Network Operator Intent

A Basis for User-friendly Network Configuration and Analysis

By
Andrew Curtis-Black

Under the supervision of

Prof. Andreas Willig & Assoc. Prof. Matthias Galster

Department of Computer Science and Software Engineering
UNIVERSITY OF CANTERBURY

A dissertation submitted to the University of Canterbury in
accordance with the requirements of the degree of
DOCTOR OF PHILOSOPHY.

25th October 2021

Abstract

Two important network management activities are configuration (mak-
ing the network behave in a desirable way) and analysis (querying the
network’s state). A challenge common to these activities is specifying op-
erator intent. Seemingly simple configurations such as “no network user
should exceed their allocated bandwidth” or questions like “how many
network devices are in the library?” are difficult to formulate in practice,
e.g. they may require multiple tools (like access control lists, firewalls,
databases, or accounting software) and a detailed knowledge of the net-
work. This requires a high degree of expertise and experience, and even
then, mistakes are common. An understanding of the core concepts that
network operators manipulate and analyse is needed so that more effect-
ive, efficient, and user-friendly tools and processes can be created.

To address this, we create a taxonomy of languages for configuring
networks, and use it to evaluate three such languages to learn how oper-
ators can express their intent. We identify factors such as language fea-
tures, testing, state modeling, documentation, and tool support. Then,
we interview network operators to understand what they want to ex-
press. We analyse the interviews and identify nine orthogonal dimen-
sions which frequently appear in expressions of operator intent. We use
these concepts, and our taxonomy, as the basis for a language for query-
ing both business- and network- domain data. We evaluate our language
and find that it reduces the number and complexity of queries needed
to answer questions about networks. We also conduct a user study, and
find that our language reduces novices’ cognitive load while increasing
their accuracy and efficiency. With our language, users better under-
stand how to approach questions, can more easily express themselves,
and make fewer mistakes when interpreting data.

Overall, we find that operator intent can, at one extreme, be ex-
pressed directly, as primitives like flow rules, packet counters, or CLI
commands, and at another extreme as human-readable statements which
are automatically translated and implemented. The former gives operat-
ors precise control, but the latter may be easier to use. We also find that
there is more to expressing intent than syntax and semantics as usabil-
ity, redundancy, state manipulation, and ecosystems all play a role. Our
findings also show the importance of incorporating business-domain con-
cepts in network management tools. By understanding operator intent
we can reduce errors, improve both human-human and human-computer
communication, create more usable tools, and make network operators
more effective.

Acknowledgements

I would like to thank everyone who made this work possible, including
the study participants, who gave up their time for someone else’s project;
Tony van der Peet, for his support and advice; Andreas and Matthias, for
their guidance, kindness, and for teaching me so much; everyone in the
Computer Science and Software Engineering department for nearly ten
years of education, opportunities, and community; Lindsey, for her good
ideas, and for making me laugh; Crystal, Matt, Merel, Tim, Kent and
Thandi, for their friendship, bread, and encouragement; and my parents,
who taught me first. This research was funded in part by Callaghan
Innovation and Allied Telesis Labs through grant ATLL1502.

Deputy Vice-Chancellor’s Office UNIVERSITY OF
Postgraduate Research Office CANTERBURY

Te Whare Wananga o Waitaha
CHRISTCHURCH NEW ZEALAND

Co-Authorship Form

This form is to accompany the submission of any thesis that contains research repor-
ted in a co-authorised work that has been published, accepted for publication, or sub-
mitted for publication. A copy of this form should be included for each co-authored
work that is included in the thesis. Completed forms should be included at the front
(after the thesis abstract) of each copy of the thesis submitted for examination and
library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-
authored work and provide details of the publication or submission from which the

extract comes:

Chapter 3 is based on A Taxonomy for Network Policy Description Languages, by
A. Curtis-Black, A. Willig, and M. Galster. Published in the 26th International
Telecommunication Networks and Applications Conference (ITNAC), 2016.

Please detail the nature and extent (%) of contribution by the candidate:

First author, and primary researcher. Wrote the text of all papers, with guidance
and feedback from co-authors. Performed all research. Overall contribution of

effort, including research and writing: 90%.

Certification by co-authors

If there is more than one co-author then a single co-author can sign on behalf of all.
The undersigned certifies that:
* The above statement correctly reflects the nature and extent of the Doctoral
candidate’s contribution to this co-authored work.
* In cases where the candidate was the lead author of the co-authored work he
or she wrote the text.

Name: Andreas Willig Date: 23/10/2021

Andrew Curtis-Black

UCw

Deputy Vice-Chancellor’s Office UNIVERSITY OF
Postgraduate Research Office CANTERBURY

Te Whare Wananga o Waitaha
CHRISTCHURCH NEW ZEALAND

Co-Authorship Form

This form is to accompany the submission of any thesis that contains research repor-
ted in a co-authorised work that has been published, accepted for publication, or sub-
mitted for publication. A copy of this form should be included for each co-authored
work that is included in the thesis. Completed forms should be included at the front
(after the thesis abstract) of each copy of the thesis submitted for examination and
library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-
authored work and provide details of the publication or submission from which the
extract comes:

Chapter 4 is based on High-Level Concepts for Northbound APIs: An Interview
Study, by A. Curtis-Black, M. Galster, and A. Willig. Published in the 27th Interna-
tional Telecommunication Networks and Applications Conference (ITNAC), 2017.

Please detail the nature and extent (%) of contribution by the candidate:

First author, and primary researcher. Wrote the text of all papers, with guidance
and feedback from co-authors. Performed all research. Overall contribution of
effort, including research and writing: 90%.

Certification by co-authors

If there is more than one co-author then a single co-author can sign on behalf of all.
The undersigned certifies that:

* The above statement correctly reflects the nature and extent of the Doctoral
candidate’s contribution to this co-authored work.

* In cases where the candidate was the lead author of the co-authored work he
or she wrote the text.

Name: Andreas Willig Date: 23/10/2021

Andrew Curtis-Black

Deputy Vice-Chancellor’s Office UNIVERSITY OF
Postgraduate Research Office CANTERBURY

Te Whare Wananga o Waitaha
CHRISTCHURCH NEW ZEALAND

Co-Authorship Form

This form is to accompany the submission of any thesis that contains research repor-
ted in a co-authorised work that has been published, accepted for publication, or sub-
mitted for publication. A copy of this form should be included for each co-authored
work that is included in the thesis. Completed forms should be included at the front
(after the thesis abstract) of each copy of the thesis submitted for examination and
library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-
authored work and provide details of the publication or submission from which the

extract comes:

Chapter 5 is based on Scout: A Framework for Querying Networks, by A. Curtis-
Black, A. Willig, and M. Galster. Published in the 15th the International Confer-
ence on Network and Service Management (CNSM), 2019.

Please detail the nature and extent (%) of contribution by the candidate:

First author, and primary researcher. Wrote the text of all papers, with guidance
and feedback from co-authors. Performed all research. Overall contribution of
effort, including research and writing: 90%.

Certification by co-authors

If there is more than one co-author then a single co-author can sign on behalf of all.
The undersigned certifies that:
* The above statement correctly reflects the nature and extent of the Doctoral
candidate’s contribution to this co-authored work.
* In cases where the candidate was the lead author of the co-authored work he
or she wrote the text.

Name: Andreas Willig Date: 23/10/2021

Andrew Curtis-Black

UCw

Deputy Vice-Chancellor’s Office UNIVERSITY OF
Postgraduate Research Office CANTERBURY

Te Whare Wananga o Waitaha
CHRISTCHURCH NEW ZEALAND

Co-Authorship Form

This form is to accompany the submission of any thesis that contains research repor-
ted in a co-authorised work that has been published, accepted for publication, or sub-
mitted for publication. A copy of this form should be included for each co-authored
work that is included in the thesis. Completed forms should be included at the front
(after the thesis abstract) of each copy of the thesis submitted for examination and
library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-
authored work and provide details of the publication or submission from which the
extract comes:

Chapter 6 is based on A Usability Study of Scout, a Network Query Language, by A.
Curtis-Black, M. Galster, and A. Willig. To be submitted to the IEEE Transactions
on Network and Service Management (TNSM).

Please detail the nature and extent (%) of contribution by the candidate:

First author, and primary researcher. Wrote the text of all papers, with guidance
and feedback from co-authors. Performed all research. Overall contribution of
effort, including research and writing: 90%.

Certification by co-authors

If there is more than one co-author then a single co-author can sign on behalf of all.
The undersigned certifies that:

* The above statement correctly reflects the nature and extent of the Doctoral
candidate’s contribution to this co-authored work.

* In cases where the candidate was the lead author of the co-authored work he
or she wrote the text.

Name: Andreas Willig Date: 23/10/2021

Andrew Curtis-Black

Contents

Contents
List of Figures
List of Tables

1 Introduction
1.1 Background
1.2 Problem
1.3 Methodology
1.4 Contributions
1.5 Publications

2 Literature Review
2.1 Computer Networking Background
2.2 Network Management
2.3 Policy-Based Network Management
2.4 Translating Policies with SDN

3 A Taxonomy for Network Policy Description Languages
3.1 Introduction
3.2 Background
3.3 Related Work
3.4 The Taxonomy
3.5 Application of the Taxonomy
3.6 Discussion
3.7 Conclusion

4 Concepts for Operator Intent: An Interview Study
4.1 Introduction
4.2 Related Work
4.3 Methodology
4.4 Results
4.5 Applying the Proposed Dimensions
4.6 Discussion
4.7 Conclusion

iv

0 O U1 W =

O O

12
15
17

25
25
27
29
29
36
39
44

45
45
47
49
54
62
64
70

ii CONTENTS

5 Scout: A Language for Querying Enterprise Data 71
5.1 Introduction 71
5.2 Background 73
5.3 Related Work 76
5.4 Information Model 81
5.5 Scout’s Syntax 86
5.6 Executing Scout Queries 88
5.7 Evaluation 94
5.8 Discussion 100
5.9 Conclusion 106

6 A Usability Study of Scout, a Network Query Language 108
6.1 Introduction 108
6.2 Background 109
6.3 Related Work 111
6.4 Querying Comparison 116
6.5 User Study 118
6.6 Discussion 132
6.7 Future Work 134
6.8 Conclusion 135

7 Discussion 136
7.1 Understanding and Expressing Operator Intent 136
7.2 Limitations 142
7.3 Future Work 144

8 Conclusion 146

Appendices 149

A Supplementary Material for Chapter 3 150
A.1 List of Policy Description Languages 150

B Supplementary Material for Chapter 4 151
B.1 Policy Study Participant Information Sheet and Consent Form 151
B.2 Policy Study Interview Procedure 154
B.3 Policy Study Codebook 158

B.4 Additional Policy Examples 162

CONTENTS iii

C Supplementary Material for Chapter 5 167
C.1 Scout’s Grammar 167
C.2 Realistic Questions about Networks 168

D Supplementary Material for Chapter 6 171
D.1 User Study Protocol (Usa-DSL) 171
D.2 User Study Participant Information Sheet and Consent Form 187
D.3 Query Language Tutorials 190
D.4 Querying Example 212

Glossary 218

Bibliography 226

List of Figures

Chapter 1

1.1 An overview of this thesis

Chapter 2
2.1 PBNM architecture diagram

Chapter 3
3.1 Our taxonomy of PDLs
3.2 An example network policy, in natural language

Chapter 4

4.1 Code network created when analysing interview transcripts

Chapter 5
5.1 Meta-model of querying systems
5.2 Types of enterprise data
5.3 A schema created with Scout’s information model
5.4 A Scout query
5.5 Tllustration of node and edge inheritance in Scout
5.6 Scout’s path execution process
5.7 Execution of the query from Figure 5.4.
5.8 The components of our Scout prototype
5.9 Queries in InfluxQL, PromQL, and Scout which answer NQ27

Chapter 6
6.1 The Scout schema from our user study
6.2 Improvement in conciseness with Scout
6.3 Success rate vs. confidence
6.4 Taxonomy of participants’ errors
6.5 Distribution of participants’ error types
6.6 Conciseness vs. success rate
6.7 Success rate vs. average time to success
6.8 Self-reported participant experience

Appendix D
D.1 Overview of Usa-DSL

iv

16

31
32

53

73
74
85
86
89
90
91
98
101

120
125
126
127
127
129
129
130

172

List of Tables

Chapter 3
3.1 Application of taxonomy — Language attributes 37
3.2 Application of taxonomy — Correctness checking 37
3.3 Application of taxonomy — Statefulness 37
3.4 Application of taxonomy — Control domains 38
3.5 Application of taxonomy — Supported actions 38
3.6 Application of taxonomy — Practicality and validity 38
Chapter 4
4.1 Summary of contextual information 50
5.1 Information model constructs vs. functional requirements 83
Chapter 5
5.2 Summary of results 102
Chapter 6
6.1 Statistics for usability criteria metrics 124

Chapter 1

Introduction

1.1 Background

Computer networks are essential to many enterprises, e.g. they enable web
browsing, email, printing, database access, video calling, and messaging. Two
important network management activities are configuration (making the net-
work behave in a desirable way) and analysis (querying the network’s state).

Configuration: Because traditional networks are decentralised, their com-
ponents (e.g. switches, routers, wireless access points, middleboxes, firewalls,
servers, and clients) act as individuals until they are configured to cooperate
by a network operator. Some steps can be automated, or applied to sev-
eral components at once, but this is difficult and error prone, as network
components are heterogeneous [1-3] and most are made by just a few com-
panies, who have little incentive to make their products interoperable [2, 4].
Software-defined networking (SDN), a modern networking paradigm, im-
proves this situation through centralisation, standardisation and program-
mable interfaces. Irrespective of networking paradigm, enterprise require-
ments are typically expressed in terms of the enterprise (e.g. users, devices,
departments), while network components must be configured in terms of the
network (e.g. IP and MAC addresses, port numbers, and packet flows) [5, 6].
This creates work for network operators, who must translate between these
terms, and is a source of error [3]. These problems make network configur-
ation complicated and expensive [7-10]. Policy-based network management
(PBNM) is one approach which addresses these problems. In PBNM, operators
describe intended network behaviour in ‘policies’ like “switch #1234 should

2 CHAPTER 1. INTRODUCTION

drop all packets from IP address 10.0.1.4”. Policies written in policy descrip-
tion languages (PDLs) like Ponder [11] or Kinetic [6] can be automatically
enacted by network software.

Analysis: Questions about networks can be answered by analysing stored
state and configuration data (e.g. bandwidth usage or enabled ports), often
with a query language (QL). However, our research suggests that network op-
erators ask questions pertaining to business data (e.g. user roles), in addition
to network data (see Chapter 4). Media for storing network and business data
are seldom integrated, and use different QLs. For example, we could answer
“how much data has Jane received?” by querying separate relational and time-
series databases for Jane’s ID; her periods of activity on the network; which
devices she logged into; their MAC addresses; and how much data was trans-
mitted to them by switches at the network’s edge. Even when working with
just one type of data, many network questions can only be answered by writ-
ing multiple queries (e.g. in structured query language (SQL), InfluxQL [12],
or PromQL [13]) and combining the results (e.g. with scripting languages like
Bash or Python). This requires detailed knowledge of the data, an effort to
craft queries, and post-processing to combine the results [14-16].

Network configuration and analysis have something in common: Both
start with a statement of intent which must be translated into primitives un-
derstood by network software. For example, network policies must be con-
verted into commands which can be issued to network components [17], and
network questions must be rewritten as queries which can be executed on
data sources [18]. Current approaches require a high degree of expertise and
experience, and are error-prone [3]. This raises costs [10,17] and makes it
harder to adapt networks for new technologies and requirements [6]. There-
fore, new approaches are needed which allow network operators to more eas-
ily express their intent and which allow network software to more reliably
enact it. We identify three relevant problem areas:

1. Expression: Operators need better ways to express network policies
and questions than natural language, which can lead to ambiguity [19]
and network faults [20]. As researchers, we should identify the core
concepts that network operators want to manipulate and analyse [21],
and use this to inform further research and create more user-friendly

1.2. PROBLEM 3

tools. We also need to consider the best way to express these concepts,
e.g. declaratively (i.e. the user describes what they want) [11], or im-
peratively (i.e. the user states what should be done) [22].

Related concerns: Usability, user requirements.

2. Implementation: Network policies and questions are enacted with prim-
itives like CLI commands, firewall rules, and queries [23]. As research-
ers, we should evaluate these primitives, e.g. are all policies and ques-
tions possible, and are some implementations more efficient or main-
tainable than others? We should use these insights to optimise tools and
propose new primitives, to improve networks (e.g. SDN introduces ‘flow
rules’ for programming switches [4]).

Related concerns: Maintainability, computational efficiency.

3. Translation: Translating an expression into an implementation should
be automatic [18], due to the frequency of human error [24] and the
difficulty of scaling manual processes [3]. In addition to the core prob-
lem of accurately mapping between network and enterprise concepts,
researchers should consider translation efficiency [4], and purity (in the
sense of determinism and side effects) [25]. One way to address these
challenges may be hardware or software standardisation [26].

Related concerns: Reliability, correctness, user efficiency.

1.2 Problem

The overall problem we address in this thesis is that of understanding and
expressing operator intent for the purposes of network configuration and ana-
lysis. We break this problem into the following research questions (see Fig-
ure 1.1 for a summary and visual representation).

RQ1: How is operator intent expressed in the field of policy based net-
work management? PBNM provides scalable control of enterprise networks
by capturing operator intent in policies which are interpreted by network
software [5]. Many PDLs have been created for writing such policies, with
different goals and approaches, but there is little work which surveys, com-
pares, and evaluates them (see Chapter 2.3). Understanding PBNM and PDLs

4 CHAPTER 1. INTRODUCTION

provides context for our work, and gives insight into user requirements and
the problems and solutions that have already been discovered.

RQ2: What concepts do network operators manipulate and analyse? In
their daily work, network operators manipulate and analyse concepts like
packet flows and network clients [3]. For example, to neutralise a virus, a
network operator might configure the network to block all traffic to and from
infected devices. This intent could be described using concepts such as MAC
address, packet and block. We aim to identify these concepts and examine how
operators use them to achieve their goals. This helps us evaluate and create
tools which capture operator intent, e.g. information models, PDLs, QLs, and
application programming interfaces (APIs).

RQ3: Given the concepts identified in RQ2, what would a query language
for network and business data look like? Our work on RQ2 suggests that
general purpose QLs like SQL and InfluxQL are not well-suited to answer-
ing questions about enterprise networks (see Chapter 4). Furthermore, we
identify three key problems in the literature: Network and business data are
stored and queried separately; multiple queries are needed to answer realistic
questions; and writing queries requires detailed knowledge of data sources.
We use our findings from RQ1 and RQ2 to design a domain-specific QL, Scout,
which makes it easier to express questions about networks. This improves our
understanding of network QL design and has implications for researchers,
users, and QL designers.

RQ4: Is Scout more usable for novices than a common alternative? Our
work on RQ3 suggests that existing QLs may have usability issues in the do-
main of network management, so we seek to determine if Scout’s advantages
(e.g. more concise queries which require less domain knowledge to write)
translate into improved usability, compared to a widely used alternative (SQL,
and InfluxQL [27], which are widely used to query relational and time series
data, respectively [28]). We focus on novice users, as they are more likely to
be affected by usability issues.

1.3. METHODOLOGY 5

1.3 Methodology

We address the research questions above as follows.

RQ1 Similar to our goal, PDLs aim to specify operator intent for the purpose
of network configuration. We identify 19 PDLs created over 22 years create
a taxonomy from them. We compare three PDLs with our taxonomy, identify
important PDL features, areas for improvement, and PDL design tradeoffs.
See Chapter 3 for detail.

RQ2 We interview network operators about their daily work, and use open
coding to identify real-world policies, and motivations and strategies for im-
plementing them. We identify concepts common to a subset of these policies
(e.g. some restrict bandwidth), then use negative case analysis to factor in
more policies and refine the concepts. This yields nine orthogonal ‘dimen-
sions’ (e.g. user, device) for representing network policies. See Chapter 4 for
detail.

RQ3 We use the results of RQ1 and RQ2 to create an information model for
representing business and network data, and the relationships among them.
This lets us describe a network’s disparate data sources in a unified schema.
Then, we create a domain-specific QL, Scout, to query such schemas, and
evaluate it with respect to the problems identified in RQ3. See Chapter 5 for
detail. NB: We investigated RQ1 and RQZ2 in the context of SDN, but our results
were not specific to SDN, and we chose not to focus on it for RQ3 or RQ4.

RQ4 We compare Scout’s usability to that of existing languages by conduct-
ing a user study with 39 participants who fit the profile of novice network
operators. We design the study with the Usa-DSL framework [29] and with
reference to existing work. We assign participants to use Scout or another lan-
guage, train them, and ask them to answer network questions. To analyse the
results, we select usability criteria (accuracy, efficiency, and cognitive load),
define metrics to quantify them, and qualitatively analyse participants’ errors.
We present our methodology and results in detail, and use an established tax-
onomy to identify validity threats. See Chapter 6 for detail.

6 CHAPTER 1. INTRODUCTION

1.4 Contributions

Each of our research questions leads to several original contributions.

RQ1 A set of 19 PDLs we identified in the literature (see Section 3.2); a
taxonomy of PDLs; an evaluation of three PDLs, using our taxonomy.

RQ2 An analysis of five interviews of network operators about their daily
work; a set of real-world network policies; a set of orthogonal ‘dimensions’
for representing network policies (see Section 4.4); a set of motivations for
creating or modifying network policy; a set of real-world strategies for imple-
menting policies; an application of our dimensions to this set of policies.

RQ3 A set of realistic questions about networks; an information model for
representing business and network data, and the relationships among them;
the Scout domain-specific language (DSL), for expressing network questions
as Scout queries; an algorithm for executing Scout queries (see Section 5.6.2);
a functional evaluation of Scout, which demonstrates some of its advantages.

RQ4 A user study design, for comparing Scout to existing languages; met-
rics for quantifying QL usability with respect to accuracy, efficiency, and cog-
nitive load; a taxonomy of error types and comparison of rates of error types
between Scout and existing languages; the findings of our user study.

CONTRIBUTIONS

1.4.

"AQNLS ¥3SN ¥NO 4O SONIANI4 IH] e

"SYOYYT ,SY3SN 4O AWONOXVLY o
‘ALIavsn

O d04 SOILIN FAILVLIINVND o

“ALTIEYSN S,LNODS ONILVNTVAI

Y04 ‘NOIS3IA AANLS ¥3SN

SNOILNERILNOD

)

&

1

"1NODS 40 NOILYNTVAI TYNOILONNS W

'$$300¥d NOILNDIX3 AYIND LNODS
“(LNODS) TO YHOMLIN V 404 1S

VIVA ISI¥dYIINT
404 13AOW NOILVINYOINI N

‘SNOILSIND NJOMLIAN DILSIIVIY 6E o

SNOILNIRILNOD

4

‘SNOISNIWIA 3FHL 4O NOILYOI1ddY e
"SNOISNIWIA ADITOd 3NIN e
‘S3IDINOd YYOMLIN dTIOM-TVIY e

‘SYOLVAHLSININAY
AYOMIAN 40 SMAINITLINI FAI]

SNOILLNERILNOD

)

"ANONOXVL dNO SNISN
'S1Ad 3FYHL 4O NOLLVNTIVAI NY

'S7dd 40 AWONOXVLY e
'S1Ad 8L 40135V e

SNOILLNIRILNOD

)

'SYOYHT ,SHISN IFSATVNY ATFAILVYLIIVND
"SOILIW 3SATIVNY ANV 3LNdNOD

'STO HLIM SNOILSIND ¥3IMSNV S¥3SN
SINVAIDILYVA NIVYL ANV LINYD3Y

‘SOILIN ANV VIMFLID ALMIEVYSN ANIH3Q

"AQNLS ¥3SN NOIS3J

ADOT0AOHLIN

¢ANLVNYEILNY NOWWOD V NVHL

S3ADIAON d04 318VSN FION LNODS S|

NOILSIND HOUVISIY °

"A3AN3LNI
SV SHYOM 11 41 33S OL LNODS FLVNIVAT e

1300 NOILYWYOANI SIHL ¥O4
(LNODS) TO D14103dS-NIVWOQ V 3LVIID) e

"2 % | SOY NO a3asve 'viva 3SidyaLINT

404 13AON NOILVNYOLNI NV JLVIED) o ¢—

ADOTOAOHLIN

AN HOO0T IDVNONVT AJINO
MYOMLIN V ATNOM LVHM ‘ZOY NI
Q314ILN3AI SIdIONOD FHL NIAID

NOLLSIND HO¥vasY @

"SNOISNIWIA HLIM S310110d 3814033

(SISKIVNY 3SVD JAILVOIN)
S3IDIN0d WOY¥4 SNOISNIWIA IANIQ

*S310IMOd ATIOM-TVIY AJILN3A|
"SMAIAYILNI 3A0D ANV FGIIOSNVY |
‘SYOLVYLSININAY XYOMLIN MIINYTLN|
"AdNLS MIIATLNI NOISIQ

ADOTOAOHLIN

OQd S1d3DNOD HYOMLIN LVHAA

NOLLSAND HO¥vasay @

¢ASAIVNY ANV FLVINdINVIN SHOLVHIdO

'STAd OL AWONOXYVL AlddY
"AWONOXVL Tdd V 3LVIED) o
'S1Ad AJIINAA]

ADOTOAOHLIN

¢INNGd 40 d131d IHL NI

Q3SS34dX3 INILNI §OLVH3dO SI MOH

NOLLSAND HO¥vasay @

SISATVNY ANV NOILVINOIINOD HJOMLIN 40 SISOddNd FHL O INILINI dOLVYIdO ONISSTIdXT ANV ONIANVLISYIANN

W31goud

1S

An overview of this thes

Figure 1.1

8 CHAPTER 1. INTRODUCTION

1.5 Publications

This thesis is based on the four papers below. Three of these have been pub-
lished in peer-reviewed conferences, and we are in the process of submitting
the fourth to a peer-reviewed journal.

A Taxonomy for Network Policy Description Languages

By Andrew Curtis-Black, Andreas Willig, and Matthias Galster. Published in
the 26th International Telecommunication Networks and Applications Confer-
ence (ITNAC), Dunedin, New Zealand, 2016. See Chapter 3.

High-Level Concepts for Northbound APIs: An Interview Study

By Andrew Curtis-Black, Matthias Galster, and Andreas Willig. Published in
the 27th International Telecommunication Networks and Applications Confer-
ence (ITNAC), Melbourne, Australia, 2017. See Chapter 4.

Scout: A Framework for Querying Networks

By Andrew Curtis-Black, Andreas Willig, and Matthias Galster. Published in
the 15th the International Conference on Network and Service Management
(CNSM), Halifax, Canada, 2019. See Chapter 5.

A Usability Study of Scout, a Network Query Language

By Andrew Curtis-Black, Matthias Galster, and Andreas Willig. To be submit-

ted to the IEEE Transactions on Network and Service Management (TNSM). See
Chapter 6.

Chapter 2

Literature Review

2.1 Computer Networking Background

In this chapter we provide background on computer networking, enterprise
networks, network management, PBNM, and SDN, and discuss how SDN may
be used to automatically translate policies into configurations which imple-
ment them. We provide background on more specific topics in Chapters 3-6.

2.1.1 Computer Networks

Devices like personal computers, smartphones, printers, and servers (collect-
ively called ‘client devices’) communicate via networks. A network is primarily
made up of switches and routers, collectively known as ‘forwarding devices’
because they cooperatively forward information across the network, from
source to destination. Forwarding devices acting as a point of entry to a net-
work (e.g. wireless access points) are said to be at the network’s ‘edge’, while
those deeper inside the network are at its ‘core’. Core devices forward more
traffic than edge devices, much as an inner-city intersection handles more
traffic than one at the edge of town, but are not themselves sources or sinks
of traffic [30].

When one client device wants to communicate with another, it signals a
forwarding device at the network’s edge. There are many ways of sending in-
formation across a network, but the essential characteristics are the same: The
source device breaks its message into small units called packets and addresses
them to the destination device (or devices). The forwarding device uses its
knowledge of the network to transmit packets along the best (e.g. shortest, or

9

10 CHAPTER 2. LITERATURE REVIEW

quickest) path to the destination. Receiving devices extract information from
the packets and reassemble the original message [30].

Forwarding devices share information about the network. This may in-
clude connectivity updates (e.g. ‘device X is non-responsive’, ‘device Y was
just connected to the network’), routing information (e.g. ‘I know about a
path to device X which is 5 hops long’) and more. Thus, a forwarding device
may learn of a better route to a particular destination, adopt it, and then
tell its neighbours about it. These exchanges are traditionally controlled by
‘distributed protocols’, programs which are independently executed by every
forwarding device in parallel [30].

2.1.2 Enterprise Networks

There are many types of networks, e.g. data centre networks, enterprise net-
works, mobile/cell phone networks, carrier networks, local area networks,
wide area networks, wireless ad-hoc sensor networks, and more [30]. We
focus on small to medium sized enterprise networks.

We define an ‘enterprise’ as any organisation, business, or institution op-
erating with a defined purpose or for a particular goal. Enterprise networks
support the day-to-day operations of such groups, e.g. with general HTTP-
based Internet access, DNS, DHCP exchanges, email, video streaming, access
to data stores and repositories, data backup services, and video and voice
calling [31]. Enterprise networks are ubiquitous and essential [30].

In our review of the literature we could not find any work which charac-
terises enterprise networks in general (e.g. in terms of size, traffic, or users).
To our knowledge, there is no well-known definition of a ‘typical enterprise
network’ (despite many authors using this phrase). In fact, enterprise net-
works may vary so much that there is no such definition [31]. At present, the
best information comes from case studies of specific enterprise networks and
mostly focuses on traffic characteristics (see below). We adopt the following
working definition: an enterprise networks is a computer network on which
an enterprise relies for its day-to-day operations, and whose traffic includes a
significant proportion of internal traffic.

Murray et al analysed packet captures from a network in 2012 and again
2017 [32,33]. They found that the packet size distribution was increasingly

2.1. COMPUTER NETWORKING BACKGROUND 11

bimodal (i.e. packets are either small or large, with few in between), mirroring
a trend across the wider Internet. They also found that approximately 90%
of traffic was TCP-based, and that the proportion of UDP traffic was slowly
increasing. The most common applications on the network were file backup,
file transfer (e.g. FTP, NFS), email (e.g. SMTP, IMAP), interactive (e.g. SSH,
telnet), name (e.g. DNS), network management (e.g. DHCP, SNMP), video
streaming, and web browsing (e.g. HTTP). This matches Pang’s findings about
a different network, in 2005 [31]. Pang also found that the majority of traffic
was internal to that network. Regarding network health, Guha found that
34% of traffic flows in another enterprise network failed to reach their des-
tinations (e.g. due to misconfigurations) [34], and Murray found that packet
loss, fragmentation, and reordering was rare [32].

Intuitively, enterprise networks vary in scale as much as the enterprises
they support. In the literature, we found references to enterprise networks
serving hundreds to hundreds of thousands of hosts [31, 35-37] with tens
to tens of thousands of network devices [37,38]. We corroborated this in
discussions with network operators and industry experts.

A wide variety of client devices may be attached to enterprise networks, es-
pecially in organisations with Bring Your Own Device (BYOD) schemes. Thus
network operators may have limited control over client hardware [39]. Wire-
less access points (WAPs), which are a requirement in many enterprises, bring
their own complications (e.g. interference, dead spots, privacy, security) [40].

2.1.3 Layered View of Networking Functionality

Network behaviour can be separated into three planes [41]: 1) The data
plane is the level at which information is transferred (i.e. at which packets
are forwarded); 2) the control plane is where decisions are made as to where
traffic is forwarded (in traditional networks this is handled by routing proto-
cols which populate forwarding tables, see Section 2.1.1); and 3) the manage-
ment plane is the level at which network monitoring and configuration occurs,
and is where human operators typically interface with the network. As Kreutz
et al put it, “network policy is defined in the management plane, the control
plane enforces the policy, and the data plane executes it by forwarding data
accordingly.” [4]

12 CHAPTER 2. LITERATURE REVIEW

2.2 Network Management

2.2.1 Concept

Network management is carried out by specialists called ‘network operators’
(or, equivalently, ‘network administrators’ and is defined by Samaan et al as
the “control and orchestration of functionality and behaviour of the network
in order to meet at set of business requirements” [18]. Traditionally, network
management tasks have been summarised as “FCAPS” [3,18]:

* Fault: Detect, diagnose, and correct ad-hoc issues which disrupt the
network’s intended behaviour.

* Configuration: Configure system hardware and software, track changes
to configurations, and plan future changes to configurations.

* Accounting: Track network usage (typically with respect to users).

* Performance: Ensure that network performance is congruent with the
needs of the enterprise. This may involve factors such as latency, through-
put, packet loss, and utilisation.

* Security: Restrict access to network resources. Monitor relevant net-
work information to ensure that security violations have not occurred.

2.2.2 Network Configuration

Network devices are typically configured statically [4, 18], individually, and
manually [5]. Network operators typically configure devices by logging into
them through a command-line interface (CLI) and issuing device-specific com-
mands [17,18]. Large scale updates are therefore fraught, because independ-
ent modifications to individual devices must be manually coordinated to en-
sure that the network will function as intended afterwards [42,43]. Between
the first and last modification, there may also be a transient period of incon-
sistent state, during which the network’s behaviour is undefined.

The configuration of a network is influenced by a number of factors, not
all of which are germane to the network’s main purpose [20]. For example,

2.2. NETWORK MANAGEMENT 13

the physical relocation of a department may generate a lot of work for net-
work administrators as the relevant configuration is essentially removed and
recreated somewhere else. This is evidence that the requirements for net-
work management are diverse and unpredictable, and we would expect this
to make it more difficult for operators to plan in advance. However, to our
knowledge there is no empirically-grounded work which verifies this.

It seems logical that diverse and unpredictable requirements would lead
to frequent change. Indeed, Kim states that network configurations change
frequently [6], but provides no evidence for this claim. Sung says the same,
citing experience with Facebook’s global network [3]. Again, we found no
empirically-grounded work which supports this conclusion and identify this
as a gap in the literature.

2.2.3 Network Vendors

Today, most network hardware is sold by just a few companies, two of the
largest of which are Cisco and Juniper Networks. While the basic functionality
of the devices they produce is cross-compatible, most vendors aim to differen-
tiate their products with proprietary features (e.g. Juniper SBR Carrier, Cisco
Edge Analytics Fabric, Allied Telesis AlliedWare Plus etc.) Market competi-
tion necessitates that vendors recreate equivalent functionality, and promotes
vertical product integration (that is, products and features which interoperate
only with other products and features made by the same vendor) [4]. En-
terprises which invest heavily in one vendor’s equipment become ‘locked in’
because they cannot easily add devices from a different vendor without also
replacing the devices to which they connect [4]. This also slows the rate of
adoption of new network technology as enterprises must wait for the vendor
of their existing equipment to implement the features they want [4, 17, 44].

This can have positive implications too. Networks composed of homo-
genous hardware can be more reliably upgraded and modified, and may be
easier to troubleshoot. It is also easier for organisations to communicate with
the customer service team of a single vendor than those of many. Vendors
may also provide other incentives for investing in their hardware, e.g. bulk
purchase discounts and top-to-bottom installation and service contracts.

For practical reasons, nearly all network hardware supports a common set

14 CHAPTER 2. LITERATURE REVIEW

of features through open standards like TCP/IP. This means that enterprises
can build networks from heterogeneous hardware (and many do), but they
will not be able to take full advantage of the devices without using proprietary
interfaces [3]. It is also more difficult to operate heterogeneous networks
[4,45], as different devices are configured with different interfaces, forcing
operators to learn to use all of them [46], [47, Chapter 15]. Likewise, it is
harder to automate heterogeneous networks, as scripts must execute different
commands to achieve similar results on different devices [44, 45, 48].

2.2.4 Network Management Challenges

Enterprise networks are complex, fragile, and difficult to maintain [5,7-10,42,
49]. For example: A common goal in network management is traffic isolation
[30, Chapter 4]. This involves separating certain network entities, such that
they cannot send traffic to one another, and is typically achieved with virtual
local area networks (VLANSs) [44, 50]. Different ports on a network switch
are ‘mapped’ to specific VLANs. This causes any traffic sent through those
ports to be ‘tagged’ as belonging to the corresponding VLAN, and can thus be
kept separate. However, operators must ensure that the correct VLAN: port
mapping is set for every device which connects to the network, as otherwise
traffic may be directed to the wrong VLAN.

Kim’s survey of 870 experienced network operators found that most were
not confident that they could reconfigure a network without (at least initially)
introducing bugs [51], and operators interviewed by Kraemer were dissatis-
fied with tools for maintaining network security [20]. In practice, operators
spend much more time managing networks than they do building and improv-
ing them [3,49]. This amounts to an asymmetric allocation of effort to the
management plane over the control and data planes (see Section 2.1.3).

Sung et al note that “the best way to streamline network management
tasks is to minimize human interaction as well as the number of workflows.”
[3] Indeed, administrators often automate tasks with scripts [3, 6], but this is
ad hoc and has overheads, e.g. scripts must be updated whenever the network
is modified, and should be documented (to be useful to other operators).

Additionally, operators find it difficult to communicate network policy,
even to each other [5, Chapter 3]. The content and dissemination of policies

2.3. PoLICY-BASED NETWORK MANAGEMENT 15

can be highly variable, and one of the main challenges of information secur-
ity management is communicating policy to network users, and to enterprises
themselves [19]. Kraemer [20] found that poor inter-operator communication
can lead to the inconsistent application of network policy.

Network operators have ideas for fixing these problems. Operators inter-
viewed by Kraemer [20] want well defined and standardised procedures for
defining and implementing network policy, and operators surveyed by Kim de-
sire tools for automating and error-checking reconfiguration tasks [51]. Ad-
ditionally, Kraemer’s participants said they sometimes violate security policies
themselves, to support certain use cases, or to save time (corner cutting), in-
dicating that management tools do not suit their needs.

The above demonstrates a need for user-friendly, standardised, and auto-
mated ways of defining and implementing network management tasks. We
propose a basis for standardising expressions of operator intent in Chapter 4,
and use it to create a user-friendly language for answering questions about
networks (see Chapters 5 and 6). This is similar to “top-down network man-
agement”, in which human-readable descriptions of intent are automatically
translated into primitive configurations and applied to the network [3].

2.3 Policy-Based Network Management

PBNM introduces abstractions for managing diverse network hardware [5],
providing scalable control of enterprise networks by making network auto-
mation more practical and reliable [9]. An essential component of PBNM is
capturing operator intent in policies, defined by Lobo et al as descriptions of
“principles or strategies for a plan of action designed to achieve a particular
set of goals identified by the managers of [a] system” [52]. An example policy
(in natural language) is “employees may only use 15GB of data per month”.

As shown in Figure 2.1, RFC 3060 [53] describes three main components
for PBNM systems: The policy repository (PR) stores policies; the policy en-
forcement point (PEP) enacts the rules specified by policies (e.g. by altering
network traffic); and the policy decision point (PDP) communicates policies
from the PR to the PEP, when they are relevant. Strassner [5] criticises RFC
3060 as being simplistic, and recommends changes to allow policy conflict
handling, and backwards compatibility with devices not designed for PBNM.

16 CHAPTER 2. LITERATURE REVIEW

oL (. OC JC)
Creation l (Network Devices

I OC)

—/

Q

Policies

Enactment

gl

Storage

[Policy Enforcement Point j

T Interpretation
Retrieval

—_— [Policy Decision Point j

Ui

Policy Repository

Figure 2.1: PBNM architecture diagram, drawn based on IETF RFC 3060 [53].

Unambiguously specifying policies is challenging and several approaches
have been suggested, including logic-based languages, role-based access con-
trol (RBAC) [54], and PDLs [55]. PDLs are formal languages, and so are
amenable to automated verification and conflict detection. See Section 3.2
for more detail on PDLs.

There are a number of papers which introduce and/or survey languages
for representing network policies [7-11, 46, 52, 55-61], but few have been
empirically validated, e.g. by assessing their usability, or by demonstrating a
clear link between their core abstractions and the needs of network operators.
Strassner [26] presents a language for mapping business requirements to the
network configurations required to satisfy them, however the RFC is incom-
plete and details about the grammar of the language are unavailable. Cas-
ado [62] recommends features for SDNs, but does not provide empirical evid-
ence for why these features, in particular, are compelling. Trois [63] builds
on Casado’s work to present a taxonomy of SDN programming languages, but
again (to our knowledge) there is little empirical evidence to motivate the
features supported by these languages.

2.4. TRANSLATING POLICIES WITH SDN 17

2.4 Translating Policies with SDN

SDN is a modern networking paradigm which centralises decision-making and
provides standardised control over disparate network hardware [25]. These
attributes have great potential for network management [4], especially as con-
cerns the implementation and translation of operator intent (see Chapter 1).
We review SDN below, and relate it to our work in Chapters 3, and 4.

2.4.1 Software Defined Networking (SDN)

Traditional network elements (e.g. routers and switches) both transmit data
and autonomously determine where to forward it (usually with distributed
protocols like BGP or RIP). In SDN, network elements delegate forwarding
decisions to a logically centralised controller, also known as the network op-
erating system (NOS) [4]. When a network element does not know where to
send a packet it forwards it to the NOS via a ‘southbound interface’ (so-called
because network elements are seen as being below, or ‘south’ of the NOS). The
NOS sends the packet to its destination, then uses the southbound interface
to install “flow rules” on the network element so that it can handle similar
packets by itself in future [25]. Flow rules are tuples which match on flow
attributes like destination IP address, VLAN ID, or port number, and specify
an action like “output to port n” [25]. Network applications (e.g. tools for net-
work configuration or analysis, load balancers, or firewalls) can be installed
on the NOS to expand its functionality. Developing such applications is called
“network programming” [4].

Because flow rules are very granular, the southbound interface has been
called the assembly language of SDN [4, 23, 25, 46, 63-65]. Programming
network applications with the southbound interface is tedious and inefficient
[4,66], so the NOS exposes a ‘northbound interface’. This provides APIs for
common actions, such as handling requests from network devices, installing
flow rules, or querying the state of the network [45]). These ingredients (an
API for expressing intent, centralised intelligence for interpreting and trans-
lating intent, and standardised primitives for implementing intent) make the
northbound interface a natural focal point for questions related to operator
intent.

18 CHAPTER 2. LITERATURE REVIEW

OpenFlow has been accepted as the de facto standard southbound inter-
face [4, 25,67]. Theoretically, this means that SDN hardware can be com-
moditised, giving network operators greater freedom to combine hardware
from multiple vendors [25] (see Chapter 2.2.3). At the time of writing, many
network vendors sell SDN- and OpenFlow-enabled products (presumably be-
cause network operators are interested in buying them). However, network
vendors have little incentive to promote technologies which could undermine
their market positions, and we note that one study evaluated several of these
products and found that they did not correctly implement OpenFlow, making
them unsuitable for deployment in an SDN [68].

In contrast to the southbound interface, where standardisation has pro-
gressed well (e.g. OpenFlow [48, 69]), there has not yet emerged a domin-
ating standard for the northbound interface [4, 6] [25, Chapter 4]. Indeed,
because network applications have specialised requirements, it is likely that
a range of northbound APIs will emerge, rather than a single dominating
standard [4,70]. Notable NOSes include OpenDaylight [71], Floodlight [72],
Ryu [73], and Frenetic [74].

SDN has several advantages over traditional networking paradigms, in-
cluding: Programmability — networks can be programmed through standard-
ised interfaces [4, 25], instead of through vendor-specific APIs [23, 48, 75]
(see Section 2.4.2 for detail); Shared abstractions — network control systems
can share functionality [4], reducing both costs and complexity [70]; Global
network view — decisions take the state of the entire network into account,
making them more predictable and optimal [4,25]; Vendor neutrality — SDN
hardware conforms to open standards, meaning that a device made by one
manufacturer can be easily exchanged for another [4, 25,41, 68, 75].

Casado et al say that SDN platforms should have the following features
[62]. Network-wide structures: controllers should provide applications with
data structures for learning about the (entire) network’s state; Distributed up-
dates: Network configurations may propagate to some forwarding elements
before others, so SDN platforms should guarantee consistency in forwarding
behaviour, even during such transitions; Modular composition: SDN platforms
should be modular; Virtualisation: Application logic should be decoupled from
the physical network topology; Formal verification: SDN platforms should
provide tools to help verify the correctness of network applications.

2.4. TRANSLATING POLICIES WITH SDN 19

2.4.2 Policy Translation Tools

SDN’s north-south model (see above) is well-suited to policy translation [70].
The northbound interface provides user-friendly abstractions for network man-
agement which can be translated (or ‘compiled’) into primitives network device
configurations standardised by the southbound interface. A number of tools
have emerged with northbound interfaces for specifying network policies, and
procedures for translating them into OpenFlow rules, e.g. [21, 46,51, 64, 66,
76-79]. However, there are questions about the usability of these northbound
interfaces (e.g. they require most policies to operate at the level of packet
headers) [21], and our review of the literature suggests they have not been
elicited and motivated systematically. We address this in Chapter 4. We dis-
cuss several of these tools below.

NetCore

NetCore [78] lets network operators write ‘packet classifiers’, which operate
at a higher level of abstraction than OpenFlow. For example, the NetCore
policy below (taken from [78]) states that packets from sources in subnet
10.0.0.0/8 should be forwarded to switch 1, except for packets coming from
10.0.0.1 or going to a destination on port 80. This would require three
OpenFlow rules to implement: One to drop packets from 10.0.0.1, one to
drop packets from port 80, and one to forward packets from 10.0.0.0/8 to
switch 1. NetCore rules are compiled to OpenFlow flow rules.

SrcAddr:10.0.0.0/8 \ (SrcAddr:10.0.0.1 UNION DstPort:80)
-> {Switch 1%}

More complex policies generally require more OpenFlow rules to imple-
ment. OpenFlow provides ‘wildcard’ rules to address this — flow rules which
match multiple packet headers (as opposed to ‘exact match’ rules). However,
different wildcard rules can match the same packets, so they are harder for
humans to reason about. NetCore packet classifiers can be combined with
familiar operators (e.g. union), making it easier for programmers to build
complex policies from simple building blocks. NetCore also lets programmers
create policies which make forwarding decisions based on past events. For
example, packets from authenticated and unauthenticated hosts can be for-
warded and dropped, respectively, all without controller intervention [80].

20 CHAPTER 2. LITERATURE REVIEW

While easier to use than OpenFlow, Netcore still focusses on packet-level
operations. This makes it more suitable for building network management
tools than as a tool for network management itself. We are interested in ex-
pressing the intent of network operators, who are concerned with the day-to-
day administration of networks. Furthermore, Netcore is only applicable to
SDN, whereas our work is not tied to any particular networking paradigm.

NetKAT

NetKAT [64] extends NetCore’s semantics to support Kleene algebra with tests
(KAT) [81]. Networks can be seen as automata which move packets from one
node to another, regular expressions provide semantics for expressing auto-
mata, and Kleene algebra is the mathematical theory which underpins regular
expressions. KAT unites Kleene algebra and Boolean algebra (which provides
familiar concepts such as true, false, and, or, not). Thus, NetKAT can an-
swer reachability questions about networks, and provides a non-interference
property for network programs [64]. NetKAT policies can be mathematically
checked for consistency with a network fabric, which can also be expressed in
NetKAT’s syntax (this helps with network management, by reducing runtime
errors). Frenetic policies (see below) are written using NetKAT [45].

NetKAT offers two important structures: Predicates and policies. A pre-
dicate is a clause which matches packets, e.g. PortEq(n) matches packets that
arrive on port n. There are other predicates for matching VLAN tags, Ethernet
MAC source addresses, TCP destination ports etc. Predicates can be combined
using the Boolean operators AND, OR, and NOT. Policies are commands which
are applied to packets matched by predicates. For example: Filter (p) selects
packets which match the predicate p; SetPort(pl, p2, ...) sets packets’
output ports; SendToController (tag) sends packets to the controller with
tag; and SetVlan(vlan) sets packets’ VLAN.

Policies can be combined with ‘policy operators’ like sequential compos-
ition, e.g. poll | pol2, which copies a packet, and applies one policy to
each copy; sequential composition, e.g. poll >> pol2, which applies first
one policy to a packet, then the other; exclusive OR, e.g. IfThenElse(pred,
poll, pol2), which applies a policy to a packet if it matches a predicate, and
otherwise applies another policy (but never both).

2.4. TRANSLATING POLICIES WITH SDN 21

NetKAT has the same limitations as NetCore: It focusses on packet-level
operations and is not applicable beyond SDN. It is a useful technology for
implementing network management tools, but unlike our work, it is not aimed
at network operators.

NetKAT Extensions

WNetKAT [66] extends NetKAT to describe weighted aspects of networking,
such as cost and capacity constraints. Probabilistic NetKAT [79] extends
NetKAT to model network behaviour in terms of probability distributions, al-
lowing more complex reasoning (e.g. taking into account congestion, failure,
and network-level randomisation). Circuit NetKAT [82] constrains NetKAT
to a subset of its features which are available in circuit-switched networks.
Stateful NetKAT [83] allows NetKAT to model and specify network behaviour
as a series of states and events which trigger transitions between them.

Frenetic

Frenetic [21] is both a NOS and a family of network programming languages
(i.e. northbound interfaces). One of the goals of the Frenetic project is to
create northbound interfaces for querying network state, and for defining and
updating forwarding policies [21]. There are several implementations of Fren-
etic, including a Python-based controller platform of the same name, an older
Python-based platform called Pyretic [46, 77] which is no longer under act-
ive development, and an OCaml-based implementation (“Frenetic OCaml”).
Frenetic uses the NetKAT language [64] (see Section 2.4.2) and relies on the
NetKAT compiler to translate policies into OpenFlow rules [45]. Thus, it has
the same limitations as NetKAT and NetCore.

Frenetic supports consistent updates [84]. This guarantees that, while a
policy update is occurring, packets and flows are subject only to the old policy
or the new one, but never both. This involves marking packets to identify
which policies apply to them. If a network transitions from policy A to policy
A*, and both policies guarantee certain network properties (e.g. no loops or
blackholes), then consistent updates guarantee that these properties hold be-
fore, during and after the transition.

22 CHAPTER 2. LITERATURE REVIEW

Kinetic

Kinetic [51] is an extension of Pyretic [46] (and hence is part of the Frenetic
family of languages, which are discussed above). It is not in active develop-
ment [85], but its creator confirmed (in 2016) that he is maintaining it. Kin-
etic aims to “provide a framework for writing concise, intuitive policies that
respond to changing conditions.” Kinetic uses finite-state machines (FSMs) to
model networks’ logical components, making it easier to write policies which
adapt to changing network conditions. Kinetic gets closer to our goal of sup-
porting network operators in their daily work, but still requires users to manip-
ulate packet-level concepts. Kinetic policies have the following components:

* Located Packet Equivalence Class (LPEC) function: A set of packets to
be handled by one FSM. Represented by a Pyretic filter (i.e. a NetKAT
policy which returns only packets which match a particular predicate).

* Transition functions: A function which returns the value a variable should
take when a particular event occurs.

* FSM definition: Associates transition functions with state variables.

* Policy and event streams: Code which registers the LPEC:FSM pair with
particular classes of events sent from the Kinetic controller (e.g. events
generated by a particular application).

PonderFlow

PonderFlow [58] extends the Ponder PDL [11] to OpenFlow flows. However,
PonderFlow policies specify flow-level operations directly, rather than auto-
matically deriving them from user-friendly specifications. The PonderFlow
policy below is a negative authorisation policy which prevents the user Alice
from using the setFlow action on certain switches.

inst auth- flow4d {
subject <User> Alice;
target <Switch> /Uece/Macc/Larces/Switches;
flow by=00:00:00:4F:32:1D:56:9C,
00:00:00:47:5B:DD:3F:1B,
and 00:00:00:33:45:AF:1C:8A

action setFlow ();

2.4. TRANSLATING POLICIES WITH SDN 23

2.4.3 Commercial Solutions

In addition to the academic works above, we identified two commercial products,
Apstra [86] and Linewize [87], with features similar to policy translation, but
which do not use SDN. These are more similar to our goal than the academic
works reviewed above, as they focus on network operators, and hide packet-
level detail behind abstractions.

Apstra

Apstra Operating System (AOS) is a product advertised as a vendor-agnostic
“intent-based network operating system”, and is produced by startup of the
same name, acquired by Juniper Networks [86]. AOS does not appear to
be based on SDN standards like OpenFlow, or to specifically employ SDN
paradigms (e.g. separation of the control and forwarding planes) [88], how-
ever specific technical information about the product is hard to find. Apstra
has published white-papers [89-91], but these are non-technical and non-
academic.

The Apstra product works as follows: 1) Customers specify their “intent”
by writing policies like “I want X connected machines, with Y links to the out-
side”; 2) Apstra suggests a number of “templates” for users to choose from;
3) A “blueprint” is generated from the chosen template and Apstra walks the
user through deploying the actual network. This may be assisted with graph-
ical user interfaces (GUIs) or customer service, but it is difficult to determine
exactly how the product works, as discussed above; and 4) AOS interfaces
with network hardware from several vendors through an unspecified process.
It controls and monitors the network to determine if it deviates from the user’s
“intent”. Discrepancies are communicated via alerts and visualisations.

Linewize

Linewize’s [87] eponymous product is a cloud-managed firewall primarily
marketed for use in New Zealand schools. Customers can receive the product
preinstalled on a hardware server, or provision a virtual machine (VM) them-
selves, installing the operating system which Linewize sends them. Linewize
is not SDN-based. Linewize’s firewall is managed via a web-based GUI. Op-

24 CHAPTER 2. LITERATURE REVIEW

erators can monitor network users (e.g. a teacher may view the activities of
the students in their class). Linewize performs traffic classification to categor-
ise a network user’s activities as ‘on task’, ‘possibly off task’, and ‘off task’ by
comparing user traffic to a large watchlist of services. Linewize’s GUI helps
users create network policies such as ‘do not allow Facebook’, or ‘do not al-
low social media’. Linewize creates and purchases signatures for various web
services and applications and arranges these into a tree-like structure, e.g.

e Communication
e Email
« VOIP
¢ Social media
e Facebook
e Twitter

e Snapchat

Policies can target any level within the tree, and can be relaxed or tightened
on a temporary basis. For example, a school might ban social media, but a
teacher could expand this to all forms of communication for the duration of a
test, or could relax this for the duration of a lesson.

Chapter 3

A Taxonomy for Network Policy Description Languages

3.1 Introduction

In this chapter! we address RQ1: How is operator intent expressed in the field of
policy based network management? PBNM provides scalable control of enter-
prise networks by simplifying or automating common network management
tasks [5,9,93]. This is significant, because modern networks are fragile and
difficult to maintain [7-10,42], partly due to increasing scale and the incor-
poration of new technologies, e.g. the Internet of Things (I0T) [8,10]. For
example, today even conceptually simple tasks like relocating an employee
from one desk to another can incur significant overhead, as a network oper-
ator may need to enable one or more Ethernet ports (possibly requiring the
physical reconnection of cables) and reconfigure permissions and firewall set-
tings to ensure that the new ports provide the user with the same services
as the old ones. Tasks like these can be automated with scripts, but this is
an ad-hoc solution with overheads. For example, these scripts must be docu-
mented (to be useful to other administrators) and updated when the system
is modified.

An essential components of PBNM is capturing operator intent in the form
of policies, which Lobo et al define as “principles or strategies for a plan of
action designed to achieve a particular set of goals identified by the managers
of [a] system.” [52] An example of a policy (expressed in natural language)
is as follows: “employees may only use 15GB of data per month”. Specify-
ing policies is one of the core challenges in PBNM [5], and is similar to the
problem we investigate in this thesis. Several approaches have been sugges-

! This chapter is based on our published work [92].

25

26 CHAPTER 3. A TAXONOMY FOR PDLs

ted, including logic-based languages, RBAC [54], and PDLs [55]. We focus on
PDLs because of their ubiquity, e.g. in an informal review of the literature we
identified 19 PDLs introduced over a period of 22 years (see Appendix A.1).

We hypothesise that these diverse PDLs contain insights into operator in-
tent and how it may be expressed. However, analysing them is not straightfor-
ward, as they have different design goals, which have been realised with dif-
ferent strategies. We address this by developing a taxonomy for PDLs, which
we then use to compare and evaluate the Ponder [11], Ponder2 [59], and
Kinetic [51] PDLs. We also show how our taxonomy supports the following,
specific use cases:

UC1 By researchers looking to classify PDLs based on important characterist-
ics which they may otherwise miss.

UC2 By practitioners looking to understand why a language may be better
than another for a given purpose.

UC3 By researchers or practitioners looking to understand the differences
between successive versions of the same language.

UC4 To help researchers or practitioners create new PDLs for previously un-
addressed needs.

The rest of this chapter is arranged as follows: In Section 3.2 we provide
background on PDLs; in Section 3.3 we discuss related work (including PDL
surveys and past efforts at developing classification frameworks); in Section 3.4
we describe the taxonomy and provide motivations for its elements; in Sec-
tion 3.5 we apply the taxonomy to three PDLs; and in Section 3.6 we discuss
our results.

3.2. BACKGROUND 27

3.2 Background
A number of policy specification formats have been proposed, including [10]:

* Natural language [94]: Users explain what they want naturally, as they
would to a human, and a computer automatically interprets their intent.

* Formal language, such as a DSL: Users state what they want, using a
well defined grammar, which is easier for a computer to interpret than
natural language.

* Programming language: Users code a program which does what they
want, using a general-purpose language (GPL) like Python. They may
use a purpose-built network management API to help.

* Conditional rules: Users define what they want with if-then-else rules,
which are evaluated by triggers like an incoming packet.

* Table entries: Users describe what they want in tables, where some
columns represent conditions and others actions.

We are interested in the formal-language-based approach to policy spe-
cification, and in particular PDLs. PDLs support PBNM by formally specifying
the intended behaviour of a system under a range of conditions. Because they
are formal languages, PDLs are amenable to automated verification and con-
flict detection. We identified 19 PDLs in an informal review of the literature
(see Appendix A.1).

Some PDLs operate directly on the network, at the level of individual pack-
ets, and can support policies of the form “switch #1234 should drop all pack-
ets from source IP 10.0.1.4”. For example, Kinetic, which was introduced in
2015. It was implemented on top of the Python Pyretic platform, a runtime
environment for SDN controllers. Kinetic aims to capture network dynamics
in ways other PBNM environments do not. A policy in Kinetic is the combin-
ation of a FSM definition and a number of transition functions which enact
network policy. The example shown in Listing 3.1 implements a basic intru-
sion detection system (IDS) which drops packets from infected sources.

Other PDLs interact with the network indirectly, and operate on abstrac-
tions [57]. They can support policies of the form “employees should not use

© 00 N O O W N

NN N NNNRE B B B R R el s e
D O WD, O VW 00N O WN R, O

a s W N

28 CHAPTER 3. A TAXONOMY FOR PDLs

Listing 3.1: Example Kinetic policy (from [51])

class ids(DynamicPolicy):
def __init__(self):
def 1lpec(f):
return match(srcip=f['srcip'])

@transition
def infected(self):
self.case(occurred(self.event), self.event)

@transition

def policy(self):
self.case(is_true(V('infected')), C(drop))
self.default (C(identity))

self.fms_def = FSMDef (
infected=FSMVar (type=BoolType (),
init=False,
trans=infected) ,
policy=FSMVar (type=Type (Policy ,{drop, identity}),
init=identity,
trans=policy))

fsm_pol = FSMPolicy(lpec, self.fsm_def)

json_event = JSONEvent ()
json_event.register_callback(fsm_pol.event_handler)
super (ids, self).__init__(fsm_pol)

too much data”. For example, Ponder, which was introduced in 2001 and has
attracted more academic interest than any of the other PDLs we looked at
(based on number of citations). Policies written in Ponder allow or disallow
actions which may be taken. The example policy in Listing 3.2 states that
trainee test engineers may not run performance tests on routers.

Listing 3.2: Example Ponder policy (from [11])

inst auth- /negativeAuth/testRouters {
subject /testEngineers/trainee;
action performance_test();

target <routerT> /routers;

3.3. RELATED WORK 29

3.3 Related Work

Policy specification has been investigated, for example, by Sloman and Lupu
in [95], Damianou et al in [55], and Han and Wei in [8]. These papers concen-
trate on PDLs and discuss issues like conflict detection and resolution, policy
refinement, synchronising policies across asynchronous execution points, per-
formance bottlenecks at the PDP, and the difficulty of building a functional
PEP. While these papers draw some conclusions about PDL construction, they
do not attempt to classify them with a generalised framework as we do in this
chapter. We aim to provide a PDL taxonomy which may be altered to suit the
needs of researchers and practitioners, or extended as the field expands.

Wies [96] introduced a policy hierarchy (stratifying policies from high-level
non-technical to low-level technical), a generalised policy transformation pro-
cess for moving policies down this hierarchy (from more to less high-level),
a description of the policy lifecycle (i.e. a sequence of states from definition
to deactivation through which policies are transitioned) and the notion of
policy templates, which are analogous to classes in object-oriented program-
ming (OOP).

Wies also created criteria for the classification of policies (but not PDLs).
For example: Type of targets (employees, printers, word processors etc.),
functionality of target objects (accounting, traffic management, security etc.),
mode (obligation, permission, prohibition) and more. Where Wies categor-
ises policies, we categorise PDLs. We also aim to provide clear motivations for
each element of our categorisation, which Wies does not focus on.

3.4 The Taxonomy

3.4.1 Construction

We created our taxonomy to help us review the PBNM literature. We needed a
way of efficiently reviewing PDLs and fitting them into the picture of the field
as a whole. We first tried informally grouping PDLs, but as we added more
languages we found this unsatisfactory. There was significant overlap among
groups, and we decided a more rigorous categorisation was needed.

30 CHAPTER 3. A TAXONOMY FOR PDLs

We identified 19 PDLs in the literature, created over a period of 22 years.
Grouping these into exclusive buckets was difficult due to the overlap among
them. Motivated by Wies’s [96] work, we identified specific traits, such as
whether or not the PDL allows policies to be parameterised, and categorised
these, instead of the languages themselves. We defined “options” for each
trait to give structure when using the taxonomy. We applied a draft version of
the taxonomy to several PDLs, noted shortcomings (e.g. when the taxonomy
was not expressive enough to capture important language features, or when
certain elements of the taxonomy were so specific that they were only relevant
to a single language) and revised the taxonomy. We consulted networking
experts throughout this iterative process, to focus our efforts.

The taxonomy should be general enough to classify a wide range of PDLs,
but including too many elements would make it unwieldy, limiting its useful-
ness. So, we introduced criteria for adding elements to the taxonomy. A) An
element should be useful to users of the taxonomy: Elements added to
the taxonomy must be in service of the use cases identified in Section 3.1, for
the benefit of the relevant users. B) An element must be unambiguous: For
example, “the PDL is easy to use” is ambiguous unless we also define classific-
ation criteria (which would also make the taxonomy unwieldy). “Document-
ation and tutorials are available for the PDL” is clear and easily verifiable.

3.4.2 Structure

Our proposed taxonomy has three levels: category, trait, and option. Categor-
ies are the highest-level elements in the taxonomy (for example, “practicality
and validity”), and represent the six most important characteristics of the PDLs
we examined (see Section 3.2. Categories have traits, which represent specific
features of a PDL (e.g. “logging” or “tool support”). When classifying a PDL
with the taxonomy, each trait is assigned one or more values?, from its own
range of options (e.g. “not supported”, “source IP address”, or “other”). Note
that “other” is an ‘open’ field, i.e. the user of the taxonomy can supply their
own value instead of using one of the predefined options. See Figure 3.1 for
the taxonomy, and Sections 3.4.4 through 3.4.9 for additional details.

2 Except mutually exclusive values like “yes/no”, or “supported/not supported”.

3.4. THE TAXONOMY 31

LEGEND

PARAMETERISATION

CATEGORIES

SPECIALISATION TRAITS

OPTIONS

ENTITY GROUPING

N

LANGUAGE ATTRIBUTES COMPOSITE POLICIES

DELEGATION

META-POLICIES

* Event
* Request
+ Unspecified

PoLicy TRIGGER

TESTABILITY

Manual prioritisation
Automated prioritisation
Other

Not supported

N\

VERIFIABILITY

(CORRECTNESS CHECKING
SIMULTANEOUS POLICY
HANDLING

)

Conflict detection
CONFLICT HANDLING Conflict resolution

« In network operating system
(eg: SDN controller)

\ [

e A o| + Ina network application
J 7| + Inan external system
« Unspecified
\ UPPORT FOR STATEFUL POLICIES o Vs + Other
(STATEFULNESS + No
STATE EXPLOSION HANDLING ES (lmph'es SDN)
Users
STATE \ Actions

Applications
Network devices
Other

\

User’s bandwidth usage
* Traffic rate

« Other

Not supported

* Policy validity time/date range
« Policy validity duration

* Timeouts

* Other

CHARACTERISTICS OF
TRANSPORTED DATA

N

TEMPORAL)

CONTROL DOMAINS
EXTERNAL INPUT o ez (- Ingress/egress port
* Source/destination IP address
N\ * Source/destination MAC address
FLOW DATA/PACKET ATTRIBUTES »| * VLAN tag

J * IP protocol
« Other
k. Not supported

Device or user identity
* Authentication status
Other

ENTITY STATUS

Drop/allow/mirror/modify/
delay/prioritise packet

* Send packet to controller
* Other

* Not supported Filter data (eg: filter a
returned JSON array)
Logging tasks (eg:

OSI LAYER 3

/]

OSI LAYERS 6-7

\

\/

(SUPPORTED ACTIONS

write to log file)
Other
Not supported

* Install new flows/rules
(implies SDN)

* Other

* Not supported

CROSS-LAYER

|

Interactive shell
Scripting language
Policy compiler
Editor support

Visualisation tools
TOOL SUPPORT Other

Select most rigorous level that applies

None * No evidence

+ Demonstrations or working out toy examples
Expert opinions or observations

Academic studies (eg: controlled lab
experiments)

Industrial studies (eg: causal case studies)

* Industrial usage

(PRACTlCALlTY AND VALIDITD—(EVIDENCE OF EVALUATION)

AVAILABILITY OF LEARNING RESOURCES

Tutorials
Documentation
Other

None

d

Figure 3.1: Our taxonomy of PDLs

32 CHAPTER 3. A TAXONOMY FOR PDLs

3.4.3 Key Concepts

Below define several important concepts.

* Entity: Any network object, such as a user, switch, or computer. Entities
may be the subjects or targets of policies (see below for definitions of
these terms).

* Subject: An entity to which rights are being granted (or from which
they are being removed).

* Target: An entity on which a subject can take some action (e.g. a switch).
This includes entities which offer services (e.g. printers).

* Action: An activity performed on or by a target.

* Condition: A statement which describes the situations in which a policy
is relevant (e.g. this may be a boolean statement executed whenever an
event arrives).

* Event: A recognised occurrence (such as a user logging in, or a door
opening) which may trigger the execution of a policy. In PBNM the
policy decision point typically registers interest in events which are rel-
evant to the policies stored in the PR.

* Request: A special class of event generated by a policy-aware entity.
Where events are generic, requests can include information specifically
intended for the PDP, and may directly identify the policy or policies
which should be executed.

Figure 3.2 illustrates the use of subjects, targets, conditions, actions and
entities in a sample policy written in natural language. This policy would be
triggered by an event or a request.

Entities
Engineers may not the recreation centre after 8pm
Subject Action Target Condition

Figure 3.2: An example network policy, with components highlighted

3.4. THE TAXONOMY 33

3.4.4 Category: Language Attributes

A PDL’s syntax and semantics can affect policies written in it. For example,
they may be more or less maintainable, extensible or reusable than those writ-
ten in another language. In this taxonomy we focus on language attributes
which have a practical effect on how a PDL is used. This category’s traits are:

* Specialisation: New policies can be created by adding behaviours to
existing policies. E.g. A policy which grants network administrators ac-
cess to switches at the edge of the network might be specialised to allow
senior network administrators access to core switches.

* Parameterisation: Policies can take parameters. This means that rather
than ‘hard coding’ values for policy components (such as subjects, tar-
gets and actions), parameters can be used to make policies more generic.

* Delegation: Entities may transfer permissions granted to them to other
entities without the creation of another policy.

* Entity grouping: Policies can apply to multiple entities at once (e.g. to
all staff members on the 3rd floor, or to all undergraduate students).

* Composite policies: Existing policies can be combined to create more
complex ones.

* Meta-policies: Policies about other policies (e.g. “policy A has a higher
priority than policy B”).

* Policy trigger: The manner in which policies are activated.

3.4.5 Category: Correctness Checking

Correctness checking can improve the quality and/or reliability of policies.
Policy implementers may want to check that the policies they create have the
intended results, while network users will want to know that a given PDL pro-
duces policies which are consistent (i.e. produce the same results under the
same conditions) and reliable (i.e. policy enforcement does not fail unpredict-
ably). This category’s traits are:

34

CHAPTER 3. A TAXONOMY FOR PDLs

Testability: Is there explicit support for testing? i.e. Checking for spe-
cific behaviour under specific circumstances. This could be implemented
in a tool like a policy compiler or editor.

Verifiability: Can it be shown that certain behaviours are guaranteed
under all conditions (i.e. that a policy will guarantee intended behaviour
in all possible network states)? E.g. Via a mathematical or logical proof.

Simultaneous policy execution handling: When different policies are
triggered by the same conditions the order in which they are executed
may affect the outcome. Does the language have constructs for express-
ing what should happen in such situations?

Conflict handling: What strategy does the PDL use when policies have
mutually exclusive behaviours under identical conditions?

3.4.6 Category: Statefulness

Many aspects of network management are inherently stateful. For example:

User authentication requires transitioning a user from the unauthenticated to

the authenticated state; and limiting bandwidth usage requires storing and

updating counters. Thus, without the ability to express state, a PDL may

struggle to express certain kinds of policies. This category’s traits are:

State location: Where is state captured? See Figure 3.1 for examples.

Support for stateful policies: Some policies implicitly require that state
be modelled (e.g. “authenticated devices may access the internet” is
stateful; “limit user traffic to 1Mbps” is not stateful). Can such policies
be expressed in the language?

State explosion handling: A model of a complex system may be over-
whelmed by its many states. How does the PDL deal with this problem?

State assignment: To what can the PDL assign state? See Figure 3.1 for
examples.

3.4. THE TAXONOMY 35

3.4.7 Category: Control Domains

A control domain is an abstract categorisation of possible inputs to a policy.
For example, a policy which states that “only supervisors should be able to
turn the lights off after 10pm” is concerned with two control domains: entity
status (is the user a supervisor or not?) and time (is it currently before or
after 10pm?). A PDL’s control domains tell us which slice of “policy space” it
operates within, which in turn describes the kinds of policies it can express.
Thus “policy space” is a parameterisation of policies based on control domains,
where the former are points and the latter are dimensions in that space. This
category’s traits are:

* Characteristics of transported data: Heuristics associated with the
data moving through the network.
* Temporal: Time-dependent values (e.g. dates and durations).

* External input: Data from other systems can be included in policy defin-
itions. For example, the daily weather forecast, or network state (e.g.
load, topology, etc.)

* Flow data/packet attributes: Information associated with SDN flows
or packets (e.g. packet header information).

* Entity status: Information associated with network entities.

3.4.8 Category: Supported Actions

The actions supported by a PDL (either as instructions to carry out as a result
of certain conditions being met, or as requests to allow or deny) characterise
its functional capabilities. We have decomposed this category into fields which
correspond to layers of the OSI model [97]:

* OSI layer 3: Packet-level operations, like dropping, or forwarding.

* OSI layer 6-7: Application-level operations, like filtering data, or log-
ging.

* Cross-layer: Operations which do not fit into the OSI model, such as in
SDN-focussed PDLs like Kinetic, and Procera [60].

36 CHAPTER 3. A TAXONOMY FOR PDLs

3.4.9 Category: Practicality and Validity

With this category of the taxonomy we consider what evidence there is for a
PDL’s utility. Has the language been used in a real-world deployment? Has
there been any experimental validation of the PDL? Is the PDL just nice in
theory, or does it work in the “real world” too? Answering these questions
can give practitioners confidence in the suitability of a PDL for their particular
purposes, or help researchers looking to build on the work of their peers. This
category’s traits are:

* Tool support: Are tools for working with the PDL available? For ex-
ample, an editor or interactive shell.

* Evidence of evaluation: Many of the PDLs we examined have been
evaluated for fitness of purpose. We define six levels of evaluation, from
‘no evidence’ to ‘industrial usage’.

* Availability of learning resources: Are resources like tutorials and doc-
umentation available for learning how to use the language?

3.5 Application of the Taxonomy

Tables 3.1 to 3.6 show the result of applying our taxonomy to three PDLs:
Ponder [11], Ponder2 [59] and Kinetic [51]. See Section 3.6 for a discussion
of our results. We selected Ponder to be a part of this comparison as (in
2016) it was the most cited PDL of those we looked at (approximately 1600
citations listed on Google Scholar), and one of the oldest (it was introduced in
2001). Ponder2 builds on its predecessor and thus provides a good test case
for our taxonomy (i.e. we would expect our taxonomy to highlight differences
between Ponder and Ponder2 which correspond to Ponder2’s design goals).
We included Kinetic because it is the newest PDL of those we looked at (it was
introduced in 2015), and because it uses novel ideas such as SDN and stateful
network modelling based on FSMs.

3.5. APPLICATION OF THE TAXONOMY

37

Table 3.1: Application of taxonomy — Language attributes

Trait Ponder Ponder2 Kinetic
Specialisation Yes Yes Yes
Parameterisation Yes Yes Yes
Delegation Yes No No
Entity grouping Yes Yes Yes
Composite policies | Yes No Yes
Meta-policies Yes Yes No
Policy trigger Event Event Event

Table 3.2: Application of taxonomy — Correctness checking

Trait Ponder Ponder2 Kinetic

Testability No Yes Yes

Verifiability No No Yes

Simultaneous No No No

policy execution

handling

Conflict handling Conflict detection Not supported Not supported
Table 3.3: Application of taxonomy — Statefulness

Trait Ponder Ponder2 Kinetic

Support for Yes Yes Yes

stateful polices

State explosion No No Yes

handling

State location Unspecified Unspecified In network operating

State assignment

Users, network devices

Users, network devices,
other

system

Flows, users, actions,
applications, network
devices, other

38

CHAPTER 3. A TAXONOMY FOR PDLs

Table 3.4: Application of taxonomy — Control domains

Trait

Ponder

Ponder2

Kinetic

Temporal

Characteristics of
transported data

Entity status

Flow data/packet
attributes

External input

Policy validity time or
date range, policy
validity duration

Not supported

Other

Not supported

Yes

Policy validity time or
date range, policy
validity duration,
timeouts

Not supported

Other

Not supported

Yes

Policy validity time or
date range, policy
validity duration,
timeouts

User’s bandwidth
usage, traffic rate, other

Device or user identity,
authentication status,
other

Ingress/egress port,
source/destination
MAC/IP address, VLAN
tag, IP protocol, other

Yes

Table 3.5: Application of taxonomy — Supported actions

Trait

Ponder

Ponder2

Kinetic

OSI layer 3

OSI layers 6-7

Cross-layer

Not supported

Filter, other

Not supported

Not supported

Filter, other

Not supported

Drop, allow, modify or
mirror packet

Not supported

Install new flows/rules

Table 3.6: Application of taxonomy — Practicality and validity

Trait Ponder Ponder2 Kinetic
Evidence of Level 3 Level 3 Level 4
evaluation

Tool support Policy compiler, editor Editor support, Interactive shell,

Availability of
learning resources

support, visualisation
tools, other

None

interactive shell, policy
compiler, scripting
language

Tutorials,
documentation

scripting language,
policy compiler

Tutorials,
documentation

3.6. DISCUSSION 39

3.6 Discussion

3.6.1 Use Cases

Below we show how our taxonomy supports UC1, UC2, and UC3 (see Sec-
tion 3.1). We leave demonstrating UC4 to future work, as it would require the
application of our taxonomy to a wider range of PDLs.

UC1 “By researchers looking to classify PDLs based on potentially
important characteristics which they may otherwise miss.”

None of the three languages to which we applied our taxonomy supported
both layer three and layer six to seven actions. Kinetic supports characteristics
of transported data and flow data/packet attributes as control domains, while
Ponder and Ponder2 do not. This suggests that PDLs may not be suited to ex-
pressing both high-level non-technical and low-level technical policies. Future
research could investigate this further.

All three languages support specialisation and composite policies, suggest-
ing that they all promote reusability, and are thus likely to be more maintain-
able than PDLs which do not. They also support entity grouping, which aids
scalability.

UC2: “By practitioners looking to understand why a language may be
better than another for a given purpose”.

From our application of our taxonomy we see that Ponder2 does not support
conflict handling (while its creators identified this as an area for future work,
we found no mention of conflict handling in the online documentation for the
language). We also found that Ponder has better tool support than Ponder2.
Thus, practitioners might prefer to use the original version of Ponder if these
features are important to them.

Ponder2 was created 8 years after Ponder, and Kinetic 7 years after that.
Thus we may wish to investigate the extent to which the progress of tech-
nology influenced the development of these languages. Unlike the other two
languages, Kinetic is heavily focussed on SDNs. OpenFlow was introduced in

40 CHAPTER 3. A TAXONOMY FOR PDLs

2008 [48], only a year before Ponder2 and 7 years after Ponder, so clearly
these languages were created without regard for OpenFlow.

We also note that Ponder2 and Kinetic benefit from the technologies with
which they are implemented (Java and Python, respectively), as opposed to
Ponder whose specification does not contain such implementation details.
This provides implementors with a rich feature-set and may make it easier
to integrate the PDL with existing software systems. However, this prescribes
a large number of dependencies. Anyone wishing to implement a PBNM sys-
tem based on Kinetic, for example, would need to support its entire stack
(including OpenFlow [48], Python, and Pyretic [46]). This may make it more
difficult to adopt Kinetic or Ponder2 than Ponder.

Ponder, Ponder2 and Kinetic all have good tool support (although Ponder2
has a slight edge), but few learning resources are available for Ponder, while
Ponder2 has many (Kinetic has more than Ponder, but fewer than Ponder2).
Kinetic has the highest level of evidence of evaluation (level 4, to level 3 for
Ponder and Ponder2). Thus, we expect that implementors would find all three
languages equivalently practical in every day use, with Ponder2 having a slight
advantage. Further work would also be needed to more rigorously evaluate
Ponder and Ponder2 (and thus raise the level of evidence of evaluation).

UC3: “By researchers or practitioners looking to understand the
differences between successive versions of the same language.”

Our application of our taxonomy showed that Ponder2 added more support
for state modelling and that more learning resources (e.g. tutorials and doc-
umentation) are available for Ponder2 than its predecessor, but that Ponder2
does not support delegation, composite policies, or conflict handling. From
this, practitioners could conclude that Ponder2 is more advanced, but less
complete, than Ponder.

Twidle et al stated “self-containment” as one of the design goals for Pon-
der2 [59]. They defined this as follows: “The policy environment must not
rely on the existence of infrastructure services and must contain everything
necessary to apply policies to managed resources.” However, from our com-
parison of Ponder and Ponder2 we found that Ponder2 was likely less self-
contained than Ponder, due to the number of dependencies it introduced. This

3.6. DISCUSSION 4]

could be an avenue for future investigation.

UC4: “To help researchers or practitioners create new PDLs for
previously unaddressed needs.”

To support this use case our taxonomy could be applied to a wide range of ex-
isting PDLs in order to identify gaps (i.e. currently unaddressed needs) which
might provide opportunities for differentiating the new language from its pre-
decessors. Similarly, common features might be considered particularly im-
portant, and should be included in any new PDL (or at least not be excluded
without good reason). Applying our taxonomy to a wider range of PDLs is out
of scope, but is a part of future work.

3.6.2 Research Question (RQ1)

How is operator intent expressed in the field of PBNM?

In PBNM, operator intent is typically expressed with a formal language
(a PDL). Formal languages can solve several problems in this domain, such
as automatic enactment, consistent interpretation, and analysis (e.g. syntax
and correctness checking). However, they can introduce others, including
overheads (a formal language is another tool for operators to learn and main-
tain), incompatibility (with existing tools or network hardware), expressive-
ness [98] (the language may not be able to express the policies the operator
desires), and fragmentation (where several products compete to solve the
same problem in different ways, e.g. see the long list of PDLs we identified in
Section 3.2). In Section 3.4 we identified six significant characteristics of PDLs
(the top level of our taxonomy): Language attributes, correctness checking,
statefulness, control domains, supported actions, and practicality and validity.
Each of these reflects a different way in which PDLs allow operators to express
their intent.

Language attributes refer to the language’s syntax and semantics. For ex-
ample, the ability to parameterise or combine policies. Languages implement
the attributes needed for their problem space, e.g. Ponder (which focuses on
access control) supports delegation (the ability for one entity to pass permis-
sions to another), but Kinetic (which focuses on packet handling) does not.
Four out of the seven language attributes we identified (parameterisation, spe-

42 CHAPTER 3. A TAXONOMY FOR PDLs

cialisation, entity grouping, and composite policies) do not affect the number
of policies which can be expressed with a language, but rather make certain
policies easier to write. For example, an operator (or a tool) could write a
specific policy for every device in the network, but entity grouping makes it
possible for one policy to apply to many devices. The prevalence of these
language attributes suggests that usability is a major concern with respect to
language design in this domain. Language designers should not only consider
usability, but evaluate it (see Chapter 6).

Correctness checking ensures that policies work as intended, after being
written, by adding redundancy. One form of correctness checking is testing,
which involves checking for specific behaviour given specific circumstances
(e.g. if a device exceeds its bandwidth quota, is it throttled?) Other forms
include verification, in which a policy’s behaviour is mathematically proven;
and conflict handling, in which conflicts between policy implementations may
be detected and resolved. Tests also provide clarifying examples (for humans)
of a policy’s intended behaviour, and, along with policy verification, ensure
that its behaviour does not change over time (e.g. due to erroneous modific-
ation, changing conditions, or interference from other policies). Correctness
checking implies that policies have a lifecycle, e.g. with phases like design (the
desired properties of the policy are stated), implementation (the network is
reconfigured, as per the design), correctness checking, integration (the imple-
mentation is enacted in the network), maintenance (the policy is monitored
and fixed if it misbehaves), and revocation (the policy is removed from the
network). Engineers should create tools for each phase of the policy lifecycle,
and researchers should investigate operator needs at each of them. In general,
we should not think of policies as isolated changes to a network, but rather as
interdependent software packages which require long term support.

Statefulness refers to a PDL’s ability to model the state of, for example, the
network, packet flows, devices, or users. This allows operators to more easily
define behaviour under changing conditions [51]. For example, an operator
might want to know which devices a user logged into on a given day.

Control domains are the concepts that policies respond to, for example,
packet attributes (like the input port), or temporal values (like the dates of
a conference). The supported actions of a PDL define its ability to affect the
network. Types of actions include dropping or forwarding packets, logging,

3.6. DISCUSSION 43

or filtering output from a network monitoring tool. Where control domains
describe the kinds of inputs a policy can accept, supported actions describe its
possible outputs. Control domains and supported actions directly affect the
expressiveness of a PDL, i.e. the variety of policies which can be written with
it, and are therefore very important in PDL design. A PDL’s control domains
and supported actions should be motivated by the needs of the targeted users.
See Chapter 4 for further investigation.

Supported actions refer to the OSI model layer at which a PDL can perform
actions. This influences how intent is expressed (e.g. Ponder [11] deals with
roles, and Kinetic [51] with packets) and for what a PDL is useful (e.g. Ponder
is suitable for RBAC).

Practicality and validity relates to a PDL’s ecosystem, including learning
resources (such as tutorials and documentation), evaluations (e.g. expert re-
views, academic studies, and use in industry), and tools which make the PDL
easier to use (e.g. compilers, editors, or a shell), or which extend its capabilit-
ies (e.g. visualisation tools like Grafana [99]). A large and/or active ecosystem
can make a PDL much easier to use [100].

3.6.3 Limitations

We designed our taxonomy to be general enough to classify a wide range of
PDLs. One consequence of this is that specialised aspects of some PDLs may
not be captured. For example, the PDL Rei [61] has support for action oper-
ators. These express interactions between policies, allowing implementors to,
for example, express the difference between granting an entity permission to
perform actions A and B, and allowing action B only if action A was performed
first. A support for action operators field could be introduced (perhaps under
the existing state or meta-policy categories), but it would, to our knowledge,
only be relevant when classifying Rei, and so we omitted it.

In Section 3.4.1 we described selection criteria for elements in our tax-
onomy, the second of which stated that elements should be unambiguous,
in part to simplify the design and application of our taxonomy (because am-
biguous elements require strict definitions to ensure that they are consistently
interpreted). This led to the removal of some potentially useful categories,
including “language syntax”. This would have covered issues such as concise-

44 CHAPTER 3. A TAXONOMY FOR PDLs

ness (are policies expressed in one language typically shorter than the same
policies expressed in another?); human readability; compatibility (e.g. with
existing languages like XML); and expressiveness (i.e. how wide a range of
policies can be expressed with a given PDL?) Though necessary, this criterion
limits the scope of our taxonomy.

We did not search the literature for PDLs systematically, but rather relied
on ‘snowball’ sampling [101], where we reviewed each source which identi-
fied PDLs for references to additional sources which identified further PDLs.

3.7 Conclusion

In this chapter we reiterated the relevance of PBNM to the problem of man-
aging complex network environments. We described the role of PDLs in PBNM
and identified a need for a way to classify PDLs. To address this, we created
a taxonomy based on the PBNM and PDL literature, and consultations with
industry experts. We see our taxonomy as a general-purpose tool which may
be specialised as needed. We described our motivation, how we constructed
our taxonomy, identified use cases for it, and discussed the results of applying
it to three PDLs (Ponder, Ponder2 and Kinetic).

We found that none of these languages support both high and low-level
policies; that all three promoted reusability, maintainability and scalability;
that Ponder2 and Kinetic’s dependencies may make them harder to deploy
than Ponder; that more work could be done to evaluate Ponder and Ponder2;
and that Ponder2’s stated goal of “self-containment” has arguably not been
met. This application showed how our proposed taxonomy supports the use
cases we identified.

In future research we could apply our taxonomy as part of a structured
approach to PDL evaluation. While Han and Wei’s contribution [8] provides a
reasonable overview of a range of PDLs, we believe that a systematic review
is required to properly map the field. This would yield insights into exist-
ing PDLs, and would likely highlight areas in which our taxonomy could be
improved.

Chapter 4

Concepts for Operator Intent: An Interview Study

4.1 Introduction

In this chapter® we address RQ2: What concepts do network operators manip-
ulate and analyse? Such concepts can represent specific elements like packets,
flows, switches, routers, servers, users, or administrators, or more generic con-
structs like traffic, forwarding elements, devices, people, or network entities.
A key question in the design of any language or API for expressing operator
intent is which of these concepts users wish to include in policy specifica-
tions [5]. This is especially relevant in the context of SDN [25], a modern net-
working paradigm which has the potential to reshape network management
through centralisation, standardisation, and programmable interfaces [21],
but which lacks an intuitive way to specify network policy [58,70]. Our work
helps address this.

A central entity in SDN is the network controller, which on the one hand
exercises precise control of the configuration and operation of SDN switches
(through a well-defined “southbound interface”), and on the other hand provides
an interface (the “northbound interface”) which management applications can
use to specify and effect policies [4]. However, while standardisation of the
southbound interface has progressed well (e.g. OpenFlow [48,69]), there has
not yet emerged a dominating standard for the northbound interface [25,
Chapter 4] [4,6]. We expect many different northbound interfaces to appear,
tailored to different domains [70], e.g. data centre or enterprise networks.

The northbound interface is well-suited to expressing operator intent (e.g.
because SDN gives it centralised oversight of the network, and standardises

3 This chapter is based on our published work [102].

45

46 CHAPTER 4. CONCEPTS FOR OPERATOR INTENT

its interactions with forwarding devices), and a number of network program-
ming platforms, frameworks, and languages have emerged in the literature,
e.g. OpenDaylight [71], Floodlight [72], Ryu [73], Frenetic [74], Merlin [76],
Procera [60], and NetKAT [64]. These provide semantics and concepts for
formally specifying network policies, and procedures for compiling them into
OpenFlow rules which implement the desired behaviour. However, the con-
cepts introduced by these works require most policies to operate at the level of
individual packets or packet flows, and more critically have not been elicited
and motivated systematically. To address this, we investigate the following
sub-research questions:

RQ2.1 What policies do operators implement?
RQ2.2 Why are policies created and modified?

RQ2.3 How do operators implement policies?

We carried out five semi-structured interviews of network operators from
different enterprises and used open coding [103] to analyse the transcripts.
This illuminated 40 real-world network policies (RQ2.1); seven motivations
common to them (RQ2.2); and tools and techniques used to implement them,
people consulted, and policy record formats (RQ2.3). To address RQ2, we ap-
plied negative case analysis [101, p. 552] to the policies identified in RQ2.1,
using RQ2.2 and RQ2.3 to ensure we interpreted the policies accurately, yield-
ing nine orthogonal concepts for representing network policies (which we call
the ‘dimensions of policy space’). We show how these may be used by applying
them to the policies from RQ2.1, and discuss the implications of RQ2.2 and
RQ2.3 for network management tools (which may adopt our dimensions).

Our work may help engineers and researchers to create or refine network
management tools (such as the network QL we develop in Chapter 5), net-
work operators to document policies in a consistent and readable format, and
researchers to develop empirical studies.

This chapter is organised as follows: Section 4.2 puts our work in con-
text with the relevant literature; Section 4.3 describes our methodology; Sec-
tion 4.4 details our findings; in Section 4.5 we apply the proposed dimensions
to a number of real-world network policies; Section 4.6 discusses the implica-
tions of our work for practitioners and researchers.

4.2. RELATED WORK 47

4.2 Related Work

After reviewing the literature we found that 1) there is a lack of empirically-
grounded requirements for network management, and 2) there is a need for
standardised representations of network policy. We discuss this below.

4.2.1 Empirically-grounded network management requirements

Few existing studies empirically investigate network operators’ daily work and
needs. Those that do (see below) address different questions to our study.

Kraemer [20] interviewed eight network operators with a method sim-
ilar to ours. However, Kraemer’s participants worked at the same institution,
whereas ours came from different enterprises and domains. Kraemer’s focus
(the causes of human error in network and information security management)
is also different to ours. Both our works have small sample sizes.

Kim [51] surveyed 870 students with a questionnaire, about their im-
pressions of Kinetic, a framework Kim developed, which provides abstractions
for network management. We are coming from the opposite direction: Trying
to identify abstractions which could be adopted by a network management
framework. Kim gave little information about the sampled population, the
study design, and the validation process. Participants were also self-selected.

Bhattacherjee and Hirschheim [104] interviewed two information tech-
nology (IT) workers in a case study. While the authors discussed some IT
administration processes (e.g. user access to corporate data), their goal was
different to ours. This study was also published in 1997, potentially limiting
its relevance (especially to SDN, which did not exist at the time).

A number of papers introduce and/or survey languages for representing
network policies [7-11,46,52,55,57-61,76,92], but there is little to empir-
ically validate these languages, e.g. by linking their features to the needs of
network operators as we do in this chapter, or by assessing their usability in
practice, as we do in Chapter 6. PFDL is a language designed for mapping
business requirements to the network configurations required to satisfy them,
however the proposal [26] is incomplete and details about the language’s
grammar are unavailable. Casado [62] recommends a number of features for
SDNs, but does not empirically demonstrate why these features, in particular,

48 CHAPTER 4. CONCEPTS FOR OPERATOR INTENT

are compelling. Trois [63] builds on Casado’s work with a taxonomy of SDN
network programming languages, but does not address this limitation.

Northrop and Lipford [100] interviewed eight experts in network forensics
(a similar number of participants to our study). Like us, they used semi-
structured interviewing to gather data and open-ended coding to analyse it.
However, they focussed on a different domain to our study (network forensics
and security), and their findings are less relevant to network management.
Similar to us, the authors noted that there was little research into the work or
requirements of security researchers.

4.2.2 Standardised representations of network policy

The works discussed below demonstrate a need for high-level and standard-
ised approaches to express and implement network policy.

Kraemer [20] found that network operators consider current network se-
curity technologies insufficient, and desire standardised procedures for de-
fining and implementing network policy. Kraemer also noted that operators
sometimes deliberately violate security policy in order to support certain use
cases, or to save time. This suggests that network management technologies
are not flexible enough. A majority of the ~870 experienced network op-
erators Kim surveyed [51] were not confident that they could reconfigure a
network without (at least initially) introducing bugs, and that they desired
tools for automating and error-checking reconfiguration tasks.

Fulford [19] found that one of the main challenges of information security
management is communicating policies, and Kraemer [20] found that poor
inter-operator communication can cause policies to be applied inconsistently.
The structured policy ‘dimensions’ we propose in this chapter help with this.

Standardised representations of network policy alone are not enough. One
approach to addressing the complexity of network management [7-10, 42,
49] is to apply high-level abstractions [3]. However, existing policy concepts
are low-level, being policy-based analogues for concepts which have existed
in IP networking for decades (e.g. IP addresses, operations on packets, and
abstractions for network updates [105]). Any number of new, higher-level
concepts could be introduced. We attempt to determine which ones will be
most relevant in the context of enterprise network management.

4.3. METHODOLOGY 49

4.3 Methodology

We aim to identify the concepts that network operators manipulate and ana-
lyse (RQ2). To do this, we identify a set of real-world policies (RQ2.1), and ex-
tract their common features (such as subjects, targets, conditions [92]), which
correspond to potential concepts. RQ2.2 and RQ2.3 help us interpret policies
accurately, and have implications for network management tools (which may
adopt our dimensions). This study received ethics approval from the Univer-
sity of Canterbury under reference HEC 2017/13 LR-PS.

4.3.1 Sample

The unit of analysis refers to the entity which is analysed in a study and
influences the choice of sampling technique [106, Chapter 11]. Our initial
investigations showed that few enterprises document network policy, with the
network configuration itself being authoritative. While happy to discuss net-
work policy at a high level, many organisations would likely not feel comfort-
able giving researchers direct access to their network configurations. Thus,
we settled on an individual ‘network professional’ as our unit of analysis.

We chose ‘network administrators’ as our target population. These are
responsible for the day-to-day management of enterprise networks and fre-
quently work at the ‘code level’, manually configuring hardware and writing
scripts to automate some aspects of network management. They should be
able to describe policy examples and discuss their implementation and impact
through personal experience.

Because we aim for theoretical rather than statistical generalisation (see
Section 4.6.4) we used non-probabilistic sampling techniques: (i) purpos-
ive sampling, participants have to meet prescribed criteria, (ii) convenience
sampling, participants are chosen for easy availability, and (iii) snowball sampling,
participants suggest further candidates. [101] Snowball sampling was inef-
fective in practice, as our participants worked on very small teams (see Table 4.1).

We applied selection criteria to participants: (i) access, participants must
be located near us, or be available to call; (ii) language, participants must
be fluent in English; (iii) background, participants should have at least one
year of professional experience managing enterprise networks; and (iv) ex-

50 CHAPTER 4. CONCEPTS FOR OPERATOR INTENT

Table 4.1: Summary of contextual information

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Number of 10-100 100-1,000 100-1,000 1-10 100-1,000
forwarding devices
Number of host 1,000-10,000 100-1,000 1,000-10,000 1,000-10,000 10,000-
devices 100,000
Number of network 1,000-10,000 100-1,000 10,000- 100-1,000 10,000-
users 100,000 100,000
Maximum network 1 Gbps 1 Gbps 1 Gbps 10 Gbps 10 Gbps
throughput
Enterprise domain High school Casino Polytechnic Engineering University

office
Number of staff 100-1,000 100-1,000 100-1,000 100-1,000 100-1,000
Size of network team 2 1 1 2 2
Area of network All All All All All
management
Area of enterprise IT department All All IT, facilities IT, facilities
departments departments

Experience in ~20 years ~20 years 8 years 6 years 6 years
network
management

perience, participants should have been involved in managing the network at
their current place of work for at least one year.

Rather than selecting an arbitrary sample size, we aimed to reach the
‘data saturation’ point. This is the point at which “researchers sense they
have seen or heard something so repeatedly that they can anticipate it” [101,
p. 875]. Data collected after this point has diminishing returns [101, p. 195].
In our case, data saturation occurred after three interviews (see Section 4.6.4).

We asked participants for background information to contextualise their
responses (see Table 4.1). In total, we asked 15 people to participate, of which
two declined, five accepted, and the remaining eight either did not reply, or
stopped communicating. We focused on organisations in Australia and New
Zealand to which we had some link.

4.3.2 Data Collection

We carried out five semi-structured interviews of network administrators, each
lasting 40-60 minutes. Such interviews are conversational, and centre on
broad questions, making them well-suited to exploratory studies [107]. We
conducted one interview per participant, and held all but one interview at
participants’ places of work. We conducted one interview remotely as we were

4.3. METHODOLOGY 51

not able to travel to the participant. We conducted the study over two months,
including a short pilot phase. See Appendix B.1 for the participant information
sheet and consent form, and Appendix B.2 for the interview procedure.

We recorded data in several formats: (i) notes from interviews; (ii) audio
recordings of the interviews (with the exception of the final interview, due to
technical difficulties encountered by the participant); (iii) transcriptions of the
interview recordings; and (iv) selective note-taking, instead of recordings, for
the final two interviews when we reached the data saturation point.

4.3.3 Data Analysis

We analysed, and re-analysed, our data after each interview, letting us grow
our understanding gradually, and improve our data collection by asking more
astute follow-up questions in interviews, and by knowing which lines of in-
quiry to focus on (similar to Creswell’s “data analysis spiral” [108, p. 150]).

Coding

We analysed our interview transcripts with open coding [103], in which we
identified significant textual segments (ranging from a few words to two to
three sentences in length) and assigned them ‘codes’ (labels indicating a gen-
eral category), e.g. ‘policy example’, which we used to answer RQ2.1.

We created new codes whenever we found several textual segments with
a common theme. As we coded new textual segments, the definitions of some
codes broadened, and we merged codes with overlapping definitions. We
specialised some very frequently occurring ‘primary’ codes into ‘secondary’
codes (referred to as ‘code families’ in [103] and ‘categories’ in [101, p. 72]).
For example, we created the secondary code ‘security’ under the primary code
‘policy driver’ (which we used to answer RQ2.2); and we created ‘firewall rule’
under ‘implementation strategy’ (which we used to answer RQ2.3).

When two primary codes appeared related (e.g. ‘policy driver’ and ‘policy
example’) we linked them, creating a network (see Figure 4.1). This made
it easier to apply codes consistently, and understand the relationships among
them. Over time, our codes (and the network linking them) stabilised, and we
needed to make fewer changes to code additional textual segments. Overall,

52 CHAPTER 4. CONCEPTS FOR OPERATOR INTENT

we coded 650 segments with 56 codes, of which 12 were primary codes (see
Appendix B.3 for a list of codes and their definitions). We used the qualitative
data analysis program Atlas.ti [109] to assist with this process.

Research Questions

We address each of our sub-research questions with a different cluster of codes
(see Figure 4.1), identified by their primary codes: We use the ‘policy example’
cluster for RQ2.1; ‘policy driver’ for RQ2.2; and ‘implementation strategy’,
‘policy implementation workflow’, and ‘verification method’ for RQ2.3. See
Section 4.4 for our results.

To address our overall research question (RQ2) we first took a small group
of policies from RQ2.1 and analysed them for commonalities, for example,
policies which targeted specific websites or services, or policies which restric-
ted the use of network bandwidth. Treating these commonalities as hypo-
thetical dimensions, we tried to decompose a fresh example policy in terms of
them. If a dimension almost fit some aspect of the policy, we refined it. If a key
aspect of the policy did not align with any of our hypothetical dimensions, we
added a new one, and if two dimensions began to overlap, we merged them.

This is called negative case analysis, where “the researcher revises initial
hypotheses until all cases fit ... eliminating all outliers and exceptions”. [108,
p. 208] [101, p. 552] [107, p. 52]. A risk with this approach is that we
reinterpret policies to fit our emerging dimensions. To address this, we re-
read the textual segments linked to each policy, and linked it to motivations
from RQ2.2 and implementation techniques from RQ2.3. This gave us a ‘why’,
‘what’, and ‘how’ for each policy, helping us avoid experimenter bias* [110].

After processing all 40 example policies, we were left with nine orthogonal
policy ‘dimensions’, which we describe in Section 4.4.4.

4 Experimenter bias is a type of confirmation bias.

53

HEIS JO JOQUINN O

@2)M8s Yomiau &

sed|nep Bujpiemio}

0 Jequinu
10 Auadoud s| 4 & °

1o Auadoud si 10 Ausdaid s|

>

(Someu aus 1noge uopewoul véo Ausdoud-si

J0-Ausdoxd m_.vm asudiaua 8y} INOge uopeuLIou] &)

Jesn Jo Ssep ¢
10 3SNED §|
es

JuewebeuewW Yomau

m uopnsenb majnieyul @u 0} yoeoudde [eseuab ¢

aAnoMIsaIuN &

oInd remasy &
weyshs
anouoy &

Bunsipoeiq

yiomiau ayy Buideay =

juswainbal [ebe| &

\1 4/44?30& s
1o Aisdoud s 150U Jo ssep &)
10 Auadoud si

j020304d
yomeu =

5HOMIBU B} UO SISOy
UO UNJI 81BM}OS &

YIm PaJeIooSsSE S|

oM jo

juswyedap/wes) &

[=)
UM [enuew 5 10 Auadoud si

Joaup Aojjod Jo asneo si-»»(BjdWexa

JuBpIoul omau D

mEm.Eu:»u Koijod OV m Koiod jo

10 Au
Kojjod Jo 1500 B

uopejuawsedwi Aojjod &

(C__sompueg 0)

BOMBIAIBIUI BUY
INOQE UONBULIOM] &

10 Auadoud s|
10 Auadoud s|
@ouauadxa Jo sieak &
10 Ausdoud s

UIIM SHIOM UJWIPE B}
>uomiau auy Jo sued &

(wuewabeuew >yuomisu

UIUNM) IOM JO BBIE

pi102a1 Aojjod &)

ﬁ_Eeu

4.3. METHODOLOGY

Figure 4.1: Code network created when analysing interview transcripts. Each

box represents a code (see Appendix B.3 for definitions), colours cluster codes
ponent of B; A is a B means A is a specialisation of B; A is cause of B means A

resent relationships between codes: A is property of B means A is a subcom-
influences B.

into families, and primary codes appear at the centre of clusters. Arrows rep-

54 CHAPTER 4. CONCEPTS FOR OPERATOR INTENT

4.4 Results

4.4.1 What policies do operators implement? (RQ2.1)

We identified 40 real-world policies, based on 53 textual segments coded with
‘policy example’ (some policies came up more than once). For example, one
participant said that “running proxy ARP on certain networks is banned” and
another said “we’ve got different SSIDs on the access points, and unless you’re
a staff member who has filled in a policy form, you don’t get access to the
internal network - you only get access to the internet”. We reworded some
policies for clarity, taking care not to alter their meaning, and analysed them
for commonalities to address RQ2 in Section 4.3.3. See Section 4.5 for a list.

4.4.2 Why are policies created and modified? (RQ2.2)

Our code network identifies seven motivations for creating and modifying
network policy (see Figure 4.1), which we discuss below. We used these to
contextualise policies when addressing RQ2 in Section 4.3.3, and they have
implications for using our policy dimensions in practice (see Section 4.6).

M1) Enterprise requirements: These are factors that network users do not
have a direct interest in, but which the enterprise must provide. From a network
operator’s perspective such drivers might be directives ‘from management’.

Examples

* Supporting network-connected building management devices, e.g. air condi-
tioning, door locks, power supplies.

* Accounting, e.g. charging costs back to departments and users.

* Accountability, e.g. Users should be accountable if they misuse the network.

* Responding to administrative changes, e.g. when a department relocates from
one building to another, various network configurations must be replicated
in a new physical location.

* Public image, e.g. It looks bad to have enterprise IP addresses in BitTorrent
swarms, and it looks unprofessional to expose web interfaces for network
devices like cameras and routers, even if they are password protected.

* Network scaling, e.g. Adding ports once a switch is fully allocated, or adding
IP addresses once a subnet is fully subscribed.

* Adding new internal services, e.g. Transitioning from a 1990s-era phone sys-
tem to voice over IP (VOIP).

4.4. RESULTS 55

M2) User requirements: Users do not want to be obstructed by network policies
and the operators we spoke to wanted network policy to be generally invisible
to users in the course of their daily work (i.e. they shouldn’t have to think about
working around network restrictions to get their job done). When users feel
obstructed by network policy they request changes.

Examples

* Legitimate exceptions to existing policies (e.g. Some users make legitimate
use of peer-to-peer (P2P) file transfer services).

* BYOD.

¢ On-site events (such as conferences and conventions).

» Transferable access rights. Users expect to be able to access the resources
required for their jobs at all times, not just when they are signed into the
right account, or when they are on a particular campus.

M3) Third party requirements: Third parties can sometimes make demands of
an enterprise’s network. For example, one operator said that if users encountered
call quality issues with a third party product the vendor would refuse to provide
assistance unless the enterprise had policies to enforce quality of service (QoS).

M4) One-off network event: Sometimes one-off incidents prompt enterprises
to institute new policies.

Examples

* Employees avoiding work to watch online auctions finish (e.g. on eBay).

* One user gained access to a local management account on a lab machine and
used this to snoop on the network.

* A student unintentionally introduced a worm to the network, prompting the
enterprise to use access control lists (ACLs) to restrict traffic flow between
staff and student VLANS.

* Misuse of the network, such as accessing inappropriate websites.

M5) Trust: The extent to which users are trusted affects the number and nature
of policies created. The network operators we spoke to said that they trusted
their users (within reason), meaning that they did not feel it was necessary to
adopt many restrictive policies.

56 CHAPTER 4. CONCEPTS FOR OPERATOR INTENT

M6) Routine maintenance: These motivations relate to keeping the network
operating smoothly, rather than modifying it or adding capabilities.

Examples

» User activity impacting the network, e.g. chatty protocols like Bonjour; in-
terference from non-Wifi devices on the 2.4GHz spectrum; engineers and
students developing network software and conducting experiments; or users
introducing loops by plugging cables into the wrong ports.

* Wireless signal strength/coverage issues.

* Human resources, e.g. some policies are too labour intensive to implement.

* Data loss prevention, e.g. some policies are created to ensure the integrity
and timely creation of backups, in case of user error, or natural disaster.

* Limitations in network-attached devices, e.g. One operator discussed printer
software which malfunctions unless all printers are on the same /24 subnet.

* Manually updating configurations, e.g. VLAN port mappings.

M7) Security: Enterprise network security is a common concern and is a large
area of research itself, so we will not discuss it in detail here. However, it is
clearly a motivation for network policy, and this was confirmed by our inter-

views.

4.4.3 How do operators implement policies? (RQ2.3)

Our code network (see Figure 4.1) identifies several policy implementation
details, including tools and techniques used, people consulted, and policy re-
cord formats. We used these when interpreting the policies from RQ2.1, while
addressing RQ2 in Section 4.3.3, and they have implications for using our
policy dimensions in practice (see Section 4.6). They may also be of interest
to engineers creating network management tools.

Overall, our participants’ policy implementation workflows are manual
and rely on individuals’ expertise, rather than bespoke tools and standard-
ised processes. As shown in Figure 4.1, they configure networks with packet
inspection, firewall rules, manual white or blacklists, changes to the network
topology (e.g. new subnets), manual intervention in response to automated
alerts, and honour systems (whereby users are asked not to do certain things).
Participants report using CLIs, scripts, web GUIs, firewall GUIs, and commer-
cial tools like Linewize [87] and Active Directory [111].

4.4. RESULTS 57

Similarly, participants rely on manual inspection and user feedback to
verify that policies are implemented correctly during network analysis. For
example, “I'll just look at it”, “we get a few users to test it, and as long as
they’re OK, we’re onto the next job”. One participant reported using auto-
matic conflict detection when configuring firewall rules.

Participants often did not record policies, relying on their memories, or
the implementations themselves, e.g. one participant said “[policies] are on
the devices, and the devices only”, and another stated “[policy] is just written
out and applied, it’s [not] structured”. When they did record policies, it was
often for a specific purpose, such as when a new person joined their team,
and usually in an ad hoc format, like a spreadsheet or text document. One
participant said most of their enterprise’s network policies were “in the wiki,
with sample configs”, but that there was no consistent format.

4.4.4 Overall Research Question (RQ2)

What concepts do network operators manipulate and analyse?

We extracted common, non-overlapping concepts from the policies iden-
tified in RQ2.1, using RQ2.2 and RQ2.3 to contextualise the policies, yield-
ing nine orthogonal dimensions for representing network policy. (i) User,
(ii) Device, (iii) Locus, (iv) Traffic features, (v) Physical location, (vi) Tempor-
ality, (vii) Authentication, (viii) Trigger, and (ix) Action. We claim that the
majority of policies needed to operate an enterprise network can be concisely
formulated in terms of these dimensions (see below for details).

Our dimensions could be implemented differently in different networks,
with each having enterprise-specific ‘properties’. Properties could be drawn
from internal or external data sources, such as employee databases, official
records, or historical statistics. Thus, dimensions are invariants, and apply to
all enterprise networks, while properties associate network-specific informa-
tion with a dimension. Below we describe each dimension alongside example
properties and scenarios. We represent properties with ‘dot’ syntax, where the
(capitalised) dimension precedes the (lower case) property, e.g. Device.name.
Braces indicate that a property belongs to another dimension, e.g. Device.{
owner: User} indicates that the Device dimension has an owner property which
is of the User dimension.

58 CHAPTER 4. CONCEPTS FOR OPERATOR INTENT

D1) User: Describes individual network users, allowing policies to address them.

Example Properties

* Identifier: e.g. name, student ID number.
* Status: Current authentication status (e.g. logged in, logged out).
* Role: e.g. student, staff, manager. Roles could be hierarchical, as in RBAC [54]

Example Scenarios

Traffic could be tied to known users for purposes such as accountability and se-
curity, e.g. with policies like “log User.identifier for all traffic to servers which
store confidential data”; User.{status: Authentication} could be revoked if
the user has been inactive on the network for too long.

D2) Device: Provides an abstraction for devices connected to the network.

Example Properties

* Identifier: e.g. name, device number.

* Classification: An operator-assigned tag, e.g. server, loaner device, or lab
computer. Similar to User.role

* Last activity: Time since last activity.

* Operating system: The device’s operating system.

* Judgements: Classifications created by services, e.g. ‘infected with malware’.

Example Scenarios

Traffic could be linked to originating devices, e.g. Locus.{source: Device}; or
devices could be linked to users, e.g. Device.{user: User}.

D3) Locus: Lets policies express relationships among network entities. Many
PDLs have a similar concept [92], e.g. Ponder [11] policies have a ‘subject’ which
acts on a ‘target’.

Example Properties

* Path: The path the traffic was (or will be) forwarded on through the network.

* Source: Could be expressed in terms of User, Device, or Traffic Features.

* Destination: As above. Multi/broad-casts might have multiple destinations.

* Info: Metadata related to the forwarding path (edge switches could populate
this to explain their decisions to the network management system).

Example Scenarios

Stop a user transmitting to a server, but let the server transmit to that user, e.g. “if
Locus.{source: User}.id matches user X and Locus.{destination: Device
}.id matches device Y, block”; Require some devices (Locus.{source: Device
}.classification) to use certain ports (Locus.{source: Traffic}.port)

4.4. RESULTS 59

D4) Traffic Features: Encapsulates low-level traffic attributes, allowing network
policies to refer to information in packet headers.

Example Properties

* Protocol: e.g. TCP, UDP, HTTP, ICMP, BGP, SSH, SFTP, or SNMP.

* Bandwidth: Throughput, or cumulative usage over a given time period.

* Locus: Including traffic source and destination (e.g. URL, IP, or MAC).

* VLAN: For which the traffic is tagged.

* Flow: Allowing policies to capture flows, in addition to individual packets.

Example Scenarios

Block certain types of traffic at certain times, e.g. if Traffic.protocol == HTTP
&& User.exam_conditions, drop packets.

D5) Physical Location: Links traffic to a place, which could be geographic or
enterprise-specific (e.g. ‘Los Angeles’, vs. ‘building 40°).

Example Properties

* Address: e.g. 123 Example St, Los Angeles.
* Room: e.g. Room 123, building 12, campus A.

Example Scenarios

Enterprises often restrict remote access to networks, e.g. by only allowing con-
nections to some devices via the local network by default, with exceptions for
SSH and SFTP for certain users. However, this requires operators to consider
low-level details. Alternatively, a high-level policy could reference the source’s
location (Locus.{source: Location}.campus), delegating the low-level imple-
mentation details to the network management framework. We envision that this
would be supplied by a vendor, or a separate internal team.

60 CHAPTER 4. CONCEPTS FOR OPERATOR INTENT

D6) Temporality: Enterprises may apply policies only at certain times which
corresponding to real-world events (e.g. work hours: 9am-12pm, 1pm-5pm).
An expressive system would allow operators to directly reference events instead.
Event information could be supplied by systems like enterprise calendars.

Example Properties

* Start: The time an event begins

* End: The time an event ends.

* Duration: How long an event lasts.

* Description: Additional information about an event.

Example Scenarios

Restrict network access for students during exams (e.g. if User.role is student
and User.{calendar: Temporality}.now.eventType is exam restrict network
access. With such a policy, non-technical staff could create calendar events for
exams and network access would be automatically restricted, saving network
operators time; Another policy could unlock the doors in a building an hour
before work begins and close them an hour after it ends.

D7) Authentication: Network policy frequently deals with authentication. This
dimension would enable authentication-aware policies. Additionally, ‘Authentic-
ation’ need not be tied to specific users or devices.

Example Properties
* Authenticator: The entity (e.g. service, or User) responsible.

* Target: The entity to which authority is granted (e.g. a User or Device).
* Method: e.g. RADIUS, WPA2, LDAP.

* Privileges: Which actions the target is authorised to perform.

Example Scenarios

Rather than a static policy which says “users X, Y, and Z may access service S
” we could create a more general policy which says “before accessing service
S Authentication.privilege must match description D”. Any device with a
signed certificate (or similar) can thus demonstrate that it has permission to do
XYZ, without needing to identify itself, or its user. This could simplify network
management in a number of ways. For example, the physics department at a
university could give students physical or virtual access tokens for a secure lab
(without needing a network operator to set a flag on the students’ accounts).
This demonstrates the flexibility of our proposal. In an SDN environment such
authenticated privileges could be published in many different ways, so that users
do not have to worry about installing certificates or entering pass-phrases.

4.4. RESULTS 61

D8) Trigger: Policies should be able to respond to predefined events.

Example Properties

* Priority: Some triggers could be considered urgent.

* Issuer: The entity (e.g. Device) which issued the trigger.

* Metadata: Additional information which the network management system can
analyse to determine an appropriate response.

Example Scenarios

In the event of a fire alarm (if Trigger.type == fire alarm) all users could be
logged off their computers; Five minutes after a user account is created in a man-
agement system (Trigger.{issuer: Device} is Active Directory server)
corresponding accounts could be created in other enterprise systems (such as
Google Docs, Outlook, or local Git server); When a user logs in for the first time
each day this could be recorded (e.g. log Trigger.{info: User}.identifier);
One policy could be temporarily deactivated when another becomes active.

D9) Action: Many of the policies we identified include notions of an action
or a response to some condition. Thus, we propose a corresponding Action
dimension. Different actions could be available in different networks, depending
on the implementation and capabilities of each. Each concrete action offered by
a network would be a property of the Action dimension.

Example Properties

* Packet handler: e.g. drop, forward, duplicate, redirect.
* Notify: An operator to alert.
* Script: A software program to run.

Example Scenarios

Prevent certain devices from sending traffic to one another (Action.drop) to
achieve traffic isolation, without prescribing a low-level implementation strategy
like VLAN tagging; In a service-function chaining [112] architecture, redirect
traffic through network middleboxes to apply additional services, e.g. Action.
redirect to Device.id = 1234.

62 CHAPTER 4. CONCEPTS FOR OPERATOR INTENT

4.5 Applying the Proposed Dimensions

We identified 40 real-world policies in RQ2.1. Below, we provide natural lan-
guage descriptions of some of them (see Appendix B.4 for the rest), and show
how each may be expressed in terms of our proposed dimensions. Note that
other representations of these policies might be possible. Policies are given
first in each example, and their dimensions are inset below them. Traffic Fea-
tures and Physical Location are given as Traffic and Location, respectively.

P1. When a user account is created or deleted in the user management system,
update the accounts in Active Directory, Office365, and Google (corporate).

Dimensions

* Trigger: User creation or deletion in the user management system.

* Action: Run scripts to update the relevant services via their published APIs.

P2. During exam conditions students may not use the school Wi-Fi network
(ethernet only), and may only access specific services (e.g. Google Docs).

Dimensions
e User: If User.role is student.
* Temporality: If event (exam) is in progress.

e Traffic: If Traffic.protocols contains Ethernet and HTTP/S, or if Locus.{

destination: Traffic}.url is www.docs.google.com

* Action: Allow packets, else drop packets.

P3. trademe.co.nz is blocked during work hours for most users.

Dimensions
e Traffic: If Locus.{destination:Traffic}.url is www.trademe.co.nz

* Temporality: If it is during work hours (e.g. defined by an internal database
or calendar, which is aware of morning tea, lunchtimes, and public holidays).
* Authentication: If Authentication.privilege does not have allow TradelMe
(NB: This allows network administrators to grant ad hoc access to TradeMe).

* Action: Drop packets.

4.5. APPLYING THE PROPOSED DIMENSIONS 63

P4. When a student visits a website on a hard-coded list (e.g. a list of banned
sites) the dean responsible for that student gets an email.

Dimensions

e User: If User.role is student.
e Traffic: If Locus.{destination:Traffic}.url matches [...].

¢ Action: Send an email to User.{dean: User}.email.

P5. Virtual private networks (VPNs) and proxies are blocked.

Dimensions

* Traffic: If Locus.{destination:Traffic}.url matches list of known proxies,
or Traffic.protocol is PPTP (a well-known protocol used in VPNs).

* Action: Drop packets.

P6. Regular users are allowed to access the internet and some internal services
only, and may only use ‘web’ protocols.

Dimensions
¢ Locus: Source (a User), and destination (a Device).
* User: If Locus.{source: User}.role is regular.

* Traffic: If Locus.{destination: Traffic}.ip_address is not local to the
network and if Traffic.protocol is HTTP, HTTPS, or SSL.

* Action: Allow packets, else drop packets.

P7. Students may not send traffic to one another.

Dimensions

* Locus: Source (a User); Destination (a User)

¢ User: If Locus.{source: User}.roleandLocus.{destination: User}.role
are both student.

e Device: If Device.classification is not lab.

* Action: Drop packets.

P8. The BitTorrent protocol is blocked.

Dimensions

* Traffic: If Traffic.protocol is BitTorrent.
* Action: Drop packets.

64 CHAPTER 4. CONCEPTS FOR OPERATOR INTENT

P9. Only the on-site backup servers are permitted to send traffic to the off-site
backup repositories.

Dimensions

e Device: If Locus.{source: Device}.classification and

Locus.{destination: Device}.classification are both backup server.
* Location: If Location.type is not on-site.

* Action: Allow packets, else drop packets.

P10. No Windows devices should be permitted to send traffic to the on-site
backup (to reduce the chance of malware infection).

Dimensions

* Device: If Locus.{destination: Devicel}.classification is backup and

Locus.{source: Device}.os is Windows.

* Action: Drop packets

P11. If a student user authenticates to the staff Wi-Fi local area network (LAN),
e.g. by guessing the password, redirect them to an ‘access denied’ web page.

Dimensions
e User: If User.role is student and...
* Traffic: If Traffic.LAN is staff and Traffic.protocol is HTTP.get

e Action: Send an HTTP 302 redirect to the source device.

4.6 Discussion

We identified nine policy ‘dimensions’ — orthogonal concepts which can de-
scribe a range of policies. They are User, Device, Locus, Traffic Features, Physical
Location, Temporality, Authentication, Trigger, and Action. We also identified
40 real world policies (RQ2.1), seven motivations for creating them (RQ2.2),
and tools and techniques used to implement them, as well as people consul-
ted, and policy record formats (RQ2.3). We also showed how our dimensions
can be used to express these policies (Section 4.5). Below we discuss the
implications of our work.

4.6. DISCUSSION 65

4.6.1 Use Cases

Based on our interviews and our reading of the literature, we identify three
main network policy stakeholders: instigators (the people or organisations re-
questing policies), implementers (the people who modify networks to enact
policies), and subjects (the people who are affected by the policies). These
are not mutually exclusive, e.g. an operator may be a policy’s instigator, im-
plementer, and subject. Of these groups, we expect that implementers will be
most interested in our dimensions.

We envision our dimensions being represented in a network management
API or language, possibly in the form of a northbound interface. A program
running on the controller could classify packets in terms of our dimensions
and apply policies (written in the same terms) to them. Any given policy
need not involve all our dimensions, but could be composed of a relevant
subset. Granular policies could be combined into more complex policies using
predicates like Equals, Or, And etc. and conditionals like If. Note that we do
not specify any particular PDL or format, but rather present our dimensions
as the core concepts that an API or language should be able to express.

In addition to formulating policies, our dimensions could be used to intu-
itively analyse networks. This would let operators answer questions more nat-
urally, e.g. “how many many users are in the library?” instead of “how many
unique MAC addresses have transmitted data to switches 1 and 2 today?” We
investigate this in Chapter 5 by developing a language for querying networks.

Network operators could also use our dimensions to document policy in
a consistent and readable manner, which could improve their communication
with each other, and with users [20].

4.6.2 Implications for Network Management Tools

In Section 4.4.2 we identified motivations for creating and modifying policies
(RQ2.2). These show that network policy is influenced by several factors, not
all of which are germane to the network’s main purpose (Kraemer came to a
similar conclusion [20]). This is evidence that network management require-
ments are diverse and unpredictable, and may explain the continued use of
general purpose tools like scripting and direct manipulation of hardware, des-

66 CHAPTER 4. CONCEPTS FOR OPERATOR INTENT

pite their limitations. We argue that more effective tools can be created by
applying knowledge of network management practice (e.g. see Chapter 5).

The motivations we identified are a step towards this. For example, users
and enterprises have different (and sometimes competing) requirements (see
M1 and M2), so operators need flexible tools which can make circumstantial
exceptions to wide-ranging policies (perhaps by facilitating network changes
for on-site events like conferences, or by making it easy to grant access to
P2P file transfer services for users who legitimately need them). Another ex-
ample is that users do not like feeling obstructed by network policy. In such
cases they look for ways around policies, or petition for changes. However,
our participants said they often trust users act appropriately (see M5). Future
network management tools could develop this relationship by automatically
communicating policies (e.g. in terms of our dimensions) and their motiva-
tions, to educate users and gain their support. This also suggests that tools
that provide highly granular control over networks and their users may not be
necessary, especially if such tools are harder for operators to use and maintain.
The size of the network may play a role in this decision, e.g. a small business
may be able to operate their network on trust, but a telecommunication pro-
vider certainly cannot.

Our participants currently use manual workflows for managing their net-
works (RQ2.3), and their tools reflect this (e.g. firewall rules and CLIs). This
suggests that there is an opportunity for automated tools, but raises a ques-
tion: why are operators not already using such tools? The market might be
underserved, or existing tools may not be suitable, perhaps due to a lack of
empirically-grounded requirements for network management (as we argue in
Section 4.2.1). Regardless, designers need to understand users’ goals (RQ2.1),
motivations (RQ2.2), and workflows (RQ2.3), to create compelling tools.

Network management tool designers need to reconcile three forces: their
desire to introduce new ideas (such as those we present in this chapter), net-
work operators’ established practices (see M3, M6, and RQ2.3), and potential
changes in management practice as operators adopt new paradigms like SDN.
We expect our dimensions to remain stable despite these forces, and help
designers create new features while retaining backwards compatibility, and
remaining adaptable to future challenges.

4.6. DISCUSSION 67

4.6.3 Enterprise Concepts

We observed that participants are interested in enterprise-domain events, like
exams and conferences, because network policy needs to take them into ac-
count. This is corroborated by RQ2.2 (see M1), and some PBNM research [5].
However, tools from the literature and products from industry do not typic-
ally support this. For example, for implementing policies which reference a
Physical Location (our fifth concept), e.g. “users in the event centre should
have unrestricted internet access”, our participants’ tools provide only catch-
all solutions like VLANs or grouping network switches. Similarly, to enable or
disable policies at certain times (see Temporality, our sixth concept), network
operators must codify the start and end times of real-world events in net-
work configurations. Thus, operators must manually bridge the gap between
the enterprise and network domains. Linewize (see Section 2.4.3) does this
better, by letting operators modulate policy based on context, e.g. during class
time, or outside it. These concepts (Temporality and Physical Location) suggest
that network management tools should support enterprise domain concepts.
We investigate this further in Chapters 5 and 6, as part of RQ3.

4.6.4 Validity

We used several of Creswell’s validation strategies [108]. (i) Peer review:
We asked two colleagues who were not involved with the study to evaluate
its design. One was a very experienced researcher familiar with conducting
qualitative and quantitative research in the field of human-computer interac-
tion. The other was a post-graduate student with survey research experience.
(i) Negative case analysis: See Section 4.3.3 (iii) Rich description: In Sec-
tion 4.3.1 and Table 4.1 we provide an overview of the study participants, the
organisations they work for, and the networks they work with, allowing read-
ers to determine the extent to which our findings can be generalised. Below
we identify threats to the validity of our findings.

Bidirectional ambiguity: We might have misunderstood participants, or vice
versa, or some participants may have interpreted questions differently to oth-
ers. During the interview process we clarified questions for participants, and
asked them to check our understanding of their responses.

68 CHAPTER 4. CONCEPTS FOR OPERATOR INTENT

Our research relies on participants’ perception of reality: Participants
may not have a realistic, accurate or representative understanding. This
would be averaged out over a large sample, but our sample size was small.

Only one data collection method: We relied on semi-structured interview-
ing as the sole data collection method [101, p. 423].

Sampling bias: We used convenience sampling [106, Chapter 6], so we can-
not make statistical inferences to the target population [107, p. 85] (but we
can still achieve theoretical generalisation [101, p. 69]). Additionally, parti-
cipants may have discussed only those policies which happened to occur to
them, or those which our questions led them to consider.

Small sample size: The majority of people approached (10 out of 15) were
not interested in participating. However, interviewing let us make the most of
the data points we obtained by pursuing new lines of enquiry ad hoc, asking
detailed follow-up questions, and meeting face-to-face with participants (in
all but one case). Indeed, by the fourth and fifth interviews we were able to
anticipate participants’ responses, and did not need to create new codes (see
Section 4.3.3). This indicates the data saturation point (see Section 4.3.1),
and we note that previous work uses similarly small sample sizes [20].

Confounding variables: It is possible that the size of an enterprise network
may affect participants’ responses. For example, small enterprise networks
(serving tens of users) may differ significantly in how they are managed from
large ones (serving thousands of users). Additionally, the manual workflows
and traditional tools (e.g. scripts and CLIs) our participants use to implement
policy (see RQ2.3 in Section 4.4.3) could bias our results towards certain
dimensions (e.g. Traffic Features may have been overrepresented).

4.6.5 Reliability

Reliability refers to the reproducibility of a study’s results [106]. Few of our
participants’ statements were contradictory, and most were confirmatory, sug-
gesting that the experience of creating and maintaining network policy is con-

4.6. DISCUSSION 69

sistent across a diverse range of enterprises. Greenberg made a similar ob-
servation [42]. We noted other consistencies: (i) Participants used the same
(relatively small) collection of low-level technologies, e.g. VLANs, Active Dir-
ectory, firewalls, ACLs, 802.1X, LDAP, and scripting languages like Python
and Bash; (ii) network policy was informally documented at all of the en-
terprises, with the network itself being the primary form of documentation;
(iii) participants use similar processes for verifying policy implementation, i.e.
mostly informal manual testing, relying heavily on technical expertise and de-
tailed knowledge of the network; and (iv) participants reported that the most
frequently modified network configurations were port:VLAN mappings and
firewall rules.

We only had one coder, so inter-coder reliability® is not a concern. We
achieved code stability® by concisely defining each code (see Appendix B.3),
by frequently reviewing previously coded statements, and by using our code
network to put codes into context with one another (see Section 4.3.3).

4.6.6 Future Work

Our policy dimensions could help researchers develop targeted surveys to
verify or repudiate our findings (i.e. a confirmatory study, following on from
our exploratory one). Another possibility would be to develop a study with
the same goal as this one, but with a different methodology (e.g. grounded
theory, or quantitative research techniques).

In Chapter 5, we use our dimensions to develop a QL for analysing net-
works. We could do the same for network configuration, e.g. by using them
to develop a northbound API, which we could trial with practitioners.

We could make our methodology (see Section 4.3) more generic, and ap-
ply it in a variety of contexts (other than network management, for example),
to elicit real-world, and empirically-grounded, needs in other domains.

Our study captured some details about how operators document policies
and communicate them to each other and to users. We could investigate this
specifically, e.g. by identifying policy record formats, commonalities in ad hoc
formats, and challenges in policy communication.

> How consistently different researchers code the same material [108, p. 209].
® The extent to which our use of the same codes changes over time [103,108].

70 CHAPTER 4. CONCEPTS FOR OPERATOR INTENT

There were some potential policy motivations we expected participants to
identify, but which they consistently said were not significant. Future work
could investigate if these really are drivers for other enterprises. (i) Safety:
Participants said this is not handled by the network and does not influence
network policy. (ii) Privacy: Participants indicated that that privacy is handled
in other ways, e.g. by educating users. (iii) Legal: e.g. participants described
delegating responsibility for copyright infringements to users, similar to inter-
net service providers (ISPs). (iv) Congestion: Participants indicated that their
networks were not bandwidth-constrained.

4.7 Conclusion

Networks today are fragile and labour intensive to maintain. This is because
they need to satisfy changing requirements but are statically configured using
packet-level tools with inconsistent interfaces. SDN is one technology which
could provide stable, intuitive abstractions for network management through
northbound interfaces. While some progress has been made towards this goal,
much existing work still focusses on packet-level abstractions, and is not em-
pirically motivated. In this study we investigate which features an interface
for expressing operator intent should offer and, equivalently, pose the ques-
tion “what are the dimensions of policy space?”

We identified 40 real-world network policies (RQ2.1); seven motivations
common to them (RQ2.2); and tools and techniques used to implement them,
people consulted, and policy record formats (RQ2.3). We analysed the policies
identified in RQ2.1, using RQ2.2 and RQ2.3 to ensure we interpreted the
policies accurately, yielding nine orthogonal concepts for representing net-
work policies, which we call the ‘dimensions of policy space’. They are user,
device, locus, traffic features, physical location, temporality, authentication, trig-
ger, and action. We showed how these can be used to represent a range of
real-world network policies, and discussed the implications of our work for
network management tools. Our work may help engineers and researchers
to create or refine network management tools (such as the network QL we
develop in Chapter 5), network operators to document policies in a consistent
and readable format, and researchers to develop empirical studies.

Chapter 5

Scout: A Language for Querying Enterprise Data

5.1 Introduction

In this chapter” we address RQ3: Given the concepts identified in Chapter 4,
what would a query language for network and business data look like?

Our findings in Chapter 4 and the literature [5] show that network oper-
ators are concerned with business concepts (e.g. users, events, and physical
locations), in addition to network concepts (e.g. switches, and topologies).
However, media for storing network- and business- domain data are rarely
integrated [5], and may use different QLs. This can make it difficult for oper-
ators to answer questions about networks, for example, “how much data has
Jane received?” might be answered by querying separate relational and time-
series databases for Jane’s ID; her periods of activity on the network; which
devices she logged into; their MAC addresses; and switch byte counters for
those MAC addresses (see Section 6.4 for a detailed example).

Even when working with just one type of data, many network questions
can only be answered by writing multiple queries and combining their outputs
(e.g. see Section 5.7.3). This requires detailed knowledge of the available
data, an effort to craft queries, and post-processing to combine the results
[14-16]. In summary, we identify the following problems:

P1) Network and business data are separated.
P2) Multiple queries are needed to answer realistic questions.

P3) Querying requires detailed knowledge of data sources.

7 This chapter is based on our published work [113].

71

72 CHAPTER 5. SCOUT

We address these problems by using our nine ‘dimensions’ (see Chapter 4)
to develop Scout, a QL for answering questions about networks. We could
answer the question posed above (“how much data has Jane received?”) with
a single Scout query: Given: User{Name='Jane'}; Return: Bytes.sum(); Over
: today(). Scout has the following components:

* A general-purpose information model with which experts can represent
business- and network- domain concepts (e.g. users and switches) in
use-case specific schemas. See Section 5.4 for detail.

* A DSL with which users (including novices) can concisely express quer-
ies over such schemas. See Section 5.5 for detail.

* Analgorithm for executing queries by inferring relationships from schemas,
so that users do not need to state them in queries. See Sections 5.6.1
and 5.6.2 for detail.

We evaluate Scout with respect to the problems above by using it and
two existing languages, InfluxQL and PromQL, to answer a set of realistic
questions about networks. We find that Scout reduces the number of quer-
ies needed to answer questions about networks, as well as the complexity of
those queries (in terms of the number of database entities and properties they
reference). Scout also answers the questions without additional processing,
whereas the other languages rely on manual steps or external tools.

This chapter is organised as follows: Section 5.2 provides background
on data types and storage, information modelling, and QLs; Section 5.3 re-
views related work, including abbreviated QLs, graph databases, schemaless
databases, imperative querying, and natural language processing (NLP); Sec-
tion 5.4 introduces Scout’s information model and shows how we derived it;
Section 5.5 presents Scout’s syntax; Section 5.6 describes Scout’s query exe-
cution process; Section 5.7 details our evaluation of Scout; and Section 5.8
discusses our results, Scout’s applications, benefits and limitations, and future
directions for building on our work.

5.2. BACKGROUND 73

5.2 Background

Figure 5.1 gives an informal overview of the components needed to answer
questions about enterprise networks, based on our knowledge of the literat-
ure and commercial products. We group these components into three areas:
information modelling, data storage, and querying. Information models let us
describe entities and the relationships among them (e.g. users may have IDs,
and may be associated with a role such as ‘manager’). The physical storage
of data is handled separately, typically by databases. QLs use concepts from
an information model to retrieve data from storage on behalf of users. We
discuss these areas further below.

SQL INFLUXQL PromQL Scout UML ER CIM YANG ASN.1
—>C USER H QUERY LANGUAGE)—P(INFORMATION MODEL)
Uses DEFINED ON
A
REVIEWED BY USED To WRITE DEFINES
>
'g NAagIos y y
g G
& (ANALYSER) oS (QUERIES)m»(SCHEMAS)
E 2 AD-HOC SCRIPTS
= INTERPRETED BY EXECUTED BY DEFINE
\4 \4
User
OuTPUT ‘—‘P QUERY ALGORITHM) Locarion (ENTITIES)
RODUCES SwircH
DEFINE
NETWORK TELEMETRY BUSINESS DATA NETWORK HARDWARE EMPLOYEE RECORDS \4
NAME
(DATA)—>(SOURCES) ADDRESS C PROPERTIES)
Is By D
A
COLLECT ARE POPULATED BY
\ 4
(COLLECTORS)4—(DATA STORES)4—(ADAPTORS)
STORE DATA FROM RETRIEVE AND
SNMP POLLERS SDN CONTROLLERS INFLUXDB SQL DB JSON FiLes ~ FORMAT DATA FROM

Figure 5.1: Meta-model of querying systems. Examples are given in italics.
Colours correspond to topic areas: Red for information modelling; grey for
data storage; and purple for querying.

5.2.1 Data Types and Storage

We identified the following categories of data in the literature which can be
used to answer questions about enterprise networks: Business data, and net-
work data. The latter is comprised of network telemetry, and physical config-
urations. Collectively, we refer to these as enterprise data (see Figure 5.2).

74 CHAPTER 5. ScouT

(ENTERPRISE DATA

=

BUSINESS DATA) NETWORK DATA)

USER NAMES ~ PHYSICAL LOCATIONS ~ ROLES /

C CONFIGURATIONS) (TELEMETRY)

ToPOLOGY MAC ADDRESSES PORTS CPU USAGE DATA RATE ~ TEMPERATURE

Figure 5.2: Types of enterprise data (examples are given in grey)

Business data is information about an enterprise’s state, e.g. user roles,
campus layouts, or login sessions. It comes from business processes like em-
ployee onboarding and is typically stored in relational databases (RDBs), pro-
prietary formats, or ad hoc [102]. RDBs have ‘tables’ whose rows represent
data and whose columns define data attributes. For example, a ‘Role’ table
might have a row like [Admin, 1] and columns like ‘name’ and ID’. RDBs can
store relationships in data by storing identifiers from one table in another, e.g.
a ‘User’ table with ‘name’ and ‘role ID’ columns might have a row like [' John',

1] (indicating that John is an administrator). Business data is often seen as
‘external’ to the network, and is not typically integrated with systems for con-
figuring or analysing networks. This makes network management, including
analysis, more complex, less scalable, and more labour intensive [5].

Network telemetry “describes how information from various data sources
can be collected using a set of automated communication processes and trans-
mitted to one or more receiving equipment for analysis tasks” [114]. Tele-
metry is collected from forwarding devices, e.g. by simple network manage-
ment protocol (SNMP) pollers or SDN controllers, as time-stamped samples of
network state (e.g. packet counters or network hardware CPU usage) [115-
117] and often stored in time series databases (TSDBs). TSDBs are optimised
for large volumes of ordered, time-indexed data and focus on querying his-
torical data [118, Chapter 8.2] [119]. Telemetry can also be stored in stream
databases, which focus on real-time processing [120, p. 337], and may or may
not be time-indexed.

Physical configurations include information like device types, available

5.2. BACKGROUND 75

ports, serial numbers, and topology [121]. According to industry experts
we spoke to, enterprise network configurations are often recorded ad hoc
(e.g. spreadsheets or notes), or not at all, except in the network itself, and
in operators’ memories (see Section 4.4.3). Configuration data is often con-
sidered ‘static’ because it seldom changes (compared to telemetry, which is
‘dynamic’) [121]. However, this change still needs to be taken into account
when answering questions about networks. For example, a building’s data
usage can be measured by querying the switch which serves it. However, if a
second switch is added it should be queried too.

5.2.2 Information Modelling

Information models, such as the ER model [122], CIM [123], and UML [124]),
represent “concepts, relationships, constraints, rules, and operations to specify
data semantics for a chosen domain of discourse” [125]. Information mod-
els are solely concerned with describing entities (e.g. users and devices) and
their relationships, not with manipulating or physically storing their data [5,
Chapter 1]. This makes them independent of any protocol or technology.

This is especially important in network management, where similar products
(e.g. routers) often have different implementations and data formats (see Sec-
tion 2.2.3). An information model for network management can provide ab-
stractions to simplify the differences among managed entities [5]. We develop
an information model for Scout which can represent enterprise data, includ-
ing business and network data (see Section 5.2.1). This allows Scout to query
a wider range of data sources and answer questions about networks more
intuitively than existing solutions.

One way to use an information model is to create a case-specific ‘schema’,
which describes the data sources in a given enterprise. For example, an ER-
based database schema for tracking enterprise devices issued to employees
might have ‘user’ and ‘device’ entities, linked by a one-to-many relationship
(because one user may be issued many devices). See Figures 5.3 and 6.1 for
schemas we created with Scout’s information model.

76 CHAPTER 5. ScouTt

5.2.3 Query Languages

DSLs are formal languages designed for specific tasks in a particular domain [126],
e.g. HTML defines the structure of web pages, and AWK filters and transforms
text. In contrast, GPLs are suitable for many tasks in multiple domains, e.g. C

is used in embedded systems, web servers and game development. DSLs are
typically less complex to implement than GPLs [127] and can be more user
friendly [126], e.g. due to domain-specific abstractions and features [128].
GPLs can solve more problems than DSLs, obviating the need to learn more
languages, and may benefit from larger ecosystems of users, tools and doc-
umentation [129]. Many DSLs are implemented with GPLs (Scout is imple-
mented in Python).

QLs, such as Scout, are DSLs used to search data stores with queries. QLs
are often specialised, e.g. RDBs are typically queried with SQL; The TSDB
InfluxDB [12] is queried with InfluxQL, which supports time-series-specific
operators and functions; and stream databases are queried with continuous
query languages like [130]. Query output can be interpreted directly or ana-
lysed with tools like Nagios [131], Grafana [99], or Prometheus [13].

5.3 Related Work

5.3.1 Abbreviated Query Languages

RDBs store relationships implicitly, by reproducing identifiers from one table
in another (see Section 5.2.1). To answer questions involving relationships,
e.g. ‘which users are administrators?’, users must manually join tables, e.g.
select * from User join Role on User.roleID=Role.ID where Role.name=
'Admin'. Abbreviated QLs, like Scout, automate this process. We discuss three
such QLs below, focussing on CQL [132], which is the most similar to Scout.

CQL users write queries with a GUI, specifying: sets of source, intermedi-
ate, and target entities (defined by a database schema), selection criteria (e.g.
name="'Jones'), and relationships (edges in the schema graph). This syntax is
more complex than Scout’s, but gives users greater control.

CQL automatically finds paths from sources to targets which satisfy the
given selection criteria and which contain the given relationships. Like other

5.3. RELATED WORK 77

abbreviated QLs (including Scout), CQL suffers from the “ambiguous path
problem” [132]. Imagine the cyclic relationship between the entities Student,
Teacher, Course, and Enrolment in a schema. The paths Student-Teacher—
Course and Student-Enrolment-Course start and end at the same entities,
but have different meanings. The former implies “courses taught by teachers
who advise a given student”, and the latter “courses in which a given student
is enrolled”.

CQL mitigates this by generating a pseudo-natural language explanation of
each path, and asking the user to choose one to execute. For the query “what
course(s) is Marshall taking from associate professor Jones?” CQL might gen-
erate this explanation: “find C_name such that course has course-registration
and consist of Section; course registration enrolls Student with s_name ‘Mar-
shall’ and Section is taught by Teacher with T_title ‘associate professor’ and

77

T_name Jones™ [132]. Scout displays paths verbatim (e.g. Student-Teacher—
Course), and lets users choose one to execute. Similarly to CQL, Scout users
can reduce the number of candidate paths by making their queries more spe-

cific (Section 5.5 for details).

When the user selects a path, CQL generates and executes an SQL query
and returns its output. This frees users from manually joining tables, as they
would in SQL, letting them write queries intuitively, without understanding
the structure of the database. CQL is aimed at non-technical business and
administrative users and, like Scout, was developed with usability in mind. In
an experiment, Owei found that users performed better with CQL than with
SQL [133]. See Chapter 6 for more details, and our Scout user study.

INFER [134], built on the AutoJoin query inference engine [135], attempts
to fill in missing ‘join’ statements in SQL queries. This lets users save time and
effort by writing partial queries in a familiar syntax. Similarly to CQL and
Scout, INFER displays all valid completions for a given query, ranked by the
number of inferred JOINs, and lets users choose one to execute.

SQLSynthesizer [136] generates queries which produce a given output
from a given (small) dataset. Users can reuse these queries on larger datasets.
This reduces the knowledge users need of the data, but requires considerable
effort, e.g. to construct input datasets and validate generated queries.

CQL, INFER, SQLSynthesizer, and Scout generate SQL queries, but in Scout’s
case this is an implementation detail. Scout does not prescribe how data is

78 CHAPTER 5. SCOUT

stored or retrieved (as recommended by Strassner [5, Chapter 1]), leaving
users free to choose a storage medium. However, someone has to pay the
one time cost of telling Scout how to retrieve and format data, as discussed
in Section 5.7.1. Unlike SQL-based QLs, Scout supports time stamped data,
allowing it to query network telemetry.

5.3.2 Graph Databases

Graph databases take the idea of traversing schemas further, by explicitly
modelling data with graphs (where nodes represent entities and edges the
relationships among them) [137]. Users typically query graph databases by
implementing a graph traversal, defining a search predicate for interesting
entities, or pattern matching graph structures [138]. This avoids manually
joining data, but requires expertise and an effort to ensure correctness.

Unlike RDBs, most graph databases (in 2020) do not enforce a consistent
data format, and hence are often called ‘schemaless’ [137]. This lets them
absorb messy, real-world datasets, but can also make it harder for users to
write queries, because they lack an overview of the data [139]. Scout strikes
a balance; it has a schema to structure data, but uses graph database concepts,
like path finding, to make writing queries less tedious and error prone.

Graph databases are optimised® for highly connected data, where users
care as much, or more, about the relationships between entities as the entities
themselves [137]. For example, when answering questions about social net-
works (‘who is the most influential person in my social network?’), or network
topologies (‘which VMs are connected by routers of the same type?’)

Early versions of the Nepal QL [141] use graph databases to store and
query network topologies. Nepal queries describe paths through a network
topology using SQL-style syntax, e.g. ‘which virtual network functions (VNFs)
are implemented by host with ID 1?’ could be written as retrieve P from
paths P where P matches VNF()->VM()->Host(id=1); Nepal gives users more
control (e.g. with features like joins and nested queries), but its usability has
not been evaluated (see Chapter 6 for our Scout user study). Like Scout,
recent versions of Nepal are not tied to a specific database technology, to

8 For example, by storing direct memory addresses to adjacent nodes instead of abstract iden-
tifiers, to improve performance [140].

5.3. RELATED WORK 79

make it easier to integrate with existing tools, and to support disparate data,
e.g. relational and temporal data [142]. However, Nepal focusses on finding
and analysing paths in network topologies (especially large, virtualised ones),
whereas we focus on answering questions about entities in smaller enterprise
networks. One consequence of this is that Nepal queries must be written as
paths, whereas Scout’s syntax may be more intuitive to our target audience.

Uddin used graph concepts to search network configuration and state
data [143]. Users can search for properties without specifying entities (as is
required in RDBs), and weakly structured (though not quite schemaless) data
lets users find output with imprecise semantics. For example, if data sources
use the term “load” ambiguously, a query could output both CPU load and
packet throughput. The authors compare this to search engines like Google
and discuss result ranking [144].

5.3.3 Schemaless Databases

Schemaless databases can store unstructured data® (e.g. raw data [145]) and
perform better than RDBs for very large datasets (e.g. social networks, tele-
metry from large networks) [146]. Schemaless databases sacrifice structure
and standardisation for flexibility. Without a schema, users must ensure that
data sources write the same properties as data analysers read, and that both
interpret values the same way. This decreases the cost of implementation and
increases the cost of maintenance [147, Chapter 10]. We chose to use schemas
with Scout, because enterprise data is typically well-structured, and because
we are interested in small-medium sized enterprises which are unlikely to gen-
erate enough data to benefit from schemaless databases (see Section 5.2.1).

Several tools for storing and querying telemetry use schemaless databases,
including Google’s Borgmon [147, Chapter 10]. Borgmon uses the “varz”
information model, which requires that data points have a time stamp and
a value. An information model which requires time stamps cannot support
business data (see Section 5.2.1), exacerbating P1. Because varz does not en-
force timestamping, Borgmon could theoretically support non-temporal data
by passing null timestamps. However, this could lead to errors during query
processing, e.g. if a data processor assumes all data will be timestamped. This

° They can also be used to implement structured databases, but this is outside our scope.

80 CHAPTER 5. SCOUT

highlights the advantages (flexibility) and disadvantages (lack of standardisa-
tion) of schemaless information models.

Prometheus and InfluxDB are TSDBs with information models similar to
that of varz [148-150]. However, Prometheus supports time stamping, and
InfluxDB supports schemas. InfluxDB uses InfluxQL [27], an SQL-like query
language, and, like Borgmon, is not well suited to business data.

5.3.4 Imperative Querying

The QLs discussed above are declarative, meaning that users state what they
want to achieve, and the language decides how to do it. This lets users fo-
cus on the entities they are interested in, and how they are related, without
worrying about how to manipulate them [151].

Flux [152] is an imperative scripting language inspired by Javascript [153]
and designed to replace InfluxQL [154]. Because it is imperative, Flux lets
users define and manipulate state, like variables or ad hoc data structures
[151]. This can make it easier for users to combine data from multiple data-
base entities and structure complex analyses. Like Scout, Flux aims to make it
easier for users to query data, but where we make queries less complex, Flux
makes it easier to express complex queries.

5.3.5 Natural Language Processing

Arguably the most extreme form of declarative querying involves NLP, which
interprets every day, human language and automatically enacts users’ intent.
Net2Text [94] uses NLP to implement a “chatbot for networks”, which can
respond to queries like “what happens to the traffic destined to CDN x?” with
responses like “traffic enters via n ingresses and mostly (85%) leaves via IXP 1;
traffic is load balanced between A and B”. Net2Text uses a context-free gram-
mar (CFG) consisting of ~150 production rules to convert natural language
input into an SQL-like syntax which is executed on a database containing a
network’s forwarding state. It summarises the output (avoiding providing too
much output on the one hand, or too little detail on the other), then trans-
lates it back into natural language. The authors focus more on summarisation
and translation, i.e. post-processing query output, than on parsing queries and
generating that output, which is our focus in this chapter.

5.4. INFORMATION MODEL 81

Chatbots have limitations, for example, they can misinterpret user input,
and cannot usually explain or justify their outputs, making them hard to trust
[155,156]. They can also give users the false impression of intelligence while
being unable to understand important aspects of human speech [157]. Formal
languages like Scout are precise and predictable.

5.4 Information Model

We created an information model for Scout which defines concepts and rules
for describing enterprise data (see Section 5.2.1). We intend for expert net-
work operators to use our information model to create a Scout schema for
their enterprise (e.g. see Figure 5.3), with which other network operators, in-
cluding experts and novices, can write queries. See Section 5.7.1 for more
detail on how Scout is set up and used in practice. Below we discuss how we
designed Scout’s information model, and its final composition.

5.4.1 Information Model Design

In this section we discuss each of the constructs in Scout’s information model,
and identify the requirements which motivate them. See Table 5.1 for a map-
ping between requirements and information model constructs.

Requirements

Our requirements for Scout’s information model are drawn from the prob-
lems identified in Section 5.1, our work in Chapter 4, and the literature. The
first two are functional requirements (behaviours), and the latter are non-
functional requirements (qualities) [158]. Scout’s information model should:

R1. Be able to describe enterprise data, including business and network
data, as described in Section 5.2.1 [5].

R2. Support the dimensions we identified in Section 4.4 (User, Device, Loca-
tion, Temporality, Authentication, Traffic Features, and Locus), excluding
Trigger and Supported Actions, as Scout focuses on network analysis and
these are most relevant to monitoring and alerting. These dimensions
could be supported in future.

82 CHAPTER 5. SCOUT

R3. Be user friendly. Users interact with the Scout DSL and Scout schemas,
both of which are built on the information model.

R4. Be independent of implementation details like physical data storage [5].

Constructs

Our information model needs a construct to represent specific pieces of data,
e.g. a user, or a counter value at a moment in time. Business data and network
telemetry are often stored in RDBs and TSDBs, respectively. Both kinds of
database represent data as tuples — ordered sets of values whose indices map
to properties, e.g. a date with a year, month, and day could be represented
with the tuple (2021, 01, 01). We adopt this for our information model, and
call Scout tuples ‘atoms’ to clearly identify them.

Next, our information model needs a way to organise atoms, so that users
can retrieve those in which they are interested. RDBs and TSDBs group tuples
with common properties, e.g. a RDB might define a ‘user’ table with the prop-
erties ‘name’, ‘age’, and ‘ID’ which outputs tuples like (John, 34, 123). We use
a similar construct in our information model, which we call ‘nodes’. Nodes
define properties and (conceptually) output atoms, but physically storing and
retrieving data is the responsibility of the storage medium.

Our information model has different types of nodes for different types
of data (per R1). Table nodes are the simplest, and are suited to business
concepts like user, device and location (per R2), and configuration data like
model and serial numbers. Time series nodes (and their atoms) define a time
stamp property and are suited to telemetry, including traffic features (per R2).

Some enterprise data involve a notion of duration (per temporality from
R2), e.g. user authentications (see R2), or exams. Our information model
could represent these with time stamps (start and end), but this would make
the QL less usable (R3), as users would need to convert between time stamps
and intervals (e.g. see Section 6.4). Instead, we add interval nodes, which
define an interval property, as do their atoms. This lets Scout automatically
cluster time stamped atoms using duration-based data, e.g. all the counter
values gathered during a user log-in session.

To represent relationships (per locus from R2) we add edges to our in-
formation model. These link nodes with common properties, e.g. ‘switch’ and

5.4. INFORMATION MODEL 83

Table 5.1: Information model constructs vs. functional requirements

Functional Requirement Table Node Interval Node T.S. Node Labelled Edge

Business data N - — _

v - -

\

R1 Configurations
Telemetry - - v -
User

Device

ASEENEEN
|
|
|

Location

R2 Temporality
Authentication -
Traffic Features - - v -
Locus - - - v

v indicates that a construct (top row) is motivated by a functional requirement (leftmost column).
Atoms are omitted, as they are represented by their corresponding nodes.

‘port’ nodes might be linked by an edge labelled with the ‘switch ID’ property.
This turns schemas created with our information model into graphs, giving
users an intuitive view of their data, and allowing Scout to construct transit-
ive relationships between nodes (see Section 5.6.1), improving usability (R3).

To further aid usability (R3), we add parent nodes for grouping related
table, interval, and time series nodes (which we call ‘data’ nodes, collect-
ively). Parent nodes do not output atoms, but instead share their edges and
properties with other nodes via inheritance edges (e.g. see how this simpli-
fies the tree of nodes rooted at ‘Port Traffic’ in Figure 5.3). Parent nodes also
let schema designers change how Scout interprets a schema, improving the
quality of query output (this is discussed in Section 5.6.1).

5.4.2 Information Model Summary

Schemas created with our information model represent data sources in con-
nected, undirected graphs. The nodes of a schema graph represent data
sources, and its edges the relationships among them. Queries identify start
and end nodes, and are executed by tracing paths between them. Each node
defines a set of properties, e.g. a ‘User’ node might define ‘name’ and ‘ID’. Dur-
ing query execution, nodes output data units which we call ‘atoms’. Each atom
is a set of property-value pairs, which corresponds to the node which emitted

84 CHAPTER 5. SCOUT

them. For example, a User node might output atoms like { (name="'Alice', id
=1), (name='Bob', id=2), ...}. There are four types of node. The first three
are ‘data nodes’, and each has a corresponding type of atom.

* Table nodes: These emit row atoms, which are sets of property-value
pairs, e.g. (Username='Alice', ID=1).

* Interval nodes: Like table nodes, but also define a ‘time interval’ prop-
erty. Interval atoms thus provide data about a period of time, e.g. the
period over which a user was logged in: (ID=1, Time Interval=1pm-2pm)

* Time series nodes: Like table nodes, but with ‘time stamp’ and ‘meas-
urement’ properties. They emit point atoms, which represent a meas-
urement at some instant in time, e.g. a packet counter value: (MAC=1,
Measurement=900, Time stamp=1551754665).

The fourth type are parent nodes, which do not output atoms and are not
directly included in paths. Edges and properties defined by parent nodes are
inherited by their descendants, making schemas easier to read, and helping
schema creators improve the quality of query output (see Section 5.6.1).

There are two types of edge:

* Labelled edges: Specify properties common to the nodes they connect.
This is conceptually similar to an SQL join.

* Inheritance edges: Connect parent and descendant nodes. They cannot
be used in paths (see Section 5.6.1).

Scout is dynamically typed [127] and supports strings, integers, floats,
and booleans (see Appendix C.1). This is not a hard limit, and more types
could be supported in future, e.g. dates, packet headers, or user-defined types.
Currently, shared properties (see labelled edges) must have the same type,
because Scout tests their values for equality during query execution.

5.4. INFORMATION MODEL 85

User ID NAME MAC User ID TIME INTERVAL

AUTHENTICATED

LOCATION ID SWITCH ID TIME INTERVAL NAME POSITION LOCATION ID

LOCATED LOCATION

PORT NuMBER VLAN

SwITCH ID Is EDGE

SwitcH CONNECTED

SwITCH ID Is EDGE PORT NUMBER SwiTCH ID
MoDEL INTERFACE COUNT MAC TIME INTERVAL

(PorT NumBER, SwiTCH ID)

DESTINATION MAC

TABLE NODE
(OUTBOUND)

INTERVAL NODE

TIME SERIES NODE
PORT TRAFFIC

PARENT NODE

PACKETS

PACKETS DROPPED

)
\—/

BYTES

I
Ul

MAC MEASUREMENT PACKETS
PROPERTY PORT NUMBER
SWITCH ID TIMESTAMP
{aue Broseary (INBOUND) (PACKETS DROPPED)
Source MAC

\ INHERITANCE EDGE / BYTES

NODE DESCRIPTIONS

UsEeR: Each atom represents a user account.

AUTHENTICATED: User sessions, derived from network authentications.
UsEeR DEVICE INTERFACE: MACs which connect to the network edge.
CONNECTED: Periods of time devices are connected to network ports.
PORT: Each atom represents a switch port.

SwITCH: Each atom represents a switch.

LocaTeb: Physical locations of switches (tracked by org.)
LocATION: Physical locations (e.g. ‘library’, or ‘lab’).

PORT TRAFFIC: Traffic data (e.g. num. bytes sent over time).

Figure 5.3: A schema created with Scout’s information model. We used this
schema in our evaluation of Scout in Section 5.7.

86 CHAPTER 5. ScouTt

5.5 Scout’s Syntax

Existing QLs, such as SQL and InfluxQL, require users to manually construct
paths through schemas with special syntax like joins, or by parsing the out-
put of each query and using it to write the next. Scout queries have three
statements, given, return, and over (or G, R, O) which are used to automat-
ically traverse schema graphs. See Appendix C.1 for Scout’s grammar and
Figure 5.4 for an example query. We detail each statement below.

Given: Location{name="“Lab”};
Return: Switch.count();
Over: “Jan 2019” -> “Jun 2019";

Figure 5.4: A Scout query which outputs the number of switches in “Lab”

5.5.1 The Given Statement

Given represents what the user knows, by specifying one or more nodes’
names, and values for some of their properties, e.g. G: Location{id=1} and

Switch; When Scout executes a query, it finds paths which begin at that
query’s first given node, and which include all subsequent given nodes, in or-
der. This allows users to provide more information, and restrict the number
of paths which Scout finds (see Section 5.6.1). Each given node may have a
filter of the form NodeName{property comparator value}, where ‘comparator’
could be =, !=, < etc. (a complete list is in Appendix C.1, and more could
be added). Filters may have multiple conditions, e.g. Port{VLAN!=1, number
>5}.10 During execution, filters discard atoms which fail the conditions. See
Section 5.6 for details on query execution.

In Figure 5.4, there is one given node: Location. This corresponds to a data
source defined by the Scout schema in Figure 5.3. In this example, Location
is filtered by its name property, which is also defined by the Scout schema!.
Overall, this given statement says that query paths must start at the Location

node, and that query execution will be begin with the atoms of that node
whose name property has the value ‘Lab’ (this string is an example, and could
be any value from the underlying data).

1° Comma represents a logical AND.
1 physically, this node and property correspond to a table and column in an underlying SQL
database, as discussed in Section 5.7.1.

5.5. SCouT’s SYNTAX 87

5.5.2 The Return Statement

Return represents what the user wants to learn, by specifying exactly one node
name and an optional chain of functions for processing query output. All
query paths end at the return node. Scout functions are written using the same
‘dot’ notation as Python and JavaScript, i.e. all functions have an implicit first
parameter, which takes the value of whatever precedes the dot. During query
execution, the return node outputs a collection of atoms, which it passes to
the first function in the chain,'? if there is one. The output of this function
is passed to the next function in the chain,'® or displayed to the user, if it is
the last. Functions can have additional parameters, e.g. R: Switch.limit(10),
which returns only the first ten atoms that Switch outputs.

In Figure 5.4, the return node is Switch (which is defined in Figure 5.3
and physically stored in an SQL table). Overall, this statement says to display
the number of atoms that the Switch node outputs. The full list of functions
supported by our Scout prototype is given in Appendix D.3. Examples include:

* count(): Output the number of atoms.

* max(property): Find the atom with the largest value for a given property.

* group(*properties): Group atoms by the given properties (* indicates
that the function accepts multiple arguments for the given parameter).

group is an advanced function which splits one set of atoms into many;,
based on their properties. Port.group('switch_id', 'port_num') would out-
put one set of atoms for each combination of values of the given properties,
e.g. {(switch_id=1, port_num=1), (switch_id=1, port_num=2), ...}. Chained
functions are applied to each group independently, e.g. Switch.group(os) .
count () would output the number of switches running each operating system.

5.5.3 The Over Statement

Over is optional, and restricts the query to a time interval. During execution,
interval and time series nodes only output atoms which overlap the over in-
terval. Table nodes have no relationship to time and are unaffected. Parsing
dates, like ‘Jan 17, is not part of the Scout grammar. Our prototype uses the
Python library dateutil [159] to interpret many human-readable formats.

12 Only functions which accept atoms can come first in the chain.
13 The first parameter of each function in the chain must be compatible with the output of the
preceding function, as described in the Scout documentation.

88 CHAPTER 5. SCOUT

5.6 Executing Scout Queries

5.6.1 Path Construction

Before executing a query, Scout finds all loop-free paths between the first
given node and the return node (see Section 5.6.4 for performance details).
Because adjacent nodes share properties (defined by labelled edges), all paths
have semantic meaning. However, paths with the same start and end nodes
may not be equivalent (see the ambiguous path problem in Section 5.3.1).
Scout mitigates this with (i) Contextualisation: We display paths alongside
their outputs; and (ii) Expressiveness: Queries can have multiple given nodes,
reducing the number of candidate paths. Our current implementation of Scout
naively executes all paths, but this is not scalable. Additional mitigations are
discussed in Section 5.8.5. Currently, we construct paths with a depth-first-
search-based algorithm, modified to support parent nodes:

* Parent nodes are excluded from data nodes’ neighbour sets. Thus, par-
ent nodes are never included in paths.

* The children of a parent node are added to the neighbour set of all data
nodes which neighbour that parent node.'*

* The neighbours of a parent node are added to the neighbour sets of that
node’s children.'4

* No labelled edge can be crossed more than once.

Thus, parent nodes prevent siblings from reaching one another via their
ancestors, e.g. in Figure 5.5, D inherits neighbours A and B, but cannot reach
C because edge G-A would need to be used twice (as per Section 5.4, paths
can only include labelled edges). This feature lets schema creators eliminate
meaningless paths, e.g. in Figure 5.3, from Port Traffic/Outbound/Packets to
Port Traffic/Outbound/Bytes.

14 These rules are applied recursively.

5.6. EXECUTING SCOUT QUERIES 89

Parent Node

Data Node

1

A

Figure 5.5: Illustration of node and edge inheritance in Scout

Labelled Edge

Inheritance Edge

¢ Neighbour Set

5.6.2 Path Execution

The goal of path execution is to exploit the transitive semantic relationships
between start and end nodes to produce output. A semantic relationship exists
between atoms which have the same value for a shared property. For example,
the atoms {id=1,name="Jane'} and {id=1,role="admin'}, of the User and Role
nodes, indicate that Jane is an administrator. We can apply this insight to each
node in a path, incrementally building a chain of semantic relationships from
start to end. This process is given in Listing 5.1 and illustrated in Figure 5.6.

Listing 5.1: Scout’s path execution process

1. A path is executed by iterating through its nodes in order.

2. Each node emits atoms.

3. Compare interval and point atoms to the over interval: If they are outside the interval
they are discarded; if they partially overlap it they are trimmed to fit.

4. Any filters from the given statement are applied.

5. The remaining atoms are intersected with the atoms from the previous node (this is
skipped for the first iteration):

* Atoms which do not match any atoms from the previous iteration are discarded.

* Atoms match if they have the same value for each of their shared properties.

* Intervals are copied to matching row atoms (making them interval atoms).

* When two interval atoms match the same atom, the intervals are merged to the
output atom. If intervals do not overlap, one output atom is created for each.

6. The remaining atoms are passed to the next iteration.

7. The atoms from the final iteration are passed to the first function in the return state-
ment. Its output is passed to any subsequent functions. The output of the last function
is displayed to the user, alongside the path.

90 CHAPTER 5. ScouTt

@ REPEAT FOR EACH NODE IN PATH

ATOMS

FROM CURRENT NODE

v

INTERVAL FILTER

FROM OVER STATEMENT

SHARED PROPERTIES

FROM EDGE JOINING CURRENT AND
PREVIOUS NODES

NODE FILTER

FROM GIVEN STATEMENT

©®

ATOMS ATOMS
FILTERED FROM PREVIOUS NODE

INTERSECT

FILTERED ATOMS WITH ATOMS FROM PREVIOUS STEP

ATOMS \

INTERSECTED J IF NOT LAST NODE IN PATH

¢ IF LAST NODE IN PATH

FUNCTIONS

FROM RETURN STATEMENT

OUTPUT OF LAST FUNCTION DISPLAYED TO USER

Figure 5.6: Scout’s path execution process

5.6. EXECUTING SCOUT QUERIES 91

SwitcH ID Is EDGE
NAME POSITION LOCATION ID LOCATION ID SWITCH ID TIME INTERVAL MODEL INTERFACE COUNT

@ rsmcenerareo (1 LocaTiON LOCATED =D SWITCH

@ EMITS ATOMS * @ EMITS ATOMS ‘ i @ EmITS ATOMS
Name: “Lab”, LocID: 1 LocID: 1, SwID: 1, TI: Jan-Feb Model: xyz, “Lab”, SwID: 1
Name: “Library”, LocID: 2 LocID: 2, SwID: 1, TI: Jan-Jun X Model: xyz, “Lab”, SwID: 2

FILTER APPLIED LocID: 1, SwID: 2, TI: Mar-Jun TIME INTERVAL APPLIED
(LocID 2 ATOM DISCARDED) (NO ATOMS DISCARDED)

TIME INTERVAL APPLIED
(NO ATOMS DISCARDED)

LocID: 1, SwID: 2, TI: Jul-Aug x STEPS 2 & 3 ATOMS INTERSECTED
(NO ATOMS DISCARDED)

FIRST NODE IN PATH —
ATOMS NOT INTERSECTED

TIME INTERVAL APPLIED
(JUL-AUG ATOM DISCARDED)

e FUNCTION APPLIED

STEPS 1 & 2 ATOMS INTERSECTED
(LocID 2 ATOM DISCARDED)

Figure 5.7: Execution of the query from Figure 5.4.

5.6.3 Example Execution of a Scout Query

Given the schema in Figure 5.3, executing the query in Figure 5.4 would pro-
ceed as follows (see Figure 5.7 for an illustration):

1. All paths between the given and return nodes are generated (in this case
there is only one).

2. First node: A. The Location node emits its atoms; B. The Location filter
causes one atom to be discarded; C. The over interval is applied, but
row atoms do not have intervals so none are discarded; D. There is no
previous node, so the atoms are not intersected.

3. Second node: A. The Located node emits its atoms; B. The over interval
causes one atom to be discarded; C. The remaining atoms are intersected
with the atoms from the previous step, causing one to be discarded.

4. Third node: A. The Switch node emits its atoms; B. The over interval
is applied, but row atoms do not have intervals so none are discarded;
C. The atoms are intersected with the atoms from the previous step.
They all match at least one other atom, so none are discarded. Dur-
ing this process, the intervals from the Located atoms are copied to the
matching Switch atoms, so at this point we can tell not only where the
switches were located, but when they were there.

5. The count () function is applied to the atoms output by the final node in
the path, and the result (2) is returned.

92 CHAPTER 5. ScouTt

5.6.4 Qualitative Performance Assessment

We prioritise designing Scout’s interface and evaluating its effect on users,
and a formal analysis of Scout’s computational performance is outside the
scope of this thesis. However, as a first step towards such an analysis, below
we qualitatively assess each of Scout’s main query execution phases: parsing,
path finding, and path execution. We consider the operations performed in
each phase, provisionally assess their time and space complexity, and discuss
other factors which may affect performance.

Parsing

Scout’s grammar (see Appendix C.1) is LL(1),'®

meaning that a parser can be
constructed from it which reads a string of input symbols from left to right, ex-
panding the leftmost non-terminal symbol at each step in the parsing process,
while using at most one incoming symbol to decide which production rule to
use [161]. The time and space complexity of LL(1) grammars are linearly pro-
portional to the input size [162,163]. Thus, we do not expect parsing Scout

queries to be a performance bottleneck.

Path Finding

Scout finds all loop-free paths through a schema graph between the given
and return nodes. The number of paths depends on the connectivity of the
graph [164], and could be exponential for highly connected graphs. How-
ever, further research is needed to determine if this is or is not the case for a
significant proportion of real-world Scout schemas. We note that the schema
in Figure 6.1 (created based on advice from industry experts) naturally de-
veloped as a tree,'® without our intervention. Furthermore, we expect that
Scout schemas would be modified infrequently, and thus it would be feasible
to cache and/or precompute paths. Therefore, we expect that path finding
will not have a major impact on time or space complexity in practice.

15 A formal proof of this is out of scope, but we implemented Scout’s grammar with the YAPPS
library [160], which only accepts LL(1) grammars.
16 A tree has at most one path between any pair of nodes.

5.6. EXECUTING SCOUT QUERIES 93

Path Execution

The main challenges to efficiently executing paths are: C1) efficiently inter-
secting atoms; and C2) reconciling disparate data. Below we describe these
problems and possible strategies for optimisation.

C1) Efficient intersection: Intersecting two sets of atoms of sizes n and m,
requires comparing every atom in the first set to every atom in the second, for
each of their k shared properties. Naively, this is O(nmk), but the number of
shared properties may be small (one or two, in Figure 6.1), and there are sev-
eral ways to optimise these comparisons: do as much processing in the storage
medium as possible, e.g. with SQL joins (see C2 for more); order and/or in-
dex retrieved data by their shared properties; and retrieve as little data from
storage as possible, e.g. by specifying time intervals. This is not a formal per-
formance analysis, but based on the above, we expect that intersection can be
performed in between O(n) and O(nlogn) time and space.

C2) Disparate data: When contiguous nodes in a path draw data from the
same storage medium, Scout could improve performance, e.g. by generat-
ing a single SQL query with inner joins, instead of one query for each node.
However, data may be stored in different mediums, e.g. because an enterprise
chooses, or is legally required, to use multiple databases. A more fundamental
limitation is that optimising the storage and retrieval of relational and time
series data involves different tradeoffs [165], and thus different database im-
plementations (e.g. a RDB or a TSDB). Every time Scout ‘switches’ between
storage media while executing a path, it accumulates overheads due to in-
terprocess calls, memory allocation, and less efficient atom intersections (see
C1). The overall performance impact is determined by how likely it is that a
node’s neighbours draw data from different media (note that the time series
nodes in Figure 6.1 are clustered). As enterprises rely on both relational and
time series data, an optimal solution may involve a hybrid database which,
while less efficient for either type of data individually, is more efficient for
both together.

94 CHAPTER 5. ScouTt

5.7 Evaluation

In this evaluation we seek to determine to what extent Scout addresses the
three problems we identified in Section 5.1. The results are discussed in Sec-
tion 5.8.1. Specifically, we address the following sub-research questions:

RQ3.1 Can Scout correctly answer questions which involve both business and
network data?

RQ3.2 Does Scout reduce the number of queries needed to answer realistic
network questions?

RQ3.3 Does Scout reduce the complexity of queries needed to answer real-
istic network questions?

5.7.1 Evaluation Setup

Below we discuss the network questions, data, and Scout prototype we used
in our evaluation. We also used these in our Scout user study in Chapter 6.

Network Questions

We derived realistic questions about networks by framing questions to confirm
the enactment of each policy we identified in Chapter 4. For example “only
devices physically in building B may connect to VLAN V” became “have any
devices connected to VLAN V from a location other than building B?”

We considered breaking policies into multiple, granular questions (e.g.
for the previous example: “which devices were located in building B?” and
“which devices connected to VLAN V?”) However, breaking questions down
ahead of time could bias our results, as our evaluation would not indicate if
one language is better suited to expressing complex questions than others.

We excluded questions involving specific services (e.g. “have any users
connected to Facebook?”), as these require specialised tools like deep packet
inspection or traffic classification which are out of the scope of this study. In
the end, we were left with 32 realistic questions operators may ask about
networks (see Appendix C.2 for a list).

5.7. EVALUATION 95

Network Data

We wanted the data queried in our evaluation to be realistic — similar to data
queried in the real world; consistent — the data should be internally consistent;
and abundant — manual inspection should be impractical.

Rather than capturing real-world network data, we generated synthetic
data with a testbed. This avoided privacy issues and made it easier to validate
query output against a ground truth. We modelled our testbed on descrip-
tions of networks provided by network operators, and chose the parameters
given in this section based on conversations with industry experts. Unless oth-
erwise stated, all randomisation discussed in this section followed a uniform
distribution. Our testbed has the following components:

e Data sources: We used Mininet [166] to emulate a network with 73
switches and 512 hosts in a tree topology.

* Collectors: We used Faucet [44] (an SDN controller) to program the
Mininet switches and gather telemetry (e.g. packet counters). Faucet
exported data to Prometheus.

* Data stores: Prometheus exported data to InfluxDB, ensuring consist-
ency between PromQL and InfluxQL. We also set up an SQL database
for business data (the schema is given in Appendix D.3).

The InfluxDB and Prometheus databases we used contained the following
“measurements” (which are equivalent to tables in SQL): port_rx_packets,
port_tx_packets, port_rx_bytes, and port_tx_bytes. Each measurement had
the following fields: switch_id, port_num, and value. We omit a diagram of
our InfluxDB and Prometheus databases because relationships among meas-
urements are implicit (unlike the explicit relationships defined between SQL
tables), and InfluxQL and PromQL do not have an equivalent of SQL’s JOIN
statement. See Section 6.4 for more detail.

We executed scripts on the Mininet hosts to generate the network and
business data needed to answer the questions above. For example, some
questions asked about physical locations, so we incorporated this. We ran-
domly assigned switches to locations (e.g. library) and evenly distributed

96 CHAPTER 5. ScouTt

hosts between switches. We designated a third (171) of the hosts as ‘enter-
prise clients’ and the rest (341) as ‘user clients’. We logged each of 105 users
into three user clients,'” and assigned 10% of those users the role ‘admin’,
70% ‘user’, and 20% ‘guest’. We also launched server processes on 50 user
clients (25 SFTP, 25 HTTP), and randomly assigned each switch port to one
of three VLANS.

Each client did 1-5 of the following actions at random: (i) Send a request
to a random HTTP server; (i) Download a random 0.1-10kB file from a ran-
dom SFTP server; (iii) Sleep for 0-1s.18 After completing actions, clients had
a 30% chance to move to a random switch, and enterprise clients had a 20%
chance for a (randomly chosen) user to log into them (multiple users could
be logged in simultaneously). Once all clients completed their actions, each
switch had a 10% chance to relocate (if so, its hosts were moved to other
switches at random). This cycle repeated for a total of 1000 seconds, then all
users logged out of all clients. We generated ~50,000 data points, but used
fewer than 100 in this evaluation (as we focussed on Scout’s design, not its
computational performance). We use the full dataset in Chapter 6.

Scout Prototype

We created a Scout prototype for our evaluation, consisting of an API, DSL,
parser, and CLI (all written in Python). The API provides classes for each
information model construct (nodes, atoms, and edges), and implements the
algorithm from Section 5.6. Node classes support standard graph operations
like retrieving neighbours. Before users can execute queries an expert must
create a schema and connect it to underlying data stores. See the procedure
below, which is illustrated in Figure 5.8, for details.

Step 1. First, the expert defines a schema based on operational requirements
and available data sources (the API provides a Schema class for this).
Step 2. Then, the expert defines their schema’s nodes by subclassing Node.

Step 3. Each node must implement a get_atoms() method which retrieves
data from storage and reformats it as Scout atoms (defined by the Atom class).

17 Leaving 26 user clients with no user logged in, so that participants could not assume that
all user clients had a logged-in user.
18 Beta distribution (a=0.1, 8=1.0), such that short sleeps are more common than long ones.

5.7. EVALUATION 97

Our prototype stores data in SQL and InfluxDB, so our nodes execute SQL
and InfluxQL queries and parse their output. Scout passes get_atoms() a time
interval, if one can be inferred at the current stage of query execution (see
Section 5.6.3). Node implementations can use this to optimise data retrieval.

Step 4. Then, users, including novices, enter queries into Scout’s CLI, which
has features such as history, auto-completion (e.g. of node and function names),
and documentation (e.g. of functions).

Step 5. The CLI sends input to the parser, which understands Scout’s DSL
(see Appendix C.1).

Step 6. If parsing succeeds (see Section 5.5) the CLI calls the API.

Steps 7-9. The API executes the parsed query, constructing paths (see Sec-
tion 5.6.1) and obtaining atoms from nodes as needed.

Step 10. The API passes the query output back to the CLI. The CLI displays
output to the user, or an error if parsing or execution fail.

5.7.2 Evaluation Methodology

M1. Identify a set of realistic network questions: We chose ten questions
at random from Section 5.7.1 (see Table 5.2).

M2. Define a schema: We created a Scout schema (see Figure 5.3) suited to
answering the questions from M1 (e.g. some questions asked about switches,
so we added a suitable node). This schema was naturally'® a tree, meaning
that it does not exhibit the ambiguous path problem (see Section 5.3.1).

M3. Generate data: We used our testbed to establish a ground truth for each
question from M1. E.g. NQ17 asks how much data a given switch receives, so
we configured a switch and directed a known volume of data to it.

M4. Write queries: We wrote queries which answered each of the questions
from M1 in Scout, InfluxQL, and PromQL. We selected these QLs for compar-
ison because they are popular tools for network monitoring [167], with active

1% We neither tried to make it a tree, nor tried to introduce cycles.

98

CHAPTER 5. SCOUT

EXPERTS

SET UP SCOUT WITH THESE COMPONENTS

Scout API

PROVIDES NODE AND SCHEMA CLASSES
EXECUTES QUERIES

EXPERTS USE THE API SCOUT GENERATES
TO DEFINE A SCHEMA PATHS FOR THE QUERY

SCHEMA

DEFINES RELATIONSHIPS AMONG NODES

EXPERTS IMPLEMENT
, SCOUT REQUESTS
THE SCHEMA’S NODES
ATOMS FROM NODES
WITH THE API

00000

NODEs
REPRESENT MANAGED ENTITIES
RETRIEVE AND FORMAT DATA

USERS
USE THESE COMPONENTS

SCOUT SENDS THE PARSED
QUERY TO THE API

“—0—

ScouT PARSER
PARSES USER INPUT INTO QUERIES
USING THE ScouTt DSL

SCOUT SENDS USER
INPUT TO THE PARSER

USERS WRITE QUERIES WITH
REFERENCE TO THE SCHEMA

—o—
—o0—>

SCOUT SENDS QUERY
OUTPUT TO THE CLI

\"
l

Scout CLI

ACCEPTS USER INPUT
DISPLAYS OUTPUT AND ERRORS

EXPERTS PROGRAM NODES TO
RETRIEVE AND FORMAT DATA

(©
(@

<—O—

SCOUT SUPPLIES NODES
WITH DATA FROM STORAGE

DATABASES

PROVIDED BY THE ENTERPRISE

Figure 5.8: The components of our Scout prototype and how they are used.
Experts do steps 1-3 (blue), users do step 4 (red), and Scout does steps 5-10

(green).

5.7. EVALUATION 99

user communities. Where multiple queries were required to answer one ques-
tion we assumed a human or script would copy output from one query to the
next (‘chaining’). InfluxQL can ‘nest’ queries, e.g. select sum(d)from (select
d from ...). This is more direct than chaining and we used it wherever
practical. PromQL supports arithmetic operators which have a similar effect.

MS5. Verify query output: To address RQ3.1 we executed the queries from M4
on the data from M3 and verified that the output matched the ground truth
for each question (see Section 5.7.3 for an example). Some queries’ output
needed post-processing (see the ‘+’ column in Table 5.2), e.g. Scout needed to
sum the outputs of two queries to answer NQ15, and cannot do this ‘natively’.

M6. Count queries: To address RQ3.2 we counted the queries needed to an-
swer each question in each QL (see Table 5.2). We counted nested queries in-
dividually (see M4). Some languages cannot access certain data sources, e.g.
InfluxQL cannot access account records in an SQL database. In such cases we
assumed one ‘external’ query written in another language (e.g. SQL) would
be needed per inaccessible data source. See the “*’ column in Table 5.2.

M7. Measure query complexity: To address RQ3.3 we counted the number
of unique entities and properties referenced by the queries from M4. We
counted one entity for each ‘external’ query because typically queries must
reference at least one entity.2°

5.7.3 Example

Below we show the steps needed to answer NQ27 from Table 5.2, and how we
counted queries, entities, and properties. The ground truth for this question
established three switches in a tree topology, with switches 2 and 3, at the
edge of the network, receiving 300MB and 160MB of data, respectively.

1. Look up the IDs of switches at the edge of the network. Neither InfluxQL
nor PromQL can do this, so we assume one ‘external’ query (and one
entity) is needed.

20 NB: We did not count ‘time’ as a property, because it is ubiquitous to time series data and
therefore is unlikely to meaningfully raise the cognitive load of writing a query.

100 CHAPTER 5. SCOUT

2. Sum the bytes received by each switch from step 1. In InfluxQL this
requires two queries (nested), one entity, and three unique properties
(see Figure 5.9), in addition to the external query and entity from step 1.

3. Sort the values from step 2. The InfluxQL query in Figure 5.9 cannot
be reformulated to sort its output, so post-processing is required. In
PromQL, steps 2 and 3 can be performed with one query, entity, and
property, in addition to the external query and entity from step 1. In
Scout, all steps can be performed with one query, two entities, and three
properties.

5.8 Discussion

5.8.1 Results

We summarise our results in Table 5.2. We found that the languages’ outputs
matched the ground truth in all cases, so we answer RQ3.1 in the affirmative.
We found that Scout required fewer queries than InfluxQL and PromQL in all
cases, and substantially fewer overall (16 for Scout, vs. 41 and 33). Thus, we
answer RQ3.2 in the affirmative.

Answering NQ5 and NQ15 involved retrieving discontinuous time inter-
vals. Neither InfluxQL nor PromQL support this, so one query for each lan-
guage had to be repeated for each interval (represented with an n in Table 5.2).
Scout handles this automatically, by retaining time intervals during path ex-
ecution (see Section 5.6.2). The process was similar for NQ3, but had to be
repeated for each user, increasing the number of InfluxQL and PromQL quer-
ies quadratically (represented by n? in Table 5.2).

Scout answered all questions without ‘external’ queries, whereas InfluxQL
and PromQL needed these nine times out of ten. Additionally, Scout queries
needed post-processing in fewer cases (see Table 5.2). This shows that net-
work operators can accomplish more with a tool, like Scout, which models
both network and business data.

We found that Scout required slightly fewer entities than InfluxQL or PromQL
(27 for Scout, vs. 34 and 33), appreciably fewer properties than InfluxQL (24
for Scout vs. 34), and slightly more properties than PromQL (24 for Scout

5.8. DISCUSSION 101

INFLUXQL
a)

select sum(d) from (
select non_negative_difference(measurement) as d from of_port_rx_bytes
where (sw_id='0x2' or sw_id='0x3"') and time>'2019-06-16T03:00:00Z"
and time<‘2019-06-16T03:10:00Z' group by port, sw_id)
group by sw_id

name: of_port_rx_bytes name: of_port_rx_bytes

tags: dp_id=0x2 tags: dp_id=0x3

time sum time sum
\\1970—01—01T00:00:002 292317010 1970-01-01T00:00:00Z 1592457@§A/)

PrOMQL
a)

opk(999, sum(increase(
of_port_rx_bytes{sw_id=~'0x(2|3) '}[10m] offset 200m
)) by (sw_id))
Element Value
{dp_id="0x2"} 294975798.1818181
\\f?p_id=“0X3"} 160695487.50417688 AA//

Scout \
Given: Switch{Is Edge=True};
Return: Port Traffic/Inbound/Bytes.group(Switch ID).sum(Measurement).sort();
Over: ‘2019-06-16T03:00:00Z' —> '2019-06-16T03:10:00Z"'

Executing path: Switch--Port——Port Traffic/Inbound/Bytes
(('Switch ID', 2), 292317010)

\\if'Switch D', 3), 159245708) AA//

Figure 5.9: Queries in InfluxQL, PromQL, and Scout which answer NQ27.
Entities are given in red, and properties in purple.

102 CHAPTER 5. SCOUT

vs. 22). However, we counted no properties for ‘external’ queries, creating
an artificial advantage for InfluxQL and PromQL. This is sufficient evidence
to answer RQ3.3 in the affirmative, but more work is needed to prove this
conclusively (we address this in Section 6.5.4).

5.8.2 Research Question (RQ3)

Given the concepts identified in Chapter 4, what would a query language for
network and business data look like?

Based on our results, we argue that a network QL should support both
business- and network- domain concepts, including data on users, devices,

Table 5.2: Summary of results

ID Question InfluxQL PromQL Scout
E P * + E P *4+ Q E P * +

e}

N

NQ16 Which enterprise clients has a given| 2 2 4 2 4 1 2 1

user logged into?

NQ18 To which switch did a given MACad-| 2 2 4 v v| 2 2 3 V 1 2 4
dress most recently connect?

NQ30 How many clients connectedtoagiven| 2 2 4 v v| 2 2 2 v v| 1 2 1
switch over a given time interval?

NQ25 How many unique users connected to| 3 3 5vv|3 3 2vv|i1 2 2
a given switch over a given time inte-
rival?

NQ17 How many bytes did a given switchre-| 3 2 4 2 2 2V 1 2 2
ceive in a given time interval?

NQ27 Rank edge switches by how muchdata|] 3 2 3 v v| 2 2 1 V 1 2 3
they received in a given time interval

NQ32 What ratio of packets are dropped, for| 9 5 3 v v| 5 5 2 V 4 5 4 v
each port at the edge of the network?

NQ5 What was the average number of bytes| 5+n 5 2 v v |5+n 5 2 v v| 2 3 2 v
received per minute by a given user
over a given time interval?

NQ3 Rank a given list of users by the num-(5+n? 5 2 v v |5+n? 5 2 v vV |2+n 3 2 V
ber of bytes each received over a given
time interval

NQ15 What was the average number of bytes| 7+4n 6 3 v v |5+n 5 2 v v | 2 4 3 v

per second transmitted from a given
location over a given time interval?

Totals 41 34349 8| 33 33229 5|16 27240 4

Q: Num. queries; E: Num. entities; P: Num. properties; *: External query;

+: Post-processed, n: Variable number of queries. We reworded some questions for
presentation in the table. Question IDs come from Appendix C.2, which also has the
original wordings.

5.8. DISCUSSION 103

network traffic, and physical locations. This reduces cognitive load and the
inefficiency of using more tools than necessary. Supporting business- and
network- domain data requires a notion of time (e.g. to model quantitative
changes over time, or user log-ins). We gave Scout two compatible models of
time: intervals and time series, but a single model could work too, e.g. instead
of log-in intervals, a tool could store log-ins and log-outs as a time series.

A relational model [168] is also useful, as many network and business do-
main concepts are related (see Figure 5.3). This gives the QL another source
of information with which to answer a user’s query, in addition to the query
itself. Scout uses the transitive relationships between schema nodes to reduce
the information that users need to provide — potentially to just two nodes.
This makes Scout more concise than InfluxQL and PromQL, and provides a
natural way to express queries: As a given statement, representing what the
user knows, and a return statement, representing what they want to find out.
We investigate the latter of these findings further in Chapter 6.

Beyond these specific recommendations, we argue that a network QL should
be based on an empirically grounded model of network management, such as
the policy dimensions we identified in Chapter 4. This enables a methodical
design process, in which each decision is motivated by a user need.

5.8.3 Applications and Benefits

Writing a query is easy when the user already knows a lot about the structure
of their data and simply wants to automate data retrieval and processing.
Crafting suitable queries requires consulting database schemas, writing throw-
away queries to explore the data, and trial and error. Worse, many questions
can only be answered with several queries, which may target different data
sources or be written in different languages, especially if both network and
business data must be queried. As shown in our evaluation, Scout supports
both network and business data, and reduces the number and complexity of
queries needed to answer realistic questions.

Scout’s information model is agnostic to the data storage layer. Thus,
Scout can be integrated with existing data storage systems (rather than re-
placing them), and does not preclude the use of existing tools (like InfluxDB
and SQL). This also makes it possible to modify or replace the data storage

104 CHAPTER 5. SCOUT

layer without needing to change anything which depends on Scout. Scout’s
agnostic information model lets our Scout prototype store data in SQL and
InfluxDB, allowing us to compare these QLs using consistent data.

We Scout being used in enterprises large enough to collect network data,
but not so large that they are likely to build custom tools. Scout can be imple-
mented on top of existing data storage and retrieval technologies (including
InfluxDB and Prometheus, or even web services which output JSON data). Ex-
pert users would create schemas which novices could then use to write queries
without needing to know much about the structure of the data. We expect that
experts will likewise appreciate writing fewer and more concise queries, but
this requires further investigation.

5.8.4 Limitations

This was a self-assessment, and we wrote the schema and queries ourselves,
which could bias our results, e.g. by focusing on examples which favour Scout.
This is addressed, to an extent, by our user study in Chapter 6.

This evaluation used small data volumes (tens of atoms) and a simple
schema. An investigation of Scout’s performance characteristics, and attempts
at optimisations, are part of future work. Participants in our user study (see
Chapter 6) used a more complex schema and larger data volumes (~50,000
atoms) and did not raise Scout’s performance as an issue.

We explored the features of InfluxQL and PromQL, reviewed examples
and similar queries, and experimented with different approaches to answer-
ing each question. However, we are not experts in InfluxQL or PromQL, and
a more proficient user might reduce the number of queries, entities, or prop-
erties needed to answer questions.

The “ambiguous path problem” occurs when an abbreviated query finds
more than one path through a schema for the same query (see Section 5.3.1).2
While these paths all have semantic meaning (see Section 5.6.1), they might
not produce the same output. We argue that this ambiguity reflects the reality
that any question may have more than one answer, and that it is more useful
to provide several potentially correct answers, which can be interpreted and
refined, than one answer which is technically correct but inscrutable. There

2L Not possible with the schema in Figure 5.3, as it is a tree.

5.8. DISCUSSION 105

are several strategies for mitigating this problem, e.g. ranking paths, like a
search engine [144]; designing schemas with fewer cycles; displaying paths
alongside their output, for context; generating explanations of paths [132];
or writing more specific queries which find fewer paths (see Section 5.6.1).

Executing a Scout query involves finding all loop-free paths between its
given and return nodes (see Section 5.6.1). As discussed in Section 5.6.4,
a highly connected Scout schema could create performance issues. Two of
the mitigations for the ambiguous path problem apply here too: designing
schemas with fewer cycles, and detecting such cases and prompting the user
reduce the number of paths (by providing additional given nodes, as per Sec-
tion 5.6.1). See Section 5.8.5 for further discussion.

Finding only loop-free paths makes some queries impossible to write. For
example, our information model could represent links between switches in a
network topology as a cycle from a Port table node to a Linked interval node,
and back to the Port node, but Scout is unable to find this path. We discuss
ways to address this in Section 5.8.5.

5.8.5 Future Work

Effect of schema complexity In practice, Scout schemas would need to be
much more complex than the example given in Figure 5.3. At this stage it
is not clear whether cognitive load increases or decreases with schema com-
plexity, or whether it does so super- or sub- proportionally. Our user study
measures cognitive load with a schema of 25 nodes (see Chapter 6), so this
could be compared to smaller and larger schemas. More complex schemas
are likely to have more cycles (i.e. greater connectivity), which could cause
performance issues (see Section 5.6.4. In addition to the mitigations we sug-
gested in Section 5.8.4, the connectivity of realistic Scout schemas should be
investigated. If the connectivity is low in a majority of use cases, then this
problem is less concerning. The usability impact should also be investigated.
For example, how much does this reduce Scout’s usability in practice, and do
path ranking [144] and the other mitigations described in Section 5.8.4 offset
it?

106 CHAPTER 5. ScouTt

Computational performance We do not intend for Scout to be a high per-
formance database like Gorilla [119]. However, a formal analysis of Scout’s
performance characteristics and scalability would be beneficial, e.g. algorithmic
time complexity, the impact of schema size, memory usage, and data volumes.

Bespoke data storage By design, neither Scout’s information model nor
schemas created with it prescribe how data is physically stored. An invest-
igation of how best to store data which is to be queried with Scout, and any
tradeoffs in implementing such storage, is a part of future work. At this stage
we are most interested in Scout’s user-facing aspects, such as its DSL and
usability. Before we invest effort into optimising data storage and retrieval,
we would like to know if Scout addresses the problems we identified in Sec-
tion 5.1 and if it makes a difference to users in the real world (see Chapter 6).

Language extensions To support paths with loops we could to modify Scout’s
DSL to let users specify how many times Scout should go around a cycle before
continuing to another node, or terminating the path. This could be expressed
as a heuristic like “loop until the given condition is met”. We could also give
Scout a type system, to allow type-specific functions (e.g. converting between
MAC address formats), data introspection (e.g. extracting the month from a
time stamp), increase flexibility (users could create types to describe their
data), or enable type-specific intersection logic (e.g. similar to Scout’s current
behaviour when intersecting interval atoms). We could also analyse Scout’s
expressive power [98], to determine which classes of queries it can and cannot
express. This could have implications for Scout’s usability in the real world,
and could identify missing features in the language.

5.9 Conclusion

In this chapter we presented Scout, a language for answering questions about
networks. It is comprised of an information model which provides concepts,
relationships and semantics for modelling network and business data, a DSL
for specifying queries on this information model, and an algorithm for execut-
ing them. We evaluated Scout by creating a prototype and an example schema
and using them to write queries to answer realistic network questions. We did

5.9. CONCLUSION 107

the same with two existing QLs, InfluxQL and PromQL, and compared the
results. We found that Scout can answer realistic questions pertaining to both
network and business data, and that it reduces the number and complexity of

queries needed to answer such questions.

Chapter 6

A Usability Study of Scout, a Network Query Language

6.1 Introduction

In this chapter?? we address RQ4: Is Scout more usable for novices than a
common alternative? Scout can query both business and network data, and
can automatically infer relationships between data sources, without the user
needing to explicitly state them. For example, the Scout query Given: User{
name='Jane'}; Return: Bytes.sum(); Over: today(); outputs the amount of
data Jane received today. In Chapter 5, we compared Scout to two existing
QLs and found that it reduces the number and complexity of queries needed
to answer realistic questions about networks. In this chapter, we investigate if
this translates to improved usability, an attribute which affects user perform-
ance [169].

To do this, we designed a user study with the Usa-DSL framework [29].
We recruited 39 network-domain novices for the study, and asked them to use
either Scout or SQL and InfluxQL (SQL+IQL)?? to answer network questions,
e.g. “how much data did Jane transmit today?” We selected usability criteria
(cognitive load, accuracy, and efficiency) and defined metrics for measuring
them. We evaluated participants’ work with these metrics and found that
Scout users perform better with respect to these criteria. This confirms our
findings from Chapter 5 and shows that Scout reduces novices’ cognitive load
while increasing their accuracy and efficiency. We also categorised and com-
pared the type and number of errors made by users of each QL, finding that

22 We are in the process of submitting this to the IEEE Transactions on Network and Service
Management (TNSM).

2 Participants used SQL and InfluxQL in tandem, because we found that InfluxQL cannot
answer network questions on its own (see Chapter 5).

108

6.2. BACKGROUND 109

Scout users find it easier to approach problems, write queries, and interpret
their output. However, we also find that, because Scout does more automat-
ically, Scout users may be less thorough.

Based on our findings, we recommend that researchers and QL designers
pay close attention to usability, especially if users may be novices, as it can
have a significant impact on productivity. Rigorous evaluation of usability can
yield unexpected insights (e.g. user confidence is uncorrelated with perform-
ance), directions for improvement, and tells us if a tool is useful in practice.

This chapter is organised as follows: Section 6.2 gives background on
usability, DSLs, and Scout; Section 6.3 reviews related work on the usability
of QLs and network management tools; Section 6.4 compares how an example
question can be answered with Scout and other QLs; Section 6.5 describes our
study; Section 6.6 details our findings; and Section 6.7 discusses directions for
building on our work.

6.2 Background

6.2.1 Usability

Usability refers to how easy an interface®* is to use [170]. More specifically,
ISO 9241-11:2018 defines usability as “the extent to which a system, product
or service can be used by specified users to achieve specified goals with ef-
fectiveness, efficiency and satisfaction in a specified context of use” [171].
Alternatively, Nielsen decomposes usability into “quality components”: learn-
ability, efficiency, memorability, errors, and satisfaction [170].

Usability can be evaluated quantitatively, e.g ISO 9241-11:2018 defines
metrics for each of effectiveness, efficiency and satisfaction. Nielsen is less
prescriptive, and recommends that researchers select metrics based on their
goals. He identifies four common metrics: success rate, task duration, error
rate, and user satisfaction [172]. We use the first three of these in our study,
and eight more derived with Usa-DSL [29]. Nielsen recommends that quantit-
ative usability studies have 20 participants per evaluated interface, and states
that larger numbers do not improve a study’s quality [173]. Our study had 39
participants, who we divided into two experimental groups.

24 In our case, the interface is a DSL.

110 CHAPTER 6. A USABILITY STUDY OF SCOUT

Usability can also be evaluated qualitatively, e.g. with reference to estab-
lished principles, such as Nielsen’s widely-cited ten heuristics for user interface
design [174]: Visibility of system status; match between system and the real
world; user control and freedom; consistency and standards; error preven-
tion; recognition rather than recall; flexibility and efficiency of use; aesthetic
and minimalist design; help users recognise, diagnose, and recover from er-
rors; and help and documentation. Our qualitative analysis focuses on the
errors participants made while writing queries. We discuss qualitative usabil-
ity evaluations further in Section 6.3.

6.2.2 Domain-Specific Languages

DSLs, e.g. HTML, are formal languages designed for specific tasks in a partic-
ular domain, whereas GPLs, such as C, are suitable for many tasks in multiple
domains [126]. DSLs can be more usable than GPLs [126] due to domain-
specific abstractions and features [128]. See Section 5.2.3 for details.

QLs are DSLs for searching data stores, e.g. RDBs are typically queried
with SQL; the TSDB InfluxDB [12] is queried with InfluxQL, which supports
time-series-specific operators and functions; and stream databases are queried
with continuous QLs [130].

6.2.3 Usability of Domain-Specific Languages

In addition to the general usability aspects defined by ISO 9241-11 and Nielsen,
there are several which are specific to DSLs, e.g. expressiveness, conciseness,

integration, performance [175], maintainability, extensibility [176], and cog-

nitive load [128]. We draw on these to define three usability criteria (UCs)

for our study: cognitive load, accuracy, and efficiency (see Section 6.5.3).

We designed our study with Usa-DSL [29], a usability evaluation frame-
work for DSLs. Usa-DSL has four ‘phases’ (Planning, Execution, Analysis, and
Reporting), and eleven generic ‘steps’ (e.g. Step 2: Ethical and legal respons-
ibilities). Each phase implements some or all of the steps as granular ‘activit-
ies’. Each activity recommends a ‘procedure’, which is based on the human-
computer interaction (HCI) literature (e.g. Planning phase, Step 2: Define
informed consent term). For flexibility, Usa-DSL allows researchers to per-
form steps out of order, or skip steps which are not relevant to their goals

6.3. RELATED WORK 111

(we performed all steps in all phases). The authors of Usa-DSL presented it
to seven experts in a focus group. The experts discussed the framework and
made recommendations, which the authors adopted. See Appendix D.1 for a
summary of our application of Usa-DSL.

6.2.4 Scout

In Chapter 5 we introduced Scout, a QL for answering questions about net-
works. Scout addresses three key problems: Network and business data are
separated; multiple queries are needed to answer realistic questions; and
querying requires detailed knowledge of data sources. Scout models data
sources in undirected graphs called schemas. Graphs’ nodes represent data
sources and their edges the relationships among them. Users write Scout quer-
ies by stating something they know about one node, and something they want
to learn about another, e.g. Given: User{name='Jane'}; Return: Bytes.sum()
; Over: today(); Scout infers relationships between these nodes automatic-
ally, so that users do not have to state them, as they would in QLs like SQL.
We found that Scout reduces the number and complexity of queries needed to
answer realistic questions about networks (see Section 5.8.1).

6.3 Related Work

6.3.1 Usability of Query Languages

The archetypal design we found for QL user studies was to randomly assign
participants a QL, train them to use it, then ask them to complete tasks while
recording their performance. Common performance metrics are cognitive
load, query correctness, and user satisfaction. The studies we reviewed fo-
cussed on novices and recruited between 33 and 55 participants, mostly from
undergraduate computer science courses. Participants were typically QL and
domain novices. We use a similar methodology in our study. Below we de-
scribe one especially relevant study example in detail, and then examine the
techniques used across the studies as a group.

CQL is a QL for RDBs. It has several similarites to Scout, e.g. its users
write abbreviated queries, which CQL uses to automatically find paths through

112 CHAPTER 6. A USABILITY STUDY OF SCOUT

a schema (see Section 5.3.1 for further discussion of CQL). Owei compared
CQL [132] to SQL using the archetypal method outlined above [133]. Owei
recruited 33 participants, most of whom were business majors, from under-
graduate computer information systems courses. Owei’s participants com-
pleted only three tasks with their assigned language, whereas 51% of our
participants completed 10 or more tasks, of a possible 31. Each of Owei’s
tasks represented a level of difficulty (low, medium, or high), which was de-
termined by the number of SQL tables to be joined, and the complexity of the
SQL selection criteria. However, Owei discovered that the level of difficulty
depends on the language used. Rather than defining tasks to cover a spectrum
of difficulty, we derived the tasks for our study from real network policies.

Owei also looked at the types of errors participants made while formu-
lating queries, finding that SQL users struggled with (manually) navigating
schemas and writing JOIN statements. He found that CQL users struggled
to identify suitable selection criteria and semantic relationships (edges in a
schema graph) to use in queries. Scout queries do not contain semantic re-
lationships, avoiding the second of these issues. At this stage, we do not
investigate whether this causes usability issues (e.g. by reducing Scout’s ex-
pressivity). Owei does not describe the method for his error type analysis, or
the specific errors he identified, whereas we do both.

Overall, Owei found that CQL outperformed SQL in terms of query formu-
lation time, query correctness, user satisfaction, and users’ perception of the
languages’ ease of use. This mirrors our findings with Scout.

We observed two broad approaches to quantifying users’ performance,
which we call ‘simple metrics’ and ‘model-based evaluation’. The first relies
on specific quantitative measurements, such as the time taken to formulate
queries [177], the ratio of correct to incorrect queries [178], or the number
of statements in each query [179]. In the second, the researcher makes a
model of some aspect of the target QLs, or users’ interactions with it, and
measures this instead of directly measuring their participants. For example,
Graaumans models the process of writing extensible markup language (XML)
queries as an FSM with 60 states, such as “understand instructions” and “sub-
mit results” [179]. He measured participants’ efficiency by counting the num-
ber of states they moved through as they completed tasks. Another example
of model-based evaluation is when researchers grade participants’ working

6.3. RELATED WORK 113

against a rubric (often to measure correctness), such as in [178] and [180].
Model-based evaluation can make it easier to compare different QLs (by in-
troducing a common abstraction), and may be able to capture performance
aspects which simple metrics cannot. However, we chose the latter, as it is
simpler to implement, and makes it easier to compare and reproduce studies.

6.3.2 Usability of Network Management Tools

Verdi et al investigated network management from an HCI perspective [181].
First, they surveyed network operators about their professional background,
networks, tools, and workflows. The survey was conducted electronically and
received 70 responses. 74% of respondents worked with small networks (i.e.
those with at most 200 forwarding devices), and 81% had no certification in
network management. Respondents were heterogenous in terms of years of
experience, and the more experience they had, the more ‘features’ (e.g. ICMP,
SNMP, traffic measurements, configured alerts, topology maps) they described
using. These findings support our view that novices are a significant demo-
graphic which may benefit from Scout, e.g. because they enter the industry
without domain-specific training and have fewer tools at their disposal.

The authors also conducted a user study, in which nine network operators
performed tasks with NagiosXI (a popular network monitoring tool) [182]
on a virtualised network, accessed via a remote desktop tool. The authors
designed four tasks, which encompassed the features most commonly iden-
tified in their survey, and which they perceived would involve several steps,
with opportunities for troubleshooting. Similarly, we derived the tasks for our
user study from empirical user data (in our case, from descriptions of network
policies). However, the larger number of participants in our study (39 vs. 9)
allowed us to analyse our results quantitatively, as well as qualitatively.

Using open coding (a qualitative method described in Section 4.3), the re-
searchers identified 17 types of issues encountered by participants (e.g. home
dashboard, service status, and host status detail). The most frequent type of
issue was ‘queries’, which occurred more than four times as often as the next
most frequent issue (43 times vs. 10). This supports our finding that existing
QLs have usability issues in this domain.

Verdi et al observed and recorded participants while they worked, which

114 CHAPTER 6. A USABILITY STUDY OF SCOUT

could have influenced their performance (evaluation apprehension [110]).
We addressed this, to an extent, by allowing participants to self-administer
our study. However, our participants were still aware that tasks were timed,
and that their work would be evaluated.

The authors make twelve recommendations for designing network man-
agement software. For example, “summarise information about the environ-
ment as a whole to help the user find important information faster”. This is
especially relevant to Scout, which could be used to quickly answer questions
about a network, before turning to a tool like InfluxQL for detailed analysis.

Cowan et al found that accepted and widely used usability metrics like
success rate and completion time, which we use in our study, can identify
the presence of usability issues, but not necessarily their cause [183], and
recommend analysing users’ eye movements in interface evaluation studies.
Pretorius [184] used this technique when evaluating AppVis [185], a network
management tool. Their findings were too specific to AppVis to generalise to
Scout (e.g. an important interface element was too small, participants looked
for certain information in the wrong place, and participants preferred a graph
to a textual representation of the same data), but do show the value of eye
tracking analysis. We did not use this technique in our study because it is
most applicable to GUIs and Scout has a CLI (although this could change, as
discussed in Section 6.7). Pretorious’ study has several limitations: there were
only six participants; participants performed only eight tasks; and tasks were
not empirically motivated. Our study is better in these respects (see above).

Northrop and Lipford evaluate the usability of tools for network forensics
[100]. Forensic investigators and network operators use these tools to ana-
lyse information entering and exiting networks, e.g. via log correlation, packet
acquisition, and memory analysis. First, the authors interviewed eight exper-
ienced forensic network investigators about their tools and workflows. They
found that the participants are comfortable with a large number of tools (sim-
ilar to Verdi [181]), and value CLIs, interoperability, and efficiency of use.
We do not think Scout is suitable for forensic applications, but these findings
indicate that Scout meets at least some of experts’ expectations, e.g. it is in-
teroperable with existing databases and QLs, and it can greatly reduce the
number of actions needed to complete some tasks.

Northrop’s participants preferred tools which do not hide complexity be-

6.3. RELATED WORK 115

hind abstractions, as they felt that these got in their way. However, the authors
state that while participants can capture the data they need, it takes them con-
siderable effort to assemble it into human-readable reports. Scout may help
with this, as it can automatically combine data from multiple sources. The au-
thors also point out that learning to use a suite of complex tools takes time and
effort, and the participants’ attitude reflects their level of experience. Thus, in
situations where Scout is not useful to experts, it may still benefit novices.

Northrop et al also apply Nielsen’s ten usability heuristics [174] to the
packet analyser Wireshark [186]. One finding is that Wireshark gives users
a lot of freedom, but little guidance. For example, users frequently write fil-
ters so that Wireshark captures only relevant packets. However, the packet
filter syntax is not explained, and Wireshark does not identify syntax errors.
In contrast, Scout makes inferences on users’ behalf, autocompletes some ex-
pressions, and clearly identifies syntax errors.

Voronkov et al systematically reviewed the literature on network firewall
usability [187]. From an initial selection of 1202 articles, they selected 35
for review, and 14 for summarisation. They found that few of the 14 articles
apply accepted usability design principles, and that none clearly define “usab-
ility”. We evaluate Scout using accepted HCI techniques. Voronkov found that
studies either looked at personal firewalls, which are targeted at untrained
consumers, or network firewalls, which are targeted at professional operat-
ors. This suggests that it is reasonable to classify users of network manage-
ment tools as either novices or experts, as we do in this chapter. Verdi adopted
a similar classification [181].

Birkner conducted five interviews with network operators to assess Net2Text’s
usability (see Section 5.3.5 for details on Net2Text). However, unlike our
study, this was not a rigorous evaluation, e.g. the authors do not report sampling
details (population, method, exclusion criteria, or participant demographics),
experimental methodology, the interview protocol (or how it was defined),
analytical procedure, or threats to validity.

Verdi [181], Norththrop [174], and Voronkov [187] note that there is
little research which considers the usability of network management tools.
The authors call for more studies which evaluate the usability of such tools.
We contribute our comparative user study of Scout towards this goal.

116 CHAPTER 6. A USABILITY STUDY OF SCOUT

6.4 Querying Comparison

As further motivation for our study, in this section we show how SQL+IQL
and Scout can each be used to answer a simple question about a network:
“how many bytes did user Alice transmit between 1 Jan 2021 and 5 Jan 2021
(inclusive)?” This demonstrates some of the usability issues encountered by
our participants, and shows some of Scout’s advantages (although we ac-
knowledge that Scout performs worse for some types of queries, as per Sec-
tion 6.5.4). The queries are performed on the same schemas and databases
used in the study (see Section 6.5.1 for details). See Appendix D.4 for a more
detailed version of this comparison.

6.4.1 SQL+IQL

First, we find the clients Alice logged into, and then the ports to which she con-
nected, and when (see Listing 6.1). The SQL schema is given in Appendix D.3.
Note that we have reduced the precision of the timestamps in the listings be-
low to make them easier to read (e.g. 2021-01-01 10:53:08.081446+13:00 be-
comes 2021-01-01 10:53), and have truncated output to save space (indicated
with an ellipsis).

Listing 6.1: SQL query which finds the ports to which a user connected

1 | SELECT Connected.MacAddress, SwitchID, PortNumber, Connected.
StartTime, Connected.EndTime FROM User
2 | JOIN LoggedIn ON User.UserID=LoggedIn.UserID
3 | JOIN Connected ON Connected.MacAddress=LoggedIn.MacAddress
4 | WHERE User.Name='Alice' AND
5 datetime (StartTime) > datetime('2021-01-01 00:00') AND
6 datetime (EndTime) < datetime('2021-01-06 00:00');
Output
MacAddress SwitchID PortNumber StartTime EndTime
00:00:00:00:00:ec 35 4 2021-01-01 10:53 2021-01-01 11:22
00:00:00:00:00:ed 35 5 2021-01-01 10:54 2021-01-01 11:18

In Listing 6.2 we use the switch and port numbers, and the time intervals
from the output in Listing 6.1 to construct an InfluxQL query for the traffic
data. We want to know how much data the user transmitted, so we need to
look at how much data the switch received (i.e. port_rx_bytes).

6.4. QUERYING COMPARISON 117

The innermost queries (SELECT non_negative_difference(value)...) each
output a series of data points, each of which represents the cumulative number
of bytes received by a port at a moment in time. The non_negative_difference
function transforms these into a series of deltas (changes), which can be
summed. The GROUP BY clause ensures that deltas and sums are computed
for each port separately. See Appendix D.4 for a detailed explanation of how
this query was constructed.

Listing 6.2: InfluxQL query which sums the per-port sums

SELECT sum(per_port_sum) FROM
(SELECT sum(d) as per_port_sum FROM
(SELECT non_negative_difference(value) as d FROM port_rx_bytes
WHERE switch_id='35' AND port_num='4"' AND
time>'2021-01-01T10:53"' AND time<'2021-01-01T11:22"'),
(SELECT non_negative_difference(value) as d FROM port_rx_bytes
WHERE switch_id='35' AND port_num='5"' AND
time>'2021-01-01T10:54"' AND time<'2021-01-01T11:18"'),
Repeat for every port in the SQHL output above
GROUP BY switch_id, port_num);

© 00 N0 WN -

[
o

Output

name: port_rx_bytes
time sum

1970-01-01T00:00 7459294

6.4.2 Scout

In Listing 6.3 we filter the User node by its name property (see the schema in

Figure 6.1). This gives us all User atoms whose name property is Alice’.?>

The question asks for the bytes transmitted by the user, which corresponds
to the PortTraffic/Inbound/Bytes node (as per its description in the schema).
We can see that there is a path between this node and User, so we know it is a
valid return node in this query. This path passes through the Client Interface
parent node. As described in Section 5.6.1, parent nodes are substituted for
their children during path execution. Thus, Scout finds two paths (see List-
ing 6.3), although in this case one has no output (because the user did not
connect any personal devices to the network in the given time interval).2°

%5 In this example we assume this name is unique, but we could use a user ID instead.
26 For this example we configured Scout to automatically execute all paths. Normally it would
prompt the user to choose one to execute.

118 CHAPTER 6. A USABILITY STUDY OF SCOUT

Similar to Listing 6.2, we group the output of each port and use sum()
to aggregate the bytes property of the return node’s atoms. Scout’s sum()
function has a domain-specific feature which allows it to intelligently differ-
ence counter values before summing them. This gives us the per-port sums.
Currently, Scout has no function for aggregating groups (which would allow
taking a sum of sums, as in Listing 6.2), so the user has to do this manually.
However, such a function could be easily added in future. Finally, we add an
over statement,?’ as per the original question.

Listing 6.3: Scout query which outputs the per-port sums of bytes

1 | Given: User{name='Alice'};

2 |Return: PortTraffic/Inbound/Bytes

3 .group(switch_id ,port_number) .sum(bytes);
4 |Over: 'l Jan 2021' -> '5 Jan 2021';

Output

User-LoggedIn-EnterpriseClientInterface-Connected-Port-PortTraffic/Inbound/
Bytes

switch_id: 35, port_number: 4

148674

switch_id: 35, port_number: 5

No atoms.

6.5 User Study

We compare the usability (in terms of cognitive load, accuracy, and efficiency)
of Scout with that of existing QLs when used by novices to answer realistic
questions about networks. We focus on novices because they may benefit more
from usability improvements than experts, but we expect that experts also
appreciate more usable QLs. We designed our study with Usa-DSL [29], a DSL
usability evaluation framework. See Appendix D.1 for our full application of
Usa-DSL, or below for a summary. Our study was approved by the University
of Canterbury’s human ethics committee (reference HEC 2019/145).

27 As discussed in Section 5.5.3, Scout parses time intervals with an external library which can
interpret many human-readable formats.

6.5. USER STUDY 119

6.5.1 Experimental Setup

We reused the apparatus from Section 5.7.1, which includes a Scout proto-
type, network questions to answer, and a dataset of ~50,000 data points to
query (we generated this data with a testbed). We summarise these below.

Our Scout prototype is comprised of an API, DSL, parser, and CLI. To use it,
an expert (in our case, one of the researchers), creates a Scout schema using
the API. This includes writing code to retrieve data, which in our prototype
is physically stored in SQL and InfluxDB databases. Users then write queries
with Scout’s CLI, which has common features like history, auto-completion
(e.g. of node and function names), and documentation (e.g. of functions).
The CLI sends input to the parser, which understands the DSL, and which
sends parsed queries to the API to be executed. The API sends query output
to the CLI, which displays it to the user. See Figure 5.8 for an illustration.

We created a Scout schema to use in our study which represents all of the
data sources which contributed to the dataset (see Figure 6.1). Like the first
Scout schema we presented (see Figure 5.3), this schema was naturally?® a
tree, and so does not exhibit the ambiguous path problem (see Section 5.3.1).

In Chapter 4 we identified 40 real-world network policies (e.g. “only devices
physically in building B may connect to VLAN V”), and in Section 5.7.1 we
translated these into 32 network questions, such as “have any devices outside
of building B connected to VLAN V?” (see Appendix C.2 for the complete list).
We asked participants to answer these questions in our study, excluding NQ32
because it was the only question which involved dropped packets, and would
have required adding another entity to each of the databases used in the study.

We created a testbed and used it to generate ~50,000 data points. Our
testbed is comprised of an emulated network of 73 switches and 512 hosts
in a tree topology (created with Mininet [188]), an SDN controller (Faucet
[44]) which collects telemetry, and an InfluxDB database which stores that
telemetry. We also created an SQL database for storing business data. Scripts
executed on the emulated hosts performed actions such as downloading files
via SFTP, making HTTP requests, and moving between switches.

28 We neither tried to make it a tree, nor tried to introduce cycles.

120

CHAPTER 6. A USABILITY STUDY OF SCOUT

PHYSICAL LOCATIONS WHICH ARE
RELEVANT TO THE ENTERPRISE.
LocaTion ID

NAME: e.g. “Library”

STREET ADDRESS: e.g. 123 Location
Place”

RECORDS WHERE SWITCHES
WERE LOCATED AND WHEN.
LocaTioN ID

SWITCH ID

TIME INTERVAL: The period over
which the switch was located

there.

RECORDS OF NETWORK SWITCHES.

SwitcH ID

0S:e.g. I0S"

VENDOR: e.g. “Cisco”

INTERFACE COUNT: The number of
interfaces the switch has.

Is EDGE: False if the switch connects
only to other switches. True if clients

use it to connect to the network.

RECORDS INBOUND PACKETS.
PACKETS: The number of packet
received on a given switch port

since the last measurement.

LOCATION

RECORDS EVENTS WHICH ARE RELEVANT TO THE
ENTERPRISE, AND WHEN THEY OCCURRED.
EVENT ID

NAME: e.g. “COSC121 Exam”

LocaTIoN ID: Of the location of the event. NB: Not
all events have a location.

TIME INTERVAL: When the event occurred.

VLANS WITH WHICH THE NETWORK
HAS BEEN CONFIGURED.

VLAN NuMBER: e.g. 100. Not
necessarily unique, as VLAN numbers

VLAN

LOCATED

may be reassigned from time to time.
NAME: A name by which the VLAN was
known at a particular time, e.g. “staff’.
PORT NUMBER: To which the VLAN
assigned (VLANs may be assigned to @
any switch port)

SWITCH ID: Of the switch to which the
port belongs.
TIME INTERVAL: The interval for which

the VLAN was assigned to the port

SWITCH

SWITCH PORTS.
PORT NUMBER
SwiTcH ID

Is EDGE: False if the port

a
T
g
2
&
I3
&
]
H
5
z
&
o
o

connects to another switch.

‘ PORT NUMBI

NB: Clients only connect to

True if it is open to the

edge of the network,
edge ports, and non-edge

RECORDS TRAFFIC WHICH IS BEING RECEIVED
ON SWITCH PORTS.

INBOUND

ports handle traffic from

multiple clients at a time.

PORT TRAFFIC

oL® RECORDS TRAFFIC ON SWITCH

. % + PORTS.

© . ® PORT NUMBER: Of the switch port
. . ® SwitcH ID: Of the switch to which
. .. < the port belongs

. . o TIMESTAMP: When the traffic
o . . RECORDS INBOUND BYTES. o sample was taken

. ‘e BYTES: The number of bytes .

. . received on a given switch port .

. o Since the last measurement. .

s

OUTBOUND

BYTES

(PACKETS) ()

RECORDS TRAFFIC WHICH IS BEING
TRANSMITTED OUT SWITCH PORTS.

RECORDS OUTBOUND BYTES.

BYTES: The number of bytes
transmitted on a given port since the

last measurement

)

RECORDS OUTBOUND PACKETS.
PACKETS: The number of f

transmitted on a given switch port

ckets

BYTES

Crocars) (

since the last measurement.

Figure 6.1: The Scout schema from our user study

6.5. USER STUDY

121

RECORDS WHICH
PERMISSIONS HAVE
BEEN GRANTED TO
WHICH ROLES.
PERMISSION ID
RoLE ID

o which the client connected.

e por

INTERFACES WERE CONNECTED TO THE NETWORK.

.
z
&
5
[s]
w
=
S
o
(¢}
2
)
9]
=
&
&
u
g
Z
o
I
3
b
&
o
&
&
[}
=

%)

3 =
“n e d
£ 83
a =2
a2 54
< zz
OEE
<58¢%
Z2adF

[-]
z
£
H
a

MAC ADDRESS

CONNECTED

AN INTERFACE USED BY AN
ENTERPRISE CLIENT TO
CONNECT TO THE NETWORK.
CLIENT ID: Of 1l

which the interface

GRANTED PERMISSION

|
u

[

NETWORK PERMISSIONS.
P D

@)

DESCRIPTION: e.g. “May

ess the internet”

R \ rn\ RECORDS TO WHICH ROLES USERS
OLE
OLE Nt \ ASSIGNED WERE ASSIGNED AND WHEN.
RoLe ID
RECORDS USER ROLES. User ID
RoLE ID TIME INTERVAL
NAME: e.g. “Admin
‘ UsErR ID ,
RECORDS WHEN USER ACCOUNTS WERE
MARKED INACTIVE.
User ID
TIME INTERVAL: The interval over which the
account was marked inactive.
Py ’ RECORDS USER ACCOUNTS.
INACTIVE (UserID) USER oo
k_ NAME: e.g. “Jane Doe

D)

RECORDS THE INTERFACES OF CLIENTS
WHICH CONNECT TO THE EDGE OF THE
NETWORK.

MAC AppRess: Of the interface

LOGGED IN

CLIENT INTERFACE

ENTERPRISE CLIENT
INTERFACE

USER CLIENT INTERFACE

THE INTERFACES WITH WHICH USERS'
PERSONAL CLIENTS CONNECT TO THE
NETWORK.

CLIENTS MANAGED BY THE ENTERPRISE
WHICH CONNECT TO THE NETWORK,
SUCH AS WORK LAPTOPS OR PHONES.

CLIENT ID
0S: e.g. "ChromeOS”
3 ‘Chromebo
ENTERPRISE CLIENT TYp: e.g. “Chromebe
'VENDOR: 1P

Figure 6.1: Continued.

User ID
CREATION DATE: The date and

time the account was created.

PERIODS OVER WHICH A
USER WAS LOGGED IN.
MAC AppRess: Of the client
0.

the user logge
User ID: Of the user

TIME INTERVAL: The period the

user was

LEGEND

TABLE NODE
INTERVAL NODE
TIME SERIES NODE

PARENT NODE

NODE DESCRIPTION

PROPERTY: Property Description

...........o

t

INHERITANCE EDGE

122 CHAPTER 6. A USABILITY STUDY OF SCOUT

6.5.2 Study Design

Our target population was junior software and network engineers, and net-
work operators. Using purposive sampling [101, p. 697], we recruited 57
participants from Australiasian universities and industry. We offered them
60 NZD in vouchers to complete the study, collected demographic data (see
Section 6.5.4), and applied selection criteria: Participants had to self-report
a basic knowledge of CLIs, networking, QLs, and computer science (see Ap-
pendix D.1.1). 18 participants withdrew (e.g. due to illness) and 39 com-
pleted the study (similar to [189-191]).

Participants self-administered our study, remotely, via web forms. This let
them work at their own pace, in familiar environments. This is more real-
istic than laboratory-based studies, but makes measurement less reliable (see
Section 6.5.5 for detail). We provided a VM pre-installed with Scout, SQL,
InfluxQL, and databases (see Appendix D.1.2). We had two independent vari-
ables: The QL participants used, and the network questions they answered.

We randomly split participants into two groups of equal size,?? and as-
signed one Scout and the other SQL and InfluxQL (SQL+IQL), used in tan-
dem.?® We chose SQL and InfluxQL because they are widely used to query
relational and time series data®! [28] and have similar syntaxes. Participants
did a tutorial on their QL (designed to take one hour) which contains language
documentation, worked examples, and a schema (the tutorials are given in
Appendix D.3). They then took an online test (designed to take 20 minutes).
If they scored >50% within three tries they moved on in the study.>?

Our final form asked participants to write queries to answer the network
questions in Appendix C.2. To keep the learning effect consistent, we always
showed questions in the same (randomly chosen) order. To reduce the ef-
fect of getting stuck, participants could skip, were told to move on after 10
minutes (each question showed a timer), and could not backtrack. We asked
them to answer questions for 100 minutes (and displayed a cumulative timer).
The form recorded participants’ working, the time to mark each question as
complete, their perception of its difficulty and their confidence in their answer.

2 We used random allocation because we did not expect great diversity among participants,
given the target population and selection criteria.

30 Because InfluxQL cannot answer network questions on its own, as discussed in Chapter 5.

31 Enterprise data is commonly stored in these formats, as described in Section 5.2.1.

32 Only one participant did not meet this threshold.

6.5. USER STUDY 123

We piloted our study with four people from our target population who
were not otherwise involved to ensure that our study design was practical
and that it helped us achieve our goal. The pilot also helped identify errors
(e.g. in the tutorial), sources of confusion (e.g. in task descriptions) and issues
with the experimental apparatus.

6.5.3 Analysis

We chose to measure the usability criteria (UC) below. Each has a hypothesis
(Hx), and metrics for testing it (My).

UC1. Cognitive load: Mental resources consumed by users to write queries
which answer a given question. H1: Scout imposes less cognitive load.

M1. Conciseness: Number of queries needed to complete a given task.

M2. Conciseness: Number of unique entities referenced by queries needed
to complete a given task.

M3. Conciseness: Number of unique properties referenced by the quer-
ies needed to complete a given task.

M4. User opinion of challenge (on a Likert scale).

UC2. Accuracy: How closely users’ answers correspond to the ground truth
answers. H2: Scout users are more accurate than SQL+IQL users.

MS5. Error type, based on users’ working and answers.

M6. Success rate (proportion of participants who correctly answered a
given question).

M7. User confidence in the accuracy of their answer, measured on a
Likert scale.

UC3. Efficiency: Quality of outcome vs. resources used (e.g. time or cognitive
load). H3: Scout users are more efficient than SQL+IQL users.

MS8. Time to success (time taken to write queries which correctly answer
a given question).
M9. Time to completion (time taken to write queries which correctly or
incorrectly answer a given question).
M10. Success rate / conciseness, i.e. M6/M1, M6/M2, and M6/M3.
M11. M6 (success rate) / M9 (time to completion).

124 CHAPTER 6. A USABILITY STUDY OF SCOUT

6.5.4 Results

We graded participants’ solutions and computed the metrics from Section 6.5.3
to test our hypotheses. We calculated statistical significance (p) using an un-
equal variance, two-tailed t-test [192, Section 2.5],3% and effect sizes using
Cohen’s d [192, Section 2.2], with pooled standard deviations. Cohen gives
d-values of 0.2, 0.5, and 0.8 as small, medium and large, respectively.

Table 6.1: Statistics for usability criteria metrics

Metric SQL+IQL Scout
min max I T o |min max T z o p d
UC1 M1 Number of queries 1.00 7.50 1.58 1.00 1.36|/1.00 6.00 1.41 1.11 0.95|0.37 0.1
M2 Number of entities 1.00 5.44 2.87 2.85 1.28/1.00 3.00 2.02 2.00 0.47|0.99 0.9
M3 No. of properties 1.00 11.00 5.27 4.38 2.70|0.00 2.67 1.75 1.83 0.54|0.99 1.8

M4 Perceived challenge (1-4) |1.00 4.00 2.48 2.63 0.85[1.00 3.16 1.81 1.67 0.60[0.99 0.9

UC2 M6 Success rate 0% 100% 20% 0% 35%]| 0% 100% 63% 60% 31%0.99 1.2
M7 User confidence (1-4) 1.67 4.00 2.95 3.00 0.60({2.00 4.00 3.34 3.40 0.40(0.99 0.8

UC3 M8 Time to success (m) 1.5 91 127 44 26 |0.72 12 427 2.8 2.8 |0.75 0.5

M9 Time to completion (m) | 1.5 103 17 7.5 25 |0.72 12 3.7 2.9 2.5 [0.99 0.9

T Arithmetic mean, weighted by number of participants who attempted each question.
* Arithmetic mean, weighted by number of participants who completed each question.
Low p and d values are in bold.

Cognitive Load (UC1)

We found that, with p > 0.99 and d = 1.8, participants needed on average
8 properties (M3) to complete Q33 with SQL+IQL, and 2 with Scout. We
plotted this on Figure 6.2 as point (8, —6), because Scout needed 6 fewer
properties. The figure shows that this improvement was consistent for all
questions, and increased linearly for M1, M2 and M3, indicating that Scout is
more concise. However, it was less concise for questions which required only
one query with SQL+IQL. See Table 6.1 for aggregated statistics for these
metrics (e.g. the average of M1, across all questions). The significance and ef-
fect size are low for M1, so we rely on our results for RQ3.2 in Section 5.8.1,

33 With the assumptions that our data is continuous, normally distributed, and representative.

6.5. USER STUDY 125

POSITIVE'Y = SCOUT LESS CONCISE

©

OUTLIER

Improvement in conciseness with Scout
(average no. queries, entities, or properties)

8 }
NEGATIVE Y = SCOUT MORE CONCISE

9 I i i I i I 2 2 i 2 i)

0 1 2 3 4 5 6 7 8 9 10 1 12

Conciseness with SQL+IQL (average no. queries, entities, or properties)
O Average No. Queries (M1) [0 Average No. Entities(M2) A Average No. Properties (M3)

Figure 6.2: Improvement in conciseness with Scout. Each point represents the
average for each language for one question, with p > 0.95.

which show that Scout requires fewer queries to answer questions than In-
fluxQL. We would expect to observe greater significance with questions with
a larger mean(M1). This is part of future work.

Participants rated questions from “very easy” to “very challenging” (1-4).
We found the average for each question and QL, then the average of aver-
ages for each QL3* (M4). This gave 1.81 for Scout and 2.48 for SQL+IQL,
with p > 0.99 and d = 0.9 (see Table 6.1), suggesting questions were less
challenging with Scout. Our results support both H1 and our conclusion in
Section 5.8.1 that Scout reduces the complexity of queries needed to answer
questions about networks (RQ3.3).

Accuracy (UC2)

M634 was low for both groups: 63% for Scout and 20% for SQL+IQL, with
p > 0.99 and d = 1.2 (see Table 6.1). This makes sense, as participants were
novices. However, Scout users were clearly more likely to achieve their goals.

34 We also computed the average weighted by the no. of participants who attempted each
question, but this was nearly identical to the arithmetic mean.

126 CHAPTER 6. A USABILITY STUDY OF SCOUT

Participants rated their confidence in each of their answers from “certainly
wrong” to “certainly right” (1-4). We found the average for each question and
QL, then the average of averages for each QL (M7)34. This gave 3.34 for Scout
and 2.95 and SQL+IQL, with p > 0.99 and d = 0.8 (see Table 6.1). Thus, both
groups were confident, but Figure 6.3 shows this was more merited for Scout
users, and they were more accurate, and had a more accurate perception of
their results. This supports H2.

100% ' OO0 00O
1
1
UNCONFIDENT AND | CONFIDENT AND (@) 8
SUCCESSFUL ! SUCCESSFUL O
! (©)
]
9 o
75% E o o
- ' O
2 ’ B q°
2] ©
© 1
L 1 e e) e L i)
g ' o
E ' o
w
; oo
25% !
]
UNCONFIDENT AND ' a (O CONFIDENT AND
UNSUCCESSFUL 4 UNSUCCESSFUL
a 1 O
0% . —{-—{—{r—O0{—
0 1 2 3 4

Average Confidence per Question (M7, higher = more confident)

O Scout O SQL+lQL

Figure 6.3: Success rate vs. confidence. Each point represents all responses
by one group of participants for a single question.

To compute M5, we identified errors in participants’ working and grouped
them into categories and sub-categories to make a taxonomy (see Figure 6.4).
This was labour intensive, so we did it for a random subsample of 20% of
incorrect answers from each experimental group. We then calculated the fre-
quency of each type of error, finding that Scout reduced the proportion of
context, resources, and relevance errors, but increased the proportion of detail,
identity and misuse errors (see Figure 6.5).3> See Section 6.6 for detail.

% The number of processing errors was too small to meaningfully compare.

6.5. USER STUDY 127

The user did not make use of a language
feature which could have helped them.
Misused/misunderstood the language syntax, e.g. subtracting
strings (syntactically valid, but does not accomplish goal).

SYNTACTIC

The query was under- or over-constrained, e.g.
constrained by port ID only, and not switch ID.

| CONSTRAINTS

RELEVANCE

IDENTITY

PROCESSING

DETAIL

The user clearly did not know how to approach the
question, e.g. queried something totally unrelated.

SEMANTIC

Queried for the wrong entity or property,
e.g. RolelD instead of Permissionl|D.

ERROR

The user made a mistake while manually
processing something, e.g. misread a value).

Got a detail incorrect, e.g. Gave average when sum was
requested, or mixed up properties with similar names.

Sound approach, but too resource-intensive to complete,
e.g. Too many queries, or queries took too long to execute.

DOMAIN e — Misunderstood the real-world context, e.g. Assumed

users only log into one device at a time.

Figure 6.4: Taxonomy of participants’ errors

CONTEXT
4%

Misuse
3%

FEATURE
FEATURE
19%

CONTEXT
27%

IDENTITY
19%

CONSTRAINTS

SEMANTIC 11%
37%
ScouT RELEVANCE SQL & INFLUXQL
27 ERRORS, ACROSS 24 QUESTIONS 7% PROCESSING IDENTITY 37 ERRORS, ACROSS 27 QUESTIONS

3% 5%

Figure 6.5: Distribution of participants’ error types in each experimental group

128 CHAPTER 6. A USABILITY STUDY OF SCOUT

Efficiency (UC3)

Scout users successfully completed questions 36%?3° faster (M8, in Table 6.1),
with p > 0.75 and d = 0.5. The low significance is explained by the fact that
we had relatively few data points for M8 with SQL+IQL, because there were
several questions which no SQL+IQL users successfully completed (see M6).
We argue that we can assume an arbitrarily large average time to success (M8)
for these questions, and that this result is therefore significant.

Z and % of time to success (M8) are similar for Scout, but quite different
for SQL+IQL because M8 was much greater for the latter for ~33% of ques-
tions (M9 is similar). We suspect SQL+IQL users felt a strong incentive to
complete these questions despite being asked to move on after 10 minutes
(see Section 6.5.2), perhaps because their success rate (M6) was so low. Fur-
ther evidence for this is that the largest time to completion, max(M9), was
12 minutes for Scout and 103 minutes for SQL+IQL (this was not an outlier).
Perceived challenge (M4) did not correlate with time to success (M8), so we
presume SQL+IQL users found questions on which they spent a lot of time
more tedious, rather than more difficult, but further investigation is needed
to be sure.

Both groups were more successful when solutions were more concise (M10,
Figure 6.6) and when the time to completion was shorter (M11, Figure 6.7).
This makes sense, as questions which take longer are probably more complex.

A greater proportion of Scout points are concentrated to the bottom right
of Figure 6.6 than SQL+IQL points, indicating that Scout users were more
efficient than SQL+IQL users.?” Likewise, a greater proportion of Scout points
appear at the top left of Figure 6.7, which also indicates that Scout users were
the more efficient group. Our results support H3.

3 Calculated as the percentage difference between medians.

37 NB: We excluded points with M6=0% (2 for Scout and 17 for SQL+IQL), because measures
of conciseness (M1, M2 and M3) are unreliable for incorrect solutions (e.g. participants may
have misunderstood the question, or their solution may be incomplete). These points would
appear at x = 0.

6.5. USER STUDY 129

8 A
A A
= (O UNSUCCESSFUL AND VERBOSE SUCCESSFUL AND VERBOSE
.g (HIGHLY INEFFICIENT) (INEFFICIENT)
]
& 6 A o)
o
]
2 8
a @ 4 =
g g H
O ‘T D
© 8
T
<]
=
2 O OAa
()]
&
>
& OBOD
UNSUCCESSFUL AND CONCISE SUCCESSFUL AND CONCISE
(INEFFICIENT) (HIGHLY FFFICIENT)
0 /e
0% 25% 50% 75% 100%
Success Rate (M6)
O Queries (Scout) O Entities (Scout) A Properties (Scout)
O Queries (SQL+IQL) O Entities (SQL+IQL) A Properties (SQL+IQL)

Figure 6.6: Conciseness vs. success rate (M10).

100 P OQ@» © O
O
(@]
SUCCESSFUL AND FAST O SUCCESSFUL AND SLOW
(HIGHLY EFFICIENT) (@) (INEFFICIENT)
—~ 75%
g © O
Fl Oo =
° o O
o~ ©°
Q o,
§ 50% B--B--0 6}
A (@]
5 o
3: 259 UNSUCCESSFUL AND FAST UNSUCCESSFUL AND SLOW
° (INEFFICIENT) (HIGHLY INEFFICIENT)
1) O
0% O O-+—{T1-H1}—1 1
0 4 7 11 14
Average time to Completion (M9, minutes)
O Scout O SaL+lQL

Figure 6.7: Success rate vs. average time to success (M11). One SQL+IQL
outlier at the extreme bottom right was excluded.

130 CHAPTER 6. A USABILITY STUDY OF SCOUT

Participant Demographics

The background survey we gave at the start of our study (see Appendix D.1.1)
shows that our participants fit the profile of a novice network operator. 23 had
studied to an undergraduate level, 15 to postgraduate, and one to secondary
school, with between 2 and 15 years academic and industrial computer sci-
ence experience (see Figure 6.8.A). We asked them to rate their experience
with CLIs, networking, and QLs as ‘none’,38 {ittle’, ‘some’, or ‘much’, with de-
scriptions to improve inter-participant consistency, e.g. ‘some’ QL experience
corresponds to “I have used at least one QL before, but am not confident writ-
ing queries with it” (see Appendix D.1.1 for the other descriptions).

Figure 6.8.B shows that all but one participant had ‘some’ or ‘much’ exper-
ience with CLIs, so we exclude difficulty using the QLs’ CLIs as a confound-
ing factor. Participants were homogenous in terms of networking experience
(69% had ‘some’, and only one had ‘much’), so this is unlikely to have skewed
our results. 82% had ‘some’ or ‘much’ experience with QLs, and all said they
had used SQL before3?, so SQL and InfluxQL (which are similar) likely had an
advantage over Scout. Figure 6.8.C shows that 24% of participants had ‘much’
experience in two areas, and only one had ‘much’ experience in all three.

o COMPUTER SCIENCE EXPERIENCE o PER-AREA EXPERIENCE
1 3%
15 z ;
cus |'| 46% | 51% |
3
1
w NETWORKING | 28% | 69% ']
g 10
[9 Qls | 1s% | 44% | 38% |
o
Iﬁ LITTLE D SOME D MucH D
5 6.8 X
6
2 s e OVERALL EXPERIENCE
<
w
g 4 3% 0% 3%
on |l 1s% | 1s% | 21% | 23% | 8% | 13% ||
2 LS ss sss ML MmsL mss MML MMS MMM
X MEDIAN
0 LESs EXPERIENCE MoORE

Figure 6.8: Self-reported participant experience. A) shows years of CS exper-
ience (min, max, z, &, Q1, and Q3), B) experience levels in CLIs, networking,
and QLs, and C) combinations of experience levels in these areas (e.g. MMM
= ‘much’ experience in all three areas).

38 We excluded participants who selected ‘none’ in any area (see Section 6.5.2).
3 Eight said they had used an additional QL, and none had used InfluxQL.

6.5. USER STUDY 131

6.5.5 Threats to Validity

We used Cruzes and Othmane’s taxonomy [110] to identify threats to the
validity of our study and summarise the most significant below (see Appendix
D.1.3 for an exhaustive list).

Conclusion validity “The degree to which conclusions we reach about re-
lationships in our data are reasonable” [193]. (i) We measured M8 and M9
based on how long the web page for each question was open. We explained
this to participants, but they may not have complied. However, these met-
rics differ significantly between the groups (see Table 6.1) and therefore are
sufficient for testing H3. (ii) One group used SQL and InfluxQL in tandem.
Ideally, we would have compared QLs 1:1, but we are not aware of one, other
than Scout, which can query both business and network data. This is one of
the problems we designed Scout to address.

Internal validity Whether the independent variable is solely responsible for
changes in the dependent variable. (i) All participants had previously used
SQL. This could have influenced the way Scout users wrote queries, caused
confusion when Scout behaved differently to SQL, and could have advantaged
SQL+IQL users. The training phase mitigated this. (ii) For realism, we told
SQL+IQL users to use online resources, potentially disadvantaging Scout.

Construct validity Whether we measured what we intended to measure.
(i) We implemented one version of Scout (mono-operation bias). Howevet,
our results reflect the language’s effect in a variety of scenarios. (ii) Our er-
ror type analysis is susceptible to experimenter bias [110], but is balanced by
more objective metrics. (iii) At least one participant guessed our hypotheses
(based on a comment). However, there is no indication that participants adap-
ted their responses as a result. (iv) The study was self-administered, reducing
the risk of evaluation apprehension [110]. We also prominently stated that
the QLs were being evaluated, not participants.

External validity The generalisability of our results. (i) Our test data, while
based on real networks, was synthetic and may not be representative. (ii) We
generalise our results to industry in Section 6.6, but our sample contains
mainly students. However, students can be valid proxies for professionals
[194], and we argue this is especially true for novice professionals.

132 CHAPTER 6. A USABILITY STUDY OF SCOUT

6.6 Discussion

6.6.1 Errors

Scout reduced relevance, resources, and context errors (see Section 6.5.4). This
means users better understood how to approach questions, could efficiently
express themselves, and made fewer mistakes when interpreting data. This
may be because Scout unifies business and network data, formally defines re-
lationships between them, and removes many of the inefficiencies of separate
languages and databases.

However, Scout increased detail, identity and misuse errors. Users may
have become overly reliant on Scout, because it does more automatically.
Scout users did not need to manually join tables and thus may have been
less meticulous than SQL+IQL users, and may not have developed as detailed
an understanding of the data. The difference in misuse errors may be due to
participants’ prior experience with SQL (which is similar to InfluxQL), and the
extensive resources available online for SQL+IQL (but not for Scout).

Scout users’ errors may be easier to address. Syntactic (misuse and feature),
detail and identity errors can be reduced with reference material and training,
but relevance, resources and context errors are more fundamental. Scout can
also add domain-specific features, unlike SQL+IQL.

6.6.2 Research Question (RQ4)

Is Scout more usable for novices than a common alternative?

Scout was more concise than SQL+IQL and users perceived questions as
easier when using it. This may be because Scout fills in the gaps in users’
queries (between the given and return nodes). In effect, this lets users apply
domain knowledge encoded in schemas by experts without having that know-
ledge themselves. If this were true, then we would expect users’ performance
to reflect an improved grasp of the domain, and indeed we found that Scout
reduced context and relevance errors. Thus, abbreviated and domain-specific
network QLs can make users more effective. Overall, our results show that
Scout is more usable than a common alternative (SQL+IQL).

We observed that participants did not move past questions until they ob-

6.6. DISCUSSION 133

tained output. This led to especially poor outcomes for SQL+IQL users, be-
cause they took longer to get results, which were more likely to be wrong.
Thus, one way to make novices more productive is to help them see and un-
derstand query output with less effort, and as QL designers we should evaluate
the comprehensibility of QL output and improve its presentation. If users do
not understand output they will not correct it or seek help, and will make
decisions based on incorrect data. QL performance involves more than con-
ciseness, expressiveness, and computational efficiency.

A common pattern in participants’ working was to begin with a simple
query (e.g. G: User{name='Eve'}; R:User;) and iteratively build it up, until
they got their answer. This lets them explore the data they are querying (e.g.
what do the real values of a given database entity look like?), check assump-
tions (e.g. is the user name valid?), and identify syntax errors (if the query
stops compiling after a small change, it is easy to locate the problem). In
our own experience, this is more efficient than starting with a complex query
and trying to fix it. This process can also help novices learn about the QL,
the data, and the domain, and may help them become experts. Network
QLs should support and encourage this with a syntax that is amenable to
incremental changes, e.g. each of Scout’s statements can be modified inde-
pendently, whereas a small change to one clause can easily break an SQL or
InfluxQL query. QL interfaces could help by showing the effect of each part
of the query on the final output, e.g. a Scout GUI could display the first few
atoms output at each node while executing a path.

Network QL designers should consider the usability of their syntax, not
just its expressiveness. Scout’s three-statement syntax helps users structure
queries, and may be one reason it is more concise. This syntax also gives
users fewer opportunities for mistakes, and may make incorrect queries more
obvious. This contrasts with SQL+IQL, which give users false confidence,
making them less likely to question their results, and thus less accurate.

134 CHAPTER 6. A USABILITY STUDY OF SCOUT

6.7 Future Work

6.7.1 Usability

Our usability study shows that Scout solves some important problems. Next,
we could evaluate its impact in the real world, e.g. with a case study or ex-
pert evaluation. We anticipate that some classes of query may be difficult
or impossible to write with Scout, in its current form, because the network
questions we used to evaluate it may not be representative.

To improve our understanding of Scout’s usability, we could evaluate ad-
ditional criteria, e.g. learnability and memorability [170], and more deeply
analyse user satisfaction and errors (e.g. error frequency, severity and recov-
erability). We could also follow our holistic evaluations with more specific
experiments to determine if some aspects of Scout (e.g. query abbreviation,
schema representation) were more significant than others, or if they had a
neutral or negative impact on usability.

6.7.2 Beyond Usability

An analysis of Scout’s performance characteristics and scalability is needed,
e.g. time and space complexity, and the impact of schema size and data volumes.

Scout mitigates the ambiguous path problem with contextualisation (paths
are displayed alongside their output) and expressiveness (users can specify
multiple given entities). These likely increase cognitive load by forcing users
to interpret schemas, and do not scale to large numbers of candidate paths.
We could investigate heuristics for ranking paths (to help users choose one
to execute); techniques to help users create schemas with fewer cycles (and
hence fewer paths); and systems for pre-computation and/or path caching.

We could develop Scout further, e.g. with a GUI, to make its features more
discoverable and easier to learn; by displaying output at each step of path
execution, so that users can see how data is transformed, spot problems, and
update their queries; and by letting users define schemas with Scout’s DSL.

In Section 6.6 we speculated that Scout may help novices learn. However,
it could also hinder them from becoming experts, e.g. see Section 6.6.1. We
could investigate this.

6.8. CONCLUSION 135

6.7.3 Beyond Scout

Scout helps novices. Now we wonder what problems experts face in this do-
main, how they differ from those of novices, and if Scout’s solutions are trans-
ferable. For example, is query abbreviation too restrictive for experts? Do
experts also benefit from the unification of business and network data?

We also wonder if QLs need be exclusive to novices or experts. GPLs such
as Python, Swift, and Kotlin have gained popularity by having approachable
‘basic’ features, which users can mix with advanced ones. For example, Swift
uses automatic reference counting, but users can override this.

A diverse range of users might be better served by configurable languages.
This could work well with a GUI, as suggested above. For example, users could
disable features they do not need or adjust performance parameters. This
could even be automated, with the language learning about the users’ needs.
Such features may complement the software platforms that many network
vendors already use to differentiate their products.

6.8 Conclusion

In this chapter we evaluated the usability of the Scout QL by conducting
a study we designed with the Usa-DSL framework [29]. We recruited 39
network-domain novices, trained them to use either SQL or SQL and InfluxQL
used in tandem (SQL+IQL), and asked them to answer realistic questions
about networks with their assigned QLs. We evaluated their work with respect
to three usability criteria (cognitive load, accuracy, and efficiency) by comput-
ing metrics which we defined to measure them. We found that Scout reduces
novices’ cognitive load, while increasing their accuracy and efficiency. We also
categorised and compared the types of errors participants made, showing that
Scout users find it easier to approach problems, write queries, and interpret
their output. However, because Scout does more automatically, users may be-
come less thorough. Overall, our results show that Scout is more usable than
a common alternative (SQL+IQL).

Chapter 7

Discussion

7.1 Understanding and Expressing Operator Intent

Below we address the overarching topic of this thesis: Understanding and
expressing operator intent for the purposes of network configuration and ana-
lysis. We discuss the state of the art and our contributions to it.

7.1.1 Expressing Intent

Operator intent can be expressed in many ways. The most fundamental is by
directly configuring or monitoring network devices (see Section 4.4.3), e.g.
physically connecting them, changing their settings via CLI, and monitoring
them via SNMP [47]. This gives operators a great deal of control, but requires
substantial effort, especially in complex networks [7-10]. Another is ad hoc
automation, like Bash scripts, but this is brittle (changes to the network can
break the automation) [42]. There are more complex automation platforms,
such as Nagios [131] and Cisco Meraki [195], but these are only useful if they
support the features operators need [181] (and they may be expensive, or
require expertise to set up, and may not interoperate with competing vendors’
products [4]). Rather than understanding operators’ intent and implementing
it for them (as we do with Scout in Chapter 5), direct configuration and ad
hoc automation require operators to implement behaviours themselves. This
can be an advantage or a limitation.

In Chapter 2, we identified two paradigms, SDN and PBNM, with the po-
tential to reshape network management by understanding, translating, and
implementing operator intent. SDN makes it possible to configure and analyse

136

7.1. UNDERSTANDING AND EXPRESSING OPERATOR INTENT 137

networks holistically, rather than device by device. This lets northbound APIs
provide network-level abstractions (see Pyretic [46]) which make it easier
for operators to express their intent. For example, to manage dynamic net-
work conditions, Kinetic [51] policies are expressed as the states of an FSM,
whose transitions are triggered by network events (e.g. when a virus is detec-
ted). Such APIs are similar to direct configuration, but are less brittle (due
to standardisation efforts like OpenFlow [48]), free operators from minutiae,
and structure specifications of intent. This makes northbound interfaces a
natural focal point of questions related to operator intent.

In PBNM, operators express their intent with PDLs, formal languages for
writing policies, which are descriptions of intended network behaviour. Policies
are triggered when they are relevant, and are interpreted and automatically
enacted (see Section 2.3). For example, a Ponder [11] policy might prevent
an unauthorised user from accessing a certain resource. Formal languages
solve several problems related to understanding and expressing operator in-
tent, such as automatic enactment, consistent interpretation, and analysis
(e.g. syntax and correctness checking). However, they can introduce others,
including overheads (they are another tool for operators to learn and main-
tain), compatibility (with existing tools or network hardware), expressiveness
(the language may not be able to express the policies the operator desires),
and standardisation (where several products compete to solve the same prob-
lem in different ways, e.g. see the PDLs we identified in Section 3.2).

7.1.2 Beyond Expressing Intent

When we investigated RQ1 in Chapter 3 we found that there is more to op-
erator intent than its representation (whether by direct configuration, ad hoc
automation, APIs, or formal languages). We identified six significant PDL
characteristics which reveal other ways of expressing intent, and additional
concerns (see the top level of our taxonomy in Section 3.4). These are suffi-
ciently general to apply beyond PBNM, e.g. to SDN, and to network analysis
in addition to configuration. We discuss them below.

Language attributes: These refer to a language’s syntax and semantics; the
tools an operator uses to express themselves. However, they have implica-
tions beyond expressivity. Four of the seven language attributes we identified

138 CHAPTER 7. DISCUSSION

(parameterisation, specialisation, entity grouping, and composite policies) do
not affect the number of policies which can be expressed with a language, but
rather make certain policies easier to write. Language designers should not
only consider usability, but evaluate it (e.g. see our user study in Chapter 6).

Correctness checking: Ensures policies work as intended, after being writ-
ten, e.g. testing, verification, and conflict handling. Correctness checking adds
redundancy to expressions of intent: tests provide clarifying examples (for
humans) of what was intended when a policy was written, and, along with
policy verification, ensure that a policy’s behaviour does not unintentionally
change over time (e.g. due to erroneous modification, changing conditions, or
interference from other policies). Correctness checking implies that policies
have a lifecycle, e.g. design, implementation, correctness checking, integra-
tion, maintenance, and revocation. We should not think of policies as isolated
changes to a network, but rather as interdependent software packages which
require long term support.

Statefulness: Tools for configuring and analysing networks should account
for network dynamics [51] (i.e. changing conditions), such as network state,
packet flows, devices, or users. For example, an operator might want to know
which devices a user logged into on a given day. Scout can model state, and
infer the state of one entity from another (see Sections 5.6.2 and 5.6.3).

Supported actions: The OSI model layer at which actions can be performed
influences how intent is expressed (e.g. Ponder [11] deals with roles, and Kin-
etic [51] with packets) and for what a tool is useful (e.g. Ponder is suitable for
RBAC). While actions beyond data analysis are outside Scout’s scope, Scout
supports both lower layers of the OSI model (e.g. packet counters can be rep-
resented with time series nodes) and higher layers (e.g. user sessions can be
represented with interval nodes).

Practicality and validity: A management tool’s ecosystem is critical to its
success. Researchers and engineers need to consider how tools for express-
ing and understanding intent 1) will integrate with existing systems, e.g.
PromQL [196] queries are often visualised with Grafana [99] for monitor-

7.1. UNDERSTANDING AND EXPRESSING OPERATOR INTENT 139

ing and historical analysis; 2) what additional artefacts they should create,
beyond the tool itself, e.g. editors, compilers, tutorials, documentation; and
3) how their tool will mature and be supported in the long term, e.g. with user
forums, academic studies, and industry adoption. Even in the limited scope of
our Scout user study (see Chapter 6) we provided tutorials, documentation, a
CLI, and a convenient software package (in the form of a VM).

Control domains: These refer to what operators express (e.g. packet at-
tributes, like the input port, or temporal values, like the dates of a confer-
ence), as opposed to how they express those concepts, which we discuss in
Section 7.1.1. Identifying the concepts operators want to express makes it
easier to create tools which are effective in the real world, and to identify new
areas of research. See Section 7.1.3 for further discussion.

7.1.3 Understanding Intent

In Chapter 4 we interviewed network operators about their daily work and
identified 40 real-world network policies. These show us how practitioners
solved real problems, and give us an empirical basis for tool design (e.g. our
development of Scout in Chapter 5) and additional research (e.g. our user
study in Chapter 6). We are not aware of any similar collections.

From this set, we derived nine ‘dimensions’ for describing policies: User,
Device, Locus, Traffic Features, Physical Location, Temporality, Authentication,
Trigger, and Action. For example, the policy “BitTorrent is blocked” involves
Traffic Features and Action. We call them ‘dimensions’ because they are in-
dependent and non-overlapping. This is a useful property because it lets us
describe and analyse policies precisely and consistently. Our dimensions give
us a better idea of what features tools for network configuration and ana-
lysis should support, e.g. Scout includes notions of temporality (intervals and
points). They also help structure descriptions of intent, e.g. Scout’s syntax en-
codes the idea of a relationship between two network elements (as per Locus),
and of a time interval of interest (as per Temporality).

We also identified several motivations for the creation and modification
of network policies: enterprise requirements, user requirements, third party
requirements, one-off events, trust, maintenance, and security. These show

140 CHAPTER 7. DISCUSSION

the diversity of network management requirements, and may explain the con-
tinued use of general purpose techniques like ad hoc automation and direct
configuration, despite their limitations. These drivers explain the motivation
behind network operator intent, and taking them into account can help us
create more effective tools and practices.

7.1.4 Expressing Intent for Network Analysis

Dimensions like Physical Location and User show that network operator intent
includes both business- and network- domain concepts. This reflects the broad
scope of network management, which includes supporting the network, its
users, and the enterprise itself. However, when investigating RQ3 in Chapter 5
we found that little work combines network and business data. This forces
network operators to manually bridge the gap between these domains, for
example, by using a GPL like Python to combine the outputs of multiple QLs,
like SQL and InfluxQL.

To address this, we use our PDL taxonomy from Chapter 3 (RQ2) and
policy dimensions from Chapter 4 (RQ1) to develop Scout, a domain-specific
QL for networks. Scout can model both business- and network- domain data,
making it possible to answer questions involving both kinds of data (e.g. “what
is the average data rate in the library?”) with a single tool. In our evaluation,
we found that Scout reduced the number and complexity of queries needed
to answer such questions (see Section 5.8.1).

One explanation for this is that incorporating our policy dimensions lets
Scout more concisely and intuitively represent operator intent. For example,
table nodes can model users and devices, interval nodes can model their states
(e.g. logged in), and time series nodes can model traffic data. Because these
concepts are built into Scout, it can apply domain-specific knowledge when
analysing them. For example, when a user executes a query path from an
interval node to a time series node, Scout understands how to use the former
(time intervals) to focus on the relevant parts of the latter (time series). Our
findings show the advantages of DSLs in this domain.

7.1. UNDERSTANDING AND EXPRESSING OPERATOR INTENT 141

7.1.5 Implications for Usability

Our investigation of RQ3 showed that Scout reduces the number and com-
plexity of queries needed to answer realistic questions about networks. We
built on these results in Chapter 6 with a user study, finding that Scout re-
duces novices’ cognitive load, while increasing their accuracy and efficiency.
Scout users better understood how to approach questions, could more effi-
ciently express themselves, and made fewer mistakes when interpreting data
(see Section 6.6.1). This shows that the way in which intent is expressed (i.e.
usability) has an impact on operators.

A usability study should be part of the DSL design process, to ensure that
new DSLs help, rather than hinder, users in the real world [29]. Our usabil-
ity study found that Scout was more usable than a common alternative (see
Chapter 6). We also made some unexpected observations. For example, parti-
cipants kept working on questions until they obtained output, even when they
were encouraged to move on sooner. This led to especially poor outcomes for
SQL+IQL users, because they took longer to get results, which were more
likely to be wrong. Thus, one way to make novices more productive is to help
them see and understand query output with less effort. This shows the import-
ance and potential benefit of improving QL usability, in addition to common
goals such as conciseness, expressiveness, and computational efficiency.

An important part of our usability study and of designing Scout was identi-
fying a target user. We chose to focus on novices, e.g. by adopting a syntax
which gives users fewer opportunities for mistakes, and which may make in-
correct queries more obvious. Focussing on novices makes Scout better at
some things and worse at others, e.g. Scout’s ability to infer transitive re-
lationships among nodes reduces the complexity of queries, but can create
ambiguity (because different paths between the same pairs of nodes are not
necessarily equivalent). Therefore, the target user shapes the language and
its evaluation.

142 CHAPTER 7. DISCUSSION

7.2 Limitations

7.2.1 Language Paradigm

We focussed on declarative approaches to expressing operator intent (e.g.
Scout, PromQL, InfluxQL, and many PDLs are declarative). These address
some of the issues with direct configuration and monitoring (see Section 7.1.1)
by adding a layer of abstraction between the operator and the network: Op-
erators manipulate an information model designed for this purpose, rather
than the physical implementation of a network, which is designed to meet
operational goals. They also give operators structure and guidance (see our
discussion of the potential benefits of Scout’s three-statement syntax in Sec-
tion 6.6.2). However, this can be restrictive. For example, Scout queries are
limited to one chain of related entities (e.g. User-Assigned-Role), and InfluxQL
queries are limited to a single entity per query [197,198], increasing the num-
ber of queries that users need to write, and forcing them to combine their
outputs with post-processing.

These restrictions are apparent when analysing query output, for example,
we needed to use an additional language, like Python, to complete several
tasks with PromQL and InfluxQL in Section 5.7, and participants in our user
study reported using manual inspection to answer some questions. Imperative
approaches, like Flux [153], make this easier, e.g. because querying and ana-
lysis can happen in the same script. It can also be easier to incrementally build
up imperative programs than declarative ones, as the latter often have several
mandatory statements (e.g. Scout requires given and return statements). How-
ever, we identified iterative query building as a common workflow for parti-
cipants in our user study (and we used it ourselves, e.g. see Appendix D.4).

A more extreme example of expressing intent declaratively is NLP (see
Section 5.3.5). Chatbots [94] and intelligent assistants (such as Siri or Google
Assistant) have made significant progress in the last few years, and have been
commercially successful in domains like customer service [156]. A network
domain tool based on this technology could supersede our work, by giving
users greater freedom of expression than Scout, without the overhead of an
imperative programming tool like Flux [153]. However, formal languages can
be more reliable than chatbots (see Section 5.3.5).

7.2. LIMITATIONS 143

7.2.2 Underlying Assumptions

Our research is predicated on one model of network management: a small-
to-medium sized enterprise served by a LAN or wide area network (WAN),
which is operated by a small team of specialists. However, we do not know
what the industry will look like in future, or if this model will still exist. For ex-
ample, enterprises could outsource networking to service providers, obviating
the need for the small-to-medium scale analysis for which Scout is designed.

We concentrated on novices, but it is not clear if their effectiveness is of
interest or practical significance to enterprises. It may be that experts’ effect-
iveness is more important.

7.2.3 Methodological Issues

This thesis involves both configuration and analysis, however, we developed
a tool for network analysis only. We did not investigate what a tool for net-
work configuration would look like. Furthermore, we used research on net-
work configuration to investigate network analysis. For example, we designed
Scout, a language for network analysis, using policy-space dimensions, and
we evaluated it with questions derived from network policies. We argue that
this is valid, because the problem we investigated, expressing operator intent,
is common to both network configuration and analysis. However, differences
between configuration and analysis could affect the validity of our findings.

Our findings might not be representative. We did not use a systematic
strategy to identify PDLs when creating our taxonomy (see Section 3.6.3),
our interview study had only five participants (see Section 4.6.4), and we re-
cruited participants for our user study on a first-come first-served basis, rather
than with systematic sampling (see Section 6.5.5 and Appendix D.1.3).

7.2.4 Practicality

We focussed on the semantics (e.g. our policy dimensions) and syntax (e.g.
Scout’s DSL) of expressing operator intent, rather than its implementation.
Questions remain about the practicality of our work, especially with respect
to scalability. For example, what is the optimal way to physically store and re-
trieve Scout data? How complex can Scout schemas get before path selection
becomes impractical?

144 CHAPTER 7. DISCUSSION

7.3 Future Work

In this section we outline several directions for building on our work.

In RQ1 we investigated how operator intent is expressed in PBNM. It
would be beneficial to compare methods outside this field to PDLs and other
formal language-based approaches. For example, northbound APIs in SDN,
and NLP have both made significant progress in recent years. It would also
be interesting formally examine products which are used in industry, e.g. net-
work management platforms from companies like Cisco and Juniper.

When we investigated RQ2 we stated that network policies and network
questions are related (i.e. any policy can be reframed as a question which
checks if that policy has been implemented). Now we wonder if network
configuration and analysis can be more rigorously combined. For example, is
it possible to automatically generate queries from policies, in order to monitor
their behaviour? Or, could we suggest new policies based on queries?

Our work involved creating a basis for expressing network operator intent,
e.g. with the nine dimensions from RQ2 or the information model from RQ3.
It might be possible to use these, or future iterations of them, to perform
static analysis on queries or policies. For example, can we detect errors, or
propose simpler equivalents based on the underlying semantic information?
Alternatively, we wonder if queries or policies could be mined for information,
e.g. perhaps some policy or query concepts are more common than others in
certain situations or networks.

We could ask a group of experts (such as industry practitioners) to evaluate
Scout, similar to Poltronieri [29]. This would provide additional perspectives
on our work, and recommendations for improving the language. It would also
be interesting to discuss experts’ opinion about Scout’s benefit to novices, and
whether they see any value in it for users like themselves.

Scout’s three-statement syntax could be well-suited to a GUI-based editor
for writing and executing queries. We could create such an editor, and conduct
another user study to see if it increases Scout’s usability. It might also make it
easier for users to choose between paths (as discussed in Section 5.8.4). In our
user study, we noticed that users of all languages typically started by writing a
simple query, and building it up into a complex query (or sequence of queries)

7.3. FUTURE WORK 145

which answered their question. An editor could support this workflow, for
example, by saving old versions of queries so that users can easily refer to
them and see their output. A Scout editor could also help users debug queries,
e.g. by displaying sample output at each node in a path as it is executed.

We proposed a language (Scout) for answering questions about networks.
Some of our findings and techniques might be suitable for a framework for
writing policies, too. For example, a northbound API for an SDN controller.

Chapter 8

Conclusion

In this thesis we investigated the problem of understanding and expressing
operator intent for the purposes of enterprise network configuration and ana-
lysis. Existing approaches to this problem rely on using a range of tools, and/
or on applying a high degree of expertise and experience.

Our first step towards addressing this problem was to investigate the field
of PBNM, which uses PDLs to express intended network behaviour. We iden-
tified 18 PDLs and arranged them into a taxonomy. We used this taxonomy
to compare three PDLs, identify features which PDL designers consider im-
portant, areas for improvement, and tradeoffs which may be needed in PDL
design. Next, we interviewed network operators about their daily work and
gathered a set of real-world policies. We used these to identify nine ortho-
gonal concepts (i.e. dimensions) which can express a range of network policies
(User, Device, Locus, Traffic Features, Physical Location, Temporality, Authentic-
ation, Trigger, and Action). Then, we used our taxonomy and dimensions to
derive an information model for representing both network- and business- do-
main data, and the relationships among them. We built on this to develop a
domain-specific QL, Scout, to address three key problems: Network and busi-
ness data are stored and queried separately; multiple queries are needed to
answer realistic questions; and writing queries requires detailed knowledge
of data sources. We compared Scout to two existing QLs and found that it re-
duces the number and complexity of queries needed to answer realistic ques-
tions about networks. Finally, we designed and conducted a rigorous usability
study with 39 participants, and found that Scout reduces novices’ cognitive
load while increasing their accuracy and efficiency, relative to a common al-
ternative. We also analysed participants errors and found that Scout users
find it easier to approach problems, write queries, and interpret their output.

146

147

Overall, we found that operator intent can be expressed in many ways,
which we characterise by the extent to which that intent is automatically un-
derstood and implemented. At one extreme is direct configuration and ana-
lysis, where operators work with network primitives like switch CLIs, flow
rules, and packet counters, and at the other is NLP, which tries to understand
human expressions like “what happens to the traffic destined to CDN x?” In
the context of enterprise network management, the former gives operators
greater control but requires more effort, and the latter requires less effort but
provides less precise control. Between these extremes are formal languages,
like Scout, whose precise semantics can be predictably translated and imple-
mented.

We also found that there is more to expressing intent than syntax and
semantics, for example, usability, redundancy, state manipulation, and eco-
systems all play a role. Crucially, we found that network operators are inter-
ested in business domain concepts, in addition to network domain concepts,
because many network requirements are derived from business requirements,
and because implementing some directives requires manipulating and/or ana-
lysing both business and network entities. Our findings show the importance
of incorporating business-domain concepts in network management tools.

Another important consideration is the usability of tools for expressing in-
tent. Usability is determined by many factors, including the user and their
goals. For example, if an operator wants packet-level control, then Scout
may be less usable than micro-managing flow rules. However, if they want to
answer a question like “how much data was transmitted from the library yes-
terday?” then our results show that Scout may be more usable. The context-
sensitive and unpredictable nature of usability underscores the importance of
conducting rigorous usability studies when proposing new tools.

By understanding operator intent, and by letting operators express it in
a way which suits their goals, we can reduce errors, improve both human-
human and human-computer communication, create more usable tools, and
make network operators more effective.

Appendices

Appendix A

Supplementary Material for Chapter 3

A.1 List of Policy Description Languages

T S G G G
o Ul A WIN R~ O

17.
18.
19.

Ve Nk =

Knowledge Acquisition in autOmated Specification (KAOS, 1993) [199].
Authorisation Specification Language (ASL, 1997) [200].

Policy Description Language (PDL, 1999) [52].

Policy Framework Definition Language (PFDL, 1999) [201].

Trust Policy Language (TPL, 2000) [202].

Ponder (2001) [11].

Policy Core Information Model (PCIM, 2001), [53].

Rei (2002) [61].

A P3P Preference Exchange Language (APPEL, 2002) [203].

Enterprise Privacy Authorization Language (EPAL, 2003) [204].

. QoS Policy Information Model (QPIM, 2003) [205].

. eXtensible Access Control Markup Language (XACML, 2005) [206].

. Platform for Privacy Preferences (P3P 2006) [207].

. CIM Simplified Policy Language (CIM-SPL, 2009) [208].

. Ponder2 (2009) [59].

. Virtualization Assurance Language for Isolation and Deployment (VALID,

2011) [209].

Procera (2012) [60].
Merlin (2013) [76].
Kinetic (2015) [51].

150

Appendix B

Supplementary Material for Chapter 4

B.1 Policy Study Participant Information Sheet and
Consent Form

Overleaf are the participant information sheet and consent form used in the
policy study described in Chapter 4.

151

152 APPENDIX B. INFORMATION SHEET AND CONSENT FORM

UC

UNIVERSITY OF
CANTERBURY

Te Whare Wananga o Waitaha
CHRISTCHURCH NEW ZEALAND

=d 1o,

Department of Computer Science and Software Engineering
Email: andrew.curtis-

black@pg.canterbury.ac.nz

1st March 2017

An Enterprise Policy Description Framework for Software Defined Networking
Information Sheet for Interview Participants

Andrew Curtis-Black is a PhD student at the University of Canterbury working under his supervisors, Prof.
Andreas Willig and Dr. Matthias Galster. His research focusses on the applications of software defined
networking (SDN) to enterprise network management. This interview study aims to identify essential
concepts used to express network policies in industry.

If you choose to take part in this study, your involvement in this project will be to take part in a structured
interview lasting no more than 60 minutes. The interviewer will take written notes throughout the interview,
and, with your consent, will take an audio recording of the interview which he will later transcribe. With
your consent, you may be asked to answer follow-up questions via email. This will take at most 15 minutes
of your time. You will only be contacted if you specifically opt-in on the consent form.

In the performance of the tasks and application of the procedures there are no risks to yourself or your
institution or organization.

Participation is voluntary and you have the right to withdraw at any stage without penalty. You may ask for
your raw data to be returned to you or destroyed at any point. If you withdraw, I will removeinformation
relating to you. However, once analysis of raw data starts (estimated for 5" May 2017), it will become
increasingly difficult to remove the influence of your data on the results.

The results of the project may be published, but you may be assured of the complete confidentiality of data
gathered in this investigation: your identity will not be made public without your prior consent. Toensure
anonymity and confidentiality, all data will be stored securely on servers owned and operated by the
University of Canterbury which are physically located on-campus. Only the researchers (Andrew Curtis-
Black, Prof. Andreas Willig and Dr. Matthias Galster) will have access to your data, in addition to the
administrators of the university’s servers (who are trusted employees of the university). All data will be
destroyed after a period of ten years. A thesis is a public document and will be available through the UC
Library.

Please indicate to the researcher on the consent form if you would like to receive a copy of the summary of
results of the project.

The project is being carried out as part of a PhD project by Andrew Curtis-Black under the supervision of
Prof. Andreas Willig and Dr. Matthias Galster, who can be contacted at andreas.willig@canterbury.ac.nz
and matthias.galster@canterbury.ac.nz, respectively. They will be pleased to discuss any concerns you may
have about participation in the project.

This project has been reviewed and approved by the University of Canterbury Human Ethics Committee, and
participants should address any complaints to The Chair, Human Ethics Committee, University of
Canterbury, Private Bag 4800, Christchurch (human-ethics@canterbury.ac.nz).

If you agree to participate in the study, you are asked to complete the consent form and return it to your
interviewer.

AAndrew Curtis-Black

153

[P
UC
%ﬂf‘

UNIVERSITY OF
CANTERBURY

Te Whare Wananga o Waitaha
CHRISTCHURCH NEW ZEALAND

Department of Computer Science and Software Engineering

Email:

andrew.curtis-

black@pg.canterbury.ac.nz

An Enterprise Policy Description Framework for Software Defined Networking

O

(|

Name:

Consent Form for Interview Participants

I have been given a full explanation of this project and have had the opportunity to ask questions.
I understand what is required of me if [agree to take part in the research.

I understand that participation is voluntary and I may withdraw at any time without penalty.
Withdrawal of participation will also include the withdrawal of any information I have provided
up to the point of withdrawal should this remain practically achievable.

I understand that any information or opinions I provide will be kept confidential to the researchers and
the administrators of the University of Canterbury’s servers and that any published or reported results
will not identify the participants or their institution. I understand that a thesis isa public document and
will be available through the UC Library.

I understand that all data collected for the study will be kept in locked and secure facilities and/or in
password protected electronic form and will be destroyed after ten years.

I understand the risks associated with taking part and how they will be managed.

I understand that I can contact the researcher Andrew Curtis-Black or supervisors Prof. Andreas
Willig and Dr. Matthias Galster for further information. If I have any complaints, I can contact the
Chair of the University of Canterbury Human Ethics Committee, Private Bag 4800, Christchurch

(human-ethics@canterbury.ac.nz)

I understand that if I want a summary of the results I can email the researchers.
I consent to an audio recording of the interview being made and kept by the researcher.

I understand that if I want copies of the audio recording and transcript of the interview I can email
the researchers.

By signing below, I agree to participate in this research project.

Signed:

Date:

AAndrew Curtis-Black

B.2 Policy Study Interview Procedure

Below is the procedure followed in each of the interviews described in Chapter 4.

B.2.1 Interview Plan

1. Before the interview the participant was sent copies of the study inform-
ation sheet and consent form (see Appendix B.1).

2. At the beginning of the interview the goal of the study was again sum-
marised for the participant, and the participant was asked to verbally
confirm that they had read the information sheet and that they were
happy to proceed with the interview. The interviewer confirmed that
the participant had signed the consent form.

3. The interviewer conducted a brief sound check with the recording equip-
ment.

4. The interview was conducted.

5. After the interview the interviewer thanked the participant and asked:
if the participant was happy to be contacted with follow-up questions;
if the participant could recommend anyone else in the organisation to
interview; and if the participant could recommend any publicly available
material which might be relevant.

6. The participants were sent a final email which: thanked them again for
their participation; reminded them that they could request to view the
data that had been collected from them; and reminded them that they
are entitled to view the results of the study.

B.2.2 Interview Questions

1. Background.

* What kinds of users do you have on your network?

* What kinds of devices do you have on your network?

* What sorts of restrictions are applied to users and devices on your
network? What are the things which they may and may not do?

154

B.2. PoOLICY STUDY INTERVIEW PROCEDURE 155

2. Are those restrictions applied uniformly, or only under certain condi-
tions? Suggest examples from the list below if necessary.

* Based on time of day.

* Based on the user’s role (manager, engineering, network adminis-
trator).

* User’s department.

* User’s assigned project(s).

* Payment/billing/account data.

* User location (campus, building etc.)

* Method of connection to the network (direct Ethernet, remote VPN).

* Type of user device (company supplied, or user supplied?)

3. Could you describe two or three specific policies which have been im-
plemented in your network?

4. Can you describe an event (or several) which resulted in new policies
being created or existing ones changed? Use the following as conversation
starters to fill in any gaps (especially if the interviewee is reticent). Ask the
interviewee to discuss example scenarios if necessary.

* Were there ever legal reasons for any of the network policies you
implemented? E.g. Privacy, auditing, or safety.

* Administrative changes, e.g. Departments moving floors or build-
ings, users taking on new roles (such as becoming a manager),
directives aimed at improving efficiency.

* Do you implement policies in order to provide employees with re-
sources necessary for them to do their jobs?

* Do you implement policies to make some other stakeholder happy?
E.g. Make customers happy (e.g. internet access while on-site), or
provide visitors with access to network resources.

* Do you implement policies in response to network incidents or
faults? E.g. Phishing websites, data exfiltration, or misuse of the
network.

5. Policy modification rate.

* How often are policies created or modified? Per day/week/month/year?
* Are some kinds of policies created or modified more often than
others? If so, why?

156 APPENDIX B. INFORMATION SHEET AND CONSENT FORM

6. Policy modification cost.

* Does creating or modifying policies create a lot of work for you? Is
this a major part of your job?

* How much work does it typically take to create or modify a policy?

* Can you tell me about a time when creating or modifying a policy
was particularly expensive? This could include initial or ongoing
costs, and could be in terms of man-hours or resources like CPU time.

7. How did you implement the policies we’ve discussed? What processes
and tools did you use? What was your workflow?

8. What tools and technologies actually enforce the policies you imple-
ment? Firewall rules, ACLs, honour system, topology reconfiguration.

9. Policy record format.

* How are policies recorded? Is there a format? This may come up
when discussing the previous questions. Suggest examples from list
below if necessary.

— Formally defined and recorded (i.e. documented in a consistent
format such as a PDL, or a formal specification document).

- Informally defined and recorded (e.g. documented in prose,
or some format which can be stored and later interpreted, but
which is not necessarily consistent across all policies).

— Informally defined and not recorded (e.g. policy is known to
network administrators and noted mentally).

— Not specified in any way/question not applicable because there
are no policies/restrictions.

* Could you provide an example?

10. How do you know if policies are implemented successfully or not? Is
there a process for verifying them? Suggest examples from the list below,
if necessary.

* With a formal and automated testing framework which runs against
the network. If yes, specify if it runs against a production or a test
network.

* By hand (network operators attempt actions manually and see if
they are allowed/disallowed as expected).

B.2. PoOLICY STUDY INTERVIEW PROCEDURE 157

* By sight (network operators review the network configuration and
determine if it looks like it should operate as expected).

* Not at all.

* A mixture of the above options (i.e. some policies are tested one

way, others another; please specify).

11. Are there policies you would implement if you had the right tools?

B.3

Policy Study Codebook

Below are the definitions of the codes we created for our policy study (see

Section 4.3.3 for details). The bullet points’ colours correspond to Figure 4.1.

Secondary codes are indented under their primary codes. The number of

textual segments linked to each code is given in brackets (note that the same

segment can be coded multiple times).

® Policy dynamism (9): Factors related to policy creation and modification.

Frequency of policy modification (17): How often policies are mod-
ified.

Cost of policy (20): The costs associated with a policy (e.g. imple-
mentation or maintenance).

® Challenges in network management (17): Situations which are gener-

ally challenging in network management.

Shortcomings in traditional network management (24): Areas where
traditional network management techniques aren’t flexible, or express-
ive enough to achieve some goal. It is likely that a new paradigm, like
SDN, may be able to do better in these situations.

Shortcomings in enterprises’s system (16): An issue which is pecu-
liar to the enterprise’s network, or to their approach to network man-
agement, i.e. Something which they are doing has some shortcoming,
or causes problems.

Information about the enterprise (2)

Class of user (11): The different types of users of the network, e.g.
salesperson, teacher, or engineer.

Number of network administrators (3)

Number of staff (3): The number of people employed by the enter-
prise (at the interviewee’s office, and/or globally).

General approach to network management (1)

Unrestrictive (1): Users are asked to ‘do the right thing’, and few
policies are enforced on the network.

Restrictive (8): There is little expectation that users will ‘do the right
thing’, and policies are generally enforced automatically, and as con-
sistently as possible.

158

B.3. PoLicy STuDY CODEBOOK 159

® Information about the interviewee (1)

® Area of work (within network management) (7)

® Parts of the network the administrator works with (5): For ex-
ample, the entire network, or just WAPs.

® Years of experience (5)

® Team/department of work (4): For example, user facing (tech sup-
port), or facilities management (e.g. cameras, or physical access).

Policy implementation workflow (15)

Policy record format (10): The format in which the policy is recorded.
People involved (7): Who is involved in and/or consulted during the
implementation process (e.g. managers, users, or network engineers).
Tools (22): Tools used during the process of creating and implement-
ing policies, e.g. a terminal, text editor, or web interface.

® Verification method (6): How do administrators confirm that a policy has
been correctly implemented?

® Manual testing (2): An automated process, which involves sending
certain inputs under certain conditions, and confirming that the beha-
viour of the network matches a defined expectation.

® Manual inspection (2): Looking at the network configuration and
relying on administrator expertise to identify issues.

® Policy driver (35): Policy drivers are not policies, although they result in
the creation of policies. They may be objectives which policies can achieve,
or demands or requirements which policies can satisfy. For example, “we
want to keep things simple for network users, so they’re not tripping over
complex environment configurations.”

® Availability of resources (1): Resources constrain the services the
network can offer, and therefore the kinds of policies which are imple-
mented.

® Public image (2): Policies are created in order to manage the pub-
lic’s perception of the enterprise (e.g. BitTorrent is blocked, to avoid
accusations of piracy).

® User requirements (24): Things that users of the network require to
get their work done, or have requested as a ‘nice to have’.

160

APPENDIX B. INFORMATION SHEET AND CONSENT FORM

Enterprise requirements (13): Things that users don’t have a direct
interest in, but which the enterprise must provide, e.g. access to the
network for the air conditioning system.

Keeping the network operating smoothly (11): Network adminis-
trators sometimes need to restrict user behaviour because it can inter-
fere with the operation of the network.

Internal threat (3): When users deliberately use the network for pur-
poses the enterprise explicitly disallows. This is not limited to security
issues, but might also refer to users accessing social media.

Legal requirement (3)

Third party (1): An external entity (e.g. a network vendor) requires
that the network operate in a certain way.

Security (9): Policies are created based on security requirements or
identified threats.

Network incident (5): Something happened which prompted the en-
terprise to institute a policy, e.g. a user was misusing the network.

® Policy example (53): A concrete example of a policy that has been imple-

mented in the enterprise’s network.

Policy condition (14): A condition for the application of a policy, e.g.
the time of day.

® (Class of policy (4): Comments which are indicative of certain types of

policies.

Bandwidth (3): Policies related to network bandwidth.
Specific websites or services (6)

® Implementation strategy (37): The mechanisms by which policies are

enacted or enforced in the network.

Network monitoring and manual intervention (4): Automated or
manual monitoring of the network to make human administrators
aware of anomalous events so that they can take action.

Packet inspection (2)

Manual white/blacklisting (5): For example, via MAC address-based
authentication, or manually updated ACLs.

Honour system (4): Network users are asked not to do something,
but there is no automated enforcement.

Firewall rule (4)

® Topology (8): The network topology is constructed so as to enact the
policy (e.g. certain devices are located on the same subnet).

® Interview question (77): A predefined question written before the inter-
view began, and asked in all interviews.

® Ad-hoc interview question (22): An interview question the inter-
viewer invented during the interview (as opposed to one which was
written before the interview began). Asked to pursue an interesting
line of enquiry which is substantially different to any of the prewritten
questions. This does not include questions asked for clarification.

® Information about the network (13)

® Software run on hosts on the network (14)

® Network protocol (135): A network protocol used in the network.

® (Class of host (53): Different classes of host devices, e.g. phones,
laptops, cameras, servers, or PCs.

® Number of hosts (6): The number of host devices served by the net-
work.

® Number of forwarding devices (4): The number of forwarding devices
in the network.

® Network service (33): An example of a service being run on or provided
by the network.

® Number of network users (2)

161

162 APPENDIX B. INFORMATION SHEET AND CONSENT FORM

B.4 Additional Policy Examples

Below are additional policies identified in our policy study. See Section 4.5
for more.

P12. Only teachers and year 12 and 13 students are permitted to book Chrome-
books owned by the school.

Dimensions

* User: If User.role is teacher or year 12 student or year 13 student.
* Device: If Device.classification is loaner Chromebook.

* Action: Run a script (e.g. allow the user to sign into the self-loan kiosk to sign
out a device).

P13. Students using loaned Chromebooks are signed out after 10 minutes of
inactivity.

Dimensions

¢ User: If User.role is student, and...
* Device: Device.classification is loaner Chromebook, and...
* Temporality: Most recent activity was more than 10 minutes ago.

* Action: Run a script (e.g. revoke the access token issued when the user signed
into device, to trigger a logout).

P14. Users may not access Facebook during work hours.

Dimensions

* Temporality: It is during work hours, and...
e Traffic: Locus.{destination: Traffic}.url is www.facebook.com

* Action: Drop packets

P15. mega.co.nz is blocked for most users, but allowed for some.

Dimensions

* Traffic: Locus.{destination: Traffic}.url is www.mega.co.nz, and...
* Authentication: Authentication.privilege does not contain allow Mega

* Action: Drop packets.

P16. Tor is blocked.

Dimensions

* Traffic: If profile of traffic properties indicates Tor usage.

* Action: Drop packets.

B.4. ADDITIONAL POLICY EXAMPLES 163

P17. All network traffic should be filtered to block access to banned websites.

Dimensions

¢ Action: Redirect all packets through a traffic scanner.

P18. The Bonjour protocol is blocked.

Dimensions

* Traffic: If Traffic.protocol is Bonjour.

* Action: Drop packets.

P19. Student devices should only be able to access the student VLAN from ports
in student areas (e.g. not from the staff room).

Dimensions

¢ User: If User.role is student, and...
* Location: Location.classification is student.

* Action: Allow packets, else drop packets.

P20. WAPs provide access to only one VLAN each, and the physical port to which
they are connected should only be enabled for the VLAN they need.

Dimensions

¢ Device: If Device.macis 11:11:11:11:11:11

e Action: Set Locus.path.first_hop.port.vlan to 1234.

P21. VOIP phones are allowed on any port.

Dimensions

* Device: If Device.type is VOIP phone.
* Locus: If Locus.path.first_hop.port not in Device.allowed_ports.

* Action: Drop packets, else allow packets.

P22. Only management staff have access to the Internet.

Dimensions
* User: If User.role is not manager, and...
* Locus: Locus.{destination: Traffic}.ip is notin Locus.LAN

* Action: Drop packets.

164 APPENDIX B. INFORMATION SHEET AND CONSENT FORM

P23. Users are classified into three groups and general access policies are applied
to these groups. Power users have mostly unrestricted access to the network and
the Internet; standard users have mostly unrestricted access to the internet, but
cannot access banned content or download very large files (but throughput is not
throttled); and intranet users can only access the intranet and a small number
of business-related sites.

Dimensions
* User: If User.classification is power user.

* Action: Allow packets, and...

* User: If User.classification is standard user.

* Action: Redirect traffic to a vendor-supplied proxy server for filtering, and...
* Traffic: If Traffic.protocol.http.response.file.size > 2GB.

* Action: Drop packets, and...

* User: If User.classification is intranet user.

* Traffic: If Locus.{destination: Traffic}.ip_address is not in range
172.16.0.0/12, or if Locus.{destination: Trafficl}.url is not in [www.

acc.co.nz, ...]

* Action: Drop packets.

For each of the remaining policy examples we simply list dimensions which
could be used to represent them.

P24. User-supplied devices may connect to the network, but may only access the
Internet (and strictly no local devices).

Dimensions

Device, Locus, Traffic, Action

P25. Only enterprise-owned devices with valid security certificates can connect
to the private Wi-Fi. They get unrestricted access to the Internet and get limited
access to the corporate LAN (only email, and the rostering website).

Dimensions

Device, Authentication, Traffic, Action

B.4. ADDITIONAL POLICY EXAMPLES 165

P26. The enterprise uses a third party service to identify a certain class of user
(definition redacted for privacy reasons). A server monitors various signals and
sends messages to hand-held devices to alert staff. Firewall rules prevent those
staff devices from sending traffic anywhere other than the identification server.

Dimensions

Device, Action

P27. Normal Internet traffic must pass through a proxy server (which enforces
a number of other policies) to get to the internet.

Dimensions

Locus, Traffic, Action

P28. User-supplied devices may not send traffic to the IT department’s servers.

Dimensions

Device, Action

P29. Staff on enterprise-owned laptops (with valid security certificates) can
connect to their network-mounted ‘H’ drives.

Dimensions

User, Device, Authentication, Action

P30. Students can access the Internet and some internal servers.

Dimensions

User, Device, Locus

P31. Physical kiosks are available for users to reset their passwords. These kiosks
can only send traffic to a specific server.

Dimensions

Device, Action

P32. Visitors to campus should have (bandwidth-limited) internet access.

Dimensions

User, Traffic, Action

166 APPENDIX B. INFORMATION SHEET AND CONSENT FORM

P33. Student users should have limited internet bandwidth, and staff users
should have unlimited internet bandwidth.

Dimensions

User, Traffic, Action

P34. It should be possible to send emails from the photo kiosk.

Dimensions

Device, Location, Traffic, Action

P35. Users should not be able to set up their own DHCP servers

Dimensions

Traffic, Action

P36. Users should not be able to attach their own switches to the network.

Dimensions

Traffic, Action

P37. Running proxy ARP on certain networks is banned.

Dimensions

Traffic, Locus, Action

P38. Salespeople should not be able to access the engineering wiki.

Dimensions

User, Locus, Action

P39. Only staff members who have filled out a policy form are allowed access to
the internal network. Otherwise they should only have access to the Internet.

Dimensions

User, Locus, Action

P40. Only corporate (not personal) devices may use the corporate network.

Dimensions

Device, Authentication, Action

© 0 N O O W N

W oW oW oW W N NRNNDNNNDRNNN B R S R R e e
B O N R O © ® N0 0R®N PR O © N W PO

Appendix C

Supplementary Material for Chapter 5

C.1 Scout’s Grammar

Listing C.1: Scout’s grammar, in EBNF notation.

(Query)
(given)
(filtered_node

(node_name

)
)
(criteria)
(criterion)

)

(comparator
(return)

(func)
(arg)

(over)

(time_interval)

(timestamp)

::= (given) (return) (over)?
/* Given statement */

n G n) n : n
(filtered_node) ("

n.nono oo
H !

::= ("Given" |

and " (filtered_node))*

(node_name) (criteria)?

("/" (identifier))x*

(identifier)

::= "{" (criterion) ("," (criteriomn))* "}"
= (identifier) (comparator) (primitive)
R e L S RS L A e e
/% Return statement x*/
::= ("Return" | "R") ": "
(node_name) (func)=*
womowwg
= "." (identifier) "(" ((arg) ("," (arg))*)? ")"

::= (primitive) |

(identifier)

/% Over statement */
n U ") n : "
(time_interval)

n.n
’

i:= ("Over" |

nosn

(timestamp) (timestamp)

*/

(str) /* Timestamps are parsed ezternally.

/* Fundamentals */

i:= (([a-z] | [A-Z])+ [0-91x)+

i:= [a-z] | [A-Z1 | [0-91 | ™.™ | "xnm | v, " e
::= (int) | (float) | (bool) | (str)

::= [0-9]+

::= [0-9]+ "." [0-9]+

::= "True" | "False"

::= ("'" (any_char)* "'") | ("\"" (any_char)* "\"")

167

C.2 Realistic Questions about Networks

Below are a set of realistic questions about networks. We describe how these

were derived in Section 5.7.1. These questions are phrased as they appeared

in our user study (see Chapter 6), and include specific values (e.g. usernames,

dates, and IDs) drawn from the databases we used in our study. They can also

be phrased generically, e.g. NQ1 could be given as “do users with a given role

have a given permission?”

NOL.
NQ2.

NQ3.

NQ4.

NQS5.

NQ6.

NQ?7.

NQS.
NQO.

NQ10.
NO11.

NOQ12.
NQ13.

Do users with role Admin’ have permission with ID 1?

How many unique interfaces connected to VLAN 100 between 10 Dec
2019, 10:50am and 10 Dec 2019, 11am?

Rank the following users by the average number of bytes per second
they received between 10 Dec 2019, 10:50am and 10 Dec 2019, 11am:
(‘Glen Kirkpatrick’, Jannat Harper’, ‘Fatma Keeling’, ‘Caio Warren’, ‘Kayla
Petty’, ‘Charlize Wooten’). Give the user with the highest rate first.

How many bytes were transmitted from location ‘Library’?

What was the mean average number of bytes received per minute by
user Jaye Stout’ between 10 Dec 2019, 10:50am and 10 Dec 2019,
1lam?

Which user(s) of role Admin’ connected to VLAN 100 for less than 195
seconds? Provide their user ID(s).

Rank the edge ports of switch with 73 by how long they were active.
Active here means “at least one client was connected”. Give your answer
as a list of comma-separated port numbers, starting with the port which
was active longest, e.g. 1, 2, 3, 4...

How many unique clients connected to switch with ID 70?

How many bytes were received by enterprise client with ID 140 between
10 Dec 2019, 10:50am and 10 Dec 2019, 10:56am?

From how many locations, other than ‘Library’, have clients connected
to VLAN 100?

How many times did user Jaye Stout’ connect to the network?

When was account with ID 1 created?

List any five switch ports which were configured to connect to VLAN
100. Give each port as sX:pY, e.g. sl:pl, s1:p2, s4:p9 (where s stands
for switch ID, and p stands for port number).

168

C.2.

REALISTIC QUESTIONS ABOUT NETWORKS 169

NQ14.

NQ15.

NQ16.

NQ17.

NQ18.

NQ19.

NQ20.

NQ21.

NQ22.

NQ23.

NQ24.

NQ25.

NQ26.

NQ27.

NQ28.

NQ29.

For how long was at least one client connected to port 1 of switch with
ID 18?

What was the average number of bytes per second transmitted from
location ‘Library’ between 10 Dec 2019, 10:50am and 10 Dec 2019,
1lam?

Give the client IDs of the enterprise clients which user Jaye Stout’ logged
into.

How many bytes did switch with ID 4 receive between 10 Dec 2019,
10:50am and 10 Dec 2019, 11am?

Give the ID of the switch to which the client interface with MAC address
00:00:00:00:00:08 most recently connected.

To which ports of switch with ID 7 did enterprise clients of type iPhone
connect? Give your answer as a list of port numbers separated by com-
mas, e.g. 1,2, 3

How many switch ports were used to connect to VLAN 100 between 10
Dec 2019, 10:50am and 10 Dec 2019, 11am?

What was the median length of time (in seconds) for which devices were
logged in between 10 Dec 2019, 10:50am and 10 Dec 2019, 11am?
How many users, who did not have role ‘Admin’, logged into an enter-
prise client of type ‘iPhone’?

Which of the accounts with IDs [23, 132, 88] were marked inactive
before (or at the same time) the event named ‘COSC121 Exam’ started
and marked active after (or at the same time) that event ended?

Does VLAN 100 exist (i.e. has the network been configured with it)?
How many unique users connected to switch with ID 4 between 10 Dec
2019, 10:50am and 10 Dec 2019, 11am?

How many users of role Admin’ connected to VLAN 100 between 10 Dec
2019, 10:50am and 10 Dec 2019, 11am?

List the 10 edge switches which received the most bytes between 10 Dec
2019, 10:50am and 10 Dec 2019, 11am. Give your answer as a comma-
separated list of switch IDs, starting with the switch which received the
most bytes, e.g. 1, 2, 3... If two switches received the same number of
bytes they can appear in any order within the list.

How many packets did enterprise clients with operating system Android’
transmit?

How many bytes were transmitted to ports, other than those belonging

170

APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 5

NQ30.

NQ31.
NQ32.

to switches with ID 1, 2, 3, 4 or 5, on VLAN 100 between 10 Dec 2019,
10:50am and 10 Dec 2019, 11am? Note that the following regular ex-
pression matches any number except 1, 2, 3,4 or 5: '~ (?!(11213415)$
)\d+!

How many clients connected to switch with ID 70 between 10 Dec 2019,
9am and 10 Dec 2019, 11am?

Which user(s) of role Admin’ connected to VLAN 1007?

What ratio of packets are dropped, for each port at the edge of the
network?

Appendix D

Supplementary Material for Chapter 6

D.1 User Study Protocol (Usa-DSL)

We designed our user study (see Chapter 6) with the Usa-DSL framework [29].
Usa-DSL has four phases (Planning, Execution, Analysis, and Reporting), and
eleven generic steps (e.g. ‘ethical and legal responsibilities’). Each phase im-
plements some or all of the steps as granular ‘activities’ (i.e. phase + step =
activity). Each activity recommends a procedure, which is based on the HCI
literature. Phases are referenced with letters (P.E.A.R), steps with numbers
(1-11), and activities with both (e.g. P1). Figure D.1 (reproduced from [29]
with the authors’ permission) gives an overview of the framework. Below we
give a step-by-step summary of our application of Usa-DSL.

D.1.1 Planning (Phase 1)

Define Evaluators Profiles (P1)

Our target population is inexperienced users in the network management do-
main (e.g. junior software engineers, network engineers, network operators,
and computer scientists). We use purposive sampling [101], and recruit parti-
cipants from among computer science and software engineering undergradu-
ate students, and junior software engineers. We apply the selection criteria
below to ensure that all participants have some experience in the areas needed
to participate in our study (see E4 for more detail).

* Must have some familiarity with CLIs: >1 on the background question-
naire (see P7).

171

172 APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 6

Activities

Phases |
Steps -
=") . 03 X i
Planning ﬁﬂ Execution I_ €S§Analy5|s I_ Reporting |
1- Evaluators P1 Define Evaluators E1 Apply Instruments to Al Analyze Evaluator R1 Report Evaluator
Profiles 1 Profiles Identify Profiles | Profiles Profiles
. Ethi E2 Introduce the Form R2 Report Subjects
2 Eth'cal and tegal P2l DEine e and Collect Signatures of Number and the Form
Responsibilities Consent Term Subjects Used
3 - Data Type 1 P3 Define Data Type
4 - Empirical Stud; ‘
MethoglsE] 4 P4 Define Empirical | E4 Develop and Conduct | A4 Analyze the Developed | R4 Report the Developed
‘ Study Method Protocol Protocol Protocol
5 - Evaluation P5 Define Evaluation £5 Prepare the Evaluiation R5 Report Conduction
Method (HCI) ‘ Usability Type P Evaluation
|
I P6 Define Metrics for | | |
plIMeTS ‘ Language Validation
|
7 - Gathering ‘ P7 Define the Instruments A7 Analyze the Collected
Instruments of Data Gathering E7 Data Collection ‘ Data R7 Report Data Analysis
E8 Introduce Instruments
8 - Evaluation P8 Define the Instruments -
fl
Instructions ‘ of Instruction and Training s nStrUCt#;rigg SeniHes 118 RepOrt i [Nstriments
9- Evalqatlon P9 Define Execution Place |1/ E2 Execu_non of Tasks_ and ||| A9 Analyze the Performed R9 Report Tasks Analysis
Conduction ‘ Evaluation Conduction Tasks
|
10- D;ta ‘ P10 Define Data Storage | E10 Store Data Obtained |
Packaging | | |
'l - Evaluation 1 P11 Define Study All Analyze the R11 Report the Results and
Reporting J Reporting | | Documentation | Analyzed Information

Figure D.1: Overview of Usa-DSL [29] (reproduced with permission)

* Must have basic knowledge of networking: >1 on the background ques-
tionnaire (see P7).

* Must have basic experience with query languages such as SQL or In-
fluxQL: >1 on the background questionnaire (see P7).

* Must have basic experience in computer science (or related field): >1
year of computer science experience on the background questionnaire
(see P7).

The literature recommends recruiting 20 participants for this kind of study
[173], so we aim to recruit 40 (20 for each interface to be evaluated). It
is not easy to recruit so many participants, especially given the significant
time and effort commitment (see P6), so we offer participants an inducement.
Each participant receives up to three vouchers of their choice with a combined

D.1. USER STUDY PrROTOCOL (USA-DSL) 173

value of 60 NZD* if they complete the study. If participants do not complete
the study they receive no inducement. This is stated explicitly in the study
information sheet and participant consent form (see P2).

The researcher conducting the study has an undergraduate qualification
in software engineering and, at the time or writing, is a doctoral student in
the area of network management. The researcher is not an HCI expert, but
has reviewed the relevant literature.

Define Informed Consent Term (P2)

We prepared an information sheet and consent form for prospective parti-
cipants, using a template from our institution (see Appendix D.2).

Define Data Type (P3)

We collect both quantitative and qualitative data (see P5 for details).

Define Empirical Study Method (P4)

We perform a controlled, comparative experiment [210]. Participants are split
into two groups and assigned a QL (either Scout, or SQL and InfluxQL used in
tandem). Participants will complete a tutorial (designed to take one hour) on
their assigned language, followed by a test (designed to take 20 minutes). If
they do not score at least >50% within three attempts then we remove them
from the study (and give them no inducement, as per P1). The remaining
participants are asked to spend 100 minutes writing queries to answer net-
work questions (these are listed in Section 5.7.1). All parts of our study are
self-administered, via web forms (see P7). Our independent variables are the
questions participants are asked to answer (see P7), and the QL they use to
do this (see Section 6.5.2 for details). Our dependent variables are identified
in P6. We performed a pilot test with four people from the target population
who were not otherwise involved in the study, to identify issues and improve
our design. See Section 6.5.2 for details.

40 ~40 USD, in 2021.

174 APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 6

Define Evaluation Usability Type (P5)

From an HCI perspective, our study design (see P4) is an unmoderated re-
mote user test [211]. This makes it harder to control variables, but is more
realistic than a laboratory setting, and allowed us to continue the study, even
through the pandemic which began in 2020. Threats to validity are discussed
in Section 6.5.5.

Define Metrics for Language Validation (P6)

We define metrics using Goal, Question, Metric (GQM) [212], which is a
process for defining measurable goals for software. In GQM, the researcher
defines goals, breaks these into questions, and proposes specific metrics (i.e.
dependent variables) for answering those questions.

Our goal is to compare the usability of the Scout QL to that of a widely
used QL for answering typical questions about networks, when used by in-
experienced users. As our goal focuses on usability, we select relevant UCs:
cognitive load, accuracy, and efficiency. Below, we frame these as questions,
to fit GQM, and select their metrics. The definitions for UCs and metrics are
given in Section 6.5.3.

Q1. How much cognitive load do the languages impose? (M1, M2, M3, M4)
Q2. How accurate are users with the languages? (M5, M6, M7)
Q3. How efficient are users with the languages? (M8, M9, M10, M11)

Define the Instruments of Data Gathering (P7)

We gather all data using three web forms, hosted on the Qualtrics platform [213]:
a recruitment form, post-tutorial test, and evaluation response form. Parti-
cipants’ responses are saved (see P10). The post-tutorial test and evaluation
response forms can only be accessed through personalised links, which we
generate for every participant. Personally identifying participants is neces-
sary, so that we can send them their vouchers once they complete the study.
We remove all personally identifying information before analysing data (see
A7).

D.1. USER STUDY PrROTOCOL (USA-DSL) 175

Recruitment Form

The recruitment form contains the study information sheet, consent form,
and background questionnaire. Participants only see the background ques-
tionnaire if they consent. The background questionnaire automatically ap-
plies our selection criteria (see P1) and displays an off- or on- boarding screen
based on participants’ responses. The background questionnaire is below.

1. First name; Last name.

2. Email address.

3. Please indicate if you would like to receive a summary of the results of the study. They will be sent to the email
address you provided on this form.

4. What is your main field of study or work? E.g. Computer science, software engineering, network engineering,
computer security, etc.

5. What is the highest level of education in computer science (or a related field) which you have pursued? Please
include qualifications which you have not completed.

1) No formal education.

2) Secondary (e.g. high school).

3) Tertiary undergraduate (e.g. bachelor’s degree).

4) Tertiary postgraduate (e.g. master’s degree).

6. Approximately how many years of experience (academic, industrial, or similar) do you have in computer
science (or a related field)?
7. How much experience do you have with command line interfaces (CLIs)?

1) None.

2) Little (e.g. I have copy/pasted and run a few CLI commands before).

3) Some (e.g. I often run CLI commands, but am not familiar with advanced concepts such as command
piping |).

4) Much (e.g. I understand argument passing, pipes, and output redirection, and am comfortable with
common commands such as ps, grep, or In).

8. How much experience do you have in computer networking?

1) None.

2) Little (e.g. I have no formal education or experience, but I have touched on networking projects or
courses).

3) Some (e.g. I have taken one or more networking courses, conducted post-graduate level networking
research, or have completed substantial self-study over a period of months or more).

4) Much (e.g. I have practical industry experience designing, deploying, maintaining or administrating
networks; I am an experienced researcher specialising in computer networking; or I have extensive
personal projects in this area).

9. How much experience do you have with query languages (QLs), such as SQL or InfluxQL?

1) None.

2) Little (e.g. I have used at least one QL before, but am not confident writing queries with it).

3) Some (e.g. I can understand and write basic queries in at least one query language).

4) Much (e.g. I am comfortable with at least one QL and can write complex queries utilising advanced
concepts such as joins or ‘group by time’ statements).

5) If participant answers >1 to previous question: Please list the query languages you have used.

Post-Tutorial Test

After completing our background questionnaire, we ask participants who meet
our selection criteria (see P1) to complete a tutorial on their assigned QL (see
P8). We ask them to take a test (via a web form) when they feel ready, to verify
that they completed the tutorial. We designed the test to take 20 minutes, and
it contains only simple questions, covered in the tutorial. The test is below.

176 APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 6

Welcome to the post-tutorial test. The purpose of this test is to confirm that you completed the tutorial and that
you are ready to move on to the final phase of the study. The test is not timed, and you are welcome to pause and
resume it. It should take less than 20 minutes to complete.

You should answer all question using your assigned query language (Scout, or SQL and InfluxQL). You should
not use any other programming or query language. You may refer to the tutorial, or to any online resources
(including Google, Stack Overflow, etc.) but you should not discuss your work with anyone else.

To pass the test and move on to the final phase of the study you must score at least 50% on this test. You may
attempt the test a total of three times. Please note that, as per the study information sheet, you must pass this test
in order to be eligible to receive vouchers.

Hints: Some tasks are easier to solve if you write more than one query; You can get the solution to some
tasks by manually inspecting the output of one or more queries. You don’t have to write a query which outputs the
final answer itself. Remember that there is more than one type of client interface (enterprise and user). This may
mean that you need to write an extra query for some tasks.

Please enter your first and last names to confirm your identity.

What is the name of the user with ID 22?

How many user accounts are stored in the database?

How many packets were transmitted out port 2 of switch with ID 3 between between 10 December 2019,

10:09am and 10 December 2019, 10:11am?

5. Which of the following users have permission to access the print server? Manuel Harmon, Buzz Aldrin, Charlize
Wooten, Romy Jensen, Luciano Saunders, Ajay Logan.

6. How many times was the role ‘Guest’ assigned (across all users)?

7. How many packets were transmitted to the client interface with MAC address 00:00:00:00:00:97?

8. How many bytes did switch with ID 1 receive between 10 December 2019, 10:09am and 10 December 2019,
10:11am? NB: Influx users, remember that the tag key for switch IDs is ‘dp_id’.

9. Which of the following switches received the largest number of bytes between 10 December 2019, 10am and

10 December 2019, 11am? 20 (0x14), 21 (0x15), 22 (0x16), 23 (0x17), or 24 (0x18).

¢ NB: Influx users, switch IDs are tagged as ‘dp-id’ in the database, and are represented as hexadecimal (given
in brackets above). Give your answer as a decimal.

¢ NB: The following regular expression matches only the numbers 20, 21, 22, 23, and 24: '~2[0-4]1$' The
same regular expression for hexadecimal numbers is: ' ~0x1[4-8]$"

H W=

Evaluation Response Form

Participants who score at least 50% on the post-tutorial test within three at-
tempts move on to the final phase of the study, in which they answer network
questions using their assigned QL. The questions used in the study are in Ap-
pendix C.2, and we describe how we derived them in Section 5.7.1. By design,
there are more questions (31) than participants have time to answer. We ask
participants to spend a total of 100 minutes working on questions.

We present these questions (referred to as ‘tasks’ in communications with
participants) in a third web form, which also records their working and solu-
tions. We show each participant the questions in the same order, to keep the
learning effect consistent, and so that as may participants as possible com-
plete the same questions, to improve the statistical significance of our results.
Participants can skip questions, but may not backtrack or change previous re-
sponses. After completing each question, participants are prompted to record

D.1. USER STUDY PrROTOCOL (USA-DSL) 177

their working and are asked follow-up questions about their work (see below).

The form also measures the time it takes participants to complete each
question, measured from the time the question is displayed until the parti-
cipant clicks a button stating that they have finished working on it (see Q1 in
the form below). If a participant closes the form, their progress is saved and
the timer is paused until they resume. This information is stored remotely,
so they can resume on any device. Before each new question is displayed,
the form tells participants how much time they have spent in total so far, and
reminds them to continue for a total of 100 minutes. The form is below.

Please do not attempt this until you have completed the tutorial and passed the post-tutorial test. See your welcome
email for more.

This study aims to compare user performance when using two different query languages to answer typical
questions about computer networks. It is conducted by Andrew Curtis-Black, a Ph.D. student at the University of
Canterbury, under the supervision of Andreas Willig and Matthias Galster. Please take a moment to review the
instructions below.

* You will answer questions about a computer network by writing and executing queries in your assigned lan-
guage.

¢ Try to do as many questions as you can in 100 minutes, but do not rush as accuracy is important. A timer will
be shown after you complete each task to help you keep track.

* You can work on tasks whenever you like (e.g. spread your work over several days, if you like).

¢ Please record your work locally, e.g. in a text editor.

* You can use any resource to complete tasks, including the provided tutorial or Google, but please do not discuss
your work with any other person as this may invalidate your contribution to this study.

Remember that this study is evaluating the query language and not you. Do your best, but don’t worry if you
struggle with some tasks. Thank you for your contribution to this study. Click the ‘next’ button below when you
are ready to begin. [‘Next’ button]

1. [Task description].

¢ Complete the question given above using your assigned query language. You can spend as long as you like
on this question, but we recommend moving on after 10 minutes even if you haven't finished. A timer is
displayed below to help you keep track. Once you have completed the question click the 'next’ arrow at the
bottom of the page to record your work.

¢ Please keep this page open while you work on the task so that we can record how long it takes you to
complete it. Please try to complete each task in one sitting, so that our timer measurements are accurate.
Your progress is saved each time you submit a task (this works across browsers and devices).

* Some tasks are easier to solve if you write more than one query. You can get the solution to some tasks by
manually inspecting the output of one or more queries. You don’t have write a query which outputs the final
answer itself (just make sure you show your work). Remember that there is more than one type of client
interface (enterprise and user). This may mean that you need to write an extra query for some tasks.

¢ [‘Next’ button]

2. Were you able to complete this task? You will not be able to return to this page after pressing the ‘next’ button.

[Yes/No]

3. If ‘No’ to Q2: Why were you unable to complete this task?

* The task was not adequately explained and I wasn’t sure what to do.

¢ T understood the task but I could not find a way to complete it with the available resources in a reasonable
amount of time.

¢ The experimental apparatus failed (e.g. the query language crashed, froze, or there was a problem with the
virtual machine).

* Another reason.

4. If Another reason’ to Q3: Please briefly explain why you were unable to complete this task. [Text field]

178 APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 6

5. Record your working. Copy/paste the queries you used to complete the task and the output you saw when you
executed each of them (you will enter your final solution to the task on the next page). If you were not able
to complete the task please enter your work so far, in whatever state it is in. Please only include queries which
contributed to the final answer (i.e. skip any ‘experimental’ or draft queries you wrote). Write the queries in
the order in which you executed them. [Text fields for queries and output]

6. If ‘Yes’ to Q2: Please enter your solution to the task (repeated below for your reference): [Task description],
[Text field]

7. If ‘Yes’ to Q2: How confident are you that your final answer to this task is correct?
¢ The answer is certainly (or almost certainly) wrong.

* The answer is more likely wrong than right.
¢ The answer is more likely right than wrong.
¢ The answer is certainly (or almost certainly) right.

8. How mentally challenging did you find this task?
¢ Very easy.
¢ Somewhat easy.

* Somewhat challenging.
¢ Very Challenging.

9. Please enter any comments you have about this task, your work, or your assigned query language (optional).
[Text field]

10. If form open >=10 minutes: Continue working on tasks? Remember, you don’t need to complete all tasks; you
just need to spend a total of 100 minutes working on them. After that you can stop. Note: You have spent ~X
minutes working on this survey so far. [Proceed to next task/Finish the experiment (I have spent a total of 100
minutes working on questions)]

e If ‘Yes’to Q10 or form open <10 minutes: [Repeat from Q1, with a new task description]
e If ‘No’ for Q10: [Thank the participant for their time and end the survey]

Define the Instruments of Instruction (P8)

We send participants a link to the study information sheet and consent form
(see Appendix D.2). Then, we send a welcome email to all consenting parti-
cipants who meet our selection criteria (see P1). If more than 40 participants
signed up, create a shortlist and explain this to participants. The welcome
email is below.

Thank you for agreeing to participate in my network query language study. I really appreciate it. Below are the
links you need for the study, in the order you'll use them (so start by clicking on the link for the tutorial). They are
unique to you, so please don’t share them. I would really appreciate it if you could finish this within the next two
or three weeks, but I understand you may have other priorities. Please contact me if you need to delay or withdraw
your participation. The query language you have been assigned is: [Scout/SQL & InfluxQL]

* Tutorial: https://docs.google.com/document/d/ ...
* Post-tutorial Test: http://canterbury.qualtrics.com/jfe/form/...
¢ Study: http://canterbury.qualtrics.com/jfe/form/...

Please contact me if you have any questions, or refer to the attached study information sheet.

We prepared one tutorial on Scout, and one on SQL+IQL (see Appendix D.3).
They have the same format (introduction, terminology, set up, language ba-
sics, specific language features needed for the study, and tips), and are similar
in length: 9 pages for Scout and 12 for SQL+IQL. The latter is longer because
it includes a section on using SQL and InfluxQL in tandem. Both tutorials con-

D.1. USER STUDY PrOTOCOL (USA-DSL) 179

tain language documentation, worked examples, database schemas, and links
to download VirtualBox [214] and a VM preinstalled with all the software and
databases needed for the study (see E5).

The post-tutorial test and evaluation response form (the ‘study’ link in the
welcome email above) are given in P7.

Define Execution Place (P9)

The study is conducted remotely, at a place of each participants’ choosing (as
per P4).

Define Data Storage (P10)

Raw data, including personally identifying information, is stored by Qual-
trics [213]. Anonymised data is stored in a Git repository hosted by our in-

stitution, and cloned to the lead researcher’s computer. Only the researchers
have access to the data. See E10 for more information.

Define Study Reporting (P11)

The study design and results will be reported in an academic paper and sub-

mitted to a respected publication.

D.1.2 Execution (Phase 2)

We perform this phase in the following order: E2, E1, E4, E5, E8, E9, E7, E10.

Apply Instruments to Identify Profiles (E1)

We apply our background questionnaire as described in P7. We do this after
E2.

180 APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 6

Introduce the Form and Collect Signatures (E2)

We apply our recruitment form (see P7), which contains our information sheet
and consent form (see P2). Consenting participants are automatically shown
our background questionnaire, as per E1.

Develop and Conduct Protocol (E4)

The protocol for executing our study is below. See Section 6.5.3 for our hypo-
theses.

1. Recruit participants, by advertising via email, in posters on campus, in
lectures, and on university forums. Advertisements include a link to the
recruitment web form (see P7).

2. Review responses to the recruitment form and double check that selec-
tion criteria were applied correctly.

3. Use Qualtrics to generate unique links to the post-tutorial test and eval-
uation response form for participants.

4. Randomly assign participants a QL.

5. Use a Python script to generate and send the welcome email to each
participant, populated with their Qualtrics links. As per P8, the welcome
email also contains a link to the tutorial for the participant’s QL.

6. Screen participants based on the post-tutorial test (see P7). The test
automatically tells participants whether or not to continue with the
study, based on their score, but we double check this manually.

7. Monitor Qualtrics and ask any participants who have not completed the
study within the suggested time frame of 2-3 weeks if they need any
assistance. Ask participants to withdraw from the study if they need
substantially longer than this. Also review participants’ responses and
flag any low effort or non-serious attempts.

8. Recruit additional participants, if necessary (ideally, draw these from
the shortlist, as per P8).

9. Send vouchers to participants as they complete the study.

D.1. USER STUDY PrOTOCOL (USA-DSL) 181

Prepare the Evaluation (E5)

We set up a VM which participants use to conduct the study. This ensures
that participants perform the study in a consistent environment, and saves
them the overhead of downloading and setting up software. The VM contains
copies of all necessary databases and tools (e.g. Scout, SQL, and InfluxQL).
See Section 5.7.1 for more information about how we prepared the databases.

The tutorials told the participants how to launch the VM, but in case of
difficulties, we also set up several remotely accessible instances of the VM on
a server provided by our institution. We let at most one participant use each
remote VM.

Data Collection (E7)

Our web forms (see P7) collect participants’ data, as per the study protocol
(see E4).

Introduce Instruments of Instruction and Conduct Training (E8)

We send the welcome email (see P8), as per the study protocol (see E4).
Participants train themselves, remotely.

Execution of Tasks and Evaluation Conduction (E9)

Participants answer questions and complete the evaluation response form, as
per the study protocol (E4).

Store data obtained (E10)

All raw data is stored by Qualtrics [213] (see P8). After all participants com-
plete the study, we download the raw data and remove all personally identi-
fying information (names and email addresses). The data includes a unique
token for each participant, which is generated by Qualtrics. The mapping
from tokens to identities is stored by Qualtrics. We copy the anonymised data
(in CSV format) to a Git repository hosted by our institution. The repository

182 APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 6

is cloned to the lead researcher’s computer for analysis (see A7 and A9). See
P10 for more information about data storage.

D.1.3 Analysis (Phase 3)
Analyse Evaluators’ Profiles (A1)

We compute the arithmetic mean experience reported by participants in each
of the areas we asked about (CLIs, networking, and computer science). See
Section 6.5.4. If the data appears skewed, we investigate further. We also
review the QLs that participants say they have used. We expect that many will
have used SQL. We will investigate and report any interesting trends in this
data.

Analyse the Developed Protocol (A4)

We applied an established taxonomy to identify threats to the validity of our
results [110]. See Section 6.5.5 for a summary and below for an exhaustive
list.

Conclusion Validity

1. Statistical validity: We calculated values for significance and effect size.

2. Statistical assumptions: We checked the following assumptions for our
t-test: independence, normal distribution, equal variance, and sample
size.

3. Lack of expert evaluation: We acknowledge this issue. We would have
liked network and/or QL domain experts to review our study, but we
were not able to arrange this.

4. Reliability of measures: Web forms may be unreliable for timing meas-
urements. We explained how the timing mechanism worked, but have
no way of knowing how well participants complied with our instruc-
tions. However, the difference in average time to completion is signific-
ant between the two groups, as is the average time to success, and the

D.1.

USER STUDY PrROTOCOL (UsA-DSL) 183

p-values are excellent (0.99) and suggestive (0.75), respectively. These
measurements are sufficient for hypothesis testing.

Reliability of treatment implementation: We compared one QL (Scout)
to two used in tandem (SQL+IQL). This experimental design is appro-
priate because Scout is designed, in part, to solve problems which occur
when users need to use two QLs in tandem.

Internal Validity

. Deficiency of treatment setup: Participants chose where and when they

worked. This is more realistic than a laboratory environment, but makes
it harder to control variables.
Ignoring relevant factors: None that we are aware of.

. History: Participants could work on the study across multiple sessions

and/or locations. Thus, different questions might be answered in differ-
ent contexts (e.g. office, home, cafe).

Maturation: Some participants may have completed the study in one
sitting, others in several. Again, this is more realistic than a laboratory
setting, but is another variable which we could not control.

. Testing: We kept the learning effect consistent by showing participants

questions in the same order.

Treatment design: We conducted a pilot test and refined the study ap-
paratus (e.g. by improving wording of forms).

Subject selection: We recruited participants on a first-come first-served
basis, rather than with systematic sampling. However, participants were
drawn from a well-defined target population, and the demographic data
we collected shows that they were reasonably homogeneous.

Sample selection: NA.

. Incompleteness of data: NA.
10.
11.

Mortality: We removed all data from participants who dropped out.
Imitation of treatment: The VM had all languages installed. Participants
in one group could have used the language intended for the other group
to check their answers or develop their solution. However, we asked
participants to submit their working with their final answer, and were
able to check this.

184 APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 6

12. Motivation: Some participants expressed enthusiasm or dislike for their
assigned language.

13. Prior experience: Some participants had prior experience with SQL an-
d/or InfluxQL. This could have influenced Scout users to formulate quer-
ies in a particular way, or caused confusion when Scout did something
in a different way to SQL or InfluxQL. The training phase should have
helped mitigate this, but we cannot rule it out.

Construct Validity

1. Theory definition: We measured the same metrics for both groups, using
the same apparatus.

2. Mono-operation bias: We created only one implementation of Scout.
However, we observed each group of participants as they applied their
assigned languages to a range of network questions. Thus, our results
reflect the effect of the treatment in a variety of scenarios.

3. Appropriateness of data: NA.

4. Experimenter bias: Our error type analysis may be susceptible to this.
We could have asked experts to review our analysis, but the cost of la-
bour would have been too high. The other metrics we used are objective
and do not leave room for experimenter bias.

5. Mono-method bias: We tested each hypothesis (and related usability
criteria) with multiple metrics.

6. Interaction with different treatments: NA.

7. Hypothesis guessing: Comments in participants’ working indicate that
at least one did this (e.g. “I think the aim of this study might be to show
how awful hand crafted queries are and how essential some software
tool to generate queries automatically [sic] is”). There is no indication
that participants adapted their responses as a result of this, but it is
difficult for us to rule it out.

8. Evaluation apprehension: The study was self-administered in a place of
participants’ choosing (as opposed to a laboratory). This should have
made them feel more comfortable. We also prominently stated that the
languages were being evaluated, not participants.

9. Experimenter expectations: Because the study was self-administered,

D.1. USER STUDY PrOTOCOL (USA-DSL) 185

and remote, participants had no direct interactions with the researchers.
We reviewed all written materials (e.g. the welcome email, tutorials and
web forms) to ensure they were as objective as possible. This greatly
reduced the risk of this threat compared to in-person communication.

External Validity

1. Representation of the population: We argue that university computer
science students with knowledge of computer networking (our selected
sample) are representative of novice network operators because, in our
experience, such individuals are often hired for this role.

2. Representation of the setting: We chose SQL & InfluxQL because they
are widely used. We added common features to Scout (e.g. CLI history,
help text, and autocompletion).

3. Context of the study: We have tried to avoid generalising our results
beyond what the evidence supports, and we have described the study in
detail so that readers can critique it.

Analyse the Collected Data (A7)

See Section 6.5.4.

Analyse the Performed Tasks (A9)

We compute the metrics from P6 on the collected data. See Section 6.5.4 for
our analysis of the results.

Analyse the Documentation (A11)

We compare the study design to the collected data and any contemporaneous
notes, to ensure that the study was executed correctly.

186

APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 6

D.1.4 Reporting (Phase 4)

R1
R2

R4
R5
R7
R8
R9
R11

Report Evaluator Profiles: See Sections 6.5.2 and 6.5.4.

Report Number of Subjects and the Form Used: See Section 6.5.2 and
this appendix.

Report the Developed Protocol: See Section 6.5 and Appendix D.1.1.
Report Conduction Evaluation: See Section 6.5 and this appendix.
Report Data Analysis: See Section 6.5.4.

Report the Instruments: See Sections 6.5, D.1.1, and D.1.1.

Report Tasks Analysis: See Section 6.5.4.

Report the Results and Analysed Information: See Section 6.5.4.

D.2 User Study Participant Information Sheet and
Consent Form

Overleaf are the participant information sheet and consent form given to par-
ticipants in our user study (see Chapter 6).

187

188 APPENDIX D. INFORMATION SHEET AND CONSENT FORM

Network Query Language Study — Information Sheet

Department of Computer Science and Software Engineering m
Telephone: +64 33695915 0,

Email: andrew.curtis-black@pg.canterbury.ac.nz UNIVERSITY OF

Date: 3/9/2019
HECRef: HEC2019/145 gﬁﬁ&%ﬁﬁ%&x

CHRISTCHURCH NEW ZEALAND

Network Query Language Study
Information Sheet for Participants

This study aims to evaluate the usability of different query languages when answering typical questions
about networks. It is conducted by Andrew Curtis-Black, a Ph.D. student at the University of Canterbury.
His research focuses on enterprise network management and his supervisors are Prof. Andreas Willig
(andreas.willig@canterbury.ac.nz) and Dr. Matthias Galster (matthias.galster@canterbury.ac.nz), who will
be happy to discuss any concerns you have about participationin this study. The study has three phases:

1) Selection: You need basic experience of computer science, command line interfaces, query languages
(e.g. SQD), and networking. This will be assessed via a short (5 minute) online questionnaire. Most
computer science or software engineering students beyond 100 level will meet our requirements. NB:
You must be old enough to consent to participate (at least 18 years of age).

2) Training: If selected, you will complete a tutorial (one hour) on an assigned query language. Reference
material and a preconfigured virtual machine will be provided. There will be a post-training test (15
minutes), which you may attempt three times. Completing the tutorial is likely to make the test easy.

3) Tasks: If you pass the test you will be asked to answer questions about a network by querying
databases (100 minutes). This will be similar to the training phase. You will record your work in an
online form.

The study will take a total of three hours, which you may spread over two weeks. You will work in your
own time, on your own computer or a UCCSSE lab computer. After you complete the final phase you will
receive NZ$60 in vouchers as a token of our appreciation. We will try to supply your choice of vouchers
(e.g. New World, Westfield, JB HiFi) but cannot make guarantees. The query language will be evaluated,
not you, so there is no expectation that your answers be correct (but you are expected to be diligent and
try your best). As a follow-up, you may be asked to discuss your responses via the email address you
provide. This is optional and will not affect whether or not you receive vouchers.

Participation is voluntary and you have the right to withdraw at any stage without penalty, but vouchers
will only be given if you complete all three phases (you will still receive vouchers if you withdraw after
phase 3). You may askfor your raw data to be returned or destroyed at any point. If you withdraw,
information relating to you will be destroyed. However, once analysis begins (expected January, 2020), it
will become difficult to remove the influence of your data on the results. Your participation, or lack
thereof, in this study will not affect your performance in any course at the University of Canterbury.

Your responses to study forms are linked to your identity so that we can gift vouchers, discuss your
responses, and return data at your request. The study’s results will be made public (e.g. in a Ph.Dthesis in
the UClibrary), but your identity will not be disclosed. Toensure confidentiality, personally identifying
information will only be stored on UCservers and may only be accessed by the researchers listed above.
All identifying information will be destroyed within 12 months of'its collection, or on publication of the
study, whichever comes first. All data will be destroyed within 10 years of'its collection.

This project has been reviewed and approved by the University of Canterbury Human Ethics Committee,
and participants should address any complaints to The Chair, Himan Ethics Committee, University of
Canterbury, Private Bag 4800, Christchurch (human-ethics@canterbury.ac.nz). If you wish to participate
please review the consent form on the next page and complete the background questionnaire: bit.ly/ QL-
study

189

Network Query Language Study — (Consent Form

Department of Computer Science and Software Engineering (220
Telephone: +64 33695915)X

Email: andrew.curtis-black@pg.canterbury.ac.nz UNIVERSITY OF
CANTERBURY

Te Whare Wananga o Waitaha
CHRISTCHURCH NEW ZEALAND

Network Query Language Study
(onsent Form for Participants

O Thave been given a full explanation of this project and have had the opportunity to askquestions.
O Tunderstand what is required of me if Tagree to take part in the research.

O Tunderstand that participation is voluntary and I may withdraw at any time without penalty.
Withdrawal of participation will also include the withdrawal of any information Thave provided
should this remain practically achievable.

O Tunderstand that any information or opinions I provide will be kept confidential to the researchers
listed on the study information sheet, and that any published or reported results will not identify the
participants. Iunderstand that the results of the study will be made public.

O TIunderstand that all data collected for the study will be kept in secure facilities and/orin password
protected electronic form, that all personally identifying information will be destroyed 12 months
after the study results are published, and that all data will be destroyed within 10 years of'its
collection.

O Tunderstand that I can contact Andrew Curtis-Black (andrew.curtis-black@pg.canterbury.ac.nz) or
his supervisors (matthias.galster@canterbury.ac.nz, andreas.willig@canterbury.ac.nz) for further
information. If Thave any complaints, I can contact the Chair of the University of Canterbury Human

Ethics Committee, Private Bag 4800, Christchurch (human-ethics@canterbury.ac.nz)

O Iconsent to be contacted by the researchers to discuss the data I provide as part of this study.

O Tunderstand that Ican request a summary ofthe results ofthe project when Icomplete the background
questionnaire (see the study information sheet for a URD).

O Tunderstand that Imust be at least 18 years of age to consent to participate in this project.

O By continuing with the background questionnaire and the study training [agree to participate in this
research project.

D.3 Query Language Tutorials

Overleaf are the participant tutorials used in the user study presented in
Chapter 6.

190

D.3. QUERY LANGUAGE TUTORIALS 191

SQL & InfluxQL Tutorial

Introduction

About SQL and InfluxQL

SQL is a well known query language for relational databases. InfluxQL is a widely used query language for time
series databases and has a similar syntax to SQL. A time series database is optimised for storing and retrieving
large volumes of time-stamped data, e.g. the number of packets received by a switch at specific moments in time.

About this Tutorial

The goal of this tutorial is to recap basic SQL concepts and introduce you to InfluxQL so that you can participate
in a study to evaluate their usability for answering realistic questions about a computer network. For example:
"how much data was transmitted from the library yesterday?" Answering these sorts of questions is important for
keeping networks running, and is part of a network administrator's job. Many of the network administrators'
questions touch on several different data sources. In the example above you would need to first identify which
network switches are in the library, and then look up the amount of data they transmitted.

This tutorial should take you less than one hour to complete. Once you have finished it there is a short (and
simple) test, to confirm that you absorbed the material. You are welcome to contact me for help with any part of
this tutorial, but once you move on to the test and the study you will be mostly on your own. At all times you are
encouraged to make use of the extensive SQL and InfluxQL documentation available online.

Terminology
The terms below are used throughout this document and in the study itself. Please familiarise yourself with them.

Device: A hardware device which is part of, or connected to, a network.

Network device: A device which is part of a network, e.g. a network switch.

Client: A device which connects to a network, e.g. a laptop.

User client: A client owned by a user, e.g. a cell phone. You may assume user clients are only ever used
by their owner.

Enterprise client: A client owned by an enterprise (e.g. a business, university, school etc.). They may be
used by more than one person (at different times).

Edge switch: A switch to which a client can be connected.

Core switch: A switch which is connected only to other switches.

Interface: Something which a device uses to connect to a network.

Client interface: An interface which belongs to a client.

Port: An interface which belongs to a switch (i.e. an ethernet port).

Edge port: A switch port to which a client interface can be connected.

192 APPENDIX D. INFORMATION SHEET AND CONSENT FORM

Setting Up (5-10 minutes)
SQLite3, Influx and the data you will be querying have been set up on a virtual machine, which you will interact
with via the command line.

Download and install VirtualBox.

o On MacOS, if you get "installation failed" open System Preferences > Security & Privacy >
General and click "allow" next to "System software from developer 'Oracle America, Inc.' was
blocked from loading". Then re-run the VirtualBox installer. See here for more.

Create the vboxnet0 host network:
o In VirtualBox, click File > Host Network Manager > Create.
o If this fails on MacOS, delete and reinstall VirtualBox.

Download and unzip the virtual machine.
Add the virtual machine to VirtualBox.
o In VirtualBox, select Machine > Add...
o Select the .vbox file you downloaded above.
Launch the virtual machine.
o Select the virtual machine in VirtualBox, and press the Start button in the toolbar.
o On MacOS, you may need to grant additional permissions in System Preferences > Security &
Privacy > Privacy > Accessibility, and then restart VirtualBox.
Log into the virtual machine. The username and password are both vagrant

Optional (but recommended): SSH into the virtual machine from your host machine. This will make
interacting with the VM a little nicer.
In a shell on your host machine, run ssh vagrant@localhost -p 2200
Accept the host fingerprint (enter yes).
Enter the password vagrant when prompted.
If the above does not work:
m In the Virtualbox VM window, run i fconfig
m Find the IP address under ethl > inet addr (likely starts with 172, 192.168, or 10.0)
m In a shell on your host machine, run ssh vagrant@IPADDRESS (with the IP address
from the previous step). The password is vagrant

[e]

O O O

If you have trouble getting set up, or if it feels like it's taking too much of your time, please contact me at the
email address on the study information sheet.

D.3. QUERY LANGUAGE TUTORIALS 193

SQL
The data in an SQL database is stored in "tables", which are made up of columns and rows, a bit like a table in a

spreadsheet. Each table row represents a record (e.g. a specific user account), and each column represents a
property of that record (e.g. user names, IDs etc.)

Note that there are many versions of SQL and that there are minor differences between their syntaxes. In this
study you will be using SQLite3.

Basic Queries

SQL queries are made up of statements. The most important statement is the SELECT statement, which tells
SQL which table to query, and which columns to retrieve from it. Note that SQL doesn't care about capitalisation.
In this tutorial we have written SQL keywords, like SELECT, in all caps to make it easier for you to visually
distinguish the parts of queries.

Launch SQLite and turn columns and headers on, to make the data easier to read. You need to do this every
time you launch SQLite.

~$ sglite3 /home/vagrant/scout/journal paper resources/data7.sqlite
sglite> .mode columns
sglite> .headers on

NB: You can exit the SQLite shell by running the .quit command or the ctr1+D shortcut.

Run this query and inspect the output. The star means "all columns" and "User" is the name of a table in the
database.

sgqlite> SELECT * FROM User;
Now try selecting just one or two columns, e.g.
sgqlite> SELECT Name FROM User;

When exploring data it's sometimes useful to limit the amount of output. You can do this with the LIMIT
statement. Try this now.

sglite> SELECT * FROM User LIMIT 5;
Note that every SQL query must end with a semi colon. Try this and see what happens.
sglite> SELECT * FROM User

Type a semi colon and hit return complete and execute the query.

The next most important statement is the WHERE statement, which tells SQL which rows to retrieve.

Run this query. Either single or double quotes are acceptable.

sglite> SELECT * FROM User WHERE Name='Ari Hull';

The WHERE statement supports a range of compators: =, >, >=, <, <=, 1=, etc. See here for documentation.

194 APPENDIX D. INFORMATION SHEET AND CONSENT FORM

The JOIN statement lets you get data from more than one table at a time. You use the JOIN statement when two
tables have columns in common, for example one table might store user accounts and another might store the
roles assigned to them (in SQL, this is called a "relationship"). When you use a JOIN statement you specify: 1)
which table to join (this should be different to the table after the FROM keyword) and 2) Which columns in those
tables are shared (using the notation Table1Name.ColumnName=Table2Name.ColumnName). Note that the
shared columns could have different names.

Try this. Note how the output contains columns from both the User and the Assigned tables.
sglite> SELECT * FROM User JOIN Assigned ON User.UserID=Assigned.UserId LIMIT 5;

When you use a JOIN statement the SELECT statement can reference columns from either of the joined tables.
Try this:

sglite> SELECT User.Name, Assigned.RoleID FROM User JOIN Assigned ON
User.UserID=Assigned.UserId LIMIT 5;

Note that the output from the previous query only told us which role ID each user was assigned, which isn't very
descriptive. Fortunately, you can JOIN more than one table at a time.

sgqlite> SELECT User.Name, Role.Name FROM User JOIN Assigned ON
User.UserID=Assigned.UserID JOIN Role ON Assigned.RoleID=Role.RolelID LIMIT 5;

Long queries, like the one above, can be hard to read, so SQL lets you split them over multiple lines. Try
pressing return in suitable places as you enter the above query. It should look like this:

sglite> SELECT User.Name, Role.Name FROM User
.> JOIN Assigned ON User.UserID=Assigned.UserID
.> JOIN Role ON Assigned.RoleID=Role.RoleID
.> LIMIT 5;

Also remember that you can press the up arrow on your keyboard to view old queries.

SQL Schemas

Before you can write a SQL query you need to know what you are querying. The . tables command will output
the names of all the tables in the database, and . schema will show you the code used to create the database. An
SQL schema is a description of all the tables in a database, and the relationships among them. The SQL schema
you will use in this tutorial and the study which follows it is shown below. Arrows represent relationships, and are
labeled with shared columns (e.g. SwitchID:ID means "the SwitchlD column in one table is equivalent to the ID
column in the other").

D.3. QUERY LANGUAGE TUTORIALS 195

Switch
1 switchiD eqer Location
.08 + LocationID
Vendor tex Name
. .
++ InterfaceCount inicg « StreetAddress
IsEdge
.
; LocatedID{LocationlD
Swy =SwitehlD S ID
VLAN
I Connected
Port 1% VianID teae o Located Event
port Vanumb e 3 Locatedtd nicger Eventid
or t anNumber [——] ¢ Locate t
e .+ MacAddress A =
++ PortNumber intege +% Name e +7 LocationID int +7 Name
% « PortNumber r Z, g
« 1 SwitchID e «— PortNumber S etID «-1 SwitchID ege ¢ LocationID
B 7 Switc .
.+ IsEdge tege « 1 SwitchID e i s .- StartTime X ++ StartTime
)) .= StartTime)))
+ MacAddress ex + StartTime t 2 + EndTime X ++ EndTime
EndTi + EndTime ex
« EndTime
— User EnterpriseClient
Permission Role e
. — = o UserlD ege +-: ClientiD)
«- PermissioniD e + 1 RolelD integ
S «— Name t . 0S ex
.+ Description X ++ Name : -
CreationDate d € Type xt
Vendor ext
RoleID{RolelD " L
PermissionID{PermissioniD M USEV'DTUS”'D -
RoleID|RoleID ClientID|ClientID
Assigned LoggedIn e
nactive . 5
Granted 17 AssignedID int: 1% LoggediniD v 7 EnterpriseClientInterface
nactive
RoleGrantedID) % RolelD eg MacAddress tex A MacAddress
. ot . = .
e NS, 7 UserlD jer
+ 1 PermissioniD « 1 UserlD eg + 1 UserlD o . + 1 ClientiD
= 2 2 .+ StartTime
« i RolelD eg « StartTime X + 1 StartTime 5
i N +— EndTime
+— EndTime X ++ EndTime

The tables from the schema above, and some of their properties, are described below.

e Permission: Network permissions.
o Description: e.g. "May access the internet"
Granted: Records which permissions have been granted to which roles.
Role: Records user roles.
o Name: e.g. "Admin", "User".
Assigned: Records to which roles users were assigned and when.
User: Records user accounts.
o Name: e.g. "Jane Doe".
o Creation date: The date and time on which the account was created.
e Inactive: Records when user accounts were marked inactive.
o StartTime/EndTime: The interval over which the account was marked inactive.
e Loggedin: Periods over which a user was logged in.
o MacAddress: Of the client the user logged into.
o StartTime/EndTime: The period the user was logged in.
e EnterpriseClient: Clients managed by the enterprise which connect to the network, such as work laptops
or phones.
o OS:e.g. "Chrome0OS"
o Type: e.g. "Chromebook"
o Vendor: e.g. "HP".

196 APPENDIX D. INFORMATION SHEET AND CONSENT FORM

EnterpriseClientinterface: An interface used by an enterprise client to connect to the network.

o ClientID: Of the client to which the interface belongs.

o MacAddress: The MAC address of the interface.

Connected: Stores sessions, i.e. periods of time client interfaces were connected to the network.

o MacAddress: Of the client which connected to the network. This includes all the MAC addresses in
the EnterpriseClientinterface table and those of user client interfaces, which can be retrieved via
InfluxQL.

Port: Switch ports.
o IsEdge: False if the port connects to another switch. True if it is open to the edge of the network.
NB: Stored as 0 or 1 (for false and true, respectively).

VLAN: VLANs with which the network has been configured.

o VLAN number: e.g. 100. not necessarily unique, as VLAN numbers may be reassigned from time
to time.
Name: A name by which a particular VLAN was known at a particular time, e.g. "staff".
PortNumber: To which the VLAN is assigned (VLANs may be assigned to any switch port).
SwitchID: Of the switch to which the port belongs.

o StartTime/EndTime: The interval for which the VLAN was assigned to the port.
Switch: Records network switches.

o OS:e.g."lOS"

o Vendor: e.g. "Cisco"

o InterfaceCount: The number of interfaces the switch has.

o IsEdge: False if the switch connects only to other switches. True if clients use it to connect to the
network.

Located: Records where switches were located and when.
o StartTime/EndTime: The period over which the switch was located there.
Location: Physical locations which are relevant to the enterprise.

o Name: e.g. "Library"

o Street address: e.g. "123 Location Place"

Event: Records events which are relevant to the enterprise, and when they occurred.

o Name: e.g. "COSC121 Exam"

o LocationID: Of the location of the event. NB: Not all events have a location.

o StartTime/EndTime: When the event occurred.

O O O

Gotchas

Some timestamps in the database we have supplied are in string format. To convert them to a datetime
format SQLite can operate on you can use the datetime () function, e.g. SELECT * FROM Assigned
WHERE datetime (StartTime) < datetime ('now');

o See the documentation for more.
SQLite has no boolean datatype. Instead, 1 and O are used for true and false, respectively.

D.3. QUERY LANGUAGE TUTORIALS 197

InfluxQL

As mentioned above (see Connected.MacAddress), some of the data you will query in the study is stored in
an Influx database. This is because, in real networks, some kinds of data cannot be stored in SQL databases, e.g.
records of the number of packets received by a switch port over time. InfluxQL has a similar syntax to SQL but
stores data in a different way, and uses different terminology. Note that in this tutorial you will be using Influx
version 1.6

Useful references:

e Key concepts
e InfluxDB vs SQL
e | anguage reference

InfluxDB Concepts
These concepts are used in the official InfluxQL documentation, so it is a good idea to review them.

e Measurement: Similar to a table in SQL (eg: a 'temperature' measurement might record the temperature
of water in a variety of locations).

e Point: Similar to a row in SQL. A point represents a single measurement of something at a specific time. A
point is associated with metadata (see below) and has a timestamp.

e Field: Similar to a column in SQL. A 'field key' is the name of the column and the ‘field values' are the
values given on each row in that column. Field values usually vary (eg: they might represent a specific
measured value such as temperature).

e Tag: Similar to a field, but is indexed for improved performance. Tag values do not usually vary a lot and
are usually used to store metadata (eg: they might represent a categorisation like 'location'). As with fields,
the 'tag key' is the name of the tag and the 'tag values' are the values given on each row in that column.

e Series: Any set of points which have the same values for some set of tags. eg: Within a measurement
called 'temperature' there might be a tag key called 'location’ with values like 'Christchurch’, and 'Dunedin’.
There would then be a series for each of these tag keys (i.e. a location="Christchurch' series and a
location="Dunedin’ series). Thus, series are implicit in the data. Not explicit in a schema.

In the virtual machine, launch Influx. You might like to do this in a separate shell to the one running SQL.

~$ cd ~
~$ influx

Load the database and make timestamps human readable. You will need to do this every time you launch
Influx.

> use gl-study
> precision rfc3339

198 APPENDIX D. INFORMATION SHEET AND CONSENT FORM

Basic Statements

Run this query. Note the use of the LIMIT statement, and that of port rx packets isthe name of a
measurement.

> SELECT * FROM of port rx packets LIMIT 5

Like in SQL, you can specify fields and tags with the SELECT statement:

> SELECT port, value FROM of port rx packets LIMIT 5

Try removing the 'value' field key from the query above and running it again. Was the output what you
expected? This happens any time the SELECT statement contains only tag keys and no field keys ('port' is
atagand 'value' is afield). The command 'show tag keys' displays all the measurements in the

database and their tag keys. There is also a 'show field keys' command. In this tutorial, and the study,
every measurement has a 'value' field key.

You will mostly be using Influx to query traffic data. That is, measurements of the number of packets or bytes
transmitted (tx) or received (rx) on switch ports. In this database, the direction (tx or rx) is always relative to the
switch (so, if a client connects to the network and transmits data then the switches would see that as incoming
data, rx). Four measurements you may wish to query in the study are: of port rx packets,

of port tx packets, of port rx bytes and of port tx bytes. Each pointis associated with a
switch ID, port number, counter value, and timestamp.

Run the query below. dp _id (which stands for "datapath ID") is the ID of the switch which received the traffic,
port is the port which received the traffic, and value is the cumulative number of packets received on that
port at that moment in time (i.e. the value of the packet counter).

> SELECT dp_id, port, value FROM of port rx packets LIMIT 20

Now run the same query on the of port tx packets measurement (this is the same as the previous
query, but looking at traffic flowing out of the switch instead of into it).

> SELECT dp_id, port, value FROM of port_tx packets LIMIT 20
Now try adding a bogus field name.
> SELECT dp_id, port, value, fake FROM of port tx packets LIMIT 20

InfluxQL doesn't throw an error when you ask for fields or tags which don't exist. It just returns empty columns.

Notice that you're seeing points for different ports and switches all mixed together. You can fix this with the
GROUP BY statement.

Try the query below.
> SELECT dp id, port, value FROM of port rx packets GROUP BY port LIMIT 5

Note that you can GROUP BY more than one field at a time (e.g. GROUP BY port, dp_id), butin this case
you don't need to because the port field contains the switch ID already (e.g. 's1-eth1').

To focus on a particular switch and/or port you can use a WHERE statement, just like SQL.

D.3. QUERY LANGUAGE TUTORIALS 199

This query only retrieves points for the switch with ID 2 (note that switch IDs are given in hexadecimal notation).
> SELECT dp_id, port, value FROM of port rx packets WHERE dp id='0x2' LIMIT 20
Now try querying for all the packets received on port 1 of any switch. Unfortunately, the tool which gathered this
data from the network formatted the ports as strings like 's1-eth1' instead of an integer, e.g. 1. We can work
around this with the regex comparator:

> SELECT dp_id, port, value FROM of port rx packets WHERE port=~/.*1$/ LIMIT 20

Don't worry if you don't know regex. If you need to query for a specific port number in future you can simply
adjust the number in port=~/.*1$/

Refer to the official documentation for more on InfluxQL statements.

Influx Functions

In the previous examples you may have noticed that counter values don't change for every point. This is because
each point records a counter's value at a moment in time. If no data has been transmitted since the last moment
then the counter will not have changed. We can strip this boring data out with the difference () function.

Run these queries and observe the difference in output.

> SELECT value FROM of port rx packets WHERE port='sl-ethl' LIMIT 20
> SELECT difference(value) FROM of port rx packets WHERE port='sl-ethl' LIMIT 20

Note that the function's output appears in a column of the same name.
Note the error when you run this query.

> SELECT dp id, port, difference(value) FROM of port rx packets WHERE
port='sl-ethl' LIMIT 20

This happens because difference () 'aggregates' (combines) points (by looking at each pair of points and
computing the difference between them). Thus Influx can't output dp_id and port at the same time as
difference (), because the latter shifts the frame of reference.

Every so often a counter may reset (e.g. because of a buffer overflow, or because a switch restarted). If you apply
difference to a series of points in which this occurs you will get a negative value in your output. You can account
for counter resets with the non_negative difference () function. We recommend that you always use this
instead of difference ().

Refer to the official documentation for information about the many InfluxQL functions. The following functions may
be especially helpful in the study: distinct, max, min, top, non negative difference

Nested Queries
For more complex operations, you can nest queries.

200 APPENDIX D. INFORMATION SHEET AND CONSENT FORM

This query outputs the number of packets received on port 1 of switch 1. Run it and inspect the output.
> SELECT sum(non negative difference) from (SELECT

non negative difference(value) FROM of port rx packets WHERE port='sl-ethl'
LIMIT 20)

Note that the outer query can only select fields and tags that the inner query also selected.

You can save yourself some typing with the AS statement.

> SELECT sum(d) from (SELECT non negative difference(value) AS d FROM

of port rx packets WHERE port='sl-ethl' LIMIT 20)

Consider what happens if we use sum () without non negative difference().

> SELECT sum(value) FROM of port rx packets WHERE port='sl-ethl' LIMIT 20

Influx Schema

Relationships among Influx measurements are implicit, unlike the explicit relationships defined between SQL
tables. One consequence of this is that Influx has no concept of JOINs. Another is that it is more difficult to
visualise an Influx database. You can get a list of all the measurements in a database with the show
measurements command, but the only ones you need to worry about are: of port rx packets,

of port tx packets, of port rx bytes, and of port tx bytes.

The dp_id tag contains the switch ID as a hexadecimal. Hexadecimal values must be quoted in InfluxQL.
> SELECT dp_id, port, value FROM of port tx packets WHERE dp id='Ox3c' LIMIT 20

The port tag is formatted like 'sX-ethY’, where X is the switch ID (as a decimal) and Y is the port number. You
should ignore the LOCAL port.

Note that all times and dates given in this study will be in New Zealand's time zone, so you should format your
timestamps like so YYYY-MM-DDThh:mm:ss+13:00 (note the +13:00). T is a separator and is always present.

> select value from of port tx packets where port='s5-eth6' and
time>'2019-12-10T710:09:00+13:00' and time<'2019-12-10T10:11:00+13:00"

By querying of port measurements you can work out how much data a specific client transmitted or received.
This is described in the next section.

D.3. QUERY LANGUAGE TUTORIALS 201

Using SQL and InfluxQL Together

Because some data is accessed with SQL and some with InfluxQL, to answer some questions about networks
you need to use both in tandem. The example below shows you how to build up a set of queries which tell you
how much data user "Ava-Mae Molloy" transmitted in a given time interval.

Traffic data is stored in Influx, but is tagged with MAC addresses or port numbers, so the first thing we have to
do is look up the MAC addresses of the clients "Ava-Mae Molloy" logged into, and when they logged into them.

sgqlite> SELECT MacAddress, StartTime, EndTime FROM User
...> JOIN LoggedIn ON User.UserID=LoggedIn.UserID
...> WHERE User.Name='Ava-Mae Molloy';

Now we can extend that query to find the switch ports to which those clients connected.
sglite> SELECT Connected.MacAddress, SwitchID, PortNumber, Connected.StartTime,
Connected.EndTime FROM User

...> JOIN LoggedIn ON User.UserID=LoggedIn.UserID

...> JOIN Connected ON Connected.MacAddress=LoggedIn.MacAddress

...> WHERE User.Name='Ava-Mae Molloy';

Note that, in the query above, we are interested in Connected.StartTime and Connected.EndTime, not
LoggedIn.StartTime and LoggedIn.EndTime. Think about why this is the case.

Now that we know which ports the user connected to, and when, we can query Influx for the traffic data.
Remember that we want to know how much data the user transmitted, so we need to look at how much data
the switch received (rx). Note also that we have to format the switch and port numbers as 's?-eth?' for Influx.
Customise the query below with the switch IDs and port numbers from the SQL query you ran above.

> SELECT value FROM of port rx bytes WHERE port='s?-eth?' OR port='s?-eth?' OR ...;

Now we need to restrict the query to the relevant time intervals. Intuitively, you'd expect to write something like
the following (substituting the timestamps from the SQL query you ran above):

> SELECT value FROM of port rx bytes WHERE This query does not work.
(port='s?-eth?' AND time>'?2?2?' AND time<'?2?') OR
(port="'s?-eth?' AND time>'???' AND time<'??2?') ...;

However, there's a bug in InfluxQL which causes all time selectors to be ANDed together (even if you write
OR). To work around this we have to write one query for each time interval, or use a nested query.

Customise the nested query below with the timestamps from the SQL query you ran above (replacing the space
withaT,i.e. YYYY-MM-DDThh:mm:ss.ss+13:00). Remove the line breaks before running the query.

> SELECT value FROM
(SELECT value FROM of port rx bytes WHERE port='s?-eth?' AND time>'???' AND time<'???'),
(SELECT value FROM of port rx bytes WHERE port='s?-eth?' AND time>'???' AND time<'???')

P

We're almost there, but the output of the previous query has measurements from different ports all jumbled
together. Add GROUP BY port to the end of the query above to fix that, then execute the query again. This is
a very important step which is likely to come up in the study. It is important that you understand it.
Finally, we sum the differences between the counters (see example earlier in this tutorial). Remember to

202 APPENDIX D. INFORMATION SHEET AND CONSENT FORM

customise this query with the switch IDs, port numbers and timestamps from the SQL query you ran above.

> SELECT sum(d) FROM
(SELECT non_negative_difference(value) as d FROM of port rx bytes
WHERE port='s?-eth?' AND time>'???' AND time<'???'),
(SELECT non _negative difference(value) as d FROM of port rx bytes
WHERE port='s?-eth?' AND time>'???' AND time<'???'),

GROUP BY port;
The final output of this query may not be what you expected. This is common in network management (and

data processing in general). By building up complex queries step by step (as you did in this exercise) you can
check your assumptions as you go and have confidence in the final output.

You may have noticed that the timestamps in Influx's output are in UTC time. If this bothers you, you can add
TZ ('Pacific/Auckland') to the end of the query (substituting your timezone).

The example above is quite fiddly. In the study you are free to use a text editor to work, but may not use
programming languages, other query languages, or other tools.

Final Words
Thanks for taking the time to do this tutorial, and for making it this far! You're now ready to take the post-training
test (contact me if you have not already received a link).

Things to watch out for:

e Carefully read the descriptions of all the descendents of the PortTraffic node in the study schema.
Note the difference between Inbound and Outbound. The direction of traffic is from the perspective of a
switch. So if you want to know how much data a client transmitted you would need to query an Inbound
node.

In InfluxQL, It is not possible to use GROUP BY on fields (only tags).

You can ignore the 'LOCAL' port on switches. It is not relevant to this tutorial or to the study.

In the supplied SQL and Influx databases, switch ports are assigned MAC addresses at random (e.g.
fe:de:4d:0b:85:51) whereas client interfaces start at 00:00:00:00:00:01 and go up. Thus, you can use a
regex to find the MAC addresses of all the clients in the network: SHOW TAG VALUES WITH KEY =
eth src WHERE eth src=~/"00/

e As noted in the final worked example, in InfluxQL, remember to group traffic data by port. Otherwise the
output of your queries may look reasonable, but be wildly inaccurate.

D.3. QUERY LANGUAGE TUTORIALS 203

Scout Tutorial

Introduction

About Scout

Scout is a query language for answering questions about computer networks. For example, "how much data was
transmitted from the library yesterday?" Answering these sorts of questions is important for keeping networks
running, and is part of a network administrator's job. Many of the network administrators' questions touch on
several different data sources. In the example above you would need to first identify which network switches are
in the library, and then look up the amount of data they transmitted. Scout is designed to make it easy to write
queries to answer these kinds of questions.

You should be aware that Scout is a prototype based on experimental research. It is far from a finished product (in
software development terminology, it is "pre-alpha"). In using it you may encounter bugs or situations where the
user experience could be improved. Some queries may also take several seconds to complete.

About this Tutorial

This tutorial will teach you how to write Scout queries to answer realistic questions about a network, so that you
can participate in a study which will evaluate Scout's usability. This tutorial should take you less than one hour to
complete. Once you have finished it there is a short (and simple) test, to confirm that you absorbed the material.
You are welcome to contact me for help with any part of this tutorial, but once you move on to the test and the
study you will be mostly on your own.

Terminology
The terms below are used throughout this document and in the study itself. Please familiarise yourself with them.

Device: A hardware device which is part of, or connected to, a network.

Network device: A device which is part of a network, e.g. a network switch.

Client: A device which connects to a network, e.g. a laptop.

User client: A client owned by a user, e.g. a cell phone. You may assume user clients are only ever used
by their owner.

Enterprise client: A client owned by an enterprise (e.g. a business, university, school etc.). They may be
used by more than one person (at different times).

Edge switch: A switch to which a client can be connected.

Core switch: A switch which is connected only to other switches.

Interface: Something which a device uses to connect to a network.

Client interface: An interface which belongs to a client.

Port: An interface which belongs to a switch (i.e. an ethernet port).

Edge port: A switch port to which a client interface can be connected.

204 APPENDIX D. INFORMATION SHEET AND CONSENT FORM

Setting Up (5-10 minutes)
Scout and the data you will be querying have been set up on a virtual machine, which you will interact with via the
command line.

Download and install VirtualBox.

o On MacOS, if you get "installation failed" open System Preferences > Security & Privacy >
General and click "allow" next to "System software from developer 'Oracle America, Inc.' was
blocked from loading". Then re-run the VirtualBox installer. See here for more.

e Create the vboxnet0 host network:
o In VirtualBox, click File > Host Network Manager > Create.
o If this fails on MacOS, delete and reinstall VirtualBox.

e Download and unzip the virtual machine.
e Add the virtual machine to VirtualBox.
o In VirtualBox, select Machine > Add...
o Select the .vbox file you downloaded above.
e Launch the virtual machine.
o Select the virtual machine in VirtualBox, and press the Start button in the toolbar.
e Log into the virtual machine. The username and password are both vagrant

e Optional (but recommended): SSH into the virtual machine from your host machine. This will make
interacting with the VM a little nicer.

o Ina shell on your host machine, run ssh vagrant@localhost -p 2200

o Accept the host fingerprint (enter yes).

o Enter the password vagrant when prompted.

o If the above does not work:
m In the Virtualbox VM window, run i fconfig
m Find the IP address under ethl > inet addr (likely starts with 172, 192.168, or 10.0)
m In a shell on your host machine, run ssh vagrant@IPADDRESS (with the IP address

from the previous step). The password is vagrant

If you have trouble getting set up, or if it feels like it's taking too much of your time, please contact me at the
email address on the study information sheet.

D.3. QUERY LANGUAGE TUTORIALS 205

The Scout Query Language

Scout Schemas
A Scout schema, like an SQL schema, tells you what data you can query. The schema you will use in this tutorial,
and in the study, is linked here. Please look at it now (you may need to download it and zoom in!)

Scout schemas are graphs. Nodes represent data sources, and edges the relationships among them. For
example, the "user" node represents user's accounts and has a "user name" property. It is connected to the
"Logged In" node, which records user log in sessions. The edge connecting "User" to "Logged In" is labelled with
the "User ID" property, which is common to both nodes. Scout uses these relationships to make inferences when
executing queries (if you are familiar with SQL, you can think of this as an "implicit join").

Nodes output "atoms", which are collections of property-value pairs, €.g. {name="John", id=1}. There are
four types of node:

Table node: Similar to an SQL table.
Interval node: Like a table node, but every atom has a 'time interval' property, e.g. A "logged in" interval
node might record user log in sessions.

e Time series node: Like an interval node, but every atom has a 'time stamp' property, instead of an
interval. E.g. A "packets in" node might record the number of packets received by a switch at different
points in time.

e Parent node: These are structural, and do not output atoms. Child nodes inherit all the properties and
edges of their parents (and grandparents). This is explained in greater detail below.

Scout Queries
Scout queries contain three statements:

e Given: This is where you write the name of a node which you know something about, e.g. The name of a
location.

e Return: This is where you write the name of a node you want to find out about, e.g. How much data was
transmitted.

e Over: This restricts the query to a time interval. No data outside this interval will be retrieved. This
statement is optional.

An example query is shown below. In plain English it says "find all roles assigned to any user". Note that User
and Role are references to nodes in the schema shown on the next page. A range of human-readable date and
time formats are supported in the 'over' statement.

Given: User;
Return: Role;
Over: "10 Dec 2019 %9am" -> "10 Dec 2019 5pm";

206 APPENDIX D. INFORMATION SHEET AND CONSENT FORM

In the virtual machine, launch Scout and run the query shown above.

~$ cd ~
~$ scout

Welcome to Scout!

Enter a Scout query, or 'quit' to exit.

> Given: User; Return: Role; Over: "10 Dec 2019 9am" -> "10 Dec 2019 5pm";

Try removing a semi-colon from the query, or misspelling one of the node names, to get used to the error
output. Note that you do not have to write 'given’, 'return’ and 'over' out in full.

> G: User; R: Role; O: "10 Dec 2019 9am" -> "10 Dec 2019 5pm";

You can press tab to autocomplete some parts of a query (e.g. node names).
If you do not specify a year in a time interval Scout will assume you mean the current year.

Query Execution
To use Scout properly you need to understand a little about how it executes queries. It works like this:

1. Scout finds paths through the schema graph, starting from the node in the 'given’ statement, and ending at
the node in the 'return’ statement. Each path will be executed separately.

2. Each node in a path outputs atoms. These are intersected with the atoms of the next node.

3. The result of an intersection is all the atoms of the second node which share a value with an atom of the
first node (see below for an example) for the properties given by the edge which connect those nodes.

| ' |

EEEN EEENR EEENE
EEEN EEEN EEENR
| l' EEEN l' =l
P INTERSECT = i T
am HE

For the example query above, the path will be User--Assigned--Role (you should have seen this in the
query's output). The User and Assigned nodes are connected by an edge labelled with the user id property.
Atoms of the Assigned node which have the same value for user id as at least one atom of the User node will
be kept, and taken through to the next step (in this example, all of the atoms make it through).

D.3. QUERY LANGUAGE TUTORIALS 207

Atoms of the "User" node Atoms of the "Assigned" node Result of Intersection
{name: "John", user_id: 1} {role_id: 1, user_id: 1} {role id: 1, user id: 1}
{name: "John", user_id: 2} {role id: 2, user_id: 2} {role id: 2, user_ id: 2}

{name: "John", user_id: 3}

This process is repeated for the next node in the path (the Role node, which shares the role_id property with the
Assigned node, as shown in the schema). Note that, in this example, the 'admin' atom is dropped.

Atoms from previous step Atoms of the "Role" node Result of Intersection
{role_id: 1, user_id: 1} {role_id: 1, name: "User"} {role id: 1, name: "User"}
{role id: 2, user id: 2} {role_id: 2, name: "Guest"} {role id: 2, name: "Guest"}

{role _id: 3, name: "Admin"}

The output of the final node in the path is displayed to the user. If a node outputs no atoms then execution stops
automatically. If there is more than one path between the 'given’ and 'return’ nodes in a Scout query then each
path is executed separately.

Try building up a query and seeing what the output is at each stage:

> G: User; R: User;
> G: User; R: Assigned;
> G: User; R: Role;

Filters

The query in the previous example found all roles assigned to any user. To find roles assigned to a specific user
you can add a filter after the node name in the 'given’' statement. Only atoms with the specified value for the
specified property will pass through the filter.

Run these queries and note the difference in output:

> G: User; R: Role; O: "10 Dec 2019 9am" -> "10 Dec 2019 5pm";
> G: User{name="Ari Hull"}; R: Role; O: "10 Dec 2019" -> "10 Dec 2019 5pm";

Filters support the following comparators: =, !=, <, <=, >, >=, ~=_ Filters always compare a property to a value
(and the property must be on the left of the comparator, so you can't do User{"Ari Hull"=name}). Properties
(in this example: name) should not be in quotation marks. Values (in this example: "Ari Hull")mustbe in
quotation marks, if they are strings, and are case sensitive. Single and double quotes are both supported, and do
the same thing.

None of the following queries do what is intended. Try each of them as written, then fix and re-run them.

> G: User{name=Ari Hull}; R: Role;

208 APPENDIX D. INFORMATION SHEET AND CONSENT FORM

> G: User{'name'='Ari Hull'}; R: User;

> G: Role{name='admin'}; R: User;

The error in the last query is subtle. If you can't spot it, this query might make the issue more obvious:

> G: Role; R: Role.unique (name);

You can use multiple conditions in the same filter by separating them with commas, e.g. User {name~="om",
user_ 1id>40}. This amounts to a logical AND, i.e. "name matches 'om' AND id is greater than 40". Logical OR is
not currently supported, but a partial workaround is to use the regex comparator ~=

"1" matches "1", "12", "21" etc. The regex symbols for "start" and "end" of string (~ and $) are useful here.

> G: User{user id~="1"}; R: User;
> G: User{user id~=""18"}; R: User;
> G: User{user id~=""1]2$8"}; R: User;

Scout Functions

The node in the 'return’ statement can be followed by a function which processes the atoms output by that node.
Scout supports the following functions:

max (property) : Accepts atoms and outputs the atom with the largest value for the given property.
sum (property) : Accepts atoms and outputs the sum of their values for the given property.
average over_time (property, unit):Accepts atoms with timestamps and outputs their average
value per unit time (e.g. per minute) for a property. Quote the unit e.g. 'ns', 'us’, 'ms', 's', 'm', 'h’, 'd', 'y".

e mean (property), median (property), mode (property): Accepts atoms and outputs their average
value for a given property. To calculate rates (e.g. "10 bytes per s") see average over time
count () : Output the number of atoms passed in.
unique (property) : Filter atoms, such that one atom for each value of the given property remains.
sort (property, order): Sorts atoms by their values for a given property. The order parameter can
either be 'ascending' or 'descending' (or 'a’, or 'd', for short). Does not support grouped atoms.
sort_groups (property, order): Provided as a workaround for using sort on grouped atoms.
show (*properties): When displaying atoms, only show the given properties and hide the rest. This
can make output more legible. The property names should be separated with commas.

e interval gt (seconds): Accepts atoms with time intervals and outputs only those whose time intervals
are longer than the given number of seconds.

e interval lt(seconds): Like interval_gt, but outputs only atoms whose time intervals are shorter than
the given number of seconds.

e group (*properties): Group atoms by a subset of their properties (property names should be
separated with commas). This is similar to an SQL "group by" statement. See below for an example.

e duration (): Accepts atoms with time intervals and adds a duration property to each of them (this stores
the length of each atom's time interval in seconds).
limit (max): Accepts atoms and outputs at most max of them. Does not support grouped atoms.
limit_groups (max): Provided as a workaround for using 1imit on grouped atoms.

Get a feel for Scout functions by running the following queries (pay attention to the output, and think about the
effect of each function). Remember that you can press tab to autocomplete node and function names.

D.3. QUERY LANGUAGE TUTORIALS 209

> G: User; R: User.count();
NB: Node names are written in CamelCase, and property names are written in snake_case.

> G: UserClientInterface{mac address='00:00:00:00:00:dc"'}; R:
PortTraffic/Outbound/Bytes.sum(bytes); O: '10 Dec 2019 9am' -> '10 Dec 2019
Spm';

> G: VLAN{vlan number=100}; R: EnterpriseClient;
> G: VLAN{vlan number=100}; R: EnterpriseClient.unique (os);
> G: VLAN{vlan number=100}; R: EnterpriseClient.group(os);

You can chain functions which output atoms (i.e. anything other than functions like average () which have
numeric output).

> G: VLAN{vlan number=100}; R: EnterpriseClient.unique (os);
> G: VLAN{vlan number=100}; R: EnterpriseClient.unique (os).count();

When you chain a function to group () the chained function is applied to each group separately.

> G: VLAN{vlan number=100}; R: EnterpriseClient.group(os);
> G: VLAN{vlan number=100}; R: EnterpriseClient.group (os).count();

Grouping can be especially important when querying traffic data. Note the difference between these queries.
> G: Switch{switch id~="12]13"}; R: PortTraffic/Inbound/Bytes.sum(bytes);

> G: Switch{switch id~="12[13"}; R: PortTraffic/Inbound/Bytes.group(port_number,
switch id) .sum(bytes);

Parent Nodes

As noted above, parent nodes are structural and do not output data. They cannot be a part of a path, and cannot
be referenced in queries. Their children inherit all of their properties and edges. A good way to think about parent
nodes is as placeholders for their children. For example, when Scout tries to find a path between LoggedIn and
Connected (in the study schema), it can use either UserClientInterface or
EnterpriseClientInterface to getthere. Scout cannot find paths directly between the children of the same
parent. E.g. This path cannot exist: UserClientInterface--EnterpriseClientInterface

You can see several examples of parent nodes in the supplied Scout schema:
mac_address is a valid property of EnterpriseClientInterface. Why is this?
What properties does the PortTraffic/Inbound/Packets node have?
What paths will this query produce, and why? After you have an answer, execute the query and
interpret the output.
> G: User{user 1id=149}; R: VLAN;

210 APPENDIX D. INFORMATION SHEET AND CONSENT FORM

Multiple 'Given' Nodes
Scout queries can have more than one 'given’ node. This lets you filter more than one node at a time and control
which paths Scout finds (as all paths must contain all 'given' nodes).

Compare the outputs of these queries. NB: The second says "find all ports connected to by user with ID 91,
from enterprise client interfaces".

> G: User{user id=91}; R: Port;
> G: User{user id=91} and EnterpriseClientInterface; R: Port;

The order of the 'given' nodes is very important, as Scout will always find paths through the schema starting
from the first 'given' node. What will happen when you run this query, and why?

> G: EnterpriseClientInterface and User{user id=91}; R: Port;

A 'given' node can be the same as the 'return’ node. This doesn't have any effect on the paths Scout finds, but
effectively lets you add a filter to the 'return’ node. Try these queries:

> G: User{user id=91}; R: Port;
> G: User{user id=91} and Port{switch id=4}; R: Port;

Some questions require more than one query to answer. E.g. "which users, who are administrators, logged into
iPads?" It would be tempting to try this (incorrect) query:

> G: Role{name='Admin'} and EnterpriseClient{type='iPad'}; R: User;

The query above fails because Scout will look for paths from the 'Role' node to the 'User' node which include the
EnterpriseClient node, and no such paths exist. As shown in the exercise below, two queries are needed.

Manually compare the output of the following queries to answer the question posed above.

> G: Role{name='Admin'}; R: User;
> G: EnterpriseClient{type='iPad'}; R: User;

Time Interval Transference
In the previous examples you might have noticed something odd. Sometimes table and time series nodes output
atoms with time intervals.

Run this query. Look at the Role node in the study schema and note that it is not an interval node.

> G: User{user id=1}; R: Role;

This is because Scout automatically transfers time intervals when it intersects atoms. In this case, the intervals
came from the Assigned atom. This behaviour enriches Scout's output. It means that the query above tells you
which roles were assigned to a particular user and when they were assigned to that user.

D.3. QUERY LANGUAGE TUTORIALS 211

Final Words
Thanks for taking the time to do this tutorial, and for making it this far! You're now ready to take the post-training
test.

When writing Scout queries remember the following:

e Start with what you know. Write this into the given statement.
e Always take time to interpret the paths Scout produces. What do they really mean?
e You may need more than one query to answer a question

Things to watch out for:

e Be wary of any path which includes a time series node. Time series nodes can output a LOT of data. You
can greatly speed up query execution time by providing the smallest possible interval in the 'over'
statement.

e Carefully read the descriptions of all the descendents of the PortTraf fic node in the study schema.
Note the difference between Inbound and Outbound. The direction of traffic is from the perspective of a
switch. So if you want to know how much data a client transmitted you would need to query an Inbound
node.

D.4 Querying Example

Below we show how SQL+IQL and Scout can be used to answer a simple
question about a network: “How many bytes did user Alice transmit between
1 Jan 2021 and 5 Jan 2021 (inclusive)?” This example demonstrates some of
the usability issues encountered by participants in our study (see Section 6.5),
and shows some of Scout’s benefits. The queries are performed on the same
schemas and databases used in the study. See Section 5.7.1 for a description
of the databases and how they were populated.

D.4.1 SQL+IQL

First, we look up the MAC addresses of the clients Alice logged into, and
when she logged into them. The schema is given in Appendix D.3. Note
that we have reduced the precision of the timestamps in the listings below to
make them easier to read (e.g. 2021-01-01 10:53:08.081446+13:00 becomes
2021-01-01 10:53). We have also truncated output to save space (indicated
with an ellipsis).

Listing D.1: SQL query which finds a user’s MAC addresses

1 | SELECT MacAddress, StartTime, EndTime FROM User

2 | JOIN LoggedIn ON User.UserID=LoggedIn.UserID

3 | WHERE User.Name='Alice' AND

4 datetime (StartTime) > datetime('2021-01-01 00:00') AND

5 datetime (EndTime) < datetime('2021-01-06 00:00"');
Output

MacAddress StartTime EndTime

00:00:00:00:00:ec 2021-01-01 10:53 2021-01-01 11:22
00:00:00:00:00:ed 2021-01-01 10:54 2021-01-01 11:18

We extend Listing D.1 in Listing D.2 to find the ports to which those clients
connected.

Now that we know which ports the user connected to, and when, we can
query InfluxDB for the traffic data (see Section 5.7.1 for the structure of this
database). We want to know how much data the user transmitted, so we need
to look at how much data the switch received (i.e. port_rx_bytes). The switch

212

D.4. QUERYING EXAMPLE 213

Listing D.2: SQL query which finds the ports to which a user connected

1 | SELECT Connected.MacAddress, SwitchID, PortNumber, Connected.
StartTime, Connected.EndTime FROM User
2 | JOIN LoggedIn ON User.UserID=LoggedIn.UserID
3 | JOIN Connected 0N Connected.MacAddress=LoggedIn.MacAddress
4 | WHERE User.Name='Alice' AND
5 datetime (StartTime) > datetime('2021-01-01 00:00') AND
6 datetime (EndTime) < datetime('2021-01-06 00:00"');
Output
MacAddress SwitchID PortNumber StartTime EndTime
00:00:00:00:00:ec 35 4 2021-01-01 10:53 2021-01-01 11:22
00:00:00:00:00:ed 35 5 2021-01-01 10:54 2021-01-01 11:18

and port numbers, and the time intervals in the query below come from the
SQL output in Listing D.2. Note that we need to reformat the timestamps from
SQLite to suit InfluxDB.

Listing D.3: InfluxQL query which returns counter values for the given ports

1 | SELECT value FROM port_rx_bytes WHERE

2 (switch_id='35"' AND port_num='4' AND

3 time>'2021-01-01T10:53"' AND time<'2021-01-01T11:22') OR
4 (switch_id='35"' AND port_num='5"' AND

5 time>'2021-01-01T10:54"' AND time<'2021-01-01T11:18') OR
6 # Repeat for every port in the SQUL output abowe

However, at the time of writing, InfluxQL has a bug which causes the 0r
operators in Listing D.3 to be treated as AND [215]. We work around this with
nested queries, as shown in Listing D.4. The output of this query is a series of
data points, each of which represents the cumulative number of bytes received
by a port at a moment in time. We use the GROUP BY clause to keep counter
values from different ports separated in the output.

The query in Listing D.4 outputs a series of counter values over time.
We use the difference() function to transform these to a series of deltas
(changes), which can be summed. However, counters are periodically reset
(e.g. if the data source is power cycled, or if the counter overflows), so we
need to use non_negative_difference() instead, to avoid spurious negative
deltas. InfluxQL does not support sum(non_negative_difference()), SO we
have to call sum() in the outer query.

214

APPENDIX D. INFORMATION SHEET AND CONSENT FORM

Listing D.4: InfluxQL query with discontinuous time intervals

1 | SELECT value FROM
2 (SELECT value FROM port_rx_bytes
3 WHERE switch_id='35' AND port_num='4"' AND
4 time>'2021-01-01T10:53"' AND time<'2021-01-01T11:22') OR
5 (SELECT value FROM port_rx_bytes
6 WHERE switch_id='35' AND port_num='5"' AND
7 time>'2021-01-01T10:54"' AND time<'2021-01-01T11:18"'),
8 # Repeat for every port in the SQL output abowve
9 | GROUP BY switch_id, port_num;
Output
name: port_rx_bytes name: port_rx_bytes
tags: switch_id=35, port_num=4 tags: switch_id=35, port_num=5
time value time value
2021-01-01T10:53 1489 2021-01-01T10:54 1901
2021-01-01T10:54 5133 2021-01-01T10:55 9966

Listing D.5: InfluxQL query which sums the deltas between counter values

1 | SELECT sum(d) FROM
2 (SELECT non_negative_difference(value) as d FROM port_rx_bytes
3 WHERE switch_id='35' AND port_num='4' AND
4 time>'2021-01-01T10:53"' AND time<'2021-01-01T11:22"'),
5 (SELECT non_negative_difference(value) as d FROM port_rx_bytes
6 WHERE switch_id='35' AND port_num='5' AND
7 time>'2021-01-01T10:54"' AND time<'2021-01-01T11:18"'),
8 # Repeat for ewery port in the SQUL output abowve
9 | GROUP BY switch_id, port_num;
Output
name: port_rx_bytes name: of_port_rx_bytes
tags: switch_id=35, port_num=4 tags: switch_id=35, port_num=5
time sum time sum
1970-01-01T00:00 148674 1970-01-01T00:00 12749

The GROUP BY clause in Listing D.5 ensures that sum() is applied to values

from each port separately. This is the desired behaviour, but means that the

output is the per-port sum. We wrap the entire expression in another query to

get the overall sum (see Listing D.6). In summary, we needed the queries in

Listings D.2 and D.6 to get our answer.

D.4. QUERYING EXAMPLE 215

Listing D.6: InfluxQL query which sums the per-port sums

SELECT sum(per_port_sum) FROM
(SELECT sum(d) as per_port_sum FROM
(SELECT non_negative_difference(value) as d FROM port_rx_bytes
WHERE switch_id='35' AND port_num='4"' AND
time>'2021-01-01T10:53"' AND time<'2021-01-01T11:22'),
(SELECT non_negative_difference(value) as d FROM port_rx_bytes
WHERE switch_id='35' AND port_num='5"' AND
time>'2021-01-01T10:54' AND time<'2021-01-01T11:18"'),
Repeat for every port in the SQUL output above
GROUP BY switch_id, port_num);

© 00 N O U WwN

[
o

Output

name: port_rx_bytes
time sum

1970-01-01T00:00 7459294

D.4.2 Scout

As a starting point, we filter the User node by its name property (see the Scout
schema in Figure 6.1), and return the same node. Listing D.7 gives us all
atoms of User whose name property is Alice’.#! The first line of output gives
the path that Scout executed, which in this case contains only User.

Listing D.7: Scout query which outputs user account details

1 |Given: User{name='Alice'};
2 |Return: User;

Output

User

user_id name creation_date

6 Alice 2019-11-09 21:52

The question asks for the bytes transmitted by the user, which corresponds
to the PortTraffic/Inbound/Bytes node (as per its description in the schema).
We can see that there is a path between this node and User, so we know it
is a valid return node in this query. We add an over statement*?, as per the
original question, extending Listing D.7 as shown in Listing D.8. The updated

“! In this example we assume this name is unique, but we could use a user ID instead.
42 Scout parses time intervals with an external library which can interpret most human-
readable formats.

216 APPENDIX D. INFORMATION SHEET AND CONSENT FORM

query outputs point atoms, each of which represents the cumulative number
of bytes transmitted by the user (similar to Listing D.4).

The path from User to Bytes passes through Client Interface, which is a
parent node. As described in Section 5.6.1, parent nodes are substituted for
their children during path execution. Thus, Scout finds two paths, although in
this case one has no output*® (because the user did not connect any personal
devices to the network in the given time interval).

Listing D.8: Scout query which returns counter values for the user’s ports

1 | Given: User{name='Alice'};
2 |Return: PortTraffic/Inbound/Bytes;
3 |Over: 'l Jan 2021' -> '5 Jan 2021°';

Output
User-LoggedIn-EnterpriseClientInterface-Connected-Port-PortTraffic/Inbound/

Bytes

timestamp bytes switch_id port_number
2021-01-01 10:53 1489 35 4
2021-01-01 10:54 1901 35 5
2021-01-01 10:54 5133 35 4
2021-01-01 10:55 9966 35 5

No atoms

Similar to Listing D.4, in Listing D.9 we group the output of each port.
Then we use sum() to aggregate the bytes property of the return node’s atoms.
Scout’s sum() function has a domain-specific feature which allows it to intel-
ligently difference counter values before summing them. This gives us the
per-port sums, similar to Listing D.5. Currently, Scout has no function for
aggregating groups (which would allow it to take a sum of sums, as in List-
ing D.6), so the user has to do this manually. However, such a function could
be easily added in future.

“3 For this example we configured Scout to automatically execute all paths. Normally it would
prompt the user to choose one to execute.

D.4. QUERYING EXAMPLE

217

Listing D.9: Scout query which outputs the per-port sums of bytes

1 | Given: User{name='Alice'};

2 |Return: PortTraffic/Inbound/Bytes

3 .group (switch_id,port_number).sum(bytes);
4 |Over: 'l Jan 2021' -> '5 Jan 2021';

Output

User-LoggedIn-EnterpriseClientInterface-Connected-Port-PortTraffic/Inbound/
Bytes

switch_id: 35, port_number: 4

148674

switch_id: 35, port_number: 5

218 GLOSSARY

Glossary

access control list (ACL) A list of permissions granted to entities (e.g. users)
in a computer system. For example, each file on a file system may have
an access control list indicating which users may read, write, or execute
it.

ACL See access control list.
administrator See network administrator.
API See application programming interface.

application programming interface (API) A specification which defines in-
teractions between software elements, allowing them to communicate
and/or work together.

Bring Your Own Device (BYOD) An arrangement by which employees are
permitted or encouraged to use personal devices at work, perhaps con-
nected to a corporate network.

BYOD See Bring Your Own Device.

CFG See context-free grammatr.
CLI See command-line interface.

command-line interface (CLI) A text-based interface through which users
can interact with a software program, e.g. by typing commands and
observing text output. Contrast with GUI.

context-free grammar (CFG) A language which is strictly defined by a finite
set of formal rules, which do not require any additional information to
interpret. See also NLP.

GLOSSARY 219

DNS See domain name server.

domain name server (DNS) A system for resolving URLs to IP addresses, or
a server which implements this system.

domain-specific language (DSL) A formal language designed for a particu-
lar purpose or application. See also GPL.

DSL See domain-specific language.

EBNF See Extended Backus-Naur Form.

enterprise An organisation like a business, company, or educational institu-
tion.

enterprise network A computer network on which an enterprise relies for its
day-to-day operations, and whose traffic includes a significant propor-
tion of internal traffic.

Extended Backus-Naur Form (EBNF) A notation for writing context-free gram-
mars, such as those for DSLs.

extensible markup language (XML) A DSL for writing text which is read-
able by both humans and machines. Text in XML is delineated with tags
(e.g. <section>) which can be nested to create logical associations, e.g.

<list><item>First<\item><\list>.

finite-state machine (FSM) A defined set of states and transitions between
those states, which are triggered by certain inputs.

FSM See finite-state machine.

general-purpose language (GPL) A computer language designed for a wide
range of applications, e.g. C or Java. See also DSL.

Goal, Question, Metric (GQM) A mechanism for defining measurable goals
for software. Evaluators define one or more goals for the software,
which they refine into questions. For each question they define one
or more metrics for answering them. Metrics can be reused between
questions.

GPL See general-purpose language.

220 GLOSSARY

GQM See Goal, Question, Metric.

graphical user interface (GUI) A visual interface through which users can
interact with a software program, e.g. by clicking on-screen elements
with a mouse, or tapping them on a touch screen. Contrast with CLI.

GUI See graphical user interface.

HCI See human-computer interaction.

human-computer interaction (HCI) A field of research concerned with the
interfaces between humans and computers (e.g. CLIs and GUIs).

IDS See intrusion detection system.

IETF See Internet Engineering Task Force.
InfluxDB A time-series database.

InfluxQL The query language used by InfluxDB.

Internet Engineering Task Force (IETF) An organisation which develops and
publishes standardisations for the Internet (e.g. the TCP/IP protocol).

Internet of Things (IOT) A network of internet-connected physical objects
(including everyday objects like fridges, lights, and toasters) which began
to emerge starting in the late 2010s.

internet service provider (ISP) A company which provides a person or en-
terprise with access to the internet.

intrusion detection system (IDS) A software system which monitors a net-
work for malicious activity.

IOT See Internet of Things.

ISP See internet service provider.

LAN See local area network.

local area network (LAN) A network which connects devices in a single, moderately-
sized physical location, such as a home or a business.

GLOSSARY 221

natural language processing (NLP) A field of research in which computers
interpret and respond to the language of every day human speech.

network administrator Another term for network operator. See also admin-
istrator.

network functions virtualisation (NFV) A network architecture in which net-
work services which are traditionally run on proprietary hardware (e.g.
routers, firewalls, and load balancers) are instead run in VMs on com-
modity hardware. NFV provides benefits such as scalability and modu-
larity:.

network operating system (NOS) A software platform which controls a net-
work. In SDN, the NOS is responsible for programming network hard-
ware so that it forwards packets correctly, and is also known as the net-
work ‘controller’.

network operator A professional responsible for the day-to-day operation of
an enterprise network. See also operator.

network vendor A company which sells network hardware and/or software
to enterprises. See also vendor.

NFV See network functions virtualisation.
NLP See natural language processing.

NOS See network operating system.

object-oriented (OO) See OOP.

object-oriented programming (OOP) A programming paradigm in which pro-
gram state is organised into ‘objects’, which have associated methods for
operating on or with that state.

OO See object-oriented.
OOP See object-oriented programming.

OpenFlow A well-known southbound interface (see SDN). It defines the prim-
itive operations forwarding elements can perform, and which can be
used to program networks.

222 GLOSSARY

operator See network operator.

OSI model An abstract description of computer networks published by the
IETF. The model presents the data in a network from seven different
perspectives, called layers. Each layer is concerned with a different set
of problems related to data transportation. For example, the first or
‘physical’ layer is concerned with converting digital bits (1s and Os) into
physical signals, propagating them through a medium (such as a wire),
and then converting them back into bits. The seventh layer (the ‘ap-
plication’ layer) is concerned with communicating data to user-visible
applications (e.g. a web browser).

P2P See peer-to-peer.

PBNM See policy-based network management.
PDL See policy description language.

PDP See policy decision point.

peer-to-peer (P2P) A decentralised network model in which network nodes
self-organise and share resources. An example of this is a file-sharing
protocol in which clients transmit data directly to one another, without
an intermediary server. This contrasts with the client-server model used
by cloud hosting services such as Google Drive.

PEP See policy enforcement point.

policy A description of intended network behaviour. Policies can be written
in many formats, e.gnatural language, or in a PDL.

policy decision point (PDP) A component of a PBNM system which commu-
nicates policies (from the PR) to the PEP, when they are relevant.

policy description language (PDL) A formal language for specifying network
policies. See also: PBNM.

policy enforcement point (PEP) A component of a PBNM system which en-
acts the rules specified by policies (e.g. by altering network traffic).

policy repository (PR) A component of a PBNM system which is responsible
for storing policy representations.

GLOSSARY 223

policy-based network management (PBNM) A scalable approach to enter-
prise network management in which business processes and rules are
manually specified as policies, usually in PDLs. These policies are auto-
matically enforced by network software.

PR See policy repository.
Prometheus A time-series database inspired by Google’s Borgmon.
PromQL The query language used by Prometheus.

protocol A standardised set of rules for transmitting and receiving data.

QL See query language.
QoS See quality of service.

quality of service (QoS) Measuring network performance and ensuring that
it meets or exceeds certain thresholds.

query language (QL) A DSL for retrieving and possibly analysing data from
a storage medium, such as a database.

RBAC See role-based access control.
RDB See relational database.

relational database (RDB) A database which models its contents as tables.
Tables have rows, each of which correspond to a single data point, and
columns, which define the properties of those data points. Users can
create relationships among tables, which indicate that certain columns
(e.g. user ID) which appear in multiple columns contain the same in-
formation.

request for comment (RFC) A publication describing systems, research or
methods submitted to an organisation for peer review, or as document-
ation.

RFC See request for comment.

role-based access control (RBAC) A method for restricting users’ access to
a system based on their role in an enterprise.

224 GLOSSARY

SDN See software-defined networking.

simple network management protocol (SNMP) A protocol developed in the
1980s for retrieving information about network devices (e.g. make, model,
memory usage).

SNMP See simple network management protocol.

software-defined networking (SDN) A networking paradigm characterised
by a decoupling of the forwarding and control planes of the network
stack.

SQL See structured query language.

SQL+IQL A short-hand used in this thesis to refer to both SQL and InfluxQL,
when they are used in tandem (e.g. in order to answer questions which
neither can answer alone).

structured query language (SQL) A widely used language for querying re-
lational databases.

time series database (TSDB) A database designed for storing large volumes
of data points, each of which correspond to a specific moment in time.

TSDB See time series database.

UC See usability criterion.

usability criterion (UC) A expectation or requirement by which the usability
of a product, system or service may be judged.

vendor See network vendor.

virtual local area network (VLAN) A group of network components which
are logically, but not necessarily physically, separated.

virtual machine (VM) A computer which is decoupled from any physical hard-
ware. VMs can be run on any supported, physical ‘host’ computer, and
their state can be easily saved, restored, and duplicated (e.g. making it
possible to run a VM on one host, then move it to another without any
disruption to its internal state).

GLOSSARY 225

virtual network function (VNF) A software-based implementation of a net-
work feature (e.g. a switch, router, or firewall) which is traditionally
implemented in hardware.

virtual private network (VPN) A system by which devices connected to dif-
ferent physical networks can communicate as if they were connected to
the same network.

VLAN See virtual local area network.
VM See virtual machine.
VNF See virtual network function.

voice over IP (VOIP) A system for making audio calls over the Internet (as
opposed to the traditional telephone service).

VOIP See voice over IP.

VPN See virtual private network.

WAN See wide area network.
WAP See wireless access point.

wide area network (WAN) A network serving a large region. WANs may be
comprised of LANs.

wireless access point (WAP) A wireless radio connected to the edge of a net-
work which provides network clients with wireless access to the net-
work. Wireless access points almost exclusively use the Wi-Fi standard.

XML See extensible markup language.

[1]

[2]

[3]

[4]

[5]

[6]

[71

Bibliography

Misbah Uddin and Rolf Stadler. A Bottom-Up Approach to Real-Time
Search in Large Networks and Clouds. In NOMS 2016-2016 IEEE/I-
FIP Network Operations and Management Symposium, pages 985-990.
IEEE, 2016. 1

Unnikrishnan S. Warrier and Carl A. Sunshine. A platform for het-
erogeneous interconnection network management. IEEE Journal on
Selected Areas in Communications, 8(1):119-126, 1990. 1

Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong, and Hongyi Zeng.
Robotron: Top-down Network Management at Facebook Scale. In Pro-
ceedings of the 2016 conference on ACM SIGCOMM 2016 Conference,
pages 426-439. ACM, 2016. 1, 2, 3, 4, 12, 13, 14, 15, 48

Diego Kreutz, Fernando MV Ramos, P Esteves Verissimo, C Es-
teve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-
defined networking: A comprehensive survey. Proceedings of the IEEE,
103(1):14-76, 2015. 1, 3, 11, 12, 13, 14, 17, 18, 45, 136

John Strassner. Policy-based network management: solutions for the next
generation. Morgan Kaufmann, 2003. 1, 3, 12, 14, 15, 25, 45, 67, 71,
74,75, 78, 81, 82

H. Kim and N. Feamster. Improving network management with soft-
ware defined networking. IEEE Communications Magagzine, 51(2):114—
119, February 2013. 1, 2, 13, 14, 18, 45

Cataldo Basile, Alberto Cappadonia, and Antonio Lioy. Network-level
access control policy analysis and transformation. IEEE/ACM Transac-
tions on Networking (TON), 20(4):985-998, 2012. 1, 14, 16, 25, 47,
48, 136

226

BIBLIOGRAPHY 227

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Weili Han and Chang Lei. A survey on policy languages in network and
security management. Computer Networks, 56(1):477 — 489, 2012. 1,
14, 16, 25, 29, 44, 47, 48, 136

Dakshi Agrawal, Seraphin Calo, Kang-Won Lee, and Jorge Lobo. Is-
sues in designing a policy language for distributed management of it
infrastructures. In 2007 10th IFIP/IEEE International Symposium on In-
tegrated Network Management, pages 30-39. IEEE, 2007. 1, 14, 15, 16,
25, 47, 48, 136

Dinesh C Verma. Simplifying network administration using policy-
based management. IEEE Network, 16(2):20-26, 2002. 1, 2, 14, 16,
25, 27, 47, 48, 136

Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman.
The ponder policy specification language. In Policies for Distributed
Systems and Networks, pages 18-38. Springer, 2001. 2, 3, 16, 22, 26,
28, 36, 43, 47, 58, 137, 138, 150

Influx Data. InfluxDB: Time series database monitoring & analytics.
URL: https://www.influxdata.com, 2018. 2, 76, 110

Prometheus Authors. Prometheus: Monitoring system & time series
database. URL: https://prometheus.io, 2018. 2, 76

Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav
Shkapenyuk. Gigascope: a stream database for network applications.
In Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, pages 647-651. ACM, 2003. 2, 71

Arpit Gupta, Rob Harrison, Ankita Pawar, Riidiger Birkner, Marco
Canini, Nick Feamster, Jennifer Rexford, and Walter Willinger. Son-
ata: Query-driven network telemetry. arXiv preprint arXiv:1705.01049,
2017. 2,71

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rex-
ford, and Walter Willinger. Sonata: Query-driven streaming network
telemetry. In Proceedings of the 2018 Conference of the ACM Special In-
terest Group on Data Communication, pages 357-371. ACM, 2018. 2,
71

https://www.influxdata.com
https://prometheus.io

228

BIBLIOGRAPHY

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Amin Vahdat, David Clark, and Jennifer Rexford. A Purpose-built
Global Network: Google’s Move to SDN. Queue, 13(8):100, 2015. 2,
12,13

Nancy Samaan and Ahmed Karmouch. Towards autonomic network
management: an analysis of current and future research directions.
IEEE Communications Surveys & Tutorials, 11(3), 2009. 2, 3, 12

Heather Fulford and Neil F Doherty. The application of information se-
curity policies in large UK-based organizations: an exploratory invest-
igation. Information Management & Computer Security, 11(3):106-114,
2003. 2, 15, 48

Sara Kraemer and Pascale Carayon. Human errors and violations in
computer and information security: The viewpoint of network admin-
istrators and security specialists. Applied ergonomics, 38(2):143-154,
2007. 2, 12, 14, 15, 47, 48, 65, 68

Nate Foster, Arjun Guha, Mark Reitblatt, Alec Story, Michael J Freed-
man, Naga Praveen Katta, Christopher Monsanto, Joshua Reich, Jen-
nifer Rexford, Cole Schlesinger, et al. Languages for software-defined
networks. IEEE Communications Magazine, 51(2):128-134, 2013. 2,
19, 21, 45

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jen-
nifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. P4: Programming protocol-independent packet pro-
cessors. ACM SIGCOMM Computer Communication Review, 44(3):87-
95, 2014. 3

C. Dixon, D. Olshefski, V. Jain, C. DeCusatis, W. Felter, J. Carter,
M. Banikazemi, V. Mann, J. M. Tracey, and R. Recio. Software defined
networking to support the software defined environment. IBM Journal
of Research and Development, 58(2/3):3-3:14, 2014. 3,17, 18

Hyojoon Kim, Theophilus Benson, Aditya Akella, and Nick Feamster.
The evolution of network configuration: A tale of two campuses. In
Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measure-
ment Conference, IMC ’11, pages 499-514, New York, NY, USA, 2011.
ACM. 3

BIBLIOGRAPHY 229

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Paul Goransson and Chuck Black. Software Defined Networks: A Com-
prehensive Approach. Elsevier, 2014. 3, 17, 18, 45

John Strassner and Stephen Schleimer. Policy framework definition
language. Internet Engineering Task Force, Internet Draft draft-ietf-
policy-framework-pfdl-OO0. txt, 17, 1998. 3, 16, 47

Influx Data. Influx Query Language (InfluxQL) reference. URL: https:
//docs.influxdata.com/influxdb/v1.8/query_language/, 2019.
4, 80

Yahoo Finance. Influxdata closes 2020 with exponential cloud growth,
expanding user base, and big new customers. 4, 122

Ildevana Poltronieri, Avelino Francisco Zorzo, Maicon Bernardino, and
Marcia de Borba Campos. Usa-DSL: Usability evaluation framework
for domain-specific languages. In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing, pages 2013-2021, 2018. 5, 108,
109, 110, 118, 135, 141, 144, 171, 172

Andrew S Tanenbaum and David J Wetherall. Computer Networks -
Fifth Edition. In Pearson Education, Inc. Prentice Hall, 2011. 9, 10, 14

Ruoming Pang, Mark Allman, Mike Bennett, Jason Lee, Vern Paxson,
and Brian Tierney. A first look at modern enterprise traffic. In Pro-
ceedings of the 5th ACM SIGCOMM conference on Internet Measurement,
pages 2-2. USENIX Association, 2005. 10, 11

David Murray and Terry Ksoziniec. The state of enterprise network
traffic in 2012. In Communications (APCC), 2012 18th Asia-Pacific Con-
ference on, pages 179-184. IEEE, 2012. 10, 11

David Murray, Terry Koziniec, Sebastian Zander, Michael Dixon, and
Polychronis Koutsakis. An analysis of changing enterprise network
traffic characteristics. In 2017 23rd Asia-Pacific Conference on Com-
munications (APCC), pages 1-6. IEEE, 2017. 10

Saikat Guha, Jaideep Chandrashekar, Nina Taft, and Konstantina Papa-
giannaki. How healthy are today’s enterprise networks? In Proceedings
of the 8th ACM SIGCOMM conference on Internet measurement, pages
145-150. ACM, 2008. 11

https://docs.influxdata.com/influxdb/v1.8/query_language/
https://docs.influxdata.com/influxdb/v1.8/query_language/

230

BIBLIOGRAPHY

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Godfrey Tan, Massimiliano Poletto, John V Guttag, and M Frans
Kaashoek. Role classification of hosts within enterprise networks based
on connection patterns. In USENIX Annual Technical Conference, Gen-
eral Track, pages 15-28, 2003. 11

Alexander D Kent, Lorie M Liebrock, and Joshua C Neil. Authentic-
ation graphs: Analyzing user behavior within an enterprise network.
Computers & Security, 48:150-166, 2015. 11

Paramvir Bahl, Ranveer Chandra, Albert Greenberg, Srikanth Kandula,
David A Maltz, and Ming Zhang. Towards highly reliable enterprise
network services via inference of multi-level dependencies. ACM SIG-
COMM Computer Communication Review, 37(4):13-24, 2007. 11

Theophilus Benson, Aditya Akella, and David A Maltz. Mining policies
from enterprise network configuration. In Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement, pages 136-142, 2009.
11

AT Yang, R Vlas, Alan Yang, and Cristina Vlas. Risk Management in the
Era of BYOD. In 2013 International Conference on Social Computing,
Alexandria, VA. Citeseer, 2013. 11

Praphul Chandra and David Lide. Wi-Fi Telephony: Challenges and solu-
tions for voice over WLANs. Elsevier, 2011. 11

J. A. Wickboldt, W. P. De Jesus, P. H. Isolani, C. B. Both, J. Rochol, and
L. Z. Granville. Software-defined networking: management require-
ments and challenges. [EEE Communications Magazine, 53(1):278-
285, January 2015. 11, 18

Albert Greenberg, Gisli Hjalmtysson, David A Maltz, Andy Myers, Jen-
nifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang. A
clean slate 4D approach to network control and management. ACM
SIGCOMM Computer Communication Review, 35(5):41-54, 2005. 12,
14, 25, 48, 69, 136

B. A. A. Nunes, M. Mendonca, Xuan-Nam Nguyen, K. Obraczka, and
T. Turletti. A survey of software-defined networking: Past, present,
and future of programmable networks. IEEE Communications Surveys
and Tutorials, 16(3):1617-1634, Third 2014. 12

BIBLIOGRAPHY 231

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Josh Bailey and Stephen Stuart. Faucet: Deploying SDN in the enter-
prise. Queue, 14(5):30, 2016. 13, 14, 95, 119

Craig Riecke. Frenetic =~ Programmers Guide, 2016.
https://github.com/frenetic-lang/manual. 14, 17, 20, 21

Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford,
and David Walker. Modular sdn programming with pyretic. Technical
Reprot of USENIX, 2013. 14, 16, 17, 19, 21, 22, 40, 47, 137

Rich Seifert and Jim Edwards. The All-New Switch Book: The Complete
Guide to LAN Switching Technology. John Wiley & Sons, 2008. 14, 136

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
OpenFlow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69-74, 2008. 14, 18, 40, 45,
137

Jéferson Campos Nobre, Cristina Melchiors, Clarissa Cassales Mar-
quezan, Liane Margarida Rockenbach Tarouco, and Lisandro Zambene-
detti Granville. A Survey on the Use of P2P Technology for Network
Management. Journal of Network and Systems Management, pages 1—
33, 2017. 14, 48

Van-Giang Nguyen and Young-Han Kim. SDN-Based Enterprise and
Campus Networks: A Case of VLAN Management. Journal of Informa-
tion Processing Systems, 12(3), 2016. 14

Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick
Feamster, and Russ Clark. Kinetic: Verifiable dynamic network control.
In 12th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 15), pages 59-72, 2015. 14, 15, 19, 22, 26, 28, 36,
42,43, 47, 48, 137, 138, 150

Jorge Lobo, R Bhatia, and S Naqvi. A policy description language. In
Proceedings of AAAI, pages 291-298, 1999. 15, 16, 25, 47, 150

Bob Moore, Ed Ellesson, John Strassner, and Andrea Westerinen. Policy
core information model-version 1 specification. IETF RFC 3060, 2001.
15,16, 150

232

BIBLIOGRAPHY

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

K Feeney. Beyond the role model: Organisational modelling in policy
based management systems. Technical report, M-Zones draft whitepa-
per, 2003. 16, 26, 58

Nicodemos Damianou, Arosha Bandara, Morris Sloman, and Emil
Lupu. A survey of policy specification approaches. Department of
Computing, Imperial College of Science Technology and Medicine, Lon-
don, 3:142-156, 2002. 16, 26, 29, 47

Raouf Boutaba and Issam Aib. Policy-based management: A historical
perspective. Journal of Network and Systems Management, 15(4):447-
480, 2007. 16

Gary N Stone, Bert Lundy, and Geoffrey G Xie. Network policy lan-
guages: a survey and a new approach. IEEE Network, 15(1):10-21,
2001. 16, 27, 47

Bruno Lopes Alcantara Batista and Marcial Porto Fernandez. Ponder-
Flow: A New Policy Specification Language to SDN OpenFlow-based
Networks. International Journal on Advances in Networks and Services
Volume 7, Number 3 & 4, 2014, 2014. 16, 22, 45, 47

Kevin Twidle, Naranker Dulay, Emil Lupu, and Morris Sloman. Pon-
der2: A policy system for autonomous pervasive environments. In
Autonomic and Autonomous Systems, 2009. ICAS’09. Fifth International
Conference On, pages 330-335. IEEE, 2009. 16, 26, 36, 40, 47, 150

Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: A lan-
guage for high-level reactive network control. In Proceedings of the
First Workshop on Hot Topics in Software Defined Networks, HotSDN
"12, pages 43-48, New York, NY, USA, 2012. ACM. 16, 35, 46, 47, 150

Kagal Lalana. Rei: A policy language for the Me-Centric project. Tech-
nical report, HP Labs, September 2002. 16, 43, 47, 150

Martin Casado, Nate Foster, and Arjun Guha. Abstractions for software-
defined networks. Communications of the ACM, 57(10):86-95, 2014.
16, 18, 47

BIBLIOGRAPHY 233

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Celio Trois, Marcos D Del Fabro, Luis CE de Bona, and Magnos Mar-
tinello. A Survey on SDN Programming Languages: Toward a Tax-
onomy. IEEE Communications Surveys & Tutorials, 18(4):2687-2712,
2016. 16, 17, 48

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jean-
nin, Dexter Kozen, Cole Schlesinger, and David Walker. NetKAT: Se-
mantic foundations for networks. ACM SIGPLAN Notices, 49(1):113—-
126, 2014. 17, 19, 20, 21, 46

Bohan He, Ligang Dong, Tijie Xu, Shuocheng Fei, Huafei Zhang, and
Weiming Wang. Research on network programming language and
policy conflicts for SDN. Concurrency and Computation: Practice and
Experience, 2017. 17

Bingian Xue, Stefan Schmid, and Kim Larsen. WNetKAT: A
Weighted SDN Programming and Verification Language. arXiv preprint
arXiv:1608.08483, 2016. 17, 19, 21

S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba. Payless: A low
cost network monitoring framework for software defined networks. In
Network Operations and Management Symposium (NOMS), 2014 IEEE,
pages 1-9, May 2014. 18

Roberto di Lallo, Mirko Gradillo, Gabriele Lospoto, Claudio Pisa, and
Massimo Rimondini. On the practical applicability of SDN research.
In Network Operations and Management Symposium (NOMS), 2016
IEEE/IFIP, pages 1-9. IEEE, 2016. 18

Doug Maschke, Jeff Doyle, and Pete Moyer. SDN: Anatomy of OpenFlow,
volume one. Lulu Publishing Services, 2015. 18, 45

M. Jarschel, T. Zinner, T. Hossfeld, P. Tran-Gia, and W. Kellerer. Inter-
faces, attributes, and use cases: A compass for sdn. IEEE Communica-
tions Magazine, 52(6):210-217, June 2014. 18, 19, 45

Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Opendaylight:
Towards a model-driven sdn controller architecture. In Proceeding of
IEEE International Symposium on a World of Wireless, Mobile and Multi-
media Networks 2014, 2014. 18, 46

234

BIBLIOGRAPHY

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Project Floodlight. Floodlight OpenFlow Controller. URL: https://
github.com/floodlight/floodlight. 18, 46

Ryu SDN Framework Community. Ryu OpenFlow Controller. URL:
http://osrg.github.io/ryu, 2017. 18, 46

Frenetic Project GitHub Page. URL: https://github.com/
frenetic-lang, 2016. 18, 46

R. Ahmed and R. Boutaba. Design considerations for managing wide
area software defined networks. IEEE Communications Magagine,
52(7):116-123, July 2014. 18

Robert Soulé, Shrutarshi Basu, Robert Kleinberg, Emin Giin Sirer, and
Nate Foster. Managing the network with Merlin. In Proceedings of the
Twelfth ACM Workshop on Hot Topics in Networks, page 24. ACM, 2013.
19, 46, 47, 150

Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford,
and David Walker. Composing software defined networks. In Presented
as part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), pages 1-13, 2013. 19, 21

Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker. A
compiler and run-time system for network programming languages. In
ACM SIGPLAN Notices, volume 47, pages 217-230. ACM, 2012. 19

Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt,
and Alexandra Silva. Probabilistic netkat. In European Symposium on
Programming Languages and Systems, pages 282-309. Springer, 2016.
19, 21

Richard Wang, Dana Butnariu, Jennifer Rexford, et al. OpenFlow-
Based Server Load Balancing Gone Wild. Hot-ICE, 11:12-12, 2011.
19

Dexter Kozen and Frederick Smith. Kleene algebra with tests: Com-
pleteness and decidability. In International Workshop on Computer Sci-
ence Logic, pages 244-259. Springer, 1996. 20

https://github.com/floodlight/floodlight
https://github.com/floodlight/floodlight
http://osrg.github.io/ryu
https://github.com/frenetic-lang
https://github.com/frenetic-lang

BIBLIOGRAPHY 235

[82]

[83]

[84]

[85]

[86]
[87]

[88]

[89]

[90]

[91]

[92]

Shrutarshi Basu, Nate Foster, Hossein Hojjat, Paparao Palacharla, Chris-
tian Skalka, and Xi Wang. Life on the Edge: Unraveling Policies into
Configurations. In Proceedings of the Symposium on Architectures for
Networking and Communications Systems, pages 178-190. IEEE Press,
2017. 21

Jedidiah McClurg, Hossein Hojjat, Nate Foster, and Pavol Cerny. Spe-
cification and compilation of event-driven SDN programs. CoRR,
abs/1507.07049, July, page 12, 2015. 21

Mark Reitblatt, Nate Foster, Jennifer Rexford, and David Walker. Con-
sistent updates for software-defined networks: Change you can believe
in! In Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
page 7. ACM, 2011. 21

Kinetic GitHub Page. URL: https://github.com/frenetic-lang/
pyretic/tree/kinetic, 2016. 22

Apstra. Apstra Homepage. URL: www.apstra.com, 2016. 23
Linewize Homepage. URL: http://www.linewize.com/, 2016. 23, 56

Stephen Lawson. Is Apstra SDN? Same idea, different angle. Network
World, 2016. 23

Mansour Karam. The Apstra Operating System (AOS) Value Proposi-
tion. URL: http://www.apstra.com/wp-content/uploads/2016/06/
apstra_AQ0S-Value-Prop_V3-1.pdf, 2016. 23

Sean Hafeez. The Apstra Operating System (AOS) Layer 3 Attached
Servers. URL: http://www.apstra.com/wp-content/uploads/2016/
06/apstra_A0S-L3-Servers_V3-1.pdf, 2016. 23

John Fruehe. Apstra’s AOS: Distributed Network OS. URL:
http://www.apstra.com/wp-content/uploads/2016/06/Apstra_
AOS_Distributed_Network_0S.pdf, 2016. 23

Andrew Curtis-Black, Andreas Willig, and Matthias Galster. A tax-
onomy for network policy description languages. In Telecommunica-
tion Networks and Applications Conference (ITNAC), 2016 26th Interna-
tional, pages 159-165. IEEE, 2016. 25, 47, 49, 58

https://github.com/frenetic-lang/pyretic/tree/kinetic
https://github.com/frenetic-lang/pyretic/tree/kinetic
www.apstra.com
http://www.linewize.com/
http://www.apstra.com/wp-content/uploads/2016/06/apstra_AOS-Value-Prop_V3-1.pdf
http://www.apstra.com/wp-content/uploads/2016/06/apstra_AOS-Value-Prop_V3-1.pdf
http://www.apstra.com/wp-content/uploads/2016/06/apstra_AOS-L3-Servers_V3-1.pdf
http://www.apstra.com/wp-content/uploads/2016/06/apstra_AOS-L3-Servers_V3-1.pdf
http://www.apstra.com/wp-content/uploads/2016/06/Apstra_AOS_Distributed_Network_OS.pdf
http://www.apstra.com/wp-content/uploads/2016/06/Apstra_AOS_Distributed_Network_OS.pdf

236

BIBLIOGRAPHY

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

Bruno Lopes Alcantara Batista, Gustavo Augusto Lima de Campos, and
Marcial P Fernandez. A proposal of policy based OpenFlow network
management. In Telecommunications (ICT), 2013 20th International
Conference on, pages 1-5. IEEE, 2013. 25

Ridiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin
Vechev. Net2text: Query-guided summarization of network forwarding
behaviors. In 15th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 18), pages 609-623, 2018. 27, 80, 142

Morris Sloman and Emil Lupu. Security and management policy spe-
cification. IEEE Network, 16(2):10-19, 2002. 29

René Wies. Using a classification of management policies for policy
specification and policy transformation. In Integrated Network Manage-
ment IV, pages 44-56. Springer, 1995. 29, 30

Hubert Zimmermann. OSI reference model-the ISO model of architec-
ture for open systems interconnection. IEEE Transactions on Commu-
nications, 28(4):425-432, 1980. 35

Leonid Libkin. Expressive power of query languages. In Encyclopedia
of Database Systems, pages 1081-1083. Springer US, 2009. 41, 106

Grafana. Grafana: The open platform for beautiful analytics and mon-
itoring. URL: https://wuw.grafana.com, 2018. 43, 76, 138

Erik E Northrop and Heather R Lipford. Exploring the usability of open
source network forensic tools. In Proceedings of the 2014 ACM Work-
shop on Security Information Workers, pages 1-8, 2014. 43, 48, 114

Lisa M Given. The Sage encyclopedia of qualitative research methods.
Sage Publications, 2008. 44, 46, 49, 50, 51, 52, 68, 122, 171

Andrew Curtis-Black, Matthias Galster, and Andreas Willig. High-level
concepts for northbound APIs: An interview study. In 2017 27th Inter-
national Telecommunication Networks and Applications Conference (IT-
NAC), pages 1-8. IEEE, 2017. 45, 74

https://www.grafana.com

BIBLIOGRAPHY 237

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

John L Campbell, Charles Quincy, Jordan Osserman, and Ove K Peder-
sen. Coding in-depth semistructured interviews: Problems of unitiza-
tion and intercoder reliability and agreement. Sociological Methods &
Research, 42(3):294-320, 2013. 46, 51, 69

Anol Bhattacherjee and Rudy Hirschheim. IT and organizational
change: Lessons from client/server technology implementation.
Journal of General Management, 23(2):31-46, 1997. 47

Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and
David Walker. Abstractions for network update. In Proceedings of the
ACM SIGCOMM 2012 conference on Applications, technologies, architec-
tures, and protocols for computer communication, pages 323-334. ACM,
2012. 48

Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela
Damian. Selecting empirical methods for software engineering re-
search. In Guide to advanced empirical software engineering, pages 285—
311. Springer, 2008. 49, 68

Forrest Shull, Janice Singer, and Dag IK Sjgberg. Guide to advanced
empirical software engineering, volume 93. Springer, 2008. 50, 52, 68

John W Creswell. Qualitative inquiry and research design: Choosing
among five approaches. Sage Publications, Inc, second edition, 2007.
51, 52, 67, 69

Thomas Muhr and Susanne Friese. User’s Manual for ATLAS. ti 5.0.
Berlin: ATLAS. ti Scientific Software Development GmbH, 2004. 52

Daniela Soares Cruzes and Lotfi ben Othmane. Threats to validity in
empirical software security research. Empirical Research for Software
Security: Foundations and Experience, 2017. 52, 114, 131, 182

Robbie Allen and Alistair Lowe-Norris. Active directory. ” O’Reilly Me-
dia, Inc.”, 2003. 56

Joel Halpern and C Pignataro. Service function chaining (SFC) archi-
tecture. RFC 7665, 2015. 61

238

BIBLIOGRAPHY

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Andrew Curtis-Black, Andreas Willig, and Matthias Galster. Scout: A
framework for querying networks. In 2019 15th International Confer-
ence on Network and Service Management (CNSM), pages 1-7. IEEE,
2019. 71

Q Wu, J Strassner, A Farrel, and L. Zhang. Network telemetry and big
data analysis. Technical report, Network Working Group Internet-Draft,
2016. 74

Prometheus Authors. Prometheus documentation: Metric types. URL:
https://prometheus.io/docs/concepts/metric_types/, 2018. 74

Marshall T Rose and Keith McCloghrie. Structure and Identification of
Management Information for TCP/IP-based internets. RFC 1155, 1990.
74

OpenConfig. Public OpenConfig repository. URL: https://github.
com/openconfig/public, 2019. 74

Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: Concepts
and techniques. Elsevier, 2011. 74

Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro,
Qi Huang, Justin Meza, and Kaushik Veeraraghavan. Gorilla: A fast,
scalable, in-memory time series database. Proceedings of the VLDB En-
dowment, 8(12):1816-1827, 2015. 74, 106

Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Data Stream
Management: Processing High-Speed Data Streams. Springer, 2016. 74

Alexander Clemm et al. Network management fundamentals, volume
800. Cisco Press Indianapolis, IN, USA:, 2007. 75

Peter Pin-Shan Chen. The entity-relationship model: Toward a unified
view of data. ACM Transactions on Database Systems (TODS), 1(1):9-
36, 1976. 75

Inc. Distributed Management Task Force. CIM overview document.
Technical report, Distributed Management Task Force, Inc., 2003. 75

https://prometheus.io/docs/concepts/metric_types/
https://github.com/openconfig/public
https://github.com/openconfig/public

BIBLIOGRAPHY 239

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

Martin Fowler and Cris Kobryn. UML distilled: A brief guide to the
standard object modeling language. Addison-Wesley Professional, 2004.
75

Y Tina Lee. Information modeling: From design to implementation.
In Proceedings of the second world manufacturing congress, pages 315—
321. International Computer Science Conventions Canada/Switzer-
land, 1999. 75

Martin Fowler. Domain-specific languages. Pearson Education, 2010.
76, 110

Robert Nystrom. Crafting interpreters. Genever Benning, 2021. 76, 84

Ildevana Poltronieri Rodrigues, Mdarcia de Borba Campos, and Avelino F
Zorzo. Usability evaluation of domain-specific languages: a systematic
literature review. In International Conference on Human-Computer In-
teraction, pages 522-534. Springer, 2017. 76, 110

Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how
to develop domain-specific languages. ACM computing surveys (CSUR),
37(4):316-344, 2005. 76

Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continu-
ous query language: Semantic foundations and query execution. The
VLDB Journal, 15(2):121-142, 2006. 76, 110

Nagios. Nagios - The Industry Standard in IT Infrastructure Monitoring.
URL: https://www.nagios.org, 2018. 76, 136

Vesper Owei and Shamkant Navathe. A formal basis for an abbrevi-
ated concept-based query language. Data & Knowledge Engineering,
36(2):109-151, 2001. 76, 77, 105, 112

Vesper Owei, Shamkant B Navathe, and Hyeun-Suk Rhee. An abbre-
viated concept-based query language and its exploratory evaluation.
Journal of Systems and Software, 63(1):45-67, 2002. 77, 112

Terrence Mason and Ramon Lawrence. INFER: A relational query lan-
guage without the complexity of SQL. In CIKM, volume 5, pages 241—
242, 2005. 77

https://www.nagios.org

240

BIBLIOGRAPHY

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

Terrence Mason, Lixin Wang, and Ramon Lawrence. Autojoin: Provid-
ing freedom from specifying joins. In ICEIS, pages 31-38, 2005. 77

Sai Zhang and Yuyin Sun. Automatically synthesizing SQL queries from
input-output examples. In 2013 28th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pages 224-234. IEEE,
2013. 77

Dave Bechberger and Josh Perryman. Graph Databases in Action. Man-
ning, Shelter Island, NY, USA, 2020. 78

Borislav Iordanov. Hypergraphdb: a generalized graph database. In In-
ternational conference on web-age information management, pages 25—
36. Springer, 2010. 78

Shengqi Yang, Yanan Xie, Yinghui Wu, Tianyu Wu, Huan Sun, Jian Wu,
and Xifeng Yan. Slq: a user-friendly graph querying system. In Proceed-
ings of the 2014 ACM SIGMOD International Conference on Management
of Data, pages 893-896, 2014. 78

Mike Buerli and CPSL Obispo. The current state of graph databases.
Department of Computer Science, Cal Poly San Luis Obispo, 32(3):67—
83,2012. 78

Theodore Johnson, Yaron Kanza, Laks VS Lakshmanan, and Vladislav
Shkapenyuk. Nepal: a path query language for communication net-
works. In Proceedings of the 1st ACM SIGMOD Workshop on Network
Data Analytics, pages 1-8, 2016. 78

Pramod Jamkhedkar, Theodore Johnson, Yaron Kanza, Aman Shaikh,
NK Shankaranarayanan, and Vladislav Shkapenyuk. A graph database
for a virtualized network infrastructure. In Proceedings of the 2018
International Conference on Management of Data, pages 1393-1405,
2018. 79

Misbah Uddin, Rolf Stadler, and Alexander Clemm. A Query Language
for Network Search. In 2013 IFIP/IEEE International Symposium on
Integrated Network Management (IM 2013), page 109-117. IEEE, 2013.
79

BIBLIOGRAPHY 241

[144] Misbah Uddin, Rolf Stadler, and Alexander Clemm. Scalable matching
and ranking for network search. In Proceedings of the 9th International
Conference on Network and Service Management (CNSM 2013), pages
251-259. IEEE, 2013. 79, 105

[145] Tadeusz Pankowski. Pathlog: A query language for schemaless
databases of partially labeled objects. Fundamenta Informaticae,
49(4):369-395, 2002. 79

[146] Christof Strauch, Ultra-Large Scale Sites, and Walter Kriha. Nosql data-
bases. Lecture Notes, Stuttgart Media University, 20:24, 2011. 79

[147] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. Site
Reliability Engineering: How Google Runs Production Systems. O’Reilly
Media, Inc., 2016. 79

[148] Prometheus Authors. PromCon 2017: Conference Recap. URL: https:
//www .youtube. com/watch?v=4Pr-z8-rleo&t=20s, 2017. 80

[149] Roberto Lupi. Monarch, Google’s Planet Scale Monitoring Infrastruc-
utre. Presented at Codemotion Milan 2016, 2016. 80

[150] Prometheus Authors. Comparison to Alternatives. URL: https://

prometheus.io/docs/introduction/comparison/, 2019. 80

[151] Dirk Fahland, Daniel Liibke, Jan Mendling, Hajo Reijers, Barbara
Weber, Matthias Weidlich, and Stefan Zugal. Declarative versus im-
perative process modeling languages: The issue of understandability.
In Enterprise, Business-Process and Information Systems Modeling, pages
353-366. Springer, 2009. 80

[152] Influx Data. Flux Github Repository. URL: https://github.com/
fluxcd/flux, 2019. 80

[153] Influx Data. Introduction to Flux. URL: https://docs.influxdata.
com/influxdb/cloud/query-data/get-started/, 2019. 80, 142

[154] Paul Dix. @Why we're building Flux, a new data scripting and
query language. URL: https://www.influxdata.com/blog/
why-were-building-flux-a-new-data-scripting-and-query-language/,

2018. 80

https://www.youtube.com/watch?v=4Pr-z8-r1eo&t=20s
https://www.youtube.com/watch?v=4Pr-z8-r1eo&t=20s
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/comparison/
https://github.com/fluxcd/flux
https://github.com/fluxcd/flux
https://docs.influxdata.com/influxdb/cloud/query-data/get-started/
https://docs.influxdata.com/influxdb/cloud/query-data/get-started/
https://www.influxdata.com/blog/why-were-building-flux-a-new-data-scripting-and-query-language/
https://www.influxdata.com/blog/why-were-building-flux-a-new-data-scripting-and-query-language/

242

BIBLIOGRAPHY

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

Boris Galitsky. Developing enterprise chatbots: learning linguistic struc-
tures. Springer, 2019. 81

Asbjern Fglstad, Cecilie Bertinussen Nordheim, and Cato Alexander
Bjorkli. What makes users trust a chatbot for customer service? an
exploratory interview study. In International conference on internet sci-
ence, pages 194-208. Springer, 2018. 81, 142

Merel Keijsers, Christoph Bartneck, and Hussain Syed Kazmi. Cloud-
based sentiment analysis for interactive agents. In Proceedings of the
7th International Conference on Human-Agent Interaction, pages 43-50,
2019. 81

Lawrence Chung, Brian A Nixon, Eric Yu, and John Mylopoulos. Non-
functional requirements in software engineering, volume 5. Springer
Science & Business Media, 2009. 81

Dateutil GitHub Page. URL: https://github.com/dateutil/
dateutil, 2021. 87

Amit Patel. Yet Another Python Parser System (YAPPS). URL: http:
//theory.stanford.edu/~amitp/yapps/, 2021. 92

Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Com-
pilers: principles, techniques and tools, second edition. 2007. 92

Artem Gorokhov and Semyon Grigorev. Extended context-free gram-
mars parsing with generalized 1l. In International Conference on Tools
and Methods for Program Analysis, pages 24-37. Springer, 2017. 92

Romain Edelmann, Jad Hamza, and Viktor Kuncak. Zippy 1l (1) parsing
with derivatives. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 1036-1051,
2020. 92

Thomas Bohme, Frank Goring, and Jochen Harant. Menger’s theorem.
Journal of Graph Theory, 37(1):35-36, 2001. 92

Luca Deri, Simone Mainardi, and Francesco Fusco. tsdb: A compressed
database for time series. In International Workshop on Traffic Monitor-
ing and Analysis, pages 143-156. Springer, 2012. 93

https://github.com/dateutil/dateutil
https://github.com/dateutil/dateutil
http://theory.stanford.edu/~amitp/yapps/
http://theory.stanford.edu/~amitp/yapps/

BIBLIOGRAPHY 243

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop:
rapid prototyping for software-defined networks. In Proceedings of the
9th ACM SIGCOMM Workshop on Hot Topics in Networks, page 19. ACM,
2010. 95

Morgan Brattstrom and Patricia Morreale. Scalable agentless cloud net-
work monitoring. In 2017 IEEE 4th International Conference on Cyber
Security and Cloud Computing (CSCloud), pages 171-176. IEEE, 2017.
97

Edgar F Codd. The relational model for database management: version
2. Addison-Wesley Longman Publishing Co., Inc., 1990. 103

Don Norman. The design of everyday things: Revised and expanded edi-
tion. Basic books, 2013. 108

Jakob Nielsen. Usability 101: Introduction to usability. Nielsen Norman
Group, 2012. 109, 134

Ergonomics of Human-System Interaction — Part 11: Usability: Defin-
itions and Concepts. Standard, International Organization for Stand-
ardization, Geneva, CH, March 2018. 109

Jakob Nielsen. Usability Metrics. Nielsen Norman Group, 2001. 109

Jakob Nielsen. Quantitative Studies: How Many Users to Test? Nielsen
Norman Group, 1(1), 2006. 109, 172

Jakob Nielsen. 10 usability heuristics for user interface design. Nielsen
Norman Group, 1995. 110, 115

Diego Albuquerque, Bruno Cafeo, Alessandro Garcia, Simone Barbosa,
Silvia Abrahéao, and Antonio Ribeiro. Quantifying usability of domain-
specific languages: An empirical study on software maintenance.
Journal of Systems and Software, 101:245-259, 2015. 110

Ankica Barisic, Vasco Amaral, and Miguel Goulao. Usability evaluation
of domain-specific languages. In 2012 Eighth International Conference
on the Quality of Information and Communications Technology, pages
342-347. IEEE, 2012. 110

244

BIBLIOGRAPHY

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

Keng Siau, Hock Chan, and Kwok-Kee Wei. The effects of conceptual
and logical interfaces on visual query performance of end users. ICIS
1995 Proceedings, page 21, 1995. 112

John E Bell and Lawrence A Rowe. An exploratory study of ad hoc
query languages to databases. In [1992] Eighth International Confer-
ence on Data Engineering, pages 606-613. IEEE, 1992. 112, 113

Joris Graaumans. A qualitative study to the usability of three xml query
languages. In Proceedings of the conference on Dutch directions in HCI,
page 6, 2004. 112

Dinesh Batra, JA Hoffler, and Robert P Bostrom. Comparing represent-
ations with relational and EER models. Communications of the ACM,
33(2):126-139, 1990. 113

Fabio Luciano Verdi, Hélio Tibagi de Oliveira, Leobino N Sampaio, and
Luciana AM Zaina. Usability matters: A human—computer interaction
study on network management tools. IEEE Transactions on Network and
Service Management, 17(3):1865-1878, 2020. 113, 114, 115, 136

Nagios XI—Easy Network, Server Monitoring and Alerting. URL:
https://www.nagios.com/products/nagios-xi, 2021. 113

Laura Cowen, Linden Js Ball, and Judy Delin. An eye movement ana-
lysis of web page usability. In People and computers XVI-memorable yet
invisible, pages 317-335. Springer, 2002. 114

Marco C Pretorius, André P Calitz, and Darelle van Greunen. The added
value of eye tracking in the usability evaluation of a network manage-
ment tool. In Proceedings of the 2005 Annual Research cCnference of the
South African Institute of Computer Scientists and Information Technolo-
gists on IT Research in Developing Countries, pages 1-10, 2005. 114

Janet L Wesson, Darelle van Greunen, and Justin Rademan. The visual-
isation of application delay metrics for a customer network. In Proceed-
ings of the 3rd international conference on Computer graphics, virtual
reality, visualisation and interaction in Africa, pages 137-144, 2004.
114

https://www.nagios.com/products/nagios-xi

BIBLIOGRAPHY 245

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

Angela Orebaugh, Gilbert Ramirez, and Jay Beale. Wireshark & Ether-
eal network protocol analyzer toolkit. Elsevier, 2006. 115

Artem Voronkov, Leonardo Horn Iwaya, Leonardo A Martucci, and
Stefan Lindskog. Systematic literature review on usability of firewall
configuration. ACM Computing Surveys (CSUR), 50(6):1-35, 2017. 115

Mininet Team. Mininet: An instant virtual network on your laptop (or
other PC). URL: http://www.mininet.org, 2012. 119

Vesper Owei, Shamkant B Navathe, and Hyeun-Suk Rhee. An abbre-
viated concept-based query language and its exploratory evaluation.
Journal of Systems and Software, 63(1):45-67, 2002. 122

Hock Chuan Chan, Kwok Kee Wei, and Keng Leng Siau. User-database
interface: The effect of abstraction levels on query performance. MIS
Quarterly, 17(4), 1993. 122

Sirkka L Jarvenpaa and Jefry J Machesky. Data analysis and learning:
an experimental study of data modeling tools. International Journal of
Man-Machine Studies, 31(4):367-391, 1989. 122

Jacob Cohen. Statistical power analysis for the behavioral sciences. Aca-
demic press, 1977. 124

William M K Trochim. Conclusion validity. URL: https://conjointly.
com/kb/conclusion-validity/, 2020. 131

Robert Feldt, Thomas Zimmermann, Gunnar R Bergersen, Davide Fa-
lessi, Andreas Jedlitschka, Natalia Juristo, Jiirgen Miinch, Markku
Oivo, Per Runeson, Martin Shepperd, et al. Four commentaries on the
use of students and professionals in empirical software engineering ex-
periments. Empirical Software Engineering, 23(6):3801-3820, 2018.
131

Cisco Systems. Meraki Dashboard. URL: https://meraki.cisco.com.
136

Prometheus Authors. PromQL documentation. URL: https://

prometheus.io/docs/introduction/overview/, 2018. 138

http://www.mininet.org
https://conjointly.com/kb/conclusion-validity/
https://conjointly.com/kb/conclusion-validity/
https://meraki.cisco.com
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/

246 BIBLIOGRAPHY

[197] InfluxDB. InfluxDB Frequently Asked Questions.
URL: https://docs.influxdata.com/influxdb/v1.
4/troubleshooting/frequently-asked-questions/
#how-do-i-query-data-across-measurements. 142

[198] InfluxDB. Mathematics across measurements. URL: https://github.
com/influxdata/influxdb/issues/3552. 142

[199] Anne Dardenne, Axel Van Lamsweerde, and Stephen Fickas. Goal-
directed requirements acquisition. Science of computer programming,
20(1):3-50, 1993. 150

[200] Sushil Jajodia, Pierangela Samarati, and VS Subrahmanian. A logical

[201]

[202]

[203]

[204]

[205]

[206]

[207]

language for expressing authorizations. In Security and Privacy, 1997.
Proceedings., 1997 IEEE Symposium on, pages 31-42. IEEE, 1997. 150

Jan Nicklisch. A rule language for network policies. Policy, 1999. 150

Amir Herzberg, Yosi Mass, Joris Mihaeli, Dalit Naor, and Yiftach Ravid.
Access control meets public key infrastructure, or: Assigning roles to
strangers. In Security and Privacy, 2000. S&P 2000. Proceedings. 2000
IEEE Symposium on, pages 2—-14. IEEE, 2000. 150

Lorrie Cranor, Marc Langheinrich, and Massimo Marchiori. A P3P pref-
erence exchange language 1.0 (APPEL1. 0). W3C working draft, 15,
2002. 150

Paul Ashley, Satoshi Hada, Giinter Karjoth, Calvin Powers, and Mat-
thias Schunter. Enterprise privacy authorization language (EPAL). IBM
Research, 2003. 150

Y Snir, Y Ramberg, J Strassner, R Cohen, and B Moore. Policy quality
of service (qos) information model. RFC 3644, 2003. 150

Tim Moses. eXtensible Access Control Markup Language (XACML) ver-
sion 2.0. OASIS standard, 2005. 150

Rigo Wenning, Matthias Schunter, Lorrie Cranor, B Dobbs, S Egelman,
G Hogben, J Humphrey, M Langheinrich, M Marchiori, M Presler-
Marshall, et al. The platform for privacy preferences 1.1 (p3pl. 1)
specification. W3C Working Group Note, page 57, 2006. 150

https://docs.influxdata.com/influxdb/v1.4/troubleshooting/frequently-asked-questions/#how-do-i-query-data-across-measurements
https://docs.influxdata.com/influxdb/v1.4/troubleshooting/frequently-asked-questions/#how-do-i-query-data-across-measurements
https://docs.influxdata.com/influxdb/v1.4/troubleshooting/frequently-asked-questions/#how-do-i-query-data-across-measurements
https://github.com/influxdata/influxdb/issues/3552
https://github.com/influxdata/influxdb/issues/3552

BIBLIOGRAPHY 247

[208] Jorge Lobo. CIM Simplified Policy Language (CIM-SPL). Specifica-
tion DSP0231 v1. 0.0 a, Distributed Management Task Force (DMTF),
10(1):1-55, 2007. 150

[209] Soren Bleikertz and Thomas Grof3. A virtualization assurance language
for isolation and deployment. In Policies for Distributed Systems and
Networks (POLICY), 2011 IEEE International Symposium on, pages 33—
40. IEEE, 2011. 150

[210] Claes Wohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjérn
Regnell, and Anders Wesslén. Experimentation in Software Engineer-
ing. Springer Science & Business Media, 2012. 173

[211] Kathryn Whitenton. Unmoderated User Tests: How and Why to Do
Them. Nielsen Norman Group, 1(1), 2019. 174

[212] Victor Basili. Ggm: Goal question metric. [EEE SOFTWARE, 11(1):8-8,
1994. 174

[213] Qualtrics. Qualtrics XM. URL: https://www.qualtrics.com. 174,
179, 181

[214] Oracle Corporation. Oracle VM VirtualBox. URL: https://www.
virtualbox.org. 179

[215] Support disparate time intervals and more advanced time in WHERE
clauses. URL: https://github.com/influxdata/influxdb/issues/
7530, 2021. 213

https://www.qualtrics.com
https://www.virtualbox.org
https://www.virtualbox.org
https://github.com/influxdata/influxdb/issues/7530
https://github.com/influxdata/influxdb/issues/7530

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Problem
	Methodology
	Contributions
	Publications

	Literature Review
	Computer Networking Background
	Network Management
	Policy-Based Network Management
	Translating Policies with SDN

	A Taxonomy for Network Policy Description Languages
	Introduction
	Background
	Related Work
	The Taxonomy
	Application of the Taxonomy
	Discussion
	Conclusion

	Concepts for Operator Intent: An Interview Study
	Introduction
	Related Work
	Methodology
	Results
	Applying the Proposed Dimensions
	Discussion
	Conclusion

	Scout: A Language for Querying Enterprise Data
	Introduction
	Background
	Related Work
	Information Model
	Scout's Syntax
	Executing Scout Queries
	Evaluation
	Discussion
	Conclusion

	A Usability Study of Scout, a Network Query Language
	Introduction
	Background
	Related Work
	Querying Comparison
	User Study
	Discussion
	Future Work
	Conclusion

	Discussion
	Understanding and Expressing Operator Intent
	Limitations
	Future Work

	Conclusion
	Appendices
	Supplementary Material for Chapter 3
	List of Policy Description Languages

	Supplementary Material for Chapter 4
	Policy Study Participant Information Sheet and Consent Form
	Policy Study Interview Procedure
	Policy Study Codebook
	Additional Policy Examples

	Supplementary Material for Chapter 5
	Scout's Grammar
	Realistic Questions about Networks

	Supplementary Material for Chapter 6
	User Study Protocol (Usa-DSL)
	User Study Participant Information Sheet and Consent Form
	Query Language Tutorials
	Querying Example

	Glossary
	Bibliography

