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Abstract: Optical resonances in bipartite metal nanostructure lattices are more resilient to finite
size-effects than equivalent unipartite lattices, but the complexities of their behaviour in non-ideal
settings remain relatively unexplored. Here we investigate the quality factor and extinction
efficiency of 1D Ag and Au unipartite and bipartite lattices. By modelling finite size lattices over
a range of periods we show that the quality factor of Ag bipartite lattices is significantly better
than unipartite lattices. This improvement is less pronounced for Au bipartite lattices. We also
show that bipartite lattices are dramatically affected by structure size variations at scales that are
typically seen in electron beam lithography fabrication in contrast to unipartite lattices, which
are not as sensitive.
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1. Introduction

Optical resonators, operating in the visible spectrum, are critical components in many technologies,
including lasers [1–4]. Recent advances in micro- and nano-fabrication techniques allow optical
resonators to be built on the sub-wavelength scale, which has enabled the fabrication of
metasurfaces [5], optical sensors [6] and nanolasers [1]. An example of an optical resonator is a
metal spheroid, which is commonly used to model more irregular shapes which are fabricated
with lithography and lift-off [7].

A metal sphere with a diameter on the order of 100 nm can exhibit an optical resonance due
to the collective oscillation of free electrons in the metal, known as localised surface plasmon
resonance (LSPR) [8]. A lattice of such structures with a period close to the wavelength of light
can exhibit surface lattice resonance (SLR) due to the coherent scattering between many structures
[9]. This has been found in both metal and dielectric lattices [10–15]. SLR has a much higher
quality factor (Q) than LSPR that enables many innovative applications, including advanced
sensors [16–19], laser cavities [2–4] and metasurfaces [20,21]. Tuning the period of the lattice,
the surrounding refractive index, or the structure sizes leads to high quality resonances, localised
and enhanced electric fields, and high scattering efficiencies [12,22,23]. Such tuneability also
allows for precise control over the resonant wavelength, which has been used to realise wavelength
tunable lasers [4] and reconfigurable metalenses [20].

Fabricated lattices inevitably suffer from some degree of disorder, either due to variations in
the structure size or position or due to the introduction of defects, such as missing elements. It
has been shown that SLR is very robust to the removal of elements in the lattice [24] and many
studies have investigated the effect of positional disorder [24–31]. Disorder of the structure shape
within the lattice has seen less attention, primarily due to the difficulty in modeling large lattices
where all the elements are different and the challenge of controlling shape disorder experimentally
[29,32–34]. Nevertheless, understanding the effect that size disorder has on SLR is increasingly
important as fabrication moves from slow but precise methods such as electron beam lithography
(EBL) to larger scale methods, such as nano-imprint lithography [35,36], which are expected
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to exhibit larger error. Furthermore, plasmonic lattices are commonly fabricated using metal
lift-off that, regardless of patterning method, introduces more structure disorder than the etching
methods that are commonly used for dielectric lattices [37].

Finite-size effects are also an important consideration when designing plasmonic lattices. For
some applications, large area (cm2) lattices are used that can be modelled as infinite lattices but
for other applications, such as miniaturised lasers [38], finite lattices are required. A number of
groups have shown a clear reduction of the quality factor in comparison to infinite lattices as the
number of structures is reduced [15,33,38–41].

In addition to lattices comprising a single structure size, which we refer to as unipartite lattices,
there is interest in lattices with multiple structure sizes that can exhibit enhanced quality factors
and multiple resonances [39,42,43]. Recently bipartite lattices, consisting of two interlaced
arrays with square symmetry but different structure sizes, were shown to exhibit quality factors
much greater than that of the commonly used unipartite lattices [39]. It was also shown that
these resonances require fewer interacting structures to achieve a given quality factor compared
to unipartite lattices. This suggests that bipartite lattices may also be more robust to fabrication
errors such as lattice dislocations. However, due to the strong dependence of the quality factor
on the size difference between the constituent structures it is unclear how detrimental structure
shape disorder would be in comparison to unipartite lattices. Motivated by the realisation of
finite lattices with high quality factors, we explore the effect of varying period and number of
structures on 1D finite unipartite and bipartite lattice resonances. We then investigate the effect
that structure shape disorder has and make a comparison between unipartite and bipartite lattices.

Our results show how finite-size effects impact extinction efficiency and quality factors of Ag
and Au lattice at visible wavelengths. We demonstrate that while bipartite lattices show much
higher quality factors than unipartite lattices in general, consideration of the peak extinction
efficiency and material properties are important when considering the applicability of these
lattices. We also find that, despite the high Q resonances achieved with ideal bipartite lattices,
they are strongly influenced by size disorder in comparison to unipartite lattices. These results
emphasise the importance of considering multiple sources of fabrication error when assessing
the suitability of more complex lattice resonances for practical applications.

2. Resonance mechanism

The systems studied in this work consist of 1D periodic lattices of metal nano-spheres, as shown
in Fig. 1. The size of the structures and the period is chosen such that lattice resonances are
observable in the visible spectrum. We note here that 1D lattices support similar resonances as
2D lattices yet can be modelled with fewer computational resources, and in general the resonances
from a 1D lattice have a higher quality factor than their 2D counterparts [22]. Hence, these
results are expected to apply qualitatively to 2D cases but will not show quantitative agreement.
In Fig. 1(a) lattice A comprises silver spheres with a diameter (D1) of 100 nm and a period (p)
of 480 nm. The structures in lattice B have the same material properties and period as lattice
A but a diameter (D2) of 90 nm. The bipartite lattice depicted in Fig. 1(b) is a combination of
lattices A and B with a half period offset between the two lattices. In all cases the unit cell of
these lattices has a length of p in the x direction. We take values for the complex refractive index
of Ag from Johnson and Christy [44].

Due to the periodicity of the lattices their behavior is similar to that of diffraction gratings. By
adjusting the period or refractive index it is possible to achieve diffraction orders that travel in the
plane of the lattice. The wavelength where this occurs is known as the Rayleigh anomaly (λRA).
For normally incident light the lowest order RA has a wavelength given by λRA = p · n, where p
is the period of the lattice and n is the refractive index.

The lattice elements we consider in this work are metal spheres which can host LSPR. At
the resonance wavelength, λLSPR, a large fraction of the incident power can be transferred into
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Fig. 1. (a) Diagram of the unipartite lattices A and B with 200 unit cells each. The
structures are Ag spheres and D1 is 100 nm, D2 is 90 nm and p is 480 nm (b) Bipartite lattice
constructed from lattices A and B offset by p/2. (c) Extinction efficiency spectrum for lattice
A (solid) and lattice B (dashed). (d) Extinction efficiency spectrum for the bipartite lattice.

LSPR, resulting in a strong enhancement of electric field around the structure as well as increased
scattering and absorption of the incident light. The spheres can be modeled as electric dipoles
with complex polarisabilities, hence there is a phase difference between the incident and the
scattered light from the sphere, which explains the spectral position of SLR peaks, λSLR.

Diffraction orders with wavelengths larger than λRA do not propagate away from the lattice but
can be described as surface waves which propagate in the plane of the lattice and are evanescent
in the direction normal to the lattice. The dampening of these surface waves increases as the
wavelength is increased. SLR occurs when the scattered light from many structures arrives
in phase with the incident light on neighbouring structures. Due to the phase delay between
the incident light and resonantly scattered light an evanescent mode is required to achieve this
resonance, i.e. λSLR>λRA.

The detuning between the RA and LSPR is defined as the wavelength difference between λLSPR
and the λRA. In the case of small detuning, where λRA is chosen to be close to λLSPR, the effect
of resonant scattering due to LSPR is large and a highly damped evanescent wave is required
to satisfy the phase matching requirement of SLR. Due to the short propagation distance of
evanescent waves the minimally detuned SLR require fewer interacting structures to achieve
their maximum quality factor [33,45,46]. When detuning is increased, by moving λRA to much
higher wavelengths than λLSPR, λSLR approaches λRA due to coupling through weakly damped
evanescent waves which are not perturbed as strongly by the LSPRs. These waves can travel long
distances in the lattice, resulting in a much higher quality factor resonance than the less detuned
lattices, at the expense of requiring a large number of interacting structures.

The bipartite lattices that we consider consist of two unipartite lattices interlaced such that
there is a half period offset between them, as shown in Fig. 1(b). In this case there are two
structures within the lattice unit cell, one with a diameter of D1 and another with a diameter of
D2. If D1 = D2 then the scattering strength of each structure is the same and no resonance
can occur because light radiated from structure 1 will arrive out-of-phase with the resonance in
structure 2. However, when D1 > D2, structure 1 is a stronger scatterer if all other parameters
are the same. Hence, it is able to polarise structure 2 such that it is out-of-phase [39]. In this case
light radiated from structure 1 arrives in phase with structure 2, resulting in coherent coupling.
With both elements out-of-phase with respect to each other destructive interference reduces
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light scattering away from the lattice. This dramatically increases the quality factor due to the
reduction in radiative loss, hence these resonances are commonly referred to as ‘sub-radiant’
[39,47].

3. Model

The extinction spectra for ideal unipartite lattices with 200 unit cells, which has 200 structures in
total, are shown in Fig. 1(c). We modeled the lattices using SMUTHI [48], which implements
the T-matrix method and has previously been used for finite disordered lattices [49,50]. The
extinction spectrum for the bipartite lattice, also with 200 unit cells and 400 structures in total, is
shown in Fig. 1(d). The extinction peak is clearly shifted to higher wavelengths (706.8 nm) than
the RA (700.8 nm) and unipartite SLRs (701.6 nm and 700.4 nm), as expected. Furthermore, the
quality factor is dramatically improved from 88 and 186 for the unipartite lattices with diameters
of 90 nm and 100 nm, respectively, to 1090 for the bipartite lattice.

All results in this work were achieved by modeling the incident light as a normally incident
plane wave polarised in the y direction and the wavelength resolution of all simulations was
0.2nm. The lattices were modeled in a uniform refractive index environment of n = 1.46.
This was chosen as it is approximately the refractive index of fused quartz, which is a common
substrate for optical elements.

The quality factor is defined as Q = f0/∆f , where f0 is the centre frequency of the resonance and
∆f is the peak width at half maximum. Because the spectra in Fig. 1 consists of two overlapping
resonances, one a broad peak due to LSPR and the other a sharp peak from SLR, we first remove
the background LSPR extinction before measuring the quality factor. The background removal
was particularly required for peaks where the half maximum was less than the background level.
Further details and an example of the background fitting can be seen in Section 1 and Figure S1 of
Supplement 1. We have also utilised a figure of merit (FOM) equal to Emax · Q, where Emax is the
peak extinction efficiency at the SLR wavelength with the background extinction level subtracted.
We report FOM values as some applications, such as biosensors or colour filters, require high
peak extinction efficiencies and quality factors. The extinction efficiency is calculated by dividing
the extinction cross-section (Cext), returned by the T-matrix model, by the geometric area of the
lattice (Alattice) where the geometric area is determined by Alattice = N · π(D/2)2 for a unipartite
lattice or Alattice = N · π[(D1/2)2 + (D2/2)2] for a bipartite lattice.

In this work we compare the quality factor of finite lattices to that of infinite lattices. There are
methods for calculating the quality factor of infinite lattices based on the coupled dipole method
[51]. However, to provide a quantitative comparison between an infinite and finite lattice with the
T-matrix method we take the infinite quality factor to be the value of Q which does not change
significantly with an increasing number of structures. Further details can be found in Figure S2
of Supplement 1.

4. Finite-size effects for unipartite lattices

To investigate finite size effects on the SLR quality factor we model 1D lattices with N = 40 to
N = 200, where N is the number of unit cells in the lattice. For a 500 nm period lattice this
corresponds to a total length ranging from 20 µm to 100 µm. We also model periods between
400 nm and 500 nm in steps of 10 nm. We extend the range to p = 600 nm for structure diameters
of 122.5 nm and 126.5 nm. Increasing the period increases the detuning between λLSPR and λRA,
resulting in higher quality resonances that are expected to require more unit cells to approach the
infinite limit [33,46]. In these simulations λRA ranges from 584 nm to 730 nm for p = 400 nm
and p = 500 nm, respectively, with λRA = 876 nm for p = 600 nm.

Figures 2(a)-(d) show Q against period for 1D lattices with a structure diameter of 90 nm, 100
nm, 122.5 nm and 126.5 nm, respectively. Each line in the plot represents a different choice of N
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as indicated by the black arrow in Fig. 2(a). In Figs. 2(e)-h we present Emax for the same lattices
and in Figs. 2(i)-l we show the FOM
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Fig. 2. Modeled finite size effect on unipartite Ag lattices with 90 nm spheres (a,e,i), 100
nm spheres (b,f,j), 122.5 nm spheres (c,g,k) and 126.5 nm spheres (d,h,l). Plots are for
lattices of different sizes from N = 40 (darkest shade) to N = 200 (lightest shade) in steps
of 20 and periods ranging from 400 nm to 500 nm (a,b,e,f,i,j) or 600 nm (c,d,g,h,k,l) in
steps of 10 nm. In (a), (b), (c) and (d) Q is plotted against p. In (e),(f),(g) and (h) the peak
extinction efficiency (Emax) is plotted. (i),(j),(k) and (l) show the figure of merit (FOM)
defined as Q · Emax. All results are calculated using the T-matrix method with a uniform
surrounding refractive index of 1.46.

We investigate both Ag and Au lattices: Ag is chosen for its attractive plasmonic properties
and wide use in plasmonic applications [52], while Au is a popular material for plasmonic
applications due to its stability and chemical resistance when compared to other popular materials
such as Ag, Al and Cu [53]. As with the Ag lattices, Figs. 3(a) and 3(c) show Q and FOM for Au
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lattices with a diameter of 90 nm. Figures 3(b) and 3(d) show the same but for lattices with 100
nm diameter spheres. We take the complex refractive index of Au from Johnson and Christy [44].
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Fig. 3. Simulated finite size effect on unipartite Au lattices. The quality factor and figure of
merit are plotted against period in (a - b) and (c - d), respectively. The results are shown for
90 nm spheres in (a)and (c) and 100 nm spheres in (b) and (d).

From the results in Fig. 2 and 3 it can be seen that, regardless of material and structure size,
larger lattices are needed to achieve high quality factors as the detuning is increased in agreement
with results shown by others [51]. Interestingly, quality factors quickly increase with increasing
period for a given N and there is a point where the quality factor is limited by the finite size of
the lattice, as evident from the deviation of the curves in Figs. 2(a)-(d), 3(a) and 3(b). After this
point the curves peak and then increasing the period decreases the quality factor, although at a
slower rate compared to the increase at lower periods.

In contrast to the quality factor results, the FOM rapidly decreases as period is increased, for
all the unipartite lattices, once finite size effects become significant, as shown in Figs. 2(i)-(l),
3(c) and 3(d). This can be attributed to a decrease in the extinction efficiency as the period is
increased to higher values, as shown in Figs. 2(e)-(h) for Ag lattices: the results for Au lattices,
which show a similar trend, are shown in Figure S5 of Supplement 1. This results in a significant
peak in the FOM curves for both Ag and Au lattices. At this point the increasing quality factor
due to detuning balances the finite-size effects. Hence, if the goal is to achieve the highest FOM,
for a given material and structure diameter there is an ideal period for a given N. These results
highlight the importance of considering the peak extinction efficiency as well as the quality
factor when designing finite lattices, as the peak extinction efficiency is even more sensitive to
finite-size effects than the quality factor.

In addition to these general properties of finite lattices, there are some significant differences
between the materials and structure sizes. Figures 2 and 3 show that unipartite lattices with both
90 nm and 100 nm diameter structures exhibit similar finite-size effects independent of material.
However, the curve families appear to shift to higher periods as the diameter is changed from 90
nm to 100 nm, as seen by comparing Figs. 2(a) and 2(b) for Ag and Figus. 3(a) and 3(b) for Au.
This indicates that the quality factor and deviation of the lattices from the infinite limit is highly
dependent on the detuning between λLSPR and λRA. This also explains why the curves for Au
lattices follow the same trend as the Ag lattices, albeit shifted to higher periods. This is because
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λLSPR for the Au spheres (593 nm for D = 100 nm) is higher than for the Ag spheres (520 nm for
D = 100 nm), as shown in Figure S3 of Supplement 1.

To investigate the effect of material properties without the influence of detuning we have also
included Ag lattices with 122.5 nm and 126 nm structure diameters as shown in Figs. 2. In this
case the 122.5 nm diameter Ag sphere has λLSPR = 580 nm and the 126.5 nm diameter sphere
has λLSPR = 592 nm which is similar to the Au spheres with λLSPR = 580 nm for the 90 nm
diameter sphere and λLSPR = 593 nm for the 100 nm diameter sphere, as shown in Figure S4 of
Supplement 1. When comparing the Au lattices to the Ag lattices with 122.5 nm and 126.5 nm
diameter structures, where the detuning is the same, the Ag lattices require much larger periods
to achieve similar quality factors to that of Au lattices. The origin of this phenomena can be
attributed to the width of the LSPR peak. These results indicate that a larger quality factor for the
LSPR peak will require less detuing of the RA to achieve a high quality factor in comparison to
another structure with the same λLSPR.

Despite having higher LSPR extinction efficiencies, the FOMs for Au lattices, shown in
Figs. 3(c) and 3(d), are reduced in comparison to Ag lattices with 90 nm and 100 nm diameter
structure. This is expected, due to the reduced extinction efficiency associated with Au lattices
compared to Ag, which can be attributed to the higher absorption that is expected in Au structures.

5. Finite-size Effects for Bipartite Lattices

Finite-size effects were also investigated for bipartite lattices. Firstly, we set D1 = 100 nm and
varied D2 as shown in Fig. 4. Then, using a value for D2 that gave the highest quality factor, we
investigate changing period in the same way that was done for unipartite lattices, as shown in
Fig. 5.

Fig. 4. Modeled finite size effects of bipartite Ag lattices with varying D2. D1 is set to 100
nm and the period is set to 420 nm in (a), (b) and (c) and 480 nm in (d), (e) and (f). Plots
are for lattices of different sizes with N from 40 to 200 and D2 ranging from 75 nm to 125
nm in steps of 5 nm. In (a) and (d) quality factor is plotted against D2. In (b) and (e) the
peak extinction efficiency (Emax) is plotted. (c) and (f) show the figure of merit (FOM).
All models assume a uniform surrounding refractive index of 1.46. When D1 and D2 are
equal no resonance is observed, resulting in a null in all plots when D2 = 100 nm. Linear
interpolation between the data points is also used.

To determine an appropriate value for D2, finite lattices were modeled with D1 of 100 nm and
D2 varying from 75 nm to 125 nm in steps of 5 nm, as shown in Fig. 4. In Fig. 4(a) and 4(d) we
show the quality factor for bipartite lattices with a period of 420 nm and 480 nm, respectively.
The corresponding peak extinction efficiency and FOM are presented in Figs. 4(b) and 4(e) and
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Fig. 5. Modeled finite size effect on bipartite Ag (a, c) and Au (b, d) sphere lattices with
D1 = 90 nm and D2 = 100 nm. Plots are for lattices of different sizes from N = 40 to
N = 200 in steps of 20 and periods ranging from 400 nm to 600 nm in steps of 10 nm.
Darker curves correspond to lower N. In (a) and (b) Q is plotted against p. (c) and (d) show
the FOM. All results are calculated with a uniform surrounding refractive index of 1.46 and
a normally incident plan wave.

Figs. 4(c) and 4(f), respectively. These plots show two peaks in quality factor with resonance
disappearing when D1 and D2 are equal at 100 nm, which is in agreement with previous work by
others [39]. A sudden jump in quality factor is observed as the diameter resolution is only 5 nm;
however, it is expected that there is a smooth, albeit rapid, transition to Q = 0 when D1 and D2
are equal [39] rather than an infinite quality factor which would be indicative of a bound state in
the continuum [43]. We base the rest of this work on D2 = 90 nm as it produced the highest
quality factor resonances at p = 420 nm and p = 480 nm.

For bipartite Ag lattices with D1 = 100 nm and 420 nm period we can see that higher quality
factors are achieved when D2 is 90 nm than when D2 is 110 nm, as shown in Fig. 4(a), despite
the same diameter difference between D1 and D2. This can be explained by considering that
the detuning between λLSPR and λRA will decrease as D2 is increased. This also suggests that
increasing D2, for a given N, will bring the quality factor closer to that of an infinite lattice.
This can be clearly seen in Fig. 4(d) where finite-size effects are significant when D2 is less
than 100 nm (evident from the changing Q with an increase in N) and are reduced as D2 is
increased. Finite size effects are significantly reduced when D2 is greater than 110 nm as shown
by the minimal dependence of Q on N for these values of D2. Finite size effects are negligible at
D2 = 125 nm where Q does not change with N over the range that we have investigated here.

Figure 5 shows the effect of changing period on Q and FOM for finite Ag and Au bipartite
lattices: data for Emax, is included in Figure S6 of Supplement 1. Here D1 = 100 nm and
D2 = 90 nm for Figs. 5(a)-(c). D1 = 126.5 nm and D2 = 122.5 nm in Figs. 5(e) and f. In

https://doi.org/10.6084/m9.figshare.17380892
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all cases the period is varied from 400 nm to 600 nm. The results for Ag lattices are shown in
Figs. 5(c)-(f) while the results for Au lattices are shown in Figs. 5(a) and (b).

These results have significant implications for finite bipartite lattices which have a high
detuning between λLSPR and λRA. As seen in Fig. 5(c), for example, where for a given N there is
an optimal period that produces the highest quality factor, which, similar to the unipartite lattices,
is due to the balancing between an increase in Q due to detuning and a decrease in Q due to
finite size effects. Finite lattices with periods larger than this optimal period can benefit from an
increase in D2 resulting in a reduction in detuning which will increase the quality factor and
FOM, as seen for N = 40 to N = 120 in Figs. 4(d) and 4(f). Conversely, finite lattices that have
periods less than or equal to their optimal period will be negatively impacted by an increase in
D2.

In contrast to Q, Emax decreases as |D1 − D2| decreases, as shown in Figs. 4(b) and 4(e). This
results in the peak FOM shifting to higher values of |D1 − D2|, due to the balancing between a
decreasing extinction efficiency and an increasing quality factor. When D1 and D2 are different,
radiation and light coupling into the lattice are partially suppressed due to destructive interference.
This destructive interference increases as the scattering efficiency of the structures equalise,
ultimately resulting in no pathway for radiation when D1 and D2 are equal.

Similar to unipartite lattices, bipartite lattices show an increase in quality factor as the period
is increased, as shown in Figs. 5(a),c and e. However, bipartite lattices typically exhibit higher
quality factors than unipartite lattices for the same number of unit cells [39]. This is evident
when comparing the Q for Ag bipartite lattices, shown in Fig. 5(c), to the unipartite lattices,
shown in Fig. 2(a) for D = 90 nm and in Fig. 2(b) for D = 100 nm. Here the bipartite lattices
can reach quality factors of over 1000, whereas none of the unipartite lattices achieve Q above
250. Furthermore, results for bipartite lattices with the same detuning as unipartite lattices can
be seen by comparing Figs. 5(e) and (f) to Fig. 2(a) and (b). Here the bipartite lattice exhibits
significantly higher quality factors than unipartite lattices despite the constituant elements having
the same detuning for the RA. In Figs. 5(e) and (f) the quality factors reach above 2000, which is
due to the limited wavelength resolution that results in low quality factor resolution at these small
line widths. It is evident that the quality factor is significantly affected by the size difference
between the elements rather than the detuning of LSPR and SLR, as expected from the results
shown in Fig. 4.

6. Material effects in bipartite lattices

The quality factor is significantly lower for Au bipartite lattices, shown in Fig. 5(a), compared to
Ag lattices. This results in close to an order of magnitude lower FOM than the Ag cases. The
poor performance of the Au bipartite lattices, with FOMs worse than the Au unipartite lattices,
can again be attributed to the higher dielectric loss in Au [44]. This may indicate that bipartite
lattices are more sensitive to material loss than unipartite lattices, where the difference between
Ag and Au is not as significant. This would be expected as the subradiant bipartite resonances
arise from the interference of scattered light.

The finite-size effects for bipartite lattices of both materials exhibit similar properties to the
unipartite lattices: for bipartite lattices finite-size effects occur at larger periods than for unipartite
lattices; however, the FOM rapidly decreases at larger periods, in contrast to the unipartite lattices.

7. Structure diameter disorder effects

Next, we investigate disorder effects for Ag unipartite and bipartite lattices. Ag was chosen
because the Au bipartite lattices behaved poorly over wavelength ranges considered in this work.
For bipartite lattices it was hypothesised that the quality factor will be significantly diminished
for lattices with structural disorder, due to the dependence of Q on the difference between D1 and
D2, as shown in Fig. 4, yet this has not been verified previously.
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Each sphere diameter in the lattice was randomly generated from a Gaussian distribution with
a mean of 90 nm or 100 nm and a standard deviation (σ) of 5 nm. 5 nm was chosen as a realistic
value that is close to what we have measured previously with lattices fabricated with electron
beam lithography [54]. For each trial we used a set seed for the random number generator so
that the period could be changed while preserving relative disorder. Ten trials were done with
10 different seeds, generating 10 Q vs p curves. This was done for Ag unipartite lattices with
D = 100 nm for N = 60, N = 100 and N = 200. The quality factor results are shown in
Fig. 6(a) and 6(b) and the corresponding FOM results are shown in Fig. 6(c) and 6(d). The
dashed line shows the Q or FOM for an ideal lattice with no diameter deviation. The mean Q for
each set of 10 disordered lattices is indicated by the solid line and the shaded region around the
mean plots one standard deviation either side of the mean.
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Fig. 6. The effect of disorder in unipartite and bipartite Ag lattices. (a) Quality factor vs
period for three unipartite lattices with N of 60, 100 and 200 and D = 100 nm. The dashed
lines show the ideal quality factor taken from Fig. 2(a). The solid line shows the mean
quality factor from 10 trials where each structure is randomly generated from a population
with a standard deviation of 5 nm. The shaded area shows the standard deviation in quality
factors. (b) Quality factor vs period for three bipartite lattices with D1 = 100 nm and D2 =
90 nm. The legend is the same as (a). (c) and (d) show the corresponding FOM for unipartite
and bipartite lattices, respectively.

Figures 6(a) and 6(b) show clear differences between disordered unipartite and bipartite lattices.
The quality factors of the unipartite lattices (Figure 6(a)) are only minimally reduced by the
structure disorder over all periods. In contrast, bipartite lattices (Figure 6(b)) show a significant
sensitivity to the structure deviation. For periods less than 440 nm the mean quality factor is at
least halved for both N = 60 and N = 200. Figure 7(a) and b show a comparison of unipartite
and bipartite lattices over a limited period range where the effect of disorder on quality factor
can be seen more clearly. In Fig. 7(a) at p = 450 nm a minimal reduction in quality factor
is observed for a unipartite lattice; however, the bipartite lattice shows a significant decrease



Research Article Vol. 30, No. 3 / 31 Jan 2022 / Optics Express 3312

in quality factor at a period of 400 nm when the disorder is introduced, as shown in Fig. 7(b),
despite both unipartite and bipartite lattices having similar quality factors under ideal conditions.
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Fig. 7. Comparison of disorder in unipartite (a,c) and bipartite (b,d) lattices with similar
quality factors (a,b) and similar figures of merit (c,d). The data is taken from Fig. 6 over a
limited range of periods and restricted to N = 200.

The FOM results shown in Fig. 6(d) further emphasise the effect of disorder, where for the
N = 200 lattice the FOM is only ≈15% of the ideal value at p = 400 nm and p = 480
nm. This again contrasts with the unipartite case, shown in Fig. 6(c), where significantly less
reduction in FOM is observed. Again, this is highlighed in Fig. 7 where the unipartite lattices
shows a minimal reduction in FOM at p = 400 nm, shown in Fig. 7(c), and the bipartite lattice is
significantly affected, as shown in Fig. 7(d), despite having similar FOMs under ideal conditions

These results show that, while FOM for an ideal bipartite lattice is similar to that of the
unipartite lattices, when structure disorder is accounted for bipartite lattices perform worse. For
example, if we consider a 400 nm period Ag lattice with 200 unit cells, a FOM of 812.7 can
be achieved for an ideal unipartite lattice, as shown in Fig. 7(c), and a FOM of 764.7 can be
achieved for an ideal bipartite lattice, as shown in Fig. 7(d). With the introduction of a 5 nm
standard deviation in diameter, the mean FOM is reduced to 108.6 for the bipartite lattice, which
is now much less than the FOM of 714.3 for the unipartite lattice with the same deviation in
structure size.

This has important implications for fabrication. We expect that both finite and approximately
infinite bipartite lattices will suffer from a significant reduction in quality factor and extinction
efficiency when these lattices are experimentally implemented. This could present a challenge
in the application of these lattices. However, there may be some methods for mitigation: for
example, annealing has been shown to reduce disorder and increase the quality factor of unipartite
lattice resonance and could be used to achieve the same effect with bipartite lattices [55]. Using
dielectric structures, such as silicon cylinders, may also be an option for some applications, as
these are commonly fabricated with anisotropic etching methods which produce structures with
very small diameter deviation [37].
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8. Conclusion

In this work we have shown how the quality factor and extinction efficiency of 1D finite plasmonic
lattices evolve with period and number of unit cells. We have found that, for a given number of
unit cells, there exists a period for which the figure of merit is maximised. This is the case for
both unipartite and bipartite lattices. Ideal bipartite lattices were shown to achieve much higher
quality factors than unipartite lattices, however, they demonstrated a less dramatic improvement
in the FOM due to the sub-radiant nature of the lattices [39]. The material properties were also
found to be important with Ag bipartite lattices producing a much higher FOM than Au lattices,
suggesting that bipartite lattices are more dependent on LSPR scattering efficiency than unipartite
lattices.

Finally, it was shown that while finite bipartite lattices show promise under ideal conditions,
the introduction of structural disorder has a much more significant effect than on the unipartite
lattices. A reduction in FOM to 15% of the ideal value was found for some bipartite lattices while
unipartite lattices were minimally affected. This highlights the importance of considering practical
fabrication errors when designing new lattices exhibiting more complex lattice resonances.

These results show that improved fabrication techniques may be required for the experimental
realisation of high Q bipartite lattice resonances. Methods such as annealing or careful design
of the individual elements may reduce the impact of disorder. By overcomming these potential
fabrication issues we expect that bipartite lattices could be applied to applications where high
quality factor optical resonances are critical, such as lasers [38] or sensors [16–19] .
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