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Abstract 
The importance of exercise and strength training has been emphasised, yet it is 
shown that the number of people who do not reach the average recommended 
hours of exercise has increased (WHO, 2020). Currently, a range of physical fitness 
products employs the use of technology. These products focus on providing 
engaging experiences but do not provide personalised real-time feedback to 
improve the execution of the exercise and reduce the risk of injuries. Hence, this 
research aims to explore the effectiveness of AR technology in providing real-time 
visual feedback for squat motion. Furthermore, which type of visual feedback is 
most effective for reducing errors in squat performance is also explored. This 
prototype includes a large screen that shows a mirror image of the participant as 
they perform squats with four different types of real-time visual feedback 
implemented. The motion of the participants was captured using the Kinect v2 
system. This prototype focuses on giving feedback about the knee valgus error, 
which commonly occurs during the squat motion.  

  The four visual feedback types implemented are Traffic, Arrow, Avatar, and 
All-in-One. A user study with twenty participants was conducted to evaluate the 
feedback methods. The participants performed ten squats for each type of visual 
feedback, and their performance was measured with the frequency of the good, 
moderate, and poor squats they performed. A User Experience Questionnaire 
(UEQ) and a post-experiment interview were also conducted to measure their 
preferences and opinions regarding visual feedback. The results showed that Arrow 
outperformed the other conditions in terms of performance, followed by All-in-
One, Traffic and Avatar. However, the majority of participants preferred Traffic, 
Arrow, All-in-One and Avatar in the descending order of preferences. The 
participants could further be categorised into two groups, a beginner and an 
advanced group. It was found that the beginner group preferred All-in-One, Arrow, 
Traffic and Avatar, in descending order. For the advanced group, in descending 
order, their performance ranked with Arrow to be best and followed by Traffic, All-
in-One and Avatar. However, the majority preferred Traffic, followed by Arrow, 
Avatar and All-in-One.  

The difference in performance results between the two groups can be 
attributed to the beginner group participants needing more information to improve 
their performance. In contrast, the advanced group benefits from a more 
straightforward and more intuitive visual feedback type since they already have 
sufficient knowledge. Future work could include a lateral view of the squat motion 
which would deliver more information to the user. Lastly, this prototype design can 
be extended to detect other types of errors users often perform during the squat 
motion or other strength training exercises or sports. 
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Chapter 1  

Introduction 
 

The squat is known to be the most common exercise performed to enhance 
strength and conditioning (Hartmann, Wirth, & Klusemann, 2013; Hecker, Carlson, 
& Lawrence, 2019; Lin, Liang, Hsieh, Lin, & Wu). Although it is conventionally 
thought to be a lower limb focused exercise, the complexity of the exercise causes 
the whole body’s muscles to be engaged, making it an effective exercise for general 
strength training (Lin et al.; Schoenfeld, 2010). The World Health Organization 
(WHO) has also emphasised the importance of strength training to improve life 
quality (WHO, 2020). Even though people are aware of the importance of strength 
exercises to improve health and life quality, there has been no improvement in the 
level of physical activity since 2001 (WHO, 2020). Many factors have influenced the 
level of physical activities (WHO, 2020) and getting injuries during strength training 
is one of the reasons why people lose interest or avoid the strength training 
(Hootman et al., 2001). The squat motion also poses a considerable risk of 
potentially severe injury if not performed correctly, such as muscle, ligament and 
disc rupture, spondylolysis and spondylolisthesis (Scholtes & Salsich, 2020). Knee 
collapse or knee valgus is one of the common mistakes during the performance of 
squats which can also cause serious injury (Tamura et al., 2017). In extreme cases, 
serious and long term knee injury can occur due to knee valgus due to the exercisers 
injuring their Anterior Cruciate Ligament (ACL) (Tamura et al., 2017). Mohr, von 
Tscharner, Whittaker, Emery, and Nigg (2019) showed that people with knee 
injuries such as ACL 3 to 12 years previously tend to have less contraction in their 
quadriceps and hamstring. This emphasises the importance of injury prevention 
since the muscle performance cannot return to its original level even after a long 
time in some cases.  

Injuries are more common for beginners due to various reasons such as lack 
of proper technique, poorly maintained equipment, losing control of the weight 
and losing focus during exercise (Heshka & Jackson, 2015). Common ways to 
prevent injuries are for the individuals to observe themselves while exercising, get 
external feedback from trainers or learn the proper technique from training videos 
or exercise assistance technology (Klusemann, Pyne, Fay, & Drinkwater, 2012). Self-
observation is one of the most common methods of injury prevention. In many 
strength training environments, exercisers are usually surrounded by large mirrors 
that provide instant visual feedback to check their form while they are doing 
strength training.  However, if the exercisers do not have sufficient knowledge and 
experience in exercising, it could still lead to injuries (Hippocrate, Luhanga, Masashi, 
Watanabe, & Yasumoto, 2017). Thus, some people choose to utilise experienced 
professionals that can give feedback about the correctness of their exercise 
performance. However, this is often not readily accessible for many people due to 
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cost or time-related limitations. Another way to prevent wrong execution is 
learning proper techniques through training videos but videos cannot provide any 
personalised feedback. Also, even though there are many states of the art devices 
such as Black Box VR Fitness, Tonal and Mirror that assist users during training, they 
all contain limited personalised visual feedback (Fitness, 2022; MIRROR, 2022; 
Tonal, 2022). The visual feedback from such devices is limited as there is no 
indication if the execution of the users’ exercise is correct. Although users' feedback 
is bi-directional, as they can see themselves executing the exercise, it is still limited 
as there is no real-time feedback on the correctness of their movement. This 
prevents the users from identifying the errors that they are making. Therefore, 
providing instant visual feedback that advises the users on the correctness of their 
exercise performance is important to effectively prevent injury.  

Augmented Reality (AR) is a technology that has been commonly used to 
provide real-time visual feedback and can be potentially used to provide real-time 
visual feedback during exercise. AR puts interactive digital components that 
emerge in the real world through a display such as a camera or a phone (Azuma et 
al., 2001); Milgram and Kishino (1994). It has been shown that AR technology has a 
high potential for providing useful feedback (Rekimoto & Nagao, 1995); Sekhavat 
and Namani (2018). For example, there are many fields where this technology is 
applied as a method of visual assistance, such as medical, education, entertainment 
and physical activities such as exercise, training and sports. (Alamri, Cha, & El Saddik, 
2010; Guinet, Bouyer, Otmane, & Desailly, 2020; Tokuyama, Rajapakse, Yamabe, 
Konno, & Hung, 2019).  Thus, due to its effectiveness, versatility and potential to 
provide personalized real-time feedback, this research considers AR as a means to 
provide feedback to users on improving squat motion by providing feedback about 
the detection and correction of the knee valgus error. 

1.1 Research Questions 
Following the above considerations, this thesis addresses the following research 
question:  

“Can visual feedback using AR technology reduce mistakes during squat training?” 
 

In order to answer the overall research, question the following five sub-questions 
are considered:  

1. What are the characteristics of a correct squat execution? 
2. What are the most common mistakes during a squat? 
3. What kind of AR displays can be used for real-time feedback? 
4. How can athlete’s motions be captured during a squat exercise? 
5. What kind of visual feedback can be provided on the execution of a squat? 

 

These questions were answered through the process of designing and evaluation. 
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1.2 Contribution 
The main contribution of this thesis is to provide personalised feedback to improve 
the execution of the squat motion by detecting the knee collapse error. Current 
exercise assistance devices cannot provide accurate, personalised feedback to the 
users, leading to incorrect execution of exercise by the user. Incorrect exercise 
execution, especially knee collapse during squats, can cause serious and long-
lasting damage in the long term. This research found that the visual feedback using 
AR technology effectively decreases the users’ error rate during the squat motion. 
Also, four different visual feedback types were implemented, and the most 
effective method to provide visual feedback was analysed by measuring errors in 
the squat motion performance of the participants. 

1.3 Thesis Structure 
The next chapter contains the background research on squat biomechanics, 
common errors during squats, motion capturing technology, general AR-based 
feedback and commercial exercise feedback products. The design process, system 
design, hardware setup and software development is described in Chapter 3. Then 
in Chapter 4, the user experiment section explains how the participants were 
gathered, how the information about their performance, the user experiment 
questionnaire and the post-experiment interview were gathered and the 
experiment procedure. The results of the user study are summarised in Chapter 5. 
This is followed by the discussion, conclusion and areas of future work sections.  
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Chapter 2  

Background Research 
 

Background research had been conducted to gain more information regarding the 
sub-questions raised in the introduction. Firstly, a thorough understanding of a 
proper squat form is required. Then a prevalent error that can occur during squats 
was studied and analysed. This information can later assist in building a prototype 
that can detect that error. Next, the state-of-the-art commercial products that 
assist the exercisers with visual feedback were studied, and their limitations and 
gaps were identified. Also, various motion tracking methods were researched. 
Lastly, research works that applied AR-based visual feedback in various contexts 
were studied.  

2.1 Biomechanics of a Correct Squat 
Correcting the users’ squat motion requires a deep understanding of the 
biomechanics involved in a properly performed squat motion. The definition of 
squat is a closed kinetic chain exercise in which the force is transmitted through the 
body while the feet are fixed to the ground (Clark, Lambert, & Hunter, 2012). 
According to the findings, Schoenfeld (2010) discussed the biomechanics and 
kinematics behind the squat form and suggested the optimized squat form. The 
squat motion is one of the most common exercises to effectively enhance the 
whole-body strength and conditioning, especially for the lower extremity, if 
performed correctly (Hartmann et al., 2013; Hecker et al., 2019; Lin et al.). The 
dynamic squat is performed with the lifter initially standing up straight. Then, the 
lifter bends their hip hinge by flexing the hip and spine joint. The lifter then starts 
bending their knees until the appropriate squat depth is reached (Schoenfeld, 2010). 
The squat can be performed as deeply as the flexibility of the lifter’s pelvic, knee 
and ankle joints allow, as there is no standardized squat depth that the lifter has to 
achieve (Schoenfeld, 2010). Once the lifter reaches the desired squat depth, they 
move up and return to the upright standing position by performing the motions in 
the reverse order of the downward part of the squat.  

Although the squat is a practical exercise, it must be performed correctly to 
maximise its effectiveness and, most importantly, avoid injury. Some studies 
suggest that a squat that is too deep can increase the load on the knee, which leads 
to knee injuries (Thambyah, Goh, & De, 2005; Wilson, 1994). Another study also 
suggested this and recommended doing a quarter (knee angle of 110° to 140°) or a 
half squat (knee angle of 80° to 100°) to avoid excess stress on the knee which can 
cause potential injury. However, in a study done by Hartmann et al. (2013), the load 
distribution on the knee joint and the vertebral column was analysed depending on 
the squat depth. The previous papers that recommended a shallow squat to 
prevent injury were reviewed. They concluded that these studies faulted their 
analysis as they did not consider the mistakes exercisers made during a deep squat. 
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They claimed that a deep squat could enhance the strength of the lower extremity 
without causing injuries if the exercise is done correctly under experts’ supervision. 
These findings emphasise the importance of having a proper form while performing 
squats which can be achieved by providing appropriate feedback to the exercisers. 

2.2 Common Mistakes During Squats and Knee Valgus 
As several types of possible mistakes can occur during squats, it is important to 
identify a common mistake that can potentially cause severe injury so that 
appropriate feedback to correct it can be provided.  Many research works identified 
common mistakes during a squat. For example, heels are not fixed on the ground, 
rounded lower back, unstable knee position or knee valgus (Czaprowski, Biernat, & 
Kêdra, 2012; Hecker et al., 2019; Schoenfeld, 2010). These mistakes can negatively 
impact the exerciser while performing a squat. If the heels are not fixed to the 
ground, this reduces the body's stability during the squat (Czaprowski et al., 2012). 
Also, if the back is either extended or flexed excessively, the shear and compression 
force increases on the lumbar spine and if the knees are bent at an aberrant angle, 
such as during knee valgus, then the possibility of injury increases in the posterior 
and anterior cruciate ligaments (Czaprowski et al., 2012). Knee collapsing, dynamic 
knee valgus, and medial knee displacement all refer to the inward movement of the 
knees towards the midline of the body, which is considered one of the most 
common mistakes made while performing a squat (Almeida, França, Magalhães, 
Burke, & Marques, 2016).  

Exercisers can be predisposed to having knee valgus during squats due to 
various reasons such as poor ankle dorsiflexion, fallen arches, weak hip abductors, 
quadriceps, hamstrings, core and calf muscles (Coelho, das Neves Rodrigues, 
Almeida, & João, 2021; Crowell, Nokes, & Cosby, 2021; Wilczyński, Zorena, & Ślęzak, 
2020). This can lead to knee valgus occurring in various ways such as uncontrolled 
knee valgus on the descent (the eccentric portion of the squat), unilateral knee 
valgus on one side, continuous and extreme valgus, and extreme valgus during a 
regular body weight squat (MOTION RX, 2020). Here, extreme valgus refers to a 
situation where the inward movement of the knees happens to a large extent. 
When one of the aforementioned types of knee valgus is occurring, the exerciser 
needs to fix their form promptly because knee valgus could lead to serious injury if 
it is not corrected (Emamvirdi, Letafatkar, & Khaleghi Tazji, 2019); Scholtes and 
Salsich (2020); (Sheerin, Hume, & Whatman, 2012). Also, in extreme cases, the 
exercisers can injure their Anterior Cruciate Ligament (ACL) due to knee valgus 
(Tamura et al., 2017). Mohr et al. (2019) showed that people generally have 
decreased quadriceps and hamstring muscle contraction even 3 to 12 years after 
this type of injury. Thus, even though knee valgus is a common error, leaving it 
uncorrected can lead to injury that can cause long-lasting and severe consequences. 
These further emphasise the importance of effective real-time feedback 
mechanisms to allow users to promptly correct knee valgus. 



6 
 

2.3 AR Displays for Real-time Feedback  
In order to provide effective feedback during squats, a technology through which 
real-time visual feedback can be provided. To develop such a feedback system, it is 
important to understand the characteristics of this technology and the current ways 
in which AR displays are used to provide real-time feedback. The usage of AR 
technology has improved rapidly because of its uniqueness, high interactivity and 
engagement with users (Silva, Albuquerque, & Medeiros, 2021). Guinet et al. (2020) 
demonstrated that one of the advantages of AR technology was how interactive 
visual feedback can support the users to be more engaged in the surrounding 
environment and motivate them to complete the given task. There are many fields 
where this technology is applied as visual assistance, such as medical, education, 
entertainment and physical activities such as exercise, training and sports (Alamri 
et al., 2010; Guinet et al., 2020; Tokuyama et al., 2019). For example, in the medical 
field, the real-time interactive digital elements in the real world encourage patients 
to undertake rehabilitation more easily (Alamri et al., 2010; Guinet et al., 2020). 
Also, using this technology in the medical and educational field is beneficial since it 
can illustrate parts that are often inaccessible in a real-life situation (Bianco, Celona, 
& Napoletano, 2018; Erazo, Pino, Pino, Asenjo, & Fernández, 2014; Meng et al., 
2013).  

Guinet et al. (2020) applied AR technology to provide visual feedback in a 
game that aids in rehabilitation for children with cerebral palsy. They recruited ten 
children with walking disabilities and used AR technology to gamify the 
rehabilitation. As a result, they found that all the participants could complete the 
rehabilitation and improve their walking performance. Furthermore, Alamri et al. 
(2010) showed how AR technology was used to aid the rehabilitation of patients 
suffering from poststroke. The study results showed that the patients were more 
motivated and engaged and had higher levels of enjoyment due to the AR visual 
assistance (Alamri et al., 2010). Another research used AR technology to encourage 
people to exercise their legs. They did this by building an AR framework where the 
participants can interact with digital elements using body movements (Tokuyama 
et al., 2019). A surgical training procedure with AR-based feedback was conducted, 
and real-life performance improved (Barresi, Olivieri, Caldwell, & Mattos, 2015).  

A Magic Mirror is another form of AR that uses a big screen to project digital 
elements directly on the real objects, e.g. the human body or the surroundings 
(Bianco et al., 2018; Fiala, 2007). Ding, Huang, Lin, Yang, and Wu (2007) described 
that a Magic Mirror combines a mirror with a display that shows the artificial 
components that people can interact with. It consists of a plate of reflective glass, 
a Liquid Crystal Display (LCD) screen and a camera that can capture the real-world 
view and project it on the screen for interaction (Hauswiesner, Straka, & Reitmayr, 
2011). When the brightness of the real-world side is greater than the side behind 
the plate of reflective glass, then the reflective glass mirrors the real-world image 
just like a normal mirror, while the screen side remains transparent. Therefore, 
when the LCD is turned off, the Magic Mirror operates like a genuine mirror. When 
the LCD is turned on, the Magic Mirror projects the image captured from the 
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camera on the screen directly (Wang, Villamil, Samarasekera, & Kumar, 2012). This 
technology allows people to have instant visual feedback, allowing them to adjust 
to a fast-phase changing environment. Wang et al. (2012) showed that such 
technology can provide more effective visual feedback. 

Some exercise assistance products have utilized AR technology. Tonal, 
Tempo, and Mirror are state of the art products that can provide visual information 
and assist users in their workout. Their products consist of a big smart screen so the 
users can see their reflections and watch the virtual trainer’s movements and 
follow (Figure 1). 

For Tonal, the exercise is shown on the screen so the users can follow, but the 
interaction is only one way from the device to the users (Tonal, 2022). Thus, there 
is no personalised or real-time feedback to the users (Tonal, 2022). The product of 
Mirror has a simpler design with a similar purpose, except this product is based on 
bodyweight exercises (MIRROR, 2022). It is a large smart touch screen with a built-
in camera to track users’ body movement (MIRROR, 2022). However, the camera 
only measures the number of repetitions and speed of users' movement, which 
does not provide any informative feedback on their posture (MIRROR, 2022). 
However, Tempo Fitness provides more personalised feedback by using a front 
camera used to build a 3D body model of the user (Tempo, 2022). Then the 3D 
model is used to analyse the form of the user, and the human online trainer advises 
the user on their posture (Tempo, 2022). This product's limitation is that the 
feedback is only available when there are online trainers. Also, the posture 
feedback is only based on the front view of a 2D image, so the analysis of the 
performance is restricted (Tempo, 2022).  

The mentioned studies emphasised the effectiveness of utilising visual 
feedback from AR technology in a range of applications and supported the idea that 
people’s engagement levels increase while using it. This makes AR an effective 
feedback medium for fitness-related applications. However, a significant limitation 
of the current high-technology exercise assistance equipment is that they do not 
provide personalised feedback in real-time. Hence, this research is focused on 
addressing this gap by providing personalised visual feedback in real-time using AR 
technology so the users can correct their errors during performance 
instantaneously. 

Figure 1 Tonal, Mirror and Tempo (From left to right) 
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2.4 Body Tracking and Motion Capturing System 
In order to provide effective AR-based real-time and personalised visual feedback 
during squats, a motion capture system is required to analyse the users’ 
movements in real-time. This is supported by a study done by Sekhavat and Namani 
(2018),  where it is mentioned that for a satisfactory user experience in using AR to 
interact with digital components on a screen with their body, high precision body 
motion capturing is required.  However, several research works have indicated that 
for AR-based visual feedback methods such as Magic Mirror, body motion tracking 
is the most important and challenging process to implement since the virtual image 
must be interactive with the reflection of the moving body parts and give correct 
visual feedback (Hauswiesner et al., 2011; Wang et al., 2012).  

Thus, many different motion capturing technologies were explored to find 
the most suitable system for this research. Many studies used motion capture for 
various tasks such as analysing golf swinging motion, martial art movement and lip 
motion synchronising (Hegarini, Mutiara, Suhendra, Iqbal, & Wardijono, 2016; 
Noiumkar & Tirakoat, 2013; Patoli, Gkion, Newbury, & White, 2010). Sato and 
Cohen (2010) noted that generally, the motion capturing technology can be 
categorized into three types according to the main sensing source used which are 
mechanical, optical and electromagnetic. They then identified each type of motion 
capturing tool’s merits and demerits. Firstly, mechanical motion capture uses 
devices attached to the human body so the body motion can be tracked by 
modelling the path of the devices. Its advantages are that it does not face 
interference from external sources of magnetic fields or light. However, the system 
is unaware of the orientation of the person it is tracking. Hence, the information 
from the trackers has to be supported by other types of sensors (Sato & Cohen, 
2010).  

Optical sensing also requires people to wear a suit with markers attached 
and multiple infrared cameras. It is beneficial since people’s movement is not 
restricted by cables and other equipment. However, the downside of this 
technology is that it is costly. Wearing the suit can cause an uncomfortable 
experience for the user and the tracking information can be lost if other people or 
objects are blocking the view of the camera (Sato & Cohen, 2010). Finally, magnetic 
motion tracking’s advantage is that it can be set up relatively inexpensively. Also, 
there is no loss of information due to interference from people or objects. However, 
this setup also restricts people’s movement due to the requirement that cables 
need to be attached to the users. Sato and Cohen (2010) enquired the users about 
their experiences while using the three types of motion tracking. They concluded 
that the motion capturing systems that restrict movement were not favoured by 
the users. Hence, non-restrictive motion-capture tools using optical sensing are 
more suitable for this research as the users should be able to freely move while 
performing physical activity such as squats.  
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Microsoft Kinect is one such example of an optical sensing-based body 
tracking system, which is low-priced and has been widely used in many applications. 
Kinect v1, Kinect v2 and Azure Kinect are the prominent versions of Kinect that exist 
in the market. They have similar hardware and software, but the motion capture 
resolution increases from Kinect v1 to the newest Azure Kinect model. As shown in 
Figure 2, the hardware parts of Kinect are composed of an RGB camera, depth 
sensor and a four-directional microphone which enables Kinect to process RGB and 
depth sensing and audio signal at the same time (Lun & Zhao, 2015).  

Kinect systems can obtain depth information by emitting infrared rays which are 
reflected from objects and received by the depth sensor. The depth calculation is 
based on the time between emitting the IR ray from an IR laser diode and receiving 
the reflection. The sensor then constructs the depth frames for an image from the 
received depth information. The skeletal structure is then predicted from the depth 
and colour image data using a pre-trained machine learning model (Lun & Zhao, 
2015). The skeletal joint positions are then inferred from the predicted skeleton 
structure.  

Due to this accurate and low latency depth estimation and machine 
learning-based skeletal structure prediction, Kinect has high precision in real-time 
motion capturing. Furthermore, Kinect can synchronise visual signals, capture 
human 3D movements, detect human faces, and recognise human speech, among 
other things (Corporation, 2014). Lun and Zhao (2015) mentioned that this 
technology has the protentional for usage in many fields such as healthcare, 
education, training and 3D reconstruction. Han, Shao, Xu, and Shotton (2013) 
reviewed Kinect’s framework and algorithms for each of its functional contributions 
such as object tracking & recognition, human activity analysis, hand gesture analysis, 
and indoor 3D mapping. This review indicated that due to the low-cost and simple 
set-up required to use Kinect’s functionalities, it is a useful tool for researchers and 
engineers that require functionalities that Kinect offers. 

All the Kinect versions share the mentioned basic capabilities, but they 
differ in terms of motion capture resolution. Kinect v2 was developed based on 
Kinect v1 with an improved depth-sensing technology that has higher precision and 
a higher resolution in the RGB image camera (Tölgyessy, Dekan, Chovanec, & 
Hubinský, 2021). Kinect v2 provides substantially superior depth information 

Figure 2 Kinect Composition 
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compared to Kinect v1 (Lun & Zhao, 2015). Tölgyessy, Dekan, and Chovanec (2021) 
evaluated the performance of Azure Kinect by comparing its skeleton model 
tracking ability against Kinect v1 and v2. The result indicated that the precision and 
accuracy of Azure Kinect were better than that of Kinect v1 and Kinect v2.  This was 
further supported by Albert et al. (2020), they compared Kinect v2 and Azure Kinect 
by measuring pose tracking performance for the participants’ gait. The gait analysis 
was done using both Kinect v2 and Azure Kinect and the result was compared with 
the gold standard of the Vicon multi-camera motion capturing system and 39 
marker Plug-in Gait model. The result of the experiment showed that the Azure 
Kinect has a better motion tracking algorithm and can achieve higher accuracy in 
gait parameters in 3D space when compared to that of Kinect v2. This shows Azure 
Kinect has the advantage of high accuracy and precision in constructing a skeleton 
model of the user compared to that of Kinect v1 and Kinect v2.  

The following research works demonstrate the effectiveness of Kinect 
systems applied to body motion tracking based tasks. R. A. Clark et al. (2012) used 
Kinect v2 to assess the postural control and validated the usefulness of Kinect in 
research by comparing the results of traditional manual techniques to that of Kinect 
v2. The postural control could not be quantified previously but since Kinect could 
provide joint coordinates in three-dimensional space, the performance could be 
measured. R. A. Clark et al. (2012) collected 20 subjects for three postural control 
tests. Their motion was captured using Microsoft Kinect v2 and analysed using a 
multiple-camera 3D motion analysis system. R. A. Clark et al. (2012) found that the 
results validated the use of Kinect for posture assessment. All the mentioned 
research works show that Kinect can be used for accurate motion capture and 
analysis, which is an important characteristic of a real-time and personalised 
feedback system to have.  

2.5 Visual Feedback Types 
In an AR-based system that provides visual feedback to correct errors during the 
squat performance, various types of information can be provided as feedback, and 
it is useful to understand the possible options that could be utilised. Thus, the 
following research works were reviewed to explore different types of visual 
feedback that they utilised and find how effective the feedback was. In an article 
written by Horschig and Sonthana (2017), they used an arrow indication to 
effectively and straightforwardly illustrate knee collapse during squats for 
educational purposes. Sekhavat and Namani (2018) used projection-based AR 
technology to assist in gait rehabilitation, where footsteps were projected on a 
treadmill and the patients were encouraged to match their gait to the projection. 
Sekhavat and Namani (2018) compared the performance of the participants on 
rehabilitation tasks by using projection-based AR and normal monitor-based 
feedback. The result of the research showed that AR projection feedback resulted 
in improved performance on the given tasks. Murray, Hardy, Spruijt-Metz, Hekler, 
and Raij (2013) showed that using an avatar for mobile health applications can 
enhance the interactivity of the experience since body gesture communication 
plays an important role in intuitively delivering non-verbal information. The use of 
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colour also serves as one of the primary visual feedback methods and Shen, Ong, 
and Nee (2009) used colours as an indication of performance status. 

From the research done about visual feedback methods, the commonly utilized 
visual feedback methods identified were arrow indication, projection, avatar and 
colour. Projection-based feedback is less applicable for the task of error detection 
feedback in squats as the exercisers need to be able to see their movements in 
conjunction with the visual feedback. However, in projection-based methods, the 
feedback information is projected onto real-world objects. On the other hand, 
arrow, avatar and colour-based feedback can be displayed on a screen which could 
allow the user to see the feedback in conjunction with their movements. Text-
based visual feedback was not reviewed as it conveys the same semantic meaning 
as arrow, colour or avatar-based feedback. 

Research works about the application of different visual feedback methods 
were reviewed to understand what kinds of visual feedback methods there are and 
how they affect users’ performance in various applications. These research works 
show that adding visual feedback results in improved performance by the users on 
the given task. This emphasises the usefulness of incorporating visual feedback to 
improve squat performance. Out of the various feedback methods reviewed, arrow 
indication, avatar and colour based visual feedback methods would be most 
suitable for the execution of squats.   
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Chapter 3  

System Overview 
 

The previous chapter identified a gap in the current research and technology’s 
capability to address users’ needs from our background research and brainstorming. 
Common mistakes in squatting exercises have been described, and related injuries 
were explained. It was found that incorrect exercise execution can lead to injuries 
that discourage people from doing strength training. Throughout the design 
process, we used the user-centric design approach to guide the development of the 
system prototype. We established the design requirements in consultation with 
professional personal trainers and physiotherapists. Once the essential 
components of the prototype design have been established, we developed our 
prototype with iterative feedback from the personal trainers, physiotherapists, and 
HCI researchers throughout the development process. In the remainder of this 
chapter, we present the design considerations and requirements in subsection 3.1, 
our system prototype design in subsection 3.2, hardware and software 
implementation in subsection 3.3, squat motion tracking and calibration in 
subsection 3.4, and visualisation techniques in subsection 3.5. 

3.1 Design Considerations and Requirements 
This overall research aims to determine whether real-time visual feedback in 
Augmented Reality (AR) can assist exercisers in improving their squatting 
performance by detecting mistakes and helping reduce the risks of injury. In order 
to fulfil our goal, we further asked four questions to guide the framing of our design 
requirements: i) what are the characteristics of a correct squat execution? ii) what 
are the most common mistakes during squat training? iii) what kind of AR 
visualisation system can be used for real-time feedback? and iv) how can we 
capture the exerciser’s motion during the training? These let us to three design 
requirements as follows: 

R1) Detection of Knee Valgus - The first design requirement is that the 
system should be able to monitor the exercisers during their training and detect 
the occurrence of knee valgus, the knee's inward collapsing. This is because 
background research had identified that knee valgus, is one of the most common 
mistakes during training. 

R2) Spatial Overlay - The second design requirement is to provide real-time 
and personalized feedback, which visually communicates the information and 
overlays such information spatially for the exercisers. Although commercial 
products with visual feedback exist to assist people in improving their performance 
in strength training, they also have drawbacks as they provide limited real-time 
feedback (MIRROR, 2022; Tempo, 2022; Tonal, 2022). 
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R3) Unobtrusive Body-Tracking - The last design requirement is that the 
system should be able to perform full-body tracking without requiring the 
exercisers to put on a tracking suit or place markers on their body. This narrows the 
solution down to a vision-based detection system. 

3.2 System Prototype Design 
Based on the three design requirements, we proposed the three areas of focus for 
our implementation: 1) the detection of the exerciser’s movement from the frontal 
view, 2) using a large display to provide visual feedback, and 3) using an RGBD 
sensor (Kinect v2) for a full-body tracking for their low-cost and unobtrusiveness. 

Frontal View – From our preliminary testing with the RGBD sensor’s 
capability to detect the user’s movement from the frontal, lateral, back, and 
diagonal view, we found that knee valgus was best detected from the frontal view. 
In the lateral view, whether it was from the left or right side, the nearer leg occluded 
the other leg causing errors in the pose estimation of the body. However, the lateral 
view was suitable for detecting the issue of heels off the ground while squatting, 
which is another common issue in squat training. The back view could be used to 
detect knee valgus; however, it did not work as well as the frontal view due to the 
limitation of the pose estimation algorithm. We speculate that the algorithm has 
been trained to bias toward better prediction of the frontal view. Finally, we have 
also tested the diagonal view where the users oriented themselves 45° to the RGBD 
sensor. This allowed us to detect both knee valgus and heels-off the ground issues, 
but the detection did not work as well for the frontal or lateral view. Because of our 
focus on detecting knee valgus, we decided that it would be best to maximise the 
precision of the frontal estimation using the frontal view rather than the diagonal 
view to support lateral pose estimation. 

Magic Mirror – To provide the exercisers with visual feedback, we have 
considered several Augmented Reality (AR) technologies to allow the spatial 
overlay of visual information. We have decided to adopt the Magic Mirror approach, 
which combines a large screen display with a camera feed to provide real-time 
overlay of information onto the exerciser’s virtual image appearing on the screen 
in front of them as if it is a mirror. This is a conventional method that exercisers 
typically train and have been shown to work well by previous research (Hippocrate 
et al., 2017). With the Magic Mirror, visualisation information can be projected 
onto the exerciser’s body in real-time at the locations of interest that require their 
immediate attention. We have designed and developed four types of visualisation 
techniques for our Magic Mirror for squat training, and this will be covered in 
section 3.4. The size of the screen and the distance of the screen placement from 
the user play an important role in the overall experience where a one-to-one 
mapping between real and virtual is desirable, and we will provide more details in 
section 3.3. 

RGBD Sensing – For body tracking, we considered various technologies 
mentioned in subsection 2.4. Although mechanical and electromagnetic motion 
capture devices can provide high precision tracking, their drawbacks were their 
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obtrusiveness, affordability, and tedious calibration process. For this research, we 
preferred a relatively low-cost, easy to set up, and the least intrusive solution to 
track the exerciser’s activity. The RGBD sensor was the most obvious choice for us 
as it utilises optical sensing to provide both colour and depth information for visual 
feedback and robust pose estimation of full-body movements. We will explain our 
procedures for calibrating the users for our squat training program in section 3.5. 

3.3 Hardware and Software Implementation 
Figure 3 illustrates the system overview comprises the user (exerciser) standing in 
front of a backdrop facing an RGBD sensor mounted screen, which connects to a 
PC. For the display, we used a 55-inch television screen set up in portrait orientation 
to mimic a full-body mirror used for exercise activities. For the RGBD sensor, we 
have access to the Microsoft Kinect Version 2, which had been mounted below the 
screen. The Kinect was used to detect and track the exerciser’s 3D skeletal and 
capture the video feed. A black backdrop was placed behind the participants to 
prevent visual artefact in the background that could interfere with the Kinect’s 
tracking.  

Figure 3 System Overview 

PC

Microsoft Kinect v2

User

TV Screen

backdrop
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Our setup required that the user stands approximately 2 meters in front of 
the Kinect-mounted screen. This location had been marked on the floor to help the 
participants maintain their distance from the screen. This distance was within the 
optimal tracking range of the Kinect (i.e., 0.5 to 4.5 m). Furthermore, on average, 
the participant should fit within the screen frame. Tables 1 and 2 show the 
specification of hardware and software used, respectively. 

Table 1 Hardware Specification 

 

Table 2 Software Specification 

Software Version 

Unity 2020.3.22f1 

OBS Studio 27.0.1 

Visual Studio 2019 16.11.4 

Kinect SDK 2.0 2.0.1410.19000 

 

  

Hardware Type Specs 

PC CPU 
Ram 
Graphic Card 
Operating System 

Intel(R) Xeon(R) CPU E3-1240 v3 @3.40GHz 
16Gb 
NIVIA GeForce GTX750 
Windows 10 

TV Model 
Dimensions with Stand 
Screen size 
Resolution 
Backlight Type 

55” (139cm) 4K ULTRA HD WEBOS SMART TV 
1232mm (Width) * 782mm (Height) * 260mm 
(Depth) 
55” (139cm) 
3840 x 2160p 
LED 

Kinect v2 Audio 
Motion sensor 
RGB Camera 
Depth camera Method 
Depth camera Resolution 
Data 
Power 
Synchronization 
Dimensions 
Mass 
Mounting 

4-mic linear phased array 
3-axis accelerometer 
1920 x 1080 px @30 fps 
Time-of-Flight 
512 x 424 px @ 30 fps 
USB 3.1 gen 1 
External PSU 
RGB & Depth internal only 
249 x 66 x 67 mm 
970 g 
One ¼-20 UNC 
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3.4 Squat Motion Tracking and Calibration 
 The purpose of the system is to evaluate the exerciser’s performance during their 
squat training on how well they can perform their routine, more specifically, 
detecting if knee valgus occurs. In order to evaluate knee valgus, the exerciser’s 
lower body is analysed using the skeletal joints coordinate data provided by the 
Microsoft Kinect. This information varies for different exercisers depending on their 
body structure, body flexibility, forms, and preferred stances. Therefore, the 
optimal pose for each individual would differ. Hence the constraints for joint 
coordinates must be personalised. The calibration process prior to the usage of the 
system is crucial for the accuracy of the evaluation outcome. Figure 4 illustrates a 
flowchart outlining the calibration process and the evaluation procedure of the 
squat routine. 

User stands in 
front of the screen

Visual Feedback 
Type selection

Show "good" sign

No Yes

User perform a 
good squat

Infrared & RGB 
Image

Skeleton Structure 
Generation

Fitted polynomial 
coefficient 
imported

Joints position 
data collection

Fitting 
polynomial 

on good 
squat joints 

data

Joint coordinates 
data generated

Is the machine 
calibrated?

Screen record 
user's good squat

User perform 
squats

Where are the 
knee joints 

Show "average" 
sign

Show "poor" sign

Infrared & RGB 
Image

Skeleton Structure 
Generation

Joints position 
data collection

Under the warning threshold

Between warning and error threshold

Over the error threshold

 

Figure 4 Calibration Flow Chart 
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To begin the calibration process, the exerciser stood at the marked spot, 
which was approximately 2 meters in front of the screen. The video showing the 
correct squat execution was then played for them to follow. The system uses 
Microsoft Kinect to track their skeletal model and joint positions, which are 
continuously recorded as they perform a squat. This recorded joint coordinate data 
of the correctly executed squat is then used as a baseline. Knee collapse happens 
when knees bend inwards, vertically passing the ankles at the high depth of the 
squat. Hence, the distance between the knee joints can be compared to the 
distance between the ankle joints to detect knee collapse. A ratio was calculated 
by dividing the distance between the ankles by the distance between the knees. 
The measured distance between the knees and the distance between the ankles 
are shown in Figure 5.  

Nevertheless, the knee distance is usually less than the ankle distance in 
the normal standing pose, which is also true for the initial beginning stages of the 
squat. Therefore, the knee angle must also be monitored at different stages of a 
squat routine. The measured knee angle is shown in Figure 6. Since the angles are 
symmetrical, the left knee angle was recorded for the prototype. 

Figure 5 Knee Distance and Ankle Distance 

Figure 6 Knee Angle 

Knee Angle 

Knee Distance 

Ankle Distance 
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From observation, it is safe to presume that the knee angle decreases as 
the user lowers their body during a squat and increases as they stand back up. 
Figure 7 shows the example recording of five sampled values of the ratio between 
the distance of the knees and the distance of ankles (top) and knee angles (bottom) 
of good squat form from the beginning to the end of the squat. 

For example, a few values of the ratios in a good squat are 1.37, 1.19, 1.04, 
1.00 and 0.93. These values were recorded at the knee angles of 167°, 121°, 99°, 
87°, and 77°, respectively. If knee collapse occurs at a given stage of the squat or 
knee angle in the subsequent squats, the ratio will be bigger than that of the good 
squat at that knee angle. 

However, since the recorded values are not continuous, the recorded knee 

angle and ratio values were then imported into Excel, treated as the x and y 

coordinates, respectively and plotted on a graph. A second-degree polynomial was 

fitted on the data points of this graph. This polynomial allows us to predict what 

the ratio should be if the user performs a good squat at a given knee angle. Thus, 

when the user performs a squat again, if their ratio values are greater than the 

curves at the corresponding knee angle, this would suggest that they are not 

performing a good squat at that moment. Thus, this polynomial can be used as a 

threshold to classify the user’s movements that are considered “good” 

performance comparing to the calibration.  

Nevertheless, just predicting if a squat is good or not does not provide 

information about the degree of the incorrectness of the squat. Thus, it is useful to 

add an intermediate category for classifying the cases when the incorrectness in 

the squat. We introduce the “moderate” to represent the averagely performed 

level of knee collapse. This can be done by treating the curve generated above as a 

threshold between good and moderate squats (served as the warning threshold) 

and constructing a new threshold curve to distinguish between moderate and poor 

squats (served as the error threshold). This was done by multiplying the ratio values 

Figure 7 Recorded Sample Data of Good Squat 
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of the warning threshold curve by 1.15, creating a tolerance region between good 

squats and poor squats, where the squats are classified as moderate. This tolerance 

level of 1.15 was chosen by trial and error, by incrementally increasing it until the 

predictions did not sporadically jump between each category and there was a 

smooth change window between the good, moderate, and poor squat categories 

depending on the level of knee collapse (shown in Figure 8). Then the fitted 

coefficients of the curves were inserted into the code. The users’ future squat 

ankle-knee distances and knee angles were compared against these curves to 

determine when knee collapse occurs (Shown in Figure 9). 

  Once the calibration was done, the visual feedback type was selected, and 

the user started performing squats independently. Real-time feedback was 

provided according to the selected method. Kinect collected the joint coordinates 

and compared them with the threshold curves previously obtained to give the 

researcher the evaluation of the user’s performance. If the joint data lay under the 

warning threshold which was the good squat’s curve, the squat was evaluated as 

“good”. If the data lay between warning and error threshold curves, then it was 

evaluated as “moderate”. Finally, if the data was over the error threshold, then it 

was evaluated as “poor”.  

Figure 9 Machine Calibration 

Figure 8 Graphs of Average (Blue) and Poor (Orange) Threshold and Equations 
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3.5 Visual Feedback Design 
The goal of providing the exercisers with visual feedback was to inform them of 
their real-time performance and guide them in each repetition throughout the 
training session. The various feedback types were designed to alert the user in 
different ways when an error occurs while they are performing squats. Considering 
section 2.5, it was decided that indication by the colour, arrow and human avatar 
will be provided for the visual feedback. Moreover, the combination of all these 
visual feedback types is also used as one of the visual feedback methods to see if 
providing different types of visual information at once helps to reduce errors in 
squat performance.  

The visualisation methods were categorised into corrective and preventive 
approaches. This was done to see if there is a difference in the effectiveness of 
reducing errors in squat performance between the visual feedback methods of the 
two categories. The traffic light is a corrective approach to inform the users using 
red, yellow, and green lights along the border to indicate the presence of an error 
without description or spatial annotation to specify the exact location. Another 
explicit corrective informing method is using an arrow indication which provides a 
spatial annotation as well as the direction and magnitude of the adjustment 
required to fix an error. Avatar is an implicit preventive approach to guide the user 
to follow the movement of an overlapping semi-transparent video recording of a 
correctly performed squat by the participant. All-in-One is a combination of all 
visual feedback types (Traffic + Arrow + Avatar), which was added last to compare 
whether the combination of corrective and preventive approaches can achieve 
better performance than each feedback method by itself. 

Therefore, the final prototype is developed to provide four different types 
of personalised visual feedback: Traffic light, Arrow indication, Avatar and All-in-
One. Each visualisation mode requires the calibration data, which is obtained for 
each user to evaluate the squat performance and be used in feedback methods for 
error detection according to the procedure outlined in Section 3.4.  
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 The border colour is set to black at the beginning for the Traffic light visual 
feedback. When the participant is performing a good squat, the colour changes to 
green. If the participant starts to bend their knee inwards and the joint positions 
exceed the calibrated warning threshold, it shows yellow light as a moderate sign. 
This moderate category was introduced in the traffic sign visual feedback method 
to provide more continuous feedback to the users. If the knee goes beyond the pre-
set error threshold, it shows a red sign as an error. Participants can see the colour 
change during the procedure (Figure 10).  

 There is no visual feedback for the Arrow type if the user already performs 
good squats. However, two arrows appear beside the knees and point outwards 
when the knees' joints coordinate go beyond the set warning threshold. The further 
knee goes inside, the bigger the arrows get. When the user fixes their knee position 
according to the visual feedback, then the arrow pointers disappear. (Figure 11). 

Figure 10 Traffic Visual Feedback 

Figure 11 Arrow Visual Feedback 
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For the avatar visual feedback, A correctly performed squat was recorded 
using a screen recording software called OBS at the beginning of the experiment. 
The recorded video is overlaid on the screen with reduced opacity so that the 
participant can try to match their form to their avatar or overlaid video (Figure 12). 

Finally, the All-in-One visual feedback is implemented by enabling all of the 
previously implemented feedback types to be displayed (Figure 13). 

  

Figure 12 Avatar Visual Feedback 

Figure 13 All-in-One Visual Feedback 
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Chapter 4  

User Study 
 

A user study was done to find whether AR-based real-time visual feedback helps 
users to improve their performance during squats by reducing the number of errors. 
If so, the effectiveness of the visual feedback types can also be compared according 
to the user study results. For the user study, the participants were collected, and 
their demographic information was analysed. Three modes of measurements were 
collected: performance, post-experiment interview and User Experiment 
Questionnaire (UEQ). These modes were collected as they provide information 
about different aspects of the visual feedback methods. The performance 
measurement shows the objective effectiveness of the feedback types and the 
post-experiment interview, and the user experiment questionnaire shows the 
subjective preference of the users. The information about the participants, 
measurements, and the user study procedure is described in detail in the following 
sections. 

4.1 Participants 
We recruited twenty-four participants, twenty males (mean ± SD: age 25.1 ± 4.4 
years, body: ± 12.8 kg, height: 176.3 ± 8.2 cm) and four females (mean ± SD: age 
24.3 ± 4.6 years, bodyweight: 74.0 ± 15.0 kg, height: 167.0 ± 9.5 cm). They consisted 
of 12 Beginners, nine intermediates, and three experts. Beginners were defined as 
people who have never trained or have been taught before in physical exercise 
execution. Intermediate category participants were defined as the people who 
have been taught or trained but do not have a stable performance or make 
frequent mistakes. Experts are defined as people who are comfortable doing squats 
in the correct form by themselves without making many mistakes. Given these 
definitions, the participants self-identified themselves in these categories. 

4.2 Measurements 
The study's goal is to find whether the AR real-time visual feedback reduces 
mistakes during squat training. Measurements are done in three different aspects: 
Performance, Post-experiment interview and UEQ for all participants in the study. 
The performance measurement involves evaluating each squat as good, moderate 
or poor according to the procedure outlined in Section 3.5. After this performance 
evaluation, the number of good, moderate and poor squats performed for each 
visual feedback is compared to the no visual feedback setting. Hence, this 
comparison can identify whether visual feedback helps reduce errors during the 
execution of squats. Furthermore, the visual feedback types can be ranked 
according to their performance measurement results, providing further 
information about which visual feedback is the most effective.  
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A post-experiment interview and UEQ measurements were carried out to 
gain further information about the user experience with the visual feedback 
methods. This information can be used to understand the strengths and 
weaknesses of the visual feedback methods. In addition, this can help discover the 
underlying reasons why some visual feedback methods might lead to a better squat 
performance in the users. Therefore, after the experiment, a post-experiment 
interview was done to find which feedback people personally preferred the most. 
Also, a UEQ was done, which allowed information about other aspects of the user 
experience to be collected. Lastly, the experience level of the participants was 
considered during the analysis for all measurements. This can provide insights into 
how the performance and preference measurements might differ between the 
visual feedback types depending on the users’ experience level.  

4.2.1 Performance Measures 
Quantitative measurements about the squat performance are obtained by counting 
how many good, moderate, and poor squats the participants do while performing 
ten squats for each visual feedback. Participants also did ten squats in a controlled 
setting when no visual feedback was provided apart from their mirror image. The 
threshold curves classify the squats described previously, and a colour indicator is 
used to inform the researcher about the squat classification. This information is 
available for each squat performed for each feedback type to the researcher only. 
The participants cannot see the evaluation of their squat, as the only information 
they have access to is the visual feedback provided in the prototype. Although the 
traffic light visual feedback essentially uses the same threshold curves as the squat 
evaluation to provide the red, yellow and green indications, the users are not made 
aware of the evaluation process and just treat the colours as visual feedback 
information. The squat performance for the visual feedback types concerning the 
control setting and for each other is analysed to evaluate their effectiveness.  

4.2.2 Post-experiment Interview 
A post-experiment interview was done after the participant completed the squats 
for all visual feedback types.  

The interview questions were: 

• “If you rank the visual feedback modes, how would you order them?” 

• “What was good about the best visual feedback type and what was poor 
about the worst visual feedback type?”  

• “Do you have any further improvements or suggestions?” 
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4.2.3 User Experience Questionnaire 
 A questionnaire was done for each visual feedback type using the UEQ, which is a 
verified user experience questionnaire. The UEQ assesses the quality of a system 
along six dimensions, including 26 questions using a 7-point Likert scale. Each 
category focuses on feedback for one aspect of the prototype and includes scales 
that allow the users to provide feedback on various prototype attributes by scoring. 
The structure of the UEQ is shown in Figure 14.  

Figure 14 User Experience Questionnaire Structure 

The questionnaire measures the participants’ opinion on the Attractiveness, 
Perspicuity, Efficiency, Dependability, Stimulation and Novelty of the prototype. 
Attractiveness measures the general impression of the prototype on the users and 
how enjoyable they found the prototype. Perspicuity measures how easily the users 
learned to use the prototype. Efficiency measures how easily the users can achieve 
their goals while using the prototype. Dependability measures how well the 
prototype met the users’ expectations in its effectiveness. Stimulation measures 
how excited or motivated the users are by the prototype and Novelty measures 
how innovative and creative the users found the prototype.  Perspicuity, Efficiency 
and Dependability represent pragmatic values and Stimulation and Novelty 
represent hedonic values. Attractiveness represents a mixture of both these values. 
The questionnaire that was used in the user study is attached in Appendix A. Since 
this research aims to find the most effective visual feedback, the results for the 
efficiency category of the visual feedback types are the focus.  
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4.3 Procedure 
Firstly, 24 randomly selected participants (beginners: 12, Intermediates: 9, Experts: 
3) were collected for the evaluation. The participant read the information sheet and 
signed the consent form (Appendix B and Appendix C). A Pre-experiment 
questionnaire was done before the user test. The questionnaire collected general 
information about the users such as gender, weight, height, previous experience of 
weight training and history of injury. The pre-questionnaire is attached in Appendix 
D. Then, the participants watch a short video clip to learn how to perform the squat 
properly. After that, there was a brief introduction and demonstration of the 
experiment. Under the researcher’s supervision, one correctly performed squat 
motion of each participant is recorded. Then the recorded data of the good squat 
motion will be used to calibrate the real-time feedback before the experiment. The 
participant then conducted a set of 10 squats with the only visual feedback being 
their mirror image (No added visual feedback). Then, the participant performed a 
set of 10 squats with each of the three visual feedback methods (Traffic light – A, 
Arrow – B, Avatar – C and All-in-One – D). The order of the visual feedback types 
between different participants was arranged according to a Latin square (A-B-C-D, 
B-C-D-A, D-A-B-C and C-D-A-B). Their performance was recorded by counting the 
number of good, moderate and poor squats they performed for each feedback 
method. A User Experience Questionnaire (UEQ) was distributed after completing 
10 squats for each visual feedback type. At the end of the experiment, there was a 
general interview which collects users’ feedback on the experiment and the 
prototypes. 
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Chapter 5  

Result 
5.1 Performance Measures 
User performance was measured for each feedback type by counting how many 
good, moderate, and poor squats were performed. Table 3 shows the total number 
of good, moderate and poor squats summed up across all participants for each 
visual feedback method. Then Chi-square analysis was done to see if there is a 
relationship between squat performance and visual feedback. As the calculated P-
value was less than 0.05, there is a significant association between performance 
and visual feedback variables. 

Table 3 Total Number of Performance for Overall Group 

Table 3 shows that participants achieved the highest number of good squats using 
Arrow, which was followed by All-in-One, Traffic, No-visual feedback and Avatar. 
Participants had moderate squats the most when they were using the Avatar 
followed by No-visual feedback, All-in-One, Traffic and Arrow. The participants 
performed the least number of poor squats in All-in-One, followed by Arrow, Traffic, 
and Avatar. When there was no visual feedback, the highest number of poor squats 
were observed. The percentage of good, moderate and poor squats for each 
feedback type are shown in Figure 15. 

         visual feedback 

 

performance 

No-visual 

feedback 
Traffic Arrow Avatar All-in-One Total 

Good 134 166 193 122 174 789 

Moderate 83 61 41 102 64 351 

Poor 23 13 6 16 2 60 

Total 240 240 240 240 240 1200 

Figure 15 Performance Percentage for Overall Group 
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Then the participants’ performance was analysed by dividing them into two 
groups: the beginner group and the advanced group (combined intermediates and 
experts). The total number of good, moderate and poor squats for each visual 
feedback type were summed up for all participants in the beginner and used to 
construct Table 4. Then Chi-square analysis was done for each group and both the 
resulting P-values were less than 0.05. Hence, there is a significant association 
between squat performance and visual feedback in both groups.  

 Table 4 Total Number of Performance for Beginners Group 

In the beginner group, the result shows a very similar trend to the overall 
result. Table 4 shows that participants achieved the most correct squats using the 
Arrow feedback followed by All-in-One and traffic. The participants achieved the 
same number of good squats using Avatar visual feedback and the no-visual 
feedback setting and they recorded the lowest number of good squats. Participants 
had moderate signs the most when they were given no visual feedback followed by 
Avatar, Traffic, All-in-One and Arrow. The participants performed the greatest 
number of wrong squats with the Traffic light feedback. Arrow and Avatar had the 
same number of wrong squats but were lesser compared to Traffic light feedback. 
Lastly, the no visual Feedback and All-in-One feedback case had the lowest number 
of wrong squats executed. The percentage of good, moderate and poor squats are 
shown in Figure 16.  

       visual feedback 

 

performance 

No-Visual 

Feedback 
Traffic Arrow Avatar All-in-One Total 

Good 81 91 106 81 104 463 

Moderate 38 26 12 37 15 128 

Poor 1 3 2 2 1 9 

Total 120 120 120 120 120 600 

Figure 16 Performance Percentage for Beginner Group 
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Table 5 shows the performance of the squat for each visual feedback type 
for the advanced group. 

Table 5 Total Number of Performance for Advanced Group 

The advanced group also achieved the greatest number of good squats with 
the Arrow feedback followed by Traffic, All-in-One, No visual Feedback and Avatar 
feedback. The Intermediate and expert participants had moderate signs the most 
when they were using Avatar visual feedback followed by All-in-One, no visual 
feedback, Traffic, and Arrow. The advanced group performed more poor squats 
compared to the beginner group. The no visual feedback had the greatest number 
of poor squats which was followed by Avatar, Traffic, Arrow and All-in-One 
feedback. The percentage of good, moderate and poor squats performed for each 
feedback type is shown Figure 17.  

 

       visual feedback 

 

performance 

No Visual 

Feedback 
Traffic Arrow Avatar All-in-One Total 

Good 53 75 87 41 70 326 

Moderate 45 35 29 65 49 223 

Poor 22 10 4 14 1 51 

Total 120 120 120 120 120 600 

Figure 17 Performance Percentage for Advanced Group 
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Boxplots were generated for the overall group, beginner group, and 
advanced group to show the number of good, moderate, and poor squats 
performed by each participant. The boxplots show the distribution of the number 
of good squats, moderate or poor squats people performed instead of a single 
summed up value that was used in the previous analysis. From the distribution, it 
is possible to understand how variable the number of good squats was between 
participants. Figure 18 shows the boxplots for the number of good and moderate 
squats performed by each participant for each visual feedback category.  

The boxplots in Figure 18 show that the median number of good squats 
were 9, 9, 8, 7.5 and 6.5 for Arrow, All-in-One, Traffic, Default and Avatar 
respectively. The median number of moderate squats were 3.5, 2, 1.5, 1, and 1 for 
Avatar, Default, Traffic, All-in-One and Arrow respectively. The number of poor 
squats observations were too small to be meaningfully represented by a boxplot so 
the boxplot for the number of poor squats was not included. 

Figure 18 Boxplot for Overall Group Result of Good and Average Squats 
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Box plots for the number of good and moderate squats performed by the 

beginner group was also created and is shown in Figure 19. 

Figure 19 shows that the median number of good squats were 9, 9, 9, 8.5, 
and 8 for Traffic, Arrow, All-in-One, Default, and Avatar respectively. The median 
number of moderate squats were 2, 1.5, 1, 1, and 0.5 for Avatar, Default, Traffic, 
Arrow and All-in-One, respectively.

Figure 19 Boxplot for Beginner Group Result of Good and Average Squats 
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 Figure 20 shows the boxplot for the advanced group. 

Figure 20 shows that the median number of good squats were 9, 7.5, 7.5, 
3.5, and 0 for Arrow, Traffic, All-in-One, Default and Avatar respectively. The 
median number of moderate squats were 5.5, 2.5, 2, 2, and 1 for Avatar, All-in-One, 
Traffic, Default and Arrow respectively.  

Figure 20 Boxplot for Advanced Group Result of Good and Average  
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To test whether there is a statistically significant difference between the 
number of good squats performed for the four visual feedback types, a one-way 
repeated measures ANOVA test was carried out. The test found a significant effect, 
F (4, 92) = 4.56, p = 0.002, partial η2/ηp2 = 0.162, which is commonly considered a 
large effect. Although this suggests that there is a significant difference in the mean 
number of good squats for the four visual feedback types, a post-hoc comparison 
must be performed to find which visual feedback types had a significant difference. 
The post hoc comparison results are shown in Table 6. In this table, the “Mean 
Difference” is calculated by subtracting the mean number of good squats of the 
right side’s feedback type from the left side’s feedback type.  

Table 6 Post Hoc Comparison Summary Table 

The post-hoc comparison results show that the mean number of good squats 
for the Arrow feedback is higher than that of Avatar by 2.958 and this difference is 
significant as the p-value was less than 0.05. Also, the mean number of good squats 
in All-in-One is higher than that of Avatar by 2.167 and this difference is significant 
as the p-value is less than 0.05. This suggests that there is significant evidence that 
the users’ mean number of good squats for the Arrow and All-in-One visual 
feedback was higher than that of the Avatar visual feedback.   

Post Hoc Comparisons - Number of good squats 

Comparison  

Number of 

good squats 
  

Number of 

good squats 

Mean 

Difference 
SE df t ptukey 

Default  -  Traffic  -1.333  0.857  23.0  -1.56  0.539  

   -  Arrow  -2.458  0.919  23.0  -2.68  0.089  

   -  Avatar  0.500  0.828  23.0  0.60  0.973  

   -  All-in-One  -1.667  0.711  23.0  -2.34  0.168  

Traffic  -  Arrow  -1.125  0.646  23.0  -1.74  0.430  

   -  Avatar  1.833  0.863  23.0  2.12  0.244  

   -  All-in-One  -0.333  0.809  23.0  -0.41  0.994  

Arrow  -  Avatar  2.958  0.871  23.0  3.40  0.019  

   -  All-in-One  0.792  0.823  23.0  0.96  0.869  

Avatar  -  All-in-One  -2.167  0.699  23.0  -3.10  0.037  
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5.2 Post Experiment Interview 

In the post-experiment interview, the participants were asked to rank the visual 
feedback types according to their personal preferences. The summary for all 
participants of the overall group, beginner group and advanced group ranking is 
shown in Table 7, Table 8, and Table 9. 

Table 7 Overall Group Preference Ranking Summary 

 

 

 

 

 

Table 8 Beginner Group Preference Ranking Summary 

 

 

 

 

 

Table 9 Advanced Group Preference Ranking Summary 

 

 

 

 

 

 

Table 10 shows a summary of the feedback comments provided by the 
participants for each visual feedback method. 

Table 10 Post Experiment Interview Summary 

 Positive comments Negative comments 
Traffic • Simple and easy  

• Flexibility in adjusting the pose 

• Clear when the users are doing 
correctly 

• No specific information 
on how to fix the error 

• The colour was 
changing too fast 

Arrow • Clear feedback and intuitive 

• Simple to understand 

• Easy to understand 

• Flexibility in adjusting the pose 

• Provides specific feedback 

• No visual feedback 
when you are doing 
correctly 

• Sudden changes  

• have to look down to 
see the arrow 

  1st 2nd 3rd 4th 

Traffic 8 7 4 5 

Arrow 8 2 6 8 

Avatar 3 8 8 5 

All-in-One 5 7 6 6 

  1st 2nd 3rd 4th 

Traffic 2 4 2 4 

Arrow 4 1 3 4 

Avatar 1 5 3 3 

All-in-One 5 2 4 1 

  1st 2nd 3rd 4th 

Traffic 6 3 2 1 

Arrow 4 1 3 4 

Avatar 2 3 5 2 

All-in-One 0 5 2 5 
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Avatar • good to see the whole body 
movement  

• Set up the pace for performing 
the squats 

• good to follow a well-
calibrated movement 

• Easy to understand visually 

• hard to match the 
speed 

• hard to distinguish 
yourself from the avatar 

• does not show if an 
error is made 

• No freedom to adjust 
the posture based on 
personal preference 

All-in-
One 

• Most informative feedback 

• Provide useful information 

• Good to see the preventive 
and corrective methods at 
once 

• Could choose which one to 
follow 

• Too much information 

• No freedom to adjust 
the posture based on 
personal preference  

• Complicated to 
understand 

 

The participants also mentioned that they might prefer to have the following 
improvements added to the prototype: 

• Sound effects, verbal, or text information  

• Some participants wish they could see the side-view of their performance 
which might give them more information. Also, they wished that the 
visual feedback method can guide them about the appropriate depth of 
the squat, whether their back is straight, heels are still fixed on the group 
and other types of common errors.  

• They wish that the Avatar and Traffic feedback methods or Arrow and 
Traffic feedback methods could be combined. They thought this 
combination will provide just enough information without being 
overwhelming. 

• They suggested that having a clear outline of the avatar might be 
beneficial to allow them to distinguish between themselves and the 
avatar. 

• They suggested that if the user makes mistakes, then pausing the avatar 
would be useful. 
 

5.3 User Experience Questionnaire 
For the qualitative measures in the user test, the independent variables are the 4 
different visual feedback types: Traffic, Arrow, Avatar, and All-in-One. The 
dependent variables are the participants’ responses to the UEQ questions. The UEQ 
contained 26 questions belonging to six general categories of Attractiveness, 
Perspicuity, Efficiency, Dependability, Novelty and Stimulation. As 26 questions are 
too many to meaningfully analyse the users’ feedback for, a strategy for potentially 
grouping some of the results from the questions is required so that the feedback 
can be more easily analysed. A reliability analysis allows us to investigate if the 
response values of two or more variables are significantly correlated. If they are, 



36 
 

those variables can be grouped, and their response values can be averaged to one 
value that represents that group. Thus, via a reliability analysis, a large number of 
variables can be condensed down to a more manageable amount, allowing us to 
obtain more reliable and stable insights. The significance of a relationship between 
variables is established by the value of Cronbach’s alpha. As there are five broad 
categories that the 26 questions fall under in the UEQ, reliability analysis for the 
questions in each category was done to see if the responses for the questions in 
each category are significantly related. The responses were arranged so that higher 
values represent a more positive score.  The results for the Internal reliability 
analysis of Attractiveness, Perspicuity, Efficiency, Dependability, Novelty and 
Stimulation were above the significant level as the Cronbach’s alpha values were 
0.90, 0.86, 0.72, 0.86, 0.88, and 0.85, respectively. Thus, the response values for 
each question within each category were averaged and used to represent that 
category. These averaged values for the UEQ feedback categories across all 
participants for each visual feedback type are represented by a bar graph in Figure 
21.  

 

Figure 21 User Experience Questionnaire 

The previous reliability analysis allows us to get a mean value for each UEQ 
category for each visual feedback type. However, to compare the visual feedback 
types’ UEQ results, an analysis of whether the differences in mean category values 
between the visual feedback types are statistically significant must be performed. 
To do this analysis, a one-way repeated measures ANOVA (analysis of variance) test 
was performed. The repeated measures used by ANOVA were the mean response 
values given by a participant for each UEQ category repeatedly measured for the 
various visual feedback types (shown in Appendix E). This test finds the significance 
of the difference in the means of the visual feedback types within each UEQ 
category.  
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The p-values of mean differences between the visual feedback types for the 
Attractiveness, Perspicuity, Novelty and Stimulation categories were bigger than 
0.05 which means that there is no significant difference between the visual 
feedback methods for these categories (shown in Table 11). 

Table 11 Summary of ANOVA test 

Within Subjects Effects 

  Sum of Squares df Mean Square F p η²p 

Attractiveness  6.47  3  2.158  2.49  0.068  0.098  

Perspicuity  1.36  3  0.453  0.348  0.791  0.015  

Efficiency  9.16  3  3.054  3.82  0.014  0.143  

Dependability  6.04  3  2.013  3.28  0.026  0.125  

Stimulation  1.26  3  0.418  0.630  0.598  0.027  

Novelty  1.18  3  0.393  0.985  0.405  0.041  

 

However, a significant effect was found for the Efficiency category, F (3, 69) 
= 3.82, p = .014, partial η²/ η²p = .143, which is commonly considered a large effect. 
A significant effect was also found for the Dependability category, F (3, 69) = 3.28, 
p = .026, partial η²/ η²p = .125, which is commonly considered a medium effect. This 
means that some of the visual feedback types had a significant difference in means 
for the Efficiency and Dependability categories.  

  



38 
 

To find out which visual feedback types’ means have a significant difference 
for the efficiency and dependability categories, the post hoc test was done and 
shown in Table 12 and Table 13. In these tables, the “Mean Difference” is calculated 
by subtracting the mean value of the response of the right side’s feedback type 
from the left side’s feedback type.  

Table 12 Summary of Post Hoc Comparisons for Efficiency 

Table 13 Summary of Post Hoc Comparisons for Dependability 

 The summary of the post hoc test shows that the mean response for the 
Traffic feedback is higher than Avatar for the Efficiency category and has a 
significant difference (p-value < 0.05). This indicates that there is significant 
evidence that the participants considered the efficiency of Traffic to be higher than 
that of Avatar. For the dependability post hoc test, Traffic and All-in-One have a 
higher mean value than Avatar and there is a significant difference (p-value < 0.05). 
This indicates that there is significant evidence that users found the Traffic and All-
in-One feedback to be easier to understand than Avatar. These statistical 
significance results are in line with the feedback given by the participants in the 
post-experiment Interview. 

Post Hoc Comparisons – Efficiency 

Comparison  

Efficiency   Efficiency Mean Difference SE df t ptukey 

Traffic  -  Arrow  0.104  0.228  23.0  0.458  0.967  

   -  Avatar  0.802  0.225  23.0  3.569  0.008  

   -  All-in-One  0.344  0.239  23.0  1.437  0.490  

Arrow  -  Avatar  0.698  0.290  23.0  2.405  0.104  

   -  All-in-One  0.240  0.320  23.0  0.749  0.876  

Avatar  -  All-in-One  -0.458  0.231  23.0  -1.984  0.223  

Post Hoc Comparisons – Dependability 

Comparison  

Dependability   Dependability Mean Difference SE df t ptukey 

Traffic  -  Arrow  -0.010  0.236  23.0  -0.044  1.000 

   -  Avatar  0.604  0.207  23.0  2.921  0.036 

   -  All-in-One  0.125  0.260  23.0  0.480  0.963 

Arrow  -  Avatar  0.615  0.237  23.0  2.594  0.072 

   -  All-in-One  0.135  0.244  23.0  0.554  0.945 

Avatar  -  All-in-One  -0.479  0.156  23.0  -3.080  0.025 
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Chapter 6  

Discussion 
 

A prototype using Kinect v2 was built to provide AR-based real-time visual feedback 
during a squat. 24 (20 males and 4 females) participants were collected for the user 
study and the measurements were done along three dimensions: performance, 
post-experiment interview, and UEQ. In the performance measurement, the 
number of good, moderate and poor squat forms were counted while the user is 
given different types of visual feedback which were Traffic, Arrow, Avatar, and All-
in-One. Also, users’ performance was measured without any visual feedback given 
for comparison.  

6.1 Performance Measurements 

6.1.1 Barplot and Table Analysis  
Overall Group - The overall number of good, moderate and poor squats 

were then tallied up for each visual feedback type and are shown in Table 3 and 
Figure 15. This table shows that generally, the participants were able to perform a 
higher number of good squats with visual feedback. Especially, the users’ number 
of good squats improved the most using Arrow visual feedback, followed by All-in-
One and Traffic. The Avatar visual feedback was not seen to show a useful 
improvement since the participants achieved a smaller number of good squats 
when Avatar visual feedback was given compared to when no visual feedback was 
given. However, the number of poor squats performed during the Avatar visual 
feedback was still less than the number of poor squats performed when no visual 
feedback so there is a moderate improvement in terms of reduction of errors. Then 
the participants’ data was split into two different groups according to their level of 
expertise: the beginner group and the advanced group (intermediate and experts 
together). This was done to investigate how the participants’ level of expertise 
affects their performance for the different visual feedback types.  

Beginner Group - Table 4 and Figure 16 show a tally-up table and a bar plot 
of the percentage of the number of good, moderate, and poor squats performed 
by the beginner group for each visual feedback type, respectively. The beginner 
group’s performance showed the same trend as the overall result. They performed 
the greatest number of good squats with Arrow visual feedback, followed by All-in-
One, Traffic, and Avatar. However, the percentage of good squats performed in the 
beginner group increased for the All-in-One feedback type compared to the overall 
group result. All-in-One provides the largest amount of visual information as this 
feedback type is an amalgamation of all other feedback types. Thus, it could have 
been more helpful for the beginner group as they do not have much prior 
experience and more information could give them more guidance to be able to 
perform good squats. In the beginner group, Avatar is the only visual feedback type 
that reduces the performance of the squat compared to the no visual feedback 
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setting. This is because the low transparency overlapping avatar was too similar to 
their image and confused them while performing the squat. 

Advanced Group - Table 5 and Figure 17 show a tally-up table and a bar 
plot of the percentage of the number of good, moderate, and poor squats 
performed by the advanced group for each visual feedback type, respectively.  The 
advanced group also achieved the highest number of good squats with the Arrow 
visual feedback, followed by Traffic, All-in-One, and Avatar. So, for the advanced 
group, the Traffic feedback was the second-best instead of All-in-One, which is the 
opposite order compared to the beginner group. This could be because as the 
advanced group already have experience in performing squats, they do not benefit 
from a large amount of information from a feedback method like All-in-One. It could 
have instead interrupted their understanding of performing squats correctly due to 
a large amount of information. Similar to All-in-One, the Avatar feedback guides the 
participants to follow the movement trajectory of the previously recorded squat 
exactly, which could be over constraining their movement. As this group already 
has sufficient knowledge and experience to distinguish how to fix mistakes during 
the squats, just simple and intuitive indications such as colour or arrow pointers 
were more efficient for them. An interesting result was that in general, the 
advanced group performed a lesser number of good squats and an increased 
number of poor and moderate squats than the beginner group across all feedback 
types, as shown in Figure 16 and Figure 17. This could be because due to their 
previous experience in performing squats, they are more likely to perform 
adjustments to their movements according to personal judgement, which could 
lead to deviation from the previously performed good squat used for calibration. 
However, the beginner group could have adhered more strictly to the provided 
visual feedback and not let personal judgement affect their movements.  

6.1.2 Boxplot Analysis 
Although the previous analysis provides information about the ranking of the visual 
feedback methods based on the number of good, moderate, or poor squats 
performed, it does not provide insights into the variability of the squat performance 
between the participants. Hence, boxplots for the number of good and moderate 
squats performed by each participant against the feedback category were 
constructed. This was done for all participants and the beginner and advanced 
groups. For each group, the descending order of the median number of good and 
moderate squats remains the same generally as the previously determined order 
for the tallied-up percentage of good and moderate squats. In general, across all 
groups, the feedback modes with a higher median number of good squats had a 
lesser spread. Conversely, feedback modes with a higher median number of 
moderate squats had a higher spread. This suggests that feedback modes that lead 
to better squat performance are also more consistent between participants.  

For the group of all participants, the arrow feedback type had the least 
spread in the number of good and moderate squats and the highest and lowest 
median value, respectively. This suggests that overall, the participants had a better 
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and more consistent performance with arrow feedback. This was also true for the 
advanced group. For the beginners’ group, Traffic, Arrow and All-in-One had almost 
the same medians for the number of good and moderate squats, being highest for 
the good squats and lowest for the moderate squats. However, All-in-one had the 
lowest spread for the number of good squats and moderate squats performed by 
the beginner participants. This suggests that beginner participants had the best and 
most consistent performance with All-in-One feedback. These results are in line 
with the fact that experienced users benefit from the more intuitive type of 
feedback such as Arrow, which does not contain an overwhelming amount of 
information. However, beginner participants benefit from feedback types that 
contain the maximal amount of information to account for their lack of knowledge 
in performing squats correctly.  

For the group of all participants, Arrow and All-in-One had the highest 
median good squats, and Avatar had the lowest. The exact opposite order was seen 
for the median number of moderate squats. This suggests that Arrow and All-in-
One generally had the best performance, whereas Avatar had the lowest 
performance. For the advanced group, Arrow had the highest median number of 
good squats, and Avatar had the lowest median number of good squats. The exact 
opposite ordering was seen for the median number of moderate squats. This 
suggests that Arrow was the best performing visual feedback and Avatar was the 
worst-performing mode. Traffic, Arrow and All-in-One all had the highest median 
number of good squats, and Avatar was the lowest for the beginner group. All-in-
One recorded the lowest value for the median number of moderate squats, and 
Avatar recorded the highest. All-in-One also had the least spread for both the 
number of good and moderate squats.  

6.2 Post-Experiment Interview 
After finishing the experiment, all users were asked to rank the visual feedback 
modes according to their personal preferences. Overall, beginner and advanced 
groups show different preferences. First, the overall group result in Table 8 shows 
that Traffic and Arrow were selected as the most preferred modes. Traffic was 
chosen the least frequently for the worst visual feedback. However, Arrow was also 
frequently selected for the most un-preferred visual feedback. The preference for 
Arrow was very polarized between the beginner and advanced groups as well. This 
tells that the Arrow feedback can be interpreted in diverging ways based on the 
user’s preference. There was a clear difference in preference for the Traffic 
feedback between the advanced and the beginner groups. The advanced group 
most frequently ranked Traffic as the most preferred feedback, whereas the 
beginner group most commonly ranked it as the least preferred feedback. Another 
difference in preference between the groups was noticed for the All-in-One 
feedback. The advanced group most frequently chose it as the least preferred mode 
whereas the beginners chose it as the most preferred mode frequently. This could 
be because the advanced group might prefer more simple and intuitive feedback 
such as Traffic and Arrow that moderately augments their already developed 
experience in performing squats. However, the beginner group preferred to have 
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visual feedback that contains more detailed information to fix their pose, such as 
All-in-One.  

6.3 User Experience Questionnaire 
A UEQ was also given to the users at the end of each visual feedback so that they 
could score it on various aspects such as Attractiveness, Perspicuity, Efficiency, 
Dependability, Stimulation and Novelty. Because the visual feedback methods aim 
to improve the effectiveness of squat performance, the efficiency category is 
important as it gauges the users’ perception of the effectiveness of the feedback 
modes. The feedback modes in descending order of mean efficiency scores given 
by the users were Traffic light, Arrow, All-in-One and Avatar. By performing an 
ANOVA test, a significant difference between the scores of different visual feedback 
types was found for the Efficiency and Dependability categories. A post-hoc 
comparison was made to find that the Traffic feedback’s mean value of the 
efficiency score was significantly higher than Avatar, and the dependability score 
means of Traffic and All-in-One feedback was significantly higher than Avatar. This 
result is in line with the low favourability demonstrated for Avatar in the user 
preference ranking in contrast to the Traffic and All-in-One feedback modes.  

6.4 Limitations 
The limitations of this research were that since this prototype was focusing on fixing 
knee-collapsing scenarios, it was hard to detect when there were other mistakes 
such as butt wink, heels off the ground, rounded back or too shallow squat. The 
skeleton tracking by Kinect v2 on the knee joints was unstable and faced minor 
glitching, which could have decreased the effectiveness of the visual feedback 
methods that relied on the tracking information such as Traffic, Arrow, and All-in-
One. For future work, the skeleton structure could be tracked more precisely and 
accurately if Azure Kinect was used. For the UEQ results, a significant difference in 
the mean scores between the feedback modes for the other categories such as 
attractiveness, perspicuity, stimulation, and novelty cannot be found. It is not likely 
that all four feedback modes do not have differences in attributes relating to these 
categories. Thus, it is possible that an insignificant difference could have been 
found because the sample size is not large enough. This could be improved by 
having more participants in a future experiment. 
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Chapter 7  

Conclusion and Future Work 
 

This research aims to answer the question, “Can visual feedback using AR 
technology reduce mistakes during squat training?”. AR feedback was used to 
provide visual feedback to enhance the execution of squats by detecting the knee 
collapse error. Kinect v2 was used for motion capturing and generating a skeleton 
model of the user to obtain the coordinates of the user’s joints. Then Unity was 
used to predict errors by analysing the joint data. After identifying the errors, Unity 
was also used to implement the user interface that provides different types of visual 
feedback to improve a user’s squat performance: Traffic, Arrow, Avatar, and All-in-
One. The Traffic feedback involves using green, yellow, and red colours to indicate 
the correctness of the squat motion in terms of the level of knee collapse occurring. 
The Arrow visual feedback shows arrow pointers beside the user’s knees when the 
knee starts to collapse inwards. The more the knee collapses, the bigger the arrows 
get. For the Avatar visual feedback method, the best squat form of the user is 
recorded initially for calibration. Then the recorded video is translucently 
overlapped on top of the user’s mirror image so the users can follow their correctly 
performed squat motion.  

Finally, All-in-One is a combination of all visual feedback types. Twenty-four 
participants were gathered (four females) who have different levels of expertise in 
weightlifting (beginner, intermediate and expert). Then they performed ten squats 
with each visual feedback. Since the perfect squat form can differ according to each 
person’s physiology, the machine was initially calibrated. The errors in future squats 
were detected by the degree of deviation from their correct squat form. The level 
of deviation was utilised to provide visual feedback and evaluate the correctness of 
their squat. A correct squat was recorded as “good”, a slight deviation from the 
correct squat was recorded as “moderate”, and a large deviation was recorded as 
“poor”. Also, a UEQ was done after the user completed ten squats for each visual 
feedback. Then the post-experiment interview was done to collect personal 
preferences and further comments on the prototype. 

The overall performance results show improved their squat performance 
the best using Arrow visual feedback, followed by All-in-One, Traffic and Avatar. 
Then further analysis was done by dividing the participants into two groups: the 
beginner and advanced (combined intermediates and experts). For the beginner 
group, they performed the best using Arrow, followed by All-in-One, Traffic and 
Avatar. However, for the advanced group, results show that they performed better 
in the order of Arrow, Traffic, All-in-One and Avatar. This difference between the 
groups could emerge because beginners could benefit from the large amount of 
information provided by All-in-One visual feedback due to their lack of experience 
more than the experienced participants. However, for the advanced group, All-in-
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One could have provided too much unnecessary information for them, and it was 
interrupting their judgement and squat performance. Therefore, the advanced 
group performed better with simple and intuitive visual feedback methods such as 
Arrow and Traffic. The participants' personal preferences were similar but had 
minor differences from the performance results. Overall, participants preferred 
Traffic over Avatar. This could be because the Traffic visual feedback was easy to 
understand for most participants. 

In contrast, the Avatar was confusing due to the participants not being able 
to distinguish their own image with the translucent avatar overlay. The preference 
of the beginner group was ranked in the order of All-in-One, Arrow, Traffic and 
Avatar, and the preference rank in the advanced group was Traffic, Arrow, Avatar 
and All-in-One. The UEQ results also show users' perception of the efficiency of 
visual feedback modes. The order is Traffic, Arrow, All-in-One, and Avatar, which 
follows the trend in preference result. There are some suggestions from the 
participants. Firstly, instead of mixing all three visual feedbacks, maybe mixing two 
visual feedbacks would be sufficient to get the desired information, such as Arrow 
+ Traffic or Avatar + Traffic. Also, many participants wanted to do squats at their 
own pace rather than the fixed pace of the avatar. Hence, they wished that the 
avatar adapted to their pace. Finally, they also mentioned that other types of 
feedback, such as sound effects or text, could better guide them while doing squats. 

For future work, incorporating side-view feedback can provide additional 
useful information for the user since this could give feedback on the position of 
their back, hip and ankles, which are the parts where many weightlifters make 
mistakes. Another possible improvement could involve using machine learning to 
detect errors instead of user-based calibration done in this research. User-based 
calibration requires manually constructing methods using the joint positions to 
detect errors. At the same time, machine learning-based methods can 
automatically learn complex relationships between the joint data and errors to 
detect errors more powerfully in squat performance. The prototype developed 
could also be extended for applications in other types of strength exercises such as 
the deadlift, bench press or shoulder press. Moreover, this can also be applied to 
sports where repetitive and correct execution of movements is required, such as 
golf, basketball, and baseball.   
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