind-wandering 

(Andrews-Hanna, 2012; Andrews-Hanna et al., 2010; Mason et al., 2007). Increased activity 

in DMN has been associated with a voluntary “think-of-nothing” mind-blanking state 

(Kawagoe et al., 2019). On the other hand, mind-blanks are more likely to be represented by 

involuntary “nothing-in-mind” state in which it is considered there is no memory recall 

(Ward & Wegner, 2013). This indicates that all, or at least the majority, of the ALs seen in 

our 2-D CVT task were more likely to be due to involuntary mind-blanks. The lack of any 

substantial increase in activity during ALs also indicates that DMN is most likely not 

involved in involuntary mind-blanking.  

An increased HR 15 s prior to the onset in the left IPL, where left IPL is associated with 

sensorimotor processing and spatial cognition (Wang et al., 2017), is an important finding. 

Increased activation in DMN at a substantial number of seconds prior to loss of 

responsiveness indicates that ALs may result from a process that begins prior to the AL 

(Smallwood, 2011).  

The left IPS in the DAN had a trend of increased HR 7.5 s. The relation between the 

increased activity of DAN and external attention is well established (Fox et al., 2006; Fox et 

al., 2005; Vossel et al., 2014). This indicates that activity in part of the DAN increases after 

the onset to assist or reflect the process of coming out of the AL. DMN activity, which is 

positively associated with mind-wandering (Andrews-Hanna, 2012; Andrews-Hanna et al., 

2010; Mason et al., 2007) and voluntary mind-blanking (Kawagoe et al., 2019), has been 

shown to be anticorrelated with the activity of DAN, at least in some circumstances (Chai et 
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al., 2012; Esposito et al., 2018). However, the literature has contradictory findings regarding 

DAN during mind-wandering: DAN can show increased activity (Christoff et al., 2009; 

Groot et al., 2021; Mittner et al., 2014), but also decreased activity (Mittner et al., 2016). 

Also, the literature shows that DAN can have increased activity in cases when task 

performance is low (Esterman et al., 2013; Esterman et al., 2014; Kucyi et al., 2017). Our 

physiological findings in DMN and DAN, together with behavioural characteristics, 

indicates that it is highly unlikely that the ALs seen in our 2-D CVT task were due to mind-

wandering. 

The dorsal ACC (part of SN) showed a trend of increased HR activity at 5 s and 7.5 s. 

Increased activation in dorsal ACC is associated with brief ALs (Weissman et al., 2006), as 

the dorsal ACC is responsible for helping regain focused attention (Banich et al., 2000; 

MacDonald et al., 2000; Paus, 2001; Weissman et al., 2005), which, in our case, is 

performing the 2-D CVT task, after losing attention due to the AL. In contrast, the ventral 

ACC, which is associated with “think-of-nothing” voluntary mind-blanking state (Kawagoe 

et al., 2019), did not show any trend of HR activity change around the 5-s timepoint, which 

appears to reflect the key difference between our involuntary ALs and the volitional ALs 

investigated by Kawagoe et al. (2019).  

The FPN is core to the decoupling process (Dixon et al., 2018; Macaluso & Doricchi, 2013; 

Spreng et al., 2010), as it sustains attention internally by connecting to DMN in the case of 

mind-wandering (Godwin et al., 2017; He et al., 2021), or externally by connecting to DAN. 

There was a trend of decrease in HR activity around the -2.5-s timepoint. Given that FPN is 

associated with the regulation of the change from external to internal and vice versa, finding 

a trend of drop in HR may before the onset of ALs indicate that FPN is not associated with 

these ALs in case they are due to mind-wandering. Also, may indicate that FPN is 

contributing to decoupling process due to ALs, as FPN is associated with the coordination 

of visuospatial attention (Lückmann et al., 2014; Marek & Dosenbach, 2018; Scolari et al., 

2015). 

In terms of limitations, we could not directly compare results from mind-wandering and 

mind-blanking as we do not have distinct behavioural gold standards of these. Also, given 

that the average duration of ALs (1.74 s) was less than the TR (2.5 s) of the fMRI, some 

changes due to ALs were less likely to have been revealed. Also, low statistical power due 

to relatively low numbers of subjects and ALs, and relatively small effect sizes of changes 
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in BOLD activity could well have adversely affected finding significant changes in all of the 

ROIs investigated via dynamic HR analysis. 

9.5 Summary 

This chapter introduced further analysis of ALs to investigate ROIs in networks of particular 

interest. It started by describing the analysis pipeline in detail for HR analysis after following 

the same procedure for pre-processing, co-registration and normalization used in the voxel-

wise analysis. This chapter has revealed 2 important trends of activity changes that indicates: 

(1) ALs are more likely being involuntary mind-blanks rather than mind-wandering or 

voluntary mind-blanks (first to be shown in a continuous task) and (2) increased activity in 

DMN (left IPS) is more likely to provide a biomarker predictive of, and substantially 

preceding, an impending AL.  
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 fMRI Functional Connectivity Analysis of 

Attention Lapses 

10.1 Introduction 

In this chapter, fMRI data were used to answer hypotheses 2 to 6, and parts of 8. The aims 

were to (i) investigate changes in functional connectivity of endogenous ALs versus the 

baseline of good responsive tracking within and between the networks of interest, pre-

defined in CONN: DMN, DAN, FPN, VSN, SMN, and SN, and (ii) reveal evidence in 

support of whether the ALs were mind-wandering or mind-blanking. In addition, the pre-

defined networks: WMN (Piccoli et al., 2015) and EMN (Coiner et al., 2019) were also 

examined, see Table 10-1. A total of 17 subjects and 85 ALs with an average duration of 

1.74 s from Studies C and D were used in this analysis. 

Table 10-1 Regions within network of interest. 

Network State 

DMN Medial PFC (1, 55, -3) 

Left lateral parietal cortex (LPC) (-39, -77, 33) 

 Right LPC (47, -67, 29) 

PCC (1, -61, 38) 

DAN Left FEF (-27, -9, 64) 

Right FEF (30, -6, 64) 

Left IPS (-39, -43, 52) 

Right IPS (39, -42, 54) 

FPN Left LPFC (-43,33,28) 

Left PPC (-46, -58, 49) 

Right LPFC (41, 38, 30) 

Right PPC (52, -52, 45) 

VSN Visual medial cortex (VMC) (2, -79, 12) 

Visual occipital cortex (VOC) (0, -93, -4) 

Left visual lateral cortex (VLC) (-37, -79, 10) 

Right VLC (38, -72, 13) 

SMN Left sensorimotor lateral cortex (SLC) (-55, -12, 29) 

Right SLC (56, -10, 29) 

Sensorimotor superior cortex (SSC) (0, -31, 67) 
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SN ACC (0, 22, 35) 

Left anterior insula (AInsula) (-44, 13, 1) 

Right AInsula (47, 14, 0) 

Left rostral PFC (RPFC) (-32, 45, 27) 

Right RPFC (32, 46, 27) 

Left sensorimotor gyrus (SMG) (-60, -39, 31) 

Right SMG (62, -35, 32) 

WMN Left LPFC (-43,33,28) 

Right LPFC (41, 38, 30) 

Left IPS (-39, -43, 52) 

Right IPS (39, -42, 54) 

EMN PCC (1, -61, 38) 

Left LPFC (-43,33,28) 

Right LPFC (41, 38, 30) 

Left FEF (-27, -9, 64) 

Right FEF (30, -6, 64) 

VMC (2, -79, 12) 

VOC (0, -93, -4) 

10.2 Method 

10.2.1 Analysis tool 

CONN-fMRI v20b (http://www.nitrc.org/projects/conn) software (Whitfield-Gabrieli & 

Nieto-Castanon, 2012) was used. 

10.2.2 Pre-processing and registration 

CONN, which is a SPM (Ashburner, 2012) based software, uses SPM to do the pre-

processing. So for consistency, the same pre-processing and registration parameters were 

used as in 8.2.2.1 and 8.2.2.2. The following pre-processing pipeline was used, which 

included: motion correction, spatial smoothing using a Gaussian kernel with a full-width-at-

half maximum of 5 mm, temporal filtering at 100 s (0.01 Hz), slice-time correction, 

functional to structural registration at 6 DOF, and using MNI as the atlas.  

http://www.nitrc.org/projects/conn
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10.2.3 Subject (1st-level) analysis 

10.2.3.1 Denoising 

To reduce noise, CONN uses the anatomical CompCor approach (Behzadi et al., 2007). 

Segmentation to identify the WM and CSF from the structure images of the subjects, then 

CompCor via principal components analysis extracts 5 components each from WM and CSF. 

These components, in addition to the six motion parameters and their temporal derivatives, 

scrubbing of high-motion data points based on the artefact removal tool (ART) (Mazaika et 

al., 2005), and our defined covariates BadTracking, TargetSpeed, MS, DIRE, Sleep, and 

VBIP events were all used as confounds in the denoising step to remove their effect from 

the data, see Figure 10-1. This is a carpet plot which unravels each volume from a 3-D cube 

of voxels into a 2-D plot of squares, each column represents an individual volume, and each 

row is an individual voxel in that volume. Denoising smooths out the rougher transitions 

between voxels that are probably caused by motion scanner drift and physiological noise, 

and the time-series plot of the global signal reflects this smoothing out as well. 

 

Figure 10-1 Result of the denoising step to the BOLD signal in CONN. The top carpet plot 

represents the signal before denoising, while the bottom carpet plot represents the signal after 

denoising. Here only one volume was identified as an outlier. 

10.2.3.2 Modelling 

Weighted GLM FC analysis was used to do the ROI-to-ROI analysis for each subject, HRF 

weighting was used to weight the scans within each condition when computing condition-

specific connectivity measures. Bivariate correlation was used as an outcome measure for 

the second-level analysis. 
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10.2.4 Group (2nd-level) analysis 

The subjects’ ROI-to-ROI maps were used for the group analysis. A one-sample t-test was 

applied using parametric multivariate statistics (Jafri et al., 2008). A two-sided FDR 

correction for network-based statistics (Zalesky et al., 2010) was used to correct for multiple 

comparisons at p < 0.05 to reveal significant connections. The analysis was done to check 

the FC of ALs versus baseline of good responsiveness tracking. 

10.3 Results  

10.3.1 FC analysis for attention lapses versus baseline of good tracking 

FC was checked within DMN, FPN, DAN, SMN, SN, VSN, WMN, and EMN are listed in 

Table 10-2, and between DMN-FPN, DAN-FPN, SMN-FPN, VSN-FPN, DAN-EMN, 

DMN-EMN, WMN-DMN, in addition to SN-DMN, and SN-DAN are listed in Table 10-3. 

All results are corrected for multiple comparisons using FDR p < 0.05. 

Table 10-2 Significant changes in functional connectivity within networks for 

attention lapses versus baseline. 

FC State T(16) P_FDR 

Within 

DMN 

Increase in FC between left LPC & right LPC  5.25 0.001 

Increase in FC between PCC & right LPC 3.56 0.008 

Within 

DAN 

Increase in FC between right FEF & left FEF 4.78 0.001 

Increase in FC between right IPS & left IPS 4.12 0.002 

Increase in FC between right FEF & right IPS 3.42 0.007 

Increase in FC between left FEF & left IPS 2.38 0.045 

Within 

FPN 

Increase in FC between left PPC & right PPC 6.44 <0.001 

Increase in FC between left LPFC & right LPFC 5.30 <0.001 

Increase in FC between left LPFC & left PPC 5.26 <0.001 

Increase in FC between right LPFC & left PPC 4.31 0.001 

Increase in FC between right LPFC & right PPC 4.02 0.001 

Increase in FC between left LPFC & right PPC 3.89 0.001 

Within 

VSN 

Increase in FC between left VLC & right VLC 4.04 0.006 

Increase in FC between VMC & right VLC 2.69 0.049 

Within 

SMN 

Increase in FC between right SLC & left SLC 4.84 0.001 

Increase in FC between right SLC & SSC 2.96 0.012 

Increase in FC between left SLC & SSC 2.84 0.012 
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Within 

SN 

Increase in FC between right SMG & left SMG 7.87 <0.001 

Increase in FC between right AInsula & left AInsula 5.31 0.001 

Increase in FC between right AInsula & left SMG 5.07 0.001 

Increase in FC between right RPFC & left RPFC 5.00 0.001 

Increase in FC between left AInsula & left SMG 4.93 0.001 

Increase in FC between ACC & left RPFC 4.90 0.001 

Increase in FC between right AInsula & ACC 3.48 0.009 

Increase in FC between left AInsula & right SMG 3.31 0.012 

Increase in FC between right AInsula & right SMG 3.12 0.015 

Increase in FC between ACC & right RPFC 2.82 0.026 

Within 

WMN 

Increase in FC between left LPFC & right LPFC 5.30 <0.001 

Increase in FC between left IPS & right IPS 4.12 0.002 

Within 

EMN 

Increase in FC between left LPFC & right LPFC 5.30 0.002 

Increase in FC between left LPFC & VOC 3.24 0.036 

Decrease in FC between PCC & VOC -2.98 0.046 

Increase in FC between left FEF & right FEF 4.78 0.002 

 

FC analysis within DMN, DAN, FPN, VSN, SMN, SN, EMN, and WMN showed an 

increased FC in all networks, and no significantly decreased FC except in EMN between 

PCC and VOC. The DMN has increased FC between the PCC and right and left LPC. DAN 

showed an increased FC within right and left FEF, and within right and left IPS. FPN had an 

increase in FC within right and left LPFC, and within right and left PPC. There was an 

increase in FC of VSN between VMC and right and left VLC. In addition, SMN increased 

in FC between right and left SLC and SSC. Also, increased FC within SN in regions: right 

and left SMG, right and left AInsula, ACC, and right and left RPFC. An increased FC was 

also found in WMN within right and left LPFC, and within right and left IPS. 

Table 10-3 Significant changes in functional connectivity between networks for 

attention lapses versus baseline. 

FC State T(16) P_FDR 

DMN-FPN Increase in FC between right LPC & right PPC 3.70 0.007 

Increase in FC between right LPC & left PPC 2.88 0.030 

Increase in FC between left LPC & left PPC 2.60 0.049 

DAN-FPN No change in FC N/A N/A 
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DMN-EMN Increase in FC between PCC & right LPC 3.56 0.030 

Increase in FC between left LPFC & right LPFC 5.30 0.002 

Increase in FC between left LPFC & VOC 3.24 0.046 

Increase in FC between left FEF & right FEF 4.78 0.003 

DAN-EMN Increase in FC between left LPFC & right LPFC 5.30 0.003 

Increase in FC between left FEF & right FEF 4.78 0.004 

Increase in FC between right IPS & right FEF 3.42 0.026 

Decrease in FC between right IPS & VOC -3.41 0.026 

Decrease in FC between VOC & left LPFC 3.24 0.030 

Decrease in FC between right IPS & VMC -3.04 0.039 

Decrease in FC between PCC & VOC -2.98 0.039 

VSN-FPN Increase in FC between right VLC & left LPFC 4.80 0.001 

Increase in FC between right VLC & right PPC 3.75 0.005 

Increase in FC between left VLC & left LPFC 4.25 0.003 

Increase in FC between left VLC & left PPC 3.35 0.010 

Increase in FC between left VLC & right LPFC 3.25 0.011 

Increase in FC between VOC & left LPFC 3.24 0.011 

Increase in FC between VMC & left LPFC 2.62 0.034 

SMN-FPN Decrease in FC between SSC & right PPC -4.09 0.003 

Decrease in FC between SSC & right LPFC -3.44 0.008 

Decrease in FC between SSC & left PPC -3.16 0.013 

Decrease in FC between SSC & left LPFC -2.40 0.046 

DMN-WMN Decrease in FC between right LPC & right IPS -4.06 0.006 

SN-DMN No change in FC N/A N/A 

SN-DAN Increase in FC between left SMG & right IPS 4.37 0.003 

Increase in FC between left SMG & left IPS 3.95 0.006 

Increase in FC between right SMG & right IPS 3.40 0.016 

 

FC analysis between networks showed both increased and decreased FC. When testing FC 

between FPN and DMN, there were increases in FC between right and left LPC and right 

and left PPC, but no change in FC was found between FPN and DAN. FC between EMN 

and DMN showed increases within right and left LPFC, and within right and left FEF, also 

between PPC and right LPC, and between left LPFC and VOC. However, FC between EMN 
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and DAN showed both increases and decreases; increases in FC within right and left LPFC, 

and within right and left FEF, also between right IPS and right FEF. While FC between right 

IPS and VOC, between VOC and left LPFC, between right IPS and VMC, and between PCC 

& VOC have decreased. 

FC between FPN and SMN has decreased; there were decreases in FC between SSC and 

right and left PPC, and right and left LPFC. There were increases in FC between VSN and 

FPN among all the regions right and left VLC, VOC, and VMC of VSN, and right and left 

LPFC and right and left PPC of FPN. When testing FC between DAN and SN, we found 

increases in FC between right and left SMG and right and left IPS. No change in FC was 

found between SN and DMN. Finally, a decrease in FC was found between right LPC of 

DMN and right IPS of WMN (defined nodes).  

Significant between-network FC changes are also shown in ring display for DAN and DMN 

in Figure 10-2, and DMN-FPN, DAN-FPN, and FPN in Figure 10-3, and for DMN-EMN, 

DAN-EMN, and EMN in Figure 10-4, also for SMN-FPN and VSN-FPN in Figure 10-5, 

and for SN-DMN, SN-DAN, and SN in Figure 10-6. Finally, for WMN and DMN-WMN in 

Figure 10-7. 

 

 

Figure 10-2 Significant within-network functional connectivity (FC) changes shown in a ring display 

of three FC measures: within dorsal attention network (left), and within default mode network 

(right). 
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Figure 10-3 Significant functional connectivity (FC) changes shown in a ring display of three FC 

measures: between frontoparietal network-dorsal attention network (top left), between 

frontoparietal network-default mode network (top right), and within frontoparietal network 

(bottom). 
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Figure 10-4 Significant functional connectivity (FC) shown in a ring display of three FC measures: 

between dorsal attention network-eye movement network (top left), between default mode network-

eye movement network (top right), within eye movement network (bottom). 

 

 
Figure 10-5 Significant functional connectivity (FC) shown in a ring display of three FC measures: 

between visual network-frontoparietal network (top left), between sensorimotor network-

frontoparietal network (top right). 
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Figure 10-6 Significant functional connectivity (FC) shown in a ring display of three FC measures: 

between salience network-dorsal attention network (top left), between salience network -default 

mode network (top right), within salience network (bottom). 

 

 

Figure 10-7 Significant functional connectivity (FC) shown in a ring display of three FC measures: 

within working memory network (left), between working memory network-default mode network 

(right). 
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10.3.2 Changes in functional connectivity between attention lapses and 

microsleeps 

We examined FC within and between networks of interest: DMN, DAN, FPN, VSN, and 

SMN to reveal changes in FC between ALs and MSs. The analyses did not reveal any 

significant changes in FC between ALs and MSs.  

10.4 Discussion 

ROI-to-ROI FC analysis for ALs versus the baseline of good responsive tracking was 

performed on the combined studies (Table 10-2 and Table 10-3). The analysis targeted FC 

within and between the networks of interest: DMN, DAN, FPN, VSN, SMN, SN, EMN and 

WMN. The total number of ALs was 85 with an average duration of 1.74 s, which is less 

than the TR (2.5 s) of fMRI.  

We found an increased FC between DMN and FPN, while no change in FC between FPN 

and DAN. Also, increased FC between DMN and EMN, while FC between DAN and EMN 

showed both increases and decreases. In addition, FC between FPN and VSN increased, 

while FC between FPN and SMN decreased. Finally, FC between DMN and WMN has 

decreased. 

During an AL, there is a complete decoupling from external environment (Ward & Wegner, 

2013). Given the association between FPN and directing attention from external to internal 

and vice versa (Dixon et al., 2018; Spreng et al., 2010), and the association between DAN 

and external attention (Fox et al., 2006; Fox et al., 2005; Vossel et al., 2014), a decrease in 

FC between DAN and FPN was expected during ALs. As the 2-D CVT requires visual 

fixation on target and response stimuli on a screen, this requires the eyes to move, and this 

does not happen during ALs due to complete decoupling. Thus, a decrease in FC between 

DAN and EMN was expected.  

Finally, given the association between FPN and the visuospatial attention coordination 

(Lückmann et al., 2014; Marek & Dosenbach, 2018; Scolari et al., 2015), decreased FC 

between FPN and SMN was expected during ALs relative to FC when performing the 2-D 

CVT (Cavina-Pratesi et al., 2006; Shibasaki et al., 1993; Wildgruber et al., 1997) and 

likewise between FPN and VSN (Desimone & Duncan, 1995; Helfrich et al., 2013).  

The decoupling process during an AL results in disconnecting attention from the external 

environment (performing the task), with attention being either diverted internally, as in 

mind-wandering (Berthié et al., 2015), or completely lost as in mind-blanking (Ward & 
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Wegner, 2013). This behavioural change is reflected in physiological changes in several 

brain networks. Since shifting attention internally to focus on spontaneous thoughts 

(Andrews-Hanna, 2012; Andrews-Hanna et al., 2010; Mason et al., 2007) or freeing the mind 

from thoughts in voluntary mind-blanks is associated with activation of DMN based on 

(Kawagoe et al., 2019). DMN was found to be a core network in the process of decoupling 

(Eichele et al., 2008; Weissman et al., 2006). 

Mind-wandering is quite different from mind-blanking, although both involve at least partial 

decoupling of attention from an external task (Ward & Wegner, 2013). Mind-wandering is 

defined as a state in which attention is diverted to internal TUTs. These thoughts might be 

related to the past or future, which means the brain’s memory is involved (Hutchinson & 

Turk-Browne, 2012; Wang et al., 2009) and given the anticorrelation between WMN and 

DMN when focusing on a memorized stimulus (Piccoli et al., 2015), a decrease in FC 

between DMN and WMN might be expected if mind-wandering was present. Because of the 

association between DMN and FPN in the generation of TUTs (Smallwood et al., 2012), an 

increased FC between these two networks would be expected during mind-wandering. 

Likewise, an increase in FC between DMN and EMN would be expected given the 

association between mind-wandering and eye movements (Hartmann et al., 2014). 

In contrast, mind-blanking is defined as an empty mind state which more likely does not 

involve memory recall (Kawagoe et al., 2019; Ward & Wegner, 2013). Failure in short-term 

memory (STM) processing, according to Moraitou and Efklides (2009) and Efklides and 

Touroutoglou (2010), is associated with a blank-in-mind or mind-blanking, in which there 

is nothing in mind while being behaviourally awake (Ward & Wegner, 2013), which is 

different than failing to interact and/or process information from the environment. In 

addition, attention and memory are highly associated when functioning (Chun, 2011), 

sharing resources (Zokaei et al., 2014), and lapsing (deBettencourt et al., 2019). So, 

decreases in FC between DMN and WMN, and between DMN and EMN were expected if 

mind-blanking was present. However, blank-in-mind might simply be a temporary loss of 

control as opposed to loss of attention (Di Lollo et al., 2005). Finally, given the association 

between FPN and memory functions (Borst & Anderson, 2013), a decrease in FC between 

FPN and DMN would be expected for mind-blanking. 

To reveal what happens during ALs in our 2-D CVT task, we investigated FC between DAN 

and FPN, where we found no significant change. A decrease in FC between FPN and DAN 
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was expected for ALs due to decoupling. However, if attention was being directed externally 

before the AL (i.e., when tracking), then no change in FC could mean that attention was still 

being directed externally during the AL (e.g., an externally-diverted lapse). On the other 

hand, finding increased FC between both right and left LPC of DMN and right and left PPC 

of FPN supports the idea that these ALs are associated with internal thoughts that could be 

task-related given the very short average duration of our ALs. However, another view might 

be that these ALs are due to mind-wandering because of the increased FC between FPN and 

DMN (Godwin et al., 2017; He et al., 2021; Smallwood et al., 2012). Also, the increased FC 

within DMN agrees with the same view (Godwin et al., 2017; He et al., 2021; Kucyi et al., 

2017). 

FC between DAN and EMN was investigated, where we found both increases and decreases: 

increases in FC within right and left LPFC, and within right and left FEF, also between right 

IPS and right FEF. While FC between right IPS and VOC, between VOC and left LPFC, 

between right IPS and VMC, and between PCC and VOC have decreased. However, FC 

between DMN and EMN showed only increases within right and left LPFC, and within right 

and left FEF, also between PPC and right LPC, and between left LPFC and VOC. Both FC 

between DAN and EMN, and between DMN and EMN agrees on finding increased FC 

within right and left LPFC, and within right and left FEF. If the ALs were due to mind-

wandering, then this is expected, as FEF in addition to IPS are associated with oculomotor 

control (all eye movements) (Tomassini et al., 2007; Umarova et al., 2010). Also, LPFC 

contributes to the processing of eye movements (Pierrot-Deseilligny et al., 2004; Pierrot‐

Deseilligny et al., 2003). This falls in line with the relation between mind-wandering and 

eye movements (Hartmann et al., 2014). 

Increased FC between VOC of VSN, which is associated with processing the visual stimuli 

(Coiner et al., 2019), and DMN supports that ALs again are due to mind-wandering as the 

increased FC between DMN and VSN was shown to be associated with mind-wandering 

(Zhou & Lei, 2018), while the decreased FC between VSN and DAN is associated with 

decoupling.  

However, given the short average duration of our ALs, it is highly unlikely that subjects had 

time to think about memories within the AL duration. The initiative of moving eyes, which 

was shown in the increased FC between the regions responsible for eye movements of EMN 

and DMN, also DAN, could indicate a process of regaining attention before being fully 
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attending to the task as the regions of EMN responsible for processing visual input had 

decreased FC with DAN. 

The decreases in FC between SSC of SMN and right and left PPC, and right and left LPFC 

of FPN again supports the idea of decoupling as during ALs, there will be no interaction 

with the task as expected. But, finding increased FC between right and left VLC, VOC, and 

VMC of VSN, and right and left LPFC and right and left PPC of FPN was not expected 

based on the idea of decoupling. Also, according to Zhou and Lei (2018), decreased FC 

between FPN and VSN was found when comparing mind-wandering to being on-task. 

However, this increase in FC might be associated with getting out of the AL, as VLC and 

VMC were shown to be associated with the control of pursuit eye movements, in addition to 

maintaining the visual stability (Kan et al., 2008). 

Finally, we found a decrease in FC between right LPC of DMN and right IPS of WMN 

(defined by Piccoli et al. (2015)). This serves in ALs favour in general as it was not expected 

to see an increased FC between WMN and DMN in either mind-wandering (Piccoli et al., 

2015), or mind-blanking given that it is a state of an empty mind (Kawagoe et al., 2019; 

Ward & Wegner, 2013).  

Based on the findings, we have evidence to accept Hypotheses 3, 5 and 6, but no evidence 

to support acceptance of Hypotheses 2 and 4. Given the short average duration of ALs, we 

found support that the ALs during 2-D CVT task are more likely to be due to mind-blanking 

and not mind-wandering. 

Another interesting finding is the relationship between SN, DMN, and DAN. Based on 

Maillet et al. (2019), FC between SN and DMN increases when performing a task that 

requires internal attention, while connectivity between SN and DAN increases when 

performing a task that requires external attention. We found no change in FC between SN 

and DMN, while there was an increase in FC between right and left IPS of DAN and an 

increase in FC between right and left SMG of SN. Given that SN is responsible for switching 

between DMN and task-related networks (Goulden et al., 2014; Menon & Uddin, 2010), and 

the short average duration of ALs, we conclude that an increase in FC between SN and DAN 

could be associated with the process of recovery from an AL. 

10.5 Summary 

This chapter started by introducing the analysis pipeline in detail starting by pre-processing, 

co-registration and normalization, denoising, and finally first-level and group-level 
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statistical analyses. Hypotheses (2 to 6, and parts of 8) were explored. We found support for 

decoupling during ALs, and that ALs during 2-D CVT task are more likely to be involuntary 

mind-blanks and not mind-wandering. Our significant findings were discussed in the light 

of literature and how they relate to ALs. 
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 EEG Analysis of Attention Lapses 

11.1 Introduction 

In this chapter, EEG data were used to investigate hypothesis 7 and part of hypothesis 8. The 

aim was to reveal the neural signature of endogenous ALs compared with good responsive 

tracking (baseline) within the delta, theta, alpha, beta, and gamma EEG bands by statistically 

analysing reconstructed cortical sources. 

11.2 Method 

11.2.1 Data  

The analysis was based on Studies C and D, as both had exactly the same EEG setup and 

task. The only difference was that the subjects had task duration of 50 min in Study C, but 

only 20 min was in Study D. The total number of subjects who had ALs EEG data from the 

two studies was 27, with 97 events. This number dropped to 16 subjects and 60 events 

because of missed or corrupted EEG data.  

11.2.2 Data acquisition 

EEG data were recorded from 64-channel scalp locations using the QuickCap 

(Compumedics, Neuroscan, Charlotte, NC, USA). The reference electrode was placed 

between Cz and Pz and the ground electrode was placed close to Fz. Electrodes on the cap 

were placed according to the 10-20 international standard. Electrode organization for 

VEOG/EEG recording and electrode placement on the cap is illustrated in Figure 11-1 and 

Table 11-1. VEOG was recorded by placing bipolar Ag-AgCl sintered electrodes above and 

below the centre of the left eye, amplifying the signal using Synamps2 amplifiers, and 

recording the signal using Scan 4.4 software.  

 

Figure 11-1 Organization of electrodes in the QuickCap used for VEOG/EEG recording with the 

front at the top of the diagram (from Poudel, 2010). 
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Table 11-1 Acquisition parameters used for VEOG/EEG recording. 

Characteristics Quality 

Sampling frequency 10 kHz 

Low-pass filter 200 Hz 

Notch filter 50 Hz 

Impedance < 20 kΩ 

11.2.3 Pre-processing and denoising 

This part of the analysis was done using MATLAB v20b in conjunction with the EEGLAB 

toolbox v2020_0 (Delorme & Makeig, 2004) and multiple plug-ins called through EEGLAB. 

As our EEG data were recorded inside an MR scanner, MR-related artefacts were introduced. 

There were two sources of artefacts specifically associated with simultaneous acquisition 

with MR: gradient and cardio-ballistic. The fmrib plug-in (Iannetti et al., 2005; Niazy et al., 

2005) was used to minimize MR-related artefacts, as illustrated in Figure 11-2. 

 

 

 

Figure 11-2 Illustration of the process of MR-related artefacts removal: On the top is the raw data 

with both gradient and cardio-ballistic artefacts. The middle image is the stage after gradient 

artefacts removal. The bottom image is after pulse artefacts removal. 
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The data were down-sampled from 10 kHz to 500 Hz to reduce storage space and processing 

time. The data were re-referenced to the common average. The data were high-pass filtered 

at 1 Hz to remove the slow drift. 

PrepPipeline plug-in (Bigdely-Shamlo et al., 2015) was used to identify bad electrodes and 

remove line noise. The channels were re-referenced to the average of all electrodes. Through 

visualizing the spectral maps or by checking the properties of each electrode, we were able 

to identify which electrodes to remove. Bad electrodes had out-of-EEG voltage range and/or 

smooth spectra, as shown in Figure 11-3. 

 

Figure 11-3 Example of frequency spectra of EEG electrodes showing some smooth curves around -

27 dB representing bad electrodes. 

Due to the number of electrodes interpolated and the location of these electrodes, all subjects 

from Study D were excluded in the end. The number of electrodes interpolated was ≥ 25% 

(i.e. ≥ 15 out of 60) or interpolated electrodes were adjacent to each other, as illustrated in 

Figure 11-4 and Table 11-2. The labelled electrodes were interpolated and, as shown in 

subject 212, only 13 electrodes, which were spread on the scalp, were interpolated, subject 

308 had 18 interpolated electrodes, which were near to each other. After the pre-processing 

and removal of Study D subjects due to the bad quality, only 10 subjects remained with 38 

ALs and an average duration of 1.82 s. 
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Figure 11-4 Examples of subjects with the same number of interpolated electrodes: subject 212 on 

the left was accepted, while subject 308 on the right was rejected. 

Table 11-2 Electrodes-interpolation report for Studies C and D. 

Study Subject Number of interpolated electrodes 

C 203 10 

C 206 5 

C 207 8 

C 208 6 

C 210 3 

C 211 4 

C 212 13 

C 213 3 

C 214 2 

C 215 4 

C 216 6 

C 217 2 

C 218 8 

C 220 5 

D 306 13 

D 308 18 

D 310 19 

D 311 14 

D 312 13 

D 315 10 

D 316 16 

D 321 17 

D 322 16 

D 324 18 

 

Through the artefacts subspace reconstruction (ASR) plug-in (Chang et al., 2020) large 

artefacts were corrected. The ASR cut-off parameter chosen was 25, as suggested in (Chang 

et al., 2020), the result is illustrated in Figure 11-5. 
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Figure 11-5 Illustration of the performance of artefacts subspace reconstruction (ASR) algorithm. 

EEG data before ASR correction are in blue and after correction in red. 

ICA (Makeig et al., 1996) was applied to decompose the EEG signals into temporally 

independent time courses corresponding to brain and nonbrain sources using EEGLAB. This 

step was done to remove noisy components including ocular artefacts (eye blinks), muscle 

artefacts, cardiac artefacts, in addition to extrinsic artefacts. Wavelet-enhanced ICA (wICA) 

was used to decompose the EEG signal and remove large artefacts using a threshold 

(Delorme et al., 2007). Another run of ICA with the ICLABEL plug-in was performed to 

identify and reject non-EEG components (Pion-Tonachini et al., 2019). 

11.2.4 Source reconstruction 

The FieldTrip toolbox (v20210418) for EEG/MEG-analysis (FC Donders Centre for 

Cognitive Neuroimaging, Nijmegen, The Netherlands; see http://fieldtrip.fcdonders.nl/) 

(Oostenveld et al., 2011) was used for source reconstruction and statistical analysis. 

http://fieldtrip.fcdonders.nl/


P a g e  | 11-124 

 

 

Following pre-processing, subject-based brain modelling was performed by solving the 

forward model followed by the inverse model. 

The structural (T1) image of each subject was used to create an accurate forward model. 

Each image was initially resliced and segmented into GM, WM, CSF, skull, and scalp. The 

Simbio plug-in (Vorwerk et al., 2018) was used to create a hexahedral head model using the 

finite element method (FEM) technique, which is recommended when using the T1 of each 

subject (Vorwerk et al., 2014; Vorwerk et al., 2012). Electrode positions were manually 

realigned to the head model based on electrode marks located on the T1 image of each 

subject, as generated by the MR machine, as illustrated in Figure 11-6.  

 

Figure 11-6 Illustration of electrodes alignment to the head volume. The black dots should fit as 

closely as possible in the marks. 

The head model and T1 of each subject were used to create the source model, which was 

then normalised to a source model template of 5 mm resolution. Only sources within the GM 

were analysed, as suggested by Pascual-Marqui (2007). The last step was to create the lead 

field from the head volume, source model, and the aligned electrodes of each subject. 

Inverse modelling was done using eLORETA (Pascual-Marqui, 2007, 2009) to estimate the 

magnitudes of the sources at different frequencies. Finally, averaging was done over trials 

and over the frequencies of each band for each subject to obtain the value per source 

representing the average of the frequencies in a specific band for the ALs of each subject. 

These values were then used for the group statistics. 
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Two confounding variables were accounted for by removing their effects from the EEG data: 

(1) tracking-target-speed-related variability, and (2) poor responsive tracking, defined using 

a threshold calculated based on the tracking error of the first 2 min of the session. The two 

confounds were resampled to match the number of EEG data points. The events of interest 

(MSs or ALs) were segmented out of the EEG data. These segments were then combined as 

trials for each subject and used in the inverse modelling. As the primary interest was in the 

change of activity for different EEG bands, each trial was divided into event data, MSs with 

a time window of 2 s starting from the onset, and baseline data, with a window of 2 s before 

the onset, and ALs, which have a shorter average duration, with a time window of 1 s starting 

from the onset, and baseline data, with a window of 1 s before the onset. The FFT was used 

to calculate the activity for each band of interest: delta (2–4 Hz), theta (4–8 Hz), alpha (8–

14 Hz), beta (14–30 Hz), and gamma (30–45 Hz). 

11.2.5 Statistical analysis 

An average event AL and an average baseline for each subject were used, each having the 

same number of sources with one value for each source. The relative difference between the 

average events and the average baselines was calculated for each subject to be used in the 

group stats. Source statistics were applied to compare the percentage relative difference to 

the null hypothesis of zero. Statistical analyses were performed using permutation tests 

(Maris & Oostenveld, 2007; Maris et al., 2007), and the results were corrected for multiple 

comparisons over the 8551 sources using TFCE (Mensen & Khatami, 2013) of p-value < 

0.05 (two-tailed). We did not correct for multiple comparisons over the five bands because 

of the limited statistical power. 

11.3 Results 

The whole analysis pipeline was successfully validated using artificial data, see Appendix 

A. After performing the statistical analysis using permutation testing followed by correction 

for multiple comparisons using TFCE with p-value < 0.05 (two-tailed), no significant change 

in activity was found, in any band of interest. Our next step was to further explore if there 

were any changes in activity with a p-value < 0.2 (two-tailed). Trends of increases in the 

beta and gamma bands only were found. No trends of changes were found in delta, theta, 

and alpha at p-value < 0.2 (two-tailed). 
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11.3.1 Marginal changes in beta band during attention lapses 

Nonsignificant changes in beta band in ALs are shown in Figure 11-7. The smallest p-value 

approaching significance was 0.065 (one-tail). The median of the percentage relative change 

refers to the effect sizes. 

 

 

Figure 11-7 Top: group-level trend of change in activity of the relative difference between attention 

lapses and baseline for the beta band. Bottom: median of the relative change over subjects. 

The Atlasquery toolbox, from FSL (FMRIB's Software Library; www.fmrib.ox.ac.uk/fsl), 

was used to find the brain regions forming the clusters representing the trends of increased 

activity. The Harvard-Oxford cortical atlas was used as a reference, see Table 11-3. 

Table 11-3 Major regions of the cluster representing changes in beta in attention 

lapses. 

Cluster Region Lobe Side 

1 

Lateral Occipital Cortex, superior division Occipital LR 

Frontal Pole Frontal R 

Precentral Gyrus Frontal LR 

Precuneous Cortex Parietal LR 

Occipital Pole Occipital LR 

Middle Frontal Gyrus Frontal LR 

Postcentral Gyrus Parietal LR 
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Lateral Occipital Cortex, inferior division Occipital L 

Superior Frontal Gyrus Frontal L 

Superior Parietal Lobule Parietal L 

Cingulate Gyrus, posterior division Parietal L 

Lingual Gyrus Occipital L 

Frontal Medial Cortex Frontal L 

Subcallosal Cortex Frontal L 

Temporal Pole Temporal R 

11.3.2 Marginal changes in gamma band during attention lapses 

The nonsignificant changes in the gamma band in ALs are shown in Figure 11-8. The 

smallest p-value approaching significance was 0.085 (one-tail). The median of the 

percentage relative change refers to the effect sizes. 

 

 

Figure 11-8 Top: a group-level trend of change in activity of the relative difference between 

attention lapses and baseline for the gamma band. Bottom: the median of the relative change over 

subjects. 

Atlasquery toolbox, from FSL (FMRIB's Software Library; www.fmrib.ox.ac.uk/fsl), was 

used to find the brain regions forming the clusters representing the trends of increased 

activity. The Harvard-Oxford cortical atlas was used as a reference, Table 11-4. 



P a g e  | 11-128 

 

 

Table 11-4 Major regions of the clusters representing changes in gamma in attention 

lapses. 

Clusters Region Lobe Side 

1 

Precuneous Cortex Parietal R 

Supracalcarine Cortex Occipital R 

Cingulate Gyrus, posterior division Parietal L 

2 

Superior Frontal Gyrus Frontal R 

Middle Frontal Gyrus Frontal R 

Precentral Gyrus Frontal R 

Postcentral Gyrus Parietal R 

3 

Middle Temporal Gyrus, temporooccipital part Temporal LR 

Inferior Temporal Gyrus, temporooccipital part Temporal L 

Supramarginal Gyrus, posterior division Parietal L 

Angular Gyrus Parietal LR 

Lateral Occipital Cortex, superior division Occipital L 

Lateral Occipital Cortex, inferior division Occipital L 

Temporal Occipital Fusiform Cortex Temporal L 

Occipital Fusiform Gyrus Occipital L 

4 

Frontal Pole Frontal LR 

Insular Cortex Insular R 

Temporal Pole Temporal R 

Middle Temporal Gyrus, posterior division Temporal R 

Frontal Medial Cortex Frontal L 

Paracingulate Gyrus Frontal LR 

Frontal Orbital Cortex Frontal LR 

Subcallosal Cortex Frontal L 

Cingulate Gyrus, anterior division Frontal L 

Superior Temporal Gyrus, posterior division Temporal R 

Inferior Temporal Gyrus, posterior division Temporal R 

Central Opercular Cortex Parietal R 

11.4 Discussion 

EEG source analysis for ALs versus the baseline of good tracking was performed on the 

combined studies C and D. The analysis targeted the changes in five EEG bands of interest: 

delta, theta, alpha, beta, and gamma. Ten subjects had a total of 38 ALs with an average 

duration of 1.82 s. No significant change was found in any band, however, a nonsignificant 

increased activity was found in beta and gamma bands. 

During ALs correlated with prolonged reaction times, there is a decoupling from external 

environment which is associated with increased DMN activity (Eichele et al., 2008; 

Weissman et al., 2006). Increased alpha activity was associated with long reaction times 
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(Molina et al., 2019). Also, an association has been found between increased DMN activity 

and increased alpha activity when eyes are opened in a resting state (Mo et al., 2013). In 

addition, increased alpha activity over task-related brain regions was found to be correlated 

with weak attention and poor performance (Liu et al., 2014; Macdonald et al., 2011), while 

reduced alpha activity over task-related brain regions was found to be correlated with more 

attention directed externally to a demanding task (Rajagovindan & Ding, 2011; Sauseng et 

al., 2005). So, it was expected to see an increase in alpha activity during ALs in 2-D CVT 

task. 

Research by Andrillon et al. (2019) on ALs and their relation to the local sleep phenomenon, 

which is different from MS, hypothesised that local sleep could be used as a model to explain 

ALs through the activity of delta and theta. Andrillon et al. (2021) supported that by finding 

an association between slow waves, which is associated with local sleep (Andrillon et al., 

2019; Bernardi et al., 2015; D’Ambrosio et al., 2019; Hung et al., 2013; Vyazovskiy et al., 

2011), and the reports of both mind-wandering and involuntary mind-blanking. So according 

to Andrillon et al. (2019), if local sleep, defined by an increase in delta and/or theta (slow-

wave) activities, occurs within the attentional networks it will cause mind-wandering due to 

activating DMN instead of the attentional networks, but if it occurs within DMN, it will 

cause involuntary mind-blanking due to the reduction of endogenous thoughts. 

Analysis of changes in EEG activity of ALs did not reach statistical significance in any band 

to accept our hypotheses. Notwithstanding, in order to explore the null hypotheses for 

Hypothesis 7 and part of Hypothesis 8, the research done on ALs using EEG will be 

discussed, then our view given the trends of changes in activity found in gamma and beta 

EEG bands will be added. 

If we consider the trends of increased activity in both beta and gamma to be real, then we 

should re-hypothesize our previous views. Since we did not have a means to distinguish 

between mind-wandering and mind-blanking, we built our hypotheses based on the literature 

which is near entirely mind-wandering. 

Beta and gamma activities were found increased during subjectively-reported mind-

wandering (Qin et al., 2011), which means that the subjects were aware of their mind-

wandering. Increased gamma activity was found to be associated with voluntary allocation 

of attention (shifting attention) (Landau et al., 2007), and memory processes (recall 

memories) (Herrmann et al., 2010). However, increased beta activity has been found 
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correlated with intentional clearing of the mind from any thoughts (Castiglione et al., 2019), 

and has also been found to be inversely correlated with mind-wandering (Groot et al., 2021; 

van Son et al., 2019a; van Son et al., 2019b), but increased beta could be associated with the 

attempts to keep performing the task despite the fatigue (Craig et al., 2012; Huang et al., 

2007). Given the short duration of ALs, it is more likely that the increase of the high-

frequency EEG beta and gamma activities is related to the recovery from ALs, also there is 

a possibility that these ALs are white dreams, given the association between white dreams 

and the increased activity over the posterior area of the brain (Fazekas et al., 2019). We could 

not compare ALs to MSs due to the insufficient number of subjects available that have both 

ALs and MSs. 

11.5 Summary 

This chapter started by describing the data used to analyse ALs, then introducing the analysis 

pipeline in detail starting by pre-processing, source reconstruction, and finally statistical 

analysis. Two hypotheses (7 and related part of 8) were explored, but there is no strong 

evidence to support these hypotheses. The non-significant changes found in beta and gamma 

EEG bands are more likely to be associated with the recovery from ALs, but also could be 

associated with white dreams. 
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 EEG Analysis of Microsleeps 

12.1 Introduction 

In this chapter, EEG data were used to explore Hypothesis 9. The aim was to reveal the 

neural signature of MSs versus the baseline of good responsive tracking within the delta, 

theta, alpha, beta, and gamma EEG bands by statistically analysing reconstructed sources. 

12.2 Method 

The same analysis procedure of ALs was applied to MSs (Section 11.2) was applied to MSs. 

The only difference was in the duration of the MS event (2 s) and the baseline (2 s) when 

segmented from the EEG data. The analysis was based on Studies C and D, as both had the 

same EEG setup and task. The only difference was in the duration of task: 50 min in Study 

C and 20 min in Study D. The MSs started with 25 subjects from the two studies with 1633 

events. This number dropped to 21 with 1392 events before the analysis because of missed 

or corrupted data. After performing the statistical analysis using permutation testing 

followed by correction for multiple comparisons using TFCE with p-value < 0.05 (two-

tailed). 

12.3 Results 

After pre-processing and total removal of Study D subjects due to the poor-quality EEG, the 

number of subjects reduced to 11 with 984 events, and an average duration of 3.53 s. 

Significant increases in activities in the five bands of interest: delta, theta, alpha, beta, and 

gamma were found. However, no significant decrease in activity was found in any of the 

five bands. 

12.3.1 Changes in activity in delta band during microsleeps 

The significant results in delta band for MSs is shown tomographically in Figure 12-1. The 

median of the percentage relative change refers to the effect sizes. 
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Figure 12-1 Group-level result of the significant activity change of the relative difference between 

the microsleeps and baseline for the delta band (shown in axial view at the top). On the bottom is the 

median of the percentage relative change over subjects. 

Atlasquery toolbox, from FSL (FMRIB's Software Library; www.fmrib.ox.ac.uk/fsl), was 

used to find the brain regions forming the clusters representing the increased activity. The 

Harvard-Oxford cortical atlas was used as a reference, see Table 12-1. 

Table 12-1 Major regions of the cluster representing the change of delta in 

microsleeps. 

Cluster Region Lobe Side 

1 

Frontal Pole Frontal LR 

Middle Frontal Gyrus Frontal LR 

Precentral Gyrus Frontal LR 

Postcentral Gyrus Parietal LR 

Lateral Occipital Cortex, superior division Occipital LR 

Precuneous Cortex Parietal LR 

Occipital Pole Occipital LR 

12.3.2 Changes in activity in theta band during microsleeps 

The significant results in theta band for MSs are shown tomographically in Figure 12-2. The 

median of the percentage relative change refers to the effect sizes. 
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Figure 12-2 Group-level result of the significant activity change of the relative difference between 

the microsleeps and baseline for the theta band (shown in axial view at the top). On the bottom is the 

median of the percentage relative change over subjects. 

Atlasquery toolbox, from FSL (FMRIB's Software Library; www.fmrib.ox.ac.uk/fsl), was 

used to find the brain regions forming the clusters representing the increased activity. The 

Harvard-Oxford cortical atlas was used as a reference, see Table 12-2. 

Table 12-2 Major regions of the cluster representing the change of theta in 

microsleeps. 

Cluster Region Lobe Side 

1 

Frontal Pole Frontal LR 

Middle Frontal Gyrus Frontal LR 

Precentral Gyrus Frontal LR 

Temporal Pole Temporal L 

Postcentral Gyrus Parietal R 

Lateral Occipital Cortex, superior division Occipital LR 

Precuneous Cortex Parietal LR 

Occipital Pole Occipital LR 

Lateral Occipital Cortex, inferior division Occipital L 
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12.3.3 Changes in activity in alpha band during microsleeps 

The significant results in alpha band for MSs are shown tomographically in Figure 12-3. The 

median of the percentage relative change refers to the effect sizes. 

 

 

Figure 12-3 Group-level result of the significant activity change of the relative difference between 

the microsleeps and baseline for the alpha band (shown in axial view at the top). On the right is the 

median of the percentage relative change over subjects. 

Atlasquery toolbox, from FSL (FMRIB's Software Library; www.fmrib.ox.ac.uk/fsl), was 

used to find the brain regions forming the clusters representing the increased activity. The 

Harvard-Oxford cortical atlas was used as a reference, see Table 12-3. 

Table 12-3 Major regions of the cluster representing the change of alpha in 

microsleeps. 

Cluster Region Lobe Side 

1 

Frontal Pole Frontal LR 

Superior Frontal Gyrus Frontal LR 

Middle Frontal Gyrus Frontal LR 

Precentral Gyrus Frontal LR 

Temporal Pole Temporal LR 

Postcentral Gyrus Parietal LR 

Lateral Occipital Cortex, superior division Occipital R 

Precuneous Cortex Parietal LR 
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Occipital Pole Occipital LR 

12.3.4 Changes in activity in beta band during microsleeps 

The significant results in beta band for MSs are shown tomographically in Figure 12-4. The 

median of the percentage relative change refers to the effect sizes. 

 

 

Figure 12-4 Group-level result of the significant activity change of the relative difference between 

the microsleeps and baseline for the beta band (shown in axial view at the top). On the bottom is the 

median of the percentage relative change over subjects. 

Atlasquery toolbox, from FSL (FMRIB's Software Library; www.fmrib.ox.ac.uk/fsl), was 

used to find the brain regions forming the clusters representing the increased activity. The 

Harvard-Oxford cortical atlas was used as a reference, see Table 12-4. 

Table 12-4 Major regions of the cluster/s representing the change of beta in 

microsleeps. 

Cluster Region Lobe Side 

1 

Superior Temporal Gyrus, anterior division Temporal R 

Superior Temporal Gyrus, posterior division Temporal R 

Middle Temporal Gyrus, anterior division Temporal R 

Middle Temporal Gyrus, posterior division Temporal R 

Planum Temporale Temporal R 

2 Frontal Pole Frontal R 
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Juxtapositional Lobule Cortex (formerly 

Supplementary Motor Cortex) 

Frontal R 

3 

Superior Frontal Gyrus Frontal R 

Middle Frontal Gyrus Frontal LR 

Precentral Gyrus Frontal LR 

Postcentral Gyrus Parietal L 

Superior Parietal Lobule Parietal LR 

Angular Gyrus Parietal R 

Lateral Occipital Cortex, superior division Occipital LR 

Lateral Occipital Cortex, inferior division Occipital LR 

Precuneous Cortex Parietal LR 

Lingual Gyrus Occipital LR 

Occipital Pole Occipital LR 

Cingulate Gyrus, posterior division Parietal R 

Occipital Fusiform Gyrus Occipital R 

12.3.5 Changes in activity in gamma band during microsleep 

The results for gamma band of MSs are shown tomographically in Figure 12-5. The median 

of the percentage relative change refers to the effect sizes. 

 

 

Figure 12-5 Group-level result of the significant activity change of the relative difference between 

the microsleeps and baseline for the gamma band (shown in axial view at the top). On the bottom is 

the median of the percentage relative change over subjects. 



P a g e  | 12-137 

 

 

Atlasquery toolbox, from FSL (FMRIB's Software Library; www.fmrib.ox.ac.uk/fsl), was 

used to find the brain regions forming the clusters representing the increased activity. The 

Harvard-Oxford cortical atlas was used as a reference, see Table 12-5. 

Table 12-5 Major regions of the cluster representing the change of gamma in 

microsleeps. 

Cluster Region Lobe Side 

1 

Frontal Pole Frontal LR 

Middle Frontal Gyrus Frontal LR 

Precentral Gyrus Frontal LR 

Temporal Pole Temporal LR 

Postcentral Gyrus Parietal LR 

Lateral Occipital Cortex, superior division Occipital LR 

Lateral Occipital Cortex, inferior division Occipital L 

Precuneous Cortex Parietal LR 

Occipital Pole Occipital L 

12.4 Global signal removal 

Following the source-reconstruction, EEG analysis on the five bands of interest (delta, theta, 

alpha, beta, and gamma) compared MSs relative to their baselines. We found a significant 

increase in all bands (i.e., a global increase). To further investigate this, we estimated the 

magnitude of sources in all of the bands of interest after regressing out the global signal, 

which was the estimated magnitude of sources after averaging all frequencies of interest (2–

45 Hz). This step was done to explore the possibility that the global increase in power might 

have arisen due to increases in non-EEG biosignals and/or artefacts and not actually due to 

increased EEG activity during MSs.  

Another group-level analysis was performed using permutation testing and TFCE to correct 

for multiple comparisons at a p-value < 0.05 (two-tailed). We found a significant increase in 

gamma activity, similar to before removing the global signal. Conversely, there was a trend 

of decreased activity in alpha band (p = 0.0328), which is the opposite to the significant 

increase in alpha band before removing the global signal. In addition, no change in delta, 

theta, and beta bands was found after removing the global signal, although the three bands 

had significant increase in activities before removing the global signal. 
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12.4.1 Trend of activity changes in alpha band during microsleeps after global 

signal regression 

The trend of change in alpha band activity for MSs after global signal regression are shown 

tomographically in Figure 12-6. The median of the percentage relative change refers to the 

effect sizes. 

 

 

Figure 12-6 Group-level result of the trend of activity change in the relative difference between the 

microsleeps and baseline for the alpha band (shown in axial view at the top) after global signal 

regression. On the bottom is the median of the percentage relative change over subjects. 

Atlasquery toolbox, from FSL (FMRIB's Software Library; www.fmrib.ox.ac.uk/fsl), was 

used to find the brain regions forming the clusters representing the decreased activity after 

global signal regression. The Harvard-Oxford cortical atlas was used as a reference – see 

Table 12-6. 

Table 12-6 Major regions of the cluster/s representing the change of alpha in 

microsleeps after global signal regression. 

Cluster Region Lobe Side 

1 

Frontal Pole Frontal LR 

Superior Frontal Gyrus Frontal LR 

Middle Frontal Gyrus Frontal R 

Precentral Gyrus Frontal LR 
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Juxtapositional Lobule Cortex (formerly 

Supplementary Motor Cortex) 

Frontal LR 

Paracingulate Gyrus Frontal LR 

Cingulate Gyrus, anterior division Frontal LR 

12.4.2 Changes in activity in gamma band during microsleep after global signal 

regression 

The results for gamma band of MSs after global signal regression are shown tomographically 

in Figure 12-7. The median of the percentage relative change refers to the effect sizes. 

 

 

Figure 12-7 Group-level result of the significant activity change of the relative difference between 

the microsleeps and baseline for the gamma band (shown in axial view at the top) after global signal 

regression. On the bottom is the median of the percentage relative change over subjects. 

Atlasquery toolbox, from FSL (FMRIB's Software Library; www.fmrib.ox.ac.uk/fsl), was 

used to find the brain regions forming the clusters representing the increased activity after 

global signal regression. The Harvard-Oxford cortical atlas was used as a reference, see 

Table 12-7. 
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Table 12-7 Major regions of the cluster representing the change of gamma in 

microsleeps after global signal regression. 

Cluster Region Lobe Side 

1 

Frontal Pole Frontal LR 

Superior Frontal Gyrus Frontal R 

Precentral Gyrus Frontal LR 

Frontal Orbital Cortex Frontal LR 

Paracingulate Gyrus Frontal L 

Middle Frontal Gyrus Frontal L 

Middle Temporal Gyrus, posterior division Temporal L 

Temporal Pole Temporal LR 

Postcentral Gyrus Parietal LR 

Precuneous Cortex Parietal L 

Angular Gyrus Parietal R 

Lateral Occipital Cortex, superior division Occipital LR 

12.5 Discussion 

The EEG source analysis for MSs versus the baseline of good tracking was performed on 

Study C. The analysis targeted the changes in five EEG bands of interest: delta, theta, alpha, 

beta, and gamma. Eleven subjects had a total of 984 MSs with an average duration of 3.53 

s. In our analysis, significant increases in delta, theta, alpha, beta, gamma bands activities 

were found. Also, there was no significant decrease in activity in any band. 

Given the behavioural difference between MSs and sleep in terms of duration. We expected 

them to be physiologically different, not in the process of shifting from wakefulness to sleep, 

but in shifting from sleep to wakefulness. It is expected that, as part of the recovery process 

from MSs, there will be a positive correlation between MSs and the high-frequency EEG 

bands (beta and gamma). 

Our findings match findings from a 1-D CVT study in which, increased EEG spectral power 

was seen in delta, theta, and alpha bands during MSs (Peiris et al., 2006). However, they 

also found no increases in beta and decreased gamma. Given that a 1-D CVT task was used, 

overlapping flat spots and eye closure then label them as MSs, especially if detecting the 

onsets and durations of MSs were affected by low resolution, might cause inaccuracy in their 

findings. By using a 2-D CVT task and a high resolution, we did overcome that. 

In another study, in which a 2-D CVT was used, a small correlation between visuomotor 

performance and theta activity in the posterior region was found with MSs included (Poudel 

et al., 2010a). However, that correlation dropped when the MSs were removed, indicating 
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that MSs contributed substantially to performance fluctuations and EEG theta activity during 

an extended task. Our results confirmed this association between MSs and the increase in 

theta activity. 

Finding a correlation between MSs compared to baseline and increase of theta activity 

confirms finding by Jonmohamadi et al. (2016), who used a 2-D CVT task to explore the 

EEG containing MSs to detect activity and find the locations of the sources of such activity. 

They discovered that MSs are often associated with theta activity, which is most likely 

generated bilaterally from the frontal orbital cortex area. We found a similar pattern, as an 

increase in theta activity in the frontal lobe. Our alpha-band results match their results of an 

association between MSs and increase in alpha-band activity in the anterior temporal lobes 

and hippocampi, which correspond to the spindles of Stage-2 sleep (Jonmohamadi et al., 

2016), and has also been found to be associated with sleep-maintaining processes (Pivik & 

Harman, 1995). 

In a flight simulator study for participants (pilots), which was designed to maintain a 

constant/monotonous work environment, EEG spectral activity represented in delta, theta, 

alpha, and beta bands were analysed during MS. Delta activity decreased, and alpha activity 

increased across the scalp, and no change was found in beta or theta (Wang et al., 2020). 

When compared to our MS results from a 2-D CVT task, which is demanding and fatiguing, 

our results agreed in alpha but were different in the other bands, as we found an increase in 

delta, theta, and beta. In a resting state study, a reduction in activity across the scalp for delta, 

theta, alpha, and beta bands from voluntary eyes-closure to eyes-opening conditions was 

found, reflecting the cortical processing of visual input (Barry et al., 2007). This agrees with 

our findings in MSs, even when eyes were involuntarily closed, as we change from eyes-

opening to eyes-closure. 

Previous analysis of the BOLD fMRI part of our study for MSs (Poudel et al., 2014) showed 

activation in the frontoparietal and temporo-occipital areas, which overlapped with regions 

from source-reconstructed increased activities for delta, theta, alpha, and gamma bands for 

MSs. In the same paper, other tests were undertaken to investigate the correlation between 

BOLD activity when accounting for theta and alpha activities as regressors using a moving 

window of 2.5 s. A positive correlation was shown between the post-central theta 

fluctuations and MSs, while the occipital alpha fluctuations negatively correlated with MSs. 

Given the superiority of EEG in terms of temporal resolution, we expected EEG to provide 
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a more accurate representation of changes in activity. We compared each band versus the 

baseline of 2 s before the onset of the event in a time-locked manner, and showed a similar 

positive correlation between theta activity and MSs at the post-central area, even when theta 

was represented by a low temporal resolution (2.5 s) regressor, but with the high temporal 

resolution, we also found a positive association between alpha-band activity and MSs in the 

occipital region. 

Our results, which shows an increase in activity in all bands during MS, have a similar neural 

pattern to REM. In a study by Simor et al. (2019), EEG was used to investigate REM sleep 

and its two microstates: tonic and phasic. The tonic period showed an increase in activity in 

alpha and beta bands over the frontocentral region which represent resting-wakefulness, 

while the phasic period showed an increase in the low frequency (delta and theta) co-existing 

with an increase in gamma band activity, which is a combination between deep-sleep 

(represented in delta and theta) and wake-like activity (represented in gamma). 

Earlier research by De Gennaro et al. (2001) investigated the wakefulness-sleep transition 

and found that alpha-band spreads anteriorly when shifting from wakefulness to sleep. Also, 

an increase in EEG activity in the range of slow frequencies (< 7 Hz), in the range of delta 

and theta, after the sleep onset at the centro-frontal scalp locations. These results match our 

findings as we compared MSs starting from onset to 2 s later versus the 2 s just before the 

onset as a baseline. 

There is an association between alertness (performing higher cognitive functions) and high-

frequency (beta and gamma) EEG bands. Beta activity has been associated with the 

facilitation of cognitive operations (Cannon et al., 2014), and with the process of filtering 

distraction (Schmidt et al., 2019). Gamma activity has been associated with attention 

(Rouhinen et al., 2013), memory (Pauling & Coryell, 1936), perception (Melloni et al., 

2007), and cortical processing (Fries, 2009; Tallon-Baudry, 2009).  

These associations are very important. As to end a MS state, reconnecting with the external 

environment will be a priority to the brain, which will require gaining perception to the 

surroundings, in addition to the attention-memory synchronization. This will need the brain 

to facilitate these cognitive operations, in order to process any upcoming external input 

through the cortical regions while filtering any distraction out. Hence, finding an increase in 

the high-frequency (beta and gamma) EEG bands during MSs might indicate a recovery 
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process from MS, which is supported by finding increased BOLD activity by Poudel et al. 

(2014) after analysing the simultaneous fMRI using the same data. 

This interpretation of results is based on the assumption that the significant increased 

activities in all bands found were due to MSs. However, that does not completely exclude 

the possibility that some residual artefacts, due to electromyographic contamination for 

example (Bullock et al., 2021; Daniel et al., 2018; Jansen et al., 2012; Jorge et al., 2015; 

Muthukumaraswamy, 2013; Spencer et al., 2018), might have prevented an accurate 

detection of the underlying neuronal signal. As the result found was a global increase in 

activity, we further investigated this by removing the global signal effect. We found a 

significant increase in only gamma band but no changes in delta, theta, and beta bands, plus 

a trend of reduced alpha activity. 

There was a limitation for us to account for potential motion-related artefacts (abrupt head 

movements) due to not collecting the measures needed to account for motion-related noise, 

which is a necessary step for the optimal design of the analysis pipeline, as not all motion-

related artefacts are automatically removed with standard steps (Bullock et al., 2021; Daniel 

et al., 2018; Jorge et al., 2015; Muthukumaraswamy, 2013; Spencer et al., 2018). 

That leads us to one of two possibilities: (1) Subjects were already in a sleeping position in 

the MRI scanner, and were struggling to stay awake prior to a MS (Poudel et al., 2014), 

making it likely that the transition to a MS was smooth with a no/minimal movement of the 

head, and the global increase in EEG over the cortical  areas was real and matches the global 

increase in the cortical areas using fMRI (Poudel et al., 2014); (2) There were unaccounted-

for motion-related artefacts, which caused increased global increased power in the EEG 

signals, and by removing that effect we ended with the true underlying EEG signals. 

If the first possibility was true, then MSs in a 2-D CVT task are more likely to be highly 

associated with increased activity in low-frequency bands (Jonmohamadi et al., 2016; Peiris 

et al., 2006; Poudel et al., 2010a; Poudel et al., 2014; Wang et al., 2020). Also, MSs and 

Stage-2 sleep are more likely to be similar in alpha EEG activity. In addition, MSs are 

different from normal sleep behaviourally in terms of duration, and physiologically in terms 

with the correlation with high-frequency (beta and gamma) EEG bands. This gives evidence 

to support acceptance of Hypothesis 9 that MSs are different from sleep physiologically. 

On the other hand, if the second possibility is true, then MSs in a 2-D CVT task are more 

likely to be highly associated with decreased activity in alpha band and increased gamma 
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activity. The increased gamma activity has been associated with multiple higher cognitive 

function which will aid the process of breaking a MS state such as: attention (Rouhinen et 

al., 2013), memory (Pauling & Coryell, 1936), perception (Melloni et al., 2007), and cortical 

processing (Fries, 2009; Tallon-Baudry, 2009). Similarly, decreased alpha activity in the 

fronto-central regions has been associated with the awakening process from a recovery sleep, 

which is associated with high cognitive impairment (Balkin & Badia, 1988; Ferrara et al., 

1999; Ferrara et al., 2000; Tassi et al., 2006), following extended sleep-deprivation when 

compared to normal sleep (Gorgoni et al., 2015). If we consider that a MS is a sort of a 

‘recovery’ sleep, then the increased gamma and decreased alpha indicates a trial from the 

brain to break the MS state and recover from it. 

12.6 Summary 

This chapter started by describing the data used to analyse MSs, the same analysis 

procedures used with ALs was used with MSs. One hypothesis (H9) was explored in this 

chapter. Based on the findings, we cannot fully accept it due to being unable to unequivocally 

eliminate the possibility of the increased global power being due to motion-related noise, 

although the need to account for this noise is still questionable (Bullock et al., 2021). In the 

Discussion (Sec. 12.5), we compared our findings, before removing the global-signal effect, 

with the literature which agreed in the correlation between MSs and the increase in delta, 

theta, and alpha EEG activities, which are associated with sleep/MS. However, finding an 

increase in beta and gamma bands activity during MSs is a major finding. This could indicate 

that MSs is different from sleep both behaviourally and physiologically, but does not confirm 

the physiological part.  
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 General Discussion 

13.1 Summary of analyses 

In this project, we analyzed ALs and MSs physiologically using EEG and fMRI data from 

two studies (C and D). Participants performed the same task 2-D CVT but with different 

durations (50 min and 20 min, respectively). Voxel-wise analysis, group ICA analysis, HR 

analysis, and FC analysis for ALs using fMRI were performed. In addition, we used EEG to 

perform source reconstruction analysis for both ALs and MSs and explored their neural 

signatures over five EEG bands (delta, theta, alpha, beta, and gamma). After statistical 

analysis using permutations testing, we corrected for multiple comparisons at a p-value < 

0.05 for fMRI (except for HR analysis a threshold of p-value < 0.01 was used without 

correction for multiple comparisons) and EEG, and reported the significant results. For 

analyses that were not significant, we reported trends of changes in activity at higher p-

values. 

13.2 Summary of all results 

13.2.1 Attention lapses 

For the voxel-wise analysis, we compared BOLD activities during ALs to a baseline of good 

responsiveness tracking (where subjects were performing the task at a high level based on a 

threshold). Increased activity was seen in the SMA and dorsal ACC bilaterally. This was 

matched by seeing increased BOLD activity in the HR analysis of the cluster that came out 

significant from the voxel-wise analysis.  

In addition, HR analysis showed trends of dynamic changes in BOLD time-series at ROIs 

from DMN, DAN, SN, and FPN. There was an increase of HR 15 s prior to the onset in the 

left IPL of DMN. The left IPS in the DAN had an increased HR 7.5 s. The dorsal ACC (part 

of SN) showed increased HR activity at 5 s and 7.5 s. There was a trend of decrease in HR 

activity around the -2.5-s timepoint in the right PPC of FPN. Group ICA analysis failed to 

find any significant results. However, a trend of increased activity was found in an IC that 

is spatially correlated with SMN from CONN.  

ROI-to-ROI FC analysis was performed in brain networks of interest, that are associated 

with ALs and sustained attention (DMN, DAN, FPN, VSN, SMN, EMN, WMN, and SN) to 

explore the changes in FC during ALs. We checked FC within and between networks. 

Significant results were shown in ring displays. We found an increased FC between DMN 

and FPN, while no change in FC between FPN and DAN. Also, increased FC between DMN 
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and EMN, while FC between DAN and EMN showed both increases and decreases. In 

addition, FC between FPN and VSN increased, while FC between FPN and SMN decreased. 

Finally, FC between DMN and WMN has decreased. 

We also compared ALs to MSs using voxel-wise, group ICA, and FC analyses but found no 

trend of differences in changes in activity. We could not do that using EEG because of the 

insufficient number of subjects who have both ALs and MSs. This should be investigated 

further as it raises the possibility that the ALs might be MSs with eyes open. 

EEG analysis was performed for subjects from Study C only, as the subjects from Study D 

did not pass the pre-processing stage. We analyzed the reconstructed sources during ALs for 

the five EEG bands of interest (delta, theta, alpha, beta, and gamma), but found no significant 

results in the relative difference between the ALs and the baseline at any band. But there 

were non-significant changes of increased activity in the beta band over regions in the 

frontal, parietal, and occipital lobes. Other non-significant changes of increased activity were 

found in the gamma band in regions in the frontal, parietal, temporal, insular, and occipital 

lobes. 

13.2.2 Microsleeps 

In the analysis of MSs using EEG, significant results were found of increased activity in the 

relative difference between the MSs and baselines of good responsive tracking in five EEG 

bands (delta, theta, alpha, beta, gamma). Delta band during MSs showed increased activity 

over bilateral regions in frontal, parietal, and occipital lobes. For theta band, we found an 

increased activity over bilateral regions in frontal and occipital lobes. Alpha band increased 

activity was located over bilateral regions that are part of frontal and parietal lobes. Finally, 

for the beta band, regions of increased activity were located in the occipital lobe. For the 

increased activity of gamma, the regions were located at the frontal, parietal, and occipital 

lobes bilaterally.  

Following this global increase in power in all EEG bands, further analysis was performed to 

examine the removal of the global signal effect. We found the same significant increase in 

gamma band, a trend of decrease in alpha band (p = ??, two-tailed), and no change in delta, 

theta, and beta bands. 

13.3 Physiological analysis – Best practice 

In our analysis, we gave a reason for each analysis step in order to commit to the best practice 

guidelines made by the Committee on Best Practices in Data Analysis and Sharing 
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(COBIDAS) for the open science in neuroimaging (Pernet et al., 2018; Pernet & Poline, 

2015). These guidelines were made to achieve transparency and credibility between 

researchers by publicly sharing the research methodology with full details, the raw data that 

was used in the research, and a full explanation of how the results were interpreted (Gilmore 

et al., 2017; Nichols et al., 2017).  

This is important, as in Poldrack et al. (2008), the analysis packages that are widely used by 

researchers produce results that can be misinterpreted and have advanced features that can 

be misused. It is also important to mention that some researchers, because of freedom of 

analysis, tend to play with the analysis parameters until they get results that meet their 

hypotheses (Gorgolewski & Poldrack, 2016). According to Carp (2012), who tested 

enormous multiple analysis pipelines on the same data to test the flexibility of the analysis 

parameters on the final result, some of the pipelines led to substantially different results from 

other pipelines, which again proves the point. 

13.4 Visuomotor task 

The task used in this project was a 2-D CVT task, in which the subjects went for 50 min of 

tracking in Study C and 20 min in Study D. Participants were asked to use a finger-based 

joystick to continuously follow a disk moving on a computer screen, so it is a relatively 

demanding task because the subjects have to continuously pay attention and react to the task, 

and the fact that they did not know when the task would be over. A similar approach was 

used in a continuous performance study by Petilli et al. (2018). They asked their participants 

to finger tap with a sustained pace, which was proven to be effective in measuring the 

sustained attention. However, according to Roebuck et al. (2016), errors in continuous-

performance tasks cannot necessarily be interpreted in terms of reduced vigilance or 

fluctuations of attention (Mackworth, 1948; Montes et al., 2016), as the errors can also be 

related to changes in characteristics (e.g., speed) of the target. 

AL events were defined as complete stops in performing a task with eyes open. So, ALs 

were complete losses of attention for an average of ~ 2 s. It was not possible to definitively 

label the behavioural gold-standard ALs as mind-wandering or mind-blanking, as there is 

currently no means of determining this objectively or subjectively (e.g., some form of 

subjective reporting technique) without interrupting the task. On the other hand, with no 

interference of the continuity of the task (e.g., by subjective reporting which was not used), 
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it was possible to identify the onset and duration of the ALs. Identifying MSs behaviourally 

is relatively easier than ALs, as MSs include eye closure.  

13.5 Views on lapses of responsiveness 

13.5.1 Attention lapses 

ALs are a mysterious phenomenon and are difficult to describe. There are multiple theories 

aimed at understanding the reality behind them and, they are highly dependent on several 

factors related to the task being performed. These include type of task such as discrete or 

continuous, time-on-task (Derosière et al., 2015), task complexity (Larue et al., 2015; Seli 

et al., 2018b), age (López-Ramón et al., 2011), and environmental factors (Burdett et al., 

2016).  

The two major theories of ALs both refer to task monotony and task demands (Head & 

Helton, 2014; Helton & Russell, 2011, 2012; Thomson et al., 2015a). If the task is not 

challenging, the subject will tend to divert their attention completely to TUTs or at least 

divide attention between the task and TUTs. This means the mind will more likely start to 

wander (Burdett et al., 2019; Schad et al., 2012; Unsworth & Robison, 2016b), which might 

happen “involuntary” too (Seli et al., 2016b; Smallwood & Schooler, 2006). This should be 

taken into consideration when studying mind-wandering (Seli et al., 2016a). However, 

dividing attention might be exhaustive as it calls different brain networks to be activated at 

the same time such as FPN, DAN, and SN (Santangelo, 2018), also the interaction between 

DMN, FPN, DAN, and SN is associated with being able to perform a dual-task including 

both internal and external attention (Maillet et al., 2019). In addition, the interaction between 

DMN, FPN, and VSN is associated with mind-wandering (Godwin et al., 2017; He et al., 

2021; Zhou & Lei, 2018).  

The other explanation is that the task is demanding. This can drain one’s ability to focus and 

exhaust cognitive processing resources (Head & Helton, 2014; Helton & Russell, 2011, 

2012), although this changes from subject to subject (Unsworth et al., 2010). The demanding 

task increases the chance of ALs (Buckley et al., 2016). The DMN, which is known to be 

associated with mind-wandering (Andrews-Hanna, 2012; Andrews-Hanna et al., 2010; 

Mason et al., 2007), has been found to be active in both scenarios, i.e., when the task is 

monotonous (Danckert & Merrifield, 2018), and when the task is demanding (Fortenbaugh 

et al., 2018).  
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In support of the resource theory, which represents the demanding task, Helton and Russell 

(2012) used a visual vigilance task to examine the effect of mental breaks if added to 

recharge the cognitive energy dropped according to the resource theory. They made a change 

to the vigilance task by adding a brief task switch (content-free cues) to reduce the drops in 

alertness by changing the task goal momentary through deactivation and reactivation of the 

task and compared between two groups, one with the changed task and the other without. 

However, there was no difference between the two groups, which they considered indicates 

that the drop in performance in a demanding task is associated with resource depletion and 

not conscious disengagement due to boredom. 

Also, if the performing well in the task does not offer a “reward”, it more likely that the 

subject’s desire to invest effort in the task will drop, could be from the start, but definitely 

closer to the end. This means the task loses attentional resources “effort” for TUTs (mind-

wandering), which will increase if the task was monotonous (Kurzban et al., 2013).  

Although our 2-D CVT task is demanding, as it requires continuous performance without 

any break, it is also monotonous as (1) the pattern repeats every 30 s, the subject gets used 

to it, and (2) no reward was offered for good performance. Most importantly, the average 

duration of the ALs in the task is relatively small to contain mind-wandering, however, it 

does not exclude the effect of mind-wandering that might lead to a complete drop in 

performance later. Since we do not know the type of AL, our theory to explain the ALs we 

have will be a combination of the two main theories following (Thomson et al., 2015a). 

Thirteen of 15 subjects in Study C and 8 of 11 subjects in Study D had their first AL ~5 min 

after starting the task. Five minutes are long enough for most people to get used to the task. 

So, based on that we could combine the two theories under the following scenario: the 

subject got used to the demanding task so started to divert their attention to TUTs (Krimsky 

et al., 2017). According to Jonides et al. (2007), exceeding the processing capacity of the 

brain’s STM results in failure to process, especially if the task is not a priority given the 

limits of WMC (Myers et al., 2017) as no motivational factor was introduced. This results 

an AL due to a combination of resource depletion (Helton & Warm, 2008) and memory 

failure (Adam & Vogel, 2017; deBettencourt et al., 2019).  

WMC has been shown to be an important factor when it comes to mind-wandering. Those 

who have a high WMC have more ability to accommodate other thoughts, so they will not 

report them as ALs like those who have a low WMC (Unsworth & Robison, 2016a), as they 
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are able to limit both “voluntary” and “involuntary” mind-wandering events (Soemer & 

Schiefele, 2020). In a study by Domkin et al. (2013), participants performed a tracking task 

with a hand-held task screen pen. They found that eye-hand coordination fails in subjects 

with low WMC compared to those with a high WMC when distractors are shown. WMC 

was also considered when studying how working memory supports “situation awareness” in 

drivers on the road (Johannsdottir & Herdman, 2010), as the task of driving can be disturbed 

by other vehicles. 

A link can be drawn between attention and memory, as, based on LaBar et al. (1999), both 

spatial attention and working memory intersect in the neural networks sub-serving each 

other, mainly in the frontoparietal regions. Also, they might share the same attentional 

resources. Recent research has even shown that memory and attention actually lapse together 

(deBettencourt et al., 2019). The relationship between working memory and attention is 

important, as working memory processes (such as maintenance) reflect sustained attention, 

in which working memory serves as a space where attention can keep relevant information 

to be used in a task (Chun, 2011). Zokaei et al. (2014) considered that the resources needed 

to perform a demanding task and also maintain information in visual working memory are 

common.  

Failure in STM processing, according to Moraitou and Efklides (2009) and Efklides and 

Touroutoglou (2010), is associated with mind-blanking, in which there is nothing in mind 

while being behaviorally awake (Ward & Wegner, 2013). However, that mind-blanking 

might simply be a temporary loss of control (Di Lollo et al., 2005), so cautions should be 

there when describing that mental state. Thomson et al. (2015b) studied the relation between 

mind-wandering and mind-blanking through a rapid serial visual presentation task. They 

found that the higher the tendency to mind-wander, the smaller the duration of ‘attentional 

blink’. 

In the process of coming out of a lapse certain brain regions are activated, and certain brain 

networks connected. Being in a lapse with no interaction with the external world is more 

likely to make the brain at rest. Based on Treserras et al. (2009), there is no FC between 

DMN and SMN during rest. The SN is the network responsible for switching between DMN 

and task-related networks (Goulden et al., 2014; Menon & Uddin, 2010). The increased 

activity of dorsal ACC, which is part of SN, was found to be associated with momentary 

ALs (Weissman et al., 2006). Also, Weissman et al. (2005) found an association between 
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dorsal ACC and the process of focusing attention on relevant stimuli as opposed to 

distractions. During the transition to attention, Li et al. (2021) found a “transient” increase 

in activity in SN regions including ACC and SMA. Wen et al. (2018) linked the ACC to 

working memory, by showing that ACC is constantly active during all the phases of working 

memory. Activation in ventral ACC has also been associated with voluntarily mind-blanking 

events (Kawagoe et al., 2019). This shows that ACC is a key player in ALs (mind-blanks) 

and the process of transitioning back to sustained attention. 

We were unable to definitively classify the type of ALs occurring in our 2-D CVT task by 

thought probe or any other behavioural means. However, given our results, we can strongly 

speculate on the type of ALs we observed. During the ALs, subjects completely lost 

visuomotor responsiveness. This was seen physiologically via disengagement from the 

external task, as evident by our findings of a decrease in FC between FPN and SMN, a 

decrease in FC between DAN and EMN, and a decrease in FC between DMN and WMN. 

However, no decrease in DAN activity was found through the voxel-wise analysis. Also, no 

decrease in FC between FPN and DAN was found, this is against what we expected to 

happen due to decoupling. 

Because of the short average duration of ALs in our task. We think that the subjects were 

mind-wandering while performing the task due to the task being repetitive, and we expect 

mind-wandering to happen before the ALs, although we have no evidence of such. If true, 

mind-wandering will consume the attentional resources and conquer part of WMC. Although 

increased FC within DMN, between FPN and DMN, and between DMN and EMN during 

ALs were found during ALs. It is not confirming evidence of mind-wandering regardless of 

their association with mind-wandering (Godwin et al., 2017; He et al., 2021; Kucyi et al., 

2017; Smallwood et al., 2012). The main reason of that speculation is the short average 

duration of ALs in our task.  

Instead, this is an indication of internal thoughts that could be task-related as a preparation 

for getting-out-of-lapses processes. In addition, the non-significant increase in beta and 

gamma EEG activities can be hypothesized to be associated with getting-out-of-lapses 

processes, although being associated with mind-wandering (Qin et al., 2011). This is because 

beta is associated with attempts to keep performing the task (Craig et al., 2012; Huang et al., 

2007), and gamma is associated with allocation of attention and memory processes 

(Herrmann et al., 2010; Landau et al., 2007). Also, these ALs could be associated with “white 
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dreams” given the association between white dreams and high-frequency EEG activities at 

the posterior part of the brain (Fazekas et al., 2019), which is what was found, although not 

significant. 

There was no significant increase in DMN activity during the ALs, which provides the most 

critical support to speculate that the ALs not being due to either mind-wandering (Andrews-

Hanna, 2012; Andrews-Hanna et al., 2010; Mason et al., 2007) or voluntary mind-blanks 

(Kawagoe et al., 2019). However, through HR analysis, we found a brief but significant 

increase in DMN activity ~12–15 s prior to the onset of AL, but we cannot confirm that this 

increase is related to mind-wandering prior to ALs. Also, opposite to the neural signature of 

voluntary mind-blanks (Kawagoe et al., 2019), we found increased activity in SMA 

bilaterally due to ALs (involuntary mind-blanks).  

Given the short average duration of ALs (mean 1.7 s) compared to the TR (2.5 s) of the 

fMRI, we speculate that our findings on within-the-lapse processes are overlapped with 

getting-out-of-the-lapse processes. Our findings from voxel-wise analysis of increased 

activity in dorsal ACC and SMA are associated with breaking the lapse state and 

reconnecting to the task. This is supported by the increased FC between FPN and VSN, and 

between SN and DAN, while no change in FC was found between SN and DMN. It is also 

supported by increases in HR in DAN.  

Further support to speculate that the ALs in our 2-D CVT task being involuntary mind-

blanks is a drop in HR just prior to AL in FPN which was shown to be associated with 

visuospatial attention (Lückmann et al., 2014; Marek & Dosenbach, 2018; Scolari et al., 

2015), and working memory (Borst & Anderson, 2013). We consider that coordination 

between attention and memory was affected by resource depletion due to the attempt to 

perform the task while engaging in extended TUTs, which led to involuntary mind-blanks. 

The speculation that mind-blanks were indeed involuntary is supported by HR analysis in 

which there was no significant change in the ventral ACC, as opposed to that reported for 

voluntary ‘blank in mind’ (Kawagoe et al., 2019). 

However, we cannot completely exclude ALs being due to mind-wandering, as maybe the 

complete drop in performance in ALs is a last phase of a deep mind-wandering state. It could 

also be an internal thought without having any experience of the content upon awakening 

“white dream” while having eyes open. This could make sense if we considered the increase 

in FC between FPN and DMN, and the increase in FC within DMN were working on 
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generating thoughts, but due to the decrease in FC between WMN and DMN, in addition to 

the lack of increased DMN activity, these thoughts could not be handled. 

Finally, it is very important to realize that mind-blanking is a complex phenomenon. Still far 

from being fully understood, and the research is trying to explain it through various 

experiments. In probe-based studies, mind-blanks are reported based on how the subject has 

experienced them, so they could be due to meta-cognitive failure (Ward & Wegner, 2013), 

or something else, and mistakenly reported as mind-blanks. Since there is no universally-

accepted means of identifying mind-blanks, we cannot assume that a certain definition is 

more accurate than the others. Hence, we cannot exclude other definitions without 

specifically testing them, and even then, it would not be scientific to confirm one finding 

over another, because the analysis is based on statistics and mind-blanks are very subjective. 

In our studies, our gold standard for ALs was behavioural, by observing visuomotor 

performance and eye-video recordings, rather than by simply asking subjects whether 

thought they had a mind-blank, or mind-wandering, or something else. 

13.5.2 Microsleeps 

Behaviourally, identification of MSs is relatively straightforward (at least compared with 

ALs), as they can be characterized by loss of responsiveness to external stimuli, prolonged 

eye-closure (relative to blinks), and, albeit not necessarily, head nodding (Davidson et al., 

2005). The important feature of our 2-D CVT task (Poudel et al., 2008) is that the target is 

always moving, has a defined minimum speed, and has no flat spots. Through this, it is 

possible to precisely determine the onset and duration of MSs, within the arbitrary duration 

of a MS of ≲15 s (Jones et al., 2010). 

Many factors should be considered when looking at MSs. Fatigue is one of these important 

factors. In our task that requires continuous visual sustained attention, and goes for a 

relatively long period (50 min or 20 min), it is more likely to be affected by mental fatigue 

as the performance will be impaired over time due to the drop in the attentional resources 

available which in turn will reduce the processing of information and decision making (Guo 

et al., 2016). Although it is highly dependent on individual differences (Tran et al., 2020), 

theta activity has also been shown to be an important sign of the effect of mental fatigue on 

the cognitive processing and control capacities (Wascher et al., 2014), as the rate of mental 

fatigue is highly affected by task characteristics (Gartenberg et al., 2018). 
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Drowsiness (sleepiness) is another important factor. Drowsiness on its own has been shown 

to enhance distraction while performing a monotonous task (Anderson & Horne, 2006). 

According to Slater (2008), drowsiness can be defined as “a progressive loss of cortical 

network processing efficiency, requiring the recruitment of greater amounts of cortical tissue 

to perform the same task”. This means that being drowsy requires more attentional resources 

to perform a task. This is supported by Canales-Johnson et al. (2020), who suggested that 

when drowsy, the cognitive system will apply a neural compensatory mechanism. Alpha 

activity decreases with sleepiness when eyes are closed (Putilov & Donskaya, 2014). This 

relationship was previously found by Strijkstra et al. (2003) in addition to a correlation 

between sleepiness and increase in theta activity. According to Anderson et al. (2010), MSs 

were highly affected by sleepiness in a 30-min PVT session. 

There are two primary alternating states of the human brain: wakefulness and sleep. 

However, these two states are not mutually exclusive. This means there is no state of full 

wakefulness when awake, or complete deep sleep during the sleep period, as each state 

comprises different stages/grades (Guo et al., 2016; Kleitman, 1963; Lindsley, 1952; Saper 

et al., 2005). There are also momentary events which can change the nature of the brain state 

for a relatively short time (Albert et al., 2018; Buckley et al., 2016; Guo et al., 2016; Neigel 

et al., 2019a; Roebuck et al., 2016; Seli et al., 2017; Thomson et al., 2015b; Unsworth & 

Robison, 2016a). The occurrence of these sudden breakdowns in responsiveness, called 

‘lapses’, is correlated with many factors, including human abilities and traits, and type and 

duration of task.  

Changes in state from wake to sleep or vice versa do not happen instantaneously, but with a 

transition (Fuller et al., 2006; Gallopin et al., 2005; Hara & Sakurai, 2011; Saper et al., 2010; 

Song & Tagliazucchi, 2020). Within this transition the brain is either gaining vigilance when 

trying to be fully awake after sleep but struggling, or when you are affected by drowsiness 

after your brain is exhausted as it needs some rest while being awake for a long time or while 

doing an activity that is mentally fatigues (Canales-Johnson et al., 2020; D’Ambrosio et al., 

2019; Tsai et al., 2014). MSs (≲15 s) can be an unstable stage before falling into a light sleep 

(Andrillon et al., 2019; Hertig-Godeschalk et al., 2020) or as a brief sleep for the brain to 

refresh and re-organize, similar to that of the normal sleep process (Tsai et al., 2014). 

Although MSs are not always followed by sleep, they can be interpreted as an indicator of 

sleep (Harrison & Horne, 1996). 
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As the 2-D CVT task is prolonged, continuous, has a repetitive target, and requires a subject 

to keep following the target, and there is no motivational factor (reward/punishment) for 

doing the task, and as they are lied in a sleeping position, it is expected that at least many 

subjects would become drowsy and their ability to stay awake would become impaired with 

time. It is also likely that will cause drops in performance a few seconds before MSs. As a 

result of the state of drowsiness – i.e., stage I of NREM sleep (Niedermeyer, 1999b) – it will 

often progress into a state of deep drowsiness (Niedermeyer, 1999a) on its way to the 

transition to light sleep (stage II). MSs will often occur in this transition stage. 

MSs in demanding tasks like the 2-D CVT task are correlated with increase in activity of 

delta, theta, and alpha EEG bands (Jonmohamadi et al., 2016; Peiris et al., 2006; Poudel et 

al., 2010a). According to De Gennaro et al. (2001), who looked at the neural signature of the 

transition regions between wakefulness and sleep using EEG, he found that at the start of the 

transition there is an increase of activity in delta and theta bands, and as the transition 

progresses, alpha band activity increases as well. Niedermeyer (1999b) referred to stage I of 

sleep by dominance of theta band activity once falling asleep, which could be easily alerted. 

Picchioni et al. (2008) compared the early part of stage I sleep to wakefulness and found 

increased activity in medial frontal gyrus and precuneus of DMN. Similarly, Poudel et al. 

(2014) found that in the non-sleep-deprived wake state there is a correlation between MSs 

and increased activity in medial frontal gyrus and precuneus of DMN. This agrees with our 

finding of increased delta, theta, and alpha EEG activity in medial frontal gyrus and 

precuneus of DMN during MSs in our 2-D CVT task. 

However, we found an increased activity in the high-frequency EEG bands (beta and 

gamma). Beta and gamma are known to be associated with higher cognitive functions such 

as attention (Rouhinen et al., 2013), perception (Melloni et al., 2007), filtering distraction 

(Schmidt et al., 2019), memory processes (Pauling & Coryell, 1936), and cortical processing 

(Cannon et al., 2014; Fries, 2009; Tallon-Baudry, 2009). This highlights the possibility that 

increased beta and gamma activities are assisting the brain to recover from MSs, which 

agrees with the finding of increased BOLD activity by Poudel et al. (2014) using the same 

data. 

There was, however, a limitation when analysing the MSs data. Although the standard pre-

processing pipeline was applied to remove the noise caused by simultaneous recording of 

EEG-fMRI, we cannot assume that there were no motion-related artefacts or, if there were, 



P a g e  | 13-156 

 

 

that they were completely removed. Since we did not collect measures of the head motion 

inside the scanner to make sure that the subjects did not move when transitioning from 

wakefulness to sleep and vice-versa, we cannot simply assume that there was no movement.  

However, by looking at the setup, the subjects were already in a comfortable sleeping 

position with their heads maintained within foam padding. Unremoved motion artefacts can 

be noticed in EEG data acquired inside an MRI scanner as a result of the induced current at 

electrodes when they are moving within a magnetic field, as explained by Faraday's law 

(Yan et al., 2009). We found an increase in power in all five bands, which leaves largely 

unresolved the important question: Were these findings caused by unremoved motion-

artefacts? 

To investigate this question, we re-performed the analysis of MS after regressing out the 

global signal effect. We found a difference in the previous results, as all the significant 

changes in delta, theta, and beta bands disappeared. Also, we found a trend of decreased 

activity in alpha band. However, the significant increase in gamma activity remained. Given 

our results, and findings from the literature, we consider it likely that, during the MSs, the 

brain initiates activities to recover from the MS state and reconnect with the active task.  

Given the differences in durations between MSs and sleep, we expected them to be 

physiologically different. By comparing our findings after regressing out the global effect to 

the literature on the awakening-from-sleep process, we found differences. There are 

increases in alpha and theta activities in the first 10 min following awakening from normal 

sleep (Tassi et al., 2006), while Ferrara et al. (2006) and Marzano et al. (2011) found that in 

non-sleep-deprived subjects there were a global-scalp reduction in beta in addition to a 

posterior increase in delta activities when comparing post-sleep awakening to pre-sleep 

wakefulness. Finally, Gorgoni et al. (2015) found decreased alpha and beta activities in the 

fronto-central part of the brain after sleep-deprived subjects were awakened from recovery 

sleep. This indicates that it is highly likely that MSs and sleep are physiologically different 

in the process of ending the sleep state. 
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 Conclusion and Future Research 

14.1 Summary and key findings 

Studying lapses of responsiveness is important in many sectors but especially the transport 

sector (driving, pilots, etc.). These lapses are considered to be associated with complete 

decoupling from the external environment, where performance of a task requiring 

continuous attention drops to zero momentary. The main challenge facing researchers is 

finding a unified way to define complete lapses of responsiveness, partial lapses of 

responsiveness, and their different types in terms of behavioural characteristics (especially 

frequency and durations). This challenge on its own makes the interpretation of any new 

results from studies of ALs, when compared to the literature, a riddle.  

In our analysis we were interested in complete lapses of responsiveness (ALs and MSs). 

Given their major effect on road safety, we aimed to increase our understanding of the 

behavioural characteristics and physiology underlying lapses of responsiveness. We used a 

2-D CVT task by combining two studies (C and D), which is demanding given their session 

durations (50 min and 20 min). The task is monotonous, as it repeats itself in a periodic 

pattern (every 30 s) and without any dual-task distractions, such as was done by Buckley et 

al. (2016). There was also no motivational influence (e.g., financial reward). This task is 

similar to that on the road, in which a driver spends a long time on the same lane, and possibly 

the same speed, which correlates with a high propensity for complete lapses of 

responsiveness.  

We used simultaneous EEG, fMRI, visuomotor tracking, and eye-video recording to observe 

the performance of participants, and events of complete lapses of responsiveness were rated 

by a human expert. We classified events of no response as ALs (eyes opened) or MSs (eyes 

closed). In addition, we labelled events of partial drop in performance (partial eye closure) 

as DIREs. Drops in performance that did not fit any specific lapse category were labelled as 

VBIP. We also kept record of the variability of tracking target speed, and durations of poor 

performance. 

The ALs were analyzed using fMRI data from the combined studies via voxel-wise, group 

ICA, HR, and FC analyses. We used EEG to analyze both ALs and MSs by reconstructing 

cortical sources and explored the relative difference between the average of events and their 

baselines in five bands of interest: delta, theta, alpha, beta, and gamma. 
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Because of the short duration of most ALs compared to the TR (2.5 s) in our fMRI, we 

consider our findings on the neural signature of an AL are likely to contain an overlap of 

physiological processes (i) causal of the behavioural lost-attention state itself, (ii) processes 

during the AL aimed at bringing the brain out of its lost-attention state, and (iii) processes 

immediately following the recovery of attention and responsiveness. Although, as we were 

unable to behaviourally determine the type of AL, we expected ALs to be due to mind-

blanking (involuntary) given the average short duration, as it is unlikely to think about 

memories (mind-wandering) in ~ 1.7 s, or to be able to “fully” clear the mind from thoughts. 

On comparing ALs to the baseline of responsive tracking via voxel-wise analysis in the GM 

of the brain, we found increased activity in the SN – specifically dorsal ACC and ventral 

SMA. We consider this is related to the process of ending the AL.  

In the HR analysis, we focused on ROIs. We first confirmed our findings from the voxel-

wise analysis. We also found a trend of increase in the HR at 7.5 s after the onset of AL in 

left IPS of DAN, which we also consider is related to the process of ending the AL. In the 

right PPC of FPN, we found a trend of decrease at -2.5 s in the rPPC represent a drop in FPN 

activity which could have led to a loss of visuospatial attention and visuomotor response 

preceding the onset of AL as part of the decoupling process. In addition, an increase in the 

left IPL of DMN at around 12–15 s prior to the onset of the AL, which was not expected, 

may reflect mind-wandering as a precursor to an AL, but we cannot confirm that.  

Finally, no change was found in the ventral ACC which support excluding the possibility 

that ALs are due to voluntary mind-blanking. In addition to the lack of increased DMN 

activity that is associated with voluntary mind-blanks, and highly associated with mind-

wandering. Also, the significant increase in activity in SMA that was found in our ALs 

(involuntary mind-blanks) compared to the decrease in activity in SMA due to the voluntary 

mind-blanks. This supports excluding both, but does not confirm. 

Group ICA analysis did not show any significant results but there was a trend of increased 

activity in an IC which was spatially correlated with SMN. This may also be related to the 

process of recovery from the AL.  

FC analysis provided major findings through the different connections that were tested. The 

connections between FPN and both DMN and DAN were tested, and a significant increase 

in FC was found between FPN and DMN, which, in addition to the significant increase in 

FC within DMN, is associated with mind-wandering according to literature. However, the 
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short average duration of ALs, supports excluding the possibility that the ALs being due to 

mind-wandering, as instead it could be due to task-related thoughts as part of the breaking 

the state of AL, or involuntary mind-blanking. 

We also tested the FC between EMN and both DMN and DAN. We found an increase in FC 

between the regions responsible for eye movement from EMN and both DMN and DAN. 

This, together with a decrease in FC between the regions responsible for visual processing 

and DAN, supports the decoupling process during ALs. To further test for decoupling, FC 

between FPN and both VSN and SMN were tested. A decrease in FC between FPN and 

SMN was found, which supports decoupling during ALs, as there is no performance of the 

task. But the finding of increased FC between FPN and VSN, is more likely to represent the 

process of reconnecting with the task. A decrease in FC between the WMN and DMN 

supports the presence of involuntary mind-blanking. Finally, increased FC between SN and 

DAN is considered to be consistent with the process of getting out of the AL. 

Finally, on the EEG side of ALs, we found non-significant increased activity in beta and 

gamma bands, which could be considered associated with the process of recovery from ALs, 

or possibly white dreams given their association with high-frequency EEG activities. 

However, more statistical power is needed to claim that association. 

To conclude on the AL side, because of the extended and repetitive nature of the task, we 

consider that subjects would likely have been mind-wandered for a considerable proportion 

of time on the task. But given that the task is also demanding, as it requires continuous 

performance, the subjects were keen to have both task-related thoughts and TUTs, which 

eventually, with the aid of mental fatigue and possibly drowsiness, led to draining limited 

working memory and central executive functions and subsequent attentional shutdowns – 

i.e., involuntary mind-blanks. The brain then recovers and restarts carrying out the task. 

In the MS analysis, we focused only on EEG, as the parallel fMRI data had been previously 

analysed and reported (Poudel et al., 2014). We found increased activity in the delta, theta, 

alpha, beta, and gamma EEG bands. Based on our findings and the behavioural difference, 

we believe that MS is physiologically different from sleep in the recovery process. However, 

due to a limitation in the data collected, we did not have any measure of continuous head 

motion, so cannot completely exclude the possibility that the global increase in EEG power 

may have been partially or wholly caused by unremoved motion. So, the global signal effect 

was removed in a further analysis, which resulted in removing the increase in delta, theta, 



P a g e  | 14-160 

 

 

and beta bands. However, the increase in gamma activity remained. In addition, a trend of 

decreased alpha activity was found, which is the opposite of what was found before 

removing the global signal effect. Overall, we believe that MSs are physiologically different 

from sleep in the recovery process even after removing the global signal effect. 

14.2 Review of hypotheses 

In this project we had nine hypotheses divided into three groups of three main key questions: 

(1) what are the neural signatures of endogenous ALs during a continuous visuomotor 

tracking? (2) are endogenous ALs during a continuous visuomotor tracking mind-blanks or 

mind-wandering? and (3) are MSs physiologically different from sleep? 

To answer the first question, we had seven hypotheses. Given what we found, we believe 

that there was a decoupling state during the AL. 

Hypothesis 1: In a 2-D CVT task, there is lower neural activity in DAN during endogenous 

ALs. ➔ We found no evidence to accept this hypothesis. 

Based on the voxel-wise analysis, there were no significant change in any of DAN regions. 

We further analysis that in the HR analysis, and we found a trend of increased activity 5 s 

after the onset, which is associated with the recovery process. 

Hypothesis 2: In a 2-D CVT, FC between FPN and DAN decreases during ALs. ➔ We 

found no evidence to accept this hypothesis. 

We could not find evidence using the FC analysis within ALs, but we should consider doing 

a dynamic FC to see what happened before and after. 

Hypothesis 3: In a 2-D CVT, FC between FPN and SMN decreases during ALs. ➔ Our 

evidence supports this hypothesis.  

This falls with our expectations about the decoupling process, as ALs will lead into a 

complete drop in performing the task which is based on visuomotor response. 

Hypothesis 4: In a 2-D CVT, FC between FPN and VSN decreases during ALs. ➔ Our 

evidence rejects this hypothesis. 

We found evidence for the opposite change using the FC analysis within ALs, and this is 

expected to be associated with the recovery process. But we should consider doing a dynamic 

FC to see what happened before and after. 
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Hypothesis 5: In a 2-D CVT, FC between DAN and EMN decreases during ALs. ➔ Our 

evidence supports this hypothesis. 

We found a decrease in FC between DAN and the regions associated with processing visual 

input from EMN. This was expected as part of the decoupling process. 

Hypothesis 6: In a 2-D CVT, FC between DMN and WMN decreases during ALs. ➔ Our 

evidence supports this hypothesis. 

This finding is very important to support that ALs are due to mind-blanking more than mind-

wandering given their short average duration. 

Hypothesis 7: In a 2-D CVT, EEG alpha power increases in the posterior brain area during 

endogenous ALs. ➔ We found no evidence to accept this hypothesis. 

We could not find any evidence of change, not even a trend of change of EEG alpha activity 

to be associated with ALs. We are still expecting to see changes, maybe with more statistical 

power. 

To answer the second question, we had one hypothesis, where each carried multiple 

expectations trying to speculate the type of AL.  

Hypothesis 8: ALs during a 2-D CVT are due to involuntary mind-blanking. ➔ We found 

limited evidence to accept this hypothesis. 

Finding no significant increase in DMN activity whether by voxel-wise or HR analyses is 

very important to exclude the possibility of ALs being due to mind-wandering. Also, the 

increased FC between FPN and DMN, and between EMN and DMN, given the short average 

duration of ALs, could be associated with task-related thoughts, which again exclude the 

possibility of ALs being due to mind-wandering. Finally, our EEG findings cannot exclude 

the association of local-sleep to explain ALs, but given our low statistical power, it is worth 

re-investigating this with higher statistical power. 

To answer the third question, we had one hypothesis.  

Hypothesis 9: Microsleeps during a 2-D CVT task are brief instances of sleep but are 

physiologically different from normal sleep. ➔ We found limited evidence to accept this 

hypothesis. 
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Given the behavioural difference between MSs and sleep in terms of duration, we consider 

that they are different from a physiological perspective, particularly in terms of the process 

of regaining wakefulness. We are aware of a limitation in being unable to exclude the 

possibility of MS-synchronous artefacts due to EMG or head motion. However, we consider 

motion artefacts to be very unlikely due to movement-constrained setup inside the MRI 

scanner. 

14.3 Limitations 

Although the task we used is novel, and carries a great potential in adding more to the 

understanding of lapses in general, there were several problems and limitations in our data. 

Statistical power: Combining our two studies resulted in 40 subjects, but a lower number 

of subjects (17) in fMRI and (10) in EEG reached the statistical analysis step in ALs, while 

MSs had (11) in EEG analysis. This is because of the low number of ALs found in subjects 

from studies C and D which were used in fMRI analysis. For EEG analysis, Study D was 

excluded because it did not pass the pre-processing stage. Finally, some subjects had 

corrupted/incomplete data so were excluded from the beginning.  

Field maps: Field map images were not collected for all subjects in both studies. As a result, 

we were unable to perform magnetic field distortion correction for any subject in order to 

have a consistent pipeline of analysis. This step is believed to increase SNR in the fMRI 

analysis if performed, and may have helped revealing results in areas highly affected by 

magnetic field distortion. 

Individual differences: Differences between individuals in WMC (Adam et al., 2015), fluid 

intelligence (Unsworth et al., 2010), vigilance (Robison & Brewer, 2019), oculometrics 

(Unsworth et al., 2020), and human brain structure (Clemente et al., 2021; Mitko et al., 

2019), are likely to have influenced our results and studying these would likely have given 

us additional important insights into lapses. However, such measures were not collected. 

Behavioural gold standards: We studied ALs to determine their neural signature. However, 

we were limited by being unsure whether these were instances of mind-wandering or mind-

blanking or a combination of both. The addition of a thought probe technique may have 

helped in identification of type of AL, but such techniques have their own serious limitations. 

There is no standard approach, and most are based on the subjective reports that might not 

be accurate (Robison et al., 2019; Weinstein, 2018; Weinstein et al., 2017; Wiemers & 

Redick, 2019). Also, thought probes would seriously interfere with the continuous nature of 
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our task. Notwithstanding, to our knowledge, thought probes are the only means by which it 

is possible to gain an albeit-questionable behavioral gold standard to differentiate the two 

types of ALs (Zanesco et al., 2020).  

However, another approach could be to differentiate the types of ALs via their neural 

signature based on literature. 

Eye-video and Oculometrics: We wished to increase our understanding of the behavioural 

characteristics of ALs, as this would help in associating the physiological findings to 

behavioural ones, which later could be used in the detection/prediction systems. We had eye-

video recordings of only the right eye from a digital camera (Malla et al., 2010), which was 

low resolution and could not be used for quantitative oculometrics; to collect accurate and 

precise features of the eyes movements and pupil measures. However, the eye-video 

recordings we had were enough to determining eye-closure and hence MSs. 

Camera-based studies are common in the literature for eye movements and gaze (Borza et 

al., 2016; Cheung & Peng, 2015; Kristjansson et al., 2009; Meng & Zhao, 2017; Yu et al., 

2015; Zhao et al., 2019), and there is a huge interest into using eye trackers (Benedek et al., 

2017; Franklin et al., 2013; Jubera-García et al., 2019; Kang et al., 2014; Konishi et al., 2017; 

Massar et al., 2018; Steindorf & Rummel, 2020; Unsworth & Robison, 2016b, 2018a; 

Unsworth et al., 2018; Van Den Brink et al., 2016). The question of which to choose lies in 

the processing efficiency according to Al-Rahayfeh and Faezipour (2013). In the case of 

real-time applications, both the processing time and hardware should be considered, in 

addition, when using a camera-based system, the background noise, lighting conditions, and 

distance to camera should be considered. 

Based on the literature, many studies have looked at the behavioural characteristics of mind-

wandering events from on-task events (Benedek et al., 2017; Bixler & D’Mello, 2016; 

Daniel et al., 2010; Foulsham et al., 2013a; Pepin et al., 2018; Reichle et al., 2010; Schad et 

al., 2012; Unsworth & Robison, 2016b, 2018b). None of these studies looked at the 

characteristics of mind-wandering and mind-blanking events in a continuously demanding 

task which requires sustained attention all the time. According to Unsworth and Robison 

(2018b), no single measure is fully predictive of whether a person is experiencing a lapse or 

not, so using a combination is more likely to achieve a better performance. That is why 

having precise measures is essential for an informative behavioural study of ALs.  
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Fusion of EEG and fMRI: Because of limitations in the EEG data available from Studies 

C and D, we were limited in what we could obtain EEG-wise, as opposed to fMRI-wise, on 

ALs. Consequently, we were unable to fuse the two modalities, and, hence, unable to gain 

the benefits of maximal temporal and spatial resolution. 

Motion-related artefacts: It is very important to account for motion-related artefacts, 

because of the substantial effect they can have on the SNR of the data (Yan et al., 2009), 

which can, otherwise, result in findings being questionable (Jansen et al., 2012). Due to our 

limited collected measures of motion, we were unable to account for head movement. The 

literature suggests multiple solutions during the setup phase to minimize the adverse effect 

of motion artefacts in the processing phase (Bullock et al., 2021). The most accurate is to 

attach motion tracking sensors to the EEG cap (Bullock et al., 2021; Daniel et al., 2018; 

Jorge et al., 2015; Spencer et al., 2018). 

14.4 Future research 

Given our current data from both studies C and D, in order to proceed with further 

investigation of ALs, a new study could be conducted which could remove, as much as 

possible, the limitations mentioned above. However, the current data could still be used to 

further investigate the following: 

• Doing fMRI HRs of MSs and comparing these with our ALs – Could our ALs actually 

be MSs with eyes open? Although they are behaviourally different, in terms of whether 

the eyes are open or closed, the fact that ALs (involuntary mind-blanks) are associated 

with a complete drop in performance, highlights an important question about whether 

some of our brain regions are sleeping (local-sleep) as has been suggested (Andrillon et 

al., 2021; Andrillon et al., 2019). Hence, testing this is highly desirable. 

• Cluster analysis of ALs to see if they are actually a mix of mind-blanks, mind-wandering, 

MSs with eyes open, or other. Using an unsupervised clustering technique modified for 

fMRI data (Aljobouri et al., 2018; Qin & Suganthan, 2004), testing the possibility that 

the ALs we have are all related to one cluster (one type of AL, such as mind-blanks), or 

two clusters (mind-blanks and mind-wandering), or even more, and compare the neural 

signature to those in the literature would be of value. 

For the MSs, since we have collected simultaneous EEG and fMRI data, we could investigate 

MSs using the fusion of EEG and fMRI (Ritter & Villringer, 2006) from the current data. 

This would allow us to benefit from both the high temporal resolution of EEG and the 
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simultaneously recorded high spatial resolution of fMRI. However, caution is needed due to 

the noise added from each technique to the other technique’s data (Bullock et al., 2021). A 

quantitative evaluation would be helpful to make sure that the regions or frequencies of 

interest are not corrupted before starting the analysis (Schrooten et al., 2019). The most 

common method used in the fusion of EEG and fMRI is ‘EEG-informed fMRI’, which is 

basically a prediction of the BOLD signal in each voxel dependent on the EEG signals 

(Abreu et al., 2018; Murta et al., 2015).  

Initiating a new study would be of particular value in further investigation of ALs. In terms 

of the limitations mentioned in Section 14.3, having a sufficient number of subjects in the 

analysis stage (20 – 30 or more) would be highly desirable (Pajula & Tohka, 2016; Thirion 

et al., 2007; Turner et al., 2018). All of the measures not collected in Studies C and D,  such 

as field maps, ECG, and respiratory activity, plus individual differences in measures of 

vigilance, working memory capacity, and fluid intelligence, should be considered. The most 

accurate means to collect oculometric features would be very desirable, including eye-

position trackers. This, in addition to the tracking performance measure, would help build a 

more accurate gold standard. Also, different cameras could be used to capture not only the 

face but also the head, body, and hands (tracking fingers), in order to accurately label 

determine voluntary movements. For the task design, since it’s essential to know the type of 

ALs, a standard definition of what is an AL, mind-wandering, and mind-blanking is needed. 

The tracking device should be redesigned to use both hands, one for continuous tracking and 

one for reporting the mental state based on the self-caught method without necessitating 

stopping the continuous task. A preceding pilot study would be desirable to ensure that the 

new experimental paradigm is optimized.  

Finally, if possible, it would be of considerable value to collect fMRI with the lowest TR 

possible and to collect simultaneous multi-channel EEG, so as to be able to perform fusion 

analyses of the two modalities and gain the benefits of both high temporal and spatial 

resolution. This would assist in separating the decoupling and recovery phases of ALs. The 

average duration of the ALs in the 2-D CVT task was 1.74 s, and the TR of the fMRI was 

2.5 s. So, it is not possible to distinguish between these two separate phases from fMRI 

alone. The continuous task provided a good estimate of the actual duration of these ALs. To 

be able to perform dynamic FC on different phases of ALs, an MRI with a much shorter TR 

(< 1 s) is needed. A similar procedure to that of Poudel et al. (2018), where the focus was on 

the transient changes of MSs, which are generally much longer than ALs, could be followed. 
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The challenge then would be the HR, as only MSs (> 5 s) were used by Poudel et al. (2018) 

to ensure that activity at the onset of MSs was separated from that at the end of MSs; hence, 

dividing the MS event into stages was possible. Notwithstanding, it may still not be possible 

to satisfactorily separate the two phases of ALs. 

The fMRI-based DFC of mind-wandering has been investigated (Denkova et al., 2019; 

Kucyi, 2018; Kucyi & Davis, 2014), with the primary aim being to determine the onset and 

duration of mind-wandering. Toolboxes such as CONN and GIFT were used, with a sliding 

window (~ 40–60 s) and step size of 1 TR, as mind-wanderings are events which likely often 

extend over many fMRI temporal samples. The sliding window analysis focused on 

uninterrupted continuous temporal dynamics. 

Another approach to DFC of ALs would be to use reconstructed EEG sources, with their 

high temporal resolution. Dynamic/time-varying FC was used by Toppi et al. (2012) and 

time-varying effective connectivity by Toppi et al. (2016) to investigate changes 

immediately-before, during, and immediately-after MSs, with a temporal resolution of 200 

ms. Hence, in the 2-D CVT task, where ALs have an average duration of 1.74 s (max < 5 s), 

and are highly unlikely to be mind-wandering, EEG is much more appropriate to separate 

the decoupling and recovery phases. 

 



P a g e  | 167 

 

 

References 

Abreu, R., Leal, A., & Figueiredo, P. (2018). EEG-informed fMRI: a review of data analysis methods. 
Frontiers in Human Neuroscience, 12, 29. 

Adam, K. C., Mance, I., Fukuda, K., & Vogel, E. K. (2015). The contribution of attentional lapses to 
individual differences in visual working memory capacity. Journal of Cognitive 
Neuroscience, 27(8), 1601-1616. 

Adam, K. C. S., & Vogel, E. K. (2017). Confident failures: Lapses of working memory reveal a 
metacognitive blind spot. Attention, Perception, & Psychophysics, 79(5), 1506-1523. 

Aertsen, A. M., Gerstein, G. L., Habib, M. K., & Palm, G. (1989). Dynamics of neuronal firing 
correlation: modulation of "effective connectivity". Journal of Neurophysiology, 61(5), 
900-917. 

Akalin-Acar, Z., & Gençer, N. G. (2004). An advanced boundary element method (BEM) 
implementation for the forward problem of electromagnetic source imaging. Physics in 
Medicine & Biology, 49(21), 5011. 

Akerstedt, T. (2008). Consensus Statement: Fatigue and accidents in transport operations. Journal 
of Sleep Research, 9(4), 395-395. 

Al-Rahayfeh, A., & Faezipour, M. (2013). Eye Tracking and Head Movement Detection: A State-of-
Art Survey. IEEE Journal of Translational Engineering in Health and Medicine, 1, 2100212-
2100212. 

Albert, D. A., Ouimet, M. C., Jarret, J., Cloutier, M.-S., Paquette, M., Badeau, N., & Brown, T. G. 
(2018). Linking mind wandering tendency to risky driving in young male drivers. Accident 
Analysis & Prevention, 111, 125-132. 

Aljobouri, H. K., Jaber, H. A., Koçak, O. M., Algin, O., & Çankaya, I. (2018). Clustering fMRI data 
with a robust unsupervised learning algorithm for neuroscience data mining. Journal of 
Neuroscience Methods, 299, 45-54. 

Allen, P. J., Josephs, O., & Turner, R. (2000). A Method for Removing Imaging Artifact from 
Continuous EEG Recorded during Functional MRI. NeuroImage, 12(2), 230-239. 

Amaro, E., & Barker, G. J. (2006). Study design in fMRI: Basic principles. Brain and Cognition, 60(3), 
220-232. 

Anderson, C., & Horne, J. A. (2006). Sleepiness Enhances Distraction During a Monotonous Task. 
Sleep, 29(4), 573-576. 

Anderson, C., Wales, A. W. J., & Horne, J. A. (2010). PVT lapses differ according to eyes open, 
closed, or looking away. Sleep, 33(2), 197-204. 

Andrews-Hanna, J. R. (2012). The brain’s default network and its adaptive role in internal 
mentation. The Neuroscientist, 18(3), 251-270. 

Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010). Evidence for the default 
network's role in spontaneous cognition. Journal of Neurophysiology, 104(1), 322-335. 

Andrillon, T., Burns, A., Mackay, T., Windt, J., & Tsuchiya, N. (2021). Predicting lapses of attention 
with sleep-like slow waves. Nature Communications, 12(1), 3657-3657. 

Andrillon, T., Windt, J., Silk, T., Drummond, S. P. A., Bellgrove, M. A., & Tsuchiya, N. (2019). Does 
the mind wander when the brain takes a break? Local sleep in wakefulness, attentional 
lapses and mind-wandering. Frontiers in Neuroscience, 13, 949. 

Arnau, S., Löffler, C., Rummel, J., Hagemann, D., Wascher, E., & Schubert, A.-L. (2020). Inter-trial 
alpha power indicates mind wandering. Psychophysiology, 57(6), e13581. 

Ashburner, J. (2012). SPM: a history. NeuroImage, 62(2), 791-800. 
Atwood, H. L., & MacKay, W. A. (1989). Essentials in Neurophysiology: BC Decker. 
Baillet, S., Mosher, J. C., & Leahy, R. M. (2001). Electromagnetic brain mapping. IEEE Signal 

Processing Magazine, 18(6), 14-30. 



P a g e  | 168 

 

 

Baldwin, C. L., Roberts, D. M., Barragan, D., Lee, J. D., Lerner, N., & Higgins, J. S. (2017). Detecting 
and quantifying mind wandering during simulated driving. Frontiers in Human 
Neuroscience, 11, 406-406. 

Balkin, T. J., & Badia, P. (1988). Relationship between sleep inertia and sleepiness: Cumulative 
effects of four nights of sleep disruption/restriction on performance following abrupt 
nocturnal awakening. Biological Psychology, 27(3), 245-258. 

Banich, M. T., Milham, M. P., Atchley, R., Cohen, N. J., Webb, A., Wszalek, T., . . . Shenker, J. 
(2000). fMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain 
systems in attentional selection. Journal of Cognitive Neuroscience, 12(6), 988-1000. 

Barnes, G. R., & Hillebrand, A. (2003). Statistical flattening of MEG beamformer images. Human 
Brain Mapping, 18(1), 1-12. 

Barry, R. J., Clarke, A. R., Johnstone, S. J., Magee, C. A., & Rushby, J. A. (2007). EEG differences 
between eyes-closed and eyes-open resting conditions. Clinical Neurophysiology, 118(12), 
2765-2773. 

Bear, M. F., Connors, B. W., & Paradiso, M. A. (2007). Neuroscience (Vol. 2): Lippincott Williams & 
Wilkins. 

Beckmann, C., Tracey, I., Noble, J., & Smith, S. (2000). Combining ICA and GLM: A hybrid approach 
to fMRI analysis. NeuroImage, 11(5), S643. 

Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state 
connectivity using independent component analysis. Philosophical Transactions of the 
Royal Society B: Biological Sciences, 360(1457), 1001-1013. 

Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2003). General multilevel linear modeling for 
group analysis in FMRI. NeuroImage, 20(2), 1052-1063. 

Beckmann, C. F., Mackay, C. E., Filippini, N., & Smith, S. M. (2009). Group comparison of resting-
state FMRI data using multi-subject ICA and dual regression. NeuroImage, 47(Suppl 1), 
S148. 

Beckmann, C. F., & Smith, S. M. (2004). Probabilistic independent component analysis for 
functional magnetic resonance imaging. IEEE Transactions on Medical Imaging, 23(2), 
137-152. 

Beckmann, C. F., & Smith, S. M. (2005). Tensorial extensions of independent component analysis 
for multisubject FMRI analysis. NeuroImage, 25(1), 294-311. 

Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method 
(CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90-101. 

Benedek, M., Stoiser, R., Walcher, S., & Körner, C. (2017). Eye behavior associated with internally 
versus externally directed cognition. Frontiers in Psychology, 8(1092). 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful 
approach to multiple testing. Journal of the Royal statistical society: series B 
(Methodological), 57(1), 289-300. 

Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing 
under dependency. Annals of Statistics, 1165-1188. 

Bentley, P. M., & McDonnell, J. T. E. (1994). Wavelet transforms: an introduction. Electronics 
&amp; Communication Engineering Journal, 6(4), 175-186. Retrieved from https://digital-
library.theiet.org/content/journals/10.1049/ecej_19940401 

Bernardi, G., Siclari, F., Yu, X., Zennig, C., Bellesi, M., Ricciardi, E., . . . Tononi, G. (2015). Neural and 
Behavioral Correlates of Extended Training during Sleep Deprivation in Humans: Evidence 
for Local, Task-Specific Effects. The Journal of Neuroscience, 35(11), 4487. 

Berthié, G., Lemercier, C., Paubel, P.-V., Cour, M., Fort, A., Galéra, C., . . . Maury, B. (2015). The 
restless mind while driving: drivers’ thoughts behind the wheel. Accident Analysis & 
Prevention, 76, 159-165. 

Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., & Robbins, K. A. (2015). The PREP pipeline: 
standardized preprocessing for large-scale EEG analysis. Frontiers in Neuroinformatics, 
9(16). 

https://digital-library.theiet.org/content/journals/10.1049/ecej_19940401
https://digital-library.theiet.org/content/journals/10.1049/ecej_19940401


P a g e  | 169 

 

 

Bijsterbosch, J., Smith, S. M., & Beckmann, C. F. (2017). Introduction to Resting State FMRI 
Functional Connectivity: Oxford University Press. 

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the 
motor cortex of resting human brain using echo‐planar MRI. Magnetic Resonance in 
Medicine, 34(4), 537-541. 

Bixler, R., & D’Mello, S. (2016). Automatic gaze-based user-independent detection of mind 
wandering during computerized reading. User Modeling and User-Adapted Interaction, 
26(1), 33-68. 

Bogler, C., Vowinkel, A., Zhutovsky, P., & Haynes, J.-D. (2017). Default network activity is 
associated with better performance in a vigilance task. Frontiers in Human Neuroscience, 
11, 623. 

Borst, J. P., & Anderson, J. R. (2013). Using model-based functional MRI to locate working memory 
updates and declarative memory retrievals in the fronto-parietal network. Proceedings of 
the National Academy of Sciences of the United States of America, 110(5), 1628-1633. 

Borza, D., Darabant, A. S., & Danescu, R. (2016). Real-time detection and measurement of eye 
features from color images. Sensors, 16(7), 1105. 

Braboszcz, C., & Delorme, A. (2011). Lost in thoughts: Neural markers of low alertness during 
mind wandering. NeuroImage, 54, 3040-3047. 

Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory 
variation: Dual mechanisms of cognitive control. In A. Miyake, A. Conway, & C. Jarrold 
(Eds.), Variation in working memory (Vol. 75, pp. 106): Oxford University Press. 

Brookings, T., Ortigue, S., Grafton, S., & Carlson, J. (2009). Using ICA and realistic BOLD models to 
obtain joint EEG/fMRI solutions to the problem of source localization. NeuroImage, 44(2), 
411-420. 

Bruns, A. (2004). Fourier-, Hilbert- and wavelet-based signal analysis: are they really different 
approaches? Journal of Neuroscience Methods, 137(2), 321-332. 

Buckley, R. J., Helton, W. S., Innes, C. R. H., Dalrymple-Alford, J. C., & Jones, R. D. (2016). Attention 
lapses and behavioural microsleeps during tracking, psychomotor vigilance, and dual 
tasks. Consciousness and Cognition, 45, 174-183. 

Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural 
and functional systems. Nature Reviews Neuroscience, 10(3), 186-198. 

Bullock, M., Jackson, G. D., & Abbott, D. F. (2021). Artifact Reduction in Simultaneous EEG-fMRI: A 
Systematic Review of Methods and Contemporary Usage. Frontiers in Neurology, 12. 

Burdett, B. R. D., Charlton, S. G., & Starkey, N. J. (2016). Not all minds wander equally: The 
influence of traits, states and road environment factors on self-reported mind wandering 
during everyday driving. Accident Analysis & Prevention, 95, 1-7. 

Burdett, B. R. D., Charlton, S. G., & Starkey, N. J. (2019). Mind wandering during everyday driving: 
An on-road study. Accident Analysis & Prevention, 122, 76-84. 

Buxton, R. B. (2001). The Elusive Initial Dip. NeuroImage, 13(6), 953-958. 
Buxton, R. B. (2013). The physics of functional magnetic resonance imaging (fMRI). Reports on 

Progress in Physics., 76(9), 096601-096601. 
Caballero-Gaudes, C., & Reynolds, R. C. (2017). Methods for cleaning the BOLD fMRI signal. 

NeuroImage, 154, 128-149. 
Calhoun, V. D., Adali, T., Giuliani, N., Pekar, J., Kiehl, K., & Pearlson, G. (2006). Method for 

multimodal analysis of independent source differences in schizophrenia: combining gray 
matter structural and auditory oddball functional data. Human Brain Mapping, 27(1), 47-
62. 

Canales-Johnson, A., Beerendonk, L., Blain, S., Kitaoka, S., Ezquerro-Nassar, A., Nuiten, S., . . . 
Bekinschtein, T. A. (2020). Decreased Alertness Reconfigures Cognitive Control Networks. 
The Journal of Neuroscience, 40(37), 7142. 



P a g e  | 170 

 

 

Cannon, J., McCarthy, M. M., Lee, S., Lee, J., Börgers, C., Whittington, M. A., & Kopell, N. (2014). 
Neurosystems: brain rhythms and cognitive processing. The European Journal of 
Neuroscience, 39(5), 705-719. 

Caparelli, E. C., & Tomasi, D. (2008). K-space spatial low-pass filters can increase signal loss 
artifacts in Echo-Planar Imaging. Biomedical Signal Processing and Control, 3(1), 107-114. 

Carp, J. (2012). On the Plurality of (Methodological) Worlds: Estimating the Analytic Flexibility of 
fMRI Experiments. Frontiers in Neuroscience, 6(149). 

Carr, M. F., Karlsson, M. P., & Frank, L. M. (2012). Transient slow gamma synchrony underlies 
hippocampal memory replay. Neuron, 75(4), 700-713. 

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies: Cambridge 
University Press. 

Castellanos, N. P., & Makarov, V. A. (2006). Recovering EEG brain signals: Artifact suppression 
with wavelet enhanced independent component analysis. Journal of Neuroscience 
Methods, 158(2), 300-312. 

Castiglione, A., Wagner, J., Anderson, M., & Aron, A. (2019). Preventing a Thought from Coming to 
Mind Elicits Increased Right Frontal Beta Just as Stopping Action Does. Cerebral Cortex, 
29, 2160 - 2172. 

Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of 
Educational Psychology, 54(1), 1-22. 

Cavina-Pratesi, C., Valyear, K. F., Culham, J. C., Köhler, S., Obhi, S. S., Marzi, C. A., & Goodale, M. A. 
(2006). Dissociating Arbitrary Stimulus-Response Mapping from Movement Planning 
during Preparatory Period: Evidence from Event-Related Functional Magnetic Resonance 
Imaging. The Journal of Neuroscience, 26(10), 2704-2713. 

Chai, X. J., Castañón, A. N., Öngür, D., & Whitfield-Gabrieli, S. (2012). Anticorrelations in resting 
state networks without global signal regression. NeuroImage, 59(2), 1420-1428. 

Chang, C. Y., Hsu, S. H., Pion-Tonachini, L., & Jung, T. P. (2020). Evaluation of Artifact Subspace 
Reconstruction for Automatic Artifact Components Removal in Multi-Channel EEG 
Recordings. IEEE Transactions on Biomedical Engineering, 67(4), 1114-1121. 

Chaudhary, P., Chaudhary, L., Tripathi, P., & Varshney, T. (2017). Revealing the scope of mind 
wandering software effects, techniques and applications. Proceedings of 7th International 
Conference on Cloud Computing, Data Science & Engineering - Confluence 671-673. 

Cheung, Y.-m., & Peng, Q. (2015). Eye gaze tracking with a web camera in a desktop environment. 
IEEE Transactions on Human-Machine Systems, 45(4), 419-430. 

Cheyne, J. A., Carriere, J. S. A., & Smilek, D. (2006). Absent-mindedness: Lapses of conscious 
awareness and everyday cognitive failures. Consciousness and Cognition, 15(3), 578-592. 

Chica, A. B., Bartolomeo, P., & Lupiáñez, J. (2013). Two cognitive and neural systems for 
endogenous and exogenous spatial attention. Behavioural Brain Research, 237, 107-123. 

Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience 
sampling during fMRI reveals default network and executive system contributions to mind 
wandering. Proceedings of the National Academy of Sciences, 106(21), 8719. 

Chun, M. M. (2011). Visual working memory as visual attention sustained internally over time. 
Neuropsychologia, 49(6), 1407-1409. 

Clemente, A., Domínguez D, J. F., Imms, P., Burmester, A., Dhollander, T., Wilson, P. H., . . . 
Caeyenberghs, K. (2021). Individual differences in attentional lapses are associated with 
fiber‐specific white matter microstructure in healthy adults. Psychophysiology, e13871. 

Coiner, B., Pan, H., Bennett, M. L., Bodien, Y. G., Iyer, S., O’Neil-Pirozzi, T. M., . . . Stern, E. (2019). 
Functional neuroanatomy of the human eye movement network: a review and atlas. Brain 
Structure and Function, 224(8), 2603-2617. 

Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-
task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 
16(9), 1348–1355. 



P a g e  | 171 

 

 

Comon, P. (1994). Independent component analysis, a new concept? Signal Processing, 36(3), 
287-314. 

Compton, R. J., Gearinger, D., & Wild, H. (2019). The wandering mind oscillates: EEG alpha power 
is enhanced during moments of mind-wandering. Cognitive, Affective, & Behavioral 
Neuroscience, 19(5), 1184-1191. 

Coyle, S., Ward, T., Markham, C., & McDarby, G. (2004). On the suitability of near-infrared (NIR) 
systems for next-generation brain–computer interfaces. Physiological Measurement, 
25(4), 815. 

Coyne, K. (2018). MRI: A Guided Tour. Retrieved from 
https://nationalmaglab.org/education/magnet-academy/learn-the-basics/stories/mri-a-
guided-tour 

Craig, A., Tran, Y., Wijesuriya, N., & Nguyen, H. (2012). Regional brain wave activity changes 
associated with fatigue. Psychophysiology, 49(4), 574-582. 

Crawford, J. (1991). The relationship between tests of sustained attention and fluid intelligence. 
Personality and Individual Differences, 12(6), 599-611. 

Critcher, C. R., & Gilovich, T. (2010). Inferring attitudes from mind wandering. Personality and 
Social Psychology Bulletin, 36(9), 1255-1266. 

D'Mello, S., Kopp, K., Bixler, R. E., & Bosch, N. (2016). Attending to attention: Detecting and 
combating mind wandering during computerized reading. Paper presented at the CHI 
Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, 
California, USA.  

D’Ambrosio, S., Castelnovo, A., Guglielmi, O., Nobili, L., Sarasso, S., & Garbarino, S. (2019). 
Sleepiness as a Local Phenomenon. Frontiers in Neuroscience, 13(1086). 

D’Mello, S. K. (2016). Giving eyesight to the blind: Towards attention-aware AIED. International 
Journal of Artificial Intelligence in Education, 26(2), 645-659. 

Dalal, S., Rampp, S., Willomitzer, F., & Ettl, S. (2014). Consequences of EEG electrode position 
error on ultimate beamformer source reconstruction performance. Frontiers in 
Neuroscience, 8(42). 

Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D., & Halgren, E. 
(2000). Dynamic statistical parametric mapping: combining fMRI and MEG for high-
resolution imaging of cortical activity. Neuron, 26(1), 55-67. 

Dale, A. M., & Sereno, M. I. (1993). Improved localizadon of cortical activity by combining EEG and 
MEG with MRI cortical surface reconstruction: a linear approach. Journal of Cognitive 
Neuroscience, 5(2), 162-176. 

Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & 
Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. 
Proceedings of the National Academy of Sciences of the United States of America, 103(37), 
13848-13853. 

Danckert, J., & Merrifield, C. (2018). Boredom, sustained attention and the default mode network. 
Experimental Brain Research, 236(9), 2507-2518. 

Daniel, A. J., Smith, J. A., Spencer, G. S., Jorge, J., Bowtell, R., & Mullinger, K. J. (2018). Exploring 
the relative efficacy of motion artefact correction techniques for EEG data acquired 
during simultaneous fMRI. Human Brain Mapping, 40(2), 578-596. 

Daniel, S., Jonathan, S. A. C., & Cheyne, J. A. (2010). Out of mind, out of sight: Eye blinking as 
indicator and embodiment of mind wandering. Psychological Science, 21(6), 786-789. 

Davidson, P. R., Jones, R. D., & Peiris, M. T. R. (2005). Detecting behavioral microsleeps using EEG 
and LSTM recurrent neural networks. Proceedings of IEEE Engineering in Medicine and 
Biology 27th Annual Conference 5754-5757. 

Davidson, P. R., Jones, R. D., & Peiris, M. T. R. (2007). EEG-based lapse detection with high 
temporal resolution. IEEE Transactions on Biomedical Engineering, 54(5), 832-839. 

Davies, D. R., & Parasuraman, R. (1982). The psychology of vigilance: Academic Press. 
Dawson, D., & Reid, K. (1997). Fatigue, alcohol and performance impairment. Nature, 388, 235. 

https://nationalmaglab.org/education/magnet-academy/learn-the-basics/stories/mri-a-guided-tour
https://nationalmaglab.org/education/magnet-academy/learn-the-basics/stories/mri-a-guided-tour


P a g e  | 172 

 

 

De Gennaro, L., Ferrara, M., Curcio, G., & Cristiani, R. (2001). Antero-posterior EEG changes during 
the wakefulness–sleep transition. Clinical Neurophysiology, 112(10), 1901-1911. 

Debener, S., Mullinger, K. J., Niazy, R. K., & Bowtell, R. W. (2008). Properties of the 
ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic 
field strength. International Journal of Psychophysiology, 67(3), 189-199. 

deBettencourt, M. T., Keene, P. A., Awh, E., & Vogel, E. K. (2019). Real-time triggering reveals 
concurrent lapses of attention and working memory. Nature Human Behaviour, 3, 808–
816. 

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG 
dynamics including independent component analysis. Journal of Neuroscience Methods, 
134(1), 9-21. 

Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in EEG data using 
higher-order statistics and independent component analysis. NeuroImage, 34(4), 1443-
1449. 

Denkova, E., Nomi, J. S., Uddin, L. Q., & Jha, A. P. (2019). Dynamic brain network configurations 
during rest and an attention task with frequent occurrence of mind wandering. Human 
Brain Mapping, 40(15), 4564-4576. 

Derosière, G., Billot, M., Ward, E. T., & Perrey, S. (2015). Adaptations of motor neural structures’ 
activity to lapses in attention. Cerebral Cortex, 25(1), 66-74. 

Desimone, R., & Duncan, J. (1995). Neural Mechanisms of Selective Visual Attention. Annual 
Review of Neuroscience, 18(1), 193-222. 

Di Lollo, V., Kawahara, J.-i., Shahab Ghorashi, S. M., & Enns, J. T. (2005). The attentional blink: 
Resource depletion or temporary loss of control? Psychological Research, 69(3), 191-200. 

Dixon, M. L., De La Vega, A., Mills, C., Andrews-Hanna, J., Spreng, R. N., Cole, M. W., & Christoff, K. 
(2018). Heterogeneity within the frontoparietal control network and its relationship to 
the default and dorsal attention networks. Proceedings of the National Academy of 
Sciences, 115(7), E1598. 

Domkin, D., Sörqvist, P., & Richter, H. O. (2013). Distraction of eye-hand coordination varies with 
working memory capacity. Journal of Motor Behavior, 45(1), 79-83. 

Efklides, A., & Touroutoglou, A. (2010). Prospective memory failure and the metacognitive 
experience of “Blank in the Mind”. In A. Efklides & P. Misailidi (Eds.), Trends and Prospects 
in Metacognition Research (pp. 105-126). Boston, MA: Springer US. 

Eichele, T., Debener, S., Calhoun, V. D., Specht, K., Engel, A. K., Hugdahl, K., . . . Ullsperger, M. 
(2008). Prediction of human errors by maladaptive changes in event-related brain 
networks. Proceedings of the National Academy of Sciences, 105(16), 6173-6178. 

Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial 
extent have inflated false-positive rates. Proceedings of the National Academy of Sciences, 
113(28), 7900. 

Elster, A. D. (2016). BOLD and Brain Activity. Retrieved from http://mriquestions.com/does-
boldbrain-activity.html 

Engle, R. W. (2002). Working Memory Capacity as Executive Attention. Current Directions in 
Psychological Science, 11(1), 19-23. 

Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999). Individual differences in working memory 
capacity and what they tell us about controlled attention, general fluid intelligence, and 
functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.), Models of working 
memory: Mechanisms of active maintenance and executive control. (pp. 102-134). New 
York, NY, US: Cambridge University Press. 

Esposito, R., Cieri, F., Chiacchiaretta, P., Cera, N., Lauriola, M., Di Giannantonio, M., . . . Ferretti, A. 
(2018). Modifications in resting state functional anticorrelation between default mode 
network and dorsal attention network: comparison among young adults, healthy elders 
and mild cognitive impairment patients. Brain Imaging and Behavior, 12(1), 127-141. 

http://mriquestions.com/does-boldbrain-activity.html
http://mriquestions.com/does-boldbrain-activity.html


P a g e  | 173 

 

 

Esterman, M., Grosso, M., Liu, G., Mitko, A., Morris, R., & DeGutis, J. (2016). Anticipation of 
monetary reward can attenuate the vigilance decrement. PLoS ONE, 11(7). 

Esterman, M., Noonan, S. K., Rosenberg, M., & DeGutis, J. (2013). In the zone or zoning out? 
Tracking behavioral and neural fluctuations during sustained attention. Cerebral Cortex, 
23(11), 2712-2723. 

Esterman, M., Poole, V., Liu, G., & DeGutis, J. (2017). Modulating reward induces differential 
neurocognitive approaches to sustained attention. Cerebral Cortex, 27(8), 4022-4032. 

Esterman, M., Rosenberg, M. D., & Noonan, S. K. (2014). Intrinsic fluctuations in sustained 
attention and distractor processing. Journal of Neuroscience, 34(5), 1724-1730. 

Fazekas, P., Nemeth, G., & Overgaard, M. (2019). White dreams are made of colours: What 
studying contentless dreams can teach about the neural basis of dreaming and conscious 
experiences. Sleep Medicine Reviews, 43, 84-91. 

Ferrara, M., Curcio, G., Fratello, F., Moroni, F., Marzano, C., Pellicciari, M. C., & De Gennaro, L. 
(2006). The electroencephalographic substratum of the awakening. Behavioural Brain 
Research, 167(2), 237-244. 

Ferrara, M., De Gennaro, L., & Bertini, M. (1999). The effects of slow-wave sleep (SWS) 
deprivation and time of night on behavioral performance upon awakening. Physiology & 
Behavior, 68(1), 55-61. 

Ferrara, M., de Gennaro, L., Casagrande, M., & Bertini, M. (2000). Selective slow-wave sleep 
deprivation and time-of-night effects on cognitive performance upon awakening. 
Psychophysiology, 37(4), 440-446. 

Fisch, B. J., & Spehlmann, R. (1999). Fisch and Spehlmann's EEG primer: basic principles of digital 
and analog EEG: Elsevier Health Sciences. 

Fortenbaugh, F. C., Rothlein, D., McGlinchey, R., DeGutis, J., & Esterman, M. (2018). Tracking 
behavioral and neural fluctuations during sustained attention: A robust replication and 
extension. NeuroImage, 171, 148-164. 

Foulsham, T., Farley, J., & Kingstone, A. (2013a). Mind wandering in sentence reading: Decoupling 
the link between mind and eye. Canadian Journal of Experimental Psychology/Revue 
canadienne de psychologie expérimentale, 67(1), 51-59. 

Foulsham, T., Farley, J., & Kingstone, A. (2013b). Mind wandering in sentence reading: Decoupling 
the link between mind and eye. Canadian Journal of Experimental Psychology, 67(1), 51-
59. 

Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering 
brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related 
spontaneous thought processes. NeuroImage, 111, 611-621. 

Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous 
neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings 
of the National Academy of Sciences, 103(26), 10046-10051. 

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The 
human brain is intrinsically organized into dynamic, anticorrelated functional networks. 
Proceedings of the National Academy of Sciences of the United States of America, 102(27), 
9673-9678. 

Franklin, M. S., Broadway, J. M., Mrazek, M. D., Smallwood, J., & Schooler, J. W. (2013). Window 
to the wandering mind: Pupillometry of spontaneous thought while reading. Quarterly 
Journal of Experimental Psychology, 66(12), 2289-2294. 

Freeman, W., & Quiroga, R. Q. (2012). Imaging brain function with EEG: advanced temporal and 
spatial analysis of electroencephalographic signals: Springer Science & Business Media. 

Fries, P. (2009). Neuronal Gamma-Band Synchronization as a Fundamental Process in Cortical 
Computation. Annual Review of Neuroscience, 32(1), 209-224. 

Friston, K., Frith, C., Liddle, P., & Frackowiak, R. (1993). Functional connectivity: the principal-
component analysis of large (PET) data sets. Journal of Cerebral Blood Flow & Metabolism, 
13(1), 5-14. 



P a g e  | 174 

 

 

Friston, K. J., Ashburner, J., Frith, C. D., Poline, J. B., Heather, J. D., & Frackowiak, R. S. (1995). 
Spatial registration and normalization of images. Human Brain Mapping, 3(3), 165-189. 

Friston, K. J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M. D., & Turner, R. (1998). Event-related 
fMRI: characterizing differential responses. NeuroImage, 7(1), 30-40. 

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., & Frackowiak, R. S. J. (1994). 
Statistical parametric maps in functional imaging: A general linear approach. Human Brain 
Mapping, 2(4), 189-210. 

Fuller, P. M., Gooley, J. J., & Saper, C. B. (2006). Neurobiology of the Sleep-Wake Cycle: Sleep 
Architecture, Circadian Regulation, and Regulatory Feedback. Journal of Biological 
Rhythms, 21(6), 482-493. 

Gabard-Durnam, L. J., Mendez Leal, A. S., Wilkinson, C. L., & Levin, A. R. (2018). The Harvard 
Automated Processing Pipeline for Electroencephalography (HAPPE): Standardized 
Processing Software for Developmental and High-Artifact Data. Frontiers in Neuroscience, 
12(97). 

Galéra, C., Orriols, L., M’Bailara, K., Laborey, M., Contrand, B., Ribéreau-Gayon, R., . . . Lagarde, E. 
(2012). Mind wandering and driving: responsibility case-control study. British Medical 
Journal, 345, e8105. 

Gallopin, T., Luppi, P. H., Cauli, B., Urade, Y., Rossier, J., Hayaishi, O., . . . Fort, P. (2005). The 
endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A 
receptors in the ventrolateral preoptic nucleus. Neuroscience, 134(4), 1377-1390. 

Gartenberg, D., Gunzelmann, G., Hassanzadeh-Behbaha, S., & Trafton, J. G. (2018). Examining the 
role of task requirements in the magnitude of the vigilance decrement. Frontiers in 
Psychology, 9, 1504. 

Ghosh, S., Nandy, T., & Manna, N. (2015, 2015//). Real Time Eye Detection and Tracking Method 
for Driver Assistance System. Proceedings of Advancements of Medical Electronics, New 
Delhi 13-25. 

Giambra, L. M. (1995). A laboratory method for investigating influences on switching attention to 
task-unrelated imagery and thought. Consciousness and Cognition: An International 
Journal, 4(1), 1-21. 

Gil-Jardiné, C., Née, M., Lagarde, E., Schooler, J., Contrand, B., Orriols, L., & Galera, C. (2017). The 
distracted mind on the wheel: Overall propensity to mind wandering is associated with 
road crash responsibility. PLoS ONE, 12(8), e0181327. 

Gillard‐Crewther, S., Lawson, M. L., Bello, K., & Crewther, D. P. (2007). The visual attentional blink 
reflects constraints on temporal visual processing, not just a lapse of visual memory. 
Clinical and Experimental Optometry, 90(4), 282-289. 

Gilmore, R. O., Diaz, M. T., Wyble, B. A., & Yarkoni, T. (2017). Progress toward openness, 
transparency, and reproducibility in cognitive neuroscience. Annals of the New York 
Academy of Sciences, 1396(1), 5. 

Glover, G. H. (2011). Overview of functional magnetic resonance imaging. Neurosurgery Clinics of 
North America, 22(2), 133-139. 

Godwin, C. A., Hunter, M. A., Bezdek, M. A., Lieberman, G., Elkin-Frankston, S., Romero, V. L., . . . 
Schumacher, E. H. (2017). Functional connectivity within and between intrinsic brain 
networks correlates with trait mind wandering. Neuropsychologia, 103, 140-153. 

Goncharova, I. I., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. R. (2003). EMG contamination of 
EEG: spectral and topographical characteristics. Clinical Neurophysiology, 114(9), 1580-
1593. 

Gorgolewski, K. J., & Poldrack, R. A. (2016). A practical guide for improving transparency and 
reproducibility in neuroimaging research. PLoS Biology, 14(7), e1002506. 

Gorgoni, M., Ferrara, M., D'Atri, A., Lauri, G., Scarpelli, S., Truglia, I., & De Gennaro, L. (2015). EEG 
topography during sleep inertia upon awakening after a period of increased homeostatic 
sleep pressure. Sleep Medicine, 16(7), 883-890. 



P a g e  | 175 

 

 

Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. 
G. (2014). The salience network is responsible for switching between the default mode 
network and the central executive network: Replication from DCM. NeuroImage, 99, 180-
190. 

Gouraud, J., Delorme, A., & Berberian, B. (2017). Autopilot, mind wandering, and the out of the 
loop performance problem. Frontiers in Neuroscience, 11, 541. 

Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., . . . Vanrumste, B. (2008). 
Review on solving the inverse problem in EEG source analysis. Journal of 
Neuroengineering and Rehabilitation, 5(1), 25. 

Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current 
Opinion in Neurology, 21(4), 424-430. 

Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting 
brain: A network analysis of the default mode hypothesis. Proceedings of the National 
Academy of Sciences, 100(1), 253. 

Griffanti, L., Douaud, G., Bijsterbosch, J., Evangelisti, S., Alfaro-Almagro, F., Glasser, M. F., . . . 
Smith, S. M. (2017). Hand classification of fMRI ICA noise components. NeuroImage, 154, 
188-205. 

Grin-Yatsenko, V. A., Baas, I., Ponomarev, V. A., & Kropotov, J. D. (2010). Independent component 
approach to the analysis of EEG recordings at early stages of depressive disorders. Clinical 
Neurophysiology, 121(3), 281-289. 

Groot, J. M., Boayue, N. M., Csifcsák, G., Boekel, W., Huster, R., Forstmann, B. U., & Mittner, M. 
(2021). Probing the neural signature of mind wandering with simultaneous fMRI-EEG and 
pupillometry. NeuroImage, 224, 117412. 

Gross, J., Kujala, J., Hämäläinen, M., Timmermann, L., Schnitzler, A., & Salmelin, R. (2001). 
Dynamic imaging of coherent sources: Studying neural interactions in the human brain. 
Proceedings of the National Academy of Sciences, 98(2), 694. 

Grouiller, F., Vercueil, L., Krainik, A., Segebarth, C., Kahane, P., & David, O. (2007). A comparative 
study of different artefact removal algorithms for EEG signals acquired during functional 
MRI. NeuroImage, 38(1), 124-137. 

Guo, Z., Chen, R., Zhang, K., Pan, Y., & Wu, J. (2016). The impairing effect of mental fatigue on 
visual sustained attention under monotonous multi-object visual attention task in long 
durations: an event-related potential based study. PLoS ONE, 11(9). 

Halder, T., Talwar, S., Jaiswal, A. K., & Banerjee, A. (2019). Quantitative Evaluation in Estimating 
Sources Underlying Brain Oscillations Using Current Source Density Methods and 
Beamformer Approaches. eNeuro, 6(4), ENEURO.0170-0119.2019. 

Hallez, H., Vanrumste, B., Grech, R., Muscat, J., De Clercq, W., Vergult, A., . . . Van Huffel, S. 
(2007). Review on solving the forward problem in EEG source analysis. Journal of 
Neuroengineering and Rehabilitation, 4(1), 46. 

Hamal, A. Q., & bin Abdul Rehman, A. W. (2013). Artifact Processing of Epileptic EEG Signals: An 
Overview of Different Types of Artifacts. Proceedings of 2013 International Conference on 
Advanced Computer Science Applications and Technologies 358-361. 

Hammond, D. C. (2007). What Is Neurofeedback? Journal of Neurotherapy, 10(4), 25-36. 
Hancock, P. A. (1989). A Dynamic Model of Stress and Sustained Attention. Human Factors, 31(5), 

519-537. 
Hancock, P. A. (2013). In search of vigilance: The problem of iatrogenically created psychological 

phenomena. American Psychologist, 68(2), 97-109. 
Hara, J., & Sakurai, T. (2011). Interaction between sleep mechanisms and orexin neurons. Sleep 

and Biological Rhythms, 9(1), 38-43. 
Harmony, T., Fernández, T., Silva, J., Bernal, J., Díaz-Comas, L., Reyes, A., . . . Rodríguez, M. (1996). 

EEG delta activity: an indicator of attention to internal processing during performance of 
mental tasks. International Journal of Psychophysiology, 24(1), 161-171. 



P a g e  | 176 

 

 

Harrison, Y., & Horne, J. A. (1996). Occurrence of ‘microsleeps’ during daytime sleep onset in 
normal subjects. Electroencephalography and Clinical Neurophysiology, 98(5), 411-416. 

Hartmann, M., Martarelli, C. S., Mast, F. W., & Stocker, K. (2014). Eye movements during mental 
time travel follow a diagonal line. Consciousness and Cognition, 30, 201-209. 

Hasher, L., Lustig, C., & Zacks, R. (2007). Inhibitory mechanisms and the control of attention. 
Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a 

new view. Psychology of Learning and Motivation, 22, 193-225. 
Hayasaka, S., & Nichols, T. E. (2003). Validating cluster size inference: random field and 

permutation methods. NeuroImage, 20(4), 2343-2356. 
He, H., Li, Y., Chen, Q., Wei, D., Shi, L., Wu, X., & Qiu, J. (2021). Tracking resting-state functional 

connectivity changes and mind wandering: A longitudinal neuroimaging study. 
Neuropsychologia, 150, 107674. 

He, J., Becic, E., Lee, Y.-C., & McCarley, J. S. (2011). Mind wandering behind the wheel: 
Performance and oculomotor correlates. Human Factors, 53(1), 13-21. 

Head, J., & Helton, W. S. (2012). Natural scene stimuli and lapses of sustained attention. 
Consciousness and Cognition, 21(4), 1617-1625. 

Head, J., & Helton, W. S. (2014). Sustained attention failures are primarily due to sustained 
cognitive load not task monotony. Acta Psychologica, 153, 87-94. 

Helfrich, R. F., Becker, H. G. T., & Haarmeier, T. (2013). Processing of Coherent Visual Motion in 
Topographically Organized Visual Areas in Human Cerebral Cortex. Brain Topography, 
26(2), 247-263. 

Helton, W. S., & Russell, P. N. (2011). Feature absence–presence and two theories of lapses of 
sustained attention. Psychological Research, 75(5), 384-392. 

Helton, W. S., & Russell, P. N. (2012). Brief mental breaks and content-free cues may not keep you 
focused. Experimental Brain Research, 219(1), 37-46. 

Helton, W. S., & Warm, J. S. (2008). Signal salience and the mindlessness theory of vigilance. Acta 
Psychologica, 129(1), 18-25. 

Herrmann, C. S., Fründ, I., & Lenz, D. (2010). Human gamma-band activity: A review on cognitive 
and behavioral correlates and network models. Neuroscience & Biobehavioral Reviews, 
34(7), 981-992. 

Hertig-Godeschalk, A., Skorucak, J., Malafeev, A., Achermann, P., Mathis, J., & Schreier, D. R. 
(2020). Microsleep episodes in the borderland between wakefulness and sleep. Sleep, 
43(1). 

Hitchcock, E. M., Warm, J. S., Matthews, G., Dember, W. N., Shear, P. K., Tripp, L. D., . . . 
Parasuraman, R. (2003). Automation cueing modulates cerebral blood flow and vigilance 
in a simulated air traffic control task. Theoretical Issues in Ergonomics Science, 4(1-2), 89-
112. 

Hoechstetter, K., Bornfleth, H., Weckesser, D., Ille, N., Berg, P., & Scherg, M. (2004). BESA source 
coherence: a new method to study cortical oscillatory coupling. Brain Topography, 16(4), 
233-238. 

Holm, L., Ullén, F., & Madison, G. (2011). Intelligence and temporal accuracy of behaviour: unique 
and shared associations with reaction time and motor timing. Experimental Brain 
Research, 214(2), 175. 

Holmes, A. P., Blair, R. C., Watson, J. D. G., & Ford, I. (1996). Nonparametric Analysis of Statistic 
Images from Functional Mapping Experiments. Journal of Cerebral Blood Flow & 
Metabolism, 16(1), 7-22. 

Hong, X., To, X. V., Teh, I., Soh, J. R., & Chuang, K.-H. (2015). Evaluation of EPI distortion correction 
methods for quantitative MRI of the brain at high magnetic field. Magnetic Resonance 
Imaging, 33(9), 1098-1105. 

Horne, J. A., & Reyner, L. A. (1995). Sleep related vehicle accidents. British Medical Journal, 
310(6979), 565-567. 

Horowitz, A. L. (2012). MRI physics for physicians: Springer Science & Business Media. 



P a g e  | 177 

 

 

Hossein Hosseini, S. A., Sohrabpour, A., Akcakaya, M., & He, B. (2018). Electromagnetic Brain 
Source Imaging by Means of a Robust Minimum Variance Beamformer. IEEE Transactions 
on Biomedical Engineering, 65(10), 2365-2374. 

Hosseini, S. A. H., Sohrabpour, A., Akçakaya, M., & He, B. (2018). Electromagnetic Brain Source 
Imaging by Means of a Robust Minimum Variance Beamformer. IEEE Transactions on 
Biomedical Engineering, 65(10), 2365-2374. 

Huang, C.-S., Pal, N. R., Chuang, C.-H., & Lin, C.-T. (2015). Identifying changes in EEG information 
transfer during drowsy driving by transfer entropy. Frontiers in Human Neuroscience, 
9(570). 

Huang, R.-S., Jung, T.-P., & Makeig, S. (2007). Event-related brain dynamics in continuous 
sustained-attention tasks. Proceedings of International Conference on Foundations of 
Augmented Cognition 65-74. 

Huber, R., Felice Ghilardi, M., Massimini, M., & Tononi, G. (2004). Local sleep and learning. 
Nature, 430(6995), 78-81. 

Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging (Vol. 
1): Sinauer Associates Sunderland, MA. 

Huijser, S., van Vugt, M. K., & Taatgen, N. A. (2018). The wandering self: Tracking distracting self-
generated thought in a cognitively demanding context. Consciousness and Cognition, 58, 
170-185. 

Hung, C.-S., Sarasso, S., Ferrarelli, F., Riedner, B., Ghilardi, M. F., Cirelli, C., & Tononi, G. (2013). 
Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep, 
36(1), 59-72. 

Hutchinson, J. B., & Turk-Browne, N. B. (2012). Memory-guided attention: Control from multiple 
memory systems. Trends in Cognitive Sciences, 16(12), 576-579. 

Iannetti, G. D., Niazy, R. K., Wise, R. G., Jezzard, P., Brooks, J. C. W., Zambreanu, L., . . . Tracey, I. 
(2005). Simultaneous recording of laser-evoked brain potentials and continuous, high-
field functional magnetic resonance imaging in humans. NeuroImage, 28(3), 708-719. 

Iannotti, G. R., Pittau, F., Michel, C. M., Vulliemoz, S., & Grouiller, F. (2015). Pulse artifact 
detection in simultaneous EEG–fMRI recording based on EEG map topography. Brain 
Topography, 28(1), 21-32. 

Innes, C. R. H., Poudel, G. R., & Jones, R. D. (2013). Efficient and regular patterns of nighttime 
sleep are related to increased vulnerability to microsleeps following a single night of sleep 
restriction. Chronobiology International, 30(9), 1187-1196. 

Innes, C. R. H., Poudel, G. R., Signal, T. L., & Jones, R. D. (2010). Behavioural microsleeps in 
normally-rested people. Proceedings of Annual International Conference IEEE Engineering 
Medicine Biology Society 4448-4451. 

Jafri, M. J., Pearlson, G. D., Stevens, M., & Calhoun, V. D. (2008). A method for functional network 
connectivity among spatially independent resting-state components in schizophrenia. 
NeuroImage, 39(4), 1666-1681. 

Jansen, M., White, T. P., Mullinger, K. J., Liddle, E. B., Gowland, P. A., Francis, S. T., . . . Liddle, P. F. 
(2012). Motion-related artefacts in EEG predict neuronally plausible patterns of activation 
in fMRI data. NeuroImage, 59(1), 261-270. 

Jatoi, M. A., & Kamel, N. (2018). EEG inverse problem I: Classical techniques. In Brain Source 
Localization Using EEG Signal Analysis (pp. 63-75): CRC Press. 

Jatoi, M. A., Kamel, N., Malik, A. S., & Faye, I. (2014). EEG based brain source localization 
comparison of sLORETA and eLORETA. Australasian Physical & Engineering Sciences in 
Medicine, 37(4), 713-721. 

Jenkinson, M. (2003). Fast, automated, N-dimensional phase-unwrapping algorithm. Magnetic 
Resonance in Medicine, 49(1), 193-197. 

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved Optimization for the Robust 
and Accurate Linear Registration and Motion Correction of Brain Images. NeuroImage, 
17(2), 825-841. 



P a g e  | 178 

 

 

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL. 
NeuroImage, 62(2), 782-790. 

Jenkinson, M., & Chappell, M. (2018). Introduction to neuroimaging analysis: Oxford University 
Press. 

Jenkinson, M., Pechaud, M., & Smith, S. (2005). BET2: MR-based estimation of brain, skull and 
scalp surfaces. Proceedings of 11th Ann. Meet. Org. Hum. Brain Map. 167. 

Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of 
brain images. Medical Image Analysis, 5(2), 143-156. 

Jenkinson, M., & Smith, S. M. (2006). Pre-processing of BOLD fMRI data. In (pp. 1): Oxford 
University Centre for Functional MRI of the Brain (FMRIB). 

Jezzard, P. (2012). Correction of geometric distortion in fMRI data. NeuroImage, 62(2), 648-651. 
Jiang, X., Bian, G.-B., & Tian, Z. (2019). Removal of Artifacts from EEG Signals: A Review. Sensors 

(Basel, Switzerland), 19(5), 987. 
Johannsdottir, K. R., & Herdman, C. M. (2010). The role of working memory in supporting drivers’ 

situation awareness for surrounding traffic. Human Factors, 52(6), 663-673. 
Jones, R. (2011). Arousal-related lapses of responsiveness: Characteristics, detection, and 

underlying mechanisms. Sleep & Biological Rhythms, 9(4), 222. 
Jones, R. D., Innes, C. R. H., & Shoorangiz, R. (2018). Reduced-responsiveness events: Taxonomy 

and definitions. Retrieved from Internal report of NeuroTech 
Jones, R. D., Poudel, G. R., Innes, C. R. H., Davidson, P. R., Peiris, M. T. R., Malla, A. M., . . . Bones, 

P. J. (2010). Lapses of responsiveness: Characteristics, detection, and underlying 
mechanisms. Proceedings of Annual International Conference of the IEEE Engineering in 
Medicine and Biology 1788-1791. 

Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., & Moore, K. S. (2007). The mind 
and brain of short-term memory. Annual Review of Psychology, 59(1), 193-224. 

Jonmohamadi, Y., Poudel, G. R., Innes, C. R. H., & Jones, R. D. (2016). Microsleeps are associated 
with stage-2 sleep spindles from hippocampal-temporal network. International Journal of 
Neural Systems, 26(04), 12pp. 

Jorge, J., Grouiller, F., Gruetter, R., Van Der Zwaag, W., & Figueiredo, P. (2015). Towards high-
quality simultaneous EEG-fMRI at 7 T: detection and reduction of EEG artifacts due to 
head motion. NeuroImage, 120, 143-153. 

Jubera-García, E., Gevers, W., & Van Opstal, F. (2019). Influence of content and intensity of 
thought on behavioral and pupil changes during active mind-wandering, off-focus, and 
on-task states. Attention, Perception, & Psychophysics, 82(3), 1125-1135. 

Kahneman, D. (1973). Attention and effort (Vol. 1063): Citeseer. 
Kan, S., Misaki, M., Koike, T., & Miyauchi, S. (2008). Different modulation of medial superior 

temporal activity across saccades: a functional magnetic resonance imaging study. 
NeuroReport, 19, 133-137. 

Kane, M. J., Conway, A. R., Hambrick, D. Z., & Engle, R. W. (2007). Variation in working memory 
capacity as variation in executive attention and control. In A. Miyake, A. Conway, & C. 
Jarrold (Eds.), Variation in working memory (Vol. 1, pp. 21-48): OUP USA. 

Kang, O. E., Huffer, K. E., & Wheatley, T. P. (2014). Pupil dilation dynamics track attention to high-
level information. PLoS ONE, 9(8), e102463. 

Kaufmann, C., Wehrle, R., Wetter, T. C., Holsboer, F., Auer, D. P., Pollmächer, T., & Czisch, M. 
(2006). Brain activation and hypothalamic functional connectivity during human non-rapid 
eye movement sleep: an EEG/fMRI study. Brain, 129(3), 655-667. 

Kawagoe, T., Onoda, K., & Yamaguchi, S. (2019). The neural correlates of “mind blanking”: When 
the mind goes away. Human Brain Mapping, 0(0). 

Kelly, R. E., Alexopoulos, G. S., Wang, Z., Gunning, F. M., Murphy, C. F., Morimoto, S. S., . . . 
Hoptman, M. J. (2010). Visual inspection of independent components: Defining a 
procedure for artifact removal from fMRI data. Journal of Neuroscience Methods, 189(2), 
233-245. 



P a g e  | 179 

 

 

Kim, B., Boes, J. L., Bland, P. H., Chenevert, T. L., & Meyer, C. R. (1999). Motion correction in fMRI 
via registration of individual slices into an anatomical volume. Magnetic Resonance in 
Medicine, 41(5), 964-972. 

Kirmizi-Alsan, E., Bayraktaroglu, Z., Gurvit, H., Keskin, Y. H., Emre, M., & Demiralp, T. (2006). 
Comparative analysis of event-related potentials during Go/NoGo and CPT: 
decomposition of electrophysiological markers of response inhibition and sustained 
attention. Brain Research, 1104(1), 114-128. 

Kleitman, N. (1963). Sleep and wakefulness: University of Chicago Press. 
Klem, G. H., Lüders, H. O., Jasper, H., & Elger, C. (1999). The ten-twenty electrode system of the 

International Federation. Electroencephalography and Clinical Neurophysiology, 52(3), 3-
6. 

Konishi, M., Brown, K., Battaglini, L., & Smallwood, J. (2017). When attention wanders: 
Pupillometric signatures of fluctuations in external attention. Cognition, 168, 16-26. 

Krimsky, M., Forster, D. E., Llabre, M. M., & Jha, A. P. (2017). The influence of time on task on 
mind wandering and visual working memory. Cognition, 169, 84-90. 

Kristjansson, S. D., Stern, J. A., Brown, T. B., & Rohrbaugh, J. W. (2009). Detecting phasic lapses in 
alertness using pupillometric measures. Applied Ergonomics, 40(6), 978-986. 

Kucyi, A. (2018). Just a thought: How mind-wandering is represented in dynamic brain 
connectivity. NeuroImage, 180, 505-514. 

Kucyi, A., & Davis, K. D. (2014). Dynamic functional connectivity of the default mode network 
tracks daydreaming. NeuroImage, 100, 471-480. 

Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M., & Valera, E. M. (2017). Dynamic brain 
network correlates of spontaneous fluctuations in attention. Cerebral Cortex, 27(3), 1831-
1840. 

Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of 
subjective effort and task performance. Behavioral and Brain Sciences, 36(6), 661-679. 

Kyllonen, P., & Kell, H. (2017). What Is Fluid Intelligence? Can It Be 

Improved? In M. Rosén, K. Yang Hansen, & U. Wolff (Eds.), Cognitive Abilities and Educational 
Outcomes (pp. 15-37): Springer International Publishing. 

LaBar, K. S., Gitelman, D. R., Parrish, T. B., & Mesulam, M.-M. (1999). Neuroanatomic overlap of 
working memory and spatial attention networks: a functional MRI comparison within 
subjects. NeuroImage, 10(6), 695-704. 

Landau, A., Esterman, M., Robertson, L., Bentin, S., & Prinzmetal, W. (2007). Different Effects of 
Voluntary and Involuntary Attention on EEG Activity in the Gamma Band. The Journal of 
Neuroscience, 27, 11986 - 11990. 

Larue, G. S., Rakotonirainy, A., & Pettitt, A. N. (2015). Predicting reduced driver alertness on 
monotonous highways. IEEE Pervasive Computing, 14(2), 78-85. 

Leechawengwongs, M., Leechawengwongs, E., Sukying, C., & Udomsubpayakul, U. (2006). Role of 
drowsy driving in traffic accidents: a questionnaire survey of Thai commercial bus/truck 
drivers. Journal-Medical Association of Thailand, 89(11), 1845. 

Lemercier, C., Pêcher, C., Berthié, G., Valéry, B., Vidal, V., Paubel, P.-V., . . . Maury, B. (2014). 
Inattention behind the wheel: How factual internal thoughts impact attentional control 
while driving. Safety Science, 62, 279-285. 

Li, R., Ryu, J. H., Vincent, P., Springer, M., Kluger, D., Levinsohn, E. A., . . . Blumenfeld, H. (2021). 
The pulse: Transient fMRI signal increases in subcortical arousal systems during 
transitions in attention. NeuroImage, 232, 117873. 

Lindquist, M., & Wager, T. (2013). Principles of fMRI 1. Retrieved from 
https://www.coursera.org/learn/functional-mri# 

Lindquist, M. A. (2008). The statistical analysis of fMRI data. Statistical Science, 23(4), 439-464. 
Lindquist, M. A., & Wager, T. D. (2007). Validity and power in hemodynamic response modeling: A 

comparison study and a new approach. Human Brain Mapping, 28(8), 764-784. 

https://www.coursera.org/learn/functional-mri


P a g e  | 180 

 

 

Lindsley, D. B. (1952). Psychological phenomena and the electroencephalogram. 
Electroencephalography and Clinical Neurophysiology, 4(4), 443-456. 

Liu, A., Li, J., McKeown, M. J., & Wang, Z. J. (2016). Brain Connectivity Assessed with Functional 
MRI. In K. Iniewski (Ed.), MRI: Physics, image reconstruction, and analysis: CRC Press. 

Liu, T. T., Nalci, A., & Falahpour, M. (2017). The global signal in fMRI: Nuisance or Information? 
NeuroImage, 150, 213-229. 

Liu, Y., Bengson, J., Huang, H., Mangun, G. R., & Ding, M. (2014). Top-down Modulation of Neural 
Activity in Anticipatory Visual Attention: Control Mechanisms Revealed by Simultaneous 
EEG-fMRI. Cerebral Cortex, 26(2), 517-529. 

López-Ramón, M. F., Castro, C., Roca, J., Ledesma, R., & Lupiañez, J. (2011). Attentional networks 
functioning, age, and attentional lapses while driving. Traffic Injury Prevention, 12(5), 518-
528. 

Lowe, M. J., Dzemidzic, M., Lurito, J. T., Mathews, V. P., & Phillips, M. D. (2000). Correlations in 
Low-Frequency BOLD Fluctuations Reflect Cortico-Cortical Connections. NeuroImage, 
12(5), 582-587. 

Lückmann, H. C., Jacobs, H. I. L., & Sack, A. T. (2014). The cross-functional role of frontoparietal 
regions in cognition: internal attention as the overarching mechanism. Progress in 
Neurobiology, 116, 66-86. 

Macaluso, E., & Doricchi, F. (2013). Attention and predictions: control of spatial attention beyond 
the endogenous-exogenous dichotomy. Frontiers in Human Neuroscience, 7, 685. 

MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the 
dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 
288(5472), 1835-1838. 

Macdonald, J., Mathan, S., & Yeung, N. (2011). Trial-by-Trial Variations in Subjective Attentional 
State are Reflected in Ongoing Prestimulus EEG Alpha Oscillations. Frontiers in 
Psychology, 2(82). 

Mackworth, J. F. (1964). Performance decrement in vigilance, threshold, and high-speed 
perceptual motor tasks. Canadian Journal of Psychology, 18(3), 209. 

Mackworth, N. H. (1948). The breakdown of vigilance during prolonged visual search. Quarterly 
Journal of Experimental Psychology, 1(1), 6-21. 

Maillet, D., Beaty, R. E., Kucyi, A., & Schacter, D. L. (2019). Large-scale network interactions 
involved in dividing attention between the external environment and internal thoughts to 
pursue two distinct goals. NeuroImage, 197, 49-59. 

Makeig, S., Bell, A. J., Jung, T.-P., & Sejnowski, T. J. (1996). Independent component analysis of 
electroencephalographic data. Proceedings of Advances in Neural Information Processing 
Systems 145-151. 

Malla, A. M., Davidson, P. R., Bones, P. J., Green, R., & Jones, R. D. (2010). Automated video-based 
measurement of eye closure for detecting behavioral microsleep. Proceedings of 2010 
Annual International Conference of the IEEE Engineering in Medicine and Biology 6741-
6744. 

Manly, T., Robertson, I. H., Galloway, M., & Hawkins, K. (1999). The absent mind:: further 
investigations of sustained attention to response. Neuropsychologia, 37(6), 661-670. 

Marek, S., & Dosenbach, N. U. F. (2018). The frontoparietal network: function, electrophysiology, 
and importance of individual precision mapping. Dialogues in Clinical Neuroscience, 20(2), 
133-140. 

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. 
Journal of Neuroscience Methods, 164(1), 177-190. 

Maris, E., Schoffelen, J.-M., & Fries, P. (2007). Nonparametric statistical testing of coherence 
differences. Journal of Neuroscience Methods, 163(1), 161-175. 

Marqui, R. P., Michel, C. M., & Lehmann, D. (1994). Low-resolution electromagnetic tomography–
a new method for localizing electrical activity in the brain. International Journal of 
Psychophysiology, 18(1), 49-65. 



P a g e  | 181 

 

 

Martini, F., & Bartholomew, E. (1998). The integumentary system. In Fundamentals of anatomy 
and physiology (Prentice Hall, New Jersey) (pp. 148-161). 

Marzano, C., Ferrara, M., Moroni, F., & De Gennaro, L. (2011). Electroencephalographic sleep 
inertia of the awakening brain. Neuroscience, 176, 308-317. 

Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). 
Wandering minds: The default network and stimulus-independent thought. Science, 
315(5810), 393-395. 

Massar, S. A., Lim, J., Sasmita, K., & Chee, M. W. (2016). Rewards boost sustained attention 
through higher effort: A value-based decision making approach. Biological Psychology, 
120, 21-27. 

Massar, S. A., Sasmita, K., Lim, J., & Chee, M. W. (2018). Motivation alters implicit temporal 
attention through sustained and transient mechanisms: A behavioral and pupillometric 
study. Psychophysiology, 55(12), e13275. 

Matthews, G., Davies, D. R., Stammers, R. B., & Westerman, S. J. (2000). Human performance: 
Cognition, stress, and individual differences: Psychology Press. 

Mazaika, P. K., Whitfield, S., & Cooper, J. C. (2005). Detection and repair of transient artifacts in 
fMRI data. NeuroImage, 26(Suppl 1), S36. 

McAvinue, L. P., Habekost, T., Johnson, K. A., Kyllingsbæk, S., Vangkilde, S., Bundesen, C., & 
Robertson, I. H. (2012). Sustained attention, attentional selectivity, and attentional 
capacity across the lifespan. Attention, Perception, & Psychophysics, 74(8), 1570-1582. 

McIntire, L., McKinley, R. A., McIntire, J., Goodyear, C., & Nelson, J. (2013). Eye metrics: An 
alternative vigilance detector for military operators. Military Psychology, 25(5), 502-513. 

McKeown, M. J., Hansen, L. K., & Sejnowsk, T. J. (2003). Independent component analysis of 
functional MRI: what is signal and what is noise? Current Opinion in Neurobiology, 13(5), 
620-629. 

McKeown, M. J., Makeig, S., Brown, G. G., Jung, T. P., Kindermann, S. S., Bell, A. J., & Sejnowski, T. 
J. (1998). Analysis of fMRI data by blind separation into independent spatial components. 
Human Brain Mapping, 6(3), 160-188. 

McKinley, R. A., McIntire, L. K., Schmidt, R., Repperger, D. W., & Caldwell, J. A. (2011). Eye metrics: 
An alternative vigilance detector for military operators. Human Factors, 53(4), 403-414. 

McVay, J. C., & Kane, M. J. (2010). Does mind wandering reflect executive function or executive 
failure? Comment on Smallwood and Schooler (2006) and Watkins (2008). Psychological 
Bulletin, 136(2), 188-197. 

Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W., & Rodriguez, E. (2007). Synchronization of 
neural activity across cortical areas correlates with conscious perception. The Journal of 
neuroscience : the official journal of the Society for Neuroscience, 27(11), 2858-2865. 

Meng, C., & Zhao, X. (2017). Webcam-based eye movement analysis using CNN. IEEE Access, 5, 
19581-19587. 

Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network model of 
insula function. Brain Structure & Function, 214(5-6), 655-667. 

Mensen, A., & Khatami, R. (2013). Advanced EEG analysis using threshold-free cluster-
enhancement and non-parametric statistics. NeuroImage, 67, 111-118. 

Michel, C. M., & Brunet, D. (2019). EEG Source Imaging: A Practical Review of the Analysis Steps. 
Frontiers in Neurology, 10. 

Michel, C. M., & He, B. (2012). EEG mapping and source imaging. In Niedermeyer's 
Electroencephalography: Basic Principles, Clinical Applications, and Related Fields: Sixth 
Edition (pp. 1179-1202): Wolters Kluwer Health Adis (ESP). 

Michel, C. M., Murray, M. M., Lantz, G., Gonzalez, S., Spinelli, L., & Grave de Peralta, R. (2004). 
EEG source imaging. Clinical Neurophysiology, 115(10), 2195-2222. 

Miinalainen, T., Rezaei, A., Us, D., Nüßing, A., Engwer, C., Wolters, C. H., & Pursiainen, S. (2019). A 
realistic, accurate and fast source modeling approach for the EEG forward problem. 
NeuroImage, 184, 56-67. 



P a g e  | 182 

 

 

Mikl, M., Mareček, R., Hluštík, P., Pavlicová, M., Drastich, A., Chlebus, P., . . . Krupa, P. (2008). 
Effects of spatial smoothing on fMRI group inferences. Magnetic Resonance Imaging, 
26(4), 490-503. 

Mitko, A., Rothlein, D., Poole, V., Robinson, M., McGlinchey, R., DeGutis, J., . . . Esterman, M. 
(2019). Individual differences in sustained attention are associated with cortical thickness. 
Human Brain Mapping, 40(11), 3243-3253. 

Mitra, P. P., & Pesaran, B. (1999). Analysis of Dynamic Brain Imaging Data. Biophysical Journal, 
76(2), 691-708. 

Mittner, M., Boekel, W., Tucker, A. M., Turner, B. M., Heathcote, A., & Forstmann, B. U. (2014). 
When the Brain Takes a Break: A Model-Based Analysis of Mind Wandering. The Journal of 
Neuroscience, 34(49), 16286-16295. 

Mittner, M., Hawkins, G. E., Boekel, W., & Forstmann, B. U. (2016). A neural model of mind 
wandering. Trends in Cognitive Sciences, 20(8), 570-578. 

Mo, J., Liu, Y., Huang, H., & Ding, M. (2013). Coupling between visual alpha oscillations and default 
mode activity. NeuroImage, 68, 112-118. 

Möcks, J., & Gasser, T. (1984). How to select epochs of the EEG at rest for quantitative analysis. 
Electroencephalography and Clinical Neurophysiology, 58(1), 89-92. 

Molina, E., Sanabria, D., Jung, T.-P., & Correa, Á. (2019). Electroencephalographic and peripheral 
temperature dynamics during a prolonged psychomotor vigilance task. Accident Analysis 
& Prevention, 126, 198-208. 

Montes, S. A., Introzzi, I. M., Ledesma, R. D., & López, S. S. (2016). Selective attention and error 
proneness while driving: research using a conjunctive visual search task. Avances en 
Psicología Latinoamericana, 34(2), 195-203. 

Monti, M. (2011). Statistical analysis of fMRI time-series: A critical review of the GLM approach. 
Frontiers in Human Neuroscience, 5(28). 

Moraitou, D., & Efklides, A. (2009). The blank in the mind questionnaire (BIMQ). European Journal 
of Psychological Assessment, 25(2), 115-122. 

Morris, L., & Dawson, S. (2008). Relationships between age, executive function and driving 
behaviour. Proceedings of Proceedings of the Australasian road safety research, policing 
and education conference 96-103. 

Mosher, J. C., & Leahy, R. M. (1998). Recursive MUSIC: a framework for EEG and MEG source 
localization. IEEE Transactions on Biomedical Engineering, 45(11), 1342-1354. 

Mosher, J. C., & Leahy, R. M. (1999). Source localization using recursively applied and projected 
(RAP) MUSIC. IEEE Transactions on Signal Processing, 47(2), 332-340. 

Mumford, J. A. (2012). A power calculation guide for fMRI studies. Social Cognitive and Affective 
Neuroscience, 7(6), 738-742. 

Mumford, J. A., & Poldrack, R. A. (2007). Modeling group fMRI data. Social Cognitive and Affective 
Neuroscience, 2(3), 251-257. 

Murta, T., Leite, M., Carmichael, D. W., Figueiredo, P., & Lemieux, L. (2015). Electrophysiological 
correlates of the BOLD signal for EEG-informed fMRI. Human Brain Mapping, 36(1), 391-
414. 

Muthukumaraswamy, S. (2013). High-frequency brain activity and muscle artifacts in MEG/EEG: A 
review and recommendations. Frontiers in Human Neuroscience, 7. 

Myers, N. E., Stokes, M. G., & Nobre, A. C. (2017). Prioritizing information during working 
memory: beyond sustained internal attention. Trends in Cognitive Sciences, 21(6), 449-
461. 

Naughton, M., & Pierce, R. (1991). Sleep apnoea's contribution to the road toll. Australian and 
New Zealand Journal of Medicine, 21(6), 833-834. 

Neigel, A. R., Claypoole, V. L., Fraulini, N. W., Waldfogle, G. E., & Szalma, J. L. (2019a). Where is my 
mind? Examining mind-wandering and vigilance performance. Experimental Brain 
Research, 237(2), 557-571. 



P a g e  | 183 

 

 

Neigel, A. R., Claypoole, V. L., & Szalma, J. L. (2019b). Effects of state motivation in overload and 
underload vigilance task scenarios. Acta Psychologica, 197, 106-114. 

Neugebauer, F., Möddel, G., Rampp, S., Burger, M., & Wolters, C. H. (2017). The Effect of Head 
Model Simplification on Beamformer Source Localization. Frontiers in Neuroscience, 
11(625). 

Niazy, R. K., Beckmann, C. F., Iannetti, G. D., Brady, J. M., & Smith, S. M. (2005). Removal of FMRI 
environment artifacts from EEG data using optimal basis sets. NeuroImage, 28(3), 720-
737. 

Nichols, T. E., Das, S., Eickhoff, S. B., Evans, A. C., Glatard, T., Hanke, M., . . . Poline, J.-B. (2017). 
Best practices in data analysis and sharing in neuroimaging using MRI. Nature 
Neuroscience, 20(3), 299-303. 

Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional 
neuroimaging: A primer with examples. Human Brain Mapping, 15(1), 1-25. 

Nickerson, L. D., Smith, S. M., Öngür, D., & Beckmann, C. F. (2017). Using dual regression to 
investigate network shape and amplitude in functional connectivity analyses. Frontiers in 
Neuroscience, 11, 115. 

Niedermeyer, E. (1999a). Maturation of EEG: development of walking and sleep patterns. In E. 
Niedermeyer & F. Lopes da Silva (Eds.), Electroencephalography Basic Principles, Clinical 
Applications, and Related Fields. Lippincott, Williams and Wilkins, Philadelphia, 
Pennsylvania: Lippincott Williams & Wilkins. 

Niedermeyer, E. (1999b). Sleep and EEG. In E. Niedermeyer & F. Lopes da Silva (Eds.), 
Electroencephalography Basic Principles, Clinical Applications, and Related Fields. 
Lippincott, Williams and Wilkins, Philadelphia, Pennsylvania: Lippincott Williams & 
Wilkins. 

Niedermeyer, E., & da Silva, F. L. (2005). Electroencephalography: basic principles, clinical 
applications, and related fields: Lippincott Williams & Wilkins. 

Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., & Hallett, M. (2004). Identifying true brain 
interaction from EEG data using the imaginary part of coherency. Clinical 
Neurophysiology, 115(10), 2292-2307. 

Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with 
contrast dependent on blood oxygenation. Proceedings of the National Academy of 
Sciences of the United States of America, 87(24), 9868-9872. 

Ohara, S., Crone, N. E., Weiss, N., Treede, R.-D., & Lenz, F. A. (2004). Cutaneous painful laser 
stimuli evoke responses recorded directly from primary somatosensory cortex in awake 
humans. Journal of Neurophysiology, 91(6), 2734-2746. 

Olcese, U., Oude Lohuis, M. N., & Pennartz, C. M. A. (2018). Sensory Processing Across Conscious 
and Nonconscious Brain States: From Single Neurons to Distributed Networks for 
Inferential Representation. Frontiers in Systems Neuroscience, 12(49). 

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for 
advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational 
Intelligence and Neuroscience, 2011, 156869-156869. 

Oswal, A., Litvak, V., Brown, P., Woolrich, M., & Barnes, G. (2014). Optimising beamformer regions 
of interest analysis. NeuroImage, 102 Pt 2, 945-954. 

Ottaviani, C., Shahabi, L., Tarvainen, M., Cook, I., Abrams, M., & Shapiro, D. (2015). Cognitive, 
behavioral, and autonomic correlates of mind wandering and perseverative cognition in 
major depression. Frontiers in Neuroscience, 8(433), 1-9. 

Pajula, J., & Tohka, J. (2016). How Many Is Enough? Effect of Sample Size in Inter-Subject 
Correlation Analysis of fMRI. Computational Intelligence and Neuroscience, 2016, 
2094601-2094601. 

Parasuraman, R., Warm, J., & See, J. (1998). Brain systems of vigilance. In R. Parasuraman (Ed.), 
The attentive brain (pp. 221–256): Cambridge, MA: The MIT Press. 



P a g e  | 184 

 

 

Parker, D., Liu, X., & Razlighi, Q. R. (2017). Optimal slice timing correction and its interaction with 
fMRI parameters and artifacts. Medical Image Analysis, 35, 434-445. 

Pascual-Marqui, R. D. (1999). Review of methods for solving the EEG inverse problem. 
International Journal of Bioelectromagnetism, 1(1), 75-86. 

Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography 
(sLORETA): technical details. Methods and Findings in Experimental & Clinical 
Pharmacology, 24(Suppl D), 5-12. 

Pascual-Marqui, R. D. (2007). Discrete, 3D distributed, linear imaging methods of electric neuronal 
activity. Part 1: exact, zero error localization. arXiv. 

Pascual-Marqui, R. D. (2009). Theory of the EEG inverse problem. In N. Thakor & S. Tong (Eds.), 
Quantitative EEG analysis: methods and clinical applications (pp. 121-140): Artech House. 

Pauling, L., & Coryell, C. D. (1936). The magnetic properties and structure of hemoglobin, 
oxyhemoglobin and carbonmonoxyhemoglobin. Proceedings of the National Academy of 
Sciences, 22(4), 210. 

Paus, T. (2001). Primate anterior cingulate cortex: where motor control, drive and cognition 
interface. Nature Reviews Neuroscience, 2(6), 417-424. 

Peiris, M. T. R., Jones, R. D., Carroll, G. J., & Bones, P. J. (2004). Investigation of lapses of 
consciousness using a tracking task: preliminary results. Proceedings of 26th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society 4721-
4724. 

Peiris, M. T. R., Jones, R. D., Davidson, P. R., Carroll, G. J., & Bones, P. J. (2006). Frequent lapses of 
responsiveness during an extended visuomotor tracking task in non‐sleep‐deprived 
subjects. Journal of Sleep Research, 15(3), 291-300. 

Peiris, M. T. R., Jones, R. D., Davidson, P. R., Carroll, G. J., Parkin, P. J., Signal, T. L., . . . Bones, P. J. 
(2005). Identification of vigilance lapses using EEG/EOG by expert human raters. 
Proceedings of Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society 5735-5738. 

Peiris, T. R. M., Paul, R. D., Philip, J. B., & Richard, D. J. (2011). Detection of lapses in 
responsiveness from the EEG. Journal of Neural Engineering, 8(1), 15pp. 

Pepin, G., Malin, S., Jallais, C., Moreau, F., Fort, A., Navarro, J., . . . Gabaude, C. (2018). Do distinct 
mind wandering differently disrupt drivers? Interpretation of physiological and behavioral 
pattern with a data triangulation method. Consciousness and Cognition, 62, 69-81. 

Pernet, C., Garrido, M., Gramfort, A., Maurits, N., Michel, C., Pang, E., . . . Puce, A. (2018). Best 
practices in data analysis and sharing in neuroimaging using MEEG. Nature Neuroscience, 
20, 299–303. 

Pernet, C., & Poline, J.-B. (2015). Improving functional magnetic resonance imaging 
reproducibility. Gigascience, 4(1), 15. 

Pernet, C. R. (2014). Misconceptions in the use of the general linear model applied to functional 
MRI: a tutorial for junior neuro-imagers. Frontiers in Neuroscience, 8, 1. 

Petilli, M. A., Trisolini, D. C., & Daini, R. (2018). Sustained-Paced Finger Tapping: A Novel Approach 
to Measure Internal Sustained Attention. Frontiers in Psychology, 9(881). 

Philip, P., Sagaspe, P., Lagarde, E., Leger, D., Ohayon, M. M., Bioulac, B., . . . Taillard, J. (2010). 
Sleep disorders and accidental risk in a large group of regular registered highway drivers. 
Sleep Medicine, 11(10), 973-979. 

Philip, P., Vervialle, F., Le Breton, P., Taillard, J., & Horne, J. A. (2001). Fatigue, alcohol, and serious 
road crashes in France: factorial study of national data. British Medical Journal, 322(7290), 
829-830. 

Piazza, C., Cantiani, C., Akalin-Acar, Z., Miyakoshi, M., Benasich, A. A., Reni, G., . . . Makeig, S. 
(2016). ICA-derived cortical responses indexing rapid multi-feature auditory processing in 
six-month-old infants. NeuroImage, 133, 75-87. 



P a g e  | 185 

 

 

Picchioni, D., Fukunaga, M., Carr, W. S., Braun, A. R., Balkin, T. J., Duyn, J. H., & Horovitz, S. G. 
(2008). fMRI differences between early and late stage-1 sleep. Neuroscience Letters, 
441(1), 81-85. 

Piccoli, T., Valente, G., Linden, D. E. J., Re, M., Esposito, F., Sack, A. T., & Salle, F. D. (2015). The 
default mode network and the working memory network are not anti-correlated during 
all phases of a working memory task. PLoS ONE, 10(4), e0123354. 

Pierrot-Deseilligny, C., Milea, D., & Müri, R. M. (2004). Eye movement control by the cerebral 
cortex. Current Opinion in Neurology, 17(1). 
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Appendix A: EEG Pipeline Validation using an Artificial Signal 

To validate that the integrity of the pipeline, we added an artificial signal with a certain 

frequency to the events of interest at certain EEG electrodes (O2, O1, Oz, PO5, PO3, POz, 

PO4, PO6, PO8, PO7). Subsequently, we ran the source reconstruction technique and 

expected to see a change in activity in the underlying sources at the scalp location of the 

EEG electrodes after statistical analysis and correction for multiple comparisons. We added 

a 10-Hz sine wave with an amplitude equal to two times the norm of EEG signal for each 

electrode and subject to the 10 electrodes around the occipital lobe. The sine wave had a 

random phase for each electrode. This wave was added to the event duration, while another 

wave with equal amplitude (i.e., norm of EEG signal) was added to the baseline in order to 

make it the dominant signal, as shown below. 

 

A plot for the EEG electrodes after adding the sine wave added to both average event and average 

baseline with two different amplitudes. 

The validation process was done by adding the artificial wave to the AL events (38 events), 

in order to test the statistical power of our data given the current SNR = 2. The same analysis 

procedure was followed by using FFT for the frequency analysis and eLORETA for the 

source reconstruction. Permutation testing was applied to examine the relative difference 

between the average events to the average baseline of each subject. In total, there were 10 

subjects and results were corrected for multiple comparisons with TFCE and a p-value < 

0.01 (two-sided). The median of the percentage relative change refers to the effect sizes. 
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Group-level result of the significant change activity of the relative difference between the event of 

artificial sine wave added to the ALs and baseline at SNR = 2 (shown in axial view at the top). On 

the bottom is the median of the percentage relative change over subjects. 

 


