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Abstract—Recently there has been interest in using
drones/unmanned aerial vehicles in search-and-rescue applica-
tions. Here we apply a formation of drones equipped with
sectorised antennae to navigate to a transmitter using Direction
of Arrival (DoA) estimation to navigate. We present results indi-
cating that the error of the DoA estimate is dependent on the DoA
and evaluate a mitigation technique, finding that incrementally
changing the drone orientation across the formation reduces
the DoA estimation error. Further, we investigate a “dumbbell”
formation in which the two “weights” generate independent DoA
estimates, the difference between which are used to broadly
classify the distance to the transmitter. We found that the choice
of distance thresholds and relative direction of the transmitter
substantially changes the performance of this distance heuristic.

Index Terms—direction-of-arrival estimation, search and res-
cue, UAV, UAV formations

I. INTRODUCTION

Unmanned Aerial Vehicles (UAV) or drones have recently
attracted a lot of interest in search-and-rescue (SAR) appli-
cations [1]–[5], as they can potentially cover large search
areas quickly. Different sensor modalities can be used to first
make a detection of a lost person and then narrow down its
location sufficiently to guide a rescue team to the right place.
In [6] we have assumed that a missing person is equipped
with a wireless transmitter (e.g. a smartphone) which transmits
wireless signals regularly, and we considered what path an
individual drone should follow in an unknown environment
before it detects a wireless signal for the first time, with
the goal of making that first detection as early as possible.
Depending on transmit power and channel properties, the
distance between drone and transmitter at the time of first
detection can still be too large to send out a rescue team, and
we need to narrow down the location of the transmitter further.

We seek to extend our previous work [6] and consider
the question of how we can localise a wireless transmitter
to a given accuracy (in the order of a few tens of meters)
and in the shortest possible time after the first detection.
Instead of using just a single drone we propose to use a rigid
formation of drones, each equipped with a sectored antenna,
to repeatedly obtain estimates of the bearing between the
drone formation and the transmitter, and use these estimates
to reduce the distance to the transmitter quickly until the
formation is sufficiently close.

This approach raises a number of design questions concern-
ing “static” properties of the formation, e.g. its shape (line or
circle or ball or . . . ), the configuration of individual drones (in
particular the number and characteristics of antenna sectors),
the orientation of individual drones within the formation, and
the methods used for bearing estimation. In this paper we
investigate these questions through simulations, considering
different options for these characteristics. Furthermore, we in-
vestigate the “dynamic” question of where the drone formation
should move next (path planning), given one or more obser-
vations of a wireless signal and resulting bearing estimates.
In particular, we propose a formation shape (the “dumbbell”)
which allows to generate two bearing estimates in parallel from
different parts of the formation, and derive from these a coarse
classification of whether the transmitter is “near” or “far”.
Based on this classification we then decide the “stepsize”, i.e.
by how much we move in the overall direction derived from
the two available bearings, before deciding again. In particular,
in this paper, we make the following contributions:

• We present simulation results giving some insight into
the trade-offs between the number of sectors or antenna
directivity on the one hand and RMSE for a bearing
estimate on the other hand. Similarly, we present results
for the RMSE versus the orientation of drones, and we
consider selected formation shapes.

• We consider a particular formation shape, the “dumb-
bell”, which can be imagined as two “independent”
formations at some distance, but linked together. In this
formation the two “weights” at the end points generate
independent bearing estimates, which then are combined
towards an overall bearing estimate, and which we fur-
thermore use to perform a coarse classification of the
distance between transmitter and formation into one of
a very small number of regions. The stepsize for the
formation is chosen based on that classification result.
We show results indicating that the choice of regions
and stepsizes does significantly impact the time for the
formation to get within ten meters of the transmitter.

The remaining paper is structured as follows: after com-
menting on related work in Section II, we introduce in
Section III our system model, the DoA estimation and DoA es-
timate fusion techniques used throughout the paper. Section IV



then describes our simulator validation, explores the effect of
DoA on the DoA estimate error plus a possible mitigation
technique, and then develops and tests a heuristic for categoris-
ing the distance to the transmitter, allowing the formation to
choose its step size when navigating to the transmitter. Finally,
Section V summarises our results and novel contributions and
outlines possible future research directions.

II. RELATED WORK

In the literature, several works have explored using drones
and DoA estimation techniques to localise a transmitter [7]–
[11]. Most focus on a single drone [7]–[10] or require com-
municating sample-level data between the swarm UAVs [11].

References [7], [8] both use a single antenna DoA estima-
tion scheme, where the drone physically rotates, measuring
the direction in which the transmitter’s signal is strongest.
They then move a set distance in the transmitter’s estimated
direction. Since these schemes rely on the drones to rotate
whilst stationary it not only increases the time to localise
the transmitter, it also requires more energy, reducing the
maximum possible flight time and range for the drone. The
authors of [9] adopt a similar, single step size system, however
they switch between four antennas, placed at 90◦ to each
other to estimate the transmitter’s direction. This removes the
rotation requirement, reducing the total energy usage of the
DoA estimation scheme, but increases the payload.

References [10] and [11] both use a non-signal-strength
based approach to DoA estimation. Reference [10] uses a
single drone to repeatedly sample a periodic, repetitive signal
(e.g. the short preamble signal in IEEE 802.11 packets),
time-aligning them to extract phase differences and calculate
the DoA. [11] relies on having multiple different swarming
drones sampling the signal and using the MUSIC (multiple
signal classification) algorithm to estimate the transmitter
bearing. However, this requires each drone to communicate
its raw samples to a centralised computation node, which is
bandwidth inefficient and limits the number of drones possible
in any swarm. Neither [10] or [11] address navigating to the
transmitter, purely determining the DoA of its signal.

III. SYSTEM MODEL

To simulate the SAR scenario laid out in Section I, we
assume the lost person has a short range transmitter which
continuously transmits an unspecified distress signal. The
searchers deploy K drones, each equipped with an antenna
consisting of M equal-sized sectors, to locate and travel to
the transmitter’s location. The following sections outline how
an individual drone estimates the transmitter location and how
the formation combines their individual estimates together.

We assume that the target is static, and that the search area
does not have any obstacles limiting signal propagation or
the free movements of drones. All channels are assumed to
be line-of-sight channels which we characterise only through
their SNR, ignoring the details of detection. There is no
interference, and we furthermore assume that the commu-
nication between drones is done over perfect channels not

overlapping with the channel used by the target, i.e. we ignore
any delays or packet losses between drones in the course of
signal combining. There is also no shadowing between drones.
The decision about where the formation will go next is carried
out by one particular drone, the “lead drone”. We treat the
drones themselves as simple points and do not use a precise
dynamic model for them. We assume that drones move at an
average speed of 5 m/s. We finally assume that all drones share
a pre-arranged coordinate system, so that all bearings are using
the same reference.

A. Direction of Arrival (DoA) Estimation on Single Drones

We denote the continuous transmission signal from the tar-
get by s (t) and its sampled version as s (n) with n ∈ N0. Each
drone k in the formation samples the continuous transmission
s (t) using each of the M sectors of its antenna. As drone k
samples s (t) incoherently and below the Nyquist rate of the
signal,1 we consider s (n) to be complex-valued random noise
with zero mean and variance γk:

s (n) ∼ CN (0, γk) . (1)

The received signal at drone k, sampled using sector m, is

rk,m (n) = ξm (φk) s (n) +N0(n), (2)

where ξm (φk) is the attenuation of the m-th sector of the
antenna at the DoA φk and N0 (n) is complex additive noise
introduced by the receiver front-end and environmental inter-
ference. The received signal power of N measured samples of
the signal from sector m at drone k is

εk,m =
1

N

N−1∑
n=0

|rk,m (n) |. (3)

To model the radiation pattern of each antenna sector, the
Gaussian-like shape from [12] is used. In [12], the beam
pattern of sector m of the antenna is approximated as

ξm (φ) = αme
−(M(φ−vm)

βm
)
2

, (4)

where vm is the direction of sector m’s maximum gain (αm),
βm is the beamwidth of the main beam, and

M (φ) = mod 2π(φ+ π)− π. (5)

This model is based on the observations made in [13], [14]
that most directional beam patterns have an approximately
Gaussian-like shape. For the special case of Equal Sector
Antennas (ESA) where each sector has the same beamwidth
and gain, and each sector covers 360

M

◦, the beamwidth can be
parameterised using the side sector suppression as, where

β =
2π

M
√
− ln (as)

. (6)

This special case is applicable when the sectored antenna is
assembled from M sub-antennas of the same make and model,

1This is natural as we do not make any assumption about the transmitted
signal, in particular we do not try to de-modulate. Furthermore, complexity
reasons suggest to limit the sampling bandwidth.



which the receiver can electronically switch between. In this
paper we assume all drones are equipped with ESA antennas.

To estimate the DoA of the transmitted signal, each drone k
uses the Three-Stage Simplified Least Squares (TSLS) method
described in [12]. This method has three stages:

1) Sector selection: select the L sectors surrounding the
sector-pair (a sector pair refers to two neighboured
sectors) with the strongest received signal as Lk.

2) Sector-Pair DoA Estimation: Calculate the noise-
centred powers for each sector i in Lk as pk,i,

pk,i = εk,i − σw, (7)

where σw is the measured noise power on the channel.2

Discard any sectors with negative noise-centred powers.
For each remaining possible sector pair i, j ∈ Lk, i 6= j,
calculate the estimated DoA as

φ̂k,ij = v̄k,ij +
β2

4 (vi − vj)

Å
ln
pk,i
pk,j
− 2 ln

αi
αj

ã
, (8)

where v̄k,ij =
vi+vj

2 . Note that (8) only holds for
sectors with identical beamwidths. If all sectors are
eliminated due to negative noise-centred powers, we use
the maximum energy DoA estimation method outlined
in [15] to estimate the DoA.

3) DoA Fusion: All of the different DoA estimates, φ̂k,ij
are combined into a final DoA estimate for each drone
φ̂k as

φ̂k = arctan

Ç∑
wk,ij sin φ̂k,ij∑
wk,ij cos φ̂k,ij

å
, (9)

where wk,ij = pk,ipk,j .
An analysis of TSLS’s complexity is provided in [12].

B. Combining DoA Estimates

To combine the different estimates of the transmitter’s DoA,
each member of the formation sends its data to the lead drone.
The lead drone combines these results using the method of
combining circular random variables proposed in [16]:

φ̂ = arctan

Ç∑
sin φ̂k∑
cos φ̂k

å
. (10)

This is an unweighted version of the method used in Step 3
of the TSLS method discussed above and has a complexity of
O(K). This assumes the estimated per-drone DoA values will
all be similar for all drones in our formation, i.e. that the target
is far away compared to the maximum separation between the
drones. The effects of distance to the difference in the angle
estimated by two or more drones will be discussed more in
Section IV-B.

It is to be noted that in our paper we only generate a
bearing estimate via Equation (10) and do not attempt to
actually localise a transmitter (by calculating an estimate of its
coordinates, e.g. using the Stansfield algorithm [17]). This is

2We assume that each drone measures its receive noise power before start
of flight, while the drone is still at a large distance from the transmitter.
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Fig. 2: The RMSE of the estimated DoA is dependent on
both the DoA and the antenna’s directionality (measured by
as). M = 6.

because after the very first detection of the transmitter signal
the formation may still be very far away from the transmitter
and the bearings estimated by the individual drones can be
quite similar, introducing a large average error in a distance
estimate. Instead of trying to estimate the distance, we only
attempt to classify it coarsely into one of a small number of
regions and decide a stepsize for the formation based on that.

Since drones can only carry a limited number of sectors
for weight and space reasons, they are also limited in the
accuracy they can achieve. To illustrate this, in Figure 1
we show the root mean-square error (RMSE) of the bearing
estimate for varying SNR of the received signal and for
varying number of sectors, assuming as = 0.4 (see below). In
Figure 2 we show the RMSE for M = 6, varying side-sector
suppression as and varying transmitter bearing. The results
indicate that more directional antennas (smaller as) have a
higher RMSE, presumably due to the reduced overlap between
sectors, leading to increased error in the DoA estimate when
one sector is pointed towards the transmitter (as there is less
information on the location).



IV. SIMULATIONS AND RESULTS

We now discuss simulation results exploring the system
described in Section III. The simulator was implemented in
Python.3 We look at two major factors which impact the over-
all SAR application: minimising DoA estimate error by chang-
ing the orientation of drones in the formation and analysing a
possible heuristic to determine how far the formation should
move towards the transmitter after an updated bearing estimate
and distance classification has been computed.

Except where mentioned all simulations have been run for
100 000 replications. Error bars are included only when the
95% confidence intervals are significant enough to be seen.
Similarly, unless mentioned otherwise, every drone in these
simulations has an M = 6, as = 0.4, ESA antenna (taken
from [12]) and the TSLS method takes N = 100 samples of
the signal and selects L = 3 sectors in stage 1.

We validated our simulator by comparing it to the results
presented in [12]. The validation data was extracted from
the paper and overlaid on Figure 1. Since the RMSE values
from our simulator closely match those presented in [12] we
consider our simulator validated.

A. Effect of Drone Orientation on the Estimated DoA

As we have highlighted in Figure 2, the error in the DoA
estimate is dependent on the DoA. To partially mitigate this
effect, we combine the estimates from all drones. Furthermore,
we hypothesise that the orientation of each drone in the
formation will also change the overall RMSE. As such, we
compare the RMSE of four drone orientation schemes:

• Uniform: All drones have the same orientation. We have
considered the default orientation as always pointing
towards “true-north”.

• Incremented: Each of the K drones in a formation has
a different orientation, with drone k with a M -sectored
antenna having an orientation of 360k

MK

◦
from the “true-

north” bearing.
• Partitioned: The formation is broken into G partitions.

Each partition has a different orientation, with partition
g having an orientation of 360g

G

◦
. All drones within one

partition have the same orientation.
• Random: Each drone has a random orientation.
To compare these four options, we simulate a nine-drone

array in two different formations as the SNR changes. The
drones are organised into two formations: one where all the
drones are in a single line, orthogonal to the transmitter, and
another for a circle of drones (Figure 3). The transmitter and
drone formation centre are placed randomly on a 10 km by
10 km field. In the line formation each drone is placed 10 m
apart and the circle formation has a radius of 20 m. For each
SNR, formation, and orientation option, we performed 10 000
replications, and the RMSE results including error-bars are
shown in Figure 4.

Figure 4 shows that, as expected, the relative orientation of
each member significantly affects the RMSE of the formation’s

3Available: https://github.com/STPell/DroneFromationDOAEstimation

(a) Line Formation

Drone
Transmitter

(b) Circle Formation

Fig. 3: The two formations simulated.

DoA estimate. At high SNR values (≥6 dB), these results do
not reveal differences between the non-uniform orientation
options, which all perform better than the Uniform orien-
tation option. For lower SNR values (<6 dB), the Partition
and Uniform orientations perform indistinguishably, and both
perform worse than the Incremented and Random options. As
the SNR decreases, the Incremented orientation scheme begins
to perform better than the Random scheme.

It is worth noting that the overall formation structure (line
vs circle) does not appear to have much influence on the
RMSE. However, we need to keep in mind that we have
used a somewhat simplified system model without any signal
shadowing by drones. We do expect that a more realistic
modelling of shadowing can have an impact on the results,
this is a worthwhile topic for future work.

B. Dumbbell Formation and Variable Stepsize Scheme

Our ultimate goal is to use bearing estimates to get within
a set range of the transmitter in as short a time as possible. To
enable comparison with relevant schemes from the literature,
we adopt the behaviour used in [9] and [7], in which the
searching drone(s) alternate between periods of movement
and signal measurement periods. This was necessary since
in Reference [7] the drones could only sample one spatial
direction and had to physically rotate the drones to cover all
sectors. This takes time and needs to be carried out in the same
location for consistency. The authors of [9] also have adopted
such an alternating scheme. Once a bearing estimate has been
calculated, the schemes in [9] and [7] move a set distance into
that direction (fixed step size). In this paper, we investigate a
scheme in which the choice of step size is based on a coarse
classification of the distance to the transmitter into one of a
small number of regions, i.e. we adopt a variable step size. In
theory, nothing in our setup speaks against performing signal
measurements and choosing step sizes continuously.

To classify the distance to the transmitter (R), we change
the organisation of the drone formation to a dumbbell shape,
subdividing the drones into two different circle formations (the
“weights”) and arranging them as in Figure 5. Within each
weight, the drone orientations are chosen according to the
Incremented scheme. As a result, we can obtain two different
DoA estimates (one per weight), D = d + 2r metres apart,
which we refer to as φ̂A and φ̂B . Our object of interest now
is the absolute difference in angle estimates

∆̂A =
∣∣∣φ̂A − φ̂B∣∣∣ . (11)
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Fig. 4: The effect of the drone orientation schemes on the formation’s DoA estimate.
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Fig. 5: The dumbbell formation.

In Figure 6 we assume that we know the bearings φA and
φB perfectly and that we can calculate the correct absolute
difference in angle estimate ∆A. We show how ∆A varies
for given D = 40 m and changing bearing, assuming that the
transmitter is at a known distance from the mid-point of the
dumbbell. These results were generated analytically.

For the purpose of classification, we give ourselves a
number of comparison distances {R1, R2, . . . , Rp}. Given the
two estimated bearings φ̂A and φ̂B , we calculate the resulting
∆̂A and also the estimated bearing φ̂ according to the fusion
method described in Section III-B. Then, using the equivalent
of Figure 6 for the given comparison distances {R1, . . . , Rp},
we pick the comparison distance which has the largest ∆A
value not exceeding ∆̂A for the (estimated) target bearing φ̂.

Before proceeding, we make two further observations from
Figure 6. First, as the bearings approach 90◦ and 270◦ the dif-
ference in angles approaches 0 for all distances. This is as for
bearings of 90◦ and 270◦ the transmitter is collinear with the
formation and thus there is no difference in bearing.Secondly,
in the far field (R� D), the bearing estimates of both weights
are quite similar, which we illustrate in Figure 7.

To test this method, we setup a simulation to measure
the classification heuristic’s failure rate. A false positive is
when the system categorises the transmitter as being closer
than the threshold distance, when in reality it is further
away than the threshold distance. A false negative is where
the system categorises the transmitter as being further away
than the threshold distance but in reality, it is closer. The
false positive and false negative rates were simulated in two
different simulation settings: one where the target is always
within the threshold distance, the other where the target is
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placed randomly in a 10 km by 10 km field and its location
is regenerated if it is closer than the threshold distance. This
ensured an equal number of positive and negative replications.

All replications were run for r = 10 m, D = 40 m, with 5
drones per formation at the end of the dumbbell. The results of
these simulations are shown in Figure 8. For low SNR values
(< 7 dB), the thresholding heuristic is worse than tossing a
fair coin at categorising the target range for the 500 m and



1 km thresholds. This is unsurprising as the ∆A threshold is
small enough that it is likely below the error floor at these
SNR. Interestingly, the false negative rate does not appear to
be as strongly affected by the SNR. This is possibly due to
the angle estimation accuracy required to categorise the far-
away cases being a lot higher than the accuracy possible with
this DoA estimation method even at high SNR and averaging
across drones. We note that our thresholding heuristic performs
much better for smaller distance thresholds, which will guide
our choice for the distance thresholds {R1, . . . , Rp}.

Based on a selection {R1, . . . , Rp} of distance thresholds,
the resulting adaptive stepsize procedure is simply obtained by
picking the step sizes to be the same as the distance thresholds,
i.e. if our heuristic selects distance threshold Ri, we move
Ri meters into the direction of the estimated bearing before
stopping there and taking the next set of measurements.

We now present results comparing the time required to get
within 10 m of the transmitter for different choices of the
set of distance thresholds in our adaptive stepsize procedure,
and compare these also against the fixed stepsize procedures
proposed in [7] and [9]. In these simulations we assume that
a measurement period takes ten seconds (during which the
drones remain stationary). The target was always placed at the
origin and the dumbbell formation was placed on a random
bearing at a fixed distance from the transmitter. Two starting
distances were manually selected (1628 m and 3628 m), ensur-
ing different step sizes would be used through the procedure.
The other formation parameters were the same as above. The
received signal strength at each drone is calculated as:

γk = PtxGtxGPL (d), (12)

where Ptx is the transmit power (10 dBm), Gtx is the transmit-
ter antenna gain (0 dB), and GPL (d) is the path loss at distance
d. We used the free-space path loss calculated as [18]:

GPL (d) =

Å
4πd

λ

ã−2

(13)

where d is the distance to the transmitter in metres and λ is the
wavelength of the transmitted signal in metres. The transmit
frequency was set to 2.45 GHz. To determine the noise power
we assume a noise-floor of -174 dB/ Hz across the sampling
bandwidth of 2.5 MHz and a receiver noise figure of 8 dB. For
comparison to [7], [9], we use a step size of 10 m. This was
chosen as it is the same as the detection radius, ensuring that
we do reach the stopping condition.

In Figure 9 we compare the Empirical Cumulative Distri-
bution Function (ECDF) of the time taken to reach the target
for several different threshold distance sets. We refer to each
such set by its maximum step size (MSS). The blocky shape of
the ECDF is caused by the extra 10 s added by each additional
DoA estimation measurement, rather than the number of repli-
cations performed (100 000). For R = 1628 m (Figure 9a), the
200 m and 500 m maximum step size (MSS) options perform
similarly, with the 200 m being slightly better in almost all
cases. The 1 km options shows the worst behaviour, as it lags
all other options significantly after slightly more than 500 s.

The 100 m option only starts to rise at around 500 s (i.e. much
later than the 200 m and 500 m options) but closes in quickly.
The main conclusion is that the choice of the distance set
makes a substantial difference, and that “medium” step sizes
between 200 m and 500 m should be included.

For the R = 3628 m case (Figure 9b), the 500 m MSS
performs the best in most replications, however, the 200 m
MSS case has slightly better tail-end performance. For ≈40%
of the replications, the 1 km MSS performs much better than
all other options, however its performance drops compared to
all other cases for the remainder. Unsurprisingly the 100 m
case performs worse than all MSS options in ≈80% of
replications, however it has similar performance to the 500 m
and 200 m MSS cases in the tail-end. The increase in time to
the target for large MSS may be caused by two failure cases:

• Error in the DoA estimate leading to the formation
moving further away from the target compared to two
smaller steps with an intermediate DoA estimate.

• Over-estimating distance to target and back-tracking.
For both initial distances and all MSS choices, the variable

step size method arrived at the target faster than the fixed step
size method in almost all cases (>99%). For R = 1628 m,
even the poorly performing 1 km MSS option is over 800 s
faster than the fixed step size case in 95% of replications. This
shows that when the target is initially far away, the ability to
select larger step sizes can greatly reduce the time to reach
the target, even for poor MSS choices.

V. CONCLUSIONS

In this paper we extended our prior work [6], focusing on
the stage after first detecting the transmitter, trying to localise it
to an acceptable level. We use a formation of drones equipped
with sectored antennas, navigating to the transmitter using
DoA estimation. We found that the DoA estimate error varied
with the transmitter bearing and that choosing the formation’s
drone’s orientations carefully decreases the overall RMSE of
the formations DoA estimate. In particular, the Incremental
orientation scheme resulted in the lowest RMSE.

To reduce the total time to reach the transmitter we explored
adaptive step sizes when choosing the travel distance between
DoA estimate measurements. For this we used the difference in
DoA estimates between two ends of a “dumbbell” formation,
and coarsely classifying the distance to the transmitter. We
found that this distance heuristic has promise, however the
choice of thresholds and the relative bearing of the transmitter
to the formation has substantial impact on performance.

There are several possible avenues for future work, the
most obvious are to improve the thresholding heuristic and
evolve the step size selection scheme to use continuous mea-
surements without stationary periods. A possible improvement
to the distance heuristic is to adapt the formation shape and
pose based on the estimated target distance/bearing. Another
question not addressed in this paper are criteria for the drone
formation to decide when it has reached the transmitter. A
further possibility is adding support for multiple targets or
mobile targets, and to accommodate more realistic signal
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Fig. 8: The false positive and false negative error rate for three different range thresholds.
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Fig. 9: The ECDF of time taken to reach within 10 m of the transmitter for four sets of threshold distances.

propagation and detection models. One final avenue is a real
implementation of the system to verify our model and results.
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