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Abstract
Introduction: The purpose of medical imaging in breast cancer screening is to detect

and characterise pathology. In this context, image quality is best defined in relation to

diagnostic performance. However, in many situations, the only practical and economical

method to assess image quality is to use clinical image quality assessment performed by

radiologists. Clinical image quality assessment can be expensive, time-consuming and suf-

fers from intra and inter-observer variability. Therefore, it is useful to establish a robust,

quantitative image assessment method that can accurately predict radiologists’ clinical

image quality assessment. Unfortunately, the variable anatomical backgrounds in clinical

images significantly complicate the relationship between physical and clinical image qual-

ity. Two-dimensional digital X-ray mammography (DM) is currently the most commonly

utilised screening modality in breast cancer screening. However, it has well-documented

limitations. Promising alternatives to two-dimensional DM involving phase-contrast X-ray

imaging are currently under investigation. Phase-contrast imaging is an X-ray imaging

technique where image contrast is not only related to the X-ray attenuation properties

of tissue (as is the case with conventional radiography) but also the refractive properties

of the tissue. One technique currently under active research at synchrotron facilities is

propagation-based phase-contrast computed tomography (PB-CT). In this work, we take

advantage of the relatively simple anatomical background present in synchrotron-based,

thin slice PB-CT images of breasts to formulate a simple, robust relative image assessment

model.

Methods: The experimental data analysed in this study included PB-CT scans, which

were obtained for twelve whole, intact mastectomy samples at Imaging and Medical beam-

line (IMBL) of the Australian Synchrotron. Eleven radiologists assessed overall clinical

image quality. Physical image metrics, including contrast, signal to noise ratio, and spatial

resolution, were calculated using two different methods for all PB-CT and conventional

CT image sets. Weighting factors were applied to each metric, and a scaled contrast to

noise (CNR) to spatial resolution (res) score (CNR/res) was calculated.

Results: The scaled CNR/res score for each imaging condition, averaged across all

samples, was found to correlate significantly with the corresponding radiologist scores with

a Pearson r value of approximately 0.96. In addition, the CNR/res score for each imaging

condition, for each sample, also correlated significantly with the corresponding radiologist

scores with a Spearman r value of approximately 0.89.

Conclusion: The scaled CNR/res criterion has been demonstrated as a quantitative

image assessment model that effectively predicts the relative clinical image quality, as

assessed by radiologists, in the context of PB-CT breast imaging.
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Chapter 1

Introduction

1.1 Breast Cancer

Breast cancer is a disease whereby abnormal cells in breast tissue begin to grow in an

uncontrolled manner. The cancer typically begins as a pre-invasive cancer known as carci-

noma in-situ. There are two types of carcinoma in-situ: Ductal Carcinoma In Situ (DCIS)

and Lobular Carcinoma In Situ (LCIS) [1]. Carcinoma in-situ may progress into an in-

vasive carcinoma by spreading into the surrounding breast tissue. Progression into an

invasive carcinoma, however, cannot be predicted. An invasive carcinoma may progress

further by invading blood or lymph vessels and metastasising (spreading) into other sites in

the body. If this occurs there is an increased chance of patient mortality. Upon diagnosis,

breast cancer is assigned a Tumour, Node, Metastasis (TNM) stage which indicates the

size of the tumour and how far it has progressed. The TNM staging system comprises five

stages numbered 0 to 4, where Stage 0 indicates carcinoma in-situ and Stage 4 indicates

the presence of invasive carcinoma which has spread to other parts of the body [2]. Risk

factors for breast cancer include having a family history of breast cancer, having never

borne a child or bearing a child after age 35, previous cancer in one breast, exposure to

ionising radiation, excessive alcohol intake, obesity, smoking or possessing the BRCA1 or

BRCA2 gene [3]. Breast cancer is rare in women under 30 but the incidence rises rapidly

following menopause. Male breast cancer can also occur but is rare.

A range of options are available for the treatment of breast cancer. A treatment plan

typically involves multiple methods and is patient specific. Treatment options for breast

cancer include local treatments such as surgery and radiotherapy, and systemic treatments

such as chemotherapy and hormone therapy. Surgical treatment, or lumpectomy, involves

removal of the tumour, including a margin of healthy tissue. In more severe cases, the

entire breast is removed in a procedure called a mastectomy. Following surgery, it is usual

for patients to undergo additional treatment to eliminate residual cancer cells in breast tis-

sue including any cancer cells which may have metastasised into the lymph nodes or other

regions of the body. Radiotherapy utilises various types of radiation to destroy cancer cells

in the breast tissue and surrounding lymph nodes. Chemotherapy involves administration

of drugs, either intravenously or orally, and is used to destroy cancer cells which may have
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metastasised throughout the body. Hormone therapy may be used if the cancer cells are

hormone receptor positive in order to lower the risk of breast cancer recurrence [2] [4].

In 2020 breast cancer surpassed lung cancer as the most commonly diagnosed cancer

across both sexes with an estimated 2.3 million new cases worldwide [5]. Breast cancer

accounts for 1 in 4 cancer diagnoses and 1 in 6 cancer deaths amongst the female population

worldwide [5]. A population-based study in six OECD countries between 2000 and 2007

found that women who were first diagnosed with TNM Stage 1 breast cancer had an

age-standardised net survival of 99.4% after 3 years (averaged across 5 countries), while

women first diagnosed with stage 4 breast cancer had an age-standardised net survival of

35% after 3 years (averaged across 5 countries) [6]. These statistics clearly demonstrate

the importance of early diagnosis in reducing mortality rates of women with breast cancer.

1.2 Screening Programmes

Due to the importance of early detection of breast cancer, breast screening programmes

were introduced to reduce the morbidity and mortality from breast cancer within the

female population [7]. Breast screening involves assessing the breasts for cancer of asymp-

tomatic women using attenuation-based X-ray techniques. The aim of the programmes is

the early detection of breast cancer when treatment is most effective at preventing mor-

tality [8].

Breast screening programmes were established in many countries following a series of

trials in the 1980s which demonstrated that mammography-based screening programmes

reduced breast cancer mortality by 25-30% [9]. Screening programmes target women who

are most at risk of developing breast cancer, as exposure to ionising radiation introduces a

small additional risk to the general population. The programmes include older women, as

well as younger women who are assessed as having an increased risk of developing breast

cancer. The New Zealand screening programme, BreastScreen Aotearoa (BSA), provides

a free screening service every two years to women aged between 45 and 69 years [10].

1.3 Screening Technologies

Several X-ray-based technologies have been incorporated into screening programmes over

the years. These include screen-film mammography, digital mammography (including

computed radiography) and digital tomosynthesis mammography. Non-X-ray-based tech-

niques such as ultrasound, magnetic resonance imaging (MRI), positron emission tomog-

raphy (PET), thermography and clinical breast examinations have also been investigated.

Some of these techniques have been adopted into screening programmes [11].
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1.3.1 Mammography

Mammography is an X-ray procedure which is optimised for imaging breast tissue and

is designed to detect breast pathology, particularly breast cancer. A mammogram image

is formed by projecting X-rays, which are produced in a specialised mammography X-

ray tube, through a compressed breast. X-rays that are not absorbed by the compressed

breast pass into a detector to form an attenuation-based image. Mammography is used

for both screening of asymptomatic women (screening mammography) and for the diag-

nosis of symptomatic women (diagnostic mammography). When used for screening, two

views of each breast are acquired. These views include a Craniocaudal (CC) image and

a Mediolateral Oblique (MLO) image [11]. The use of two views increases the sensitiv-

ity of the screening test by providing a more complete image of the breast tissue than

could be acquired with a single image. In diagnostic imaging, a larger range of views is

acquired. This range includes spot compression views, magnification views, stereotactic

biopsy views and several views at different angles around the breast [12]. There are four

major indicators which radiologists utilise to diagnose breast cancer. These include micro-

calcifications, which are clusters of small calcium specks, the characteristic morphology of

a tumour mass, architectural distortions of usual tissue patterns and asymmetry between

corresponding regions of the left and right breast [12]. These indicators are often difficult

to visualise on a mammogram. Mammogram image quality, therefore, must be optimised

to ensure pathology is detected early and accurately. Excellent image quality must also

be balanced with the need to reduce radiation dose to the patient, especially considering

the high sensitivity of breast glandular tissue to radiation [13] [14].

Compared to standard X-ray machines, mammography machines have several unique

features which are designed to optimise breast image quality. Attenuation differences

between normal and cancerous tissue are subtle, necessitating the use of low energy X-

rays to maximise differential attenuation between tissue types in the breast. X-ray tubes

with molybdenum, rhodium or tungsten anodes with a range of filters are used with tube

voltages below 40 kVp to provide a low energy X-ray spectrum. The output spectrum is

typically dominated by the characteristic rays of the anode which are 17.5 and 19.6 keV for

molybdenum and 20.2 and 22.7 keV for rhodium [15]. These energies are favourably placed

for mammography. The use of a low energy X-ray spectrum to enhance contrast will result

in increased skin and glandular dose to the breast. This balance must be optimised. In

order to provide the necessary spatial resolution to visualise small features, the focal spot

of the X-ray tube is small, between 0.1 mm and 0.3 mm. A small focal spot necessitates

using lower tube currents in order to avoid overheating the anode material. Lower tube

currents require longer exposure times to produce an optimal image, thus risking motion

blur. At the mammographic X-ray energy range, 37-50% of the total radiation incident

on the image receptor is scattered radiation. Thus, the scatter-to-primary radiation ratio

(SPR) ranges from 0.3 to 1.2, depending on breast thickness [12]. The use of grids with

ratios (height/opening width) between 3.5:1 to 5:1 results in reduced scatter and improved

SPRs. These grids reduce image noise and improve contrast [12].
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Mammography machines utilise compression paddles which compress the breast tissue

to a uniform thickness across the image receptor. Compression offers several advantages:

minimised superposition of tissues, reduced SPRs at the detector, a reduction in geometric

unsharpness, a reduction in overall attenuation, and hence dose to the breast, a reduction

in the exposure range requirements of the detector and a reduction in motion blur due to

patient movement. A significant disadvantage of compression is the resulting discomfort

experienced by many women. This discomfort may contribute to an unwillingness to un-

dergo mammography-based screening [16]. Automatic Exposure Control (AEC) is used

in mammography to select the correct exposure to achieve an optimised optical density

(OD) if a screen-film system is used, or a specified Signal to Noise Ratio (SNR) if a digital

system is used [15].

Screen-Film Mammography

Screen-film mammography uses single emulsion radiographic film coupled with an inten-

sifying screen as the detector. The film is contained within lightproof cassettes which are

available in 18cm x 24cm and 24cm x 30cm formats. A single high definition phosphor

screen is positioned in contact with the emulsion side of the film within the cassette. A

proportion of the X-rays that have passed through the compressed breast are absorbed

by the phosphor screen and converted into visible light. The visible light emission from

the screen requires an appropriate visible light sensitive film emulsion. A latent image is

formed within the film emulsion which is then chemically processed to produce the final

visible image. The OD of the film is related to the X-ray exposure by a sigmoid-shaped

characteristic curve [15]. For example, microcalcifications are more attenuating than fat

or glandular tissue. Microcalcifications therefore appear white in the image on a film.

Mammography film has a characteristic curve with a high gradient that is designed to

enhance the contrast between tissues with small differences in attenuation. However, the

film has a concomitant narrow exposure latitude. The narrow exposure latitude results in

some regions of the breast being under-or-over exposed resulting in lower contrast in those

regions. The narrow exposure latitude also requires exposures to be precisely controlled,

necessitating the use of AEC systems. While screen-film mammography provides excellent

spatial resolution, it also suffers from several limitations. The narrow exposure latitude

imposes strict requirements on exposure control, resulting in a higher incidence of retakes.

Tumours may also be missed if they lie in areas of the breast which are under-or-over

exposed. Screen-film systems also inherently require compromise between spatial resolu-

tion and quantum detection efficiency. Screen film systems can provide limiting spatial

resolutions greater than 15 line pairs per millimeter [17]. The quantum detection efficiency

measures the percentage of incident X-rays which are absorbed by the detector material

[18]. For standard resolution screen-film systems used in mammography, the quantum

detection efficiency is approximately 50-70% [18]. Hendrick et al. [19] found the average

glandular dose for a standard screening examination with two views to each breast was
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4.7mGy across 33 screening sites using screen-film systems.

Digital Mammography

Digital mammography systems can be grouped into either Computed Radiography (CR)

or Digital Radiography (DR) systems. Technical details of these digital acquisition meth-

ods are provided in Section 1.9. CR has inferior spatial resolution and lower SNRs for

the same dose when compared to DR [20] and poorer cancer detection rates in screening

programmes [21]. DR has several advantages compared to screen-film and CR mammogra-

phy, resulting in the New Zealand National Screening Unit’s breast screening programme

(BreastScreen Aotearoa) exclusively using DR since 2014 [22]. DR allows the acquisition,

processing, display and storage to be performed separately. As a result, each process can be

optimised, leading to improved detection of DCIS and invasive carcinoma when compared

to previous systems [23]. Other advantages of DR include improved exposure latitude,

lower radiation doses, increased productivity due to fast acquisition and technologist eval-

uation, reduced patient waiting time and overall superior image quality. A disadvantage

of digital systems is that the limiting spatial resolution is lower than screen-film systems

because of the limitation imposed by the pixel size of the detector. The limiting spatial

resolution based on pixel size is known as the Nyquist limit and is typically 5 line pairs per

millimeter or greater [17]. There were initial concerns that the spatial resolution of digital

systems would limit microcalcification detection [24]. Subsequent studies, however, have

shown that digital mammography indicates improved image quality with higher reliability

in characterising calcifications compared with screen-film mammography [17] [25]. Amor-

phous selenium digital detector systems can achieve greater than 95% quantum detection

efficiency in the mammography X-ray energy range [18]. The increased quantum detection

efficiency, detective quantum efficiency (DQE) and dynamic range of digital systems leads

to lower radiation doses compared to screen-film systems [26]. Hendrick et al. [19] found

the average glandular dose for a standard screening examination with two views of each

breast was 3.7mGy across 33 screening sites using digital mammography systems: a 22%

reduction in dose compared to screen-film systems.

Standard two-view mammography remains the most widely implemented screening

technology. There is sufficient evidence for reduced mortality from breast cancer when

used for screening women aged 50-69 years, as assessed by the International Agency for

Research on Cancer [11]. Mammography is a relatively low-cost modality with adequate

sensitivity to detect breast cancer at an early stage and with low radiation dose to the

patient. Mammography screening, however, is not without risk. The risks are: false

negative results, false positive results, over-diagnosis and ionising radiation exposure [27].

The most serious outcome from a mammogram is a false negative result: a patient has

undetected breast cancer, resulting in delayed diagnosis and treatment. A false positive

occurs when a cancer is indicated, which upon further investigation is not present. False

positive results create unnecessary anxiety, extra cost and wasted time for the patient.
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Half of all women over 50 enrolling in a screening program will experience a false positive

in the following 10 year period [27]. Over-diagnosis is the diagnosis of a cancer which

would not have adversely affected the patient if left alone. Over-diagnosis is likely to

cause significant anxiety, risk of morbidity, extra cost and wasted time for the patient

compared to a false positive. Some studies estimate that 1 in 5 cancers are over-diagnosed

leading to unnecessary treatment [28]. The breast is one of the most radio-sensitive organs

in the body [13] and a mammogram carries a very small chance of causing a radiation

induced cancer. A major limitation of conventional projection mammography is that the

three-dimensional volume of a breast is projected onto a two-dimensional image. This

results in the superposition of breast tissues, leading to reduced conspicuity of lesions,

and reduced sensitivity (probability of finding cancers which are present) [11]. Tissue

superposition can also lead to a lesion being detected which does not exist, thus reducing

specificity (probability of a negative result when cancer is not present) [11]. These effects

are particularly challenging when reading the mammograms of women with dense breasts

where there is a large portion of glandular tissue.

1.3.2 Digital Breast Tomosynthesis

Digital breast tomosynthesis (DBT) aims to overcome the problem of anatomical noise

which arises from the superposition of tissues occurring during standard mammography

acquisitions. DBT is a technique which produces a series of tomogram (in focus plane)

images at given depths in the breast [15]. These tomogram images are reconstructed from

a series of low dose projection images taken through a limited range of angles around the

breast. DBT has been incorporated into several modern general mammography machines

and, in some cases, is retro-fitted to older mammography machines. DBT is associated

with increased radiation dose compared to standard digital mammography, where the av-

erage increase of DBT dose is 38% [29]. DBT is associated with an estimated 17% increase

in sensitivity when compared to standard digital mammography [30]. Studies also suggest

a likely improvement in specificity, but the level of improvement varies between studies

[30]. While DBT is useful in diagnostic mammography, there is no clear consensus as to

whether it is a cost-effective alternative to standard digital mammography for screening

purposes. The main limitations preventing screening use include increased radiation dose,

increased equipment costs and increased reading time required by radiologists [11].

1.3.3 Breast Ultrasound

Ultrasound systems utilise sound waves which propagate through the breast and reflect off

tissue interfaces to form a tomographic grey-scale image. The generation of sound pulses

and the detection of echoes is performed using a transducer, which is typically hand

held and manipulated by a sonographer. The advantages of breast ultrasound compared

to mammography are: no ionising radiation, no discomfort for the patient and superior

ability to detect mammographically occult breast cancers in women with dense breasts

[11] [31]. The disadvantages are: low spatial resolution leading to an inability to detect
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microcalcifications, low contrast, low specificity, high biopsy rates with low cancer-to-

biopsy yield, strong dependency on skills of the sonographer and slow acquisition times

[32]. Due to the significant disadvantages of ultrasound, the National Screening Unit of

New Zealand does not support the use of ultrasound as a primary or adjunct screening

tool in the BSA screening programme [33]. Ultrasound is, however, widely used in breast

clinics in New Zealand as an investigatory tool to characterise areas of interest seen on

a mammogram or to guide biopsy needles to areas of interest. Ultrasound is useful for

differentiating between solid and cystic masses, particularly in dense breasts [32].

1.3.4 Magnetic Resonance Imaging

Breast MRI utilises radio waves, strong magnetic fields and magnetic gradients to create

detailed tomographic images of breast tissue. This technique is currently used to reliably

detect breast malignancy [11]. Contrast-enhanced MRI involves imaging the breast with

dedicated breast coils before and after intravenous administration of a contrast agent;

commonly gadolinium chelates. Advantages of breast MRI include high sensitivity with-

out the use of ionising radiation [11]. The disadvantages are: low specificity leading to

high biopsy rates, magnetic field effects, side effects of contrast agents, claustrophobia,

long setup and acquisition times and the prohibitively high cost for assessments. MRI

has intrinsically higher sensitivity compared to mammography for breast cancer detec-

tion (greater than 90%) but has variable specificity between 30% and 90% [34]. Women

with metallic or electronic implants may be excluded from using MRI due to the risk of

severe injury from the strong magnetic field. Gadolinium contrast agents also add addi-

tional risk to the patient, including possible allergic reactions and a risk of nephrogenic

systemic fibrosis. Due to the disadvantages associated with MRI, particularly the poor

specificity, it has not been recommended by the American Cancer Society as an alternative

to mammography for screening [35]. Several studies have investigated screening women

who have the BRCA1 or BRCA2 gene mutation using mammography with and without

adjunct MRI. Estimates of the sensitivity and specificity of mammography alone was ap-

proximately 40% and 95% respectively. The corresponding estimates for mammography

with adjunct MRI were approximately 95% and 80% [36] [37]. These studies showed a

clear increase in sensitivity and a smaller decrease in specificity, leading to the Ministry

of Health New Zealand recommending annual MRI screening for women possessing the

BRAC1 or BRAC2 gene from 10 years prior to the age of onset for the youngest affected

family relative [38]. Annual mammography is also recommended for these women, but

only after the age of 30.

1.3.5 Breast Computed Tomography

Dedicated Breast Computed Tomography (BCT) machines have been developed with the

advent of flat-panel digital detectors. The patient lies prone on a dedicated table with the

breast placed in a pendant position through a hole. The X-ray tube and detector rotate

horizontally around the breast below the table [39]. With this technique, the problem

of under- and overlying tissues evident in conventional two-dimensional mammography is
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eliminated with the ability to view individual slices of a three-dimensional (3D) image of

the breast. An additional advantage is that breast compression is unnecessary. A dis-

advantage of BCT is the increased dose. Some studies, however, claim to achieve dose

levels comparable to two-view mammography [40]. While BCT has potential as an alter-

native to conventional mammography for screening purposes, it remains an experimental

technology. It lacks sufficient clinical data for adoption into screening programmes [40].

1.3.6 Other Technologies

Other technologies pertinent to breast screening include thermography, positron emission

tomography (PET) and clinical breast examination. Thermography involves measuring

the temperature distribution on the surface of the breast, assuming higher temperatures

indicate an area of a malignant tumor. A systematic review of diagnostic studies per-

formed in 2013 found sensitivities ranged from 25% to 97% and specificities from 12% to

85%. The conclusion from the studies was that there is insufficient evidence to recom-

mend thermography for breast cancer screening [41]. The National Screening Unit of New

Zealand, The Cancer Society of New Zealand, The New Zealand Breast Cancer Founda-

tion and The New Zealand Branch of the Royal Australian and New Zealand College of

Radiologists do not support the use of thermography for screening or diagnosis [42]. PET

maps the uptake of a radiotracer, typically [18F]-fluorodeoxyglucose (FDG), which indi-

cates areas of increased glucose metabolism. Assuming glucose metabolism is increased

in tumours, PET can effectively locate these tumours. Whole body PET scanners have

insufficient spatial resolution to effectively show small tumours in breasts so are therefore

considered inadequate for imaging early stage breast cancer [11]. Positron Emission Mam-

mography (PEM) machines are dedicated breast imaging machines which have superior

spatial resolution compared to standard PET scanners. PEM studies involve the admin-

istration of 370 MBq of FDG which results in an estimated effective dose of 6.2-7.1 mSv

[43]. This equates to approximately 16 times more dose than a standard two-view digital

mammography examination which is approximately 0.44 mSv [43]. One study found that

the diagnostic sensitivity of PEM was 91% and that the specificity was 84% [44]. PEM

has not been investigated as a screening tool in any studies. Although the technique has

high sensitivity, the low specificity, high radiation dose and high cost compared to digital

mammography has eliminated PEM as suitable for screening purposes. Clinical breast

examination (CBE) involves both a visual inspection and palpation of the breasts by a

trained health care provider to look for lumps or visual changes. Based on pooled data

of six studies, the sensitivity of CBE was estimated as 54% and specificity as 94% [45].

The international agency for research on cancer (IARC) concluded that there is sufficient

evidence to suggest that screening by CBE improves the earlier detection of tumours but

there is currently inadequate evidence that screening by CBE alone reduces breast cancer

mortality [11].
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1.4 X-ray Radiation

X-ray radiation was discovered in 1895 by German physicist, Wilhelm Konrad Röentgen,

whilst performing an experiment involving cathode ray tubes [46]. During the experiment,

Roentgen noticed that while the cathode ray tube was operating, a fluorescent screen,

stored in the corner across the laboratory, was glowing. The fluorescent screen contin-

ued to glow even after it was shielded from visible and ultra-violet light produced by the

cathode ray tube. Roentgen concluded that some form of invisible radiation was able to

pass through material and interact with the fluorescent screen. In keeping with mathe-

matical convention, Roentgen assigned the letter “x” to represent the unknown nature of

the ray. He further demonstrated the penetrating nature of X-rays by producing the first

absorption-based image of the bones in the human hand. This discovery was met with

worldwide excitement and rapid clinical implementation of the newly discovered radiation.

1.4.1 Electromagnetic Radiation

X-rays are a type of electromagnetic (EM) radiation. EM radiation is characterised using

either wavelength (λ), frequency (f) or energy. X-rays lie at the short wavelength, high

frequency and high energy end of the EM spectrum. Gamma rays are also a type of EM

radiation with, on average, higher energies than X-rays. Gamma rays are emitted by the

decay of the nucleus of a radioactive atom whereas X-rays are produced outside the nucleus

of atoms. EM radiation has a constant speed in a given medium and has no rest mass.

EM radiation can propagate through matter or vacuum. Its maximum group velocity of

≈ 3× 108 ms-1 occurs in vacuum.

Figure 1.1: The Electromagnetic Spectrum [12]
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1.4.2 Wave Particle Duality

Throughout history, physicists have debated whether light consists of particles or waves.

Ancient Greeks considered light to consist of tiny particles called corpuscles. Isaac Newton

also believed in a particle theory of light. Christian Huygens in 1698 proposed that light

had wave properties. In 1801, Thomas Young provided compelling evidence for the wave

theory of light by demonstrating that light beams can interfere to produce interference

patterns [47]. A discovery in the early 1860s with James Clerk Maxwell’s four equations,

which demonstrate that a changing magnetic field induces an electric field and vice versa

[47], was a major advancement. Maxwell’s equations can be solved to produce harmonic

waves travelling at the speed of light, c. This discovery led to the recognition that EM

radiation travels as waves comprising in phase oscillating electric and magnetic fields at

right angles to each other and to the direction of travel as shown in Figure 1.2.

Figure 1.2: A diagram of an electromagnetic wave propagating at velocity, c in the x
direction. The electric field oscillates in the xy plane, and the magnetic field oscillates in
the xz plane [47].

In the early twentieth century, Max Planck returned to the particle theory of light to

explain how radiation is emitted by hot objects. In 1905, Albert Einstein provided further

evidence for the particle theory by demonstrating the photoelectric effect, where electrons

are emitted by a metal exposed to light. In the particle theory, light is composed of photons

travelling at the speed of light. A photon is imagined as a massless particle-like packet

of energy. It is now known that light has wave-particle duality in which it demonstrates

wave properties in some situations and particle properties in other situations. X-rays also

demonstrate optical phenomena such as refraction and attenuation.

1.4.3 Ionising Radiation

EM radiation is classified as either ionising or non-ionising, depending on its ability to

ionise matter [12]. An atom becomes ionised when an orbital electron is removed, resulting

in an overall positive charge. The amount of energy required to remove an electron from

an atom is known as the ionisation potential. This energy range is a few electron volts

10 CHAPTER 1. INTRODUCTION



Different Approaches to Image Quality Assessment in Phase-Contrast Mammography

for alkali metals to 24.5 eV for helium. For water, which comprises most of the matter

in human cells, the ionisation potential is 12.6 eV [12]. The radiobiological demarcation

between ionising and non-ionising EM radiation is, therefore, approximately 12.6 eV. With

reference to Figure 1.1, EM radiation having higher energy than the ultraviolet region is

ionising, while EM radiation with energy below the ultraviolet region is non-ionising.

Ionising EM radiation is capable of causing damage to DNA in human cells, leading to an

increased risk of radiation induced cancer. Particulate radiations such as alpha and beta

particles are also ionising.

1.5 X-ray Production

X-rays are produced when energetic electrons interact with either matter or a magnetic

field. During these interactions, a portion of the incident electron’s kinetic energy is

converted into high energy EM radiation. X-rays produced using conventional diagnostic

radiology equipment are either bremsstrahlung or characteristic X-rays. Bremsstrahlung

X-rays are produced when an incident electron is rapidly decelerated by the opposing

positive charge of the atomic nucleus of an absorbing material. The loss of kinetic energy

of the electron is converted into the creation of a bremsstrahlung X-ray photon. The

energy of the resultant photon ranges from very low, to the original energy of the incident

electron. This energy is determined by how close the incident electron passes to the

nucleus of the absorbing material. A close encounter with the nucleus will decelerate the

electron to a greater extent. Bremsstrahlung radiation can also be produced by applying a

magnetic field to a highly energetic electron. The magnetic field causes a deflection of the

electron thus giving rise to an X-ray photon. Radiation produced in this manner is called

magneto-bremsstrahlung or synchrotron radiation. Characteristic X-rays are produced

when an incident electron has sufficient kinetic energy to exceed the binding energy of an

orbital electron within an electron shell of a target atom, thus creating a vacancy in that

shell. This vacancy is immediately filled by an outer shell electron and a characteristic

X-ray is emitted with an energy equal to the difference in binding energies of the two

shells.

1.5.1 X-ray Tubes

At diagnostic X-ray tube voltages, both bremmstrahlung and characteristic X-ray photons

are produced. An X-ray tube comprises an electron source, an evacuated enclosure in

which the electrons can be accelerated unimpeded, a target anode and a high voltage

power supply. The electron source consists of a tungsten filament through which a current

is passed. The current causes the filament to become white hot with electrons leaving the

surface in a process called thermionic emission. The high voltage power supply provides a

large potential difference between the filament (cathode) and the target (anode). This large

potential difference accelerates the electrons, which have left the surface of the filament,

towards the positively charged anode [15]. The anode and cathode are encased in a glass

evacuated enclosure to prevent the accelerating electrons from interacting with unwanted
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material in the path to the anode. The anode target material in general radiography

applications is tungsten which has a high atomic number and melting temperature thus

maximising bremsstrahlung efficiency and minimising heat damage to the anode. The

highly energetic electrons which have been accelerated from the cathode to the anode

collide with the tungsten anode, producing bremsstrahlung radiation through interactions

with the target nuclei, and characteristic radiation, through interactions with the target

orbital electrons. Most of the interactions between the incident electrons and the tungsten

anode are collisional, giving rise to heat, without producing radiation. At a tube voltage

of 100 kV, less than 1% of the input energy results in X-ray production. The remaining

energy is wasted as heat [12]. Spinning anodes, and other cooling systems, are designed to

disperse the heat and prevent early failure of the tube. The output spectrum of an X-ray

tube comprises a continuum of Bremsstrahlung photons overlaid with discreet spikes from

characteristic X-ray photons.

1.5.2 Synctrotron Sources

Synchrotron, or magneto-bremsstrahlung, radiation generation involves accelerating elec-

trons to relativistic speeds before passing them through a bending magnet or an insertion

device such as a wiggler or undulator to produce EM radiation [48]. Synchrotrons, such as

the Australian Synchrotron in Clayton, Victoria, accelerate electrons by first using a linear

accelerator to accelerate bunches of electrons up to an energy of 100 MeV. These relativis-

tic electrons are then injected into a booster ring and further accelerated to an energy of 3

GeV. Within the booster ring are steering and focusing electromagnets which channel the

electrons through a stainless steel vacuum chamber comprising the ring. The ring also con-

tains a radio-frequency cavity to provide energy input for electron acceleration. These very

high energy electrons are then transferred into a large outer storage ring which can hold

200 mA of stored current. The storage ring at the Australian Synchrotron has a 216 meter

circumference and consists of a number of sectors, each containing a straight and curved

section [49]. The straight sections can be replaced by insertion devices such as wigglers or

undulators. These insertion devices produce synchrotron radiation by passing relativistic

electrons through periodic magnetic structures [48]. The curved sections of the storage

ring contain a pair of dipole bending magnets which curve the electron path, producing

sychrotron radiation. Several beamlines are positioned around the storage ring to capture

the radiation produced by the bending magnets or insertion devices. The radiation chan-

nelled into the beamlines is utilised in end stations for various experiments. The imaging

and medical beamline (IMBL) at the Australian Synchrotron has been used for X-ray

phase-contrast imaging (PCI) experiments. This beamline is based on a super-conducting

wiggler that, in conjunction with a monochromator, provides a wide monochromatic and

nearly parallel X-ray beam with an area of up to 500mm x 40mm (h x v) at a distance

of 140m from the source [50]. A bent double-crystal monochromator is employed which

is used to provide an energy range between 20 and 120 keV with an energy resolution of

∆E/E = 10−3. Situated along the beamline are 6 radiation enclosures called hutches.

Propagation-based phase-contrast imaging (PBPCI) experiments are performed in hutch
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number 3B, which is the farthest from the source and provides the smallest effective source

size [51] [52].

1.6 X-ray Propagation in Free Space

1.6.1 Spatial and Temporal Coherence

Some methods of phase-contrast imaging (PCI) depend on X-ray wave fields with a high

level of spatial and temporal coherence. Spatial coherence is a measure of the phase

coherence transverse to the direction of propagation [53]. Temporal coherence is a mea-

sure of how monochromatic a wave field is. It also refers to the amount of coherence in

the direction of propagation of the wave field (longitudinal coherence) [54]. Laboratory

X-ray tube sources typically produce a polychromatic photon spectrum with low spatial

coherence. Coherence of a wave field can be improved by using filters in the spatial and

temporal domains. Spatial filtering is achieved by either reduction of the source size, with

slits or pin holes, or an increased source-to-object distance. Temporal filtering is achieved

by using a monochromator which has a narrow wavelength bandwidth [55]. The conse-

quence of applying filtering techniques is a substantial decrease in intensity [53]. If such

filtering techniques were to be applied to a conventional X-ray source, the concomitant

decrease in intensity would necessitate impractically long exposure times. Synchrotron X-

ray sources produce very high intensity radiation. With the use of monochromators and

extended source-to-object distances, X-ray wave fields with adequate spatial and temporal

coherence to acquire useful phase-contrast images with acceptable exposure times can be

generated [54].

1.6.2 Scalar Wave Equation and the Complex Wave Function

X-rays used in diagnostic radiology have energies ranging from 15 keV to 140 keV [15].

All EM waves can be described mathematically by the Maxwell equations [56]. These

equations comprise sets of coupled partial differential equations describing electric and

magnetic fields. Using the approach, for example, described in Section 1.1 of Paganin

(2006) [48] the d’Alembert equations can be derived from the free space Maxwell equa-

tions. The d’Alembert equations describe the electric and magnetic component of an EM

disturbance with an electric and magnetic vector field at each point in space-time. For

simplicity, the vector theory of an EM field in free space can be substituted by a scalar

theory as described in Section 1.1 of [48]. Using a vector theory of an EM wave in vac-

uum, the electric and magnetic field disturbance is specified, at each point in space and

time. Using a scalar theory, the disturbance can be characterised by a single scalar field

Ψ(x, y, z, t), and the d’Alembert equation becomes:

(
1

c2
∂2

∂t2
−∇2

)
Ψ(x, y, z, t) = 0. (1.1)
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Ψ(x, y, z, t) can be treated as a complex function with both magnitude and phase such

that:

Ψ(x, y, z, t) =
√
I(x, y, z, t) exp [iφ(x, y, z, t)], (1.2)

where I(x, y, z, t) is the intensity of the field and the phase is φ(x, y, z, t).

1.6.3 Coherent Fields

X-ray image quality can be improved by utilising information on the phase shift of the

X-ray field which has passed through an object. The phase shift, however, must first be

obtained using phase retrieval methods. The task of phase retrieval is significantly simpli-

fied if the X-ray field, prior to passing through the object, is known to have high spatial

and temporal coherence. X-ray fields, with sufficient spatial and temporal coherence for

PCI experiments, can be produced with synchrotron sources that have large source-to-

object distances and monochromators.

If a field is spatially coherent and monochromatic then it oscillates at a fixed angular

frequency ω and

Ψ(x, y, z, t) = ψ(x, y, z) exp (−iωt). (1.3)

Substituting Equation 1.3 into Equation 1.1 results in the Helmholtz Equation in

vacuum [48]:

(∇2 + k2)ψ(x, y, z) = 0. (1.4)

1.6.4 Coherent Paraxial Fields

Determination of the phase change of an X-ray field which has passed through an object,

also known as phase retrieval, is further simplified when the initial X-ray field is not only

coherent, but also paraxial.

Using a geometric optics approximation of X-rays, a paraxial field is a field in which

the rays make a small angle with respect to the optic axis, i.e. almost parallel to the

optic axis. With a wave optics interpretation, all points along the lines of constant phase,

or wave fronts, have a Poynting vector which is close to parallel with the optic axis. An

X-ray field with zero divergence from the source is impossible to generate. Under certain

conditions, however, an X-ray field with only slight divergence can be created [57]. Such

conditions exist in synchrotron PCI systems which employ extended source-to-object dis-

tances and collimating monochromators.

Consider the Helmholtz Equation (1.4) where the incident X-ray field is paraxial.

Expressing the solution of Equation 1.4, ψ(x, y, z), as the product of a plane wave travelling
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in the z-direction, eikz, and a perturbing envelope, ψ̃(x, y, z), the following is derived:

ψ(x, y, z) = ψ̃(x, y, z)eikz. (1.5)

Here ψ̃(x, y, z) represents a slowly varying function which, when multiplied by the

z-directed plane wave, eikz, effectively deforms the z-directed plane wave fronts. Here,

|ψ̃(x, y, z)|2 = |ψ(x, y, z)|2 = I(x, y, z). (1.6)

Substitute Equation 1.5 into the Helmholtz Equation (1.4), and making use of the

identity:

∇2[A(x, y, z)B(x, y, z)] = A(x, y, z)∇2B(x, y, z)+

B(x, y, z)∇2A(x, y, z) + 2∇A(x, y, z) · ∇B(x, y, z),
(1.7)

for suitably well-behaved functions A(x, y, z) and B(x, y, z), to arrive at:

(
2ik

∂

∂z
+∇2

⊥ +
∂2

∂z2

)
ψ̃(x, y, z) = 0. (1.8)

In the above equation, ∇2 is written as ∇2
⊥ + ∂2/∂z2, where ∇2

⊥ is the transverse

Laplacian, or the Laplacian in the xy-plane, which is equal to ∂2/∂x2 + ∂2/∂y2. Due to

the paraxial approximation, the second derivative with respect to z is close to zero and can

be disregarded. This will be a good approximation if the envelope, ψ̃(x, y, z), is ‘beamlike’

or more strongly varying in the x- and y-directions than in the z-direction [48]. Equation

1.8 now becomes:

(
2ik

∂

∂z
+∇2

⊥

)
ψ̃(x, y, z) = 0. (1.9)

1.7 X-ray Interactions with Matter

The previous section introduced the equations which govern the propagation of X-rays in

vacuum. This section examines the range of interactions of X-rays with scattering media

and introduces the application of the wave equations in the presence of this scattering

media.

1.7.1 Mechanisms of Attenuation

When X-ray photons traverse matter they may penetrate without interaction, scatter or

be absorbed. The three major interactions between photons and matter in the diagnostic

radiology energy range are: Rayleigh scattering, Compton scattering and photoelectric

absorption [15].
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Rayleigh Scattering

Rayleigh scattering involves the temporary excitation of an entire atom by an incident

photon [15]. The energy from the excited atom is re-released as a scattered photon with the

same energy and wavelength as the incident photon but with a slightly different direction.

The atom then returns to its previous non-excited state. The conservation of energy

between the incident and scattered photon results in Rayleigh scattering being an elastic

scattering event. Rayleigh scattering tends to occur at low X-ray energies, such as those in

mammography. The small scattering angles associated with Rayleigh interactions result in

deleterious effects on image quality. This type of scattering, however, has a low probability

of occurring and only accounts for approximately 10% of interactions at 30 keV [15].

Compton Scattering

A Compton scattering event occurs when an incident photon interacts with an outer or-

bital electron [15]. This leads to the incident photon losing a portion of its energy and

being scattered relative to its initial direction. Energy and momentum are conserved such

that the energy lost by the incident photon is transferred to the orbital electron. The

electron is ejected from the atom with extra kinetic energy. The energy of the incident

photon is equal to the sum of the energy of the scattered photon and the kinetic energy

transferred the ejected electron. Compton scattering results in ionisation of the atom

due to the ejection of an electron. It is the predominant interaction of X-ray photons

with soft tissue in the diagnostic energy range above 26 keV [15]. The Compton mass

attenuation coefficient is effectively independent of atomic number so, being the dominant

interaction in soft tissue, contrast between different soft tissues in standard X-ray images is

poor. Compton scattering also has a deleterious effect on image quality as the scattering of

photons results in increased noise in the image, thus further degrading soft tissue contrast.

Photoelectric Effect

In photoelectric interactions, an incident photon transfers all its energy to an inner shell

electron. The energy of the incident photon must first exceed the binding energy of the

electron for this interaction to occur. The net result is complete absorption of the incident

photon and ejection of the inner shell electron from the atom. The kinetic energy of the

ejected photo-electron is equal to the incident photon energy minus the binding energy of

the inner shell electron. With the removal of the inner shell electron, the atom is ionised.

This vacancy is quickly filled by an outer shell electron, resulting in emission of a char-

acteristic X-ray or an Auger electron. The mass photoelectric attenuation coefficient is

approximately proportional to Z3/E3, where Z is the atomic number and E is the energy

of the incident photon [15, 58]. Traditional mammography uses specialised anode mate-

rials and filter combinations, as discussed in section 1.3.1, to produce low energy X-rays

which increase photoelectric interactions in soft tissue, thus improving contrast between

tissues with slightly different atomic numbers.
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The attenuation of an X-ray beam as it passes through matter by these three major

attenuation mechanisms is represented by a singular linear attenuation coefficient, µ. This

is illustrated in Figure 1.3 which shows the mass attenuation coefficient which is equal to

µ/ρ, where ρ is mass density, on the y-axis.

Figure 1.3: Graph of the Rayleigh, Compton, photoelectric, pair production and total
mass attenuation coefficients for carbon as a function of photon energy [58]
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1.7.2 Wave Equations in Matter

PCI in mammography requires the wave equations (1.4 and 1.9) to be applied so as to

account for the scattering conditions within breast tissue. Breast tissue can be described

by a position- and frequency-dependent refractive index, n(x, y, z). Noting that the wave-

length in the medium is equal to the vacuum wavelength divided by the refractive index

of the medium, the ‘inhomogeneous’ Helmholtz equation is derived (see Section 2.1 of [48]

for a full derivation) such that:

[∇2 + k2n2(x, y, z)]ψ(x, y, z) = 0. (1.10)

Assuming the X-ray field produced by a synchrotron source is effectively paraxial, the

paraxial, inhomogeneous Helmholtz equation becomes:

(
2ik

∂

∂z
+∇2

⊥ + k2[n2(x, y, z)− 1]

)
ψ̃(x, y, z) = 0. (1.11)

1.7.3 The Projection Approximation, Attenuation and Refraction

Figure 1.4: X-ray wave field travelling from the entrance surface, through an object, to
the exit surface under the projection approximation [48]

Figure 1.4 illustrates a material contained within an area 0 < z < z0, which is irradiated

by z-directed, monochromatic X-rays from the left side. The complex disturbance at the

exit surface of the material (z = z0) is a function of the complex disturbance at the entrance

surface (z = 0) and the refractive index distribution of the material. The refractive index

for hard X-rays passing through soft tissue is approximately unity, implying that the

interactions between these X-rays and the material is weak. The paths of the X-rays are

assumed to be negligibly perturbed and remain almost parallel to the z axis as they pass

through the length of the material as shown in Figure 1.4. This assumption, known as the
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projection approximation, allows the transverse Laplacian term, ∇2
⊥, in Equation 1.11 to

be disregarded such that:

∂

∂z
ψ̃(x, y, z) ≈ k

2i
[1− n2(x, y, z)]ψ̃(x, y, z). (1.12)

This is a linear first order, ordinary differential equation which can be integrated with

respect to z to give:

ψ̃(x, y, z = z0) ≈ exp

{
k

2i

∫ z=z0

z=0
[1− n2(x, y, z)]dz

}
ψ̃(x, y, z = 0). (1.13)

The refractive index for X-rays is approximately unity so the equation is often expressed

as:

n = 1− δ + iβ, (1.14)

where the real decrement, δ, is related to the phase shift, or refraction of the X-

ray beam, and the imaginary decrement, β, is related to the attenuation. The complex

refractive index for hard X-rays is approximately unity, thus |δ|, |β| � 1 and:

1− n2(x, y, z) ≈ 2[δ(x, y, z)− iβ(x, y, z)]. (1.15)

The terms containing δ2, β2 and δβ are small and can be disregarded. Equation 1.15

is substituted into Equation 1.13 to become:

ψ̃(x, y, z = z0) ≈ exp

{
−ik

∫ z=z0

z=0
[δ(x, y, z)− iβ(x, y, z)]dz

}
ψ̃(x, y, z = 0). (1.16)

This equation gives the exit wave field, ψ̃(x, y, z = z0) in terms of the entrance wave

field, ψ̃(x, y, z = 0) multiplied by a transmission function. The transmission function is

the exponential term in the above equation.

The phase shift and attenuation of the X-ray wave field are now considered separately.

According to Equation 1.16 the phase shift, ∆φ(x, y), experienced by the wave field passing

from z = 0 to z = z0 is:

∆φ(x, y) = −k
∫
δ(x, y, z)dz. (1.17)

If the material is composed of a homogeneous material, δ is a constant and can be

removed from the integral. If the material has a thickness T (x, y) along the z-direction,

the previous equation reduces to:

∆φ(x, y) = −kδT (x, y). (1.18)

Taking the squared modulus of Equation 1.16 and recalling |ψ̃(x, y, z)|2 = I(x, y, z)

(Equation 1.6), the following equation is derived:
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I(x, y, z = z0) = exp

[
−2k

∫
β(x, y, z)dz

]
I(x, y, z = 0). (1.19)

When the material is composed of a homogeneous material, β is a constant and can be

removed from the integral. If the material has a thickness T (x, y) along the z-direction,

the previous equation reduces to Beer’s law of absorption in a homogeneous material,

which is pivotal in conventional attenuation-based imaging:

I(x, y, z = z0) = exp [−µT (x, y)]I(x, y, z = 0). (1.20)

In the equation above, µ = 2kβ is the linear attenuation coefficient which was intro-

duced at the end of Section 1.7.1.

1.8 Phase-Contrast Imaging

Since the discovery of X-rays, medical X-ray imaging has utilised differences in atten-

uation of various tissues to produce image contrast. PCI involving X-rays has been a

focus of some research and development in the medical field in recent times. PCI ex-

ploits the phase shift by X-ray waves passing through different components of a sample.

Through the application of a PCI technique, the phase-shift introduced by an object pro-

duces variations in intensity which can be recorded by a detector. A useful metric, when

comparing the theoretical relative contrast between different types of breast tissue using

phase-contrast and absorption-based imaging, is the relative value of δ and β associated

with each breast tissue type [57]. Figure 1.5 illustrates the difference between breast

glandular tissue and adipose tissue for both the real part, ∆δ = δglan − δadi, and the

imaginary part, ∆β = βglan − βadi, of the complex refractive indices for the X-ray energy

range used in mammography imaging. Note that for all energies shown, ∆δ � ∆β. At an

X-ray energy of 32 keV, which was recently used for breast imaging experiments at the

IMBL of the Australian Synchrotron (Clayton, Victoria) [59], the ratio, ∆δ/∆β was equal

to 870 [60] for glandular tissue in adipose tissue. This suggests that PCI, which utilises

differences in the real component of the refractive index, δ, may in some cases, offer an

advantage when differentiating soft tissues compared to conventional attenuation-contrast

methods, which utilise differences in the imaginary component, β [57]. If phase-contrast

mammography imaging can be implemented in a clinical setting it has the potential to

significantly improve breast cancer diagnosis and characterisation [61].
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Figure 1.5: Calculated differences between the real and imaginary components of the
complex refractive index between glandular tissue and adipose tissue. Data sourced from
[60]

1.8.1 Propagation-Based Phase-Contrast Imaging

The simplest and most common PCI method is propagation-based phase-contrast imaging

(PBPCI) [62]. As with conventional X-ray imaging, PBPCI uses an X-ray source, an

object to be imaged and a detector. The main difference between the two methods is the

requirement for high spatial coherence and the detector-object distance, which is extended

in PBPCI. This free space propagation distance allows phase differences in the X-ray field

to be converted into intensity modulations which are then recorded by a detector [63].

The mechanism by which these intensity variations occur is Fresnel diffraction. This is

depicted by considering the X-ray field as rays in Figure 1.6 and waves in Figure 1.7.

The enhancement of edges due to the appearance of Fresnel fringes, as depicted in Figure

1.7, is a characteristic feature of PBPCI. At point Q, in Figure 1.6, there is a decrease in

intensity, while at point P there is an increase, corresponding to the edge of the sample.

The evolution of these edge enhancing Fresnel fringes through the free space propagation

distance is depicted on the right of Figure 1.7 and can be seen on the images of Figure

1.8.
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Figure 1.6: Geometric-optics ray based diagram showing the evolution of intensity mod-
ulations due to phase differences through free space propagation [64]

Figure 1.7: Wave based diagram showing the evolution of intensity modulations due to
phase differences through free space propagation [63]

Fresnel Diffraction

Fresnel diffraction describes the intensity variations in the near field due to phase shifts of

the X-ray field after passing through an object in PBPCI experiments. The near field is the

region in which the Fresnel number (defined here in the case of plane wave illumination),

NF =
h2

λR2
, (1.21)

is much larger than unity. In the equation above, h is the size of the smallest feature

in the object, or the spatial resolution limit of the imaging system (whichever is larger),

λ is the wavelength and R2 is the propagation distance (adapted from [66]). The region

where NF � 1 is the far field, or Fraunhofer region.

Using a Cartesian coordinate system (x, y, z), where the positive z axis represents the

nominal optic axis, a sample is situated at a plane some distance from the source, z = 0.

Assume the scalar X-ray field is paraxial, sufficiently coherent and monochromatic. Under
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Figure 1.8: Simulated PBPCI images of a solid carbon sphere of 0.5 mm diameter.
The source to object distance is fixed at 10 cm, while the object to detector distance, R2,
increases from left to right. The left most image is a contact, absorption based image at
R2 = 0. The remaining images, from left to right have propagation distances of R2 =
10 cm, 50 cm and 100 cm respectively. Image adapted from [65]

these assumptions, Fresnel diffraction theory describes the wave field over the plane z > 0

due to diffraction caused by a disturbance of the X-ray field at z = 0, where the space

z ≥ 0 is vacuum [48]. Consider an operator formulation for Fresnel diffraction. The wave

field at z > 0, denoted ψω(x, y, z = R2), can be expressed as the wave field at z = 0,

denoted ψω(x, y, z = 0), acted on by a Fresnel diffraction operator to propagate it through

a distance R2 [48]:

ψ(x, y, z = R2 ≥ 0) ≈ exp (ikR2)F−1 exp

[
−iR2(k

2
x + k2y)

2k

]
Fψ(x, y, z = 0). (1.22)

In the expression above, F indicates a two-dimensional Fourier transform and F−1
indicates an inverse two-dimensional Fourier transform, kx and ky respectively give the

x and y components of the wave vector k. This expression can be solved numerically,

making use of fast Fourier transform algorithms.

An equivalent formulation for Fresnel diffraction can be derived through a treatment

based on the convolution integral. This treatment results in the Fresnel diffraction integral,

which expresses the propagated field as the sum of the propagated disturbances, which

are due to each of the points (x′, y′) on the incident wavefront over the plane z = 0 [48]:

ψ(x, y, z = R2 ≥ 0) = − ik exp (ikR2)

2πR2
exp

[
ik

2R2
(x2 + y2)

]

×
∫ ∫ ∞

−∞
ψ(x′, y′, z = 0) exp

[
ik

2R2
(x′2 + y′2)

]

× exp

[−ik
R2

(xx′ + yy′)

]
dx′dy′.

(1.23)

The Fresnel diffraction integral also provides a convenient means for numerically com-

puting coherent diffraction patterns [48].
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Transport of Intensity Equation

Teague (1982) [67] first established the quantitative relationship between the intensity

variation along the optical (z) axis and phase of a coherent beam with the Transport

of Intensity Equation (TIE). Teague considered a paraxial, coherent and monochromatic

beam propagating along the z-axis, where the complex amplitude can be expressed by

Equation 1.2. Teague substituted Equation 1.2 into the paraxial, free space Helmholtz

Equation (1.9) before separating the real and imaginary parts to arrive at the TIE:

−∇⊥ · [I(x, y, z)∇⊥φ(x, y, z)] = k
∂I(x, y, z)

∂z
. (1.24)

The TIE describes how variations in intensity are produced by Fresnel diffraction of

X-rays in the near field region for PBPCI techniques [68]. The TIE, therefore, can alter-

natively be derived from the Fresnel diffraction formulas (1.22) and (1.23) [69].

The TIE can be rearranged to yield an expression for the propagated intensity, I(x, y, z+

R2), by first taking the finite difference approximation,

∂I(x, y, z)

∂z
≈ I(x, y, z +R2)− I(x, y, z)

R2
. (1.25)

This expression is then substituted into Equation 1.24 and solved for the propagated

intensity, I(x, y, z + R2), to arrive at the following approximate description for PBPCI

within a sufficiently small propagation distance, R2:

I(x, y, z +R2) ≈ I(x, y, z)− R2

k
∇⊥ · [I(x, y, z)∇⊥φ(x, y, z)]. (1.26)

In PCI experiments, the phase-shift of the X-ray field cannot be measured directly. The

only measurable quantity is the intensity recorded by X-ray detectors. The TIE provides

an important link between the intensity measured at the detector and the phase-shift of

the X-ray field.

1.8.2 Bonse-Hart X-ray Interferometry

The work of Bonse and Hart, published in 1965, provides the earliest example of X-ray PCI

using a crystal interferometer [70] [71]. The interferometer uses analyser crystals to split,

recombine and create interference with the beam (Figure 1.9). Analyser crystals have a

periodic structure with periods, or lattice constants, comparable the wavelength of the

X-rays used in interferometry. This allows the crystals to diffract incident X-rays through

appreciable angles. The reflectivity of the crystal, as a function of the incident X-ray angle,

is sharply peaked at the Bragg angle of the crystal [48]. This angular dependent reflectivity

of the crystal is termed the rocking curve of the crystal. The interferometer described by

Bonse and Hart makes use of three analyser crystals. The first crystal splits the incident

beam into two coherent beams, one of which passes through a sample, and the other is used

as a reference beam. The second crystal causes the beams to converge. The converging

beams combine at the third crystal to form an interference pattern which is recorded by a
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detector. The phase interference effects are resolved using a wedge-shaped phase shifter,

which is placed in the reference beam [72]. Without a sample in the interferometer, the

reference beam, with the ramp in place, will interfere with the constant phase of the sample

beam, causing straight, periodic interference fringes at the detector. When a sample is

introduced, the fringes become distorted due to the phase shifts introduced by the sample

[57]. Crystal interferometry is a very sensitive PCI method as it directly detects the phase

of the wave field rather than derivatives of the phase. This technique can render three-

dimensional images through CT as demonstrated by Momose et al. (1996) [73]. Adoption

of crystal interferometry has been constrained due to difficulties in achieving adequate

mechanical stability in the setup. Crystal interferometers also have strict requirements for

the spatial and temporal coherence of the X-ray beam.

Figure 1.9: Crystal Interferometer Setup. [57]
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1.8.3 Analyser-Based Phase-Contrast Imaging

Analyser-based phase-contrast imaging (ABPCI) uses two sets of crystals. The first set of

crystals, placed between the source and the object, acts as a monochromator and collimator

of the incident X-ray beam. The second set (analyser crystals) is placed between the object

and the detector and acts as an angular filter of the radiation scattered and refracted by

the sample [74]. The object-detector distance is small so that propagation phase-contrast

effects are minimised [68]. The analyser crystals selectively reflect X-ray photons which

satisfy the Bragg condition, i.e those which are incident on the crystallographic planes at

an angle which is close to the Bragg angle, while most others are rejected. On passing

through the sample, the X-rays are refracted at an angle relative to the incident beam.

This refraction angle is proportional to the local gradient of the phase shift imposed by

the corresponding part of the sample [75]:

∆θ =
1

k

∂φ(x, y)

∂x
. (1.27)

The analyser crystal only reflects the un-refracted beam with maximum intensity when

the crystal is oriented at the Bragg angle relative to the incident X-ray beam. When the

crystal is rotated slightly off the Bragg angle, the refracted beams, for which the new

crystal position better satisfies the Bragg condition, are reflected with increased efficiency,

as shown in Figure 1.10. The images which are acquired with the crystal in the θL and

θH positions (IL and IH in Figure 1.10) contain both absorption and phase-contrast infor-

mation. Each of these ABPCI images is sensitive only to the phase-gradient component

in the plane of diffraction, so therefore, only has phase-contrast in one-dimension parallel

to the diffraction plane. The phase and absorption contrast components can be extracted

from the IH and IL images (Figure 1.11 (a) and (b)) using the method demonstrated by

Chapman et al. (1997) [76]. If the analyser crystal is rotated to an angle positioned at

the tail of the rocking curve (θD in Figure 1.10), a dark field image is produced. In the

dark field image, only the most strongly scattered X-rays will be displayed in the image,

resulting in bright areas corresponding to small features in the object (Figure 1.11 (c)).

Dark field images can provide sub-pixel resolution sensitivity of small features which can

be used to assess micro-calcifications [77].

The limitations of ABPCI for use in medical applications include the need for high

mechanical stability of the crystals, the significant loss of intensity due to the filtering

effect of both the monochromator and analyser crystals, which limit the use of conventional

X-ray sources, and the field of view being limited to the size of the analyser crystal [74].

1.8.4 Grating Interferometry

Grating Interferometry, or Talbot-Lau Interferometry, is a promising technique for achiev-

ing phase-contrast images in mammography applications. Grating Interferometry relies

on the Talbot effect, first described by Talbot in 1836 [79]. The Talbot effect is evident

in the propagation of a monochromatic X-ray wave field beyond a grating [57]. The grat-
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Figure 1.10: ABPCI setup. The rocking curve represents the reflection intensity of the
main beam versus crystal angle, the peak of the curve corresponds to the Bragg angle, θB,
[75]

Figure 1.11: ABPCI Images of a mouse: (a) absorption based image, (b) refraction
image, (c) scattering dark field image [78]

ing creates X-ray beam diffraction, resulting in interference patterns which evolve with

propagation distance. These patterns repeat at integer multiples of the Talbot distance

[57],

zTalbot =
2T 2

λ
, (1.28)

from the absorption grating. In Equation 1.28, T is the period of the grating and λ is

the wavelength of the radiation (where λ � T ). The Talbot distance is not appreciably

altered for X-rays of slightly differing wavelength [57]. As a result, this effect is still

apparent using a limited bandwidth, polychromatic X-ray source. The Talbot effect is

also apparent with a phase grating which alters the phase, rather than the intensity, of

the X-ray wave field. In the case of a phase grating which introduces a phase shift of π,

a rectangular intensity pattern of T/2 pattern is observed at the following Talbot lengths

[57]:

zTalbot = (n− 0.5)
T 2

4λ
, (1.29)

where n = 1, 2, 3, etc. The Grating Interferometry technique involves irradiating an

CHAPTER 1. INTRODUCTION 27



Different Approaches to Image Quality Assessment in Phase-Contrast Mammography

Figure 1.12: Interference pattern following X-ray diffraction due to an absorption grating
(top) and phase grating (bottom) [57].

object with highly spatially coherent X-rays and analysing the X-ray wave field transmitted

through the object with a pair of gratings [68]. The first grating, G1, is placed either in

front of or behind the object. This phase grating introduces a periodic phase shift. The

second grating, G2, is placed after G1 at one of the fractional Talbot distances (see Figure

1.13). At the fractional Talbot distances, the interference fringes created by the phase

grating produce the “self-imaging effect”. The technique can be extended to X-ray tubes

with low spatial coherence by the use of a third grating (“Grating 0” in Figure 1.13) placed

in front of the phase grating. The additional grating, however, reduces intensity, thus

necessitating longer exposure times. Phase-contrast in one-dimension using line gratings

can be achieved using the method described in [80] and shown in Figure 1.13. To create a

pattern which has a period of T at G2, the phase grating G1 must have a period of 2T, twice

the period of G2 [57] [80]. During image acquisition, in a process called phase stepping, G2

is incrementally stepped through a full period of the grating along the direction indicated

by the phase stepping arrow (xg) in Figure 1.13. Several images are acquired at different

points throughout this cycle. The intensity signal, I(x, y) in each pixel (x, y) in the

detector plane oscillates as a function of xg as shown in the phase stepping curve of Figure

1.14 (e). The phase differences φ(x, y) of the intensity oscillations in each pixel (Figure

1.14 (f)) are related to the wave front phase profile Φ(x, y), the X-ray wavelength λ, the
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distance d between the two gratings, and the period g2 of the absorption grating by [80]

[81]:

φ =
λd

g2

∂Φ

∂x
. (1.30)

The phase profile (Figure 1.14 (g)) of the object can thus be retrieved from φ(x, y) by

a simple one-dimensional integration [80].

The phase stepping image acquisition process is now described. Consider three dis-

creet positions of G2 which give rise to absorption, dark field, and phase-gradient images

respectively. In the first position, the grating G2 is aligned with the phase grating in-

tensity pattern such that the high intensity regions of the pattern pass through the gaps

in G2, resulting in maximum intensity at the detector in the absence of an object (posi-

tion x3 in Figure 1.14). When an object is introduced, refraction and scattering lead to

shifts in the high intensity regions of the pattern. These shifts result in the high intensity

regions no longer aligning with the gaps, and so are absorbed by the grating producing

reduced intensity at the detector. With the grating in this position, an image resembling

an absorption-based image with edge enhancement is generated, similar to that shown in

Figure 1.14 (c). If G2 is now moved to a position where the high intensity regions of the

interference pattern align with the grating lines and are absorbed, minimum intensity will

be recorded at the detector in the absence of an object (position x1 of Figure 1.14). With

the addition of an object, refraction and scattering will result in the high intensity regions

shifting into the gaps of G2, creating high intensity regions which correspond to small

scale features at the detector. A dark field image similar to the one shown in Figure 1.14

(a) will result. When G2 is positioned halfway between the previous two positions, the

grating lines will partially absorb the high intensity regions of the interference pattern,

resulting in medium intensity at the detector in the absence of an object (position x2 or

x4 in Figure 1.14). Adding an object produces refraction in one direction resulting in

the movement of the high intensity regions into the gaps of G2 and subsequent increased

intensity at the detector. Refraction in the opposite direction causes the high intensity

regions to move over the grating lines of G2 leading to absorption with a subsequent

decrease in intensity at the detector. A phase-gradient image similar to that shown in

Figure 1.14 (b) or (d) results. Grating Interferometry methods produce similar images

to ABPCI methods, with phase-contrast being proportional to the first derivative of the

phase shift. A significant advantage of the Grating Interferometry method is the ability

to utilise X-ray fields with low spatial and temporal coherence [82]. This introduces the

possibility of clinical implementation with conventional X-ray tubes.
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Figure 1.13: Grating based interferometry setup for a synchrotron X-ray source. A
grating, ”Grating 0” can be added for a laboratory X-ray source such as an X-ray tube
[57].

1.8.5 Edge Illumination Methods

The edge illumination method was initially developed as a synchrotron-based X-ray phase-

contrast procedure in the late 1990s [75]. A synchrotron edge illumination technique is

illustrated in Figure 1.15. A well collimated, monochromatic synchrotron X-ray beam is

shaped by an aperture placed before the sample to produce a narrow beam of radiation.

The beam is analysed by a second aperture positioned next to the detector. A function of

detected intensity versus the relative displacement between the sample and the detector

aperture is defined as the illumination function (Figure 1.15 (b)). When the system is

aligned such that half of the X-ray beamlet impinges on the edge of the detector aperture,

a shift of the X-ray beam by refraction is detected as intensity modulation by the analyser.

The concepts applicable to a synchrotron source have been replicated for a laboratory

source using the technique illustrated in Figure 1.15 (c) as demonstrated by Olivo et al.

(2007) [83]. The method produces phase-contrast which is proportional to the derivative

of the phase shift.
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Figure 1.14: The principle of phase stepping. Images of polystyrene spheres (100 and
200 µm) acquired at different positions xg = x1, ..., x4 of the absorption grating (a-d). (e)
Phase stepping curve showing intensity oscillation in two different detector pixels i=1,2,
as a function of xg. Note that due to the position of pixel 1 outside the sample, the
corresponding curve (shown in solid black) is equivalent to having no sample in the in-
terferometer. For each pixel, the oscillation phase, φ, and average intensity, a, can be
determined. (f) Image of the oscillation phase, φ, for all pixels. (g) Wave front phase,
Φ, retrieved from φ by integration. (h) Image of the average intensity a for all pixels,
equivalent to a non-interferometric image. The length of the scale bar is 50 µm [80]
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Figure 1.15: (a) Edge illumination setup, (b) illumination function (c) laboratory X-ray
source implementation [75]
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1.9 X-ray Image Detection

X-ray image detectors record intensity variations over a 2D plane to form an image. The

detectors convert the energy transported by X-ray photons into a form which can be

recognised either visually or electronically. PBPCI utilises information encoded in Fresnel

fringes to reduce radiation dose. To resolve fine Fresnel fringes, the detector must have

sufficient spatial resolution [84]. Image detection in mammography has evolved over the

years from screen-film to CR and then DR. Screen-film detectors have been described

previously in Section 1.3.1. In the remainder of this section, CR and DR detectors are

further discussed with an emphasis on phase-contrast mammography techniques.

1.9.1 Computed Radiography

CR is a technique used to produce digital mammographic images [15]. CR was an interim

measure before converting to full DR systems in mammography. Photostimulable Storage

Phosphor (PSP) plates replaced film. The cassettes housing the PSP plates had the same

format as screen-film cassettes so could be used in existing machines that previously used

screen-film. A latent image of trapped, excited electrons is formed within the storage

phosphor upon exposure to X-rays. Once exposed, the imaging plate is placed in a CR

reader which converts the latent image into a digital image through luminescence stimu-

lated by a scanning laser beam. The plate is then erased using white light to eliminate

any residual trapped electrons prior to the next use [15].

1.9.2 Charge-Coupled Device Detectors

Charge-Coupled Device (CCD) detectors convert visible light to an electronic signal which

ultimately displays as a 2D image [15]. CCD detectors cannot detect X-rays directly, so

the energy must first be converted to visible light using intensifying screens. Intensify-

ing screens comprise a scintillating material (such as CsI) which absorbs X-ray photons

and converts their energy into visible light photons through the conservation of energy.

The visible light photons tend to propagate laterally in the scintillator material and are

absorbed by several detector elements resulting in reduced spatial resolution [15]. CCD

chips are an integrating type of detector composed of crystalline silicon. The photosen-

sitive silicon surface of the CCD is divided into an array of discrete detector elements.

Light is absorbed by the photosensitive silicon, resulting in liberation of electrons and a

build-up of charge in each detector element. The charge is proportional to the intensity of

light incident on each element. After exposure, the accumulated charge in each detector

element is read out sequentially along rows of the CCD chip. CCD chips are often much

smaller than the required field of view of the X-ray detector, necessitating that the light

emitted from the large area of the intensifying screen be focused onto the small area of the

CCD chip [15]. Due to lens coupling inefficiencies, a significant number of light photons

is lost, resulting in decreased DQE and increased image noise [12].
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1.9.3 Complementary Metal-Oxide Semiconductor Detectors

Complementary Metal-Oxide Semiconductor (CMOS) detectors convert visible light into

an electronic signal and so are an alternative to CCD detectors [15]. CMOS detectors are

composed of a crystalline silicon matrix with integrated photosensitive detectors, storage

capacitors and read-out electronics. CMOS chips have the ability to address any detector

element in read or read-and-erase mode. This allows opportunities for AEC, which is an

advantage compared to CCD chips [15]. CMOS-based detector systems have inherently

high electronic noise in both acquisition and readout states. These types of detectors

are used for small field of view applications, and sometimes to replace image intensifier

systems in fluoroscopy [12].

1.9.4 Flat Panel Thin Film Transistor Array Detectors

Thin Film Transistor (TFT) technology, originally developed for use in laptop computer

screens, enabled the manufacture of large-area detector panels [15]. TFT technology

eliminated the requirement for optical lens coupling to an intensifying screen, as in the

case of CCD and CMOS detector systems. This resulted in improved DQE. TFT arrays

are divided into individual detector elements which are arranged in a 2D matrix. Each

detector element contains a TFT, a charge collecting electrode and a storage capacitor

[15]. During X-ray exposure the TFT switch is closed, thus allowing the charge collected

by the electrode to accumulate in the storage capacitor. During readout, the TFT array

is activated one row at a time, by sequentially turning on the gate line to every detector

element in the row. The charge in each detector element flows through the transistor to a

drain line and on to a charge amplifier. The charge is amplified before converting it to a

proportional voltage. The voltage signal is then digitised and represented as a pixel value

for each detector element. This process is repeated row by row to fully convert the array

into a 2D image. Two types of detector systems employ TFT technology: indirect and

direct. Indirect systems use phosphor screens composed of either Cesium iodide (CsI) or

gadolinium oxysulfide (GOS), to convert X-ray energy into visible light before detection by

a photosensitive element on the TFT array. Direct systems use a semiconductor material,

amorphous selenium (a-Se), which absorbs X-ray photons to create electron-hole pairs.

An applied voltage across the semiconductor layer causes the electrons to move to the

detector elements where they are stored as charge. An advantage of direct systems is

high spatial resolution, as the applied voltage across the semiconductor reduces lateral

spread of charges. Indirect systems suffer from lower spatial resolution due to lateral

spreading of the light photons in the phosphor layer causing blurring. A disadvantage of

direct systems in general radiography is the reduced DQE due to the low atomic number

of a-Se compared to indirect systems. By comparison, the high atomic number of the

CsI phosphor in indirect systems provides high detective quantum efficiencies in general

radiography applications [15]. Direct conversion TFT flat panel detectors are commonly

used in mammography where high spatial resolution is required and the low energy X-rays

can be efficiently detected by the a-Se semiconductor layer [18].
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1.9.5 Photon Counting Detectors

Photon counting detectors interact with photons individually, registering each photon

electronically as a ‘count’ [12]. Energy resolving photon counting detectors can determine

the energy of each photon based on the voltage pulse height associated with each count

[84]. The advantage of photon counting detectors, compared to integrating detectors,

is their ability to detect low exposure rates with significantly reduced noise levels [12].

Energy discrimination allows materials to be differentiated more effectively in computed

tomography (CT) applications where the detector can characterise the manner in which

different X-ray wavelengths are attenuated [85]. The disadvantages of photon counting

detectors are: limitations on pixel size (>50 µm) and high cost [84].

1.10 Phase Retrieval

PCI techniques involve the use of X-ray detectors which cannot directly measure the phase

shift of an X-ray wave field after interaction with an object. The only measurable quantity

of the X-ray wave field is the intensity distribution. As shown by the TIE (Equation 1.24),

the X-ray field phase shifts, caused by interaction with an object, result in variations of

intensity which are dependent on propagation distance. In the case of PBPCI, these

variations in intensity can be visualised as the characteristic Fresnel fringes which result

in edge enhancement. The Fresnel fringes help visualise subtle changes in thickness or

density between materials but do not directly yield information about the object. The

Fresnel fringes can, therefore, be considered an aberration, meaning the object is not

depicted correctly by the image. Information on the phase shifts and thus, information

on the object, can be recovered through a process called phase retrieval. Phase retrieval

unlocks the significant image quality benefits of PCI, allowing increased SNR for a lower

radiation dose, compared to absorption-based images [86].

1.10.1 Transport of Intensity Homogeneous Phase Retrieval

In this section, an algorithm is derived which allows quantitative phase extraction from a

single propagation-based phase-contrast image. This algorithm provides the thickness of

a single material sample projected along the z-direction, T (x, y), using information from

both the phase-shift and the attenuation of the X-ray wave field. The algorithm relies on

knowledge of the complex refractive index of the material, the input intensity and the in-

tensity distribution of the phase-contrast image, as measured by the detector. It does not

rely on measurement of the phase-shifts of the X-ray wave field, which cannot be directly

measured. The Paganin et al. (2002) [87] method is described below:

Figure 1.16 shows a PBPCI layout with a point source. It is assumed that the scalar

X-ray field is a paraxial and monochromatic. The TIE, which describes the intensity

variation due to phase shifts with propagation distance, can be solved for the projected

thickness T (x, y) of the object. To simplify the derivation, the X-ray point source is

assumed to be an infinite distance from the object (R1 →∞). This assumption results in
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Figure 1.16: Propagation based phase-contrast imaging setup using a point source (not
to scale). Adapted from [87]

collimated illumination and a magnification factor of unity. The object is assumed to be

composed of a homogeneous material. For X-ray radiation of uniform intensity over the

area occupied by the object, the intensity at the exit surface (z=0) of the object, i.e. the

contact image, is assumed to be approximated by Beer’s Law of attenuation (Equation

1.20).

I(x, y, z = 0) = Iin exp (−µT (x, y)).

The image at the plane z = 0 is equivalent to a conventional attenuation-based X-ray

image. If the object is sufficiently thin, the phase-shift, ∆φ(x, y, z = 0), of the illuminat-

ing beam at the exit surface of the homogeneous object is proportional to the projected

thickness as shown by Equation 1.18:

∆φ(x, y, z = 0) = −kδT (x, y).

Substituting the homogeneous Beer’s Law Equation (1.20) and Equation 1.18 into

Equation 1.26 gives an equation which is non-linear in T (x, y), but can be written as an

equation which is linear in exp (−µT (x, y)):

(
−R2δ

µ
∇2
⊥ + 1

)
exp (−µT (x, y)) =

I(x, y, z = R2)

Iin
. (1.31)

The following identity has been utilised:

δ∇⊥ · (exp (−µT (x, y))∇⊥T (x, y)) = − δ
µ
∇2
⊥ exp (−µT (x, y)). (1.32)

In order to proceed, the contact image, I(x, y, z = 0) = Iin exp (−µT (x, y)), and the

phase-contrast image, I(x, y, z = R2) are represented by the following Fourier integrals:

36 CHAPTER 1. INTRODUCTION



Different Approaches to Image Quality Assessment in Phase-Contrast Mammography

Iin exp (−µT (x, y)) = Iin

∫ ∫
F{exp (−µT (x, y))} exp (i2π(ux+ vy))dudv, (1.33)

I(x, y, z = R2) =

∫ ∫
F{I(x, y, z = R2)} exp (i2π(ux+ vy))dudv. (1.34)

In the expressions above, F{} is the Fourier transfrom. These can be substituted into

Equation 1.31 and rearranged, recalling that µ = 2kβ = 4πβ/λ, to give:

F{exp (−µT (x, y))} =
F{I(x, y, z = R2)}/Iin
R2πλ(δ/β)(u2 + v2) + 1

. (1.35)

Taking the inverse Fourier transform of the previous equation and solving for T (x, y),

the final algorithm is:

T (x, y) = − 1

µ
loge

(
F−1

{ F{I(x, y, z = R2)}/Iin
R2πλ(δ/β)(u2 + v2) + 1

})
. (1.36)

This is a well utilised relationship in PCI, known as Paganin’s method [64]. In CT

applications the homogeneous approximation can be considered valid within local areas

[64]. This method can be implemented numerically, utilising the fast Fourier transform

algorithm to significantly improve the SNR in propagation-based phase-contrast computed

tomography (PB-CT). Nesterets et al. (2014) [86] demonstrated that a maximum theoret-

ical SNR gain of 0.3(δ/β) is possible using phase retrieval methods. With a (δ/β) ratio of

approximately 870, as was used in the phase retrieval of PB-CT images of a mastectomy

sample [59], a maximum theoretical SNR boost of 261, compared to an attenuation-based

image, may be achieved. This significant boost in SNR arises from the utilisation of both

attenuation and phase shift information of the X-ray field. The considerable increase in

SNR could enable a reduction in radiation dose, while still maintaining adequate diag-

nostic image quality. Kitchen et al. [88] demonstrated that, with a 300 fold reduction in

absorbed dose, the phase retrieved phase-contrast image SNR was 9.6 ± 0.2 times greater

than that from absorption contrast data when imaging soft tissues with PB-CT. Gureyev

et al. (2014) [89] demonstrated a dose reduction of approximately 400 times, while main-

taining adequate image quality using TIE-Hom phase retrieval on PB-CT images of breast

tissue samples. These considerable reductions in absorbed dose may allow breast CT to

be performed at doses which are acceptable for screening with a significant improvement

in image quality [59] [90].

1.11 Computed Tomography

A major limitation of conventional projection radiography is that the three-dimensional

volume of the human body is projected on to a two-dimensional image. This results in

superposition of different tissues and significantly reduced visibility of areas of interest. De-
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spite good spatial resolution in projection radiography images, there is poor low-contrast

resolution in soft tissues. The limitations of projection radiography are particularly sig-

nificant in mammography. CT is able to compute a single slice image, based on projection

images taken at many different angles around the object. These slice images eliminate the

problem of over- and underlying structures obscuring regions of interest. These advantages

have led to increasing research into the clinical applications of dedicated breast CT. One of

the primary limitations of breast CT imaging is the increased dose to the patient. Breast

phase-contrast CT imaging has the potential for significant reduction in dose compared

to attenuation based CT, while maintaining acceptable SNR levels [90]. This modality is

of particular interest for breast screening applications.

In CT scanners, the X-ray tube and detector, which are mounted within a gantry,

rotate around the patient taking a series of one-dimensional (1D) projection images at

different angles. These projection images are plotted on a two-dimensional (2D) Radon

space image called a sinogram. The sinogram comprises rows, which correspond to differ-

ent positions, p, on the 1D detector and columns, which correspond to projection angles,

θ, around the patient (Figure 1.17).

Figure 1.17: A specific projection angle (a) results in a 1D intensity image (b) which
corresponds to one column in Radon space (sinogram) (c). Adapted from [12]

The sinogram is then reconstructed into a slice image using one of several reconstruc-

tion methods.

1.11.1 Filtered Back Projection

Back projection is one of the simplest methods of forming a projection image from a sino-

gram. The method involves taking a 1D projection profile in the sinogram and distributing

the measured signal, at the same angle as the projection, evenly over the object area. A

slice image is formed by adding the back projections from all angles of every 1D profile. A

limitation of simple back projection is the characteristic blurring as shown in Figure 1.18
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(d). The blurring follows a 1/r intensity reduction around a feature in the image, where r

is equal to the radial distance from the feature [15]. To correct the characteristic blurring,

filtered back projection (FBP) is performed. The process of FBP involves performing a

2D Fourier transform on the sinogram image and applying a filter such as a ramp filter

(shown as a Ram-lack filter in Figure 1.19) in Fourier space. The filtered Fourier space

image is then converted back to a sinogram with the application of a 2D inverse Fourier

transform. Finally, the filtered sinogram is back projected into a slice image that is free

from characteristic blurring. Application of a ramp filter will correct for 1/r blurring but

it results in excessive noise in the slice image due to gains in the high frequency region

of Fourier space [15]. To reduce noise, a filter such as a Shepp-logan filter is applied [15].

The application of this filter results in a roll-off in the gain at the high frequency region

of Fourier space. A further reduction in noise can be achieved by applying a Hann filter

as shown in Figure 1.19 [15]. This filter significantly reduces gain in the high frequency

region, but at the expense of spatial resolution [15].

Figure 1.18: Simple back projection reconstruction. A specific projection (a) results in
a 1D intensity image (b) which is back projected across the object area at the angle of the
projection (c) The sum of many back projections results in a blurred slice image (d) [12].

1.11.2 Iterative Reconstruction

With improvements in algorithm design and fast computer hardware, most modern scan-

ners now offer iterative reconstruction methods as well as FBP [15]. The sinogram is

known, whereas the slice image is unknown, in the reconstruction process. Iterative re-

construction algorithms begin with an initial estimate of the slice image. A forward

projection is then performed. This forward projection can be considered as a type of

simulated CT scan. The sinogram arising from the simulation is compared to the actual

sinogram and an assessment of the match between the two sinograms is performed. If

the profiles do not match within a given tolerance, then another iteration is performed.

The iteration process is complete when the forward projected sinogram closely matches

the actual sinogram. Following the completed iteration process, the slice image is a close

approximation of the scanned object. Iterative reconstruction produces improved SNR

images compared to FBP. Also, an equivalent SNR can be achieved with a lower radia-

tion dose compared to FBP [15]. Nesterets et al. [91] (2015) investigated four iterative

reconstruction methods applied to PB-CT acquisitions. The study concluded that all four
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Figure 1.19: Different filters applied during filtered back projection reconstruction.

reconstruction algorithms produced superior image quality metrics compared to FBP, with

the Total Variation (X-TRACT 2015) algorithm providing the best overall improvement.

The slice images which result from these reconstruction methods commonly have pixel

values that are represented by Hounsfield Units (HU). The HU scale represents the

linear attenuation coefficient of the material (µmaterial) relative to the linear attenuation

coefficient of water at room temperature (µwater):

HU =
µmaterial − µwater

µwater
× 1000. (1.37)

1.12 Image Quality Assessment

The purpose of imaging in breast cancer screening is to detect and characterise pathology.

In this context, image quality is best defined in relation to diagnostic performance. The

most effective descriptor of image quality is the receiver operating characteristics (ROC)

curve, which is a quantitative method for assessing diagnostic performance [92]. It is often

impractical to perform ROC studies to assess image quality because of the large number

of images and significant observer time required. Often the only practical alternative is to

use the subjective evaluation of clinical images by radiologists [93]. To have radiologists

assessing large numbers of medical images can be uneconomical and impractical. It is ben-

eficial, therefore, to establish a robust, quantitative image assessment method that can

accurately predict the subjective clinical image quality assessment made by radiologists.

This section presents further details on subjective clinical image quality assessment and

introduces quantitative, image-based metrics which could potentially be used to predict
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the clinical image quality assessment by radiologists. This section is based on a submitted

paper (see Appendix B).

1.12.1 Clinical Image Quality Assessment

Clinical image quality assessment involves visually assessing the appearance of an image

by a trained observer such as a radiologist. The radiologist will then provide an opinion

on overall image quality. This method depends on human judgement and so is a subjec-

tive method of image quality assessment [93]. Clinical image quality assessment can be

a side-by-side relative assessment, or an absolute assessment of image quality [94]. These

two types of clinical image quality assessment can be referred to as relative or absolute

visual grading analysis (VGA) studies [92]. Clinical image quality assessment suffers from

intra- and inter-observer variability [93]. Furthermore, it cannot always be assumed that

high clinical image quality leads to improved diagnostic performance [95]. Variability in

clinical image quality assessments can be minimised by averaging assessments across many

radiologists, giving the radiologists specific assessment instructions, and assessing images

relative to a consistent reference image [96].

Taba et al. (2021) [97] subjectively compared overall image quality of mammographic

phase-contrast CT images against attenuation-based CT images. The authors adopted a

system of rating scores as follows: the overall clinical image quality of the phase-contrast

CT image is clearly better than (+2); slightly better than (+1); equal to (0); slightly worse

than (-1); and clearly worse than (-2) the overall image quality of the attenuation-based

CT image. The authors of this study took measures to reduce variability between radi-

ologists’ scores. These measures included using a score averaged across 11 radiologists,

performing a side-by-side relative comparison between phase-contrast and attenuation-

based images, and giving the radiologists instructions on what aspects of image quality to

focus on. Further details on this study are presented in Section 2.2

1.12.2 Physical Image Quality Assessment

Physical image quality assessment involves the computation of certain quantitative im-

age criteria from greyscale values in the image. Physical assessment is independent of

an observer assessing the image. However, subjective assessment by radiologists is more

clinically relevant to achieving a diagnosis. Objective, physical image quality assessment

methods, which accurately reflect overall image quality as assessed by radiologists, is still

an active research area. The following sections describe various quantitative image metrics

which may be used to form an objective model capable of predicting subjective clinical

image quality.
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Contrast

Michelson contrast, also known as visibility [12], of an object indicates how easily the

object is visually differentiated from the background. A CT image can be normalised so

that the reconstructed pixel values correspond to the local value of the imaginary part,

β, of the relative refraction coefficient. In this case, the contrast (C) can be calculated as

[98],

C =
βhi − βlow

2βaver
, (1.38)

where, in the case of breast CT images, βhi and βlow are the average pixel values in

the glandular and adipose regions respectively and βaver is the average of the pixel values

across both the glandular and adipose regions.

Signal to Noise Ratio

The SNR is a measure of the signal level in the presence of noise [15]. It is an important

metric in mammography images as the visibility of low contrast soft tissue features, such

as a tumour, is strongly dependent on the SNR of the image. A low SNR corresponds to

poor visibility of low contrast features [12]. The SNR can be defined as [98]:

SNR =
βaver
σ

, (1.39)

where βaver is the mean output signal within a region of interest (ROI) and σ is the

standard deviation of the noise within the same ROI.

Contrast to Noise Ratio

The contrast to noise ratio (CNR) is a measure of the signal difference (contrast) in the

presence of noise. A definition of the CNR which is invariant with respect to affine pixel

value transformations is [98],

CNR =
βhi − βlow

2σ
= C × SNR. (1.40)

Spatial Resolution

Spatial resolution is a metric used to quantify the ability of an imaging system to display

two unique objects which are closely separated in space [12]. Spatial resolution is used

to quantify the level of unsharpness in an image. Unsharpness or blurring in an image

reduces the contrast of small objects. A high level of spatial resolution is required in

mammography to visualise small micro-calcifications. The physical characteristics of an

X-ray imaging system that affect spatial resolution include the size of the X-ray tube focal

spot, the object to detector distance, the lateral spread of light photons in the phosphor

layer of an indirect detector system and the pixel size of the detector.
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There are several methods to quantify spatial resolution. The simplest method involves

determining the limiting spatial resolution, which is defined as the maximum spatial fre-

quency for which modulation is visually preserved. Limiting spatial resolution is quantified

by acquiring an image of a line pattern phantom with a range of high contrast modulation

patterns. The highest spatial frequency pattern which can just be visually resolved is the

limiting spatial resolution. However, a simple descriptor of spatial resolution, such as the

limiting spatial resolution, is often not sufficient to characterise it [92]. The measurement

of the limiting spatial resolution by a line pattern phantom does not describe signal trans-

fer at lower frequencies. Signal transfer at lower frequencies is in practice responsible for

providing diagnostic information [99]. The modulation transfer function (MTF) provides

a more complete description of the system spatial resolution. The MTF quantifies the

degradation of the contrast of a system as a function of spatial frequency (Figure 1.20)

[12]. The MTF of a digital system can be measured by first determining the edge spread

function (ESF) of the system by imaging an attenuating object which presents a sharp

edge [100]. The derivative of the ESF gives the line spread function (LSF) (shown in

Figure 1.21). The LSF is then normalised so that the area under the curve is unity [15]:

∫ ∞

x=−∞
LSF (x)dx = 1. (1.41)

Taking the Fourier transform and modulus of the normalised LSF results in a one-

dimensional (1D) MTF [15]:

MTF (f) = |F{LSF (x)}|, (1.42)

where, F{} represents the Fourier transform. In many imaging systems, the point

spread function (PSF) is assumed to be rotationally symmetric and spatially invariant

(does not change with position in the image) [15]. The PSF is the response of the imag-

ing system to a point, or impulse input [15]. Under these assumptions, the 1D MTF is

sufficient to characterise the spatial resolution in any direction and any position in the

image. Another measure used to quantify spatial resolution is the full width at half maxi-

mum (FWHM) of the system PSF. The FWHM is the width of the PSF function halfway

between the maximum and minimum points. If the PSF is assumed to be rotationally sym-

metric, the LSF is a one-dimensional integral representation of the two-dimensional PSF

[12]. Therefore, under most circumstances, with knowledge of one of the previously de-

scribed spatial domain spread functions, the others (as well as the MTF) can be computed.

A method that determines the width of the PSF from the power spectrum of the noise

in a uniformly illuminated area of a CT image is implemented in the X-TRACT software

[86] [101]. A more detailed description of this method is provided in Section 2.3.1.
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Figure 1.20: A plot of the MTF of an imaging system. Sinusoidal input signals are
incident on the detector. The input signal with a spatial frequency of 1 cycle per millimetre
(cy/mm) has diminished its input contrast to 87% by resolution losses in the imaging
system. The input signals with spatial frequencies of 2 and 4 cy/mm have likewise been
diminished to 56% and 13% of their input contrast, respectively. [15].

Figure 1.21: The spread functions in the spatial domain are shown. [15].
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Detective Quantum Efficiency and Noise Equivalent Quanta

The detective quantum efficiency (DQE) is used to characterise an X-ray imaging system

in terms of the overall frequency-dependent SNR performance [15]. The DQE is commonly

expressed in terms of spatial frequencies [12]:

DQE(u, v) =
SNR2

out(u, v)

SNR2
in(u, v)

, (1.43)

where the subscript out is related to the output image and the subscript in corresponds

to the incident X-ray flux.

The noise equivalent quanta (NEQ) is the effective number of quanta needed to achieve

a specific SNR in an ideal detector [12]:

NEQ = SNR2
in. (1.44)

In some sense, the NEQ denotes the net worth of the image data in terms of X-ray

quanta and the DQE defines the efficiency with which an imaging system converts X-ray

quanta into image data [12].

Intrinsic Imaging Quality

Gureyev et al. [102, 103] proposed a measurement to assess the overall quality of an X-

ray imaging system termed the “intrinsic imaging quality” (Qs) characteristic (per single

particle) of the imaging system. This is a dimensionless metric, incorporating both the

noise sensitivity and spatial resolution of the system:

Qs =
SNR

∆rI
1/2
in

. (1.45)

In the equation above, SNR is the average signal to noise ratio in a “flat” area of

the image, Iin is the mean incident intensity (i.e. the statistically averaged intensity

distribution in the image), and ∆r is the standard deviation of the PSF (i.e. the spatial

resolution).

1.12.3 Relationship Between Physical and Clinical Image Quality

Traditionally, quantitative image assessment has been performed using robust, intrinsic,

objective quantities such as noise equivalent quanta NEQ or DQE, measured using sim-

ple phantoms [92]. Frequently, pathology detectability is not limited by system noise

(such as quantum, structural and electronic noise), but by normal anatomic structure

[92]. Metrics such as NEQ and DQE describe the imaging system but fail to describe the

complex patient anatomy in clinical images. Recent studies have found a good correla-

tion between DQE and subjective assessment of chest radiographs of an anthropomorphic

phantom [104]. However, it remains difficult to predict clinical image quality using these

metrics. Variable anatomical backgrounds significantly complicate the relationship be-
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tween objective measures and subjective clinical image quality [92]. Several studies have

demonstrated an image-based method that can successfully predict radiologists’ percep-

tual rank ordering of chest radiograph images based on certain perceptual attributes (such

as rib sharpness) [105, 106]. Given the complex anatomy present in chest radiography,

a successful image-based predictive, objective measure of overall image quality has not

yet been formulated. Promising results using no-reference image quality assessment mod-

els to predict subjective assessment of medical images has been demonstrated [107, 108].

However, these models have not been thoroughly verified against subjective image quality

assessments performed by radiologists. Compared to many projection radiographs, thin-

slice CT images of breasts have a relatively simple anatomical background. In thin-slice

CT images of breasts, visibility of pathology is likely limited by system noise rather than

the anatomical background. In this context, the likelihood of establishing a correlation

between physical measurements and clinical image quality is improved.
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Experimental Methods

In 2018, 12 mastectomy samples were scanned using PB-CT techniques at the IMBL.

This was part of a larger study of approximately 120 mastectomy samples scanned over

approximately five years. For each of the 12 samples, eight different PB-CT image sets

were collected using a variety of imaging parameters. Additionally, reference absorption-

based computed tomography (AB-CT) images were also collected using a small object to

detector distance for each sample. A recent study by Taba et al. [97] enrolled 11 specialist

breast radiologists to assess the subjective clinical image quality of the PB-CT test im-

ages of the mastectomy samples against AB-CT reference images of the same mastectomy

samples. The methods described in this section provide a quantitative, relative image

assessment model which predicts the corresponding subjective assessments performed by

a pool of radiologists. Two separate methods, using two different software programs for

performing quantitative image measurements are described. This section uses material

presented in a submitted paper (see Appendix B).

2.1 Samples and Imaging Technique

As described in Taba (2021) [97], 12 fresh mastectomy specimens were used. The samples

were scanned within a few hours of surgical excision with no fixation or preservation ap-

plied. All scans for this study took place at the IMBL. A near-parallel X-ray beam with

a cross-sectional area of approximately 120mm × 30mm and energies of 32 or 34 keV,

with a monochromaticity (∆E/E) of about 10−3, was used, based on previous optimisa-

tion studies [109] [110]. The X-ray detector used was a Hamamatsu C10900D Flat Panel

Sensor, with a pixel size of 100 µm × 100 µm, a field of view of 1248 × 1248 pixels and

a frame rate of 17 fps. Each mastectomy sample was placed in a thin-walled (≈ 1 mm)

cylindrical plastic container, with a diameter of either 11 cm (n = 11) or 12 cm (n =

1), while the skin and nipple were positioned on the top. The surgical sutures and clips

on the mastectomy specimens were used to orient the breast (resembling a coronal view)

before positioning the container on a rotation stage for CT scans. Images were collected at

two different sample-to-detector distances: the minimum practically achievable distance

of 0.19 m was used to represent an AB-CT scan, and the maximum achievable distance
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of 6 m was employed for PB-CT scans. An ionisation chamber was used to measure the

photon fluence rate, and the corresponding rate of the surface absorbed dose to air at the

ionisation chamber plane. The subsequent calculation of the mean glandular dose (MGD)

was performed using Monte Carlo simulations, with a numerical phantom simulating the

breast. The numerical phantom was composed of 30% weight glandular tissue and 70%

weight adipose tissue [111] surrounded by a 5mm thick layer of adipose tissue (representing

the skin). In this study, all the AB-CT images were collected at 4 mGy MGD (“standard”

dose), while PB-CT scans were collected at two different doses of 4 mGy MGD (“stan-

dard” dose) and 2 mGy MGD (“low” dose). For each scan at 4 mGy, 2400 projections

with 0.075◦ angular steps were collected over the 180◦ rotation range. Similarly, for the

2 mGy scans, 1200 projections with 0.15◦ angular steps were collected. Additionally,

dark-current images (for removing the detector dark current contribution) and flat field

images (for correcting uneven illumination) were collected during each acquisition. The

CT reconstruction method used to produce the 3D images of the breast tissue was Filtered

Back Projection (see Section 1.11.1). For PB-CT images, a phase retrieval technique was

employed to exploit the refraction information in the transmitted X-ray beam by applying

the Homogeneous Transport of Intensity Equation (TIE-Hom) algorithm to the collected

projection data [87]. The TIE-Hom algorithm is a low-pass filter controlled by a single

parameter γ. To perform phase retrieval that completely removes diffraction fringes at

the boundary of two materials, the applied γ value should be equal to the ratio of the real

decrement (δ) to the imaginary decrement (β) of the relative complex refractive index of

these two materials (∆δ/∆β). In general, by increasing γ, better SNR in the CT image

can be achieved but with poorer spatial resolution. Similarly, by decreasing γ, poorer

SNR in the CT image results but with better spatial resolution [86] [112]. In order to

find an optimal balance between SNR and spatial resolution, each CT reconstruction was

performed at two different levels of phase retrieval, i.e. two different values of γ. For “full

phase retrieval,” a ∆δ/∆β value that depends on the X-ray energy and is close to the

theoretical value for glandular tissue relative to blood (to mimic tumour; ∆δ/∆β = 550

for 32 keV and ∆δ/∆β = 600 for 34 keV) is used [60]. For “half phase retrieval” a ∆δ/∆β

value equal to half the value in full phase retrieval is applied. When comparing different

X-ray energies (32 keV and 34 keV), the effect of phase-retrieval is controlled by including

both half-phase retrieval (hTIE) and full-phase retrieval (fTIE) image sets (equal number

of cases) in the assessment. Similarly, when comparing different levels of phase retrieval

(hTIE and fTIE), both 32 keV and 34 keV image sets (equal number of cases) are included

in the assessment, so the effect of X-ray energy on the quality scores is controlled.

2.2 Subjective Radiological Assessment

As described in Taba (2021) [97], the AB-CT and PB-CT slices were originally recon-

structed in the plane corresponding to the coronal view in mammography. For the radio-

logical assessments, the images were numerically re-sliced into axial and sagittal views, rep-

resenting craniocaudal and mediolateral oblique views, respectively. Furthermore, while

the original in-plane resolution of 100 µm was preserved, median values were used to gener-
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ate thicker slices of 1mm each (close to the slice thickness in digital breast tomosynthesis)

for assessments. The original AB-CT and PB-CT slices were in 32 bit greyscale with the

reconstructed pixel values corresponding to the local value of the imaginary part, β, of the

complex refractive index. For the radiological assessment, the images were converted to

8bit greyscale, where the pixel values have a value between 0 and 255, corresponding to the

darkest and lightest greyscale shade, respectively. Before assessing the PB-CT images, the

best quality AB-CT image set, among the corresponding 32 keV and 34 keV images sets,

was selected by three medical imaging experts as the reference image set for each sample.

A visual grading characteristics (VGC) study was conducted [113], in which radiological

image quality was assessed in a blinded experiment by 11 radiologists with 5-20 years

of experience in reporting mammography. The assessment included evaluating overall

radiological image quality in PB-CT (test) images, prepared in axial and sagittal planes,

compared with the corresponding AB-CT (reference) images using a five-point rating scale.

The definition of the scale is; the image quality of the test image set is clearly better than

(+2); slightly better than (+1); equal to (0); slightly worse than (-1); and clearly worse

than (-2) the reference image set. The radiologists were asked to consider “perceptible

contrast,” “lesion sharpness,” “normal tissue interfaces,” “calcification visibility,” “image

noise,” and “artefacts” when rating the overall radiological image quality.

2.3 Quantitative Assessment

It is hypothesised that the CNR to spatial resolution (res) ratio (CNR/res) is a quanti-

tative metric that is likely to correlate with the overall clinical image quality as assessed

by radiologists. The CNR/res criterion is closely related to the “intrinsic image quality”

(Equation 1.45) proposed by Gureyev et al. [102, 103]. Furthermore, the CNR/res crite-

rion is a metric that combines the three most fundamental factors affecting image quality:

contrast, noise and spatial resolution [92]. To calculate the CNR/res, the contrast, noise,

and spatial resolution measurements were performed on both the PB-CT (test) and the

AB-CT (reference) images. Two methods for quantifying the contrast and SNR (as a mea-

surement of noise) and three methods for calculating spatial resolution were implemented

using two separate software programs.

2.3.1 X-TRACT Software

X-TRACT software [101] has been utilised in several studies relating to PB-CT image

quality [50, 98, 109, 114]. In these studies, it has been utilised to perform measurements

of contrast, SNR and spatial resolution.

The “Thick line” tool in X-TRACT (“T” in the Image Control dialogue) is able to

calculate and report visibility (as a measure of contrast), SNR and spatial resolution. The

“Thick line” tool is used to draw a rectangle across an interface between glandular and

adipose tissue as shown in Figure 2.1. The contrast is calculated using Equation 1.38.

In the X-TRACT software calculation, βhi and βlow are the average pixel values inside
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the top and bottom histogram bins, respectively, of a 5-bin histogram into which all pixel

values from the selected “Thick line” (see red/white rectangle in Figure 2.1) region are

sorted. βaver is the average pixel value inside the same “Thick line” selection area [98].

Figure 2.1: An example of the placement of the thick line tool in X-TRACT to measure
the contrast between glandular and adipose tissue, the SNR and the spatial resolution in the
image. The red/white rectangle indicates the shape of the thick line tool rectangle and the
yellow square indicates the approximate location of the virtual square (not usually shown
in X-TRACT).

The SNR is calculated using both the “Thick line” area and the adjacent “virtual

square” region (see yellow square in Figure 2.1) which should be located in a “flat” (fea-

tureless) area of the image to allow the evaluation of the photon statistics. This “virtual

square” region is located immediately next to the left edge, in the case of a horizontal

“Thick line”, or next to the top edge in the case of a vertical “Thick line”. The area of

the “virtual square” region is equal to the area of the selected “Thick line” [115]. The

SNR is defined as the ratio of the average pixel value in the thick line area to the standard

deviation of the pixel values within the virtual square region (see Equation 1.39). Gener-

ally, the noise in medical images is not independent from one pixel to another. Therefore,

the noise power spectrum (NPS) is usually required for full characterisation of the noise

[92]. All images in this study are acquired using the same system setup, so the shape of

the NPS stays approximately constant. Therefore, a simple measure of the pixel value
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standard deviation is deemed adequate to compare noise between images.

The spatial resolution in X-TRACT is calculated from the power spectrum of the noise,

which is defined as the difference between the value of intensity in a given pixel and the

mean intensity value within the uniformly illuminated virtual square region [109]. It is

assumed that the incident photon flux within the selected small uniformly illuminated area

is spatially stationary, ergodic and has Poisson statistics [12]. Under these assumptions,

it is possible to calculate the width (∆r) of the detector PSF by measuring the effective

width of the power spectrum of the image noise. The input power spectrum of the incident

quantum noise is uniform, indicating that it has the appearance of a flat line across all

spatial frequencies. The output power spectrum of the noise, measured from the noise in

the image, is a convolution of the input incident quantum noise with the detector PSF,

phase retrieval and the CT reconstruction. This leads to the multiplication of the power

spectrum by the square of the corresponding MTF [116]. Therefore, by calculating the

power spectrum of the noise within the virtual square region (assuming it is placed on a

uniformly illuminated region of the image) the width of the MTF can be determined. The

width of the PSF, assuming it has a gaussian shape, can be calculated from the width

of the MTF [109]. The spatial resolution of the imaging system (including all the post

processing operations) is equated with the width of the PSF. This calculation accounts for

the PSF of the detector, but not the X-ray source size (penumbral blurring) [50]. However,

given the extended source-to-object distance in the synchrotron setup, the X-ray source

size has a negligible contribution to blurring.

The CNR/res value is calculated using the contrast, SNR and spatial resolution (∆r)

in the following equation and displayed in the X-TRACT Image Control dialogue:

CNR/res =
C × SNR

∆r
. (2.1)

To perform the measurements using the “Thick line” tool, the PB-CT (test) and

corresponding AB-CT (reference) images were opened side by side. A suitable interface

between glandular and adipose tissue was selected on the PB-CT image and a “Thick

line” was drawn across the interface (an example of which is illustrated in Figure 2.1).

The same interface was then located on the corresponding AB-CT image, and a “Thick

line” of similar size and position was drawn. This method is intended to minimise errors

introduced by comparing different anatomy or different parts of the image between the

PB-CT (test) and AB-CT (reference) images. The PB-CT and AB-CT images come as a

CT image set, so the “Thick line” tool is used to measure every tenth sagittal and axial

slice of the reconstructed PB-CT and AB-CT image sets. For every tenth image, the

calculated value of CNR, contrast and the CNR/res is read from the X-TRACT Image

Control dialogue and recorded. With reference to Equation 2.1, the SNR can be calculated

from both the CNR and contrast values given by X-TRACT. The spatial resolution can
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likewise be calculated from the CNR and the CNR/res values given by X-TRACT. The

final value for each metric is calculated from the average across all analysed slices (typically

ten per CT image set) and across both the axial and sagittal image sets as illustrated in

Figure 2.2.

Figure 2.2: An example of the measurements performed on one PB-CT slice stack for
patient number 2370691 which used an X-ray energy of 32 keV, a MGD of 2 mGy and full
TIE phase retrieval. Using the “Thick line” tool, a measurement is performed on every
tenth slice of both the axial and sagittal reconstructions. The bottom line shows the final
values for each metric averaged across all measurements of both projections. The cells
shaded with yellow indicate values which are recorded from the X-TRACT Image Control
dialogue, while grey cells are values that are calculated in Microsoft Excel from the values
shaded in yellow.

2.3.2 3D Slicer Software

In addition to the measurements performed using X-TRACT software, an alternative

software program, 3D Slicer (http://www.slicer.org) [117], was utilised to perform mea-

surements of contrast, SNR and spatial resolution in both the PB-CT (test) and AB-CT

(reference) images. 3D Slicer is an open-source software used for medical, biomedical and

imaging-related research. Operations in the 3D Slicer software can be automated using
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python scripts. For this study, custom python scripts were written to perform contrast,

SNR and spatial resolution measurements on a set of CT images loaded as a 3D volume in

3D Slicer. The following sub-sections describe the method which was implemented using

code to perform the previously described measurements.

Contrast and Signal to Noise Ratio Calculation

The Digital Imaging and Communications in Medicine (DICOM) image sets were loaded

into the 3D slicer software. The Segment Editor module was then used to create two

different segments. One segment was used to highlight areas of glandular, nipple and

cancerous tissue (as one segment, henceforth referred to as the “glandular segment”), and

the other was used to highlight the adipose tissue. The “Paint” effect of the Segment

Editor module was then used to firstly, paint areas of “glandular” tissue and secondly,

areas of adipose tissue on every 10th image in the image set as shown in Figure 2.3. The

Segment Statistics module was then utilised to compute the mean pixel value (MPV) and

standard deviation of the noise within the entire glandular (green segment) and adipose

(yellow segment) regions throughout the image set. The contrast (also known as visibility

or Michelson contrast using this definition [12]) was calculated using Equation 1.38, where

βhi is the MPV in the glandular segment, βlow is the MPV in the adipose segment and

βaver is the average of the βhi and βlow values. The SNR was defined as the ratio of the

average pixel value in the adipose segment divided by the standard deviation of the pixel

values in the adipose segment.
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Figure 2.3: A magnified area of an AB-CT reference image. The green painted segment
represents glandular tissue, and the yellow painted segment represents the background adi-
pose tissue. Similar segments were painted on every 10th image of the CT image set.

Spatial Resolution Computation

The aim of this method was to calculate the spatial resolution of the PB-CT (test) im-

age set relative to the AB-CT (reference) image set. This was achieved by establishing

an image-based edge profile between adipose and glandular tissue, averaged over several

features of several images throughout the image set. The derivative of the edge profile

(or tissue, image-based ESF) was then computed to show a Line Spread Function (LSF).

Assuming the LSF has a Gaussian shape, a Gaussian curve can be fitted to the LSF, and a

FWHM then computed from the fitted Gaussian curve. The FWHM was used to quantify

the spatial resolution of the CT image set.

The one-dimensional LSF is an integral representation of the two-dimensional PSF

[12]. It is assumed that the two-dimensional PSF is rotationally symmetrical, therefore

the standard deviation (which is proportional to the width) of the LSF is equivalent to

the standard deviation of the PSF. The standard deviation of the LSF resulting from this

method, σtot, includes contributions from both the PSF of the imaging system, σsys, and

the physical width of the tissue interface itself, σobj , as described by the following equation

[118]:

σ2tot = σ2obj + σ2sys. (2.2)

54 CHAPTER 2. EXPERIMENTAL METHODS



Different Approaches to Image Quality Assessment in Phase-Contrast Mammography

When determining the width of the PSF of an X-ray imaging system, an image of

a sharp-edged test object is acquired so that σobj is effectively zero [100]. For the mea-

surements performed in this study, the “edge” is the average of a large number of glan-

dular/adipose interfaces within a breast CT image set. Therefore, this “edge” cannot be

assumed to have a negligible width. Without knowledge of the “edge” width, the true

system PSF width cannot be determined using this method. For this study, the FWHM

of the PB-CT and the AB-CT image sets are used to calculate the ratio of the PB-CT

spatial resolution relative to the AB-CT spatial resolution. The PB-CT and reference AB-

CT images come from the same sample, so σobj can be assumed to stay constant. While

this method may not give an accurate estimate of the absolute spatial resolution of the

system, it is intended to indicate the relative spatial resolution between the PB-CT and

AB-CT images. Two different methods of computing an edge profile between the glandu-

lar and adipose tissue were implemented using the 3D Slicer software. The first method is

designed to give the same result as averaging many line profiles placed along the direction

of the steepest local gradient at many points along the tissue interface. This method gives

a result closer to but, as previously explained, not equivalent to the absolute spatial reso-

lution. This will be referred to as the “absolute” spatial resolution measurement method.

The second method is intended to give an equivalent result to placing many “thick” (av-

eraged across a number of pixels along the tissue interface direction) line profiles, placed

approximately perpendicular to the edge, at many points along a tissue interface. Prior

to phase-retrieval, PB-CT images have characteristic diffraction fringes present at tissue

interfaces. Therefore, these images appear as though they have sharper edges (even after

phase retrieval) compared to AB-CT images, despite having equivalent absolute spatial

resolution (see Figure 2.4). This second method is designed to express more accurately

how sharp the edge appears to an observer, given these unique properties of phase-contrast

images. This method will be referred to as the “perceived” spatial resolution measurement

method.

“Absolute” Spatial Resolution Measurement

Prior to the implementation of the “absolute” spatial resolution method, every 10th

image in the CT stack is isolated. The isolated slice images are then segmented to separate

the glandular regions using simple thresholding, as implemented in the “Threshold” effect

of the Segment Editor module. The glandular tissue is segmented using a pixel value range

from a minimum threshold value up to the highest pixel value in the image. The minimum

threshold value used for this method is the average of the MPV in the glandular regions

of the image set and the MPV of the adipose regions of the image set. Both have been

previously calculated in the method to calculate contrast (shown in Figure 2.3). With the

glandular tissue segmented, an island filter is applied to remove islands of noise smaller

than 10 pixels in size. A fill holes filter with a kernel size of 2 pixels is then applied to fill

small holes within the glandular segment. The final glandular segment is shown in green

in Figure 2.5. The edges of the green glandular segment are then expanded outward by 3
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pixels before being hollowed into a 1-pixel thick ring. The Segment Statistics module is

then used to calculate and store a MPV of the ring-shaped segment. The original segment

is then restored before repeating the previous steps. The segment is expanded by only 2

pixels, however. This process is repeated, expanding the segment by 1 less pixel each time.

After the 4th iteration, the segment shrinks by increasing amounts rather than expanding.

This approach ensures that throughout the steps, the ring-shaped segment maintains the

general shape of the glandular/adipose edge. An illustration of the ring-shaped segments

resulting from the first (green ring), fourth (yellow ring) and eighth (red ring) iterations

are shown in Figure 2.6. At each iteration, the MPV of the pixels, highlighted by the

ring-shaped segment, was recorded and subsequently plotted against the iteration num-

ber to show an ESF averaged across all glandular/adipose interfaces in the image. This

averaging allows the computation of an ESF with greatly reduced noise levels compared

to a traditional line profile plot. The derivative of the ESF is then calculated and plot-

ted to show a LSF. A Gaussian curve is then fitted to the central 3 points of the LSF,

and the FWHM of the Gaussian curve is used to measure the “absolute” spatial resolution.

“Perceived” Spatial Resolution Measurement

Prior to the “perceived” spatial resolution measurement, the glandular tissue through-

out the entire volume was segmented. Simple thresholding, as implemented in the “Thresh-

old” effect of the Segment Editor module, was used. The glandular tissue was segmented

using a pixel value range from a minimum threshold value up to the maximum pixel value

in the volume. For this method, the minimum threshold value was determined by eye,

ensuring that the value was high enough to only segment the most solid glandular areas

without including excess noise. With the glandular tissue segmented, an island filter is

applied to remove islands of noise smaller than 20 pixels in size. A fill holes filter with

a kernel size of 5 pixels is then applied to fill small holes within the glandular segment.

The segment is then expanded in all directions by 8 pixels before being hollowed to form

a 1-pixel thick ring as shown by the green ring in Figure 2.7. This hollow ring is then

progressively reduced by 1 pixel at a time across the glandular/adipose interfaces. The

original expansion of the segment smooths out the initial noisy or uneven edge, and sub-

sequent iterations move the smoothed curve across the edge. At each iteration, the MPV

was recorded and was subsequently plotted against the iteration number to show an ESF

(see Figure 2.8). As described in the previous section, a Gaussian curve is fitted to the

resulting LSF to arrive at a FWHM (which is generally wider than the FWHM deter-

mined using the “absolute” method). This is used as a measure of the “perceived” spatial

resolution.
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Figure 2.4: Comparison of a 32 keV, 4 mGy, hTIE PB-CT image (right) and the equiv-
alent reference AB-CT image (left). The glandular/adipose interface of the PB-CT image
(right) appears sharper than the equivalent AB-CT reference image (left). The X-TRACT
method gives a spatial resolution ratio (PB-CT/AB-CT) of 1.02, and the “absolute” spatial
resolution method (implemented in 3D Slicer) gives a ratio of 1.05, both indicating almost
equivalent spatial resolution between the PB-CT and AB-CT images. The “perceived”
spatial resolution method (implemented in 3D Slicer) gives a ratio of 1.80, indicating the
PB-CT image has significantly sharper edges relative to the AB-CT image. This demon-
strates that the “perceived” spatial resolution method potentially correlates more accurately
with how the image appears to a human observer in the context of PB-CT images.

Figure 2.5: Segmented glandular tissue (in green) on an isolated slice image prior to
calculating the “absolute” spatial resolution.
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Figure 2.6: Ring segments resulting from the first (green), fourth (yellow) and eighth
(red) iteration of the “absolute” spatial resolution measurement method.

Figure 2.7: Ring segments resulting from the first (green), eighth (yellow) and sixteenth
(red) iteration of the “perceived” spatial resolution measurement method.
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Figure 2.8: Plots of MPV vs iteration number (left) and the derivative of the edge profile
with fitted Gaussian Curve (right).
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2.3.3 Formulation of a Predictive Quantitative Image Assessment Met-

ric

Normally the CNR/res criterion gives equal weight to each of its components, namely

contrast, noise and spatial resolution. However, it is reasonable to assume that radiologists

may, for example, put more weight on sharpness (spatial resolution) of the image rather

than contrast or noise. As a result, it may be necessary to weight these components

differently, depending on the importance of each component to the overall clinical image

quality. The ratios of the contrast, noise and spatial resolution components between the

PB-CT and AB-CT image sets were calculated from the data computed using X-TRACT

and 3D Slicer software. The contrast ratio is expressed as CPBCT /CABCT , where CPBCT is

the contrast calculated for the PB-CT (test) images and CABCT is the contrast calculated

for the AB-CT (reference) images. The SNR ratio is expressed as SNRPBCT /SNRABCT ,

where SNRPBCT is the SNR calculated for the PB-CT (test) images and SNRABCT is

the SNR calculated for the AB-CT (reference) images. The spatial resolution ratio is

expressed as resABCT /resPBCT , where resPBCT is the metric used for expressing the

spatial resolution calculated for the PB-CT (test) images and resABCT is the metric used

for expressing the spatial resolution calculated for the AB-CT (reference) images. Note

that the spatial resolution ratio is inverted so that in the case where the PB-CT image set

has a narrower PSF width (i.e. higher spatial resolution), the resulting spatial resolution

ratio is greater than one. A good image, in the context of medical imaging, is generally

considered to have high contrast, high SNR, and high spatial resolution (narrow PSF) [12].

Therefore, all the previously introduced quantitative ratios increase as the quantitative

metric for the PB-CT (test) scan becomes more desirable relative to the AB-CT (test)

scan. The ratio of the CNR/res values is then calculated from the contrast, SNR and

spatial resolution ratios using the following formula:

(CNR/resPBCT )/(CNR/resABCT ) = (CPBCT /CABCT )× (SNRPBCT /SNRABCT )

×(resABCT /resPBCT ).

(2.3)

Note that in Equation 2.3, the spatial resolution ratio is inverted relative to the contrast

and SNR ratios and is therefore multiplied by the contrast and SNR ratios rather than

divided by them. The ratio of the CNR/res values between the PB-CT and the AB-CT

scans ((CNR/resPBCT )/(CNR/resABCT )) was calculated in this manner for each of the

eight imaging conditions for the 12 patients. The effect of each component on the overall

ratio of the CNR/res values can be increased or decreased by scaling each of the contrast,

SNR or spatial resolution ratios using the following formula:

ScaledRatio = ((Ratio− 1)× ScalingFactor) + 1, (2.4)

so that when a scaling factor greater than one is applied, the ratio diverges away from

one (the effect is increased). When a scaling factor of less than one is applied, the ratio
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converges towards one (the effect is reduced). When a scaling factor of zero is applied,

the ratio is reduced to one (no effect).

To predict the subjective radiologists’ score for a particular PB-CT (test) image set

relative to a AB-CT (reference) image set, the ratio of the CNR/res value needs to be

transformed into a “CNR/res Score” which has values consistent with the subjective ra-

diologist scoring system. The subjective scoring system described in Taba (2021) [97]

has a value of +2 when the PB-CT images have significantly higher overall image quality

compared to the reference AB-CT images, a value of 0 when both image sets are assessed

as being equal and a value of -2 when the PB-CT images have significantly lower overall

image quality compared to the reference AB-CT images (shown in Table 2.1).

Subjective Image Quality �AB-CT = to AB-CT �AB-CT
of PB-CT scan is: reference reference reference

Score: +2 0 -2

Table 2.1: Subjective radiologist scoring system described in Taba (2021) [97]

Consider a situation where three PB-CT image sets are quantitatively assessed against

corresponding reference AB-CT image sets by calculating the ratio of the CNR/res val-

ues for each of the three PB-CT and AB-CT image sets. The first PB-CT scan has a

CNR/res value which is 3 times smaller than the CNR/res value of the corresponding

AB-CT reference scan. Therefore, the ratio of the CNR/res values is equal to 0.334. The

second PB-CT image set has a CNR/res value which is equal to the CNR/res value of the

corresponding AB-CT image set. Therefore, the ratio of the CNR/res values is equal to

1. The third PB-CT image set has a CNR/res value which is 3 times greater than the

CNR/res value of the corresponding AB-CT reference image set. Therefore, the ratio of

the CNR/res values is equal to 3, as shown in Table 2.2.

CNR/res value of PB-CT �AB-CT = to AB-CT �AB-CT
scan is: reference reference reference

Score: 3 1 0.334

Table 2.2: Values of the ratio of the CNR/res values under different circumstances

The values shown in Table 2.2 need to be transformed to a “CNR/res Score” which is

consistent with the subjective radiologist scoring system shown in Table 2.1. Two trans-

forms are proposed depending on whether the ratio of the CNR/res values is greater or

equal to one, or less than one. When the ratio of the CNR/res values is greater than or

equal to one, the value one is subtracted from the ratio to arrive at the “CNR/res Score”.

Applying this transform to the left-most scores shown in Table 2.2, the value of 3 now

becomes 2, and the value of 1 now becomes 0, in line with the corresponding values shown

in Table 2.1. If the ratio of the CNR/res values is less than 1, the ratio of the CNR/res

values is inverted, has 1 subtracted from it, and is then multiplied by -1. Applying this
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transform to the right-most score shown in Table 2.2, the value of 0.334 becomes -2, in

line with the left-most score shown in Table 2.1. The maximum and minimum value of

the quantitative “scores” is limited to 2 and -2, respectively, in line with the radiologist

scoring system. These transforms are implemented using IF statements in Microsoft Excel.

The scaling factors were determined by trial and error to achieve a CNR/res “score”

for each imaging condition (averaged across all samples) which closely correlated with the

radiologist score for each imaging condition (averaged across all radiologists and samples).

The quality of the correlation was assessed by comparing the mean and standard deviation

between both the radiologist scores and CNR/res scores and visual assessment of a plot

of both parameters.

2.3.4 Statistical Analysis

The ability of the quantitative scores to predict the corresponding subjective radiologist

scores was assessed using correlation metrics and the mean absolute error between the two

sets of scores.

Normality Tests

Prior to calculating correlation metrics, the extent to which the data distribution deviates

from a Gaussian (normal) distribution must be assessed. Different correlation assessment

methods are used, depending on the extent of this deviation. The Graphpad Prism [119]

software help page [120] recommends the use of a D’Agostino-Pearson omnibus K2 test

[121]. This test was used in Graphpad Prism [119] to perform a normality test on all data

sets prior to performing a correlation analysis. The D’Agostino-Pearson omnibus normal-

ity test computes the skewness and kurtosis to quantify the deviation of the distribution

from a Gaussian distribution in terms of asymmetry and shape. It then calculates the

deviation of these values from the expected Gaussian distribution values. Finally, a single

P-value from the sum of these deviations is calculated [120]. A significance level (alpha) of

0.05 was used to assess whether or not the data passed the normality test. If the P-value

is greater than 0.05, the data passes the normality test and is assumed to be Gaussian

(normal). If the P-value is less than 0.05, the data fails the normality test and cannot be

assumed to be Gaussian (normal) [122].

Correlation Analysis

Graphpad Prism [119] was used to assess the correlation between the radiologists’ scores

and various quantitative metrics. An XY correlation analysis was performed using the

Prism software. If the data passed the previously explained normality test, the data was

assumed to be Gaussian, and a Pearson correlation coefficient (r) was computed. If the

data did not pass the normality test, the data was not assumed to be Gaussian, and

a nonparametric Spearman correlation coefficient (rs) was computed. The correlation
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coefficient (r) ranges from -1 to 1. The Spearman correlation coefficient (rs) has the

same range. An r-value of 1 indicates a perfect correlation, an r-value of 0 indicates no

correlation, and an r-value of -1 indicates a perfect inverse correlation [123]. A two-tailed

P-value was computed with a confidence interval of 95%. The P-value indicates the chance

that random sampling would result in a correlation coefficient as far from zero (or further)

as observed in the experiment. If the P-value is small, the correlation is very unlikely due

to random sampling. If the P-value is large, then there is no compelling evidence that the

correlation is real and not due to chance [123]. By default, Prism considers the correlation

significant if the P-value is less than 0.05.

Mean Absolute Error

The previously described correlation assessment does not indicate how well the quantita-

tive scores predict the absolute value of the radiologists’ scores. The mean absolute error

(MAE) indicates, on average, the deviation between the quantitative and radiologists’

scores. If the value of the MAE is 0, the quantitative scores perfectly predict the values of

the radiologists’ scores. The further the MAE deviates from 0, the poorer the quantitative

scores are at predicting the value of the radiologists’ scores. The MAE is calculated using

the following equation:

MAE =
1

n

n∑

i=1

(|qi − si|), (2.5)

where, qi, are the quantitative score data set values, si, are the corresponding ra-

diologists’ score data set values and n is the number of corresponding quantitative and

radiologists’ score pairs.
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Chapter 3

Results

This section begins by describing the subjective radiologists’ assessment data which was

acquired by Taba et al. [97]. The data acquired by implementing the methods described

in the previous chapter using X-TRACT and 3D Slicer software is then presented. This

section contains material presented in a submitted paper (see Section B).

3.1 Subjective Radiologist Assessment

Each radiologist provided a score between 2 and -2 (as described in Section 2.2) for each

PB-CT image relative to the corresponding AB-CT reference image and for each imaging

condition for each sample. Table 3.1 shows an example of the 11 radiologist (labelled A1-

A11) scores for each of the eight PB-CT imaging conditions for sample number 2370691.

Due to the coarse scoring system and the scoring variation between individual radiologists,

the standard deviation associated with each imaging condition is relatively large.

Individual Radiologist Scores - 2370691

Radiologist Number: A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 AV SD

32keV-2mGy-fTIE 1 2 1 2 1 1 1 1 2 1 1 1.27 0.45

32keV-2mGy-hTIE 2 2 2 2 2 1 2 2 2 2 1 1.82 0.39

32keV-4mGy-fTIE 1 2 1 2 1 1 1 1 1 1 0 1.09 0.51

32keV-4mGy-hTIE 2 2 2 2 2 1 2 1 1 1 1 1.55 0.50

34keV-2mGy-fTIE 1 1 1 2 1 -1 2 1 1 1 0 0.91 0.79

34keV-2mGy-hTIE 1 1 1 2 1 1 1 0 2 1 1 1.09 0.51

34keV-4mGy-fTIE 0 1 0 2 1 0 1 1 0 0 0 0.55 0.66

34keV-4mGy-hTIE 1 1 0 2 1 0 1 0 0 1 0 0.64 0.64

Table 3.1: Individual radiologist (labelled A1-A11) scores for sample number 2370691.
Average (AV) and standard deviation (SD) are shown in the right most columns.

Tables 3.2 & 3.3 show the average radiologist scores (averaged across 11 radiologists)

for each of the eight imaging conditions for each of the 12 samples. Tables A.1 and A.2 of

the appendix show the standard deviations associated with each average radiologist score

presented in Tables 3.2 and 3.3.

Table 3.4 shows the average radiologist score and standard deviation for each imaging

condition, averaged across all 12 samples.
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Average Radiologist Scores

Sample Number: 2370691 4247239 4638975 4704628 7096050L 709605R

32keV-2mGy-fTIE 1.27 1.45 1.09 0.55 0.55 1.36

32keV-2mGy-hTIE 1.82 1.45 1.36 0.91 0.55 1.18

32keV-4mGy-fTIE 1.09 1.36 1.18 0.55 0.55 1.18

32keV-4mGy-hTIE 1.55 1.36 1.18 0.64 0.64 1.45

34keV-2mGy-fTIE 0.91 1.00 0.55 0.00 0.09 0.91

34keV-2mGy-hTIE 1.09 0.73 0.73 0.27 0.09 1.36

34keV-4mGy-fTIE 0.55 0.82 0.45 -0.27 0.18 0.64

34keV-4mGy-hTIE 0.64 1.00 0.73 0.45 0.45 0.91

Table 3.2: Average radiologist scores for each imaging condition for the first six samples

Average Radiologist Scores

Sample Number: 7104092 7949430 8283541L 8283541R 8413420 8423990

32keV-2mGy-fTIE 1.36 0.73 0.64 1.27 1.18 0.00

32keV-2mGy-hTIE 1.27 1.18 1.00 1.45 1.00 0.27

32keV-4mGy-fTIE 0.91 0.91 0.64 1.64 1.18 0.09

32keV-4mGy-hTIE 1.18 1.18 0.64 1.64 1.27 0.64

34keV-2mGy-fTIE 0.73 -0.18 0.18 0.91 0.55 -0.27

34keV-2mGy-hTIE 1.09 0.55 0.27 1.27 0.36 0.00

34keV-4mGy-fTIE 0.64 -0.09 0.18 1.00 0.55 -0.36

34keV-4mGy-hTIE 0.64 0.45 0.18 1.27 0.64 -0.45

Table 3.3: Average radiologist scores for each imaging condition for the last six samples

Average of the Average Radiologist Scores

Average SD

32KeV-2mGy-fTIE 0.95 0.43

32KeV-2mGy-hTIE 1.12 0.40

32KeV-4mGy-fTIE 0.94 0.41

32KeV-4mGy-hTIE 1.11 0.36

34KeV-2mGy-fTIE 0.45 0.44

34KeV-2mGy-hTIE 0.65 0.45

34KeV-4mGy-fTIE 0.36 0.41

34KeV-4mGy-hTIE 0.58 0.42

Table 3.4: Average radiologist scores and standard deviation for each imaging condition,
averaged across all 12 samples
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3.2 X-TRACT Results

The un-scaled contrast, SNR, spatial resolution and CNR/res ratios between the PB-CT

(test) and AB-CT (reference) images for each imaging condition (averaged across all axial

and sagittal image sets of all samples) were converted to quantitative “scores” (as de-

scribed in Section 2.3.3). These un-scaled quantitative “scores” are tabulated in Table

A.3 and plotted against the average radiologist score for each imaging condition (averaged

across all radiologists and samples) in Figure 3.1.

Figure 3.1: Plot of radiologist scores (in blue) for each imaging condition averaged across
all radiologists and samples (scores shown in Table 3.4), with error bars of ± one standard
deviation (also shown in Table 3.4). The radiologist score is compared to various un-scaled
quantitative scores measured using X-TRACT including; CNR/res (yellow), contrast (red),
SNR (grey) and spatial resolution (green). These results are tabulated in Table A.3

The correlation between the radiologist scores and the four un-scaled quantitative

“scores” (shown in Figure 3.1) was then analysed using the Graphpad Prism Software

[119]. The resulting correlation metrics are displayed in Table 3.5.

The contrast, SNR and spatial resolution ratios were then scaled using Equation 2.4

before being converted into a “score” as described in Section 2.3.3. The CNR/res “score”

comprises the scaled contrast, SNR and spatial resolution components as shown in Equa-

tion 2.3. The final scaling factors which were used in Equation 2.4 to scale the ratio of

each quantitative measure were; 3.7 for the contrast ratio, 0.9 for the SNR ratio and 6 for
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Correlation Between Radiologist and Un-scaled Quantitative Scores

Radiologist Radiologist Radiologist Radiologist
vs vs vs vs

contrast SNR Res CNR/res

Pearson r 0.8346 -0.6561 0.5574 -0.4660

P value (two tailed) 0.0100 0.0773 0.1512 0.2445

Significant? Yes No No No

Table 3.5: Correlation metrics between the radiologist scores and each of the four un-
scaled quantitative metrics plotted in Figure 3.1 calculated using Graphpad Prism [119].
The correlation is considered significant if the P-value is less than 0.05.

the spatial resolution ratio. The scaled quantitative scores are shown in Figure 3.2 and

tabulated in Table A.4. The CNR/res scores shown in yellow in Figure 3.2 show a good

correlation with the radiologist scores shown in blue. However, there is a clear height

discrepancy between the two plots. With the addition of an offset factor of 0.55 to the

CNR/res scores, the mean (or height in the case of a plot) closely matches the mean of

the subjective radiologist scores as shown in Figure 3.3.

As with the un-scaled results, the correlation between the radiologist scores and the

scaled quantitative metrics (shown in Figure 3.3) was analysed using the Graphpad Prism

software [119]. The resulting correlation metrics are displayed in Table 3.6. The corre-

lation metrics between the radiologist scores and the scaled contrast, SNR and spatial

resolution scores remain similar to the un-scaled scores shown in Table 3.5 despite scaling.

The correlation between the subjective radiologist scores and the scaled CNR/res score,

comprising the scaled contrast, SNR and spatial resolution ratios, is significantly improved.

Correlation Between Radiologist and Scaled Quantitative Scores

Radiologist Radiologist Radiologist Radiologist
vs vs vs vs

Contrast SNR Res CNR/res

Pearson r 0.8532 -0.6562 0.5220 0.9610

P value (two tailed) 0.0071 0.0772 0.1845 0.0001

Significant? Yes No No Yes

Table 3.6: Correlation metrics between the radiologist scores and each of the four scaled
quantitative metrics plotted in Figure 3.3 calculated using Graphpad Prism [119]. The
correlation is considered significant if the P-value is less than 0.05.

Figure 3.3 and Table 3.6 demonstrate that a correlation has been established between

the average radiologist scores and the average, scaled CNR/res scores. This suggests that

it is possible to predict the PB-CT imaging conditions which radiologists generally prefer

for a group of patients using the scaled CNR/res score. However, it is also important

to predict which imaging conditions are preferred by radiologists for individual patients.

Therefore, the ability of the scaled CNR/res score to predict radiologist scores for each

sample also needs to be assessed. Figures A.1 - A.12 show the radiologist scores plot-
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Figure 3.2: Plot of subjective radiologist scores (in blue) for each imaging condition
averaged across all radiologists and samples (scores shown in Table 3.4), with error bars
of ± one standard deviation (also shown in Table 3.4). The subjective radiologist score
is compared to various scaled quantitative scores measured using X-TRACT including;
CNR/res (yellow), contrast (red), SNR (grey) and spatial resolution (green).

ted alongside the scaled contrast, SNR, spatial resolution and scaled and offset CNR/res

scores for each of the 12 samples. The same previously mentioned scaling factors are used

to arrive at the scaled CNR/res scores shown in Figures A.1 - A.12. The scaled CNR/res

criterion is able to predict 89 of the 96 radiologist scores to within one standard deviation

(93%) as shown in Tables A.6 and A.7. In these tables, the cells highlighted in green are

within one standard deviation of the corresponding subjective radiologist score, and the

cells highlighted in yellow are outside one standard deviation. An XY correlation analysis

between all 96 scaled CNR/res scores and the corresponding subjective radiologist scores

was performed using the GraphPad Prism software (see Section 2.3.4). Prior to the cor-

relation analysis, a D’Agostino-Pearson normality test was performed on the data, which

confirmed that the data, in this case, did not have a normal (Gaussian) distribution. As

a result, the data cannot be assumed to be Gaussian, and the “compute nonparamet-

ric Spearman correlation” option was selected when performing the correlation analysis.

The correlation metrics are shown in Table 3.7. The MAE (Equation 2.5) between the

CNR/res scores and corresponding radiologist scores across all individual samples was 0.29.
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Figure 3.3: Plot of subjective radiologist scores (in blue) for each imaging condition
averaged across all radiologists and samples (scores shown in Table 3.4), with error bars
of ± one standard deviation (also shown in Table 3.4). The subjective radiologist score
is compared to various scaled and offset quantitative scores measured using X-TRACT
including; CNR/res (yellow), contrast or contrast (red), SNR (grey) and spatial resolution
(green). The CNR/res scores have had an offset factor of 0.55 added to all values so that
the height of the plot closely matches the radiologist scores.

Correlation Between Radiologist Scores and Scaled
CNR/res Scores Across Individual Samples (X-TRACT)

Radiologist
vs

CNR/res

Spearman (rs) 0.7898

P value (two tailed) <0.0001

Significant? Yes

Table 3.7: Overall correlation metrics between the 96 scaled CNR/res scores plotted in
Figures A.1 - A.12 and the corresponding radiologist scores calculated using Graphpad
Prism [119]. The correlation is considered significant if the P-value is less than 0.05.
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3.3 3D Slicer Results

As with the X-TRACT results, the quantitative ratios measured using 3D Slicer for each

imaging condition (averaged across all axial and sagittal image sets of all samples) were

converted into quantitative “scores” (as described in Section 2.3.3). The un-scaled quan-

titative scores were tabulated in Table A.8 and plotted against the average radiologist

score for each imaging condition (averaged across all radiologists and samples) in Figure

3.4. Note that the CNR/res score shown in yellow in Figure 3.4 was calculated using the

“perceived” spatial resolution ratio in Equation 2.3.

Figure 3.4: Plot of radiologist scores (in blue) for each imaging condition averaged across
all radiologists and samples (scores shown in Table 3.4), with error bars of ± one standard
deviation (also shown in Table 3.4). The radiologist score is compared to various un-
scaled quantitative scores measured using 3D Slicer including; CNR/res (perc) (yellow),
contrast (red), SNR (grey), “absolute” spatial resolution (green dotted) and “perceived”
spatial resolution (green dashed). These results are tabulated in Table A.8. The CNR/res
(perc) score shown in yellow was calculated using the “perceived” spatial resolution ratio
in Equation 2.3.

The correlation between the subjective radiologist scores and the five un-scaled quan-

titative “scores” (shown in Figure 3.4) was then analysed using the Graphpad Prism

software [119]. The resulting correlation metrics are displayed in Table 3.8.

The contrast, SNR and spatial resolution ratios were then scaled using Equation 2.4

before being converted into a “score” as described in Section 2.3.3. The CNR/res “score”
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Correlation Between Subjective and Un-scaled Quantitative Scores (3D Slicer)

Radiologist Radiologist Radiologist Radiologist Radiologist
vs vs vs vs vs

Contrast SNR Res (perc) Res (abs) CNR/res
(perc)

Pearson r 0.9484 -0.6474 0.8360 0.7075 -0.2240

P value 0.0003 0.0826 0.0097 0.0497 0.5938

Significant? Yes No Yes Yes No

Table 3.8: Correlation metrics between the radiologist scores and each of the five un-
scaled quantitative metrics plotted in Figure 3.4 calculated using Graphpad Prism [119].
The correlation is considered significant if the P-value is less than 0.05.

comprises the scaled contrast, SNR and spatial resolution components as shown in Equa-

tion 2.3. The final scaling factors which were used in Equation 2.4 to scale the ratio of

each quantitative measure were; 1.2 for the contrast ratio, 0.35 for the SNR ratio and 2

for the “perceived” spatial resolution ratio. The scaled quantitative scores are shown in

Figure 3.5 and tabulated in Table A.9.

The correlation between the radiologist scores and the five scaled quantitative metrics

(shown in Figure 3.5) was analysed using the Graphpad Prism software [119]. The result-

ing correlation metrics are displayed in Table 3.9. The correlation metrics between the

radiologist scores and the scaled contrast, SNR and spatial resolution scores are similar

to the un-scaled scores shown in Table 3.8, despite scaling. The correlation between the

radiologist scores and the CNR/res (perc) scores, which comprise the scaled contrast, SNR

and “perceived” spatial resolution ratios, is significantly improved.

Correlation Between Subjective and Scaled Quantitative Scores (3D Slicer)

Radiologist Radiologist Radiologist Radiologist
vs vs vs vs

Contrast SNR Res CNR/res

Pearson r 0.9431 -0.6494 0.8413 0.9551

P value (two tailed) 0.0004 0.0814 0.0088 0.0002

Significant? Yes No Yes Yes

Table 3.9: Correlation metrics between the subjective radiologist scores and each of the
four scaled quantitative metrics, which are plotted in Figure 3.5, calculated using Graphpad
Prism. The correlation is considered significant if the P value is less than 0.05.

As discussed in Section 3.2 the ability of the scaled CNR/res score to predict the

subjective radiologist scores for individual samples is also assessed. Figures A.13 - A.24

show the average radiologist scores (averaged over 11 radiologists) plotted alongside the

scaled contrast, SNR, “perceived” spatial resolution and CNR/res (perc) scores for each

of the 12 samples. The same previously mentioned scaling factors are used to arrive at the

scaled CNR/res (perc) scores shown in Figures A.13 - A.24. The scaled CNR/res (perc)

criterion is able to predict 94 of the 96 subjective radiologist scores to within one standard
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Figure 3.5: Plot of subjective radiologist scores (in blue) for each imaging condition av-
eraged across all radiologists and samples (scores shown in Table 3.4), with error bars of ±
one standard deviation (also shown in Table 3.4). The subjective radiologist score is com-
pared to various scaled quantitative scores measured using 3D Slicer including; CNR/res
(yellow), contrast (red), SNR (grey) and spatial resolution (green).

deviation (98%) as shown in Tables A.10 and A.11. In these tables, the cells highlighted

in green are within one standard deviation of the corresponding radiologist score, and the

cells highlighted in yellow are outside one standard deviation. An XY correlation anal-

ysis between all 96 scaled CNR/res scores and the corresponding subjective radiologist

scores was performed using the Graphpad Prism software [119]. The correlation metrics

are shown in Table 3.10. The MAE (Equation 2.5) between the 96 individual weighted

CNR/res scores and the corresponding radiologist scores across all individual samples was

0.20.
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Correlation Between Radiologist
Scores and Scaled CNR/res Scores

Radiologist
vs

CNR/res (perc)

Spearman r 0.8872

P value (two tailed) <0.0001

Significant? Yes

Table 3.10: Overall correlation metrics between the 96 CNR/res scores plotted in Figures
A.13 - A.24 and the corresponding radiologist scores calculated using Graphpad Prism. The
correlation is considered significant if the P-value is less than 0.05.

3.4 8-bit Image Pixel Value Analysis

The measurements in the previous sections were performed on the same 8-bit greyscale

images, which were scored by the radiologists in the study by Taba et al. [97]. When

analysing the images, it was noted that the MPVs within both the glandular and adipose

regions of the 8-bit images differed considerably between images of the same mastectomy

sample when using different imaging conditions. Conventional CT produces an image

where the pixel values are expressed as HU. HU represent the linear attenuation coef-

ficient of the imaged material relative to water (Equation 1.37). Therefore, the MPVs

within the glandular and adipose regions are expected to stay relatively constant across

all images acquired using the same X-ray energy. An example of considerable variation

in MPVs is shown in Figure 3.6 which compares a 32keV-2mGy-hTIE 8-bit image with a

32keV-4mGy-hTIE 8-bit image of the same mastectomy sample. The only imaging param-

eter which differs between the two images is the radiation dose, so considerable variation in

MPV is unexpected. The original coronal, 0.1mm slice thickness images of the mastectomy

samples used a 32-bit greyscale. The pixel values in these original images represent the

imaginary component of the complex refractive index (β of Equation 1.14) of the material

being imaged. These images were then used to create sagittal and axial reconstructions

with a 1mm slice thickness as described in Section 2.2. The 32-bit greyscale was then

converted into an 8-bit greyscale. The MPVs in the glandular and adipose regions of the

original images used to create the retro-reconstructed images shown in Figure 3.6 were

measured. Figure 3.7 shows that the MPVs remain relatively constant between the orig-

inal 32keV-2mGy-hTIE and 32keV-4mGy-hTIE images. Furthermore, the MPVs are a

good approximation of the expected β values of 1.07 x 10-10 and 8.08 x 10-11 for glandular

and adipose tissue, respectively at 32 keV [60]. It appears that the pixel values have not

been scaled consistently when converting from 32-bit to 8-bit greyscale. It is postulated by

the author that an automatic histogram-based scaling algorithm has been utilised, which

scales the entire range of pixel values in the 32-bit image into an 8-bit greyscale. The

32-bit 2 mGy image shown on the left in Figure 3.7 has a pixel value range of -9.48 x

10-11 to 2.02 x 10-10, while the 4 mGy image shown on the right of Figure 3.7 has a range

of -9.99 x 10-11 to 1.62 x 10-10. The larger pixel value range in the 2 mGy image is due

to a higher presence of noise in the image. This difference in range has likely resulted
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in an automatic, histogram-based conversion program generating inconsistent pixel val-

ues seen in the 8-bit images. The higher top end of the pixel value range in the 32-bit

2 mGy image have resulted in the MPVs of glandular and adipose tissue being lower in

the 8-bit range compared to the 4 mGy image. As a result, the 2 mGy image appears

darker than the 4 mGy image, as is evident in Figure 3.6. Contrast is defined as the ratio

of the signal difference to the average signal (Equation 1.38). A small MPV difference

becomes negligible if the average signal is large, while the same small difference is readily

visible if the average signal is small [12]. Therefore, the inconsistencies in average pixel

value in the 8-bit greyscale images add a false difference in contrast. This difference in

contrast is due to the images being viewed at different windows and levels, rather than

intrinsic physical processes between the different imaging conditions. Due to inconsistent

image display, this false contrast has likely made it difficult for radiologists to effectively

assess the differences in image quality due to physical differences in imaging conditions.

Likewise, the perception of noise may change with differing grey levels between the 8-bit

images.

Figure 3.6: Comparison of the MPVs within glandular and adipose regions between
a 32keV-2mGy-hTIE 8-bit image (left) and a 32keV-4mGy-hTIE 8-bit image (right) of
sample 4247239. Considerable variations between MPVs were found between the images.

It is proposed that the 32-bit greyscale images be converted to 8-bit greyscale images

using a consistent window which depends on the X-ray energy used to acquire the scan.

The two fixed windows for the 32 keV and 34 keV images should be chosen to preserve

consistent MPVs between images of the same X-ray energy. Using a lower X-ray energy

will result in higher contrast between glandular and adipose tissue. The conversion win-

dows are chosen so that the average signal (average between the MPV in the gladular

and adipose regions) is the same between the resultant 8-bit, 32 keV and 34 keV images.

This allows the signal difference between glandular and adipose areas to be more easily

compared visually in the 8-bit images which use different X-ray energies. The conversion

windows are additionally chosen such that the ratio of the glandular/adipose contrast be-

tween the original 32-bit 32 keV image and 32-bit 34 keV images is maintained throughout
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Figure 3.7: Comparison of the MPVs within glandular and adipose regions between
a 32keV-2mGy-hTIE 32-bit image (left) and a 32keV-4mGy-hTIE 32-bit image (right)
of sample 4247239. No considerable differences between MPVs were found between the
images.

the conversion. This preserves the contrast difference inherent to the imaging X-ray energy

used. When viewed at consistent windows and levels, any contrast differences between the

images are due only to the physical differences between imaging parameters. Figure 3.8

shows proposed 32-bit greyscale windows, calculated using Microsoft Excel, for both the

32 keV and 34 keV scans which are scaled into an 8-bit greyscale window of 0-255. The

choice of window ensures that the average of the MPVs between the adipose and glandu-

lar tissues is kept constant (approx 146.4) between the resultant 8-bit images of different

X-ray energy. The glandular contrast ratio between the 32 keV and 34 keV images (32

keV/34 keV) is maintained at 1.072 throughout the conversion.

The 32keV, 32-bit images were converted into 8-bit greyscale using the proposed con-

version window shown in Figure 3.7 using the following Matlab code:
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Figure 3.8: Microsoft Excel spreadsheet showing X-ray energy dependent 32-bit windows
which are used to convert greyscale images from 32-bit to 8-bit greyscale. The windows are
chosen so that the average of the MPVs in the glandular and adipose regions is maintained
between the resultant 8-bit 32 keV and 34 keV images (at a pixel value of 146.4). The
conversion windows are additionally chosen such that the ratio of the glandular/adipose
contrast (or visibility) between the original 32-bit 32 keV image and 32-bit 34keV im-
ages (of 1.072) is maintained throughout the conversion. This is intended to ensure that
any contrast differences between the 8-bit 32 keV and 34 keV images are due to physical
differences between X-ray energies rather than inconsistent image display.
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function [Output] = ConvertEightBit(fullFileName)

Input = imread(fullFileName);

% Specify bounds of window

LowerBound = 4E-11; %4E-11 for 32 keV, 3.555E-11 for 34 keV

UpperBound = 1.3E-10; %1.3E-10 for 32 keV, 1.156E-10 for 34 keV

% Convert specified window to 0-255

Input = ((Input-LowerBound)/(UpperBound-LowerBound))*255;

% Convert to 8 bit integer values

Output = uint8(Input);

Which was called in the matlab window using the following entry:

>> dicomwrite(ConvertEightBit(‘32keV 2mGy hTIE 0107.tif’),

‘32keV 2mGy hTIE 0107.dcm’),

where, 32keV 2mGy hTIE 0107.tif is the name of the 32-bit image and 32keV 2mGy hTIE 0107.dcm

is the name assigned to the output 8-bit DICOM file. The resulting 8-bit images are shown

in Figure 3.9. The MPVs in the glandular and adipose regions remain relatively constant

between the two images. This ensures an equivalent display of the two images, eliminating

the previously described false contrast differences between the two imaging conditions.

Figure 3.9: 8-bit DICOM images converted from original 32-bit images using the pro-
posed window for a 32 keV image which is shown in Figure 3.8. The 32keV-2mGy-hTIE
image is shown on the left and the 32keV-4mGy-hTIE image is shown on the right. The
MPVs in the glandular and adipose regions remain relatively constant between the two
images.
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Chapter 4

Discussion

Mathematical models to predict subjective clinical image quality have been an area of

research for many decades. Much of this research involves investigating relationships be-

tween imaging system characteristics such as NEQ and DQE and subjective clinical image

quality. The success of establishing such a relationship is limited by the complex, vari-

able anatomy found in clinical images. In thin slice breast CT imaging, the visibility of

pathology is limited by system noise rather than anatomical background, unlike many

projection radiographic images. Therefore, the likelihood of establishing a relationship

between image-based objective measures and overall subjective clinical image quality is

greatly improved. This study has successfully combined quantitative, image-based mea-

sures of three fundamental image quality attributes: contrast, noise and spatial resolution

and weighted them appropriately to form a single predictive image quality metric (weighted

CNR/res). Assuming radiologists’ clinical image quality assessments correlate with diag-

nostic performance, this metric can be used to reduce the cost and time required for such

assessments. Unlike previous objective image quality models [92, 104, 105, 106, 107, 108],

this approach is based on the recently discovered fundamental physical principle of noise-

resolution uncertainty [124]. This principle estimates the objective (Shannon) information

contained in images that are collected at a given radiation dose [103]. The information

is traced to the interaction of individual X-ray photons with matter in the imaged tissue.

These interactions are the only real mechanism in X-ray imaging that provides informa-

tion about the composition and density of the imaged sample at different points in three

dimensions.

Of the three spatial resolution measurement methods, the “perceived” spatial resolu-

tion method implemented in 3D Slicer provides results that have the highest correlation

with the subjective radiologist scores. This spatial resolution method also results in values

that are closest (lowest MAE) to the subjective radiologist scores (as seen in Figure 3.4).

As demonstrated in Figure 3.4, the “perceived” spatial resolution method provides results

that indicate almost all PB-CT image sets have tissue interfaces that appear sharper, de-

spite their absolute spatial resolution being either equal to, or less than, the corresponding

AB-CT image sets. In this study, the radiologists indicated that almost every PB-CT im-

age set had superior image quality compared to the corresponding AB-CT image sets. Use
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of the “perceived” spatial resolution method readily allows the calculation of a CNR/res

criterion which is consistently higher for the PB-CT images. The “absolute” spatial res-

olution method (implemented in 3D Slicer) provides a relative measure of PB-CT spatial

resolution that shows similar results to the X-TRACT spatial resolution measurement

method. This provides some validation to the experimental “absolute” spatial resolution

method used in this study. The X-TRACT results indicate that a CNR/res criterion that

uses a measure of the absolute spatial resolution can be used to adequately predict the

subjective radiologist scores with the use of an offset factor added to all the CNR/res

scores.

The un-scaled contrast scores measured using both methods showed a high correlation

to the subjective radiologist scores, indicating that clinical image quality is limited more

by contrast rather than other factors, which agrees well with previous studies [125, 126].

Both the spatial resolution methods implemented in 3D Slicer showed a significant cor-

relation with the subjective radiologist scores, indicating that high spatial resolution is

also a significant contributor to clinical image quality. Therefore, overall clinical image

quality is dominated by contrast and spatial resolution. When the dose is fixed, the SNR

is inversely related to spatial resolution. The measured SNR score using both methods

had an insignificant, negative correlation to the subjective radiologist scores for groups of

patients. This indicates that under the conditions of the considered experiments the SNR

is the lowest valued component when assessing clinical image quality. However, it is neces-

sary to include some weighting for SNR to optimise the correlation between the weighted

CNR/res and subjective radiologist scores, indicating that it does influence clinical image

quality.

Using appropriate weighting factors, the weighted CNR/res score (averaged across all

samples) measured using X-TRACT has the highest correlation with the subjective radiol-

ogist scores averaged across all radiologists and samples. Additionally, with an offset value

of 0.55, the CNR/res scores measured with X-TRACT can closely predict the absolute

value of the radiologist scores averaged across all samples. This demonstrates the weighted

CNR/res score has the potential to be an excellent predictor of the imaging conditions

which are generally preferred by radiologists for groups of patients. A good correlation

and small MAE was found between the weighted CNR/res (perc) scores (measured with

3D Slicer) and the radiologist scores for individual patients, indicating that this is a good

predictor of preferred imaging conditions for individual patients.

Section 3.4 demonstrates that false contrast differences have been introduced between

the images presented to radiologists for scoring in some cases. These contrast differ-

ences appear to be the result of suboptimal scaling when converting from the original

32-bit greyscale images to the 8-bit greyscale images used for presentation. This false

contrast has likely affected the radiologist scores. With reference to the blue line in Fig-

ures 3.3 & 3.5, the average radiologist score (averaged across all samples) for both the
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32keV-2mGy-hTIE and 32keV-4mGy-hTIE imaging conditions is almost identical. In

theory, these images should have similar contrast and resolution, with the only difference

being that the 4 mGy images should have significantly improved SNR. Therefore, the 4

mGy images should have a higher radiologist score compared to the 2 mGy images. With

reference to the red lines in Figures 3.3 & 3.5, it can be seen that the 2 mGy images

have higher contrast compared to the 4 mGy images. To the radiologists, the higher con-

trast visible in the 2 mGy images may have compensated for the lower SNR relative to

the 4 mGy images. As previously mentioned, clinical image quality is limited mostly by

contrast, indicating that any false contrast introduced through inconsistent display could

significantly affect the radiologist scores. Likewise, artificial differences in pixel values

have been introduced in the half and full TIE reconstructions, again possibly affecting the

radiologists’ preference between these two levels of phase-retrieval. Clinical image quality

appears to be limited by spatial resolution rather than SNR resulting in radiologists pre-

ferring half TIE reconstructions. Section 3.4 proposes a method to convert the original

32-bit greyscale images into 8-bit greyscale images using fixed conversion windows. This

method is intended to eliminate differences in contrast due to inconsistent image display

while maintaining contrast differences due only to physical inherence such as X-ray energy.

Further research is required to investigate the feasibility of using this method for ef-

fectively predicting the clinical image quality assessed by radiologists in other areas of

radiological examinations besides mammography. Thin slice breast CT, with reduced

anatomical background presents a relatively simple case for the application of objective

image quality assessment models. The scaling factors used in this study are evidently

dependent on the software method used to calculate the contrast, SNR and spatial res-

olution. They are also likely dependent on the imaging modality and imaged anatomy.

Although the subjective radiologist scores were collected in such a way as to reduce vari-

ability, the dependency of the weighting factors on the cohort of radiologists used to assess

the images also requires further investigation. The automatic, relative spatial resolution

measurement methods implemented in 3D Slicer are also unlikely to translate effectively

to images of other types of anatomy and modalities. In breast imaging, the only two main

tissue types present in an image are glandular and adipose. The presence of only two

tissue types considerably simplifies automatic segmentation and implementation of auto-

matic edge profile measurements. For images of other types of anatomy or modalities,

the “perceived” spatial resolution method could be substituted with the use of an edge

profile, or the average of several edge profiles, placed on sharp edges located on both test

and reference images (such as the approach used to quantify rib sharpness in [105]). The

use of “thick lines” which are averaged across a range of pixels (such as those available in

the Fiji software [127]) may be useful to reduce the high level of noise generally found in

standard edge profile plots. It is likely that the discrepancy between the “perceived” and

“absolute” spatial resolution measurements will not be observed beyond the case where

phase-contrast images are compared to attenuation-based images. A more systematic ap-

proach to optimising the weighting factors used to establish a correlation between the
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weighted CNR/res score and the subjective radiologist scores could be investigated. It

is also likely that the relationship between the image-based quantitative measures and

subjective image quality is not linear [92], as is assumed in this study. The relationship

between the quantitative image metrics and subjective image quality could be investigated

further. A remaining limitation of this, and other proposed image quality assessment mod-

els, is the assumption that radiologist clinical image quality assessment will correlate with

task-specific diagnostic performance. Further research is required to investigate the va-

lidity of this assumption, possibly allowing image quality assessment models to directly

predict task-specific diagnostic performance.
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Chapter 5

Conclusion

The scaled CNR/res criterion has been demonstrated as a quantitative image assessment

model that effectively predicts the relative clinical image quality, as assessed by radiolo-

gists, in the context of PB-CT breast imaging. Furthermore, the scaled CNR/res criterion

can predict the imaging conditions that are generally preferred for a group of patients

and optimal imaging conditions for individual patient anatomy. This has the potential

to allow optimisation of radiological imaging conditions at significantly reduced time and

cost while improving consistency of results.
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Appendix A

Additional Results

A.1 Subjective Radiologist Assessment

Standard Deviations of Radiologist Scores

Sample Number: 2370691 4247239 4638975 4704628 7096050L 709605R

32keV-2mGy-fTIE 0.45 0.50 0.79 0.99 0.66 0.88

32keV-2mGy-hTIE 0.39 0.89 0.88 1.00 1.23 0.83

32keV-4mGy-fTIE 0.51 0.64 0.83 0.50 0.50 0.57

32keV-4mGy-hTIE 0.50 0.48 0.57 0.77 0.64 0.50

34keV-2mGy-fTIE 0.79 0.74 0.89 0.74 0.79 0.51

34keV-2mGy-hTIE 0.51 0.75 0.86 0.86 0.90 0.88

34keV-4mGy-fTIE 0.66 0.72 0.50 0.75 0.39 0.77

34keV-4mGy-hTIE 0.64 0.74 0.45 0.50 0.50 0.79

Table A.1: Standard deviations of radiologist scores for the first six samples

Standard Deviations of Radiologist Scores

Sample Number: 7104092 7949430 8283541L 8283541R 8413420 8423990

32keV-2mGy-fTIE 0.77 0.86 0.77 0.75 0.57 0.85

32keV-2mGy-hTIE 1.14 1.11 0.85 0.89 1.28 1.14

32keV-4mGy-fTIE 0.51 0.79 0.64 0.48 0.72 0.29

32keV-4mGy-hTIE 0.57 0.57 0.64 0.48 0.62 0.77

34keV-2mGy-fTIE 0.62 0.83 0.57 0.79 0.66 1.14

34keV-2mGy-hTIE 0.90 0.99 0.86 0.86 0.98 0.74

34keV-4mGy-fTIE 0.64 0.79 0.39 0.74 0.78 0.88

34keV-4mGy-hTIE 0.64 0.66 0.39 0.45 0.48 0.66

Table A.2: Standard deviations of radiologist scores for the last six samples

A.2 Additional X-TRACT Results
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Subjective Scores Vs Un-scaled Quantitative “Scores” (X-TRACT)

Radiologist Contrast SNR Resolution CNR/res
Average Score Score Score Score

32keV-2mGy-fTIE 0.95 0.26 -0.27 -0.04 -0.04

32keV-2mGy-hTIE 1.12 0.45 -0.80 0.00 -0.24

32keV-4mGy-fTIE 0.94 0.15 0.16 -0.04 0.26

32keV-4mGy-hTIE 1.11 0.24 -0.22 0.00 0.02

34keV-2mGy-fTIE 0.45 0.09 0.00 -0.05 0.03

34keV-2mGy-hTIE 0.65 0.20 -0.40 -0.01 -0.17

34keV-4mGy-fTIE 0.36 0.02 0.43 -0.05 0.35

34keV-4mGy-hTIE 0.58 0.06 0.07 -0.01 0.11

Table A.3: Subjective radiologist scores for each imaging condition averaged across all
radiologists and all samples vs various un-scaled quantitative “scores” calculated using
X-TRACT.

Subjective Scores Vs Scaled Quantitative “Scores” (X-TRACT)

Radiologist Contrast SNR Resolution CNR/res
Average Score Score Score Score

32keV-2mGy-fTIE 0.95 0.98 -0.23 -0.22 0.83

32keV-2mGy-hTIE 1.12 1.67 -0.66 0.02 1.15

32keV-4mGy-fTIE 0.94 0.51 0.15 -0.23 0.88

32keV-4mGy-hTIE 1.11 0.89 -0.19 -0.02 1.07

34keV-2mGy-fTIE 0.45 0.24 0.00 -0.30 0.37

34keV-2mGy-hTIE 0.65 0.75 -0.34 -0.04 0.74

34keV-4mGy-fTIE 0.36 -0.20 0.39 -0.27 0.46

34keV-4mGy-hTIE 0.58 0.08 0.07 -0.04 0.64

Table A.4: Subjective radiologist scores for each imaging condition averaged across all
radiologists and all samples vs various scaled quantitative “scores” calculated using X-
TRACT. The scaling factors applied to each ratio were; 3.4 for the contrast ratio, 0.9 for
the SNR ratio and 6 for the spatial resolution ratio.

Subjective Scores Vs Scaled & Offset Quantitative “Scores” (X-TRACT)

Radiologist Contrast SNR Resolution CNR/res
Average Score Score Score Score

32keV-2mGy-fTIE 0.95 0.98 -0.23 -0.22 0.28

32keV-2mGy-hTIE 1.12 1.67 -0.66 0.02 0.62

32keV-4mGy-fTIE 0.94 0.51 0.15 -0.23 0.33

32keV-4mGy-hTIE 1.11 0.89 -0.19 -0.02 0.53

34keV-2mGy-fTIE 0.45 0.24 0.00 -0.30 -0.18

34keV-2mGy-hTIE 0.65 0.75 -0.34 -0.04 0.19

34keV-4mGy-fTIE 0.36 -0.20 0.39 -0.27 -0.09

34keV-4mGy-hTIE 0.58 0.08 0.07 -0.04 0.09

Table A.5: Subjective radiologist scores for each imaging condition averaged across all
radiologists and all samples vs various scaled quantitative “scores” calculated using X-
TRACT. The scaling factors applied to each ratio were; 3.4 for the contrast ratio, 0.9 for
the SNR ratio and 6 for the spatial resolution ratio. An offset of 0.55 was applied to the
CNR/res scores.
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A.2.1 X-TRACT Plots for Individual Samples

Figure A.1: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 2370691 (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using X-TRACT including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 2370691.
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Figure A.2: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 4247239 (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using X-TRACT including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 4247239.

Figure A.3: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 4638975 (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using X-TRACT including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 4638975.

86 APPENDIX A. ADDITIONAL RESULTS



Different Approaches to Image Quality Assessment in Phase-Contrast Mammography

Figure A.4: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 4704628 (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using X-TRACT including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 4704628.

Scaled CNR/res Scores - X-TRACT

Imaging Condition 2370691 4247239 4638975 4704628 7096050L 709605R

32KeV-2mGy-fTIE 0.92 0.83 0.84 0.34 0.56 1.22

32KeV-2mGy-hTIE 1.18 1.44 1.30 0.37 0.95 1.31

32KeV-4mGy-fTIE 1.01 0.83 1.07 0.44 0.81 1.12

32KeV-4mGy-hTIE 0.81 1.11 1.33 0.50 0.99 1.41

34KeV-2mGy-fTIE 0.72 0.41 0.78 -0.22 0.45 0.77

34KeV-2mGy-hTIE 0.90 0.87 0.94 -0.21 0.67 0.92

34KeV-4mGy-fTIE 0.59 0.65 0.75 -0.06 0.00 0.90

34KeV-4mGy-hTIE 0.93 0.78 0.95 0.18 0.36 0.97

Table A.6: Scaled CNR/res scores measured using X-TRACT for the first six samples. A
green colored cell indicates that the scaled CNR/res score is within 1 standard deviation of
the corresponding subjective radiologist score, while a yellow cell indicates that the scaled
CNR/res score is outside 1 standard deviation.
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Figure A.5: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 7096050L (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using X-TRACT including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 7096050L.

Figure A.6: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 7096050R (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using X-TRACT including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 7096050R.
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Figure A.7: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 7104092 (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using X-TRACT including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 7104092.

Figure A.8: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 7949430 (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using X-TRACT including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 7949430.
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Figure A.9: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 8283541L (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using X-TRACT including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 8283541L.

Figure A.10: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 8283541R (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using X-TRACT including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 8283541R.
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Figure A.11: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 8413420 (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using X-TRACT including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 8413420.

Figure A.12: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 8423990 (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using X-TRACT including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 8423990.
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Scaled CNR/res Scores - X-TRACT

Imaging Condition 7104092 7949430 8283541L 8283541R 8413420 8423990

32KeV-2mGy-fTIE 0.74 0.75 0.69 1.82 0.96 0.32

32KeV-2mGy-hTIE 1.15 0.99 1.12 2.00 1.33 0.65

32KeV-4mGy-fTIE 0.89 0.79 0.69 1.86 1.07 0.04

32KeV-4mGy-hTIE 1.15 0.96 0.85 2.00 1.44 0.30

34KeV-2mGy-fTIE 0.49 0.41 0.18 1.49 0.65 -1.66

34KeV-2mGy-hTIE 0.76 0.70 0.74 1.71 0.99 -0.06

34KeV-4mGy-fTIE 0.55 0.47 0.33 1.96 0.93 -1.57

34KeV-4mGy-hTIE 0.64 0.59 0.46 1.94 0.93 -1.04

Table A.7: Scaled CNR/res scores measured using X-TRACT for the first six samples. A
green colored cell indicates that the scaled CNR/res score is within 1 standard deviation of
the corresponding subjective radiologist score, while a yellow cell indicates that the scaled
CNR/res score is outside 1 standard deviation.
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A.3 Additional 3D Slicer Results

Subjective Scores Vs Un-scaled Quantitative “Scores” (3D Slicer)

Imaging Radiologist Contrast SNR Res Res CNR/res
Condition Average Score Score (perc) (abs) (perc)

Score Score Score

32keV-2mGy-fTIE 0.95 0.12 -0.21 0.33 -0.09 0.26

32keV-2mGy-hTIE 1.12 0.19 -0.67 0.55 0.05 0.11

32keV-4mGy-fTIE 0.94 0.10 0.19 0.25 -0.14 0.69

32keV-4mGy-hTIE 1.11 0.13 -0.15 0.43 0.00 0.43

34keV-2mGy-fTIE 0.45 0.02 0.03 0.17 -0.16 0.26

34keV-2mGy-hTIE 0.65 0.06 -0.33 0.37 -0.01 0.11

34keV-4mGy-fTIE 0.36 0.02 0.46 0.10 -0.23 0.67

34keV-4mGy-hTIE 0.58 0.03 0.09 0.26 -0.07 0.44

Table A.8: Subjective radiologist scores for each imaging condition averaged across all
radiologists and all samples vs various un-scaled quantitative “scores” calculated using 3D
Slicer.

Subjective Scores Vs Scaled Quantitative “Scores” (3D Slicer)

Imaging Radiologist Contrast SNR Res CNR/res
Condition Average Score Score (perc) (perc)

Score Score

32keV-2mGy-fTIE 0.95 0.15 -0.06 0.71 0.84

32keV-2mGy-hTIE 1.12 0.23 -0.16 1.13 1.24

32keV-4mGy-fTIE 0.94 0.12 0.07 0.56 0.88

32keV-4mGy-hTIE 1.11 0.15 -0.05 0.91 1.10

34keV-2mGy-fTIE 0.45 0.02 0.01 0.40 0.45

34keV-2mGy-hTIE 0.65 0.07 -0.09 0.79 0.75

34keV-4mGy-fTIE 0.36 0.02 0.16 0.25 0.48

34keV-4mGy-hTIE 0.58 0.03 0.03 0.57 0.67

Table A.9: Subjective radiologist scores for each imaging condition averaged across all
radiologists and all samples vs various scaled quantitative “scores” calculated using 3D
Slicer. The scaling factors applied to each ratio were; 1.2 for the contrast ratio, 0.35 for
the SNR ratio and 2 for the “perceived” spatial resolution ratio.
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Figure A.13: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 2370691 (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using 3D Slicer including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 2370691.

Figure A.14: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 4247239 (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using 3D Slicer including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 4247239.
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Figure A.15: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 4638975 (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using 3D Slicer including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 4638975.

Figure A.16: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 4704628 (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using 3D Slicer including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 4704628.
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Figure A.17: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 7096050L (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using 3D Slicer including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 7096050L.

Figure A.18: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 7096050R (shown in Table 3.2), with error bars of ± one standard deviation (shown
in Table A.1). The subjective radiologist score is compared to various scaled quantitative
scores measured using 3D Slicer including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 7096050R.
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Figure A.19: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 7104092 (shown in Table 3.3), with error bars of ± one standard deviation (shown
in Table A.2). The subjective radiologist score is compared to various scaled quantitative
scores measured using 3D Slicer including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 7104092.

Figure A.20: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 7949430 (shown in Table 3.3), with error bars of ± one standard deviation (shown
in Table A.2). The subjective radiologist score is compared to various scaled quantitative
scores measured using 3D Slicer including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 7949430.
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Figure A.21: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 8283541L (shown in Table 3.3), with error bars of ± one standard deviation (shown
in Table A.2). The subjective radiologist score is compared to various scaled quantitative
scores measured using 3D Slicer including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 8283541L.

Figure A.22: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 8283541R (shown in Table 3.3), with error bars of ± one standard deviation (shown
in Table A.2). The subjective radiologist score is compared to various scaled quantitative
scores measured using 3D Slicer including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 8283541R.
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Figure A.23: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 8413420 (shown in Table 3.3), with error bars of ± one standard deviation (shown
in Table A.2). The subjective radiologist score is compared to various scaled quantitative
scores measured using 3D Slicer including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 8413420.

Figure A.24: Plot of subjective radiologist scores (in blue) for each imaging condition for
sample 8423990 (shown in Table 3.3), with error bars of ± one standard deviation (shown
in Table A.2). The subjective radiologist score is compared to various scaled quantitative
scores measured using 3D Slicer including; CNR/res (yellow), contrast (red), SNR (grey)
and spatial resolution (green) for sample 8423990.
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Scaled CNR/res Scores - 3D Slicer

Imaging Condition 2370691 4247239 4638975 4704628 7096050L 709605R

32KeV-2mGy-fTIE 1.26 0.90 0.94 0.32 0.36 1.12

32KeV-2mGy-hTIE 1.69 1.45 1.29 0.46 0.55 1.42

32KeV-4mGy-fTIE 1.11 0.84 1.02 0.51 0.53 1.18

32KeV-4mGy-hTIE 1.41 1.21 1.14 0.59 0.63 1.40

34KeV-2mGy-fTIE 0.66 0.52 0.60 0.01 0.11 0.78

34KeV-2mGy-hTIE 1.12 0.93 0.82 0.15 0.30 0.94

34KeV-4mGy-fTIE 0.58 0.48 0.64 0.16 0.24 0.87

34KeV-4mGy-hTIE 0.83 0.71 0.81 0.29 0.39 1.01

Table A.10: Scaled CNR/res scores measured using 3D Slicer for the first six samples. A
green colored cell indicates that the scaled CNR/res score is within 1 standard deviation of
the corresponding subjective radiologist score, while a yellow cell indicates that the scaled
CNR/res score is outside 1 standard deviation.

Scaled CNR/res Scores - 3D Slicer

Imaging Condition 7104092 7949430 8283541L 8283541R 8413420 8423990

32KeV-2mGy-fTIE 1.07 0.48 0.52 1.73 0.97 0.34

32KeV-2mGy-hTIE 1.65 0.85 0.99 2.00 1.35 0.68

32KeV-4mGy-fTIE 1.10 0.43 0.60 1.68 0.95 0.34

32KeV-4mGy-hTIE 1.32 0.70 0.81 2.00 1.16 0.59

34KeV-2mGy-fTIE 0.54 0.11 0.26 1.12 0.59 0.05

34KeV-2mGy-hTIE 0.92 0.40 0.54 1.61 0.85 0.33

34KeV-4mGy-fTIE 0.55 0.08 0.25 1.15 0.59 0.04

34KeV-4mGy-hTIE 0.82 0.31 0.40 1.39 0.77 0.23

Table A.11: Scaled CNR/res scores measured using 3D Slicer for the first six samples. A
green colored cell indicates that the scaled CNR/res score is within 1 standard deviation of
the corresponding subjective radiologist score, while a yellow cell indicates that the scaled
CNR/res score is outside 1 standard deviation.
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Appendix C

3D Slicer Code

C.1 “Perceived” Spatial Resolution Code

The following code was used in the Python interactor in the 3D Slicer [117] software to

calculate a FWHM of the LSF using the “perceived” spatial resolution method. The im-

ages were loaded into 3D Slicer using the DICOM module. The glandular tissue was then

segmented as described in Section 2.3.2. The following code was then copy and pasted into

the Python interactor window. The FWHM is read from the Python interactor window

and recorded.

1 import numpy as np

2 import SegmentStatistics

3 import SimpleITK as sitk

4 import sitkUtils

5 from scipy import optimize

6 # Set voxel size in mm

7 voxelSize = 1

8 # How many pixels past the edge does the segment expand?

9 pixelsOut = 8

10 # How many pixels in from the edge does the segment shrink?

11 pixelsIn = 8

12 # Get current volume and segment node

13 volume = slicer.util.getNode('vtkMRMLScalarVolumeNode1')

14 segmentationNode = slicer.util.getNode('vtkMRMLSegmentationNode1')

15 # Compute global mean pixel values in the existing gladular and adipose

segments↪→

16 segStatLogic = SegmentStatistics.SegmentStatisticsLogic()

17 segStatLogic.getParameterNode().SetParameter("Segmentation",

segmentationNode.GetID())↪→

18 segStatLogic.getParameterNode().SetParameter("ScalarVolume",

volume.GetID())↪→
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19 segStatLogic.getParameterNode().SetParameter("ScalarVolumeSegmentStatisti c

csPlugin.mean.enabled",str(True))↪→

20 segStatLogic.getParameterNode().SetParameter("LabelmapSegmentStatisticsPl c

ugin.enabled","True")↪→

21 segStatLogic.getParameterNode().SetParameter("ScalarVolumeSegmentStatisti c

csPlugin.voxel_count.enabled","True")↪→

22 segStatLogic.getParameterNode().SetParameter("ScalarVolumeSegmentStatisti c

csPlugin.volume_mm3.enabled","True")↪→

23 #

24 segStatLogic.computeStatistics()

25 stats = segStatLogic.getStatistics()

26 #

27 originalSegments = stats["SegmentIDs"]

28 glandularMean =

stats[originalSegments[0],"ScalarVolumeSegmentStatisticsPlugin.mean"]↪→

29 adiposeMean =

stats[originalSegments[1],"ScalarVolumeSegmentStatisticsPlugin.mean"]↪→

30 # Get the number of slices in the volume

31 slices = volume.GetImageData().GetDimensions()[2]

32 # Set up numpy arrays for total mean values across the edges of every

slice↪→

33 # This will be converted to vtk arrays to be entered into a table.

34 numpyMeanValsTotal = np.zeros(shape=[pixelsIn + pixelsOut])

35 # Variable to keep track of any slices which are skipped due to full

erosion of the segments↪→

36 skippedSlices = 0

37 # Get volume as array

38 voxelArray = slicer.util.arrayFromVolume(volume)

39 # Loop through all the slices

40 for sliceIndex in range(slices):

41 # Isolate a slice of the original volume as a new one-slice volume

42 voxelSliceArray = voxelArray[sliceIndex]

43 sliceImage = sitk.GetImageFromArray(voxelSliceArray)

44 outputVolumeNode =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLScalarVolumeNode",

"SliceVolume")

↪→

↪→

45 sitkUtils.PushVolumeToSlicer(sliceImage, outputVolumeNode)

46 # Isolate a slice of the original segments as new segments

47 newSegment =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLSegmentationNode")↪→

48 #

49 for segmentName in originalSegments:
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50 labelmapVolumeNode =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLLabelMapVolumeNode")↪→

51 segmentIds = vtk.vtkStringArray()

52 segmentIds.InsertNextValue(segmentName)

53 #

54 slicer.vtkSlicerSegmentationsModuleLogic.ExportSegmentsToLabelmapNode c

(segmentationNode, segmentIds, labelmapVolumeNode,

volume)

↪→

↪→

55 #

56 segmentArray = slicer.util.arrayFromVolume(labelmapVolumeNode)

57 segmentSliceArray = segmentArray[sliceIndex]

58 #

59 segmentSliceImage = sitk.GetImageFromArray(segmentSliceArray)

60 outputLabelmapVolumeNode =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLLabelMapVolumeNode",

segmentName)

↪→

↪→

61 sitkUtils.PushVolumeToSlicer(segmentSliceImage,

outputLabelmapVolumeNode)↪→

62 #

63 slicer.modules.segmentations.logic().ImportLabelmapToSegmentationNode c

(outputLabelmapVolumeNode,

newSegment)

↪→

↪→

64 #

65 slicer.mrmlScene.RemoveNode(labelmapVolumeNode)

66 slicer.mrmlScene.RemoveNode(outputLabelmapVolumeNode)

67 #

68 # Setup segment statisitcs for new segment and volume

69 segStatLogic.getParameterNode().SetParameter("Segmentation",

newSegment.GetID())↪→

70 segStatLogic.getParameterNode().SetParameter("ScalarVolume",

outputVolumeNode.GetID())↪→

71 # Compute statisitcs to establish whether there is a segment present

72 segStatLogic.computeStatistics()

73 stats = segStatLogic.getStatistics()

74 segment = stats["SegmentIDs"]

75 if "Segment_1" not in segment:

76 print('No glandular segment present on this slice')

77 # The this slice will not contribute to total mean values

78 numpyMeanVals = np.zeros(shape=[pixelsOut + pixelsIn])

79 # Keep track of how many slices have been skipped

80 skippedSlices += 1

81 else:
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82 # Setup temporary segment editor node to access effects

83 segmentEditorWidget = slicer.qMRMLSegmentEditorWidget()

84 segmentEditorWidget.setMRMLScene(slicer.mrmlScene)

85 segmentEditorNode =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLSegmentEditorNode")↪→

86 segmentEditorWidget.setMRMLSegmentEditorNode(segmentEditorNode)

87 segmentEditorWidget.setSegmentationNode(newSegment)

88 segmentEditorWidget.setMasterVolumeNode(outputVolumeNode)

89 # Expand margin of segment by a number of voxels (specified at top)

90 segmentEditorWidget.setActiveEffectByName("Margin")

91 effect = segmentEditorWidget.activeEffect()

92 effect.setParameter("MarginSizeMm", str(voxelSize*pixelsOut))

93 effect.self().onApply()

94 # Create first 1 pixel thick hollow segment

95 segmentEditorWidget.setActiveEffectByName("Hollow")

96 effect = segmentEditorWidget.activeEffect()

97 effect.setParameter("ShellMode", 'INSIDE_SURFACE')

98 effect.setParameter("ShellThicknessMm", str(voxelSize))

99 effect.self().onApply()

100 # Calculate mean of first pixel ring

101 segStatLogic.computeStatistics()

102 stats = segStatLogic.getStatistics()

103 segment = stats["SegmentIDs"]

104 mean = stats[segment[0],"ScalarVolumeSegmentStatisticsPlugin.mean"]

105 # Set up Numpy array to store mean values

106 numpyMeanVals = np.array([mean])

107 # Move ring in through a number of iterations across the edge

(specified at top of code)↪→

108 for i in range((pixelsOut + pixelsIn)-1):

109 # Undo hollow command to make segment solid again

110 segmentEditorWidget.undo()

111 # Shrink the segment by one pixel

112 segmentEditorWidget.setActiveEffectByName("Margin")

113 effect = segmentEditorWidget.activeEffect()

114 effect.setParameter("MarginSizeMm", str(-1*voxelSize))

115 effect.self().onApply()

116 # Make the segment hollow again

117 segmentEditorWidget.setActiveEffectByName("Hollow")

118 effect = segmentEditorWidget.activeEffect()

119 effect.setParameter("ShellMode", 'INSIDE_SURFACE')

120 effect.setParameter("ShellThicknessMm", str(voxelSize))

121 effect.self().onApply()
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122 # Calculate mean value of current ring

123 segStatLogic.computeStatistics()

124 stats = segStatLogic.getStatistics()

125 segment = stats["SegmentIDs"]

126 # Calculate number of voxels in current ring.

127 # In slices with a small quantity of gladular tissue the segments

can completely erode.↪→

128 voxelNo = stats[segment[0],"LabelmapSegmentStatisticsPlugin.voxel c

_count"]↪→

129 if voxelNo == 0:

130 print('No voxels left in glandular segment after ' + str(i -

pixelsOut) + ' pixels inside edge on slice ' +

str(sliceIndex))

↪→

↪→

131 # This slice will not contribute to total mean values

132 numpyMeanVals = np.zeros(shape=[pixelsOut + pixelsIn])

133 # Keep track of how many slices have been skipped

134 skippedSlices += 1

135 break

136 else:

137 mean =

stats[segment[0],"ScalarVolumeSegmentStatisticsPlugin.mean"]↪→

138 # Insert mean values in numpy arrays

139 numpyMeanVals = np.append(numpyMeanVals, mean)

140 # Add current value to running total

141 numpyMeanValsTotal += numpyMeanVals

142 # Clear temporary nodes used to isolate a slice

143 segmentEditorWidget = None

144 slicer.mrmlScene.RemoveNode(newSegment)

145 slicer.mrmlScene.RemoveNode(outputVolumeNode)

146 #

147

148

149 # Calculate mean edge values across all slices, taking into account

skipped slices.↪→

150 numpyMeanValsTotal /= (slices - skippedSlices)

151 # Create sequential pixel numbers to plot mean edge values against

152 numpyXVals = np.arange(pixelsIn + pixelsOut)

153 # Take derivative of edge spread function (ESF) to calculate point spread

function (PSF)↪→

154 dy = np.diff(numpyMeanValsTotal)

155 # Make offset x values to plot the PSF against

156 xpsf = np.linspace(0.5, len(dy)-0.5, len(dy))
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157 # Set up Numpy array to store mean gladular values. These are put into an

array to plot as a line with the ESF↪→

158 numpyGlandularMeanVals = np.ones(shape=[(pixelsIn + pixelsOut)])

159 numpyGlandularMeanVals *= glandularMean

160 # Set up Numpy array to store mean adipose values. "

"↪→

161 numpyAdiposeMeanVals = np.ones(shape=[(pixelsIn + pixelsOut)])

162 numpyAdiposeMeanVals *= adiposeMean

163 # Set up vtk array to store x values (number of pixel across the edge)

164 xVals = vtk.vtkIntArray()

165 xVals.SetName("Pixel Number")

166 # Set up other vtk arrays to put values into table

167 meanVals = vtk.vtkDoubleArray()

168 meanVals.SetName("Mean Pixel Value (MPV)")

169 #

170 gladularMeanVals = vtk.vtkDoubleArray()

171 gladularMeanVals.SetName("Glandular MPV")

172 #

173 adiposeMeanVals = vtk.vtkDoubleArray()

174 adiposeMeanVals.SetName("Adipose MPV")

175 #

176 psfvtk = vtk.vtkDoubleArray()

177 psfvtk.SetName("Point Spread Function")

178 #

179 xpsfvtk = vtk.vtkDoubleArray()

180 xpsfvtk.SetName("Pixel Number (PSF)")

181 # Convert numpy arrays to vtk arrays

182 for i in range((pixelsIn + pixelsOut)):

183 meanVals.InsertNextValue(numpyMeanValsTotal[i])

184 gladularMeanVals.InsertNextValue(numpyGlandularMeanVals[i])

185 adiposeMeanVals.InsertNextValue(numpyAdiposeMeanVals[i])

186 psfvtk.InsertNextValue(dy[i])

187 xpsfvtk.InsertNextValue(xpsf[i])

188 xVals.InsertNextValue(numpyXVals[i])

189

190

191 # Define Gaussian function to fit gaussian curve to edge gradient plot

192 def gaus(x,a,x0,sigma):

193 return a*np.exp(-(x-x0)**2/(2*sigma**2))

194

195

196 # Fit Gaussian curve to edge gradient plot
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197 popt, _ = optimize.curve_fit(gaus, xpsf, dy)

198 # Create high resolution x array to plot the Gaussian curve against edge

gradient↪→

199 gausX = np.linspace(xpsf.min(), xpsf.max(), 100)

200 # Create Gaussian Curve Y values using Gaussian function

201 gausY = gaus(gausX, *popt)

202 # Create vtk arrays for plotting

203 gausXVTK = vtk.vtkDoubleArray()

204 gausXVTK.SetName('Gaussian x Values')

205 gausYVTK = vtk.vtkDoubleArray()

206 gausYVTK.SetName('Gaussian y Values')

207

208 # Convert numpy arrays to vtk arrays

209 for i in gausX:

210 gausXVTK.InsertNextValue(i)

211

212

213 for i in gausY:

214 gausYVTK.InsertNextValue(i)

215

216

217 # Create a table from result arrays

218 resultTableNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLTableNode",

"Edge Pixel Values")↪→

219 resultTableNode.AddColumn(xVals)

220 resultTableNode.AddColumn(meanVals)

221 resultTableNode.AddColumn(gladularMeanVals)

222 resultTableNode.AddColumn(adiposeMeanVals)

223 # Create a table from result arrays

224 psfResultTableNode =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLTableNode", "Point Spread

Function (PSF)")

↪→

↪→

225 psfResultTableNode.AddColumn(xpsfvtk)

226 psfResultTableNode.AddColumn(psfvtk)

227 # Create a table for Gaussian fit curve

228 gausResultTableNode =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLTableNode", "Point Spread

Function (PSF)")

↪→

↪→

229 gausResultTableNode.AddColumn(gausXVTK)

230 gausResultTableNode.AddColumn(gausYVTK)

231 # Create plot series node edge means
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232 plotSeriesNode1 =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLPlotSeriesNode", "Pixel

Values Plot")

↪→

↪→

233 plotSeriesNode1.SetAndObserveTableNodeID(resultTableNode.GetID())

234 plotSeriesNode1.SetXColumnName("Pixel Number")

235 plotSeriesNode1.SetYColumnName("Mean Pixel Value (MPV)")

236 plotSeriesNode1.SetPlotType(slicer.vtkMRMLPlotSeriesNode.PlotTypeLine)

237 plotSeriesNode1.SetUniqueColor()

238 # Create plot series node glandular means to plot as a line

239 plotSeriesNode2 =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLPlotSeriesNode",

"Glandular Plot")

↪→

↪→

240 plotSeriesNode2.SetAndObserveTableNodeID(resultTableNode.GetID())

241 plotSeriesNode2.SetXColumnName("Pixel Number")

242 plotSeriesNode2.SetYColumnName("Glandular MPV")

243 plotSeriesNode2.SetPlotType(slicer.vtkMRMLPlotSeriesNode.PlotTypeScatter)

244 plotSeriesNode2.SetUniqueColor()

245 # Create plot series node adipose means to plot as a line

246 plotSeriesNode3 =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLPlotSeriesNode", "Adipose

Plot")

↪→

↪→

247 plotSeriesNode3.SetAndObserveTableNodeID(resultTableNode.GetID())

248 plotSeriesNode3.SetXColumnName("Pixel Number")

249 plotSeriesNode3.SetYColumnName("Adipose MPV")

250 plotSeriesNode3.SetPlotType(slicer.vtkMRMLPlotSeriesNode.PlotTypeScatter)

251 plotSeriesNode3.SetUniqueColor()

252 # Create plot series PSF

253 plotSeriesNode4 =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLPlotSeriesNode", "Point

Spread Function")

↪→

↪→

254 plotSeriesNode4.SetAndObserveTableNodeID(psfResultTableNode.GetID())

255 plotSeriesNode4.SetXColumnName("Pixel Number (PSF)")

256 plotSeriesNode4.SetYColumnName("Point Spread Function")

257 plotSeriesNode4.SetPlotType(slicer.vtkMRMLPlotSeriesNode.PlotTypeScatter)

258 plotSeriesNode4.SetUniqueColor()

259 # Create plot series for Gaussian Curve

260 plotSeriesNode5 =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLPlotSeriesNode", "Gaussian

Fit")

↪→

↪→

261 plotSeriesNode5.SetAndObserveTableNodeID(gausResultTableNode.GetID())

262 plotSeriesNode5.SetXColumnName("Gaussian x Values")

263 plotSeriesNode5.SetYColumnName("Gaussian y Values")
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264 plotSeriesNode5.SetPlotType(slicer.vtkMRMLPlotSeriesNode.PlotTypeScatter)

265 plotSeriesNode5.SetUniqueColor()

266 # Create plot chart node for edge profile

267 plotChartNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLPlotChartNode")

268 plotChartNode.AddAndObservePlotSeriesNodeID(plotSeriesNode1.GetID())

269 plotChartNode.AddAndObservePlotSeriesNodeID(plotSeriesNode2.GetID())

270 plotChartNode.AddAndObservePlotSeriesNodeID(plotSeriesNode3.GetID())

271 plotChartNode.SetTitle('Edge Profile')

272 plotChartNode.SetXAxisTitle('Pixel Number')

273 plotChartNode.SetYAxisTitle('Mean Pixel Value')

274 # Create plot chart node

275 plotChartNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLPlotChartNode")

276 plotChartNode.AddAndObservePlotSeriesNodeID(plotSeriesNode4.GetID())

277 plotChartNode.AddAndObservePlotSeriesNodeID(plotSeriesNode5.GetID())

278 plotChartNode.SetTitle('Edge Gradient')

279 plotChartNode.SetXAxisTitle('Pixel Number')

280 plotChartNode.SetYAxisTitle('Gradient')

281 # Switch to a layout that contains a plot view to create a plot widget

282 layoutManager = slicer.app.layoutManager()

283 layoutWithPlot =

slicer.modules.plots.logic().GetLayoutWithPlot(layoutManager.layout)↪→

284 layoutManager.setLayout(layoutWithPlot)

285 # Select chart in plot view

286 plotWidget = layoutManager.plotWidget(0)

287 plotViewNode = plotWidget.mrmlPlotViewNode()

288 plotViewNode.SetPlotChartNodeID(plotChartNode.GetID())

289 #

290 # Compute segment volumes

291 resultsTableNode = slicer.mrmlScene.AddNewNodeByClass('vtkMRMLTableNode')

292 segStatLogic = SegmentStatistics.SegmentStatisticsLogic()

293 segStatLogic.getParameterNode().SetParameter("Segmentation",

segmentationNode.GetID())↪→

294 segStatLogic.getParameterNode().SetParameter("ScalarVolume",

volume.GetID())↪→

295 segStatLogic.getParameterNode().SetParameter("LabelmapSegmentStatisticsPl c

ugin.enabled","False")↪→

296 segStatLogic.getParameterNode().SetParameter("ScalarVolumeSegmentStatisti c

csPlugin.voxel_count.enabled","False")↪→

297 segStatLogic.getParameterNode().SetParameter("ScalarVolumeSegmentStatisti c

csPlugin.volume_mm3.enabled","False")↪→

298 segStatLogic.computeStatistics()

299 segStatLogic.exportToTable(resultsTableNode)
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300 segStatLogic.showTable(resultsTableNode)

301 #

302 print(skippedSlices)

303 print("Full Width at Half Maximum = " + str(popt[2]*2.355))

304 #

C.2 “Absolute” Spatial Resolution Code

The following code was used in the Python interactor in the 3D Slicer [117] software to

calculate a FWHM of the LSF using the “absolute” spatial resolution method. The images

were loaded into 3D Slicer using the DICOM module. The glandular and adipose tissue

was painted as shown in Figure 2.3 and described in Section 2.3.2 under the “Contrast

and Signal to Noise Ratio Calculation” heading. The following code was then copy and

pasted into the Python interactor window. The FWHM is read from the Python interactor

window and recorded.

1 import numpy as np

2 import SegmentStatistics

3 import SimpleITK as sitk

4 import sitkUtils

5 from scipy import optimize

6 # Set voxel size in mm

7 voxelSize = 1

8 # How many pixels past the edge does the segment expand/contract

9 pixelsOut = 4

10 # Counter used to iterate through slices for resolution measurement

11 resSliceNo = 0

12 # How many slices to skip through for resolution measurements

13 sliceSkip = 10

14 # Variable to keep track of any slices which are skipped due to full

erosion of the segments↪→

15 skippedSlices = 0

16 # Set max threshold value for glandular segment

17 thresholdMax = 255

18 # Set length (in number of pixels) to trim off bottom of volume

19 cropOffset = 37

20

21 # Get current volume

22 volumeNode = slicer.util.getNode('vtkMRMLScalarVolumeNode1')

23

24 # Create ROI around volume in order to trim the lower part of the volume

which usually contains unwanted artefacts↪→
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25 roiNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLAnnotationROINode")

26 # Use crop volume module functionality to fit ROI to volume

27 crop_module = slicer.vtkMRMLCropVolumeParametersNode()

28 slicer.mrmlScene.AddNode(crop_module)

29 crop_module.SetInputVolumeNodeID(volumeNode.GetID())

30 crop_module.SetOutputVolumeNodeID(volumeNode.GetID())

31 crop_module.SetROINodeID(roiNode.GetID())

32 crop_module.SetVoxelBased(1)

33 slicer.modules.cropvolume.logic().FitROIToInputVolume(crop_module)

34 # Move bottom of ROI up by the specified cropOffset to trim bottom of

volume↪→

35 xyz = [0,0,0]

36 radius = [0,0,0]

37 roiNode.GetXYZ(xyz)

38 roiNode.GetRadiusXYZ(radius)

39 xyz[1] = xyz[1] + (cropOffset/2)

40 radius[1] = radius[1] - (cropOffset/2)

41 roiNode.SetXYZ(xyz)

42 roiNode.SetRadiusXYZ(radius)

43

44 # Use crop volume module functionality to trim volume

45 crop_module.SetROINodeID(roiNode.GetID())

46 slicer.modules.cropvolume.logic().Apply(crop_module)

47 roiNode.SetDisplayVisibility(0)

48

49 # Calculate minimum threshold to segment glandular tissue from segment

paint samples↪→

50 sampleSegmentNode = slicer.util.getNode('vtkMRMLSegmentationNode1')

51 segStatLogic = SegmentStatistics.SegmentStatisticsLogic()

52 segStatLogic.getParameterNode().SetParameter("LabelmapSegmentStatisticsPl c

ugin.enabled","True")↪→

53 segStatLogic.getParameterNode().SetParameter("ScalarVolumeSegmentStatisti c

csPlugin.voxel_count.enabled","True")↪→

54 segStatLogic.getParameterNode().SetParameter("ScalarVolumeSegmentStatisti c

csPlugin.volume_mm3.enabled","True")↪→

55 segStatLogic.getParameterNode().SetParameter("Segmentation",

sampleSegmentNode.GetID())↪→

56 segStatLogic.getParameterNode().SetParameter("ScalarVolume",

volumeNode.GetID())↪→

57 segStatLogic.computeStatistics()

58 stats = segStatLogic.getStatistics()

59 originalSegments = stats["SegmentIDs"]
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60 sampleGlandularMean =

stats[originalSegments[0],"ScalarVolumeSegmentStatisticsPlugin.mean"]↪→

61 sampleAdiposeMean =

stats[originalSegments[1],"ScalarVolumeSegmentStatisticsPlugin.mean"]↪→

62 thresholdMin = (sampleGlandularMean + sampleAdiposeMean) / 2

63

64 # Get volume as array

65 voxelArray = slicer.util.arrayFromVolume(volumeNode)

66 # Get the number of slices in the volume

67 slices = volumeNode.GetImageData().GetDimensions()[2]

68 # This will be converted to vtk arrays to be entered into a table.

69 numpyMeanValsTotal = np.zeros(shape=[pixelsOut*2])

70

71 # First slice used is specifed by the sliceSkip variable

72 resSliceNo += sliceSkip

73 while resSliceNo < slices:

74 # Isolate a slice of the original volume as a new one-slice volume

75 voxelSliceArray = voxelArray[resSliceNo]

76 sliceImage = sitk.GetImageFromArray(voxelSliceArray)

77 outputVolumeNode =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLScalarVolumeNode",

"SliceVolume")

↪→

↪→

78 sitkUtils.PushVolumeToSlicer(sliceImage, outputVolumeNode)

79 # Create a new segment node for the isolated slice

80 newSegment =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLSegmentationNode")↪→

81 newSegment.CreateDefaultDisplayNodes() # only needed for display

82 newSegment.SetReferenceImageGeometryParameterFromVolumeNode(outputVol c

umeNode)↪→

83 # Setup temporary segment editor node to access effects

84 segmentEditorWidget = slicer.qMRMLSegmentEditorWidget()

85 segmentEditorWidget.setMRMLScene(slicer.mrmlScene)

86 segmentEditorNode =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLSegmentEditorNode")↪→

87 segmentEditorWidget.setMRMLSegmentEditorNode(segmentEditorNode)

88 segmentEditorWidget.setSegmentationNode(newSegment)

89 segmentEditorWidget.setMasterVolumeNode(outputVolumeNode)

90 # Create segments

91 sliceAddedSegmentID = newSegment.GetSegmentation().AddEmptySegment()

92 segmentEditorNode.SetSelectedSegmentID(sliceAddedSegmentID)

93 # Fill by thresholding

94 segmentEditorWidget.setActiveEffectByName("Threshold")
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95 effect = segmentEditorWidget.activeEffect()

96 effect.setParameter("MinimumThreshold",str(thresholdMin))

97 effect.setParameter("MaximumThreshold",str(thresholdMax))

98 effect.self().onApply()

99 # Remove Small Islands

100 segmentEditorWidget.setActiveEffectByName("Islands")

101 effect = segmentEditorWidget.activeEffect()

102 effect.setParameter("Operation","REMOVE_SMALL_ISLANDS")

103 effect.setParameter("MinimumSize","10")

104 effect.self().onApply()

105 # Close Small Holes

106 segmentEditorWidget.setActiveEffectByName("Smoothing")

107 effect = segmentEditorWidget.activeEffect()

108 effect.setParameter("SmoothingMethod","MORPHOLOGICAL_CLOSING")

109 effect.setParameter("KernelSizeMm","2")

110 effect.self().onApply()

111 # Setup segment statisitcs for new segment and volume

112 segStatLogic.getParameterNode().SetParameter("Segmentation",

newSegment.GetID())↪→

113 segStatLogic.getParameterNode().SetParameter("ScalarVolume",

outputVolumeNode.GetID())↪→

114 # Compute statisitcs to establish whether there is a segment present

115 segStatLogic.computeStatistics()

116 stats = segStatLogic.getStatistics()

117 segment = stats["SegmentIDs"]

118 if "Segment_1" not in segment:

119 print('No glandular segment present on this slice')

120 else:

121 # Used to keep track of which iteration the loop is up to

122 itrCount = pixelsOut - 1

123 for i in range(pixelsOut*2):

124 # Expand margin of segment by a number of voxels (specified at

top)↪→

125 segmentEditorWidget.setActiveEffectByName("Margin")

126 effect = segmentEditorWidget.activeEffect()

127 effect.setParameter("MarginSizeMm", str(voxelSize*itrCount))

128 effect.self().onApply()

129 # Create first 1 pixel thick hollow segment

130 segmentEditorWidget.setActiveEffectByName("Hollow")

131 effect = segmentEditorWidget.activeEffect()

132 effect.setParameter("ShellMode", 'INSIDE_SURFACE')

133 effect.setParameter("ShellThicknessMm", str(voxelSize))
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134 effect.self().onApply()

135 # Calculate mean of first pixel ring

136 segStatLogic.computeStatistics()

137 stats = segStatLogic.getStatistics()

138 segment = stats["SegmentIDs"]

139 mean =

stats[segment[0],"ScalarVolumeSegmentStatisticsPlugin.mean"]↪→

140 # Calculate number of voxels in current ring.

141 # In slices with a small quantity of gladular tissue the segments

can completely erode.↪→

142 voxelNo = stats[segment[0],"LabelmapSegmentStatisticsPlugin.voxel c

_count"]↪→

143 # Set up Numpy array to store mean values

144 if voxelNo == 0:

145 print('No voxels left in glandular segment after ' + str(i -

pixelsOut) + ' pixels inside edge on slice ' +

str(sliceIndex))

↪→

↪→

146 # This slice will not contribute to total mean values

147 numpyMeanVals = np.zeros(shape=[pixelsOut*2])

148 # Keep track of how many slices have been skipped

149 skippedSlices += 1

150 break

151 elif itrCount == pixelsOut - 1:

152 # Create numpy array to store mean pixel values

153 numpyMeanVals = np.array([mean])

154 else:

155 # Insert mean values in numpy array

156 numpyMeanVals = np.append(numpyMeanVals, mean)

157 # Undo operation twice to return segment to original form

158 segmentEditorWidget.undo()

159 segmentEditorWidget.undo()

160 itrCount -= 1

161 # Add current value to running total

162 numpyMeanValsTotal += numpyMeanVals

163 # Clear temporary nodes used to isolate a slice

164 slicer.mrmlScene.RemoveNode(newSegment)

165 slicer.mrmlScene.RemoveNode(outputVolumeNode)

166 # Update slice number counter

167 resSliceNo += sliceSkip

168

169

170 # Clear temporary nodes used to isolate a slice
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171 segmentEditorWidget = None

172 slicer.mrmlScene.RemoveNode(segmentEditorNode)

173

174 # Calculate mean edge values across all slices, taking into account

skipped slices.↪→

175 numpyMeanValsTotal /= ((resSliceNo/sliceSkip) - skippedSlices)

176 # Create sequential pixel numbers to plot mean edge values against

177 numpyXVals = np.arange(pixelsOut*2)

178 # Take derivative of edge spread function (ESF) to calculate point spread

function (PSF)↪→

179 dy = np.diff(numpyMeanValsTotal)

180 # Make offset x values to plot the PSF against

181 xpsf = np.linspace(0.5, len(dy)-0.5, len(dy))

182 # Set up Numpy array to store mean gladular values. These are put into an

array to plot as a line with the ESF↪→

183 numpyGlandularMeanVals = np.ones(shape=[(pixelsOut*2)])

184 numpyGlandularMeanVals *= sampleGlandularMean

185 # Set up Numpy array to store mean adipose values. "

"↪→

186 numpyAdiposeMeanVals = np.ones(shape=[(pixelsOut*2)])

187 numpyAdiposeMeanVals *= sampleAdiposeMean

188 # Set up vtk array to store x values (number of pixel across the edge)

189 xVals = vtk.vtkIntArray()

190 xVals.SetName("Pixel Number")

191 # Set up other vtk arrays to put values into table

192 meanVals = vtk.vtkDoubleArray()

193 meanVals.SetName("Mean Pixel Value (MPV)")

194 #

195 gladularMeanVals = vtk.vtkDoubleArray()

196 gladularMeanVals.SetName("Glandular MPV")

197 #

198 adiposeMeanVals = vtk.vtkDoubleArray()

199 adiposeMeanVals.SetName("Adipose MPV")

200 #

201 psfvtk = vtk.vtkDoubleArray()

202 psfvtk.SetName("Point Spread Function")

203 #

204 xpsfvtk = vtk.vtkDoubleArray()

205 xpsfvtk.SetName("Pixel Number (PSF)")

206 # Convert numpy arrays to vtk arrays

207 for i in range((pixelsOut*2)-1):

208 meanVals.InsertNextValue(numpyMeanValsTotal[i])
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209 gladularMeanVals.InsertNextValue(numpyGlandularMeanVals[i])

210 adiposeMeanVals.InsertNextValue(numpyAdiposeMeanVals[i])

211 psfvtk.InsertNextValue(dy[i])

212 xpsfvtk.InsertNextValue(xpsf[i])

213 xVals.InsertNextValue(numpyXVals[i])

214

215

216 # Define Gaussian function to fit gaussian curve to edge gradient plot

217 def gaus(x,a,x0,sigma):

218 return a*np.exp(-(x-x0)**2/(2*sigma**2))

219

220

221 # Fit Gaussian curve to edge gradient plot

222 popt, _ = optimize.curve_fit(gaus, xpsf[pixelsOut-2:pixelsOut+1],

dy[pixelsOut-2:pixelsOut+1])↪→

223 # Create high resolution x array to plot the Gaussian curve against edge

gradient↪→

224 gausX = np.linspace(xpsf.min(), xpsf.max(), 100)

225 # Create Gaussian Curve Y values using Gaussian function

226 gausY = gaus(gausX, *popt)

227 # Create vtk arrays for plotting

228 gausXVTK = vtk.vtkDoubleArray()

229 gausXVTK.SetName('Gaussian x Values')

230 gausYVTK = vtk.vtkDoubleArray()

231 gausYVTK.SetName('Gaussian y Values')

232

233 # Convert numpy arrays to vtk arrays

234 for i in gausX:

235 gausXVTK.InsertNextValue(i)

236

237

238 for i in gausY:

239 gausYVTK.InsertNextValue(i)

240

241

242 # Create a table from result arrays

243 resultTableNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLTableNode",

"Edge Pixel Values")↪→

244 resultTableNode.AddColumn(xVals)

245 resultTableNode.AddColumn(meanVals)

246 resultTableNode.AddColumn(gladularMeanVals)

247 resultTableNode.AddColumn(adiposeMeanVals)
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248 # Create a table from result arrays

249 psfResultTableNode =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLTableNode", "Point Spread

Function (PSF)")

↪→

↪→

250 psfResultTableNode.AddColumn(xpsfvtk)

251 psfResultTableNode.AddColumn(psfvtk)

252 # Create a table for Gaussian fit curve

253 gausResultTableNode =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLTableNode", "Point Spread

Function (PSF)")

↪→

↪→

254 gausResultTableNode.AddColumn(gausXVTK)

255 gausResultTableNode.AddColumn(gausYVTK)

256 # Create plot series node edge means

257 plotSeriesNode1 =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLPlotSeriesNode", "Pixel

Values Plot")

↪→

↪→

258 plotSeriesNode1.SetAndObserveTableNodeID(resultTableNode.GetID())

259 plotSeriesNode1.SetXColumnName("Pixel Number")

260 plotSeriesNode1.SetYColumnName("Mean Pixel Value (MPV)")

261 plotSeriesNode1.SetPlotType(slicer.vtkMRMLPlotSeriesNode.PlotTypeLine)

262 plotSeriesNode1.SetUniqueColor()

263 # Create plot series node glandular means to plot as a line

264 plotSeriesNode2 =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLPlotSeriesNode",

"Glandular Plot")

↪→

↪→

265 plotSeriesNode2.SetAndObserveTableNodeID(resultTableNode.GetID())

266 plotSeriesNode2.SetXColumnName("Pixel Number")

267 plotSeriesNode2.SetYColumnName("Glandular MPV")

268 plotSeriesNode2.SetPlotType(slicer.vtkMRMLPlotSeriesNode.PlotTypeScatter)

269 plotSeriesNode2.SetUniqueColor()

270 # Create plot series node adipose means to plot as a line

271 plotSeriesNode3 =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLPlotSeriesNode", "Adipose

Plot")

↪→

↪→

272 plotSeriesNode3.SetAndObserveTableNodeID(resultTableNode.GetID())

273 plotSeriesNode3.SetXColumnName("Pixel Number")

274 plotSeriesNode3.SetYColumnName("Adipose MPV")

275 plotSeriesNode3.SetPlotType(slicer.vtkMRMLPlotSeriesNode.PlotTypeScatter)

276 plotSeriesNode3.SetUniqueColor()

277 # Create plot series PSF
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278 plotSeriesNode4 =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLPlotSeriesNode", "Point

Spread Function")

↪→

↪→

279 plotSeriesNode4.SetAndObserveTableNodeID(psfResultTableNode.GetID())

280 plotSeriesNode4.SetXColumnName("Pixel Number (PSF)")

281 plotSeriesNode4.SetYColumnName("Point Spread Function")

282 plotSeriesNode4.SetPlotType(slicer.vtkMRMLPlotSeriesNode.PlotTypeScatter)

283 plotSeriesNode4.SetUniqueColor()

284 # Create plot series for Gaussian Curve

285 plotSeriesNode5 =

slicer.mrmlScene.AddNewNodeByClass("vtkMRMLPlotSeriesNode", "Gaussian

Fit")

↪→

↪→

286 plotSeriesNode5.SetAndObserveTableNodeID(gausResultTableNode.GetID())

287 plotSeriesNode5.SetXColumnName("Gaussian x Values")

288 plotSeriesNode5.SetYColumnName("Gaussian y Values")

289 plotSeriesNode5.SetPlotType(slicer.vtkMRMLPlotSeriesNode.PlotTypeScatter)

290 plotSeriesNode5.SetUniqueColor()

291 # Create plot chart node for edge profile

292 plotChartNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLPlotChartNode")

293 plotChartNode.AddAndObservePlotSeriesNodeID(plotSeriesNode1.GetID())

294 plotChartNode.AddAndObservePlotSeriesNodeID(plotSeriesNode2.GetID())

295 plotChartNode.AddAndObservePlotSeriesNodeID(plotSeriesNode3.GetID())

296 plotChartNode.SetTitle('Edge Profile')

297 plotChartNode.SetXAxisTitle('Pixel Number')

298 plotChartNode.SetYAxisTitle('Mean Pixel Value')

299 # Create plot chart node

300 plotChartNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLPlotChartNode")

301 plotChartNode.AddAndObservePlotSeriesNodeID(plotSeriesNode4.GetID())

302 plotChartNode.AddAndObservePlotSeriesNodeID(plotSeriesNode5.GetID())

303 plotChartNode.SetTitle('Edge Gradient')

304 plotChartNode.SetXAxisTitle('Pixel Number')

305 plotChartNode.SetYAxisTitle('Gradient')

306 # Switch to a layout that contains a plot view to create a plot widget

307 layoutManager = slicer.app.layoutManager()

308 layoutWithPlot =

slicer.modules.plots.logic().GetLayoutWithPlot(layoutManager.layout)↪→

309 layoutManager.setLayout(layoutWithPlot)

310 # Select chart in plot view

311 plotWidget = layoutManager.plotWidget(0)

312 plotViewNode = plotWidget.mrmlPlotViewNode()

313 plotViewNode.SetPlotChartNodeID(plotChartNode.GetID())

314 #
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315 # Compute segment volumes

316 resultsTableNode = slicer.mrmlScene.AddNewNodeByClass('vtkMRMLTableNode')

317 segStatLogic.getParameterNode().SetParameter("Segmentation",

sampleSegmentNode.GetID())↪→

318 segStatLogic.getParameterNode().SetParameter("ScalarVolume",

volumeNode.GetID())↪→

319 segStatLogic.getParameterNode().SetParameter("LabelmapSegmentStatisticsPl c

ugin.enabled","False")↪→

320 segStatLogic.getParameterNode().SetParameter("ScalarVolumeSegmentStatisti c

csPlugin.voxel_count.enabled","False")↪→

321 segStatLogic.getParameterNode().SetParameter("ScalarVolumeSegmentStatisti c

csPlugin.volume_mm3.enabled","False")↪→

322 segStatLogic.computeStatistics()

323 segStatLogic.exportToTable(resultsTableNode)

324 segStatLogic.showTable(resultsTableNode)

325 #

326 print("Minimum Threshold Used for Glandular Segment = " +

str(thresholdMin))↪→

327 print("Full Width at Half Maximum = " + str(popt[2]*2.355))

328 #
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