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Abstract
In approaching a combinatorial problem, it is often desirable to be armed with
a notion asserting that some objects are more highly structured than others. In
particular, focusing on highly structured objects may avoid certain degeneracies
and allow for the core of the problem to be addressed. In matroid theory, the
principle notion fulfilling this role of “structure” is that of connectivity. This
thesis proves a number of results furthering the knowledge of matroid connectivity
and also introduces a new structural notion, that of generalised uniformity.

The first part of this thesis considers 3-connected matroids and the presence
of elements which may be deleted or contracted without the introduction of any
non-minimal 2-separations. Principally, a Wheels-and-Whirls Theorem and then
a Splitter Theorem is established, guaranteeing the existence of such elements,
provided certain well-behaved structures are not present.

The second part of this thesis generalises the notion of a uniform matroid
by way of a 2-parameter property capturing “how uniform” a given matroid is.
Initially, attention is focused on matroids representable over some field. In par-
ticular, a finiteness result is established and a specific class of binary matroids is
completely determined. The concept of generalised uniformity is then considered
more broadly by an analysis of its relevance to a number of established matroid
notions and settings. Within that analysis, a number of equivalent characterisa-
tions of generalised uniformity are obtained.

Lastly, the third part of the thesis considers a highly structured class of
matroids whose members are defined by the nature of their circuits. A charac-
terisation is achieved for the regular members of this class and, in general, the
infinitely many excluded series minors are determined.
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Chapter 1

Introduction

Matroids fulfil something of a unifying role in combinatorics, bringing the study
of seemingly disparate combinatorial objects (such as graphs, matrices, and ge-
ometric lattices) together by way of an axiomatic approach. A hallmark of this
approach is that it is often possible to abstract a notion from one particular
combinatorial setting to achieve a notion that holds for all matroids. One such
notion is that of matroid connectivity, which arose from the eponymous notion for
graphs, and has proven indispensable to matroid theorists since its introduction
by Tutte [35] in 1966.

LetM be a matroid with ground set E and rank function r. The connectivity
function λM of M is defined on all subsets X of E by

λM (X) = r(X) + r(E −X)− r(M).

A subset X or a partition (X,E − X) of E is k-separating if λM (X) ≤ k − 1.
A k-separating partition (X,E − X) is a k-separation or separation of order k
if min{|X|, |E − X|} ≥ k. A matroid is n-connected if it has no k-separations
for all k < n. Matroid 1-separations and 2-separations are incredibly tame, and
numerous well-studied matroid properties (for example, representability over a
given field) are closed under direct sums and 2-sums. Furthermore, by a re-
sult of Cunningham and Edwards [10], every matroid may be decomposed into
3-connected components, each a minor of the original, such that a number of di-
rect sums and 2-sums retrieves the original matroid. Thus, 3-connected matroids
are, in a very natural sense, the fundamental building blocks of matroids.

The archetypal result concerning 3-connected matroids is Tutte’s Wheels-
and-Whirls Theorem [35] which states that if M is a non-empty 3-connected
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matroid that is neither a wheel nor a whirl, then it has an element e such that
M/e or M\e is 3-connected. Seymour [32] extended this result into his equally
celebrated Splitter Theorem, guaranteeing an element whose removal preserves
3-connectivity while additionally keeping a specified 3-connected minor. Such
results allow for the inductive arguments on 3-connected matroids that are the
mainstay of structural matroid theory. Over the years, multiple extensions and
analogous results to Tutte’s Wheels-and-Whirls Theorem and Seymour’s Split-
ter Theorem have been established (see, for example [8, 14, 37]) and the main
theorems of the first part of this thesis continue this tradition.

A k-separation (X,Y ) is minimal if min{|X|, |Y |} = k. In a 2-connected ma-
troid, minimal 2-separations correspond to parallel and series pairs of elements.
Thus, a 2-connected matroid whose only 2-separations are minimal is very “close”
to being 3-connected. It is a widely used result of Bixby [2], that for every element
e of a 3-connected matroid M , at least one of M/e or M\e has no non-minimal
2-separations. Inspired by this, the first part of this thesis is dedicated to the
existence of elements e of a 3-connected matroid M for which neither M/e nor
M\e has any non-minimal 2-separations, calling such elements elastic. In Part I,
it is shown that elastic elements can be reliably found and the only obstructions
to such elements are extremely well behaved. Specifically, analogues of Tutte’s
Wheels-and-Whirls Theorem and Seymour’s Splitter Theorem are established.

A rank-r matroid is uniform if its bases coincide with its r-element subsets.
Thus, there is a unique uniform matroid Ur,n of rank r and size n ≥ r, and, in a
natural sense, this is the most well-behaved matroid of that size and rank. Indeed,
taking connectivity to its extreme, it is easily shown that the only matroids with
no separations of any order are the uniform matroids whose rank and corank differ
by at most one. The second part of this thesis generalises the notion of a uniform
matroid by the introduction of a 2-parameter property of matroids that captures
how “close” to uniform a given matroid is. This concept of generalised uniformity
turns out to be particularly intriguing in the case of matroids representable over
some finite field, as we show in Part II that, for any prime power q, there are
only finitely many GF (q)-representable matroids of a prescribed “uniformity”.
Indeed, we give tight bounds on the rank and corank of such matroids. Based on
these bounds, we explicitly determine the binary matroids that are two “steps”
removed from being uniform. The precise terminology and statement of these
results are given in the introduction to Part II.
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As is the case with all matroid notions, the concept of generalised uniformity
has a number of equivalent characterisations and is of greater consequence in some
settings than it is in others. The latter half of Part II explores the relevance of
generalised uniformity to a number of select matroid notions and settings. This
is a first treatment and is designed as a primer for any researcher looking to
exploit this notion in different contexts. One application that we will comment
on here is that this theory of generalised uniformity places the well-studied class
of paving matroids in a wider context. A rank-r matroid is paving if every rank-
(r − 2) flat is independent. It is a well known conjecture of Crapo and Rota [9]
that paving matroids “predominate” amongst all matroids, and multiple recent
papers ([28], [29]) have supported the more precise conjecture of Mayhew et. al
[27] that asymptotically every matroid is paving. In the context of our theory of
generalised uniformity, paving matroids are, informally, one “step” removed from
uniform. As such, the results of Part II have immediate consequences for these
matroids.

Finally, two classes of matroids with an undeniable high degree of structure
are the classes of binary and regular matroids, with the first being the class of
matroids representable over GF (2), and the second being the class of matroids
representable over all fields. It is easily seen that every graphic matroid is regular
and thus binary. Moreover, a famous decomposition result of Seymour [32] states
that every regular matroid can be obtained by direct sums, 2-sums and 3-sums
starting with matroids each of which is either graphic, cographic, or a copy of
a particular matroid R10. Thus, regular matroids can be thought of as being
very close to graphic. It is by now a well-beaten track to take a statement that
holds for graphs and seek to determine if an analogous property holds for all
binary matroids, or failing this, for regular matroids. The work of the last part
of this thesis is such an endeavour and is motivated by the characterisation of
binary matroids that, for every pair of distinct intersecting circuits C1, C2, their
symmetric difference C1 ∪ C2 − C1 ∩ C2 is a disjoint union of circuits. Part III
considers those matroids for which the symmetric difference of every pair of
intersecting circuits is itself a circuit, dubbing these matroids circuit-difference.
A clean characterisation exists for the graphic members of this class. The main
result of Part III is that this characterisation extends to the regular members. In
the general binary case, for which the aforementioned characterisation fails, the
infinitely many excluded series minors are determined.
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1.1 Overview

This thesis is partitioned into three parts. The first part concerns the existence of
elements in 3-connected matroids whose deletion and contraction are 3-connected
up to series and parallel pairs respectively. The main result of Chapter 2 is a
Wheels-and-Whirls Theorem for such elements and the main result of Chapter 3
is the extension of that result to a Splitter Theorem. Much of the material of
Chapter 2 has been published in The Electronic Journal of Combinatorics [12].

The second part of the thesis develops a theory of generalised uniformity for
matroids. Chapter 4 considers the role of this notion in matroids representable
over a given finite field, proving a finiteness result and completely determining a
specific class of such matroids. Chapter 5 considers uniformity in a wider context,
detailing its relevance to a number of established matroid notions and settings,
and proving a number of equivalent characterisations. The majority of Chapter 4
has been published in Advances in Applied Mathematics [13].

Lastly, the third part of the thesis concerns those matroids that are circuit-
difference. A characterisation is achieved for the regular members of this class,
and, more generally, the infinitely many excluded series minors are fully deter-
mined. The work of Sections 6.2, 6.3 and 6.4 has been published in The Electronic
Journal of Combinatorics [11].

Throughout this thesis, we will assume a working knowledge of matroid the-
ory. We refer the unfamiliar reader to Oxley’s excellent treatise [26]. The notation
and terminology of this thesis will follow that work unless otherwise specified.



Part I
Elastic Elements in 3-connected

Matroids

A result widely used in the study of 3-connected matroids is due to Bixby [2]:
if e is an element of a 3-connected matroid M , then either M\e or M/e has no
non-minimal 2-separations, in which case, co(M\e), the cosimplification of M\e,
or si(M/e), the simplification of M/e, is 3-connected. This result is commonly
referred to as Bixby’s Lemma. Thus, although an element e of a 3-connected
matroid M may have the property that neither M\e nor M/e is 3-connected,
Bixby’s Lemma says that at least one of M\e and M/e is close to being 3-
connected in a very natural way. In this part of the thesis, we are interested in
whether or not there are elements e in M such that both co(M\e) and si(M/e)
are 3-connected, in which case, we say e is elastic.

In general, a 3-connected matroid M need not have any elastic elements. For
example, all wheels and whirls of rank at least four have no elastic elements. The
reason for this is that every element of such a matroid is in a 4-element fan and,
geometrically, every 4-element fan is positioned in a certain way relative to the
rest of the elements of the matroid. Moreover, 4-element fans are not the only
obstacles to M having elastic elements.

Let n ≥ 3, and let Z = {z1, z2, . . . , zn} be a basis of PG(n − 1,R). Suppose
that L is a line that is freely placed relative to Z. For each i ∈ {1, 2, . . . , n}, let
wi be the unique point of L contained in the hyperplane spanned by Z − {zi}.
Let W = {w1, w2, . . . , wn}, and let Θn denote the restriction of PG(n − 1,R)
to W ∪ Z. Note that Θn is 3-connected and Z is a corank-2 subset of Θn. For
all i ∈ {1, 2, . . . , n}, we denote the matroid Θn\wi by Θ−n . The matroid Θ−n is
well defined as, up to isomorphism, Θn\wi

∼= Θn\wj for all i, j ∈ {1, 2, . . . , n}.
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For the interested reader, the matroid Θn underlies the matroid operation of
segment-cosegment exchange [22] which generalises the operation of delta-wye
exchange. A more formal definition of Θn is given in Section 2.4.

If n = 3, then Θ3 is isomorphic to M(K4). However, for all n ≥ 4, the
matroid Θn has no 4-element fans and, also, no elastic elements. Furthermore,
for all n ≥ 3, the set W is a modular flat of Θn [22]. Thus, if M is a matroid
and W is a subset of E(M) such that M |W ∼= U2,n, then the generalised parallel
connection PW (Θn,M) of Θn andM exists. In particular, it is straightforward to
construct 3-connected matroids having no 4-element fans and no elastic elements.
For example, take U2,n and repeatedly use the generalised parallel connection to
“attach” copies of Θk, where 4 ≤ k ≤ n, to any k-element subset of the elements
of U2,n.

Let M be a 3-connected matroid, and let A and B be rank-2 and corank-2
subsets of E(M). We say that A ∪ B is a Θ-separator of M if r(M) ≥ 4 and
r∗(M) ≥ 4, and either M |(A ∪ B) or M∗|(A ∪ B) is isomorphic to one of the
matroids Θn and Θ−n for some n ≥ 3. We will show in Section 2.4 that if S is
a Θ-separator of M , then S contains at most one elastic element. Note that if
r(M) = 3, then si(M/e) is 3-connected for all e ∈ E(M), while if r∗(M) = 3,
then co(M\e) is 3-connected for all e ∈ E(M). The main theorem of Chapter 2
is that, alongside 4-element fans, Θ-separators are the only obstacles to elastic
elements in 3-connected matroids.

A 3-separation (A,B) of a matroid is vertical if min{r(A), r(B)} ≥ 3. Now,
let M be a matroid and let (X, {e}, Y ) be a partition of E(M). We say that
(X, {e}, Y ) is a vertical 3-separation of M if (X ∪ {e}, Y ) and (X,Y ∪ {e}) are
both vertical 3-separations and e ∈ cl(X) ∩ cl(Y ). Furthermore, Y ∪ {e} is
maximal in this separation if there exists no vertical 3-separation (X ′, {e′}, Y ′)
of M such that Y ∪ {e} is a proper subset of Y ′ ∪ {e′}. Essentially, all of the
work of Chapter 2 goes into establishing the following theorem.

Theorem 1.1.1. Let M be a 3-connected matroid with a vertical 3-separation
(X, {e}, Y ) such that Y ∪ {e} is maximal. Then at least one of the following
holds:

(i) X contains at least two elastic elements;

(ii) X ∪ {e} is a 4-element fan; or

(iii) X is contained in a Θ-separator.
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The instances of Theorem 1.1.1 in which X ∪ {e} is a 4-element fan or X
is contained in a Θ-separator are handled in more detail in Section 2.2 and
Section 2.4 respectively. The following is our Wheels-and-Whirls Theorem for
elastic elements and is an almost immediate consequence of Theorem 1.1.1. Its
proof appears in Section 2.5.

Theorem 1.1.2. LetM be a 3-connected matroid. If |E(M)| ≥ 7, thenM has at
least four elastic elements providedM has no 4-element fans and no Θ-separators.
Moreover, if |E(M)| ≤ 6, then every element of M is elastic.

The condition in Theorem 1.1.2 that M has no 4-element fans and no
Θ-separators is not necessarily that restrictive. For example, if M is an excluded
minor for GF (q)-representability (or, more generally, for P-representability,
where P is a partial field), then M has no 4-element fans and no Θ-separators.
The fact that M has no 4-element fans is well known and straightforward to
show. To see that M has no Θ-separators, suppose that M has a Θ-separator.
By duality, we may assume that M has rank-2 and corank-2 sets W and Z,
respectively, such that M |(W ∪ Z) is isomorphic to either Θn or Θ−n , for some
n ≥ 3. Say M |(W ∪ Z) is isomorphic to Θn. Then the matroid M ′ obtained
from M by a cosegment-segment exchange on Z is isomorphic to the matroid
obtained from M by deleting Z and, for each w ∈ W , adding an element in
parallel to w. It is shown in [22, Theorem 1.1] that the class of excluded minors
for GF (q)-representability (or, more generally, P-representability) is closed un-
der the operation of cosegment-segment exchange, and so M ′ is also an excluded
minor for GF (q)-representability. But M ′ contains elements in parallel, a con-
tradiction. The same argument holds if M |(W ∪ Z) is isomorphic to Θ−n except
that, in applying a cosegment-segment exchange, we additionally add an element
freely in the span of W .

Chapter 3 extends the study of elastic elements to those whose removal also
keeps a specified 3-connected minor. Let M be a 3-connected matroid and let
N be a 3-connected minor of M . We say that an element e of M is N -elastic if
both si(M/e) and co(M\e) are 3-connected and have an N -minor. In contrast,
we say that an element e of M is N -revealing if one of the matroids si(M/e) or
co(M\e) has an N -minor and is not 3-connected.

Now suppose that W is a rank-2 subset and Z is a corank-2 subset of E(M)
such that S = W ∪Z is a Θ-separator of M . Letting n = max{|W |, |Z|}, we say
that S reveals the minor N in M if either
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(i) M |(W ∪Z) ∈ {Θn,Θ−n } and at least one element of Z is N -revealing in M ;
or dually,

(ii) M∗|(W ∪ Z) ∈ {Θn,Θ−n } and at least one element of W is N∗-revealing in
M∗.

The following is our Splitter Theorem for elastic elements and is the main
result of Chapter 3.

Theorem 1.1.3. Let M be a 3-connected matroid with no 4-element fans and
let N be a 3-connected minor of M such that M has no Θ-separators revealing
N . If M has at least one N -revealing element, then M has at least two N -elastic
elements.

The requirement that M has at least one N -revealing element is a necessary
one (consider, for example when M and N have the same rank), however, this is
no great ask. Equivalently, Theorem 1.1.3 guarantees that either M has at least
two N -elastic elements, or whenever si(M/e) has an N -minor, then si(M/e) is 3-
connected, and whenever co(M\e) has an N -minor, then co(M\e) is 3-connected;
an extremely strong condition.

Theorem 1.1.3 follows largely from the following result: the extension of The-
orem 1.1.1 to N -elastic elements, proved in Section 3.2.

Theorem 1.1.4. Let M be a 3-connected matroid and let N be a 3-connected
minor of M . Let (X, {e}, Y ) be a vertical 3-separation of M such that M/e has
an N -minor and |X ∩ E(N)| ≤ 1. If (X ′, {e′}, Y ′) is a vertical 3-separation of
M such that Y ∪ {e} ⊆ Y ′ ∪ {e′} and Y ′ ∪ {e′} is maximal, then at least one of
the following holds:

(i) X ′ contains at least two N -elastic elements;

(ii) X ′ ∪ {e′} is a 4-element fan; or

(iii) X ′ is contained in a Θ-separator revealing N .

Having established lower bounds on the number of elastic and N -elastic ele-
ments, it is natural to consider the matroids with the minimum number of such
elements. Let M be a matroid. An exactly 3-separating partition (X,Y ) of
E(M) is a sequential 3-separation if there is an ordering (e1, e2, . . . , ek) of X or
Y such that {e1, e2, . . . , ei} is 3-separating for all i ∈ {1, 2, . . . , k}. A matroid
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has path-width three if its groundset is sequential; that is, there is an ordering
(e1, e2, . . . , en) of its groundset such that {e1, e2, . . . , ei} is 3-separating for all
i ∈ {1, 2, . . . , n}. The matroids of path-width three are extremely well behaved
and been thoroughly characterised [17, 25]. The proofs of the next two theorems
appear in Section 3.3.

Theorem 1.1.5. Let M be a 3-connected matroid with no 4-element fans or
Θ-separators. If M has exactly four elastic elements, then M has path-width
three.

Theorem 1.1.6. Let M be a 3-connected matroid with no 4-element fans and let
N be a 3-connected minor ofM such that |E(N)| ≥ 4 andM has no Θ-separators
revealing N . Let K be the set of N -revealing elements of M . If M has exactly
two N -elastic elements s1 and s2, then (K ∪ {s1, s2}, E(M)−K ∪ {s1, s2}) is a
sequential 3-separation.

Our study of elastic elements has strong links to the study of maintaining
3-connectivity relative to a fixed basis [4, 24, 38]. Let M be a 3-connected
matroid. Suppose M is representable over some field F and we are given an
F-representation of M in standard form relative to some basis B. Often, we wish
to be able to remove elements fromM while keeping the information displayed by
its representation. In particular, we wish to avoid pivoting. One way to achieve
this is to contract elements only from basis B and delete elements only from
E(M)−B. It is also desirable to do so while maintaining 3-connectivity. In [38],
Whittle and Williams gave a Wheels-and-Whirls type result by showing that if
|E(M)| ≥ 4 and M has no 4-element fans, then M has at least four elements e
such that either e ∈ B and si(M/e) is 3-connected, or e ∈ E(M)−B and co(M\e)
is 3-connected. Brettell and Semple [4] extended this to a Splitter Theorem type
result. In Section 3.4, we show that both results are implied by our work. We
also resolve a question posed in [38].

This part of the thesis is organised as follows. Chapter 2 considers the pres-
ence of elastic elements in 3-connected matroids. Section 2.1 consists of some
preliminaries, while Sections 2.2, 2.3 and 2.4 concern elastic elements in fans, seg-
ments and Θ-separators respectively. Finally, Section 2.5 consists of the proofs of
Theorem 1.1.1 and Theorem 1.1.2. Chapter 3 is dedicated to N -elastic elements.
Section 3.1 consists of some further preliminaries, while in Section 3.2, we prove
Theorem 1.1.3 and Theorem 1.1.4. Section 3.3 considers the matroids with the
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minimum possible number of elastic and N -elastic elements, and includes the
proofs of Theorem 1.1.5 and Theorem 1.1.6. Lastly, in Section 3.4, we show that
a number of established fixed-basis results are consequences of the presence of
elastic elements.



Chapter 2

A Wheels-and-Whirls Theorem
for elastic elements

In this chapter, we prove Theorem 1.1.1 and obtain our Wheels-and-Whirls ana-
logue, Theorem 1.1.2, as a corollary. The chapter is structured as follows. The
next section contains some necessary preliminaries on connectivity that are used
throughout this part of the thesis, while Section 2.2 determines exactly when
elements of a fan are elastic. Section 2.3 establishes two results concerning when
an element in a rank-2 restriction of a 3-connected matroid is deletable or con-
tractible, and Section 2.4 considers Θ-separators, and determines the elasticity
of the elements of those sets. Lastly, Section 2.5 consists of the proofs of Theo-
rem 1.1.1 and Theorem 1.1.2.

2.1 Preliminaries

Connectivity

The following lemma, due to Bixby [2], is typically referred to as Bixby’s Lemma.

Lemma 2.1.1. Let e be an element of a 3-connected matroid M . Then ei-
ther M\e or M/e has no non-minimal 2-separations, in which case, co(M\e) or
si(M/e) is 3-connected, respectively.

Let e be an element of a 3-connected matroid M . We say e is deletable if
co(M\e) is 3-connected, and e is contractible if si(M/e) is 3-connected. Thus, e
is elastic if it is both deletable and contractible.

11
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Two k-separations (X1, Y1) and (X2, Y2) cross if each of the intersections
X1∩Y1, X1∩Y2, X2∩Y1, X2∩Y2 are non-empty. The next lemma is a standard
tool for dealing with crossing separations. It is a straightforward consequence of
the fact that the connectivity function λ of a matroid M is submodular, that is,

λ(X) + λ(Y ) ≥ λ(X ∩ Y ) + λ(X ∪ Y )

for all X,Y ⊆ E(M). An application of this lemma will be referred to as by
uncrossing.

Lemma 2.1.2. LetM be a k-connected matroid, and let X and Y be k-separating
subsets of E(M).

(i) If |X ∩ Y | ≥ k − 1, then X ∪ Y is k-separating.

(ii) If |E(M)− (X ∪ Y )| ≥ k − 1, then X ∩ Y is k-separating.

The next five lemmas are used frequently throughout part of the thesis. The
first follows from orthogonality, while the second follows from the first. The third
follows from the first and second. A proof of the fourth and fifth can be found
in [37] and [4], respectively.

Lemma 2.1.3. Let e be an element of a matroid M , and let X and Y be disjoint
sets whose union is E(M)− {e}. Then e ∈ cl(X) if and only if e 6∈ cl∗(Y ).

Lemma 2.1.4. Let X be an exactly 3-separating set in a 3-connected matroid
M , and suppose that e ∈ E(M) −X. Then X ∪ {e} is 3-separating if and only
if e ∈ cl(X) ∪ cl∗(X).

Lemma 2.1.5. Let (X,Y ) be an exactly 3-separating partition of a 3-connected
matroid M , and suppose that |X| ≥ 3 and e ∈ X. Then (X − {e}, Y ∪ {e}) is
exactly 3-separating if and only if e is in exactly one of cl(X − {e}) ∩ cl(Y ) and
cl∗(X − {e}) ∩ cl∗(Y ).

Lemma 2.1.6. Let C∗ be a rank-3 cocircuit of a 3-connected matroid M . If
e ∈ C∗ has the property that cl(C∗) − {e} contains a triangle of M/e, then
si(M/e) is 3-connected.

Lemma 2.1.7. Let (X,Y ) be a 3-separation of a 3-connected matroid M . If
X ∩ cl(Y ) 6= ∅ and X ∩ cl∗(Y ) 6= ∅, then |X ∩ cl(Y )| = |X ∩ cl∗(Y )| = 1.
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Vertical connectivity

A k-separation (X,Y ) of a matroid M is vertical if min{r(X), r(Y )} ≥ k. As
noted in the introduction to this part of the thesis, we say a partition (X, {e}, Y )
of E(M) is a vertical 3-separation of M if (X ∪ {e}, Y ) and (X,Y ∪ {e}) are
both vertical 3-separations of M and e ∈ cl(X)∩ cl(Y ). Furthermore, Y ∪ {e} is
maximal if there is no vertical 3-separation (X ′, {e′}, Y ′) of M such that Y ∪{e}
is a proper subset of Y ′ ∪ {e′}. A k-separation (X,Y ) of M is cyclic if both X
and Y contain circuits. The next lemma gives a duality link between the cyclic
k-separations and vertical k-separations of a k-connected matroid.

Lemma 2.1.8. Let (X,Y ) be a partition of the ground set of a k-connected
matroid M . Then (X,Y ) is a cyclic k-separation of M if and only if (X,Y ) is a
vertical k-separation of M∗.

Proof. Suppose that (X,Y ) is a cyclic k-separation of M . Then (X,Y ) is a
k-separation of M∗. Since (X,Y ) is a k-separation of a k-connected matroid,
(X,Y ) is exactly k-separating, and so r(X) + r(Y ) − r(M) = k − 1. Therefore,
as r∗(X) = r(Y ) + |X| − r(M), it follows that

r∗(X) = ((k − 1)− r(X) + r(M)) + |X| − r(M) = (k − 1) + |X| − r(X).

As X contains a circuit, X is dependent, so |X| − r(M) ≥ 1. Hence r∗(X) ≥ k.
By symmetry, r∗(Y ) ≥ k, and so (X,Y ) is a vertical k-separation of M∗. A
similar argument establishes the converse.

Following Lemma 2.1.8, we say a partition (X, {e}, Y ) of the ground set of
a 3-connected matroid M is a cyclic 3-separation if (X, {e}, Y ) is a vertical 3-
separation of M∗. Of the next two results, the first combines Lemma 2.1.8 with
a straightforward strengthening of [24, Lemma 3.1] and, in combination with
Lemma 2.1.8, the second follows easily from Lemma 2.1.5.

Lemma 2.1.9. Let M be a 3-connected matroid, and suppose that e ∈ E(M).
Then si(M/e) is not 3-connected if and only if M has a vertical 3-separation
(X, {e}, Y ). Dually, co(M\e) is not 3-connected if and only if M has a cyclic
3-separation (X, {e}, Y ).

Lemma 2.1.10. Let M be a 3-connected matroid. If (X, {e}, Y ) is a verti-
cal 3-separation of M , then (X − cl(Y ), {e}, cl(Y ) − e) is also a vertical 3-
separation of M . Dually, if (X, {e}, Y ) is a cyclic 3-separation of M , then
(X − cl∗(Y ), {e}, cl∗(Y )− {e}) is also a cyclic 3-separation of M .
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Note that an immediate consequence of Lemma 2.1.10 is that if (X, {e}, Y ) is a
vertical 3-separation such that Y ∪{e} is maximal, then Y ∪{e} must be closed.
We will make repeated use of this fact.

2.2 Fans

Let M be a 3-connected matroid. A subset F of E(M) with at least three
elements is a fan if there is an ordering (f1, f2, . . . , fk) of F such that

(i) for all i ∈ {1, 2, . . . , k − 2}, the triple {fi, fi+1, fi+2} is either a triangle or
a triad, and

(ii) for all i ∈ {1, 2, . . . , k − 3}, if {fi, fi+1, fi+2} is a triangle, then
{fi+1, fi+2, fi+3} is a triad, while if {fi, fi+1, fi+2} is a triad, then
{fi+1, fi+2, fi+3} is a triangle.

If k ≥ 4, then the elements f1 and fk are the ends of F . Furthermore, if
{f1, f2, f3} is a triangle, then f1 is a spoke-end; otherwise, f1 is a rim-end. Ob-
serve that if F is a 4-element fan (f1, f2, f3, f4), then either f1 or f4 is the unique
spoke-end of F depending on whether {f1, f2, f3} or {f2, f3, f4} is a triangle,
respectively. The proof of the next lemma is straightforward and omitted.

Lemma 2.2.1. Let M be a 3-connected matroid, and suppose that
F = (f1, f2, f3, f4) is a 4-element fan of M with spoke-end f1. Then
({f2, f3, f4}, {f1}, E(M)−F ) is a vertical 3-separation of M provided r(M) ≥ 4,
in which case, E(M)− {f2, f3, f4} is maximal.

We end this section by determining when an element in a fan of size at
least four is elastic. Consider the rank-4 matroids M1, M2 and M3 for which
geometric representations are shown in Fig. 2.1. For each i ∈ {1, 2, 3}, the tuple
F = (e1, e2, e3, e4) is a 4-element fan of Mi and (F − {e1}, {e1}, E(Mi) − F ) is
a vertical 3-separation of Mi. In M1 and M2, none of e2, e3, and e4 are elastic,
while in M3, both e2 and e3 are elastic. The essence of the next result is that
the configuration of the elements of F present in M1 and M2 are the only ways
in which a 4-element fan does not contain elastic elements.
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e1

e3

e2

e4

(i) M1

e1

e2

e3

e4

(ii) M2

e1

e3

e2

e4

(iii) M3

Figure 2.1: For each i ∈ {1, 2, 3}, the tuple (e1, e2, e3, e4) is a 4-element fan and
the partition ({e2, e3, e4}, {e1}, E(Mi) − {e1, e2, e3, e4}) of E(Mi) is a vertical
3-separation of Mi. Furthermore, in M1 and M2, none of e2, e3, and e4 are
elastic, while in M3, both e2 and e3 are elastic.

For subsets X and Y of a matroid, the local connectivity between X and Y ,
denoted u(X,Y ), is defined by

u(X,Y ) = r(X) + r(Y )− r(X ∪ Y ).
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Let M be a 3-connected matroid and let k be a positive integer. A flower Φ of
M is an (ordered) partition (P1, P2, . . . , Pk) of E(M) such that each Pi has at
least two elements and is 3-separating, and each Pi ∪Pi+1 is 3-separating, where
all subscripts are interpreted modulo k. If k ≥ 4, we say Φ is swirl-like if

⋃
i∈I Pi

is exactly 3-separating for all proper subsets I of {1, 2, . . . , k} whose members
form a consecutive set in the cyclic order (1, 2, . . . , k), and

u(Pi, Pj) =

1, if Pi and Pj are consecutive;
0, if Pi and Pj are not consecutive

for all distinct i, j ∈ {1, 2, . . . , k}. For further details of swirl-like flowers and,
more generally flowers, we refer the reader to [23].

Lemma 2.2.2. Let M be a 3-connected matroid such that r(M), r∗(M) ≥ 4, and
let F = (f1, f2, . . . , fn) be a maximal fan of M .

(i) If n ≥ 6, then F contains no elastic elements of M .

(ii) If n = 5, then F contains either exactly one elastic element, namely f3, or
no elastic elements of M .

(iii) If n = 4, then F contains either exactly two elastic elements, namely f2

and f3, or no elastic elements of M .

Moreover, if n ∈ {4, 5} and F contains no elastic elements, then, up to duality,
M has a swirl-like flower (A, {f1, f2}, F −{f1, f2}, B) as shown geometrically in
Fig. 2.2, or n = 5 and there is an element g such that M |(F ∪ {g}) ∼= M(K4).

Proof. It follows by Lemma 2.2.1 that the ends of a 4-element fan in M are not
elastic. Thus, if n ≥ 6, then, as every element of F is the end of a 4-element fan,
F contains no elastic elements, and if n = 5, then, as every element of F , except
f3, is the end of a 4-element fan, F contains no elastic elements except possibly
f3. Thus (i) and (ii) hold, and we assume that n ∈ {4, 5}. By applying the dual
argument if needed, we may also assume that {f1, f2, f3} is a triangle.

2.2.2.1. If f3 is contractible, then f3 is elastic unless n = 5 and there is an
element g such that M |(F ∪{g}) ∼= M(K4), or n = 4 and f2 is not contractible.

Suppose that f3 is contractible. If f3 is not elastic, then co(M\f3) is not
3-connected. First assume that n = 5. Then, as f2 is the end of a 4-element
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fan, co(M\f2) is not 3-connected, and so, by Bixby’s Lemma, si(M/f2) is 3-
connected. By orthogonality, {f2, f3, f4} is the unique triad containing f3, and
so co(M\f3) ∼= M/f2\f3. But then co(M\f3) is 3-connected unless there is
an element g such that {f2, f4, g} is a triangle of M , in which case M |(F ∪
{g}) ∼= M(K4). Now assume that n = 4. If f3 is contained in a triad T ∗ other
than {f2, f3, f4}, then, by orthogonality, either f1 or f2 is contained in T ∗. If
f1 ∈ T ∗, then F is not maximal, a contradiction. Thus f2 ∈ T ∗. But then
T ∗∪{f4} has corank 2 and so, as M is 3-connected, (T ∗∪{f4})−{f2} is a triad,
contradicting orthogonality. Thus, as F is maximal, {f2, f3, f4} is the unique
triad containing f3. Hence co(M\f3) ∼= M/f2\f3. Thus co(M\f3) ∼= si(M/f2)
and so, as co(M\f3) is not 3-connected, f2 is not contractible. This completes
the proof of (2.2.2.1).

Since (f1, f3, f2, f4) is also a fan ordering for F if n = 4, it follows by (2.2.2.1)
that we may now assume si(M/f3) is not 3-connected. We next complete the
proof of the lemma for when n = 4. The remaining part of the lemma for when
n = 5 is proved similarly and is omitted.

As si(M/f3) is not 3-connected, it follows by Lemma 2.1.9 that

(A ∪ {f1, f2}, {f3}, B ∪ {f4})

is a vertical 3-separation of M , where |A| ≥ 1 and |B| ≥ 2. Say |A| = 1, where
A = {f0}. Then A ∪ {f1, f2} is a triad, and so (f0, f1, f2, f3, f4) is a 5-element
fan, contradicting the maximality of F . Thus |A| ≥ 2. Since A∪B and B ∪{f4}
are 3-separating in M , it follows by uncrossing that B is 3-separating in M .
Similarly, A is 3-separating in M . Hence

(A, {f1, f2}, {f3, f4}, B)

is a flower Φ. Since u({f1, f2}, {f3, f4}) = 1, it follows by [23, Theorem 4.1] that

u(A, {f1, f2}) = u({f3, f4}, B) = u(A,B) = 1.

To show that Φ is a swirl-like flower, it remains to show that

u({A, {f3, f4}) = u(B, {f1, f2}) = 0.

If f1 6∈ cl(A), then, as f2 6∈ cl(A∪{f1}), it follows that r(A∪{f1, f2}) = r(A)+
2. But then u(A, {f1, f2}) = 0, a contradiction. Thus f1 ∈ cl(A). Furthermore,
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f3 6∈ cl(A). Assume that f4 ∈ cl(A ∪ {f3}). Then, as u({f3, f4}, B) = 1,

1 = rM/f3(A ∪ {f1, f2}) + rM/f3(B ∪ {f4})− r(M/f3)
= rM/f3(A ∪ {f1, f2, f4}) + rM/f3(B)− r(M/f3)
= r(A ∪ F )− 1 + r(B)− (r(M)− 1)
= r(A ∪ F ) + r(B)− r(M),

and so B is 2-separating in M , a contradiction. Thus f4 6∈ cl(A ∪ {f3}), and so
u(A, {f3, f4}) = 0. To see that u(B, {f1, f2}) = 0, first assume that f1 ∈ cl(B).
Then, as f1 ∈ cl(A),

1 = rM/f3(A ∪ {f1, f2}) + rM/f3(B ∪ {f4})− r(M/f3)
= rM/f3(A) + rM/f3(B ∪ {f1, f2, f4})− r(M/f3)
= r(A) + r(B ∪ F )− 1− (r(M)− 1)
= r(A) + r(B ∪ F )− r(M),

and so A is 2-separating in M . This contradiction implies that f1 6∈ cl(B). It
follows that r(B ∪ {f1, f2}) = r(B) + 2, that is u(B, {f1, f2}) = 0. We de-
duce that (A, {f1, f2}, {f3, f4}, B) is a swirl-like flower. Lastly, as f1 ∈ cl(A)
and u(B, {f3, f4}) = 1, it follows that (A ∪ {f1}, {f2}, B ∪ {f3, f4}) is a cyclic
3-separation of M , and so co(M\f2) is not 3-connected, that is, f2 is not elastic.
Hence (iii) holds.

f1

f3

f2

f4

A B

Figure 2.2: The swirl-like flower (A, {f1, f2}, F − {f1, f2}, B) of Lemma 2.2.2
where, if |F | = 5, then f5 is an element in B.
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2.3 Elastic elements in segments

LetM be a matroid. A subset L of E(M) of size at least two is a segment ifM |L
is isomorphic to a rank-2 uniform matroid. In this section we consider when an
element in a segment is deletable or contractible. We begin with the following
elementary lemma.

Lemma 2.3.1. Let L be a segment of a 3-connected matroid M . If L has at
least four elements, then M\` is 3-connected for all ` ∈ L.

In particular, Lemma 2.3.1 implies that, in a 3-connected matroid, ev-
ery element of a segment with at least four elements is deletable. We
next determine the structure which arises when elements of a segment in a
3-connected matroid are not contractible.

Lemma 2.3.2. Let M be a 3-connected matroid, and suppose that L ∪ {w}
is a rank-3 cocircuit of M , where L is a segment. If two distinct elements y1

and y2 of L are not contractible, then there are distinct elements w1 and w2 of
E(M)−(L∪{w}) such that (cl(L)−{yi})∪{wi} is a cocircuit for each i ∈ {1, 2}.

Proof. Let y1 and y2 be distinct elements of L that are not contractible. For
each i ∈ {1, 2}, it follows by Lemma 2.1.9 that there exists a vertical 3-separation
(Xi, {yi}, Yi) of M such that yj ∈ Yi, where {i, j} = {1, 2}. By Lemma 2.1.10,
we may assume Yi ∪ {yi} is closed, in which case, L − {yi} ⊆ Yi. Furthermore,
for each i ∈ {1, 2}, we may also assume, amongst all such vertical 3-separations
of M , that |Yi| is minimised. If w ∈ Yi, then, as L ∪ {w} is a cocircuit, Xi

is contained in the hyperplane E(M) − (L ∪ {w}), and so yi 6∈ cl(Xi). This
contradiction implies that w ∈ Xi. Thus, for each i ∈ {1, 2}, we deduce that M
has a vertical 3-separation

(Ui ∪ {w}, {yi}, Vi ∪ (L− {yi})),

where Ui ∪ {w} = Xi and Vi ∪ (L− {yi}) = Yi. Next we show the following.

2.3.2.1. For each i ∈ {1, 2}, we have w ∈ clM (Ui ∪ {yi})− clM (Ui).

Since L∪ {w} is a cocircuit, the elements yi, w 6∈ clM (Ui). But yi ∈ clM (Ui ∪
{w}), and so yi ∈ clM (Ui ∪ {w}) − clM (Ui). Thus, by the MacLane-Steinitz
exchange property, w ∈ clM (Ui ∪ {yi})− clM (Ui).
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2.3.2.2. For each i ∈ {1, 2}, we have yi 6∈ clM (Uj ∪ {w}), where {i, j} = {1, 2}.

By Lemma 2.1.10,

(cl(Uj ∪ {w})− {yj}, {yj}, (Vj ∪ (L− {yj}))− cl(Uj ∪ {w}))

is a vertical 3-separation of M . If yi ∈ cl(Uj ∪ {w}), then, as yj ∈ cl(Uj ∪ {w}),
the segment L is contained in cl(Uj ∪ {w}). Therefore L ∪ {w} ⊆ cl(Uj ∪ {w}),
and so (Vj∪(L−{yj}))−cl(Uj∪{w}) = Vj−cl(Uj∪{w}). Since Vj−cl(Uj∪{w})
is contained in the hyperplane E(M)−(L∪{w}), it follows that yj 6∈ Vj−cl(Uj ∪
{w}), a contradiction. Thus (2.3.2.2) holds.

Since M is 3-connected and (Ui ∪ {w}, {yi}, Vi ∪ (L − {yi})) is a vertical
3-separation, it follows by (2.3.2.1) that

r(Ui) + r(Vi ∪ L)− r(M\w) = r(Ui ∪ {w})− 1 + r(Vi ∪ L)− r(M) = 1.

Thus (Ui, Vi ∪ L) is a 2-separation of M\w for each i ∈ {1, 2}. We next show
that

2.3.2.3. |U1 ∩ V2| = |U2 ∩ V1| = 1.

Let {i, j} = {1, 2}. If Ui ⊆ Uj , then

yi ∈ cl(Ui ∪ {w}) ⊆ cl(Uj ∪ {w}),

contradicting (2.3.2.2). Therefore, for {i, j} = {1, 2}, we have |Ui∩Vj | ≥ 1. Con-
sider the 2-connected matroid M\w. Since |Uj ∩Vi| ≥ 1, it follows by uncrossing
that Ui∪ (Vj ∪L) is 2-separating inM\w. But, by (2.3.2.1), w ∈ clM (Ui∪L) and
so Ui ∪ Vj ∪ (L ∪ {w}) is 2-separating in M . Since M is 3-connected, it follows
that |Uj ∩ Vi| ≤ 1. Thus (2.3.2.3) holds.

Let w1 and w2 be the unique elements of U2 ∩ V1 and U1 ∩ V2, respectively.
Now |(U1∪{w})∩(U2∪{w})| ≥ 2 and so, by uncrossing, V1∪L and V2∪L, as well
as V1∪L and V2∪ (L−{y1}), we see that (V1∩V2)∪L and (V1∩V2)∪ (L−{y1})
are 3-separating in M . So

(U1 ∪ U2 ∪ {w}, {y1}, (V1 ∩ V2) ∪ (L− {y1}))

is a vertical 3-separation of M unless r((V1 ∩ V2) ∪ (L− {y1}) = 2. Since V1 ∪ L
and V2 ∪ L are closed, (V1 ∩ V2) ∪ L is closed. Furthermore,

|(V1 ∩ V2) ∪ (L− {y1})| < |V1 ∪ (L− {y1})|,
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and so, by the minimality of |Y1|, we have r((V1∩V2)∪(L−{y1}) = 2. Therefore,
as (U1∪{w}, {y1}, V1∪ (L−{y1})) and (U2∪{w}, {y2}, V2∪ (L−{y2})) are both
vertical 3-separations, and

(V1 ∩ V2) ∪ (L− {yi}) ∪ {wi}= Vi ∪ (L− {yi}),

it follows that (V1∩V2)∪ (L−{yi})∪{wi} is a cocircuit for each i ∈ {1, 2}. Since
y1 ∈ cl((V1∩V2)∪ (L−{y1})), we have (V1∩V2)∪L = cl(L), thereby completing
the proof of the lemma.

2.4 Theta separators

We begin this section by formally defining, for all n ≥ 2, the matroid Θn. Let
n ≥ 2, and let M be the matroid whose ground set is the disjoint union of
W = {w1, w2, . . . , wn} and Z = {z1, z2, . . . , zn}, and whose circuits are as follows:

(i) all 3-element subsets of W ;

(ii) all sets of the form (Z − {zi}) ∪ {wi}, where i ∈ {1, 2, . . . , n}; and

(iii) all sets of the form (Z − {zi}) ∪ {wj , wk}, where i, j, and k are distinct
elements of {1, 2, . . . , n}.

It is shown in [22, Lemma 2.2] that M is indeed a matroid, and we denote this
matroid by Θn. If n = 2, then Θ2 is isomorphic to the direct sum of U1,2 and U1,2,
while if n = 3, then Θ3 is isomorphic to M(K4). Also, for all n, the matroid Θn

is self-dual under the map that interchanges wi and zi for all i [22, Lemma 2.1],
and the rank of Θn is n. For all i, we say wi and zi are partners. Furthermore,
it is easily checked that, for all i, j ∈ {1, 2, . . . , n}, we have Θn\wi

∼= Θn\wj . Up
to isomorphism, we denote the matroid Θn\wi by Θ−n . Observe that if n = 3,
then Θ−3 is a 5-element fan. We refer to the elements in W and Z as the segment
elements and cosegment elements, respectively, of Θn and Θ−n .

Recalling the definition of a Θ-separator, the next lemma considers the elas-
ticity of elements in a Θ-separator when n ≥ 4. The analogous lemma for when
n = 3 is covered by Lemma 2.2.2. Observe that, if M is 3-connected and S is a
Θ-separator of M such that M |S ∼= Θn for some n ≥ 3, then

r(M) = r(M\S) + n− 2.
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Lemma 2.4.1. Let M be a 3-connected matroid, and let n ≥ 4. Suppose that S
is a Θ-separator of M . If M |S ∼= Θn, then S contains no elastic elements of M .
Furthermore, if M |S ∼= Θ−n , then S contains exactly one elastic element, namely
the unique cosegment element of M |S with no partner, unless there is an element
w of cl(S)− S such that M |(S ∪ {w}) ∼= Θn.

Proof. Suppose that M |S ∼= Θn, where n ≥ 4. Without loss of generality, we
may assume that S is the disjoint union of W = {w1, w2, . . . , wn} and Z =
{z1, z2, . . . , zn}, where W and Z are as defined in the definition of Θn. Let
i ∈ {1, 2, . . . , n}. As M |S ∼= Θn, the set Ci = (Z −{zi})∪{wi} is a circuit of M .
Now, as Z has corank 2, the circuit Ci has corank 3, and so

λ(Ci) = r(Ci) + r∗(Ci)− |Ci| = (|Ci| − 1) + 3− |Ci| = 2.

So Ci is 3-separating. Furthermore, zi ∈ cl∗(Ci) and, by Lemma 2.1.3, zi 6∈
cl(E(M)− (Ci ∪ {zi}). Thus, by Lemma 2.1.5, zi ∈ cl∗(E(M)− (Ci ∪ {zi}) and
so, as E(M)− (Ci ∪ {zi}) contains a triangle in W − {wi},

(Ci, {zi}, E(M)− (Ci ∪ {zi}))

is a cyclic 3-separation of M . Therefore, by Lemma 2.1.9, zi is not deletable.
Moreover, as

(Z − {zi}, {wi}, E(M)− ((Z − {zi}) ∪ {wi}))

is a vertical 3-separation of M , it follows by Lemma 2.1.9 that wi is not con-
tractible. Thus S contains no elastic elements of M .

Now suppose that M |S ∼= Θ−n , where n ≥ 4. Without loss of generality, let
S be the disjoint union of W − {wj} and Z, where W = {w1, w2, . . . , wn} and
Z = {z1, z2, . . . , zn} are as defined in the definition of Θn. Let zi ∈ Z − {zj}.
Then the argument in the last paragraph shows that

((Z − {zi}) ∪ {wi}, {zi}, E(M)− (Z ∪ {wi})

is a cyclic 3-separation of M provided E(M)− (Z ∪ {wi}) contains a circuit. If
n ≥ 5, then |W | ≥ 4, and so E(M)− (Z ∪ {wi}) contains a circuit. Assume that
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n = 4. Then, as r∗(M) ≥ 4, we have |E(M) − (Z ∪ {wi})| ≥ 3. Therefore, as
wk ∈ cl(Z∪{wi}), where wk ∈W−{wi, wj}, and Z∪{wi} is exactly 3-separating,
it follows by Lemma 2.1.5 that wk ∈ cl(E(M) − (Z ∪ {wi, wk}). In particular,
E(M) − (Z ∪ {wi}) contains a circuit. Hence zi is not deletable. Furthermore,
the argument in the previous paragraph shows that if wi ∈W −{wj}, then wi is
not contractible.

We complete the proof of the lemma by considering the elasticity of zj . Since
|Z| ≥ 4, it follows by Lemma 2.3.1 that zj is contractible. Assume that zj is not
deletable. Let i ∈ {1, 2, . . . , n} such that i 6= j. Then Ci = (Z − {zi}) ∪ {wi} is
a circuit of M . Furthermore,

r∗((Z − {zi}) ∪ {wi}) = (r(M)− (|Ci| − 3)) + |Ci| − r(M)
= 3.

Therefore, as zj ∈ Z − {zi} and all elements of Z − {zi} are not deletable, the
dual of Lemma 2.3.2 implies that there is an element w such that (Z−{zj})∪{w}
is a circuit. But then, as w ∈ cl(Z) − Z, it follows that w ∈ cl(W − {wj}), and
it is easily checked that M |(S ∪ {w}) ∼= Θn, thereby completing the proof of the
lemma.

2.5 The existence of elastic elements

In this section, we prove Theorem 1.1.1 and Theorem 1.1.2. However, almost all
of the section consists of the proof of Theorem 1.1.1. The proof of this theorem
is essentially partitioned into two lemmas: Lemma 2.5.2 and Lemma 2.5.3. Let
M be a 3-connected matroid with a vertical 3-separation (X, {e}, Y ) such that
Y ∪{e} is maximal. Lemma 2.5.2 establishes Theorem 1.1.1 for when X contains
at least one non-contractible element, while Lemma 2.5.3 establishes the theorem
for when every element in X is contractible.

To prove Lemma 2.5.2, we will make use of the following technical result
which is extracted from the proof of Lemma 3.2 in [24].

Lemma 2.5.1. Let M be a 3-connected matroid with a vertical 3-separation
(X1, {e1}, Y1) such that Y1 ∪ {e1} is maximal. Suppose that (X2, {e2}, Y2) is a
vertical 3-separation of M such that e2 ∈ X1, e1 ∈ Y2, and Y2 ∪ {e2} is closed.
Then each of the following holds:
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(i) None of X1 ∩X2, X1 ∩ Y2, Y1 ∩X2, and Y1 ∩ Y2 are empty.

(ii) r((X1 ∩X2) ∪ {e2}) = 2.

(iii) If |Y1 ∩X2| = 1, then X2 is a rank-3 cocircuit.

(iv) If |Y1 ∩X2| ≥ 2, then r((X1 ∩ Y2) ∪ {e1, e2}) = 2.

Lemma 2.5.2. Let M be a 3-connected matroid with a vertical 3-separation
(X1, {e1}, Y1) such that Y1 ∪ {e1} is maximal. Suppose that at least one element
of X1 is not contractible. Then at least one of the following holds:

(i) X1 has at least two elastic elements;

(ii) X1 ∪ {e1} is a 4-element fan; or

(iii) X1 is contained in a Θ-separator S.

Moreover, if (iii) holds, then X1 is a rank-3 cocircuit, M∗|S is isomorphic to
either Θn or Θ−n , where n = |X1 ∪ {e1}| − 1, and there is a unique element
x ∈ X1 such that x is a segment element of M∗|S and (X1 − {x}) ∪ {e1} is the
set of cosegment elements of M∗|S.

Proof. Let e2 be an element ofX1 that is not contractible. Then, by Lemma 2.1.9,
there exists a vertical 3-separation (X2, {e2}, Y2) ofM . Without loss of generality,
we may assume e1 ∈ Y2. Furthermore, by Lemma 2.1.10, we may also assume
that Y2∪{e2} is closed. By Lemma 2.5.1, each of X1∩X2, X1∩Y2, Y1∩X2, and
Y1 ∩ Y2 is non-empty. The proof is partitioned into two cases depending on the
size of Y1 ∩X2. Both cases use the following:

2.5.2.1. If X1 ∩ X2 contains two contractible elements, then either X1 has at
least two elastic elements, or |X1∩X2| = 2 and there exists a triangle {x, y1, y2},
where x ∈ X1 ∩X2, y1 ∈ Y1 ∩X2, and y2 ∈ X1 ∩ Y2.

By Lemma 2.5.1(ii), r((X1 ∩ X2) ∪ {e2}) = 2. Let x1 and x2 be distinct
contractible elements of X1 ∩X2. If |X1 ∩X2| ≥ 3, then, by Lemma 2.3.1 each
of x1 and x2 is elastic. Thus we may assume that |X1 ∩ X2| = 2 and that
either x1 or x2, say x1, is not deletable. Let (U, V ) be a 2-separation of M\x1

such that neither r∗(U) = 1 nor r∗(V ) = 1. Since x1 is not deletable, such a
separation exists. Furthermore, |U |, |V | ≥ 3 as U and V each contain a cycle. If
x1 ∈ cl(U) or x1 ∈ cl(V ), then either (U ∪{x1}, V ) or (U, V ∪{x1}), respectively,
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is a 2-separation of M , a contradiction. So {x2, e2} 6⊆ U and {x2, e2} 6⊆ V .
Therefore, without loss of generality, we may assume x2 ∈ U − cl(V ) and e2 ∈
V − cl(U). Since (U, V ) is a 2-separation of M\x1 and x2 6∈ cl(V ), we deduce
that (U −{x2}, V ∪ {x1}) is a 2-separation of M/x2. Thus, as x2 is contractible,
si(M/x2) is 3-connected, and so r(U) = 2. In turn, as Y1 ∪ {e1} and Y2 ∪ {e2}
are both closed, this implies that |U ∩ (Y1 ∪ {e1})| ≤ 1 and |U ∩ (Y2 ∪ {e2})| ≤ 1;
otherwise, U ⊆ Y1 ∪ {e1} or U ⊆ Y2 ∪ {e2}. Thus |U | = 3 and, in particular, U
is the desired triangle. Hence (2.5.2.1) holds.

We now distinguish two cases depending on the size of Y1 ∩X2:

(I) |Y1 ∩X2| = 1; and

(II) |Y1 ∩X2| ≥ 2.

Consider (I). Let w be the unique element in Y1 ∩ X2. By Lemma 2.5.1,
(X1 ∩X2) ∪ {e2} is a segment of at least three elements and (X1 ∩X2) ∪ {w} is
a rank-3 cocircuit. Let L1 = (X1 ∩X2)∪{e2}. As |Y1 ∩X2| = 1, we may assume
that L1 is closed.

2.5.2.2. At most one element of X1 ∩X2 is not contractible.

Suppose that at least two elements in X1 ∩X2 are not contractible, and let
x be such an element. Then, by Lemma 2.3.2, there is an element w′ distinct
from w such that (L1 − {x}) ∪ {w′} is a rank-3 cocircuit. If w′ ∈ Y1, then
{w,w′} ⊆ cl∗(X1) and e1 ∈ cl(X1), contradicting Lemma 2.1.7. Thus w′ ∈ X1.
Since w′ ∈ cl∗(L1−{x}), it follows by Lemma 2.1.4 that each of (L1−{x})∪{w′}
and L1∪{w′} are exactly 3-separating. Furthermore, as x ∈ cl((L1−{x})∪{w′}),
it follows by Lemma 2.1.5 that x 6∈ cl∗((L1 − {x}) ∪ {w′}). Therefore

((L1 − {x}) ∪ {w′}, {x}, E(M)− (L1 ∪ {w′}))

is a vertical 3-separation of M . But then, as L1 ∪ {w′} ⊆ X1, we contradict the
maximality of Y1 ∪ {e1}. Hence (2.5.2.2) holds.

If |L1| ≥ 4, then, by Lemma 2.3.1 and (2.5.2.2), L1 − {e2}, and more partic-
ularly X1, contains at least two elastic elements. Thus, as |Y1 ∩X2| = 1, we may
assume |L1| = 3, and so (L1 − {e2}) ∪ {w} is a triad. Let L1 = {x1, x2, e2} and
let {i, j} = {1, 2}.

2.5.2.3. For each i ∈ {1, 2}, the element xi is contractible.
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If xi is not contractible, then, by Lemma 2.1.9, M has a vertical 3-separation
(Ui, {xi}, Vi), where e1 ∈ Vi. By Lemma 2.1.10, we may assume that Vi ∪ xi

is closed. By Lemma 2.5.1, Y1 ∩ Ui is non-empty and r((X1 ∩ Ui) ∪ {xi}) = 2.
First assume that |Y1 ∩ Ui| = 1. Then |(X1 ∩ Ui) ∪ {xi}| ≥ 3, and so xi is
contained in a triangle T ⊆ (X1 ∩ Ui) ∪ {xi}. If xj ∈ Vi, then, as Vi ∪ {xi} is
closed, e2 ∈ Vi. Thus xj , e2 6∈ T and so, by orthogonality, as {xi, xj , w} is a
triad, w ∈ T . This contradicts w ∈ Y1. It now follows that xj ∈ X1 ∩ Ui and
so e2 ∈ X1 ∩ Ui. Thus, as L1 is closed and L1 ⊆ (X1 ∩ Ui) ∪ {xi}, we have
|(X1 ∩ Ui) ∪ {xi}| = 3, and therefore T = {x1, x2, e2}. Let z be the unique
element in Y1 ∩ Ui. Then, by Lemma 2.5.1 again, {xj , e2, z} is a triad, and so
z ∈ cl∗(X1). Furthermore, w ∈ cl∗(X1) and e1 ∈ cl(X1), and so, by Lemma 2.1.7,
we deduce that z = w. This implies that Y2 = Vi. But then cl(Y2∪{e2}) contains
xi, contradicting that Y2 ∪ {e2} is closed. Now assume that |Y1 ∩ Ui| ≥ 2. By
Lemma 2.5.1, r((X1 ∩ Vi) ∪ {xi, e1}) = 2. If xj ∈ Vi, then, as Vi ∪ {xi} is closed,
e2 ∈ X1 ∩ Vi, and so {xj , e1, e2} is a triangle. Since {x1, x2, w} is a triad, this
contradicts orthogonality. Thus xj ∈ Ui. Also, e2 ∈ Ui; otherwise, as Vi ∪ {xi} is
closed, xj ∈ Vi, a contradiction. By Lemma 2.5.1, X1 ∩ Vi is non-empty, and so
M has a triangle T ′ = {xi, e1, y}, where y ∈ X1 ∩ Vi. As {xi, xj , w} is a triad, T ′

contradicts orthogonality unless y = w. But w ∈ Y1 and therefore cannot be in
X1 ∩ Vi. Hence xi is contractible, and so (2.5.2.3) holds.

Since x1 and x2 are both contractible, it follows by (2.5.2.1) that either X1

contains two elastic elements or w is in a triangle with two elements of X1. If
the latter holds, then w ∈ cl(X1). As {x1, x2, w} is a triad and (Y1 ∪{e1})−{w}
is contained in Y2 ∪ {e}2, it follows that w 6∈ cl((Y1 ∪ {e1})− {w}). Therefore

(X1 ∪ {w}, (Y1 ∪ {e1})− {w})

is a 2-separation of M , a contradiction. Thus X1 contains two elastic elements.
This concludes (I).

Now consider (II). Let L1 = (X1 ∩X2) ∪ {e2} and L2 = (X1 ∩ Y2) ∪ {e1, e2}.
By parts (ii) and (iv) of Lemma 2.5.1, L1 and L2 are both segments. Since M is
3-connected, X1 is 3-separating, and Y1 ∪ {e1} is closed, it follows that X1 is a
rank-3 cocircuit of M and L2 is closed.

First assume that |L2| ≥ 4. Since X1 is a rank-3 cocircuit of M , we have
r(Y1) + 1 = r(M). Therefore, as |L2| ≥ 4 and |X1 ∩ X2| ≥ 1, it follows that
r∗(M) ≥ 4. Now, Lemma 2.3.1 implies that each element of L2 is deletable. If
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|L1| ≥ 3, then, by Lemma 2.1.6, each element of L2 − {e1, e2} is contractible,
and so each element of L2 − {e1, e2} is elastic. Since |L2| ≥ 4, it follows that
X1 has at least two elastic elements. Thus we may assume that |L1| = 2, that
is |X1 ∩ X2| = 1. We may also assume that X1 ∩ Y2 contains at most one
contractible element; otherwise, X1 contains at least two elastic elements. Let
e3, e4, . . . , en denote the elements in L1−{e1, e2}. Without loss of generality, we
may assume that if X1 ∩ Y2 contains a contractible element, then it is en. Let
m = n− 1 if en is contractible; otherwise, let m = n. Furthermore, let w1 denote
the unique element in X1 ∩X2. Since (L2 − {e1}) ∪ {w1} is a rank-3 cocircuit,
and at most one element of L2 − {e1} is contractible, it follows by Lemma 2.3.2
that, for all i ∈ {2, 3, . . . ,m}, there are distinct elements w2, w3, . . . , wm of Y1

such that (L2 − {ei}) ∪ {wi} is a cocircuit. Let W = {w1, w2, . . . , wm}. As W
is in the coclosure of the 3-separating set L2, we have r∗(W ) = 2. It follows
that (L2 − {ei}) ∪ {wj , wk} is a cocircuit of M for all distinct elements i, j, k ∈
{1, 2, . . . ,m}. By a comparison of the circuits of Θn, it is straightforward to
deduce that M∗|(W ∪ L2) is isomorphic to either Θn if no element of X1 ∩ Y2 is
contractible, or Θ−n if en is contractible. Hence X1 is contained in a Θ-separator
of M as described in the statement of the lemma.

We may now assume that |L2| = 3. Let L2 = {e2, a, e1}. If |X1∩X2| = 1, then
|X1| = 3, and so X1 is a triad. In turn, this implies that X1∪{e1} is a 4-element
fan. Thus |X1 ∩X2| ≥ 2. Let x1 and x2 be distinct elements in X1 ∩X2. Since
{e1, a, e2} is a triangle inM/xi for each i ∈ {1, 2}, it follows by Lemma 2.1.6 that
xi is contractible for each i ∈ {1, 2}. Thus, by (2.5.2.1), either X1 contains two
elastic elements, or X1∩X2 = {x1, x2} and a is in a triangle with two elements of
X2. The latter implies that a ∈ cl(X2 ∪ {e2}). As a 6∈ cl(Y1 ∪ {e1}) and Y2−{a}
is contained in Y1 ∪ {e1}, it follows that a 6∈ cl(Y2 − {a}). Hence, as

r(X2 ∪ {e2}) + r(Y2)− r(M) = 2,

we have r(X2 ∪ {e2, a}) + r(Y2 − {a}) + 1− r(M) = 2, and so

(X2 ∪ {a, e2}, Y2 − {a})

is a 2-separation of M , a contradiction. Thus X1 contains two elastic elements.
This concludes (II) and the proof of the lemma.
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Lemma 2.5.3. Let M be a 3-connected matroid with a vertical 3-separation
(X1, {e1}, Y1) such that Y1 ∪ {e1} is maximal. Suppose that every element of X1

is contractible. Then at least one of the following holds:

(i) X1 has at least two elastic elements;

(ii) X1 ∪ {e1} is a 4-element fan; or

(iii) X1 is contained in a Θ-separator S.

Moreover, if (iii) holds, then X1 ∪ {e1} is a circuit, M |S is isomorphic to either
Θn or Θ−n for some n ∈ {|X1|, |X1| + 1}, and X1 is a subset of the cosegment
elements of M |S.

Proof. First suppose thatX1 is independent. Then, as r(X1) = |X1| and λ(X1) =
r(X1) + r∗(X1)− |X1|, we have r∗(X1) = 2. That is, X1 is a segment in M∗. As
r∗(X1) = 2, it follows that either (X1 − {x}) ∪ {e1} is a circuit for some x ∈ X1,
or X1∪{e1} is a circuit. If (X1−{x})∪{e1} is a circuit, then either X1∪{e1} is
a 4-element fan, or it is easily checked that (X1−{x}, {e1}, Y1∪{x}) is a vertical
3-separation, contradicting the maximality of Y1 ∪ {e1}. Thus we may assume
that X1∪{e1} is a circuit ofM . Now, if two elements of X1 are deletable, then X1

contains at least two elastic elements, so we may assume that at most one element
of X1 is deletable. Assume first that X1 is coclosed, and let X1 = {z1, z2, . . . , zn}.
Without loss of generality, we may assume that ifX1 contains a deletable element,
then it is zn. Let m = n − 1 if zn is deletable; otherwise, let m = n. Since
X1 ∪{e1} has corank 3 and X1 is coclosed, it follows by the dual of Lemma 2.3.2
that, for all i ∈ {1, 2, . . . ,m}, there are distinct elements w1, w2, . . . , wm such
that (X1 − {zi}) ∪ {wi} is a circuit. Let W = {w1, w2, . . . , wm}. Since X1 is 3-
separating and W ⊆ cl(X1), it follows that r(W ) = 2. As every 3-element subset
of X1 is a cocircuit, it follows by orthogonality that (X1 − {zi}) ∪ {wj , wk} is a
circuit for all distinct i, j, k ∈ {1, 2, . . . ,m}. By a comparison with the circuits
of Θn, it is easily checked that M |(W ∪X1) is isomorphic to Θn if m = n, and
M |(W ∪X1) is isomorphic to Θ−n if m = n − 1, and so X1 is contained in a Θ-
separator ofM as described in the statement of the lemma. Now assume that X1

is not coclosed. Then, as X1 ∪{e1} is a corank-3 circuit, |cl∗(X1)−X1| = 1. Let
{z1} = cl∗(X1) −X1, and denote the elements of X1 as z2, z3, . . . , zn. Applying
the previous argument to X1 ∪ {z1} and recalling that X1 ∪ {e1} is a circuit,
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we deduce that X1 is again contained in a Θ-separator of M as described in the
statement of the lemma.

Now suppose that X1 is dependent, and let C be a circuit in X1. As M is
3-connected, |C| ≥ 3. If every element in C is deletable, then X1 contains at
least two elastic elements. Thus we may assume that there is an element, say g,
in C that is not deletable. By Lemma 2.1.9, there exists a cyclic 3-separation
(U, {g}, V ) in M , where e1 ∈ V . By Lemma 2.1.10, we may also assume that
V ∪ {g} is coclosed. Note that, as (U, {g}, V ) is a cyclic 3-separation, r∗(U) ≥ 3,
and so |U | ≥ 3.

We next show that

2.5.3.1. |X1 ∩ U |, |X1 ∩ V | ≥ 2.

If either C − {g} ⊆ U or C − {g} ⊆ V , then g ∈ cl(U) or g ∈ cl(V ),
respectively, in which case either (U ∪{g}, V ) or (U, V ∪{g}) is a 2-separation of
M , a contradiction. Thus C ∩ (X1 ∩ U) and C ∩ (X1 ∩ V ) are both non-empty,
and so |X1 ∩ U |, |X1 ∩ V | ≥ 1. Say X1 ∩ U = {g′}, where g′ ∈ C. Since C is a
circuit, g ∈ clM/g′(V ). Therefore, as Y1 ∪ {e1} is closed and so g′ 6∈ cl(Y1), and
(U, V ) is a 2-separation of M\g, we have

λM/g′(U ∩ Y1) = rM/g′(U ∩ Y1) + rM/g′(V ∪ {g})− r(M/g′)
= rM (U ∩ Y1) + rM (V )− (r(M)− 1)
= rM (U ∩ Y1) + rM (V )− r(M\g) + 1
= rM (U)− 1 + rM (V )− r(M\g) + 1
= rM (U) + rM (V )− r(M\g)
= 1.

Thus (U ∩ Y1, V ∪ {g}) is a 2-separation of M/g′. Since every element in X1 is
contractible, g′ is contractible, and so r(U) = 2. Since |U | ≥ 3, it follows that
|U ∩ Y1| ≥ 2, and so g′ ∈ cl(Y1 ∪ {e1}), a contradiction as Y1 ∪ {e1} is closed.
Hence |X1 ∩ U | ≥ 2. An identical argument interchanging the roles of U and V
establishes that |X1 ∩ V | ≥ 2, thereby establishing (2.5.3.1).

Say |Y1 ∩ U | ≥ 2. It follows by two application of uncrossing that each of
(X1 ∩V )∪{g} and (X1 ∩V )∪{g, e1} is 3-separating. Since |X1 ∩V | ≥ 2 and M
is 3-connected, (X1 ∩ V ) ∪ {g} and (X1 ∩ V ) ∪ {g, e1} are exactly 3-separating.
Therefore, by Lemma 2.1.4, e1 ∈ cl((X1 ∩ V ) ∪ {g}) or e1 ∈ cl∗((X1 ∩ V ) ∪ {g}).
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Since e1 ∈ cl(Y1), it follows by Lemma 2.1.3 that e1 6∈ cl∗((X1∩V )∪{g}). So e1 ∈
cl((X1∩V )∪{g}). Thus, if r((X1∩V )∪{g}) ≥ 3, then ((X1∩V )∪{g}, {e1}, Y1∪U)
is a vertical 3-separation, contradicting the maximality of Y1 ∪ {e1}. Therefore
r((X1 ∩ V ) ∪ {e1, g}) = 2. But then g ∈ cl(V ∩X1) ⊆ cl(V ), a contradiction.

Now assume that |Y1 ∩ U | ≤ 1. Say Y1 ∩ U is empty. Then U ⊆ X1. Let
(U ′, {h}, V ′) be a cyclic 3-separation of M such that V ∪{g} ⊆ V ′∪{h} with the
property that there is no other cyclic 3-separation (U ′′, {h′}, V ′′) in which V ′∪{h}
is a proper subset of V ′′ ∪ {h′}. Observe that such a cyclic 3-separation exists as
we can choose (U, {g}, V ) if necessary. If every element in U ′ is deletable, then,
as U ′ ⊆ X1 and |U ′| ≥ 3, it follows that X1 has at least two elastic elements.
Thus we may assume that there is an element in U ′ that is not deletable. By
the dual of Lemma 2.5.2, either U ′, and thus X1, contains at least two elastic
elements or U ′ ∪ {h} is a 4-element fan, or U ′ is contained in a Θ-separator. If
U ′ ∪ {h} is a 4-element fan, then, by Lemma 2.2.1,

((U ′ ∪ {h})− {f}, {f}, E(M)− (U ′ ∪ {h}))

is a vertical 3-separation, where f is the spoke-end of the 4-element fan U ′∪{h}.
But then, as X1 ∩ V is non-empty, Y1 ∪ {e1} is properly contained in E(M) −
(U ′ ∪ {h}), contradicting maximality. If U ′ is contained in a Θ-separator, then,
by the dual of Lemma 2.5.2, U ′ is a circuit and there is an element w of U ′ such
that (U ′ − {w}) ∪ {h} is a cosegment. But then

((U ′ ∪ {h})− {w}, {w}, E(M)− (U ′ ∪ {h}))

is a vertical 3-separation of M , contradicting the maximality of Y1 ∪ {e1} as
Y1 ∪ {e1} is properly contained in E(M) − (U ′ ∪ {h}). Hence we may assume
that |Y1 ∩ U | = 1.

Let Y1 ∩ U = {y}. Since |Y1 ∩ U | = 1, we have |Y1 ∩ V | ≥ 2 and so, by two
applications of uncrossing, X1 ∩ U and (X1 ∩ U) ∪ {g} are both 3-separating.
Since M is 3-connected and |X1 ∩ U | ≥ 2, these sets are exactly 3-separating. If
y 6∈ cl(X1 ∩U), then, by Lemma 2.1.3, y ∈ cl∗(V ∪{g}). But then V ∪{g} is not
coclosed, a contradiction. Thus y ∈ cl(X1 ∩ U), and so y ∈ cl((X1 ∩ U) ∪ {g}).
Now y 6∈ cl∗(V ∪{g}), and so y 6∈ cl∗(V ). Hence as (X1∩U)∪{g} and, therefore,
the complement V ∪ {y} is 3-separating, Lemma 2.1.4 implies that y ∈ cl(V ).
Therefore, as (X1 ∩U)∪ {g} and V each have rank at least three, it follows that
((X1 ∩ U) ∪ {g}, {y}, V ) is a vertical 3-separation of M . Note that r(V ) ≥ 3;
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otherwise, (X1 ∩ V ) ⊆ cl({y, e1}), in which case, Y1 ∪ {e1} is not closed. But
(X1 ∩ U) ∪ {g} is a proper subset of X1, a contradiction to the maximality of
Y1 ∪ {e1}. This last contradiction completes the proof of the lemma.

We now combine Lemmas 2.5.2 and 2.5.3 to prove Theorem 1.1.1.

Proof of Theorem 1.1.1. Let (X, {e}, Y ) be a vertical 3-separation of M , where
Y ∪{e} is maximal, and suppose that X∪{e} is not a 4-element fan and X is not
contained in a Θ-separator. If at least one element in X is not contractible, then,
by Lemma 2.5.2, X contains at least two elastic elements. On the other hand if
every element in X is contractible, then by Lemma 2.5.3, X again contains at
least two elastic elements. This completes the proof of the theorem.

We end this chapter with the proof of Theorem 1.1.2.

Proof of Theorem 1.1.2. Let M be a 3-connected matroid. If every element of
M is elastic, then the theorem holds. Therefore suppose that M has at least one
non-elastic element, e say. Up to duality, we may assume that si(M/e) is not
3-connected. Then, by Lemma 2.1.9, M has a vertical 3-separation (X, {e}, Y ).
As r(X), r(Y ) ≥ 3, this implies that |E(M)| ≥ 7, and so we deduce that every
element in a 3-connected matroid with at most six elements is elastic. Now,
suppose thatM has no 4-element fans and no Θ-separators, and let (X ′, {e′}, Y ′)
be a vertical 3-separation such that Y ′ ∪ {e′} is maximal and contains Y ∪ {e}.
Then it follows by Theorem 1.1.1 that X ′, and hence X, contains at least two
elastic elements. Interchanging the roles of X and Y , an identical argument gives
us that Y also contains at least two elastic elements. Thus, M contains at least
four elastic elements.



Chapter 3

A Splitter Theorem for elastic
elements

This chapter concerns the existence of elastic elements whose removal also pre-
serves a given 3-connected minor. The chapter is structured as follows. Sec-
tion 3.1 consists of some necessary preliminaries, while the main results of this
chapter, Theorems 1.1.3 and 1.1.4, are proved in Section 3.2. Section 3.3 consid-
ers the matroids that possess the minimum possible number of elastic or N -elastic
elements, and includes the proofs of Theorems 1.1.5 and 1.1.6. Lastly, Section 3.4
considers the applications of our work to the study of maintaining 3-connectivity
relative to a fixed basis.

3.1 Preliminaries

We begin this chapter’s preliminaries with the following elementary lemma of
which we will make repeated use without explicit reference.

Lemma 3.1.1. Let M be a 3-connected matroid and let N be a 3-connected
matroid of M . If |E(N)| ≥ 4, then si(M) has an N -minor.

The next two lemmas concern 3-connected minors across 2-separations. The
first is elementary and the second is a slight strengthening of [4, Lemma 4.5] and
follows the proof of that lemma.

32
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Lemma 3.1.2. Let (X,Y ) be a 2-separation of a connected matroid M and
let N be a 3-connected minor of M . Then {X,Y } has a member U such that
|E(N) ∩ U | ≤ 1. Moreover, if u ∈ U , then

(i) M/u has an N -minor if M/u is connected, and

(ii) M\u has an N -minor if M\u is connected.

Lemma 3.1.3. Let M be a 3-connected matroid with a vertical 3-separation
(X, {e}, Y ) such that Y ∪{e} is closed, and let N be a 3-connected minor of M/e

such that |X∩E(N)| ≤ 1. Then M/x has an N -minor for every element x of X,
and there is at most one element of X, say x′, such that M\x′ has no N -minor.
Moreover, if such an element x′ exists, then x′ ∈ cl∗(Y ) and e ∈ cl(X − {x′}).

Let M be a 3-connected and let N be a 3-connected minor of M . Recall
from the introduction to this part of the thesis, that an element e of M is
N -revealing if either of si(M/e) or co(M\e) has an N -minor and is not 3-
connected. Furthermore, if S is a Θ-separator of M , then S is said to reveal
the minor N in M if, up to duality, M |S ∈ {Θn,Θ−n } for some n ≥ 3 and at least
one of the cosegment elements of M |S is N -revealing in M .

The next lemma gives a number of equivalent conditions for a Θ-separator to
reveal a given 3-connected minor.

Lemma 3.1.4. Let M be a 3-connected matroid such that r(M), r∗(M) ≥ 4 and
let N be a 3-connected minor of M . Let W be a rank-2 subset and Z be a corank-
2 subset of E(M) such that M |(W ∪ Z) ∈ {Θn,Θ−n } for some n ≥ 3. Then the
following are equivalent:

(i) At least one element of Z is N -revealing in M .

(ii) co(M\z) has an N -minor for at least two elements z ∈ Z.

(iii) Both si(M/z) and co(M\z) have an N -minor for all z ∈ Z and co(M\w)
has an N -minor for all w ∈W .

Moreover, if |E(N)| ≤ 3, then all of (i)-(iii) hold.

Proof. Certainly, (iii) implies (ii). Now let {z1, z2, . . . , zn} be a labelling of Z and
let {w1, w2, . . . , wk} be a labelling of W such that (Z − {zi}) ∪ {wi} is a circuit
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of M for all i ∈ {1, . . . , k}. Note that k ∈ {n, n− 1}. Letting i ∈ {1, . . . , k}, it is
then straightforward to observe that, as r(M), r∗(M) ≥ 4, the partition

((Z − {zi}) ∪ {wi}, {zi}, E(M)− Z ∪ {wi})

of E(M) is a cyclic 3-separation of M . Thus, by Lemma 2.1.9, co(M\zi) is not
3-connected, and hence, (ii) implies (i).

Suppose first that |E(N)| ≤ 3. Letting z ∈ Z, we note that both si(M/z)
and co(M\z) are connected. Furthermore, as r∗(M) ≥ 4, the matroid co(M\z)
has corank at least 3. Now note that, as z is in at least one circuit of the form
(Z − {zi}) ∪ {wi}, we have by orthogonality that any triad containing z must
either be contained in Z or contain an element of W . If Z spans M , then cl(W )
is a segment of size at four and, by orthogonality with this segment, it follows
that z is in no triad with an element outside of Z. If Z does not span, then
r(E(M) −W ∪ Z) ≥ 3, in which case, it is easily observed that z is in at most
one triad with an element of E(M) − W ∪ Z. In either case, it follows that
co(M\z) has rank at least two. Similarly, as Z is a cosegment, z is in at most
two triangles. Thus, si(M/z), which has rank at least three, has corank at least
two. We deduce that si(M/z) and co(M\z) have U1,3 and U2,3-minors and thus
an N -minor. Now let i ∈ {1, . . . , k} and consider wi. By orthogonality with both
the segment W and the circuit (Z − {zi}) ∪ {wi}, wi is in at most two triads.
As r(M), r∗(M) ≥ 4, it follows that co(M\wi) has rank at least 2 and corank
at least 3. Thus, co(M\wi) has a U1,3 and a U2,3-minor. We conclude that if
|E(N)| ≤ 3, then (iii), (ii) and (i) hold.

We may now assume that |E(N)| ≥ 4. To complete the proof, we show
that (i) implies (iii). Let i ∈ {1, . . . , k} and suppose that co(M\zi) has an N -
minor. As N is cosimple and Z − {zi} is a series class of M\zi, we have that
|(Z ∪ {wi}) ∩ E(N)| ≤ 1. We then apply the dual of Lemma 3.1.3 to see that
M\wi has an N -minor and that both M\zj and M/zj have an N -minor for all
j ∈ {1, . . . , n}− {i}. In particular, zj is N -revealing for all j ∈ {1, . . . , k}. Thus,
the choice of i ∈ {1, . . . , k} was arbitrary. It follows that both M/z and M\z
have an N -minor for all z ∈ Z and M\w has an N -minor for all w ∈ W . Thus,
(iii) is satisfied.

It follows Lemma 3.1.4 that every Θ-separator reveals the empty matroid and
all of U0,1, U1,1, U1,2, U1,3, and U2,3. We will make free use of this fact.
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3.2 The existence of N -elastic elements

In this section, we prove Theorem 1.1.3 and Theorem 1.1.4. We begin with three
lemmas. The first two lemmas concern elastic elements in matroids with rank
and corank at least four.

Lemma 3.2.1. Let M be a 3-connected matroid such that r(M), r∗(M) ≥ 4,
and let N be a 3-connected minor of M with at most three elements. Then every
elastic element of M is N -elastic.

Proof. First note that, as |E(N)| ≤ 3, N is a minor of either U1,3 or U2,3. Let x
be an elastic element of M . Then si(M/x) and co(M\x) are both 3-connected.
Furthermore, as r(M), r∗(M) ≥ 4, we have that si(M/x) has rank at least three
and co(M\x) has corank at least three. Thus, as si(M/x) is 3-connected, si(M/x)
contains a circuit, but si(M/x) is not a circuit, and so si(M/x) has a U2,3- and a
U1,3-minor. Similarly, as si(M∗/x), the dual of co(M\x), is 3-connected and has
rank at least three, si(M∗/x) has a U2,3- and a U1,3-minor. That is, co(M\x)
has a U2,3- and a U1,3-minor. This completes the proof of the lemma.

Lemma 3.2.2. Let M be a 3-connected matroid of corank at least four, and let
N be a 3-connected minor of M . Let (X, {e}, Y ) be a vertical 3-separation of M
such that M/e has an N -minor and |X ∩ E(N)| ≤ 1. If Y ∪ {e} is closed, then
every elastic element in X is N -elastic.

Proof. Let x be an elastic element ofX. If |E(N)| ≤ 3, then, by Lemma 3.2.1, x is
N -elastic. Thus we may assume that |E(N)| ≥ 4. In particular, N is simple and
cosimple, and so ifM/x orM\x has an N -minor, then si(M/x) and co(M\x) has
an N -minor, respectively. Therefore, by Lemma 3.1.3, x is N -elastic unless x is
the unique exception in the statement of Lemma 3.1.3, in which case, x ∈ cl∗(Y )
and e ∈ cl(X − {x}). Suppose x is this unique exception. Then, as x ∈ cl∗(Y ),
it follows by Lemma 2.1.3, that x 6∈ cl(X − {x}). Therefore, as (Y ∪ {e}, X) is a
3-separation of M , we have

2 = r(Y ∪ {e}) + r(X)− r(M)
= r(Y ∪ {e}) + r(X − {x}) + 1− r(M).

In particular,
1 = r(Y ∪ {e}) + r(X − {x})− r(M\x),
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and so (Y ∪ {e}, X − {x}) is a 2-separation of M\x. Since e ∈ cl(X − {x}),
the partition (Y, (X − {x}) ∪ {e}) is also a 2-separation of M\x. Now, as x is
elastic, co(M\f) is 3-connected, and so at least one of Y ∪ {e, f} and X has
corank 2, and at least one of Y ∪{f} and X∪{e} has corank 2. By Lemma 2.1.3,
e /∈ cl∗(X) ∪ cl∗(Y ), and we deduce that r∗(X) = r∗(Y ∪ {f}) = 2. But then, as
M is 3-connected, r∗(M) = 3, contradicting the assumption that M has corank
at least four. Hence x is not the exception and so the lemma holds.

x1

x2

x3

x4

e

y1 y2 y3

Figure 3.1: The 3-connected matroid L8.

The condition in the statement of Lemma 3.2.2 that M has corank at least
four is necessary. To see this, let L8 denote the 3-connected rank-3 matroid for
which a geometric representation is shown in Fig. 3.1. Let X = {x1, x2, x3, x4}
and Y = {y1, y2, y3}. Then (X, {e}, Y ) is a cyclic 3-separation of L8, and L8\e
has a U2,4-minor whose ground set contains Y . The element x1 of L8 is elastic
but it is not U2,4-elastic. Do note however, that every element of X − {x1} is
U2,4-elastic. The next lemma captures this last observation and is the corank
three analogue of Lemma 3.2.2.

Lemma 3.2.3. Let M be a 3-connected rank-3 matroid, and let N be a 3-
connected minor of M . Let (X, {e}, Y ) be a cyclic 3-separation (X, {e}, Y ) of
M such that M\e has an N -minor and |E(N) ∩ X| ≤ 1. If X ∪ {e} is not
a 4-element fan, then there is at most one element of X that is not N -elastic.
Moreover, if such an element x exists, then x ∈ cl(Y )

Proof. Since M is 3-connected and (X, {e}, Y ) is a cyclic 3-separation of M ,
we have r(X) = r(Y ) = 2, and |X|, |Y | ≥ 3. Furthermore, as M\e has an
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N -minor and |E(N) ∩ X| ≤ 1, it follows that N is a minor of U2,n where n =
|cl(Y )| ≤ |Y | + 1. Let x ∈ X − cl(Y ). As X ∪ {e} is not a 4-element fan,
|X− cl(Y )| ≥ 3, and so co(M\x) = M\x and M\x is 3-connected. Furthermore,
si(M/x) ∈ {U2,n, U2,n+1} depending on whether or not e is in a triangle with x.
In particular, si(M/x) and co(M\x) are both 3-connected with N -minors. This
completes the proof of the lemma.

We now prove Theorem 1.1.4.

Proof of Theorem 1.1.4. Let (X, {e}, Y ) be a vertical 3-separation ofM such that
M/e has an N -minor and |X ∩ E(N)| ≤ 1. Without loss of generality, we may
assume that Y ∪ {e} is closed. Now let (X ′, {e′}, Y ′) be a vertical 3-separation
of M such that Y ∪ {e} ⊆ Y ′ ∪ {e′} and Y ′ ∪ {e′} is maximal, and suppose
that X ′ ∪ {e′} is not a 4-element fan. If r∗(M) = 3, then, by Lemma 3.2.3, X ′

contains at least two N -elastic elements. Thus, we may assume that r∗(M) ≥ 4.
Suppose now, that X ′ is contained in a Θ-separator S. By Lemmas 2.5.2 and
2.5.3, there is a partition (W,Z) of S such that r(W ) = r∗(Z) = 2 and, letting
n = max{|W |, |Z|}, either

(i) M∗|S ∈ {Θn,Θ−n }, e′ ∈ W and there is an element z ∈ Z such that X ′ =
(W − {e′}) ∪ {z}; or

(ii) M |S ∈ {Θn,Θ−n }, X ′ ∪{e′} is a circuit, and either X ′ = Z or X ′ = Z−{z}
for some z ∈ Z.

If |E(N)| ≤ 3, then S reveals N . Suppose |E(N)| ≥ 4. Then, in case (i), it
follows by Lemma 3.1.3, that M/w, and hence si(M/w), has an N -minor for all
w ∈W −{e}. In case (ii), it follows Lemma 3.1.3 thatM\z, and hence co(M\z),
has an N -minor for at least two elements z ∈ Z. We deduce by Lemma 3.1.4, that
S reveals N . Thus, we may assume that X ′ is not contained in any Θ-separator.
Then, as Y ′ ∪ {e′} is maximal, it follows by Theorem 1.1.1 that X ′ contains at
least two elastic elements. By Lemma 3.2.2, each of these elastic elements is
N -elastic, thereby completing the proof of the theorem.

We remark here that the question of whether X ′ contains N -elastic elements
in the instances of Theorem 1.1.4 in which X ′ ∪ {e′} is a 4-element fan or X ′ is
contained in a Θ-separator is handled by combining Lemma 2.2.2 or Lemma 2.4.1
respectively with Lemma 3.2.2. We end this section by using Theorem 1.1.4 to
prove Theorem 1.1.3.
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Proof of Theorem 1.1.3. Let e be an N -revealing element of M . Then, up to du-
ality, si(M/e) has an N -minor and is not 3-connected. It follows by Lemma 2.1.9
and Lemma 3.1.2 that M has a vertical 3-separation (X, {e}, Y ) such that
|E(N) ∩ X| ≤ 1. Choosing (X − cl(Y ), {e}, cl(Y ) − {e}) if necessary, M has a
vertical 3-separation (X ′, {e′}, Y ′) such that Y ∪ {e} ⊆ Y ′ ∪ {e′} and Y ′ ∪ {e′} is
maximal. SinceM has no 4-element fans or Θ-separators revealing N , we deduce
by Theorem 1.1.1 that X ′ contains at least two N -elastic elements, completing
the proof of the theorem.

3.3 Matroids with the smallest number of elastic ele-
ments

In this section, we prove three results regarding matroids with the smallest num-
ber of elastic or N -elastic elements.

Let M be a matroid. Recall that an exactly 3-separating partition (X,Y )
of M is a sequential 3-separation if there is an ordering (e1, e2, . . . , ek) of X or
Y such that {e1, e2, . . . , ei} is 3-separating for all i ∈ {1, 2, . . . , k}. A path of
3-separations in M is an ordered partition (P0, P1, . . . , Pk) of E(M) with the
property that P0∪P1∪· · ·∪Pi is exactly 3-separating for all i ∈ {0, 1, . . . , k−1}.
Of the next two lemmas, the first follows easily from the definitions and the
second is [4, Lemma 6.3].

Lemma 3.3.1. A partition (X,Y ) of a matroid M such that |X|, |Y | ≥ 2 is a
sequential 3-separation if and only if for some U ∈ {X,Y }, there is a path of
3-separations (P0, P1, . . . , Pk, U) in M such that |P0| = 2 and |Pi| = 1 for all
i ∈ {1, 2, . . . , k}.

Lemma 3.3.2. Let M be a 3-connected matroid with distinct elements s1 and
s2. Let Z be a subset of E(M)− {s1, s2} such that |E(M)− (Z ∪ {s1, s2})| ≥ 2.
If, for each z ∈ Z, there is a path of 3-separations (Xz, {z}, Yz) in M such that
{s1, s2} ⊆ Xz ⊆ Z ∪ {s1, s2}, then there is an ordering (z1, z2, . . . , zk) of Z such
that

({s1, s2}, {z1}, {z2}, . . . , {zk}, E(M)− (Z ∪ {s1, s2}))

is a path of 3-separations in M .

Recall that a matroid has path-width three if there is an ordering
(e1, e2, . . . , en) of its groundset such that {e1, e2, . . . , ei} is 3-separating for all
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i ∈ {1, 2, . . . , n}. We next prove Theorem 1.1.5; that is, if a 3-connected matroid
with no 4-element fans or Θ-separators has exactly four elastic elements, then it
has path-width three.

Proof of Theorem 1.1.5. By Lemmas 3.3.1, 3.3.2 and 2.1.9 it suffices to show
that there is a partition ({f1, f2}, {g1, g2}) of the four elastic elements of M
such that every vertical 3-separation or cyclic 3-separation of M is of the form
(X, {e}, Y ), where {f1, f2} ⊂ X and {g1, g2} ⊂ Y . Suppose that this fails. By
Theorem 1.1.1, each side of a vertical or cyclic 3-separation of M has at least
two elastic elements. Thus, there must be a pair of partitions (X1, {e1}, Y2),
(X2, {e2}, Y2) of E(M), each a vertical or a cyclic 3-separation of M , such that
each of the intersections X1∩X2, X1∩Y2, Y1∩X2 and Y1∩Y2 contains a unique
elastic element. Without loss of generality, we may assume that e1 ∈ Y2, e2 ∈ X1,
f1 ∈ X1 ∩ X2, f2 ∈ X1 ∩ Y2, g1 ∈ Y1 ∩ X2 and g2 ∈ Y1 ∩ Y2, and that, up to
duality, (X1, {e1}, Y1) is a vertical 3-separation. By uncrossing X2 ∪ {e2} with
both X1 and X1 ∪ {e1}, we have that both Y1 ∩ Y2 and (Y1 ∩ Y2) ∪ {e1} are
3-separating. If r(Y1∩Y2) ≥ 3, it follows that (Y1∩Y2, {e1}, X1∪X2) is a vertical
3-separation of M and thus, by Theorem 1.1.1 that Y1 ∩ Y2 contains at least two
elastic elements, a contradiction. We deduce that r((Y1 ∩ Y2) ∪ {e1}) = 2. Now,
if Y1 ∩ X2 = {g1}, then either Y1 ∪ {e1} is a 4-element fan, a contradiction, or
(Y1 − {g1}, {g1}, X1 ∪ {e1}) is a cyclic 3-separation of M , contradicting the fact
that g1 is elastic. Thus, |Y1 ∩ X2| ≥ 2. We then uncross Y1 with both X2 and
X2 ∪ {e2} to see that both (X1 ∩ Y2) ∪ {e2} and (X1 ∩ Y2) ∪ {e1, e2} are exactly
3-separating. If r((X1 ∩ Y2)∪ {e2}) ≥ 3, then ((X1 ∩ Y2)∪ {e2}, {e1}, X2 ∪ Y1) is
a vertical 3-separation of M and it follows Theorem 1.1.1 that X1 ∩ Y2 contains
at least two elastic elements, a contradiction. We deduce that r((X1 ∩ Y2) ∪
{e1, e2}) = 2. Now, if Y1 ∩ Y2 = {g2}, then either Y2 ∪ {e2} is a 4-element fan or
(Y2 − {g2}, {g2}, X2 ∪ {e2}) is a cyclic 3-separation of M , a contradiction. Thus,
|Y1 ∩ Y2| ≥ 2. Finally, if X1 ∩ Y2 = {f2}, then (Y2 − {f2}, {f2}, X2 ∪ {e2}) is
a cyclic 3-separation of M a contradiction. Thus, |X1 ∩ Y2| ≥ 2 and the set
(X1 ∩ Y2) ∪ {e1, e2} is a segment of at least four elements. It follows that Y2 is a
rank-3 cocircuit and, by Lemmas 2.3.1 and 2.1.6, that every element of X1 ∩ Y2

is elastic. This final contradiction completes the proof.

The next lemma concerns N -elastic elements when |E(N)| ≤ 3 and can be
viewed as a small extension of Theorem 1.1.2 and Theorem 1.1.5.
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Lemma 3.3.3. Let M be a 3-connected matroid with no 4-element fans or
Θ-separators and let N ∈ {U0,1, U1,1, U1,2, U1,3, U2,3}. If r(M), r∗(M) ≥ 3 and
|E(M)| ≥ 8, then M has at least four N -elastic elements. Moreover, if M has
exactly four N -elastic elements, then M has path-width three.

Proof. By Theorem 1.1.2, M has at least four elastic elements. If every elastic
element of M is N -elastic, then the result follows Theorem 1.1.5. Otherwise,
M has an elastic element e which is not N -elastic. Then, by Lemma 3.2.1, we
may assume, up to duality, that r(M) = 3. We also note that r∗(M) ≥ 5 as
|E(M)| ≥ 8. It follows that the 3-connected matroid co(M\e) has corank at
least four and rank at least two. As co(M\e) is connected, it must then have
both U1,3 and U2,3-minors, and thus, an N -minor. Now, as e is not N -elastic, we
deduce that si(M/e) has no N -minor. This is only possible if si(M/e) ∼= U2,3 and
N ∼= U1,3. Moreover, in this case, M is comprised of a triangle {e1, e2, e3} and
three segments L1, L2 and L3 meeting at e such that ei ∈ Li for all i ∈ {1, 2, 3}.
As M has at least eight elements, at least one of these segments, say L1, has at
least four elements. It is then easily seen that every element of E(M)− L1 and
at least one element of L1 is U2,4-elastic and thus, U1,3-elastic. Thus, M has at
least five N -elastic elements, completing the proof of the lemma.

To see that the requirement of Lemma 3.3.3 that M have rank and corank
at least three is necessary, consider the case when M is U2,5 and N is U1,3. If
e ∈ E(M), then M/e, which is isomorphic to U1,4, has a U1,3-minor but si(M/e),
which is isomorphic to U1,1, has no U1,3-minor. Thus, in this case, M has no N -
elastic elements. To see that the requirement |E(M)| ≥ 8 is necessary, consider
the case when M is F7 and N is U1,3. If e ∈ E(M), then M/e has a U1,3-minor
but si(M/e), which is isomorphic to U2,3, has no U1,3-minor. Thus, again, M has
no N -elastic elements.

We next prove our main result regarding matroids with the minimum number
of N -elastic elements. Theorem 1.1.6 is a direct consequence by Lemma 3.3.1.

Theorem 3.3.4. Let M be a 3-connected matroid with no 4-element fans and let
N be a 3-connected minor ofM such that |E(N)| ≥ 4 andM has no Θ-separators
revealing N . Let K be the set of N -revealing elements of M . If M has exactly
two N -elastic elements s1 and s2, then K has an ordering (e1, e2, . . . , en) such
that ({s1, s2}, {e1}, {e2}, . . . , {en}, E(M)−K∪{s1, s2}) is a path of 3-separations
in M and, for all i < n, both M/ei and M\ei have an N -minor.
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Proof. We first ensure that |E(M)−(K∪{s1, s2})| ≥ 2. IfM has no Θ-separators,
then this follows Theorem 1.1.2, as no element of K is elastic. Otherwise, let W
be a rank-2 subset and Z a corank-2 subset of E(M) such that W ∪ Z is a
Θ-separator of M . Note that min{|W |, |Z|} ≥ 3, as M has no 4-element fans.
By Lemma 2.4.1, at most one elastic element of W ∪ Z is elastic. Thus, if
|E(M) − (K ∪ {s1, s2})| ≤ 1, then at least one element of W and at least one
element of Z is N -revealing. As M has no Θ-separators revealing N , we deduce
that, indeed, |E(M)− (K ∪ {s1, s2})| ≥ 2.

Next, for each e ∈ K, we select a suitable path of 3-separations (Xe, {e}, Ye).
Let e ∈ K. Up to duality, we may assume that si(M/e) has an N -minor and
is not 3-connected. Then, by Lemmas 2.1.9, 2.1.10 and 3.1.2, there is a vertical
3-separation (X, {e}, Y ) ofM such that |E(N)∩X| ≤ 1 and Y ∪{e} is closed. By
Theorem 1.1.1, X contains at least two N -elastic elements. Thus {s1, s2} ⊆ X.
Furthermore, by Lemma 3.1.3, M/x has an N -minor for all x ∈ X and there is
at most one element, x′, for which M\x′ has no N -minor. If there is no such
element x′, then let Xe = X and Ye = Y . Otherwise, we note by Lemma 3.1.3,
that x′ ∈ cl∗(Y ). It follows by Lemma 2.1.4, that (X − {x′}, {e}, Y ∪ {x′}) is
a path of 3-separations. In this case, let Xe = X − {x′} and Ye = Y ∪ {x′}.
Observe that, by our selection process, we have that {s1, s2} ∈ Xe and, for all
x ∈ Xe, both M/x and M\x have an N -minor. Moreover, as |E(N)| ≥ 4, the
latter property implies that Xe ⊆ K ∪ {s1, s2}.

Let Y = E(M)−K ∪{s1, s2}. By an application of Lemma 3.3.2, there is an
ordering (e1, e2, . . . , en) of K such that ({s1, s2}, {e1}, . . . , {en}, Y ) is a path of
3-separations. It remains to show that there is such an ordering for which both
M/ei and M\ei have an N -minor for all i < n.

For all i ∈ {1, 2, . . . , n}, let Ai = {s1, s2, e1, . . . , ei−1} and let Bi =
E(M)−Ai ∪{ei}. Observe that, (Ai, {ei}, Bi) is a path of 3-separations and, by
Lemma 2.1.5, ei is in exactly one of cl(Ai)∩ cl(Bi) or cl∗(Ai)∩ cl∗(Bi). We next
show the following:

3.3.4.1. Let j ∈ {1, 2, . . . , n}. If ej ∈ cl(Aj) ∩ cl(Bj) and r(Bj) ≥ 3, or ej ∈
cl∗(Aj) ∩ cl∗(Bj) and r∗(Bj) ≥ 3, then both M/ei and M\ei have an N -minor
for all i < j.

Assume that ej ∈ cl(Aj)∩ cl(Bj), applying a dual argument otherwise. If Aj

is a segment or a cosegment, then the result is easily seen to hold. Thus, we may
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assume that r(Aj), r∗(Aj) ≥ 3. Letting L = cl(Bj)−Bj , we then note that

r(L) = r(cl(Bj) ∩ (Aj ∪ {ej})) ≤ r(Bj) + r(Aj ∪ {ej})− r(M) = λ(Bj) = 2.

Thus, L is either the singleton {ej}, or it is a segment. Letting ` ∈ L, we see that
(Aj ∪ {ej} − {`}, {`}, Bj) is a vertical 3-separation of M and, by Lemma 2.1.10,
so is (Aj − L, {`}, Bj ∪ (L − {`})). In particular, si(M/`) is not 3-connected by
Lemma 2.1.9. Thus, by the definition of K, si(M/`), and hence M/` has an
N -minor. As N is simple and the choice of ` was arbitrary, it follows easily that,
if |L| ≥ 2, then M/` and M\` have an N -minor for all ` ∈ L. Now let N ′ be an
N -minor of M/ej . If |E(N ′) ∩Bj | ≤ 1, then Bj contains two N -elastic elements
by Theorem 1.1.1, a contradiction as {s1, s2} ⊂ Aj . Thus, |E(N ′) ∩ Aj | ≤ 1.
Now, if M/e and M\e have an N -minor for all e ∈ Aj − L, then we are done.
Otherwise, it follows Lemma 3.1.3 that there is an element x of Aj −L such that
M\x does not have an N -minor and, furthermore, x ∈ cl∗(Bj ∪ (L− {ej})). As
co(M\x) has no N -minor, we have by the definition of K, that si(M/x) is not
3-connected, and thus, by Bixby’s Lemma, co(M\x) is 3-connected. Observing
that Bj ∪ (L−{ej}) is 2-separating in M\x, it follows that either (Aj−L)∪{ej}
or Bj ∪(L−{ej})∪{x} has corank-2. The first implies that ej ∈ cl∗(Aj)∩cl(Aj),
a contradiction by Lemma 2.1.5. The second implies that si(M/x) is 3-connected
by Lemma 2.3.1. As this is a further contradiction, we deduce that there is no
such element x, and thus, (3.3.4.1) holds.

Now to complete the proof. Suppose first that r(Y ) = 2. In this case, letting
L = cl(Y ) − Y , we have that Y ∪ L is a segment. It then follows easily from
the definition of K that, if |L| ≥ 2, then M/` and M\` have an N -minor for all
` ∈ L. If K ⊆ L, then we are done. Otherwise, let j be the largest index such
that ej /∈ L. By (3.3.4.1), M\ei and M/ei have an N -minor for all i < j. If
M/ej and M\ej both have an N -minor, then we are done. Otherwise, for every
element ` of L, we observe that ej /∈ X` and thus, (X` − L) ⊆ Aj . It follows
that L ⊂ cl(Aj) and, consequently, there is an ordering (e′1, e′2, . . . , e′n) of K such
that e′n = ej and ({s1, s2}, {e′1}, . . . , {e′n}, Y ) is a path of 3-separations in M .
If r∗(Y ) = 2, then either (Y,E(M) − Y ) is a 2-separation, or Y ∪ {ej , en} is a
4-element fan. As both of these are contradictions, we deduce that r∗(Y ) = 3.
Thus, by switching to the dual and taking this new ordering of K, we may have
assumed that r(Y ) ≥ 3. Letting j = n, the theorem then follows by (3.3.4.1).

We end this section with some examples exhibiting the fact the minimum
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number of elastic elements and N -elastic elements is obtained.
Recalling the labelling of the matroid Θn given in Section 2.4, let Θ′n denote

the matroid achieved from Θn by relabelling every element zi of Z as z′i. For
our first example, consider the matroid PW (Θn,Θ′n)\{w1, w2} where n ≥ 4. This
matroid has no Θ-separators or 4-element fans and has exactly four elastic ele-
ments, namely {z1, z2, z

′
1, z
′
2}. Moreover, these elastic elements are N -elastic for

all N ∈ {U0,1, U1,1, U1,2, U1,3, U2,3}.
For our second example, we start with F7 but note that any sufficiently struc-

tured 3-connected matroid would do. Let T be a triangle of F7 and, letting n ≥ 5,
freely add n− 3 points to the line cl(T ). Relabel this line as W = {w1, . . . , wn}
in such a way that {w1, w2} ∩ T = ∅. Call the resulting matroid Fn

7 . Then
consider the matroid PW (Fn

7 ,Θn)\{w1, w2}. This matroid has no Θ-separators
or 4-element fans and has exactly two F7-elastic elements, namely, z1 and z2.

Our third example demonstrates why the inequality i < n of Theorem 3.3.4 is
strict. LetMf be the 11-element matroid of Figure 3.2 and let Θ+

4 be the matroid
achieved from Θ4 by adding an element f freely to the line W . Letting W+ =
{w1, w2, w3, w4, f}, consider the matroid M = PW +(Mf ,Θ+

4 )\{w1, w2}. This
matroid has no 4-element fans and no Θ-separators. Moreover, it has precisely
two F7-elastic elements, z1 and z2, and three F7-revealing elements, z3, z4 and f .
Although M/z3, M\z3, M\z4, M/z4 and M/f all have an F7-minor, M\f has
no such minor.

w1 w2 w3
w4f

Figure 3.2: A geometric representation of the matroid Mf when the hatched
area is omitted. Including the hatched area gives a schematic diagram of the
rank-6 matroid PW +(Mf ,Θ+

4 ) with the elements {z1, z2, z3, z4} suppressed.
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3.4 Applications to fixed-basis theorems

In this section, we show that a number of established results regarding maintain-
ing 3-connectivity relative to a fixed basis are consequences of the presence of
elastic elements and Θ-separators. Let M be a 3-connected matroid and let B
be a basis of M . Following [38], we say that an element e of M is removable with
respect to B if either

(i) e ∈ B and si(M/e) is 3-connected, or

(ii) e ∈ E(M)−B and co(M\e) is 3-connected.

One easily observes that a 5-element fan may have no removable elements
with respect to a given basis B. However, removable elements are abundant in
all larger Θ-separators. The straightforward proof of the following is omitted.

Lemma 3.4.1. Let M be a 3-connected matroid and let B be a basis of M . Let
W be a rank-2 subset and let Z be a corank-2 subset of M such that W ∪ Z is a
Θ-separator of M with at least six elements. Then,

(i) |cl(W )− B| ≥ |cl(W )| − 2 and co(M\w) is 3-connected for all w ∈ cl(W ),
and

(ii) |B ∩ cl∗(Z)| ≥ |cl∗(Z)| − 2 and si(M/z) is 3-connected for all z ∈ cl∗(Z).

One may also immediately observe that if an element is elastic, then it is
removable with respect to any basis. We now show that the main theorem of [38]
follows from Theorem 1.1.2, Theorem 1.1.5, and a treatment of Θ-separators.

Theorem 3.4.2 ([38], Theorem 1.1). Let M be a 3-connected matroid with no
4-element fans where |E(M)| ≥ 4. Let B be a basis of M . Then M has at least
four elements that are removable with respect to B. Moreover, if M has exactly
four removable elements with respect to B, then M has path-width three.

Proof. Suppose first that there is a rank-2 subset W and a corank-2 subset Z of
E(M) such that W ∪ Z is a Θ-separator of M . Then, r(M), r∗(M) ≥ 4 and, up
to duality, M |(W ∪ Z) ∈ {Θn,Θ−n }, where n ≥ 4 as M has no 4-element fans.
By Lemma 3.4.1, at least |Z| − 2 elements of Z and at least |W | − 2 elements
of W are removable with respect to B. If Z spans M , then |cl(W )| ≥ 4 and, as
|B∩cl(W )| ≤ 2, it follows by Lemma 2.3.1 thatM has at least four elements that
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are removable with respect to B. Moreover, in this instance, M has path-width
three as any ordering of E(M) progressing first through the elements of Z will be
sequentially 3-separating. Otherwise, Z does not spanM . Then, for any w ∈W ,
the partition (W ∪ Z − {w}, {w}, E(M) −W ∪ Z) is a vertical 3-separation of
M . Let (U, {e}, V ) be a vertical 3-separation of M such that V ∪{e} is maximal
containing W ∪Z. Then, by Theorem 1.1.1, U has at least two elastic elements,
or is contained in a Θ-separator. In particular, by Lemmas 2.5.2, 2.5.3 and 3.4.1,
the set E(M)−W∪Z has at least two elements that are removable with respect to
B, bringing the total to at least five. To complete the proof, we may now assume
that M has no Θ-separators. In this case, we have by Theorem 1.1.2, that M
has at least four elastic elements. Moreover, if M has exactly four removable
elements with respect to B, then these are precisely the elastic elements of M
and thus, M has path-width three by Theorem 1.1.5.

In [38], Whittle and Williams asked if there exists a 3-connected matroid M
with no 4-element fans such that for every basis B of M , there are exactly four
elements of M which are removable with respect to B. We can answer this in
the negative.

Proposition 3.4.3. LetM be a 3-connected matroid with no 4-element fans such
that |E(M)| ≥ 4. Then there exists a basis B of M such that M has at least five
removable elements with respect to B.

Proof. Suppose first that r(M), r∗(M) ≥ 4 and that M has a rank-2 subset
W and a corank-2 subset Z such that M |(W ∪ Z) ∈ {Θn,Θ−n }, where n ≥ 4.
Then, letting B be any basis of M containing the independent set Z, we have by
Lemma 3.4.1, that every element of Z and at least one element ofW is removable
with respect to B. This gives a total of at least five such elements. Thus, by
applying a dual argument, we may assume that M has no Θ-separators. Then,
by Theorem 1.1.2, M has at least four elastic elements. Moreover, as elastic
elements are removable with respect to any basis, we may assume that M has
exactly four elastic elements. The only 3-connected matroid on four elements
is U2,4. Thus, M must have at least five elements. Let e be some non-elastic
element of M . As M has no coloops, M has bases both containing and avoiding
e. If e is not removable with respect to any basis, it follows that the matroids
si(M/e) and co(M\e) are not 3-connected, a contradiction to Bixby’s Lemma.
Thus, e is removable with respect to some basis B and the result follows.
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Let M be a 3-connected matroid, let N be a 3-connected minor of M and let
B be a basis of M . Following [4], an element e of M is called (N,B)-robust if
either

(i) e ∈ B and M/e has an N -minor, or

(ii) e ∈ E(M)−B and M\e has an N -minor.

Furthermore, such an element is called (N,B)-strong if either

(i) e ∈ B and si(M/e) is 3-connected with an N -minor, or

(ii) e ∈ E(M)−B and co(M\e) is 3-connected with an N -minor.

The next lemma follows by combining Lemma 3.4.1 with Lemma 3.1.4.

Lemma 3.4.4. Let M be a 3-connected matroid, let N be a 3-connected minor
of M and let B be a basis of M . Let S be a Θ-separator of M with at least six
elements. If S reveals N in M , then at least |S| − 4 elements of S are (N,B)-
strong.

Evidently, an N -elastic element of M is (N,B)-strong for every basis B of
M . We end this part of the thesis by showing that the two main theorems of [4]
follow from Theorem 1.1.3, Theorem 3.3.4, and a treatment of Θ-separators.

Theorem 3.4.5 ([4], Theorems 1.1 and 1.2). Let M be a 3-connected matroid
with no 4-element fans such that |E(M)| ≥ 5, let N be a 3-connected minor of
M and let B be a basis of M . If M has two distinct (N,B)-robust elements, then
M has two distinct (N,B)-strong elements. Moreover, letting P denote the set
of (N,B)-robust elements of M , if M has precisely two (N,B)-strong elements,
then (P,E(M)− P ) is a sequential 3-separation.

Proof. IfM has rank or corank at most two, then the result follows easily from the
fact that |E(M)| ≥ 5. Likewise, the result is easy when |E(M)| ∈ {6, 7}. Thus,
we may assume that r(M), r∗(M) ≥ 3 and |E(M)| ≥ 8. Furthermore, as M has
no 4-element fans, any Θ-separator of M has at least seven elements. Thus, if M
has a Θ-separator revealing N , then M has at least three (N,B)-strong elements
by Lemma 3.4.4. We may therefore assume that M has no such Θ-separators.
Now, if |E(N)| ≤ 3, thenM has at least fourN -elastic by Lemma 3.3.3 and we are
done. Thus, for the remainder of the proof, we may assume that |E(N)| ≥ 4. In
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this case, every (N,B)-robust element is either (N,B)-strong or N -revealing. It
follows that either each of the two guaranteed (N,B)-robust elements are (N,B)-
strong or, by Theorem 1.1.3, M has at least two N -elastic elements. In either
case,M has at least two (N,B)-strong elements, thus concluding the proof of the
first part of the theorem. Now suppose that M has precisely two (N,B)-strong
elements {s1, s2}. If M has no N -revealing elements, then P = {s1, s2} and
(P,E(M)−P ) is trivially a sequential 3-separation. Otherwise,M has at least one
N -revealing element. In this case, it follows Theorem 1.1.3 that s1 and s2 are N -
elastic and thatM has no further N -elastic elements. Now let K be the set of N -
revealing elements of M . Note that P −{s1, s2} ⊆ K. By Theorem 3.3.4, K has
an ordering (e1, e2, . . . , en) such that ({s1, s2}, {e1}, {e2}, . . . , {en}, E(M)−K ∪
{s1, s2}) is a path of 3-separations and, for all i < n, both M/ei and M\ei have
an N -minor. In particular, ei is (N,B)-robust for all i < n, and consequently, P
is eitherK∪{s1, s2} orK∪{s1, s2}−{en}. Thus, by Lemma 3.3.1, (P,E(M)−P )
is a sequential 3-separation, completing the proof.



Part II
Generalised Uniformity in Matroids

A matroid M is paving if every rank-(r(M) − 2) flat is independent, or equiv-
alently, if M |H is uniform for every hyperplane H of M . Thus, in a natural
sense, paving matroids are close to being uniform. In this part of the thesis, we
generalise this observation and describe a two-parameter property of matroids
that captures just how close to uniform a given matroid is.

For positive integers k and `, we define a matroid to be (k, `)-uniform if it
has no minor isomorphic to Uk,k⊕U0,`. It is easy to show that a matroid is (1, 1)-
uniform precisely if it is uniform and is (2, 1)-uniform precisely if it is paving.
It is also evident that all matroids are (k, `)-uniform for some (k, `) pair and
that if M is (k, `)-uniform, then it is (k′, `′)-uniform for all k′ ≥ k and `′ ≥ `.
Furthermore, an easy duality argument shows that a matroid is (k, `)-uniform if
and only if its dual is (`, k)-uniform. All of these facts are used freely throughout
this part of the thesis.

This generalised notion of uniformity is of particular consequence when we
restrict our attention to matroids representable over a given finite field. Letting
q be a prime power, it is easy to show that if a uniform matroid is GF (q)-
representable, then it has corank at most 1 or rank at most q− 1. In Section 4.1,
we extend this observation and give explicit bounds on the rank and corank of a
(k, `)-uniform GF (q)-representable matroid when k and ` are arbitrary positive
integers. A consequence of this is the following result:

Theorem 3.4.6. Let (k, `) be a pair of positive integers and let q be a prime
power. Then only finitely many simple cosimple GF (q)-representable matroids
are (k, `)-uniform.

Note that both the simple and cosimple requirements in this theorem are
necessary, as the uniform matroids U1,n and Un−1,n are representable over every
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field for all n ≥ 1. This finiteness result has an interesting corollary regarding
Rota’s Conjecture:

Corollary 3.4.7. For every prime power q, the set of excluded minors for GF (q)-
representability is finite if and only if for some fixed pair (kq, `q) of positive inte-
gers, every such excluded minor is (kq, `q)-uniform.

To illustrate, for q ≤ 4, every excluded minor of GF (q)-representability is
(2, 1)-uniform, that is, paving. As Geelen, Gerards and Whittle have announced
a proof of Rota’s Conjecture [15], it would seem that such (kq, `q) pairs exist for
all q. If well behaved, these bounds may offer improved methods for explicitly
determining the excluded minors of GF (q)-representability.

By applying duality to the lists of binary (2, 1)-uniform and (3, 1)-uniform
matroids of Acketa [1] and Rajpal [31] respectively, one may explicitly list all
binary (1, 2)-uniform and (1, 3)-uniform matroids. These results concern binary
(k, `)-uniform matroids such that k + ` ≤ 4. We complete this picture in Sec-
tions 4.2 and 4.3 by determining the binary (2, 2)-uniform matroids. The most
difficult part of the characterisation is in establishing the following result:

Theorem 3.4.8. The 3-connected binary (2, 2)-uniform matroids are precisely
the 3-connected minors of Z5\t, P10, AG(4, 2), and AG(4, 2)∗.

Here, Z5\t is the tipless binary 5-spike, AG(4, 2) is the rank-5 binary affine
geometry, and P10 is the rank-5 binary matroid represented by the matrix of
Figure 3.3. It is easily seen that P10 is self-dual and that P10/5\10 ∼= M(W4).
Moreover, by pivoting, one can show that P10/8 ∼= Z4. A further description of
P10 is given in Section 4.3.



1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 1 0 0 1 1
0 1 0 0 0 1 1 0 0 1
0 0 1 0 0 0 1 1 0 1
0 0 0 1 0 0 0 1 1 0
0 0 0 0 1 1 1 1 0 0


Figure 3.3: A binary representation of P10.
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The nullity of a set X in a matroid M is |X| − rM (X). The following char-
acterisation of (k, `)-uniform matroids in terms of the nullity of certain flats will
be treated as an alternate definition.

Proposition 3.4.9. A matroid M is (k, `)-uniform if and only if every rank-
(r(M)− k) flat of M has nullity less than `.

Proof. Suppose first that M is not (k, `)-uniform. Then M has an independent
set X and coindependent set Y such that M/X\Y ∼= Uk,k ⊕ U0,` and rM (X) =
r(M) − k. Letting Z denote the ` loops of M/X\Y , every element of Z must
be in the closure of X in M . Thus, clM (X) is a rank-(r(M)− k) flat of M with
nullity at least `. For the converse, suppose M has a rank-(r(M) − k) flat F of
nullity at least `. Contracting any basis for F achieves a rank-k matroid with at
least ` loops. An appropriate restriction then yields a Uk,k ⊕ U0,`-minor.

Having defined a notion that generalises that of a uniform matroid, it is natu-
ral to explore which of the special properties enjoyed by uniform matroids are in
fact consequences of having the highest possible “uniformity”, and if such proper-
ties fall away in a predictable fashion as a matroid’s “distance” to being uniform
increases. This is the focus of Chapter 5. In that chapter, we further formalise
the notion of uniformity and consider its relevance to various other matroid no-
tions and settings. In particular, a number of equivalent characterisations of
(k, `)-uniformity are identified.

This part of the thesis is organised as follows. Chapter 4 concerns the rep-
resentability of (k, `)-uniform matroids. First, in Section 4.1, we prove tight
bounds on the rank and corank of a (k, `)-uniform matroid representable over
a specific finite field. Then, in Sections 4.2 and 4.3, we explicitly determine all
binary (2, 2)-uniform matroids. Chapter 5 considers (k, `)-uniformity in a more
general setting. First, Section 5.1 details the links between matroid uniformity
and linear codes. Section 5.2 then introduces the notion of the uniform-distance
of a matroid and details the impact of weak and strong maps on this invariant.
Finally, Section 5.3 considers uniformity’s relevance to two notions associated
with Tutte: the Tutte connectivity and Tutte polynomial of a matroid.



Chapter 4

Uniformity over finite fields

This chapter concerns the uniformity of matroids representable over a finite field.
In particular, the finiteness result Theorem 3.4.6 is established, and the binary
(2, 2)-uniform matroids are fully determined. The chapter is structured as fol-
lows. First, Section 4.1 proves best-possible bounds on the rank and corank of
a (k, `)-uniform GF (q)-representable matroid, an immediate consequence being
Theorem 3.4.6. Section 4.2 then characterises the class of (2, 2)-uniform matroids
and gives an explicit list of those that are binary. Finally, Section 4.3 consists
of the proof of Theorem 3.4.8, thus completing the determination of the binary
(2, 2)-uniform matroids.

4.1 Tight bounds on rank and corank

In this section, we present tight upper bounds on the rank and corank of a
GF (q)-representable (k, `)-uniform matroid. We will make use of the following
elementary lemma.

Lemma 4.1.1. Let M be a GF (q)-representable matroid and let k ≤ r(M).
Then every rank-(r(M) − k) flat of M is contained in at most (qk − 1)/(q − 1)
flats of rank r(M)− k + 1.

Proof. It suffices to consider simple matroids. The result then follows easily from
the fact that every simple rank-r GF (q)-representable matroid is a restriction of
the projective geometry PG(r − 1, q), for which the result holds.

We now prove the following:
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Proposition 4.1.2. Let M be a GF (q)-representable (k, `)-uniform matroid. If
r(M) > k, then

r∗(M) ≤ `
(
qk+1 − 1
q − 1

)
− (k + 1). (4.1.1)

Furthermore, if M is not (k + 1, `− i)-uniform for some 0 < i < `, then

r∗(M) ≤ i
(
qk+1 − 1
q − 1

)
+ (`− i)− (k + 1). (4.1.2)

Proof. Letting r = r(M), consider an independent set I ofM with size r−(k+1).
By Lemma 4.1.1, I is contained in at most (qk+1− 1)/(q− 1) flats of rank r− k.
Furthermore, as M is (k, `)-uniform, every such flat has nullity at most ` − 1,
and thus, has at most ` elements not in I. Hence,

|E(M)| ≤ (r − k − 1) + `

(
qk+1 − 1
q − 1

)
.

Moreover, if for some positive integer i < `, M is not (k + 1, ` − i)-uniform,
then we may choose I such that cl(I) has nullity at least `− i. In this case, each
rank-(r − k) flat containing I has at most i elements not in cl(I). Thus,

|E(M)| ≤ (r − k − 1) + (`− i) + i

(
qk+1 − 1
q − 1

)
.

Both bounds then follow the fact that |E(M)| = r(M) + r∗(M).

Note that in Proposition 4.1.2, the condition r(M) > k is necessary to avoid
the infinitely many GF (q)-representable non-simple matroids that are “trivially”
(k, `)-uniform by virtue of either having rank less than k, or by having rank k
and less than ` loops. However, as there are only finitely many simple GF (q)-
representable matroids up to a certain rank, Theorem 3.4.6 is an immediate
consequence.

To see that the bounds of Proposition 4.1.2 are tight, consider first the ma-
troid achieved from PG(k, q) by adding (` − 1) elements in parallel with every
point. This matroid is (k, `)-uniform and has corank meeting bound (4.1.1).
Next, for any i ∈ {1, . . . , `− 1}, consider the matroid achieved from PG(k, q) by
first adding (i − 1) elements in parallel to every point and then adding (` − i)
loops. This matroid is (k, `)-uniform but is not (k+ 1, `− i)-uniform. Moreover,
it has corank meeting bound (4.1.2).
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The following is the dual statement of Proposition 4.1.2 and follows the fact
that a matroid is (k, `)-uniform if and only if its dual is (`, k)-uniform. As such,
the bounds given are also the best possible.

Corollary 4.1.3. Let M be a GF (q)-representable (k, `)-uniform matroid. If
r∗(M) > `, then

r(M) ≤ k
(
q`+1 − 1
q − 1

)
− (`+ 1). (4.1.3)

Furthermore, if M is not (k − i, `+ 1)-uniform for some 0 < i < k, then

r(M) ≤ i
(
q`+1 − 1
q − 1

)
+ (k − i)− (`+ 1). (4.1.4)

The next proposition concerns (k, `)-uniform matroids for which neither k
nor ` is 1 and considers rank and corank concurrently. We will make use of
the subsequent corollary in Section 4.3 when determining the 3-connected binary
(2, 2)-uniform matroids.

Proposition 4.1.4. Let M be a (k, `)-uniform matroid such that min{k, `} ≥ 2.
If M is GF (q)-representable, then either

r(M) ≤ (k − 1)
(
q`+1 − 1
q − 1

)
− ` (4.1.5)

or,

r∗(M) ≤
(
qk+1 − 1
q − 1

)
+ (`− 1)− (k + 1) (4.1.6)

Proof. If either r(M) ≤ k or r∗(M) ≤ `, then the result is easily seen to hold.
Thus, we may assume that r(M) > k and r∗(M) > `. Now, if M is (k − 1, `)-
uniform, then, by Corollary 4.1.3,

r(M) ≤ (k − 1)
(
q`+1 − 1
q − 1

)
− (`+ 1)

and (4.1.5) holds. Likewise, if M is not (k+ 1, `− 1)-uniform, then (4.1.6) holds
by Proposition 4.1.2. Thus, we assume that M is (k + 1, `− 1)-uniform but not
(k−1, `)-uniform. The latter implies thatM has a rank-(r−k+1) flat F of nullity
at least `, and the former implies that M |F is (2, ` − 1)-uniform. By another
application of Corollary 4.1.3, we have that r(M |F ) ≤ 2(q` − 1)/(q− 1)− `, and
thus, r(M) ≤ 2(q` − 1)/(q − 1) − ` + (k − 1). It is then routine to show that
(4.1.5) holds.
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Corollary 4.1.5. Let M be a binary matroid. If M is (2, 2)-uniform, then
min{r(M), r∗(M)} ≤ 5.

4.2 The binary (2, 2)-uniform matroids that are not
3-connected

In this section we describe all (2, 2)-uniform matroids which are not 3-connected
and explicitly list those that are binary. The following results contain some
redundancy but have been chosen for their clarity and to emphasise links to
paving matroids. A matroid M is sparse paving if both M and M∗ are paving,
or equivalently, if M is both (2, 1)- and (1, 2)-uniform.

It is easily observed that a matroid M has the property that every rank-
(r(M) − 2) flat has nullity less than 2 if and only if the union of any pair of
circuits of M has rank at least r(M)− 1. Thus, the latter condition is a further
characterisation of (2, 2)-uniform matroids. We will make repeated of this fact,
referring to it as the (2, 2)-uniform circuit property.

Proposition 4.2.1. Let M be a disconnected matroid. Then M is (2, 2)-uniform
if and only if

(i) M or M∗ is paving; or

(ii) M ∼= Mp ⊕ U0,1 or M ∼= M∗p ⊕ U1,1, where Mp is a paving matroid; or

(iii) M ∼= Mp ⊕ U1,2, where Mp is a sparse paving matroid.

Proof. The disconnected matroids of type (i), (ii) and (iii) are easily seen to be
(2, 2)-uniform. To see that there are no others, let M be a disconnected (2, 2)-
uniform matroid. If M has a loop l, then M\l is certainly paving and (ii) holds.
Otherwise, by duality, we may assume thatM has no loops or coloops. It follows
that if r(M) ≤ 2 or r∗(M) ≤ 2, then (i) holds. Hence, we may also assume that
r(M), r∗(M) ≥ 3. Now, if every component of M has rank, corank at least two,
then each component contains at least two circuits and the union of any two
such circuits has rank less than r(M) − 1, a contradiction to the (2, 2)-uniform
circuit property. Thus, up to duality, M has at least one rank-1 component
M1. If |E(M1)| ≥ 3, then by the (2, 2)-uniform circuit property, r(M) ≤ 2, a
contradiction. Thus, M1 ∼= U1,2. It then follows easily from the (2, 2)-uniform
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circuit property that M\E(M1) is both (2, 1)-uniform and (1, 2)-uniform. In
particular, (iii) is satisfied.

Recall that P (M1,M2) denotes the parallel connection of matroids M1 and
M2 across some common basepoint.

Proposition 4.2.2. LetM be a connected matroid that is not 3-connected. Then
M is (2, 2)-uniform if and only if

(i) M or M∗ is paving; or

(ii) M or M∗ has rank 3 and no parallel class of size more than two; or

(iii) M has a parallel or series pair {p, p′} such that M\p/p′ is sparse paving;
or

(iv) M = P (N,U2,4)\p, where N is a connected matroid such that N/p and
N∗/p are paving.

Proof. It is straightforward to show that all matroids of type (i)-(iv) are (2, 2)-
uniform. To see that this list is complete, let M be a connected (2, 2)-uniform
matroid that is not 3-connected. If M has rank or corank at most 3, then it is
easily seen to satisfy (i) or (ii). Thus, we may assume that r(M), r∗(M) ≥ 4.
Suppose now that, up to duality, M has a parallel pair {p, p′} and let N =
M\p/p′. If there exists a circuit C of N of rank at most r(N) − 2, then as
C or C ∪ p′ is a circuit of M , it follows that C ∪ {p, p′} contains two circuits
of M whose union has rank at most r(N) − 1 = r(M) − 2. Similarly, if there
exists a pair of circuits C1, C2 of N such that rN (C1 ∪ C2) ≤ r(N) − 1, then
C1∪C2∪{p, p′} contains two circuits ofM whose union has rank at most r(M)−2.
Both situations contradict the fact that M is (2, 2)-uniform. Hence, N is sparse
paving and (iii) holds. Otherwise, M has no parallel or series pairs and we
may assume that M = P (M1,M2)\p, for some connected matroids M1,M2 each
having at least three elements and rank, corank at least two. If r(M1), r(M2) ≥ 3,
then by the (2, 2)-uniform circuit property, each of M1\p and M2\p contains at
most one circuit. As each Mi is connected, it follows that for i ∈ {1, 2}, Mi\p
is a circuit and r∗(M) ≤ 3, a contradiction. Thus, without loss of generality,
r(M1) = 2 and r(M) = r(M2) + 1. If |E(M1)| ≥ 5, then E(M1) − p contains
two triangles of M , and by the (2, 2)-uniform circuit property, r(M) ≤ 3, a
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contradiction. Thus, M1 ∼= U2,4. Now let T = E(M1)− p. By the (2, 2)-uniform
circuit property, rM (C ∪ T ) ≥ r(M) − 1 = r(M2) for every circuit C of M2. It
follows that every circuit of M2 containing p must have rank at least r(M2)− 1
and every circuit avoiding p has rank at least r(M2)− 2. Thus, M2/p is paving.
Also by the (2, 2)-uniform circuit property, every pair of circuits of M2\p must
span. We conclude that M2/p and M∗2 /p = (M2\p)∗ are paving and that (iv)
holds.

Restricting our attention to binary matroids, we may ignore case (iv) of
Proposition 4.2.2 as such matroids have a U2,4-minor. We then achieve the fol-
lowing list by combining Propositions 4.2.1 and 4.2.2 with Acketa’s list [1] of
binary paving matroids. Note that, as M(K4), F7, F

∗
7 and AG(3, 2) have transi-

tive automorphism groups, any parallel connections of these matroids and U2,3

are free of reference to a specific basepoint. The matroid S8 is isomorphic to the
unique non-tip deletion of the binary 4-spike Z4.

Corollary 4.2.3. The following matroids and their duals are all the binary
(2, 2)-uniform matroids that are not 3-connected.

(i) The matroids of rank at most 1 other than U0,1, U1,1, U1,2, U1,3;

(ii) the non-simple rank-2 binary matroids with at most one loop;

(iii) the loopless, non-simple rank-3 binary matroids with every parallel class of
size at most 2;

(iv) Mp ⊕ U0,1 and Mp ⊕ U1,2, for Mp in {M(K4), F7, F
∗
7 , AG(3, 2)};

(v) P (Z4, U2,3)\t and P (S8, U2,3)\t, where t is the tip of Z4;

(vi) P (F7, U2,3)\p and P (AG(3, 2), U2,3)\p; and

(vii) P (Mp, U2,3) for Mp in {M(K4), F7, F
∗
7 , AG(3, 2)}.

4.3 The 3-connected binary (2, 2)-uniform matroids

In this section we prove Theorem 3.4.8, and in doing so, complete the determi-
nation of the binary (2, 2)-uniform matroids. We also remark that two of the
important matroids of this section, P9 and L10, arise as graft matroids. A graft
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[32] is a pair (G, γ) where G is a graph and γ is a subset of V (G) thought of as
the coloured vertices. The associated graft matroid is the vector matroid of the
matrix obtained by adjoining the incidence vector of the set γ to the vertex-edge
incidence matrix of G. We follow [21] in using P9 to denote the simple binary
extension of M(W4) represented by the matrix of Figure 4.1. This is isomorphic
to the graft of W4 in which the hub vertex and three of the four rim vertices
are coloured. By considering the representation of the matroid P10 given in Fig-
ure 3.3, we see that P10 arises as a single-element coextension of P9. In fact, it
is routine (if tedious) to verify that P10 is the 3-sum of P9 and F7 across any
of the four triangles of P9 other than {1, 4, 8} and {3, 4, 7}. Up to isomorphism,
there are two other simple binary extensions of M(W4), namely M(K5\e) and
M∗(K3,3).



1 2 3 4 5 6 7 8 9
1 0 0 0 1 0 0 1 1
0 1 0 0 1 1 0 0 1
0 0 1 0 0 1 1 0 1
0 0 0 1 0 0 1 1 0


Figure 4.1: A binary representation of P9 and P9 as a graft of W4.

In proving Theorem 3.4.8, we will require the following characterisation of
binary matroids with no M(W4)-minor due to Oxley [21, Theorem 2.1]. Here Zr

is the rank-r binary spike with tip t and y is some non-tip element of Zr.

Lemma 4.3.1. Let M be a binary matroid. Then M is 3-connected and has no
M(W4) minor if and only if

(i) M ∼= Zr, Z
∗
r , Zr\y, or Zr\t for some r ≥ 3; or

(ii) M ∼= U0,0, U0,1, U1,1, U1,2, U1,3, or U2,3.

The flats of the rank-r binary spike are very well behaved and the straight-
forward proof of the following is omitted.

Lemma 4.3.2. Let r ≥ 3. The matroids Zr and Zr\y are (2, 2)-uniform if and
only if r ≤ 4. The matroid Zr\t is (2, 2)-uniform if and only if r ≤ 5.
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Now consider the rank-5 binary affine geometry AG(4, 2). As its rank-3
flats are all isomorphic to U3,4, this matroid is certainly (2, 2)-uniform. View-
ing AG(4, 2) as the deletion of a hyperplane H from the projective geometry
PG(4, 2), we see that every element of H is in a triangle with two elements of
AG(4, 2). It follows that any rank-5 binary extension of AG(4, 2) must have a
rank-3 flat of nullity at least 2 and hence fail to be (2, 2)-uniform. Furthermore,
by Corollary 4.1.5, AG(4, 2) has no binary (2, 2)-uniform coextensions. Thus,
AG(4, 2) is a maximal binary (2, 2)-uniform matroid. The next lemma concern-
ing binary affine matroids will be used in the proof of Theorem 3.4.8.

Lemma 4.3.3. Let M be a simple rank-5 binary extension of M(K3,3). Then
M is (2, 2)-uniform if and only if M is affine.

Proof. If M is a simple rank-5 binary affine matroid, then it is a restriction of
AG(4, 2) and thus is (2, 2)-uniform. For the other direction, let M be a simple
rank-5 binary extension of M(K3,3) that is (2, 2)-uniform. By uniqueness of
binary representation, M may be represented by a binary matrix whose first
nine columns are the representation of M(K3,3) given in Figure 4.2. Let e label
an extension column. It is easily seen that if the last entry of column e is zero,
then e is in a triangle with two elements of M(K3,3). But every pair of elements
of M(K3,3) are in a circuit of size four. Thus, if column e ends in zero, then e
is in a rank-3 flat of M of nullity at least 2. This is a contradiction to the fact
that M is (2, 2)-uniform. We conclude that every extension column ends in 1
and that, consequently, M is affine.



1 2 3 4 5 6 7 8 9
1 0 0 0 0 1 0 0 1
0 1 0 0 0 1 1 0 0
0 0 1 0 0 0 1 1 0
0 0 0 1 0 0 0 1 1
1 1 1 1 1 1 1 1 1


Figure 4.2: Binary and graphic representations for M(K3,3).

Two of the four non-isomorphic simple rank-5 binary single-element exten-
sions of M(K3,3) are affine. These are the well-known regular matroid R10 and
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a matroid that we name L10, a representation for which is given in Figure 4.3.
In [32], R10 is identified as the graft matroid of K3,3 in which every vertex is
coloured. We remark here that L10 is the graft matroid of K3,3 in which all but
two vertices, both in the same partition, are coloured.



1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 1 0 0 1 1
0 1 0 0 0 1 1 0 0 1
0 0 1 0 0 0 1 1 0 1
0 0 0 1 0 0 0 1 1 0
1 1 1 1 1 1 1 1 1 1


Figure 4.3: A binary representation of L10 and L10 as a graft of K3,3.

In our final step before proving Theorem 3.4.8, we determine the binary (2, 2)-
uniform coextensions ofM(K5\e) and P9; geometric representations of which are
given in Figure 4.7.

Lemma 4.3.4. The sets of non-isomorphic binary (2, 2)-uniform coextensions
of M(K5\e) and P9, respectively, are {L10} and {P10, L10}.

Proof. Let M be a binary (2, 2)-uniform matroid with a subset X ⊆ E(M) such
that M/X ∼= N for N in {M(K5\e), P9}. By uniqueness of binary representa-
tion, we may assume that M/X is represented by the binary matrix A given in
Figure 4.4, where α ∈ {0, 1} depends on N .



e1 e2 e3 e4 e5 e6 e7 e8 e9

1 0 0 0 1 0 0 1 1
0 1 0 0 1 1 0 0 α

0 0 1 0 0 1 1 0 1
0 0 0 1 0 0 1 1 0


Figure 4.4: Matrix A. M [A] is isomorphic to M(K5\e) when α = 0 and P9 when
α = 1, respectively.

The set H = {e1, e2, e3, e5, e6, e9} is a hyperplane of M [A] regardless of α.
As M is (2, 2)-uniform, it follows that H ∪ X is a hyperplane of M of nullity
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3. Moreover, M |H ∪ X is (1, 2)-uniform and (M |H ∪ X)∗ is (2, 1)-uniform by
duality. Thus, (M |H ∪X)∗ is a rank-3 simple matroid with |X|+ 6 elements. It
follows that |X| = 1. By appropriate row operations, one then sees that M may
be represented by the 5× 10 binary matrix B as given in Figure 4.5. It remains
to determine the coefficients β5, . . . , β9.



e1 e2 e3 e4 e5 e6 e7 e8 e9 x

1 0 0 0 1 0 0 1 1 0
0 1 0 0 1 1 0 0 α 0
0 0 1 0 0 1 1 0 1 0
0 0 0 1 0 0 1 1 0 0
0 0 0 0 β5 β6 β7 β8 β9 1


Figure 4.5: Matrix B. M [B]/x is isomorphic to M(K5\e) when α = 0 and P9

when α = 1, respectively.


e5 e6 e9 e1 e2 e3 x

1 0 0 1 1 0 β5

0 1 0 0 1 1 β6

0 0 1 1 α 1 β9




e1 e3 e4 x e7 e8

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 0 1 1
0 0 0 1 β7 β8


Figure 4.6: Matrices representing (M |H ∪ x)∗ and M |H ′ ∪ x.

A representation for (M |H ∪ x)∗ is given in Figure 4.6. As this must be
simple, we deduce that β5 = β6 = 1 and β9 = 1 − α. To determine β7 and
β8, we consider the hyperplane H ′ = clM ({e1, e3, e4}) of M [A]. If α = 0, then
the hyperplane H ′ ∪ x of M contains e9 and by an identical argument to before,
β7 = β8 = 1. We conclude that if N ∼= M(K5\e), then M ∼= L10. Otherwise
N ∼= P9, α = 1 and H ′ = {e1, e3, e4, e7, e8}. Then M |H ′∪x is represented by the
rank-4 matrix of Figure 4.6. As this matroid must be (1, 2)-uniform, it follows
that either β7 = β8 = 1, in which case M ∼= L10, or precisely one of {β7, β8} is
zero, in which case, M ∼= P10.

We now conclude this chapter with the proof of Theorem 3.4.8.
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e1

e2

e3

e4

M(K5\e)

e1

e2

e3

e4

P9

Figure 4.7: Geometric representations of M(K5\e) and P9.

Proof of Theorem 3.4.8. We first observe that a matroid is a binary 3-connected
(2, 2)-uniform matroid if and only if its dual is also. In particular, both AG(4, 2)
and AG(4, 2)∗ are minor-maximal such matroids. To complete our list, let M
be a minor-maximal binary 3-connected (2, 2)-uniform matroid. If r(M) ≤ 4, or
r∗(M) ≤ 4, then M is a minor of either AG(4, 2) or AG(4, 2)∗, a contradiction
to maximality. Thus, r(M), r∗(M) ≥ 5. Switching to the dual if necessary, we
may then assume by Corollary 4.1.5 that r(M) = 5.

If M has no M(W4) minor, then by Lemma 4.3.1, M is isomorphic to one of
Zr, Z

∗
r , Zr\t, Zr\y for some r ≥ 3 and, by Lemma 4.3.2,M ∼= Z5\t. Otherwise, we

may assume thatM does possess anM(W4)-minor. Then, as r(M) = 5,M is an
extension of a single-element coextension N of M(W4). As M(W4) is self-dual,
the matroid N∗ is a binary (2, 2)-uniform single-element extension of M(W4).
These are just the simple binary extensions of M(W4), namely M(K5\e), P9

and M∗(K3,3). Thus, N ∈ {M∗(K5\e), P ∗9 ,M(K3,3)}. If N ∼= M(K3,3), then
by Lemma 4.3.3, M must be affine and thus, by maximality, M ∼= AG(4, 2).
Otherwise, N ∈ {M∗(K5\e), P ∗9 }, in which case, by the dual of Lemma 4.3.4,
M is isomorphic to either P10 or L∗10. But, as L10 is affine, L∗10 is a minor of
AG(4, 2)∗. We conclude by maximality that, in this case,M ∼= P10. The theorem
then follows by duality.



Chapter 5

Uniformity in context

The purpose of this chapter is to highlight the fundamental nature of generalised
uniformity by describing its relevance to several selected matroid notions and set-
tings. The chapter is structured as follows. Firstly, Section 5.1 details the links
between generalised uniformity and the study of linear codes. In Section 5.2, we
further formalise the notion of “how uniform” a given matroid is by defining the
uniform-distance of a matroid, before considering the relevance of this invariant
to weak and strong maps. In particular, a characterisation of (k, `)-uniform ma-
troids by way of certain quotients and lifts is given. Lastly, Section 5.3 considers
the role that uniformity plays in two notions associated Tutte: namely, Tutte
connectivity and the Tutte polynomial. A characterisation of (k, `)-uniformity
in terms of the latter is given. We omit much of the rich background behind
each topic and refer the interested reader to [19, 20] for a treatment of weak and
strong maps, to [7] for a discussion on the Tutte polynomial, and to [16] for a
discussion on linear codes and their links to matroids.

5.1 Linear codes

In this section, we consider the applications of our work thus far to the study of
linear codes. For positive integers n, r and d, an [n, r, d] linear code over a field F
is a rank-r subspace of V (n,F) such that the hamming distance between any two
vectors (codewords) of this subspace is at least d. Let C be an [n, r, d] linear code
over F. A generator matrix for C is any r × n matrix over F whose row space is
C. It is an easy exercise to show that, up to labelling, every generator matrix for

62
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C gives rise to the same vector matroid, which we denote as MC. The dual code
C⊥ of C is the linear code of length n and rank n − r consisting of all vectors
v ∈ V (n, q) such that u · v = 0 for all u ∈ C. The generator matrices for C⊥ are
the parity check matrices for C and it is easily checked that MC⊥ = (MC)∗.

We call C a (k, `)-uniform code if the matroidMC is (k, `)-uniform. By duality,
C is a (k, `)-uniform code if and only if C⊥ is an (`, k)-uniform code. It is easy
to show that the minimum distance between any two codewords of C is the size
of the smallest non-zero codeword of C, or equivalently, the size of the smallest
circuit ofMC⊥ . As the matroidMC⊥ has rank r∗ = n−r, the well-known singleton
bound [31] d ≤ r∗+ 1 is an immediate consequence of this fact. In particular, the
singleton bound is met if and only if MC⊥ (and hence MC) is uniform. Thus, in
the language of coding theory, the (1, 1)-uniform codes are precisely themaximum
distance separable (MDS) codes. A small extension of this observation is that the
distance of a linear code is always determined by (k, `)-uniformity where k = 1.

Lemma 5.1.1. Let C be an [n, r, d] linear code over some field F and let r∗ =
n− r. Then d ≥ r∗ − `+ 2 if and only if C is a (1, `)-uniform code.

Proof. The matroid MC⊥ has rank r∗. Thus, every circuit of MC⊥ has rank at
least r∗ − `+ 1 if and only if MC⊥ is (`, 1)-uniform. By duality, the latter occurs
if and only if MC is (1, `)-uniform.

Now, given any [n, r, d] linear code, one may treat the integer

t = (n− r) + 1− d

as that code’s offset from obtaining the singleton bound. For example, the MDS
codes are those with a zero such t-value. The next lemma uses the results of
Section 4.1 to give a bound on the rank of a linear code in terms of t. The
condition (n−r) > 1 is necessary as the linear code associated with the matroids
Un,n or Un−1,n is MDS for any n.

Lemma 5.1.2. Let C be an [n, r, d] linear code over GF (q) such that
(n− r) > 1 and let t = (n− r) + 1− d. Then

r ≤ qt+2 − 1
q − 1 − (t+ 2).

Proof. Letting r∗ = n − r, we have that d = r∗ + 1 − t. Now, as every circuit
of MC⊥ has size at least d, every such circuit has rank at least d − 1 = r∗ − t.
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Equivalently, MC⊥ is (t+ 1, 1)-uniform. The result then follows an application of
Proposition 4.1.2.

A routine expansion and rearrangement of the terms from Lemma 5.1.2 yields
the following upper bound on the rank of a linear code of a fixed length and
distance.

Corollary 5.1.3. Let C be an [n, r, d] linear code over GF (q) such that (n−r) >
1. Then,

r ≤ (n− d+ 3)− logq [(q − 1)(n− d+ 3) + 1] .

An [n, r, d] linear code over GF (q) has been called optimal [36] if there exists
no [n, r′, d] linear code over GF (q) such that r < r′. Thus, Corollary 5.1.3 gives
an upper bound of the rank of such a code.

The remainder of this section briefly considers the impact of matroid unifor-
mity on linear codes more generally. We will make use of the following three
lemmas. The first can be found in [26], while the second and third are both
elementary consequences of Proposition 3.4.9 and their proofs are omitted. For
any field F, the support of a vector v = (v1, v2, . . . , vn) from V (n,F) is the set
{i : vi 6= 0}.

Lemma 5.1.4 ([26], Proposition 9.2.4). Let A be an m × n matrix over a field
F and let M = M [A]. Then the set of cocircuits of M coincides with the set of
minimal non-empty supports of vectors from the row space of A.

Lemma 5.1.5. A matroid M is (k, `)-uniform if and only if every subset X ⊆
E(M) of size at least r(M)− k + ` has rank at least r(M)− k + 1.

Lemma 5.1.6. A matroid M is (k, `)-uniform if and only if every subset X ⊆
E(M) of size at most r∗(M)− `+ k has corank at least |X| − k + 1.

The weight of a codeword is its number of non-zero entries, or equivalently,
the size of its support. Lemma 5.1.1 establishes that an [n, r, d] linear code is
(1, `)-uniform if and only if it has no non-zero codewords of weight less than
(n− r)− `+ 2. The following proposition, though perhaps unenlightening, is the
natural extension of that result, and characterises (k, `)-uniform codes.

Proposition 5.1.7. Let C be an [n, r, d] linear code over some field F and let
r∗ = n−r. Then C is (k, `)-uniform if and only if every subset X of {1, 2, . . . , n}
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with size at most r∗−`+k has a subset of size |X|−k+1 containing no non-empty
support of a codeword of C.

Proof. Let A be a generator matrix for C with columns labelled (1, 2, . . . , n) in
order. Suppose that M [A] is (k, `)-uniform and let X be a subset of {1, 2, . . . , n}
with size at most r∗− `+k. Let X ′ be a cobasis for X inM [A]. By Lemma 5.1.6
it must be that |X ′| ≥ |X| − k+ 1. If X ′ contains a support for a codeword of C,
then by by Lemma 5.1.4, X ′ contains a cocircuit of M [A], a contradiction. Thus
X ′ contains no such support. Conversely suppose M [A] is not (k, `)-uniform.
Then by Lemma 5.1.6, there is a a subset X of {1, 2 . . . , n} of size at most
r∗− `+k for which every subset of size |X|−k+ 1 is codependent. Equivalently,
by Lemma 5.1.4, every size |X| − k + 1 subset of X contains a support of a
codeword of C.

We end this section by observing the following property of (2, 2)-uniform
linear codes.

Proposition 5.1.8. Let C be an [n, r, d] linear code over some field F and let
r∗ = n − r. If C is (2, 2)-uniform, then the supports of the codewords of C with
weight at most r∗ are precisely the non-cospanning cocircuits of MC.

Proof. Let A be a generator matrix for C with columns labelled (1, 2, . . . , n) in
order. Let W be the set of supports of codewords of C with weight at most r∗.
By Lemma 5.1.4, every cocircuit of M [A] is a support of a codeword of C. In
particular, every non-cospanning cocircuit of M [A] is in W. Now observe that
for all X ∈ W, the set E −X must be a flat of size at least r. If any such flat is
not a hyperplane, then C fails to be (2, 2)-uniform by Lemma 5.1.5. Thus, every
such flat is a hyperplane and the result follows.

To see that the converse of Proposition 5.1.8 does not hold, consider the
binary matroid obtained from F7 by the addition of two elements in parallel
with some chosen point. Geometric and binary representations of this matroid
are given in Figure 5.1. The associated binary code has the property that the
codewords with weight at most r∗ = 6 are precisely the incidence vectors of
the non-cospanning cocircuits of the matroid. However, due to the 3-element
parallel class, this matroid is not (2, 2)-uniform. Indeed, this is an example of
the broader fact that, while the complement of the support of a codeword of C
must be a flat of MC, there may exist flats of MC whose complements are not
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supports for codewords of C. As such, obtaining cleaner characterisations than
Proposition 5.1.7 may prove resistive.


1 2 3 4 5 6 7 8 9
1 0 0 0 1 1 1 1 1
0 1 0 1 0 1 1 0 0
0 0 1 1 1 0 1 0 0

.

Figure 5.1: Geometric and binary representations of P (F7, U1,3).

5.2 Uniform-distance and maps

In this section, we introduce the uniform-distance of a matroid and consider the
place of this invariant in the context of strong and weak maps.

Uniform-distance

We define the uniform-distance ud(M) of a matroid M as

ud(M) = min{k + ` : M is (k, `)-uniform} − 2.

Here, the “−2” term ensures that uniform matroids have a uniform-distance of
zero. Evidently, this quantity is an invariant under isomorphism and duality.
Moreover, it is non-increasing under minors. In particular, it is easy to show
that, for any matroid M with element e,

ud(M) ≥ ud(M\e), ud(M/e) ≥ ud(M)− 1.

Furthermore, as every matroid M is trivially (r(M) + 1, 1)-uniform, we have the
upper bound

ud(M) ≤ min{r(M), r∗(M)}.

We next observe that uniform-distance increases linearly with rank for a few
well-known and important classes of 3-connected matroids that arise frequently
as examples or counterexamples in matroid problems of connectivity and repre-
sentability. Defined for all r ≥ 3, the rank-r free swirl Ψr is the matroid obtained
from the rank-r whirl Wr by first freely adding an element to each 3-point line,
then deleting the spoke elements.
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Lemma 5.2.1. Let r ≥ 3. Then ud(M(Wr)) = ud(Wr) = r − 2 and ud(Ψr) =
r− 3. Moreover, M(Wr) and Wr are (k, `)-uniform if and only if r ≤ k+ `, and
Ψr is (k, `)-uniform if and only if r ≤ (k + `) + 1.

Proof. The matroidsM(Wr),Wr and Ψr are all simple, or equivalently, (r−1, 1)-
uniform. Now let 1 ≤ k ≤ r − 2. For both M(Wr) and Wr, the rank-(r − k)
flats of maximum nullity are the closed rank-(r − k) fans and these have nullity
r − k − 1. Considering the construction of Ψr from Wr, the rank-(r − k) flats
of Ψr of maximum nullity are seen to be the sets of 2(r − k − 1) elements in the
span of r− k consecutive spoke elements before deletion of those spokes. Such a
flat has nullity r − k − 2. The result then follows Proposition 3.4.9.

Defined for all r ≥ 3, an r-spike with tip t is a rank-r matroid whose groundset
is the union of r triangles L1, L2, . . . , Lr called legs, all of which contain the
element t, and, for all 1 ≤ k ≤ r − 1, the union of any k legs has rank at least
k + 1. Such a spike is free if its non-spanning circuits are all of the form Li or
Li ∪ Lj − {t} where i, j ∈ {1, 2, . . . , r}.

Lemma 5.2.2. For r ≥ 3, let Sr be an r-spike with tip t and non-tip element
x. Then ud(Sr) = ud(Sr\x) = r − 2 and, provided Sr is not the free 3-spike,
ud(Sr\t) = max{r− 3, 1}. Moreover, Sr and Sr\x are (k, `)-uniform if and only
if r ≤ k+` and, if r ≥ 4, then Sr\t is (k, `)-uniform if and only if r ≤ (k+`)+1.

Proof. As Sr is simple, it is (r − 1, 1)-uniform. Suppose r = 3. Then, as ev-
ery line of Sr has at most three elements, Sr is both (1, 2) and (2, 1)-uniform.
Furthermore, Sr\t is (1, 1)-uniform if and only if Sr is the free 3-spike. Now,
suppose r ≥ 4 and let 2 ≤ s ≤ r− 1. Let F be a collection of s− 1 legs of Sr not
containing x. In Sr and Sr\x, F is a rank-s flat with maximum possible nullity,
this being s − 1. In Sr\t, the set F\t is a rank-s flat with maximum possible
nullity, s− 2. The result then follows Proposition 3.4.9.

Many of the results of the previous chapter may be expressed in terms of
uniform-distance. We present one such result here, a straightforward strength-
ening of Corollary 3.4.7.

Theorem 5.2.3. For every prime power q, the set of excluded minors for GF (q)-
representability is finite if and only if, for some non-negative integer σq, every
such excluded minor has uniform-distance at most σq.
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Strong and weak maps

This section concerns uniformity’s role in maps between matroids of the same
size. Let M1 and M2 be matroids on groundsets E1 and E2 respectively such
that |E1| = |E2|. A bijection φ : E1 7→ E2 is a strong map from M1 to M2 if
for every flat F of M2, its preimage φ−1(F ) is a flat in M1. When E1 = E2 and
the identity map is a strong map from M1 to M2, then M2 is called a quotient
of M1. Equivalently, M2 is a quotient of M1 if there exists a matroid N with a
subset X such that N\X = M1 and N/X = M2. Such a quotient is elementary
if |X| = 1. We first focus on a particular type of elementary quotient. For a
matroid M of non-zero rank, the truncation T (M) of M is achieved from M

by first freely extending by an element then contracting this extension element.
The collection of flats of T (M) is easily seen to be all the flats of M other than
the hyperplanes. Moreover, truncation has a pleasant interpretation in terms of
the lattice of flats, as the geometric lattice for T (M) is achieved from that of
M by removing all copoints of the latter while ensuring that E(M) remains the
unique maximal element. For a matroid M of rank zero, we define T (M) to be
M . For any matroidM and positive integer i, the i’th truncation ofM is defined
inductively as T i(M) = T (T i−1(M)) where T 0(M) = M .

Lemma 5.2.4. Let M be a matroid and let (k, `) be a pair of positive integers.
Then M is (k, `)-uniform if and only if T i(M) is (k − i, `)-uniform for all 0 ≤
i ≤ k − 1.

Proof. If M has rank less than k, then, for all 0 ≤ i ≤ k− 1, the matroid T i(M)
has rank less than k − i and the result holds trivially. Otherwise, r(M) ≥ k.
Letting i ∈ {0, . . . , k−1}, the matroid T i(M) has rank r′ = r(M)− i. Moreover,
the rank-(r′−k+ i) flats of T i(M) are the rank r(M)−k flats of M . The lemma
is then a direct consequence of Proposition 3.4.9.

Following [26], we define the Higgs lift L(M) of a matroid M to be the
matroid obtained from M by first taking the free coextension and then deleting
the coextension element. Equivalently, this is the dual operation to truncation
in the sense that L(M) = (T (M∗))∗. In direct analogy with truncation, the i’th
Higgs lift is defined inductively as Li(M) = L(Li−1(M)) where L0(M) = M .
The next lemma is the dual of Lemma 5.2.4 and follows directly from the fact
that a matroid M is (k, `)-uniform if and only if M∗ is (`, k)-uniform.
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Lemma 5.2.5. LetM be a matroid and (k, `) be a pair of positive integers. Then
M is (k, `)-uniform if and only if Li(M) is (k, `−i)-uniform for all 0 ≤ i ≤ `−1.

Evidently, T (Ur,n) = Ur−1,n whenever n ≥ r ≥ 1. As such, the truncation
(or dually, Higgs lift) of a uniform matroid is also uniform. Indeed, the uniform
matroids of size n were historically defined [6] as the matroids obtained from
the free matroid Un,n by successive truncations. We now present the following
characterisation of (k, `)-uniform matroids in terms of truncations and Higgs lifts.

Proposition 5.2.6. Let M be a matroid and let (k, `) be a pair of positive inte-
gers. Then M is (k, `)-uniform if and only if the matroid achieved from M after
k − 1 truncations and `− 1 Higgs lifts is uniform.

Proof. A matroid is uniform if and only if it is (1, 1)-uniform. By Lemma 5.2.4, if
k ≥ 2, then a matroidM is (k, `)-uniform if and only if T (M) is (k−1, `)-uniform.
Dually, by Lemma 5.2.5, if ` ≥ 2, then a matroid M is (k, `)-uniform if and only
if L(M) is (k, `− 1)-uniform. Repeated applications of these observations yields
the result.

Observe that in the statement of Proposition 5.2.6, no order is imposed on
the sequence of truncations and Higgs lifts performed. This is in fact an instance
of a more general phenomena. Letting M be a matroid of rank greater than k
and corank greater than `, it is routine to show that there is a unique matroid
obtained from M after performing k truncations and ` Higgs lifts: namely, the
matroid whose bases are all the sets of the form (B−X)∪Y where B is a basis of
M , X is a k-element subset of B and Y is an `-element subset of E(M)−(B−X).
In this sense, the operations of truncation and Higgs lifts commute.

An immediate consequence of Proposition 5.2.6 is the following characterisa-
tion of uniform-distance:

Corollary 5.2.7. Let M be a matroid and let γ be a non-negative integer. Then
ud(M) ≤ γ if and only there is a sequence of γ operations, each either a truncation
or a Higgs lift, such that after starting with M and successively applying each
operation, the resulting matroid is uniform.

Now again, letM1 andM2 be matroids on groundsets E1 and E2 respectively
such that |E1| = |E2|. A bijection φ : E1 7→ E2 is a weak map [19] from M1 to
M2 if for every independent set X of M2, its preimage φ−1(X) is independent in
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M1. It is easily seen that every strong map is a weak map. Furthermore, it is
well known [19] that any weak map between two matroids of the same size can
be uniquely factored into a number of truncations followed by a rank-preserving
weak map. It is a consequence of the next two results that if such a weak map
decreases uniform-distance, it must do so at the truncation stage, while if an
increase in uniform-distance occurs, this must be forced by the respective rank-
preserving weak map.

Lemma 5.2.8. Let M be a matroid. Then

ud(T (M)) ∈ {ud(M), ud(M)− 1}

Proof. By Lemma 5.2.4, T (M) is (k, `)-uniform if and only if M is (k + 1, `)-
uniform. Thus, ud(T (M) = ud(M) − 1, unless M is (1, `)-uniform for some
positive integer ` such thatM is not (k′, `′)-uniform for any pair (k′, `′) of positive
integers such that k′ ≥ 2 and k′ + `′ ≤ ` + 1. However, as M is (2, `)-uniform,
T (M) is (1, `)-uniform. Thus, in this exceptional case, ud(T (M)) = ud(M).

Lemma 5.2.9. Let M1 and M2 be matroids of the same size and rank such that
M2 is a weak map image of M1. Then ud(M1) ≤ ud(M2). Moreover, for any pair
(k, `) of positive integers, if M2 is (k, `)-uniform, then M1 is also (k, `)-uniform.

Proof. Let φ be a weak map fromM1 toM2 and let r = r(M1) = r(M2). Suppose
that M2 is (k, `)-uniform and let F be a rank-(r − k) flat of M1. As φ is a weak
map, φ(F ) has rank at most r − k in M2. Then, as M2 is (k, `)-uniform, φ(F )
has nullity less than ` in M2 and thus has size less than r − k + `. Thus, F has
nullity less than ` in M1. As the choice of F was arbitrary, we conclude that M1

is (k, `)-uniform and the lemma holds.

In [26] a matroid M1 is said to be “freer” than M2 if M2 is a rank-preserving
weak map image of M1. We conclude this section by remarking that the last
lemma supports the intuitive notion that if a matroid is freer than another, then
it is at least as uniform.

5.3 Tutte connectivity and the Tutte polynomial

In this section, we detail the role that uniformity plays in two important ma-
troid notions associated with Tutte: namely, Tutte connectivity and the Tutte
polynomial.
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Tutte Connectivity

We follow Oxley [26] in defining the Tutte connectivity τ(M) of a matroid M as
τ(M) = min{j : M has a j-separation} provided M has a t-separation for some
t ≥ 1, or ∞ otherwise. It was observed in [18] that the only matroids having
infinite Tutte connectivity are uniform. Furthermore, the connectivity of uniform
matroids is easily determined.

Lemma 5.3.1. If M is a uniform matroid, then

τ(M) =


r(M) + 1 if r∗(M) ≥ r(M) + 2
r∗(M) + 1 if r∗(M) ≤ r(M)− 2
∞ if |r(M)− r∗(M)| < 2

In particular, uniform matroids have no separations of order at most
min{r(M), r∗(M)}. We will consider the affect of uniformity on the connec-
tivity of a matroid more generally. In proving the next proposition, we will make
use of the following three lemmas. The proof of the first and third lemmas are
elementary. The second follows from the first and Proposition 3.4.9. We denote
the nullity and conullity of a subset X as null(X) and null∗(X) respectively.

Lemma 5.3.2. If X is a subset of a matroid M with groundset E, then

r(M)− r(X) = null∗(E −X)

Lemma 5.3.3. A matroid M on groundset E is (k, `)-uniform if and only if
there is no subset X ⊆ E such that null(X) ≥ ` and null∗(E −X) ≥ k.

Lemma 5.3.4. If X is a subset of a matroid M with groundset E, then

λ(X) = r(M)− null∗(X)− null∗(E −X).

The next proposition captures the behaviour of the connectivity function in
a (k, `)-uniform matroid.

Proposition 5.3.5. Let M be a (k, `)-uniform matroid and let {X,E−X} be a
partition of the groundset E such that |X| ≤ |E −X|. Then either

(i) λ(X) ≥ r∗(M)− 2(`− 1),

(ii) λ(X) ≥ r(M)− 2(k − 1); or
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(iii) null(X) < ` ≤ null(E −X) and null∗(X) < k ≤ null∗(E −X).

Furthermore, if only (iii) holds, then

|X| − (k + `) + 2 ≤ λ(X) ≤ |E −X| − (k + `).

Proof. If null(X) < ` and null(E − X) < `, then (i) holds by Lemma 5.3.4.
Dually, if null∗(X) < k and null∗(E − X) < k then (ii) holds. Otherwise, we
may assume that null(A) ≥ ` for some A ∈ {X,E −X}. As M is (k, `)-uniform,
it follows Lemma 5.3.3 that null∗(E − A) < k. By the above, this implies that
null∗(A) ≥ k. A further application of Lemma 5.3.3 implies that null(E−A) < `.
Thus,

null(E −A) < ` ≤ null(A) and null∗(E −A) < k ≤ null∗(A).

Now, using the fact that λ(Y ) = |Y | − null(Y ) − null∗(Y ) for every subset Y ⊆
E(M), one then achieves that

|A| − (k + `) ≥ λ(A) = λ(E −A) ≥ |E −A| − (k + `) + 2.

In particular, |A| ≥ |E −A|+ 2, from which we deduce that A = E −X and the
result follows.

To see that the situation described in part (iii) Proposition 5.3.5 does occur
and that the inequalities given are sharp, consider the 8-element rank-4 matroid
shown in Figure 5.2 achieved as the parallel connection of M(K4) and U2,3. As
every line of this rank-4 matroid has nullity less than two, it is (2, 2)-uniform.
Letting E be the groundset of this matroid and letting X = {x1, x2, x3}, we see
that (X,E −X) is a 2-separation meeting the bounds of Proposition 5.3.5 part
(iii). In particular, null(X) = null∗(X) = 1, null(E − X) = null∗(E − X) = 2
and λ(X) = |X| − 2 = |E −X| − 4 = 1.

For (k, `)-uniform matroids where k = 1, we may exclude case (iii) of Propo-
sition 5.3.5 by restricting to vertical connectivity.

Lemma 5.3.6. If M is a (1, `)-uniform matroid, then it has vertical connectivity
at least

min{r(M)− 2, r∗(M)− 2(`− 1)}
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Proof. Assume to the contrary, that M has a vertical t separation (X,Y ) for
some t < min{r∗(M) − 2(` − 1), r(M) − 2}. Then by Proposition 5.3.5, the
smallest side of this separation is coindependent. This is a contradiction as both
X and Y must contain a cocircuit.

x1

x2

x3

Figure 5.2: P (M(K4), U2,3)

The main consequence of Proposition 5.3.5, articulated by the next lemma,
is that if M is a (k, `)-uniform matroid, then any separation of M of sufficiently
low order with respect to its rank and corank must have a comparatively “small”
side.

Lemma 5.3.7. Let M be a (k, `)-uniform matroid and let n be a positive integer
such that r(M) ≥ n+ 2(k− 1) and r∗(M) ≥ n+ 2(`− 1). Then any n-separation
(X,Y ) of M must satisfy

n ≤ min{|X|, |Y |} < n+ (k + `− 2).

Proof. Follows easily from Proposition 5.3.5 and the fact that λ(X) ≤ n − 1 <
min{r(M)− 2(k − 1), r∗(M)− 2(`− 1)}.

We end our analysis with the following natural corollary regarding uniform-
distance.

Corollary 5.3.8. Let M be a matroid and let n be a positive integer. If
r(M), r∗(M) ≥ n+ 2 · ud(M), then any n-separation (X,Y ) of M must satisfy

n ≤ min{|X|, |Y |} < n+ ud(M).
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The Tutte polynomial

The Tutte polynomial [7] of a matroid M is defined as

T (M ;x, y) =
∑

X⊆E(M)
(x− 1)r(M)−r(X)(y − 1)|X|−r(X)

The study of this polynomial is the core of matroid invariant theory and is as-
sociated with Tutte due to his extensive use of this polynomial, primarily in the
setting of graphs [33]. Brylowski [5] showed that the Tutte polynomial is, in
a very natural sense, the matroid invariant as any matroid invariant satisfying
certain recursive behaviour (so called Tutte-Grothendieck invariants [7]) must
be an evaluation of this polynomial. Many long-standing problems in matroid
theory have formulations in terms of this polynomial; perhaps most notably, the
problem of finding the critical exponent (see [26, 36]) of a matroid representable
over some field. We refer the interested reader to Oxley and Brylowski’s paper
[7] for a detailed treatment of a number of such problems.

The Tutte polynomial of a uniform matroid is easily seen to be

T (Ur,n, x, y) =
r−1∑
i=0

(
n

i

)
(x− 1)r−i +

(
n

r

)
+

n∑
i=r+1

(
n

i

)
(y − 1)i−r

Furthermore, the situation is complicated only slightly in the case of matroids
that are both (1, 2)- and (2, 1)-uniform, as it is routine to show that if M is a
rank-r sparse paving matroid on n elements, then

T (M,x, y) =
r−1∑
i=0

(
n

i

)
(x− 1)r−i + b+ c · (x− 1)(y − 1) +

n∑
i=r+1

(
n

i

)
(y − 1)i−r

where b is the number of bases of M and c =
(n

r

)
− b.

We will detail the link between uniformity and the Tutte polynomial by first
describing uniformity’s link to a closely related polynomial. The (Whitney) rank-
generating polynomial R(M ;x, y) of a matroid M is defined as

R(M ;x, y) =
∑

X⊆E(M)
xr(M)−r(X)y|X|−r(X).

The Tutte polynomial is then achieved as

T (M ;x, y) = R(M ;x− 1, y − 1).
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As detailed by the next lemma, matroid uniformity corresponds directly to
the absence of terms in the rank-generating polynomial.

Lemma 5.3.9. Let M be a matroid and let R(M ;x, y) =
∑

i

∑
j bijx

iyj. Then
the following are equivalent:

(i) M is (k, `)-uniform.

(ii) bk` = 0

(iii) bij = 0 for all i ≥ k, j ≥ `.

Proof. By Proposition 3.4.9, a matroid M is (k, `)-uniform if and only if M has
no rank-(r(M)− k) set of nullity `. The latter occurs precisely when each subset
of M with rank at most r(M) − k has nullity less than `. These properties
correspond to conditions (i), (ii) and (iii) respectively.

By a straightforward consideration of the change of variables that occurs
between the rank-generating polynomial and the Tutte polynomial, one achieves
the following characterisations of uniformity in terms of the latter.

Lemma 5.3.10. Let M be a matroid and let T (M ;x, y) =
∑

i

∑
j aijx

iyj. Then
the following are equivalent:

(i) M is (k, `)-uniform.

(ii) ∂T (M ;x,y)
∂kx ∂`y = 0.

(iii) aij = 0 for all i ≥ k, j ≥ `.

We remark that, unlike as is the case for the rank-generating polynomial, the
(k, `)’th coefficient of the Tutte polynomial may be zero for matroids that are
not (k, `)-uniform. To see this, consider the matroid Um,m ⊕ U0,n, where m and
n are positive integers not both equal to one. It is easily seen that

T (Um,m ⊕ U0,n;x, y) = xmyn.

In particular, a11 = 0 but Um,m ⊕ U0,n is not (1, 1)-uniform.
A function f from the class of matroids to some set Ω is a Tutte invariant [7]

if f(M) = f(N) whenever M and N have the same Tutte polynomial. It is
an immediate consequence of Lemma 5.3.10 that (k, `)-uniformity is a Tutte
invariant.
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Corollary 5.3.11. For all matroids M , let

f(M) = {(k, `) ∈ Z+ × Z+ : M is (k, `)-uniform}.

If M1 and M2 are two matroids with the same Tutte polynomial, then f(M1) =
f(M2).

Indeed, one can relax Corollary 5.3.11 to any two matroids whose Tutte poly-
nomials have the same zero coefficients. The next result regarding uniform-
distance follows by combining Lemma 5.3.9 and Lemma 5.3.10.

Corollary 5.3.12. Let M be a matroid. The following are equivalent:

(i) ud(M) ≥ γ − 2.

(ii) The (k, `)’th coefficient of R(M ;x, y) is positive for all k + ` < γ.

(iii) ∂T (M ;x,y)
∂kx ∂`y 6= 0 for all k + ` < γ.

By the proceeding discussion, all of our results regarding (k, `)-uniform ma-
troids have interpretations in terms of the Tutte polynomial. We end this section
and this part of the thesis by presenting one such result, a direct combination of
Lemma 5.3.10 with Corollary 4.1.3 and Theorem 3.4.6.

Theorem 5.3.13. For every pair (k, `) of positive integers and every prime power
q, there are only finitely many simple cosimple GF (q)-representable matroids M
such that

∂T (M ;x, y)
∂kx ∂`y

= 0.

Moreover, if M is such a matroid, then

r(M) ≤ k
(
q`+1 − 1
q − 1

)
− (`+ 1).



Part III
Structured Circuits in Matroids

We define a matroidM to be circuit-difference if C14C2 is a circuit whenever C1

and C2 are distinct intersecting circuits of M . Evidently, all such matroids are
binary. An example of such a matroid is the tipless binary r-spike, that is, the
matroid whose binary representation is [Ir | Jr−Ir], where Jr is the r×r matrix of
all ones. The question of characterising the circuit-difference matroids was raised
at a workshop proceeding the Oxley65 matroid theory conference at Louisiana
State University in 2019. In particular, it was asked if these matroids are precisely
the binary matroids for which no component contains a pair of skew circuits.
Recall that subsets X and Y of E(M) are skew in M if r(X ∪Y ) = r(X) + r(Y ).
It is easy to check that no two circuits of the tipless binary r-spike are skew. The
following is the main result of this part of the thesis:

Theorem 5.3.14. Let M be a connected regular matroid. Then M is a circuit-
difference matroid if and only if it has no pair of skew circuits.

To see that this theorem does not in fact extend to all binary matroids, con-
sider the matroid S8 for which a binary representation is shown in Figure 5.3. In
this matroid, {1, 4, 7, 8} and {2, 3, 5, 6, 8} are circuits whose symmetric difference
is the disjoint union of the circuits {1, 2, 6} and {3, 4, 5, 7}. Thus S8 is not a
circuit-difference matroid. However, since r(S8) = 4 and the only 3-circuits of S8

contain 6, the matroid S8 has no two skew circuits. Thus one implication of the
last theorem fails for arbitrary connected binary matroids. However, as the next
result shows, the other implication does hold in the more general context. The
proof of this lemma will be given in Section 6.2.

Lemma 5.3.15. Let M be a connected binary matroid. If M has a pair of skew
circuits, then M is not circuit-difference.
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1 2 3 4 5 6 7 8
1 0 0 0 1 1 1 0
0 1 0 0 1 1 1 1
0 0 1 0 0 0 1 1
0 0 0 1 1 0 0 1

.

Figure 5.3: A binary representation for S8.

In [26], the term “series extension” for matroids is defined as the addition of
an element e to a matroidM to create a matroidM ′ in which {e, f} is a cocircuit
where f is an element of M , and M ′/e = M . It will be expedient here to use
the term “series extension” more broadly. We shall call a matroid M ′ a series
extension of M if it is obtained from M by a sequence of one-element series-
extension moves. Pfeil [30] defined a connected matroid M to be unbreakable if
M/F is connected for every flat F ofM . He proved that a matroid is unbreakable
if and only if its dual has no two skew circuits, and he determined all unbreakable
regular matroids. Combining Pfeil’s two results with Theorem 5.3.14 gives the
following full characterisation of the regular circuit-difference matroids:

Theorem 5.3.16. A regular matroid M is circuit-difference if and only if every
component ofM is a series extension of one of the following matroids: U0,1, U1,m

for some m ≥ 1; M∗(Kn) for some n ≥ 1; M(K3,3); or R10.

One can check explicitly, or deduce from this, that M(K4) is a circuit-
difference matroid, but that M(K4)/e is not circuit-difference for each element
e. Thus the class of circuit-difference matroids is not minor-closed. However, in
Section 6.4, we shall show in that this class is closed under series minors and will
characterize the infinitely many excluded series minors.

This part of the thesis is structured as follows. Section 6.1 concerns the
graphic case of the circuit-difference problem, which was the original cause of mo-
tivation and whose resolution is particularly clean. In Section 6.2, we prove some
auxiliary results that will be used in the proofs of the main results. Section 6.3
consists of the proof of Theorem 5.3.14. Lastly, in Section 6.4, we determine the
excluded series minors for the class of circuit-difference matroids.



Chapter 6

Circuit-difference matroids

6.1 Motivation - The graphic case

The purpose of this section is to motivate the problem of characterising the
circuit-difference matroids by a treatment of the naturally arising graphic case.
Specifically, we prove the following theorem: the restriction of Theorem 5.3.14
to graphic matroids.

Theorem 6.1.1. Let G be a 2-connected, loopless graph without isolated vertices
and suppose that |V (G)| ≥ 3. Then M(G) is circuit-difference if and only if
every two cycles of G share at least two vertices.

We prove the forward direction of Theorem 6.1.1 as Lemma 6.1.2 and the
converse as Lemma 6.1.3.

Lemma 6.1.2. Let G be a 2-connected, loopless graph without isolated vertices
and suppose that |V (G)| ≥ 3. If G has a pair of cycles that share at most one
vertex, then M(G) is not circuit-difference.

Proof. Let C1,C2 be a pair of cycles of G that share at most one vertex. Suppose
firstly, that C1 and C2 are vertex disjoint. Then letting u1, v1 and u2, v2 be
vertices in C1 and C2 respectively, we have that, as G is 2-connected, there exists
disjoint paths Pu and Pv in G with ends u1, u2 and v1, v2 that otherwise avoid
C1 ∪ C2. We now note that there are two paths, from ui to vi in each cycle Ci.
We may refer to these as the “clockwise” and “anticlockwise” ui to vi paths in
each cycle. Let Dcw be the cycle in G formed by following the clockwise path
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from u1 to v1, followed by Pv, then by the clockwise path from v2 to u2 before
finally returning along Pu. Similarly, let Dccw be the cycle achieved by taking
only counterclockwise paths. Together, the cycles Dcw and Dccw use all the edges
of cycles C1 and C2. Furthermore, the edges that these cycles share are precisely
those of the paths Pu and Pv. Hence, the symmetric difference of the edge sets of
these two cycles is simply the union of the edge sets of the two cycles C1 and C2.
Therefore, M(G) is not circuit-difference. It remains to consider when C1 and
C2 meet at a single vertex. In this case, we follow the same argument as above
by simply letting u = u1 = u2 and replacing all mention of the path Pu with the
vertex u. Hence the result holds.

Pu

Pv

C1 C2

u1

v1

u2

v2

Pv

u

v1 v2

C1 C2

Figure 6.1: Illustrating the proof of Lemma 6.1.2. Arrows indicate the clockwise
paths.

Lemma 6.1.3. Let G be a 2-connected, loopless graph without isolated vertices
and suppose that |V (G)| ≥ 3. If M(G) is not circuit difference, then G has a
pair of cycles that share at most one vertex.

Proof. Take two cycles in G that instantiate that G is not circuit-difference.
Colour one red and the other blue. Let S be the set of edges common to both
red and blue cycles and let P be a maximal path in S. If the end vertices of
P are u and v then deleting P will leave a blue path, B and a red path R,
both with end vertices u and v. Moreover, R and B cannot be internally vertex
disjoint as then R ∪ B would be a cycle that is the symmetric difference of the
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red and blue cycles. Hence, R and B share at least one internal vertex. Let
w1 = u and let R1 be the subpath of R achieved by traversing R until the first
shared vertex w2 6= v is encountered. Continuing on to vertex v, there may then
be a number of shared edges to traverse. Let R2 be the red path from the end
vertex of this shared path to the next shared vertex, w3. Continuing in this
fashion until v = wn is encountered, we now note that, corresponding to each red
subpath Ri, there exists a disjoint blue subpath Bi with the same end vertices as
Ri. Furthermore, all Bi paths are mutually disjoint, as otherwise a blue subcycle
would exist. Choosing the pairs (R1, B1) and (R2, B2), we achieve two cycles,
R1 ∪ B1 and R2 ∪ B2, that can share at most one vertex, w2. Thus the result
holds.

u w2 w3
wn−1

v

B1

R1

B2

R2

Bn−1

Rn−1

Figure 6.2: Illustrating the proof of Lemma 6.1.3

To achieve a list of graphs for which every two cycles share at least two
vertices, we utilise a result of Bollobás [3]. A representation of each of the listed
graphs is given in Figure 6.3. For a graph G, δ(G) denotes the minimum degree
of a vertex of G.

Theorem 6.1.4 ([3], Theorem 2.2). Let G be a connected graph such that any
two cycles share at least one vertex. Suppose that δ(G) ≥ 3 and G does not have
a single vertex v that is used by all cycles. Then G is one of the following.

1. A three-vertex graph, where there can be multiple edges joining each.

2. K4, where one triangle can have multiple edges

3. K5

4. K5\e, where edges adjacent to e can be multiple.

5. A wheel where the spokes can be multiple.

6. K3,n, K ′3,n, K ′′3,n, K ′′′3,n, where the edges on the three vertices on one side
of the bipartite graph can be multiple.
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We end this section with the following comprehensive list of graphic circuit-
difference matroids. This is achieved by filtering out those of Bollobás’ graphs
that contain cycles meeting at a single vertex.

Lemma 6.1.5. Let G be a 2-connected, loopless graph without isolated vertices
and suppose that δ(G) ≥ 3. Then M(G) is circuit-difference precisely when G is
one of the following.

(i) A two-vertex graph with at least 3 edges,

(ii) K4,

(iii) K3,3

Proof. Let G be a graph satisfying the hypothesis. If |V (G)| ≤ 2 then, as δ(G) ≥
3, we have that |V (G)| = 2 and (i) holds. Otherwise |V (G)| ≥ 3 and if G has
no vertex v that is part of every cycle, then G must be in one of the classes of
graphs as detailed by (1) to (6) in Theorem 6.1.4. It is then easy to check (see
Figure 6.3) that only the specific cases of K4 and K3,3 have the property that
every two cycles share at least two vertices. Now suppose that G does possess a
vertex v that is part of every cycle. As G is circuit-difference, and δ(G) ≥ 3, we
have by Theorem 6.1.1, that there exist two cycles C1 and C2 that meet at v and
at least one other vertex u. We may partition each cycle Ci into two paths Pi and
P ′i with endpoints u and v. As cycles C1 and C2 are distinct, we may suppose
without loss of generality that paths P ′1 and P ′2 are distinct. If none of these
paths contains any other vertices other than u and v, we are done. Otherwise,
suppose without loss of generality, that P1 contains an internal vertex w. Then,
as δ(G) ≥ 3, we have that w must sit on a further cycle C3. As C3 necessarily
passes through v, we may partition C3 into two paths P3 and P ′3 with endpoints
w and v. If C3 includes u, we may redefine C3 to be the subcyle of C3 that
avoids u (redefining paths P3 and P ′3 accordingly). Now, C ′ = P ′1P

′
2 is a cycle

containing u and v but avoiding w. Therefore, C ′ and C3 share only one vertex
v, contradicting Theorem 6.1.1. Hence, there exists no such vertex w and the
result follows.
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(1) (2)

(3) (4)

(5) (6)

Figure 6.3: Bollabás’ list of graphs with, where appropriate, an example of when
such a graph contains a pair of cycles meeting at exactly one vertex. A dotted
line signifies that there may be multiple edges joining the end vertices.

6.2 Auxiliary results

The results in this section will be used in the proof of Theorem 5.3.14 and in
the determination of the excluded series minors for the class of circuit-difference
matroids. We begin this section with the proof of Lemma 5.3.15

Proof of Lemma 5.3.15. Let C1 and C2 be skew circuits of M , and let D be a
circuit that meets C1 and C2. Since C1 and C2 are skew, |D − (C1 ∪ C2)| > 0.
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As is easily checked,

D − (C1 ∪ C2) = (C14D) ∩ (C24D).

Thus C14D meets C24D. As their symmetric difference is the disjoint union of
the circuits C1 and C2, we deduce thatM is not circuit-difference for either C14D
or C24D is not a circuit, or both are circuits but their symmetric difference is
not.

The straightforward proof of the next lemma is omitted.

Lemma 6.2.1. Let M be a matroid. If M has a pair of skew circuits, then so
does every series extension of M .

The next result makes repeated use of the fact that if a circuit in a matroid
meets a 2-cocircuit, then it contains that 2-cocircuit.

Lemma 6.2.2. Let M be a circuit-difference binary matroid and suppose that
M ′ is obtained from M by adding an element e in series to an element f of M .
Then M ′ is circuit-difference.

Proof. Let D1 and D2 be an intersecting pair of circuits of M ′. Suppose first
that e ∈ D1 ∩D2. Then f ∈ D1 ∩D2 and {D1− e,D2− e} is an intersecting pair
of circuits ofM ′/e. Thus (D1−e)4(D2−e), which equals D14D2, is a circuit of
M ′/e. Hence D14D2 or (D14D2)∪{e} is a circuit of M ′. Because f /∈ D14D2,
the latter cannot occur. Hence D14D2 is a circuit of M ′.

Assume next that e ∈ D1 −D2. Then f ∈ D1 −D2. Now, D1 − e is a circuit
of M ′/e. Moreover, D2 is a circuit of M ′/e as otherwise M ′ would have a circuit
that contains e and is contained in D2 ∪ {e}. As such a circuit would avoid f ,
we have a contradiction. We now know that (D1 − e)4D2 is a circuit of M ′/e
containing f , so D14D2 is a circuit of M ′.

Finally, assume that e /∈ D1 ∪D2. Then f /∈ D1 ∪D2 and so D1 and D2 are
circuits of M ′/e. Hence so is D14D2. As this set avoids f , it must also be a
circuit of M ′ and the lemma is proved.

In the proof of Theorem 5.3.14, we will encounter a matroid with the property
that the complement of every circuit is a circuit. We call such matroids circuit-
complementary. Such matroids that are binary form an interesting subclass of the
class of circuit-difference matroids and are crucial in Section 6.4 when considering
the excluded series minors for the latter class.
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Lemma 6.2.3. Let M be a connected binary matroid that is circuit-comple-
mentary. Then M is a circuit-difference matroid.

Proof. Let C1 and C2 be an intersecting pair of circuits of M . Then C14C2 is
a disjoint union of circuits. If there are at least two circuits in this union, then,
since this union avoids C1 ∩C2, we violate the property that the complement of
every circuit is a circuit.

Again, the proof of the next result is elementary and is omitted.

Lemma 6.2.4. Let M be a connected binary matroid that is circuit-comple-
mentary.

(i) If {e, f} is a cocircuit of M , then M/e is circuit-complementary.

(ii) If M ′ is a series extension of M , then M ′ is circuit-complementary.

Lemma 6.2.5. Let M be a cosimple connected graphic matroid that is circuit-
complementary. Then M ∼= U1,4.

Proof. LetM = M(G). By Lemmas 5.3.15 and 6.2.3,M has no two skew circuits.
Let C be a cycle of G. Then E(G)− C is a cycle C ′ of G. Now, C and C ′ must
have exactly two common vertices, otherwise G is not 2-connected or M has two
skew circuits. It follows that G has two vertices u and v that are joined by four
internally disjoint paths where these paths use all of the edges of G. As M(G)
is cosimple, we deduce that M ∼= U1,4.

The following lemma makes repeated use of the fact that in a loopless 2-
connected graph, the set of edges meeting a vertex is a bond.

Lemma 6.2.6. Let M be a cosimple connected cographic matroid that is circuit-
complementary. Then M ∼= U1,4.

Proof. Let M = M∗(G). Then G is 2-connected and simple. Take a vertex v of
G and let C1 be the set of edges meeting v. Then C1 is a bond in G and hence a
circuit ofM . Thus E(G)−C is also a bond of G. Hence G has a vertex w that is
not adjacent to v. Let C2 be the set of edges meeting w. Then E(G) = C1 ∪ C2

and G is isomorphic to K2,n for some n ≥ 2. Let u be a vertex of G other than v
or w. The complement of the set of edges meeting u is a bond of G. Thus n = 2
and G is a 4-cycle. Hence M ∼= U1,4.
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Lemma 6.2.7. Let M be a connected cosimple regular matroid that is circuit-
complementary. Then M is isomorphic to U1,4 or R10.

Proof. If M is graphic or cographic, then, by Lemmas 6.2.5 and 6.2.6, M ∼= U1,4.
Now assume that M is neither graphic nor cographic and is not isomorphic to
R10. Then, by Seymour’s Regular Matroids Decomposition Theorem [32], as M
is connected, it can be obtained from graphic matroids, cographic matroids and
copies of R10 by a sequence of 2-sums and 3-sums. Moreover, each matroid that
is used to build M occurs as a minor of M .

6.2.7.1. M is 3-connected.

If M is not 3-connected, then M has a 2-separation, (X,Y ). Then M is the
2-sum, with basepoint p say, of matroids MX and MY with ground sets X ∪ p
and Y ∪ p, respectively. As M is connected, so are MX and MY . Suppose X
is independent in M . Then MX must be a circuit with at least three elements.
Thus M is not cosimple, a contradiction. We may now assume that both X

and Y contain circuits of M . Hence, by the circuit-complementary property,
both X and Y are circuits of M . As r(X) + r(Y ) = r(M) + 1, we see that
(|X|−1)+(|Y |−1) = r(M)+1 and, consequently, r∗(M) = |X|+|Y |−r(M) = 3.
ThenM∗ is a rank-3 simple binary connected matroid having X and Y as disjoint
cocircuits. It follows that M∗ is graphic, a contradiction. We conclude that
(6.2.7.1) holds.

We may now assume that there are matroids M1 and M2 each with at least
seven elements such that E(M1)∩E(M2) is a triangle T in both matroids andM
is the 3-sum of M1 and M2 across this triangle. Moreover, M1 and M2 are both
minors of M , and E(Mi) − T spans T in Mi for each i. Let Xi = E(Mi) − T .
Then (X1, X2) is a 3-separation of M . Suppose X1 is independent in M . As X1

spans T , it follows that M1 has rank |X1|, so M∗1 has rank three and has T as
a triad. Since M is cosimple, no element of X1 is in a 2-circuit of M∗1 . As M1

is binary, it follows that |X1| ≤ 3 so |E(M1)| ≤ 6, a contradiction. We conclude
by the circuit-complementary property that both X1 and X2 must be circuits of
M . Then, as r(X1) + r(X2) = r(M) + 2, we have r(M) = |X1|+ |X2| − 4 so M∗

has rank four, has (X1, X2) as a 3-separation and has each of X1 and X2 as a
cocircuit. Since M∗ is a disjoint union of cocircuits, it is affine. As M∗ is simple,
|E(M∗)| ≤ 8. But |Xi| ≥ 4 for each i, so |E(M∗)| = 8 and M∗ ∼= AG(3, 2). This
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contradicts the fact that M is regular and thereby completes the proof of the
lemma.

Lemma 6.2.8. Let M be a connected regular matroid and let X be a se-
ries class in M . Then M\X and M/X cannot both be connected and circuit-
complementary.

Proof. Assume that the lemma fails. By Lemma 6.2.7, each of M\X and M/X

is a series extension of U1,4 or R10. Note that X is independent in M . For every
series extension M ′ of U1,4 or R10, we have that

(r(M ′), r∗(M ′)) ∈ {(k + 1, 3), (k + 5, 5) : k ≥ 0}.

Thus, for some non-negative integer m,

(r(M\X), r∗(M\X)) ∈ {(m+ 1, 3), (m+ 5, 5)}.

Now let |X| = t. Then (r(M), r∗(M)) ∈ {(m + t, 4), (m + 4 + t, 6)}. Thus
(r(M/X), r∗(M/X)) ∈ {(m, 4), (m+4, 6)}, so M/X cannot be a series extension
of U1,4 or R10, a contradiction.

Although the following lemma is well known, we include a proof for complete-
ness.

Lemma 6.2.9. Let Y be a set in a connected matroid M such that |Y | ≥ 2 and
M |Y is connected. Let W be a minimal non-empty subset of E(M)−Y such that
M has a circuit C such that C ∩ Y 6= ∅ and C − Y = W . Then W is a series
class of M |(Y ∪W ).

Proof. This is certainly true if |W | = 1. Now, suppose that d1 and d2 are
distinct elements of W that are not in series in M |(Y ∪W ). Then M |(Y ∪W )
has a circuit K containing w1 and not w2. As W is independent, K meets Y .
But K ∩W ⊆ W − w2. Thus we have a contradiction to the choice of W . We
deduce that every two elements of W are in series in M |(Y ∪W ). Since M |Y is
connected, no element of Y is in series with an element of W . Thus W is indeed
a series class of M |(Y ∪W ).
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6.3 Regular circuit-difference matroids

In this section, we prove Theorem 5.3.14.

Proof of Theorem 5.3.14. Let M be a regular connected matroid. By
Lemma 5.3.15, if M has a pair of skew circuits, then M is not circuit-difference.
To prove the converse, consider all connected regular matroids with no two skew
circuits that are not circuit-difference and choose M to be such a matroid with
the minimum number of elements. Then, by Lemma 6.2.2, M is cosimple. Let
C1 and C2 be a pair of intersecting circuits ofM such that C14C2 is not a circuit
and |C1 ∪C2| is a minimum among such pairs. As M |(C1 ∪C2) is connected, we
must have that E(M) = C1 ∪ C2 by our choice of M . Now, C14C2 is a disjoint
union of at least two circuits.

5.3.14.1. If D is a circuit of M contained in C14C2, then (C14C2) − D is a
circuit of M .

Clearly, D meets both C1 − C2 and C2 − C1 but contains neither of these
sets. The choice of {C1, C2} implies that C14D is a circuit and hence that
(C14D)4C2 is a circuit. The last set is (C14C2)−D, so (5.3.14.1) holds.

Let Z = C14C2. As M has no two skew circuits, M |Z is connected and,
by 5.3.14.1, it is circuit-complementary. Thus, by Lemma 6.2.7, M |Z is a series
extension of U1,4 or of R10. Let X be a minimal non-empty subset of C1∩C2 such
thatM has a circuit whose intersection with C1∩C2 isX. Then, by Lemma 6.2.9,
X is a series class of M |(Z ∪X). Thus every circuit of M |(Z ∪X) that meets X
must contain X.

5.3.14.2. Every circuit of M |Z is a circuit of (M |(Z ∪X))/X.

Let D be a circuit of M that is contained in Z. Then D meets both C1 −C2

and C2 − C1 and, by 5.3.14.1, Z − D is a circuit of M that also meets both
C1 − C2 and C2 − C1. Assume that D is not a circuit of (M |(Z ∪X))/X. Then
M |(Z ∪ X) has a circuit K such that K ⊆ D ∪ X and K ∩ D 6= D. Thus K
meets and so contains X. Hence K−D = X. As |K ∪D| = |X ∪D| < |C1∪C2|,
it follows that K4D is a circuit of M and hence that K4D meets C1 −C2 and
C2−C1. As |C1 ∪K| < |C1 ∪D| < |C1 ∪C2|, the choice of {C1, C2} implies that
C14K is a circuit C of M and that C14(Z −D) is a circuit C ′ of M . As C and
C ′ both contain the non-empty set (D−K)∩C1 and both avoid the non-empty
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set (D −K) ∩ C2, we see that |C ∪ C ′| < |C1 ∪ C2| and C4C ′ is a circuit of M .
This circuit is [C14K]4[C14(Z −D)], which equals K4(Z −D). But the last
set is a disjoint union of two circuits, a contradiction. Thus (5.3.14.2) holds.

We know that M |Z is connected and circuit-complementary. Moreover, the
choice of X implies that M |(Z ∪ X) has a circuit that meets C1 ∩ C2 in X.
Therefore M |(Z ∪ X) is connected. Moreover, by (5.3.14.2), (M |(Z ∪ X))/X
is connected. It follows by Lemma 6.2.8 that (M |(Z ∪ X))/X is not circuit-
complementary. Thus (M |(Z ∪ X))/X has a circuit J such that Z − J is not
a circuit of (M |(Z ∪ X))/X. If J is a circuit of M |Z, then, as M |Z is circuit-
complementary, Z − J is a circuit of M |Z. Thus, by (5.3.14.2), we obtain the
contradiction that Z−J is a circuit of (M |(Z ∪X))/X. We deduce that J is not
a circuit of M |Z. Then J ∪X ′ is a circuit K of M |Z for some non-empty subset
X ′ of X. By the choice of X, it follows that X ′ = X. Now, Z = D∪D′ for some
disjoint circuits D and D′. We deduce using (5.3.14.2) that K meets both D and
D′ but contains neither. Hence |K ∪D| < |C1 ∪ C2|, so K4D is a circuit of M .
As |D′ ∪ (K4D)| < |C1 ∪ C2|, we see that D′4(K4D) is a circuit of M , that
is, (Z −K) ∪X is a circuit of M . Thus Z − J is a circuit of (M |(Z ∪X))/X, a
contradiction.

6.4 Excluded series minors

In this section, we show that the class of circuit-difference matroids is closed under
series minors, and we characterize the infinitely many excluded series minors for
this class.

Lemma 6.4.1. The class of circuit-difference matroids is closed under series
minors.

Proof. LetM be a circuit-difference matroid. Evidently,M\e is circuit-difference
for all e ∈ E(M). Now let {e, f} be a cocircuit ofM and considerM/e. A circuit
C of M/e contains f if and only if C ∪ {e} is a circuit of M . Thus the collection
C(M/e) of circuits of M/e is C(M\e)∪{C−e : f ∈ C ∈ C(M)}. It is now routine
to check that M/e is a circuit-difference matroid.

Let N5 be the 5-element matroid that is obtained from a triangle by adding
single elements in parallel to exactly two of its elements. This is easily seen to
be an excluded series minor for the class of circuit-difference matroids. Although
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the next proposition is not needed for the proof of the main result of this section,
it seems to be of independent interest.

Proposition 6.4.2. A connected binary matroid M has a pair of skew circuits
if and only if M has a series minor isomorphic to N5.

Proof. If M has a series minor isomorphic to N5, then, by Lemma 6.2.1, as N5

has a pair of skew circuits, so doesM . For the converse, let C1 and C2 be a pair of
skew circuits ofM , and let D be a circuit meeting both such that |D− (C1∪C2)|
is a minimum. Let M ′ = M |(C1 ∪ C2 ∪D). Next we show the following.

6.4.2.1. If C1 −D or C1 ∩D contains {x, y}, then {x, y} is a cocircuit of M ′.

Suppose that this fails. Then M ′ has a circuit K that contains x but not y.
Assume first that K meets C2. Then, by the choice of D, we must have that
K − (C1 ∪ C2) = D − (C1 ∪ C2). Then K4D is a disjoint union of circuits
that is contained in (C1 ∪ C2) − y or (C1 ∪ C2) − x. But, for each z in C1, the
matroid (M |(C1 ∪ C2))\z has C2 as its only circuit. As K4D 6= C2, we have
a contradiction. We deduce that K avoids C2. As y /∈ K, we must have that
K ∩ (D − (C1 ∪ C2)) is non-empty. Then K4D is a disjoint union of circuits
that does not contain D − (C1 ∪ C2). One such circuit must meet C2 ∩ D and
C1. But this violates the choice of D. Thus (6.4.2.1) holds.

By (6.4.2.1) and symmetry, we can perform a sequence of series contractions
in M ′, reducing each of the sets C1−D, C1 ∩D, C2 ∩D, and C2−D to a single
element. The resulting matroid is a series minor of M that has two disjoint 2-
circuits such that deleting one element from each leaves a circuit with at least
three elements. It follows that M has N5 as a series minor.

We call a matroid hyperplane-complementary if the complement of every
hyperplane is a hyperplane. One such matroid is the binary affine geometry
AG(r − 1, 2) of rank at least two. The next result determines all simple binary
hyperplane-complementary matroids. For all k, every rank-k flat of AG(r− 1, 2)
is isomorphic to AG(k − 1, 2).

Lemma 6.4.3. A simple rank-r binary matroid M is hyperplane-complement-
ary if and only if r ≥ 2 and M ∼= AG(r − 1, 2)\X for some set X such that
AG(r − 1, 2)|X does not contain a copy of AG(r − 3, 2).
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Proof. Suppose that M is hyperplane-complementary. Then r ≥ 2. Moreover,
E(M) is a disjoint union of cocircuits, so every circuit of M has even cardinality.
Hence we can view M as AG(r − 1, 2)\X for some set X. Let E = E(AG(r −
1, 2)). Then E(M) = E − X. Assume that AG(r − 1, 2)|X contains a copy
Z of AG(r − 3, 2). For y ∈ E − X, consider the closure clA(Z ∪ y) of Z ∪ y
in AG(r − 1, 2). This closure is a rank-(r − 1) flat of AG(r − 1, 2) and is thus
isomorphic to AG(r−2, 2). Let Y = clA(Z∪y)∩ (E−X) and W = (E−X)−Y .
Then Y is contained in some copy of AG(r − 3, 2), and W is contained in some
copy of AG(r−2, 2). Thus r(Y ) ≤ r−2 and r(W ) ≤ r−1. HenceW is contained
in a hyperplane W ′ of M whose complement in E(M) is not a hyperplane. Thus
M is not hyperplane-complementary, a contradiction.

Now let M = AG(r − 1, 2)\X where r ≥ 2 and AG(r − 1, 2)|X does not
contain a copy of AG(r − 3, 2). Let H be a hyperplane of AG(r − 1, 2). Then
AG(r − 1, 2)|H = AG(r − 2, 2). If r(H −X) ≤ r − 2, then H −X is contained
in some copy of AG(r − 3, 2) that is contained in H and so, as AG(r − 2, 2) is
hyperplane-complementary, X contains a copy of AG(r−3, 2). This contradiction
implies that the hyperplanes of M are all of the sets of the form H −X where H
is a hyperplane of AG(r − 1, 2). As AG(r − 1, 2) is hyperplane-complementary,
so is M .

Recall that AG(r−1, 2) is obtained from the projective geometry PG(r−1, 2)
by deleting a hyperplane, that is, by deleting a copy of PG(r − 2, 2). It is a
well-known consequence of the unique representability of binary matroids that if
PG(r − 1, 2)|E1 ∼= PG(r − 1, 2)|E2, then PG(r − 1, 2)\E1 ∼= PG(r − 1, 2)\E2.
Thus, as all single-element deletions of PG(r − 2, 2) are isomorphic, there is,
up to isomorphism, a unique simple binary rank-r single-element extension of
AG(r − 1, 2). We shall denote this extension by AG(r − 1, 2) + e.

Let M be the set of all matroids of rank at least three of the form [AG(r −
1, 2) + e]\X such that AG(r − 1, 2)\X is hyperplane-complementary of rank r.
Thus N∗5 is the unique rank-3 member of M while its rank-4 members are the
tipped binary 4-spike and a non-tip deletion thereof, that is, S8. We now show
that the duals of the matroids in M are precisely the excluded series minors for
the class of circuit-difference matroids.

Theorem 6.4.4. A binary matroid M is an excluded series minor for the class
of circuit-difference matroids if and only if M∗ ∈M.
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Proof. Let M be an excluded series minor for the class of circuit-difference ma-
troids. By Lemma 6.2.2, M is cosimple. Let C1 and C2 be intersecting circuits
of M such that C14C2 is not a circuit and |C1 ∪ C2| is minimal.

6.4.4.1. M∗ ∈M.

Evidently, E(M) = C1 ∪ C2. Then C1 and C2 are the only circuits of M
containing C1−C2 and C2−C1, respectively. Now, letting x ∈ C1 ∩C2, suppose
that (C1 ∩C2)− x contains an element y. Then, as x and y are not in series, M
has a circuit D containing x but not y. As D meets both C1 and C2, we have,
by the choice of {C1, C2}, that C14D, C24D, and hence (C14D)4(C24D) are
circuits of M . This last circuit is C14C2, so we have a contradiction. Thus
C1 ∩ C2 = {x}. To see that M/x is circuit-complementary, let D ∈ C(M/x)
such that D /∈ {C1 − x,C2 − x}. Then either D or D ∪ x is a circuit D′ of M ,
and D′ must meet C1 − C2 and C2 − C1. Hence, by the choice of {C1, C2}, we
have that C14D′ and hence (C14D′)4C2 is a circuit of M . Next we show that
(C14C2) − D is a circuit of M/x. Suppose it is not. Then x 6∈ D′ and M has
a circuit D′′ containing x such that D′′ $ (C14C2) − D. Using D′′ in place of
D′ above, we see that C14C24D′′ is a circuit of M that properly contains D′,
a contradiction. We conclude that (C14C2)−D is a circuit of M/x, so M/x is
circuit-complementary. Therefore, M∗\x is hyperplane-complementary. As M is
cosimple, M∗ is simple. Moreover, M∗ has C1 − x and C2 − x as hyperplanes,
so M∗ has the form [AG(r − 1, 2) + e]\X. Since M∗ is connected, r(M∗) ≥ 2.
But if r(M∗) = 2, then M∗ ∼= U2,3, so M ∼= U1,3 and M is circuit-difference, a
contradiction. Thus M∗ ∈M, so (6.4.4.1) holds.

To prove the converse, letM∗ = [AG(r−1, 2)+e]\X where AG(r−1, 2)\X is
hyperplane-complementary of rank r and r ≥ 3. By Lemma 6.4.3, AG(r−1, 2)|X
does not contain a copy of AG(r − 3, 2). Consider AG(r − 1, 2) + e and let H0

be the hyperplane of PG(r − 1, 2) whose deletion gives AG(r − 1, 2). Take a
rank-(r − 2) flat F of PG(r − 1, 2) that is contained in H0 and avoids e. Apart
from H0, there are exactly two hyperplanes, H1 and H2, of PG(r − 1, 2) that
contain F . Then H1−H0 and H2−H0 are hyperplanes of AG(r− 1, 2) + e, and
H1− (H0 ∪X) and H2− (H0 ∪X) are hyperplanes of [AG(r− 1, 2) + e]\X. The
complements of these two hyperplanes are circuits C1, C2 of M that meet in the
element e. We now note that C14C2 is not a circuit of M otherwise {e} is a
hyperplane of M∗ and we obtain the contradiction that r(M∗) ≤ 2. Hence M is



6.4. EXCLUDED SERIES MINORS 93

not circuit-difference.

6.4.4.2. If D is a circuit of M\e, then e /∈ cl(D).

Suppose that e ∈ cl(D) for some circuit D of M\e. Then there is a partition
{X1, X2} of D such that Xi is a circuit of M/e for both i. As M/e is circuit-
complementary, X1 ∪ X2 = E(M/e) = E(M) − e. This is a contradiction as
X1 ∪X2 = D $ E(M)− e. Hence (6.4.4.2) holds.

6.4.4.3. M\f is circuit-difference for all f in E(M).

Suppose someM\f is not circuit-difference. Then it has a pair of intersecting
circuits D1, D2 such that D14D2 contains a pair of disjoint circuits K1,K2.
Suppose first that both D1 and D2 avoid e. Then so do K1 and K2. Thus, by
(6.4.4.2), none ofD1, D2,K1, orK2 has e is in its closure. Hence all ofD1, D2,K1,
and K2 are circuits of M/e, so M/e is not circuit-difference, a contradiction.
Hence at least one of D1 and D2 must contain e, so f 6= e. Now suppose
e ∈ D1 −D2 and e ∈ K1. Then D1 − e and D2 are intersecting circuits of M/e

with circuits K1−e and K2 in their symmetric difference. This again contradicts
the fact that M/e is circuit-difference. Hence, by symmetry, we must have that
e ∈ D1 ∩ D2. Consequently, K1, K2, D1 − e, and D2 − e are circuits of M/e.
If D1 ∩ D2 = {e}, then D1 − e and D2 − e are disjoint. Thus their union is
E(M/e). But this union avoids f , a contradiction. Hence (D1 ∩ D2) − e must
be non-empty. But then D1 − e and D2 − e are intersecting circuits of M/e so
their symmetric difference, which equals D14D2, is a circuit of M/e. However,
this symmetric difference contains K1 and K2, which are circuits of M/e. This
contradiction completes the proof of (6.4.4.3).

As M∗ is simple, M is cosimple and hence no series contractions can be
performed. Thus, by (6.4.4.3), every series minor of M is circuit-difference and
the theorem holds.

The next result, the last of this thesis, follows immediately by combining
the last theorem with Tutte’s excluded-minor characterization of binary ma-
troids [34].

Corollary 6.4.5. A matroid M is an excluded series minor for the class of
circuit-difference matroids if and only if M ∼= Un,n+2 for some n ≥ 2, or M∗ can
be obtained from AG(r − 1, 2) + e for some r ≥ 3 by deleting some set X such
that e 6∈ X and AG(r − 1, 2)|X does not contain a copy of AG(r − 3, 2).
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