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Abstract—Images observed at ground-based telescopes are
blurred by Earth’s atmosphere. Adaptive optics systems can cor-
rect for this blurring by using a wavefront sensor to measure the
instantaneous wavefront aberration created by the atmosphere,
and a deformable mirror to apply correction to the aberrated
wavefront. The European Extremely Large Telescope, one of the
next generation of telescopes currently under construction, will
have large supporting struts or arms (spiders) for the secondary
mirror that obscure whole rows and columns of subapertures in
the wavefront sensor. This phase discontinuity can allow large
segment piston errors to arise between neighbouring segments,
because the deformable mirror can produce the segment modes
but the wavefront sensor senses them poorly. The spider for
the EELT will have six arms, and we propose in this paper
employing a six-sided prism for the wavefront sensor instead
of the traditional four sided pyramid. We show that when the
diffraction spikes from the spider arms are aligned in the middle
of the prism faces, the sensitivty of the sensor, as measured by
the sum of the singular values of the interaction matrix for the
six segment piston modes, is 15% larger than if the diffraction
spikes are aligned with the prism edges.

I. INTRODUCTION

Images of astronomical objects that are observed from
ground-based telescopes are distorted by Earth’s atmosphere
[1]. One method to overcome these distortions is to employ an
Adaptive Optics (AO) system [2]. An AO system, as shown
in Figure 1, operates by employing a wavefront sensor (WFS)
to estimate the wavefront aberration induced by the time-
varying atmosphere, and a deformable mirror (DM) to apply
a correction to overcome this wavefront aberration.

We are entering the era of extremely large telescopes, which
are telescopes of primary mirror diameters of 25m-40m,
all of which will be equipped with AO systems. Currently,
under construction are the Thirty Meter Telescope [4], Giant
Magellan Telescope [5], and the European Extremely Large
Telscope (EELT) [6]. We will concentrate on the latter in this
paper.

Fig. 1. In an adaptive optics system, a wavefront controller (WFC) takes
wavefront measurements from a wavefront sensor (WFS) and calculates
corrections to apply to a deformable mirror (DM) to correct for the effects of
Earth’s atmosphere on astronomical images [3].

Several different WFS exist in AO systems around the
world, but the most popular for the design of the ELTs is
the pyramid wavefront sensor [7]–[9]. The pyramid WFS,
shown in Figure 2, consists of a glass pyramid that subdivides
the complex field at the focal plane into quadrants, and
the light subsequently passes through a relay lens to form
four images of the aperture. The slope of the wavefront can
then be calculated from these four images from geometric
considerations. Additionally, the pyramid wavefront sensor can
be modulated by moving the spot at the focal plane about the
vertex of the pyramid. This increases the dynamic range of
the measurements, but at a cost of reduced sensitivity.

The pyramid is actually one of a class of sensors that divide978-1-6654-0645-1/21/$31.00 ©2021 IEEE



Fig. 2. The pyramid wavefront sensor operates by subdividing the light at the
focal plane into four quadrants with a 4-sided glass prism. Subsequently, the
light passes through a relay lens to form four images of the aperture I(x, y).
The pyramid can be modulated by moving the light around the vertex of the
pyramid as indicated by the dotted circle. [10]

the focal plane of the telescope into N segments with an
N -sided prism, and producing N aperture images [11]. For
a circular unobstructed aperture, analytical derivations have
shown that the performance of the WFS is largely independent
of the number of sides of the prism [12]. Simulation studies
have shown similar performance of the 3, 4, 6 and two 2-sided
prisms for the EELT [13].

The secondary mirror of the EELT is itself very large,
and requires large support beams (width of 50 cm [14]) to
hold it in place. These support beams, commonly known as
spiders, have the effect of masking whole rows and columns of
subapertures of the pyramid WFS images. Because the width
of these spider arms is greater than the typical coherence
length of the atmosphere r0 of typically 10-20 cm, the AO
reconstructor can develop large piston segment errors [15].
In optics, piston is a constant phase across the pupil, and a
piston segment is a constant phase across a segment of the
pupil. The six segment piston modes that arise for a six-arm
spider pupil P (x, y) are shown in Figure 3. These segment
piston errors arise because the DM can generate the shapes
of the six segment piston modes, but the modulated pyramid
WFS is largely insensitive to these modes. A simulation of the
AO system for the EELT shows these segment piston errors
developing, as shown by the residual optical path difference
in Figure 4 [14]. These segment piston errors can reduce the
image quality, as measured by the Strehl metric (the ratio of
the peak of the aberrated point spread function to the peak of
the diffraction-limited point spread function), on the EELT by
as much as 50% [15].

Fig. 3. The six segment piston modes for a six-arm spider (rotation angle θ
of 0°) on the EELT [16].
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Fig. 4. The residual optical path difference in a closed loop adaptive optics
simulation for the EELT [14].

The unmodulated (static) pyramid wavefront sensor has
been shown to be significantly more sensitive to the piston
segment modes than its modulated counterpart [16]. In Ref.
17, the authors show that it is possible to measure and
correct for piston segment errors in the near infra-red K-Band
(2.2 µm), by having two independent reconstructors, one to
correct the atmospheric modes and one to correct the piston
sgement modes only. These ideas are further elaborated in
Ref. 14, where a pyramid with alternating states (modulated
and unmodulated) is used with two separate reconstructors to
estimate the atmospheric and piston segment modes, respec-
tively.

In this paper, we propose employing an unmodulated six-
sided prism wavefront sensor for estimating the piston segment
modes on the EELT, in order to match the geometry of the
prism to the geometry of the pupil, in particular, the six spider
arms. We will investigate the sensitvity of the six-sided prism
to piston segment modes for a six-arm spider by calculating the
singular values of the interaction matrix formed for different
relative angles of the prism edges to the spider arms, and
calculate the error in reconstructing piston segment modes at
different orientations.

The rest of this paper is structured as follows: in Section
II, we will outline the theory behind the prism wavefront
sensor class, the spider function geometry, and how we will
calculate the piston segment errors. In section III, we will
show the singular values and piston segment errors for dif-
ferent prism/spider geometries. Lastly, in Section IV, we will
summarise and outline future work arising from the research
in this paper.



II. BACKGROUND

The role of the wavefront sensor is to estimate the phase of
the wavefront φ(x, y) at the aperture plane (x, y). This phase
cannot be measured directly, but instead inferred from intensity
measurements. The prism at the focal plane acts as a spatial
filter H(u, v), where (u, v) are the co-ordinates in the focal
plane. The intensity measured at the detector I(x, y) in the
aperture plane after the re-imaging lens is given by [11]

I(x, y) ∝
∣∣∣∣∣F−1

[
H(u, v)×F

[
P (x, y) exp[jφ(x, y)]

]]∣∣∣∣∣
2

, (1)

where F and F−1 are the Fourier and inverse Fourier trans-
forms respectively, j =

√
−1, and P (x, y) is the magnitude

at the aperture plane.
For the conventional 4-sided pyramid, the spatial filter

H4(u, v) is given by

H4(u, v) = exp[j2πb(|u|+ |v|)] (2)

where b is the slope of the pyramid face, and determines the
separation of the four images of the aperture at the re-imaged
aperture plane. The phase of the spatial filter H4(u, v) for the
pyramid is shown in Figure 5(a) and the resulting intensity
images I(x, y) at the conjugate aperture plane in Figure 6 (a)
without atmospheric turbulence. The spatial filter for the six-
sided prism H6(u, v) is calculated using the method of Engler
et al. [18], and is shown in Figure 5(b). The correspnding
intensity images I(x, y) for the six-sided case are shown in
Figure 6 (b), again with no wavefront aberration.

(a) (b)

Fig. 5. The phase of the spatial filter H(u, v) (radians) at the focal plane
of the telescope introduced by (a) the pyramid wavefront sensor, and (b) the
six-sided prism wavefront sensor. In both cases, the angle α of the prism edge
to the x axis is 0°.

There are two principal methods for reconstructing the
wavefront from the intensity images from a pyramid type
WFS: reconstruction from slopes, and reconstruction from
images [11]. The former takes linear combinations of the
intensity images from geometric considerations to produce
slope estimates in two orthogonal directions. Whereas in
reconstruction from images, the interaction matrix is generated
from the intensity images I(x, y) themselves, and not from the
slope estimates. Reconstruction from slopes has the advantage
that the size of the interaction matrix is smaller, and is less
affected by noise propagation than reconstruction from images.
Reconstruction from images is more flexible, however, when
we are dealing with a rotating prism, in that we do not need to

(a) (b)

Fig. 6. The intensity image I(x, y) formed with no wavefront aberration
for (a) the pyramid wavefront sensor, and (b) the six-sided prism wavefront
sensor. In both cases, the prism angle α is 0°, i.e. the edge of the pyramid is
along the x axis.

recalculate the locations of the intensity images for each prism
angle α. Instead, we can just use the entire I(x, y) image. It
is for this reason that in this paper we perform reconstruction
from images.

For a pupil with M spider arms, there are M segment piston
modes. We form the interaction matrix G for these segment
piston modes by applying each of the M segment modes in
turn to the DM and recording the intensity image I(x, y), with
each image forming a row of the interaction matrix

G =


I1(x, y)
I2(x, y)
I3(x, y)

...
IM (x, y)

 . (3)

Computationally, the segment modes, for example for M=6
as shown in Figure 3, are our φ(x, y) in Eq. 1.

We can calculate the eigenmodes and eigenvalues of the
interaction matrix G with use of the singular value decompo-
sition, such that

G = USV T , (4)

where the diagonal entries of matrix S are the square roots of
the M eigenvalues or singular values of G, and U and V are
unitary matrices.

In order to estimate the piston segment modes, we calculate
a reconstruction matrix R based on the SVD decomposition
(a pseudo-inverse)

R = V S′UT , (5)

where the diagonal of S′ contains the reciprocal of the
diagonal of S (reciprocal of the singular values). In this
reconstruction process, we remove the global piston term (as it
is weakly sensed) from the reconstruction by setting the M th

diagonal value of S′=0.
The estimate of the piston segment modes â can be calcu-

lated by
â = RI(x, y), (6)

where I(x, y) is the measured image at the conjugate aperture
plane. The error σ2 in our reconstruction of the segment



TABLE I
PARAMETERS USED IN THE SIMULATIONS.

Parameter Value

Pupil diameter 40m
Pupil diameter 512 pixels
Pupil support 2048 pixels

Central obscuration 25 %
Pupil separation 1.28

Number of prism sides (N ) 6
Number of spider arms (M ) 6

Spider arm width 50 cm
Binning 16

Poke magnitude π/8 rad (31 nm for λ = 500 nm)

piston modes is the sum of the squared difference between
the segment piston modes a and their estimate â

σ2 =

M∑
m=1

(a− â)2. (7)

In the following section, we will calculate the eigenvalues
and piston segment errors for a N=6 sided prism in conjunc-
tion with a M=6 arm spider for different rotation angles α of
the prism relative to the spider.

III. RESULTS

For a pupil P (x, y) with M=6 spider arms, the interaction
matrix G has six non-zero eigenvalues. The eigenvalues give
the sensitivity of the interaction matrix (measurements) to the
associated eigenmode [16]. That is, a larger eigenvalue means
the measurements are more sensitive to that mode, and it
can be more easily estimated by the wavefront sensor. The
eigenmodes are dependent on the relative orientation of the
prism (angle α to x axis) to the pupil P (x, y) spider arms
(angle θ relative to the x axis). The singular values are the
square of the respective eigenvalues.

Fig. 7. The six singular values of the interaction matrix G versus the rotation
angle α of the 6-sided prism for a six-arm spider with a rotation angle of 0°.

All the results in this section are presented for the parameter
values listed in Table I, which are chosen to emulate the
existing design values of the EELT. The aperture images

I(x, y) are binned by a factor of 16 before being placed in
the interaction matrix G.

In Figure 7, we plot the six singular values for a M=6 arm
spider for a N=6 sided prism versus the angle α of the prism
edge to the x axis. The spider arm angle is kept constant at
θ = 0°. The least sensitive eigenmode, which is shown in
yellow, corresponds to piston. The sensitivity of this mode is
largely unaffected by the angle of the prism relative to the
spider arms. For the other five eigenmodes however, there is
a clear dependence of the singular value (and consequently
the eigenvalue) to the orientation of the prism relative to the
spider arms.

For the five non-piston eigenmodes, the singular values
(and consequently the eignevalues) are at a maximum at
α = 0°, and this repeats every 60°, equating to 360°

N , where
M = N = 6 here. Similarly, the singular values are at a
minimum at 30°, and this repeats every 60°, equating to 360°

N ,
where M = N = 6 here. In order to understand why these
angles correspond to the maxima and minima, we need to
consider Eq. 1. The intensity images are the inverse Fourier
transform of the product of the prism spatial filter, H(u, v),
with the Fourier transform of the pupil function, including
the spider arms, P (x, y) exp jφ(x, y). The magnitude of the
pupil function P (x, y) consists of a circular pupil with central
obscuration with spider arms as shown in Figure 8, for two
different cases: one spider arm along the x axis (0°), and
one with the spider arm at 30° to the x axis. The Fourier
transform of the circular pupil provides the Airy disk pattern
as the intensity image. The Fourier transform of each spider
arm is a line orthogonal to the spider arm. Consequently, due
to the the linearity property of the Fourier transform operator,
the Fourier transform of P (x, y) and therefore the intensity
image, is the Airy disk with M diffraction spikes orthogonal
to the arms of the spider. This is shown in Figure 9 for the
two cases of θ=0° and 30°.

(a) (b)

Fig. 8. The pupil magnitude function P (x, y) for spider arms of angle θ of
(a) 0° and (b) 30° of one arm to the x axis.

The six-sided sensor is least sensitive (smallest singular
values) when the spider arms are at α = 30° + 60°n, and
consequently the diffraction spikes are at α = 0° + 60°n.
Thus the sensor is least sensitive when the diffraction spikes
coincide exactly with the edges of the prism and this is shown
in Figures 8(b) and 9(b). Conversely, the six-sided sensor is
most sensitive when the diffraction spikes are in the middle of
the pyramid faces, which is shown by Figures 8(a) and 9(a).



(a) (b)

Fig. 9. The log of the magnitude of the Fourier transform of P (x, y) for
spider arms of angle θ of (a) 0° and (b) 30° of one arm to the x axis.

Ultimately to estimate the piston segment modes, we are
interested in the sum of all of the M singular values of the
interaction matrix G. In Figure 10, we plot the sum of the six
singular values of G versus the angle of the prism relative to
the x axis for a spider angle of 0°. We see an almost perfect
sinusoid with maxima at 0° + 60°n where the diffraction
spikes due to the spider arms coincide with the prism edges,
and minima at 30° + 60°n where the diffraction spikes are in
the middle of the prism faces. The maximum sum of singular
values is 15% larger than the minimum sum of singular values.

Fig. 10. The sum of the six singular values of the interaction matrix G
versus the rotation angle of the N=6-sided prism for a M=6-arm spider with
a rotation angle of 0°.

To verify our hypothesis that for an M -arm spider and an N -
sided prism, in the case M = N , the maxima of the singular
values occurs when there is no overlap of the prism edge with
the diffraction spike, we plot the cases of M = N = 8 and
M = N = 10 in Figures 11 and 12 respectively. In both cases,
the singular values exhibit sinuosoidal periodicity with period
360°/M , and the maxima occur where there is no overlap of
the diffraction spikes and prism edges, and the minima occur
when there is full overlap of the diffraction spikes and prism
edges.

We can determine the effect of this difference in sensitivity
due to the orientation of the spider arms relative to the prism
edges by calculating the piston segment error σ2. For all
angles, we apply a segment piston waffle mode of amplitude
π/8 radian or 31 nm ensuring we are operating in a linear
region of the sensor in a smaller manner to Ref. 14. The waffle

Fig. 11. The sum of the singular values of the interaction matrix G versus
the rotation angle of the N=8-sided prism for a M=eight-arm spider with a
rotation angle of 0°.

Fig. 12. The sum of the singular values of the interaction matrix G versus
the rotation angle of the N=10-sided prism for a M=ten-arm spider with a
rotation angle of 0°.

mpde, which is shown in Figure 13, consists of alternating
pushes and pulls of the six segments. We then use Eq.s 6 and
7 to calculate σ2.

In Figure 14, we plot the error in the piston segment estima-
tion σ2 for the reconstruction of the waffle mode (alternating
push and pull of the six segments) for M = N = 6. We see
that the error is largest when the sensitivity as measured by
the eigenvalues is lowest, and the error is smallest when the
sensitivity is largest. The minima in the error occur when the
diffraction spikes due to the spider arms fall in the middle
of the prism faces, and the error is at its maxima when the
prism edges align perfectly with the diffraction spikes due to
the spider arms. The maximum error is 2.3 times larger than
the minimum error. It should be noted that in this case we
are simulating piston segment modes in the absence of any
residual atmospheric turbulence and are assuming no photon
or detector noise.

IV. CONCLUSIONS & FUTURE WORK

In this paper, we have shown that the sensitivity of the
prism class of wavefront sensor to piston segment modes is



Fig. 13. The waffle mode used to calculate the segment piston error.

Fig. 14. The segment piston error versus the rotation angle α of the 6-sided
prism for a six-arm spider with a rotation angle of θ = 0°.

dependent on the orientation of the prism edges relative to
the spider arms. In particular, the six-sided sensor is most
sensitive and provides the lowest error when the diffraction
spikes due to the spider arms are in the middle of the prism
faces. Conversely, the six-sided sensor is least sensitive to
piston segment modes and yields the largest error when the
diffraction spikes align with the edges of the prism faces.

In future work, we intend to estimate the piston segment
modes in the presence of residual atmospheric turbulence
and under realistic noise conditions. We will also investigate
prisms with different number of sides, and spiders of different
numbers of arms. Consequently, we will be able to see whether
the six-sided prism is indeed the optimal geometry for the six-
arm spider for the EELT.
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– 1751, International Society for Optics and Photonics, SPIE, 2016.

[13] R. M. Clare, B. E. Engler, S. Weddell, I. Shatokhina, A. Obereder,
and M. Le Louarn, “Numerical evaluation of pyramid type sensors for
extreme adaptive optics for the European Extremely Large Telescope,”
Adaptive Optics for Extremely Large Telescopes 5, 2017.

[14] B. Engler, S. Weddell, M. Le Louarn, and R. Clare, “A flip-flop
modulation method used with a pyramid wavefront sensor to correct
piston segmentation on elts,” Journal of Astronomical Telescopes and
Instrumentation Science, submitted.

[15] B. Engler, S. Weddell, M. Le Louarn, and R. Clare, “Effects of the
telescope spider on extreme adaptive optics systems with pyramid
wavefront sensors ,” in Adaptive Optics Systems VI, International Society
for Optics and Photonics, SPIE, 2018.

[16] B. Engler, M. L. Louarn, C. Vérinaud, S. Weddell, and R. Clare,
“Pyramid wavefront sensing in the presence of thick spiders,” Adaptive
Optics for Extremely Large Telescopes 6, 2019.

[17] V. Hutterer, I. Shatokhina, A. Obereder, and R. Ramlau, “Advanced
wavefront reconstruction methods for segmented Extremely Large Tele-
scope pupils using pyramid sensors,” Journal of Astronomical Tele-
scopes, Instruments, and Systems, vol. 4, no. 4, pp. 1 – 18, 2018.

[18] B. Engler, S. Weddell, and R. Clare, “Wavefront sensing with prisms
for astronomical imaging with adaptive optics,” in 2017 International
Conference on Image and Vision Computing New Zealand (IVCNZ),
pp. 1–7, 2017.


