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Abstract 28 

With the advancement of digital technology, the collection of pavement data has become 29 

commonplace. The improvement of tools to extract useful information from pavement databases 30 

has become a priority to justify expenditures. This paper presents a case study of PaveMD, a tool 31 

that integrates multi-dimensional data structures with a data-driven fuzzy approach to identify high 32 

performing pavement sections. Combining this tool with an innovative paradigm where the focus 33 

is on repeating success can bring additional value to existing pavement data. The case study shows 34 

that PaveMD can identify pavement sections that are performing well by comparing performance 35 

measures for the New Zealand context.  36 

In this paper, PaveMD's development is described, and its implementation is showcased using data 37 

from the New Zealand Long-Term Pavement Performance (LTPP) database. It is recommended 38 

that this approach be further developed and extended to other types of infrastucture and databases 39 

internationally.  40 

Highlights: 41 

• Development of a new tool for pavement data analysis using a New Zealand case study.  42 

• A novel approach to classify pavement sections using performance data. 43 

• Use of a fuzzy multi-dimensional framework for pavement classification.  44 

Keywords:  Pavement data, Pavement selection, Repeating success, Multi-dimensional analysis, 45 

New Zealand, Chip-seal, Pavement performance. 46 

  47 



1 Introduction 48 

Transportation agencies have recognized an opportunity to extract additional information from 49 

their existing pavement databases. Like many agencies, Waka Kotahi, the New Zealand Transport 50 

Agency (NZTA) has been particularly interested in extracting more information from their Long-51 

Term Pavement Performance (LTPP) program (NZTA, 2016). The classic approach for the 52 

analysis of pavement data tends to be a forensic one, where the analyst focuses on what went 53 

wrong to understand it and be able to find a potential solution to avoid future failures of the same 54 

nature. An alternative approach would focus on success. This approach seeks to identify the 55 

information necessary to replicate success rather than to try to avoid failure. It shifts the objective 56 

of the analysis from a design-centric approach to a construction-centric approach. Here, pavement 57 

success becomes a relative term, indicating the best performing pavement section in a specific 58 

context. This approach was first used by Gransberg, Senadheera, & Karaca (1998) on a statewide 59 

constructability review project for the Texas Department of Transportation (TxDOT). While the 60 

project did not use analytical tools, it did maintain the focus on pavement success. TxDOT later 61 

attributed its results to a savings of over $6 million in the first two years of its implementation. 62 

This study seeks to expand the fundamental approach of the TxDOT research to New Zealand 63 

pavement data and classify pavement sections based on their performance for further investigation.  64 

The objectives of the paper are: 65 

1. Investigate current and emerging methods from literature to analyze pavement 66 

performance data. 67 

2. Develop a tool to classify pavement sections based on commonly available pavement 68 

performance data.  69 



3. Showcase the tool using the New Zealand Long-Term Pavement Performance (LTPP) 70 

database as a case study and make further research recommendations.  71 

The first part of this paper presents a review of pavement performance in a New Zealand context; 72 

the paper then discusses the tool's development, called PaveMD, the techniques used, information 73 

structure and implementation. PaveMD is then showcased using data from the New Zealand LTPP 74 

database. Finally, this paper presents a discussion, the limitations and recommendations for 75 

research moving forward.  76 

2 Background  77 

2.1 The distinction between pavement success and performance in New Zealand 78 

In New Zealand, national roads are predominantly paved with chip-seal to remain cost-effective. 79 

These pavements consist of an unbound granular base surfaced with a type of chip-seal. In this 80 

context, the definition of pavement performance is relative, with many complex variables and 81 

confounders based on the context. For example, a pavement towards the end of its life may not be 82 

performing that well but may have carried twice the amount of heavy traffic in poor geotechnical 83 

and climate conditions and thus could be classified as more successful. Instead, here the focus will 84 

be on the performance of chip-seal pavements at the network level (Gransberg, Scheepbouwer & 85 

Tighe, 2010). This is typically measured using pavement performance measures such as rutting, 86 

roughness and texture with pavement load (ESALs) over time. These key performance measures 87 

have also been selected as the basis for the New Zealand Long Term Performance database (NZ 88 

LTPP). Other variables that impact performance, such as the amount of drainage, link significance, 89 

gradients and elevation are also important but are context-specific. These factors are typically 90 

assessed on a case-by-case basis, not at the network level. The new tool utilizes available pavement 91 



performance measures for New Zealand pavements listed above, but it can be extended to include 92 

other performance measures using a similar novel approach.  93 

Following on, to gain an understanding of the existing research with relevance to PaveMD, this 94 

section contains the following three sub-sections: 95 

• Review of data structures commonly used in transportation and pavement research 96 

• Review of pavement data classifiers 97 

• Review of data consolidation methods (Composite indices)  98 

2.1 Review of data structures commonly used in transportation 99 

Relational database management systems (RDBMS) or 'flat tables' have been used for many years. 100 

It is the basis upon which the most extensive pavement data sets are held. Recently it has been 101 

shown that classical statistical techniques have seen limited success with current pavement 102 

databases in New Zealand. Neaylon et al. (2017) proposed that New Zealand pavement data should 103 

be restructured to be more compatible with smart computing to extract meaningful results more 104 

affordably. Additionally, Colliat (1996) also pointed to the many limitations of this standard and 105 

suggested a move to a multi-dimensional framework (MDF). At this point, it is essential to note 106 

that other terminology and jargon exists with similar definitions. For example, the OLAP-Cube 107 

(online analytical processing) (Salley & Codd, 1998) is synonymous with MDF and Multi-108 

dimensional analysis (MDA). This paper will use the more generalized terminology, MDF for the 109 

data structure, and MDA for the analysis of multi-dimensional data and framework.  110 

An MDF is structured to answer queries about trends and patterns in data (Larson et al. 2011). 111 

Pavement data is well suited to MDF as data is typically collected in set intervals. In New Zealand, 112 

the SCRIM truck (Sideway-force Coefficient Routine Investigation Machine) collects information 113 



annually between October and March Each year (NZTA 2019). This allows “annual” dimensions 114 

to be added to a MDF.  Figure 1 depicts the benefits that an MDF and MDA approach could bring 115 

to pavement data. MDF can provide a context-specific view when looking at data.   116 

 117 

Figure 1: Visualization of multi-dimensional perspectives as it relates to different entities. 118 

There are several benefits of moving to an MDF and MDA approach.   119 

• The ability to provide a context-focused view when viewing the same structure.  120 

• Transformation of a scheme into a more direct context-focused environment.  121 

• Multi-dimensional data is implicitly joined, enabling fast queries. 122 

• Relationships between different layers of information are easily identified. 123 

• Matrix algebra can be applied for advanced query outputs. Sub-matrices can simply be 124 

obtained through matrix manipulation.  125 

(Colliat 1996; Laker 2006; Park & Cai 2017)  126 

The MDF approach has seen limited use in the transportation industry, and only a small number 127 

of researchers have used MDFs for pavement and transportation research. In traffic modelling, 128 



researchers have used MDF and MDA for the analysis of traffic data. Kim et al. (2014) investigated 129 

the use of MDF to analyze bus information systems and traffic card data to examine the passengers' 130 

usage patterns. Researchers suggested that this methodology can be used to design or re-organize 131 

bus service routes to save transit time. Dock et al. (2004) discussed the limitations of current 132 

roadway standards and suggested a multi-dimensional framework for the context-based design of 133 

thoroughfare.  134 

Limited research has been conducted with MDF when looking at pavements specifically. Kuhn 135 

(2011) describes the limitations of using a discrete composite condition index and proposes that 136 

approximate dynamic programming can be used on large networks of pavements considering 137 

multi-dimensional condition data. Shrestha et al. (2017) investigated multi-dimensional highway 138 

construction cost indices. They developed an automated system to calculate multi-dimensional 139 

cost indices for enhanced work efficiency instead of spread-sheet-based systems still common 140 

among state DOTs in the U.S. 141 

Khurshid et al. (2014) used a multi-dimensional treatment methodology to evaluate five rigid 142 

pavement rehabilitation treatments. They used American pavement performance data 143 

complemented with various other data, including climate and loading. They found that the superior 144 

effectiveness of the treatment does not necessarily translate to excellent cost-effectiveness.  145 

The sparse existing research is supportive of the use of MDFs in the analysis of data in the 146 

transportation field. This indicates that there could be merit in further exploration. 147 



2.2 Review of pavement data classifiers 148 

After the selection of the MDF data structure for PaveMD, a 'classification method' (the degree of 149 

pavement performance within a wider sample) needed to be established. Several classification 150 

methods for pavement data are common in research (Figure 2).  151 

 152 

Figure 2: Classification methods reviewed are broken into quantitative and qualitative techniques.  153 

To use existing pavement data, quantitative methods are the focus here. The advantages and 154 

disadvantages of the four candidate quantitative methods are listed in Table 1. 155 

  156 



Table 1: The advantages and disadvantages of four different classification techniques reviewed.  157 

Advantages Disadvantages 

Linear  • Easy to implement.  
• Simple to understand and 

explain to practitioners. 

• Typically not data-driven 
• The underlying relationship may not be 

linear 

Function-Based  • Uses existing data to quantify 

performance 
• Typically based on 

correlation and regression 

analysis 
• Take more complex 

relationships into account. 

• Necessary deterioration functions have 

not yet been developed for all pavement 

performance measures.  
• Models may require input variables that 

are not available. 
 

Fuzzy sets • Allows for in-depth analysis 
• Can be used for detailed and 

holistic analyses 
• Can describe knowledge in a 

human-like manner 
• Can be data-driven and/or 

use expert opinions 
• Uses universal classifiers  

 

• Difficult to explain to practitioners  
• Variable weightings have no statistical 

meaning 
• Fuzzy rationale should not be mistaken 

for likelihood hypothesis  
• Fuzzy rationale is not exact, and 

outcomes may not be generally 

acknowledged 

• Fuzzy logic does not utilize machine 

learning 

Artificial neural 

nets  
• Ability for pattern 

recognition  
• Ability to handle large 

amounts of data. 

• Universal approximator 

applicable to a wide variety 

of pavement problems 
• Ability to implicitly detect 

complex non-linear 

relationships 
• Practitioners require less 

statistical training 

• Black-box approach, underlying 

relationships are poorly understood; 

correlation is not equal to causation. 
• Consistency in output can be an issue 
• Software development is slow 
• Uses iterative approach to train neural 

functions 

• A.I. models are resource-intensive 
• It can be difficult to interpret results 
• Generalized models are difficult to 

implement 

 158 

Fuzzy set theory was chosen because it can combine data and expert opinion to make decisions in 159 

a human-like manner. Additionally, fuzzy set theory is a common way to classify pavement data 160 

due to its many advantages to pavement engineering (Gunaratne et al. 1984; Gunaratne et al. 1985; 161 

Kucukvar et al. 2014; Pan 2008; Wang et al. 2011). The critical component of fuzzy logic is the 162 

formation of a fuzzy membership function; this is typically based on the variations in expert 163 



opinions (Tigdemir et al. 2002; Sun & Gu 2010). This research uses a modified pavement data-164 

driven approach to establish the fuzzy membership functions. 165 

2.3 Performance measure consolidation  166 

Once the performance measures of each section have been classified, it is common for these to be 167 

combined with  a composite index. This step is context-specific and requires a deep understanding 168 

of the qualitative relationship between different pavement performance measures and pavement 169 

performance at the network level with specific contextual factors. There are two fundamental 170 

methods to derive a composite index, these can be defined as (Fawcett et al., 2001): 171 

1) A numeric value assigned according to qualitative rating criteria and/or road user's 172 

perception of the road or surface condition; and,  173 

2)  A statistically derived index based on quantifiable distress parameters and relative 174 

weightings.  175 

Both forms have benefits and downsides as outlined in Table 2.  176 

Table 2:  Differences between two fundamental forms of composite indices adopted from 177 

Fawcett et al., 2001. 178 

Qualitative composite index  

Advantages  

It is simple to derive since all parameter 

can be rated on the same scale and the 

outcome of the survey will determine the 

weighting factors (MCA).  

Disadvantages  

Highly dependent on the knowledge and expertise 

of participants. Subjective judgement does not 

always reflect good engineering judgement and 

economic principles that can be counter-intuitive. 

This method is subject to the frame of reference of 

the survey participants 

Statistically derived composite index  

Advantages  

The index can be derived accurately using 

recognized statistical approaches and analyses. 

Indices are founded on measurable condition 

parameters. It is possible to review and scrutinize 

the underlying reasons. 

Disadvantages  

It is difficult to establish relative weighting factors. 

It is limited to the statistical variables in a specific 

context or study. This might require local 

calibration with specific variables that may not 

exist if to be applied in a different context. 

 179 



Fawcett et al. suggest deriving a robust composite index largely depends on the performance 180 

measures included in the index; the method used to determine the relative weighting of 181 

performance measures; and the stability of the performance measures. For example, if the 182 

repeatability in the measurement is more subjective (rutting vs cracking) it would be more difficult 183 

to establish a robust composite index (Fawcett et al., 2001).  184 

 Depending on the country, state and province, different methods exist for developing a composite 185 

index (Henning et al., 2013, Golroo & Tighe, 2009) based on objectives and context. Here a 186 

qualitative rating criterion will be used for simplicity. A common qualitative approach to establish 187 

a simplified composite index  is using a similar approach to Multi-Criteria Analysis (MCA) where 188 

performance measures are combined into a linearly formed index (Haas 1994; Shahin & Kohn 189 

1979) as shown in Equation 1.  190 

Composite 𝐼𝑛𝑑𝑒𝑥 = ∑𝑊𝑖 𝑥𝑖 
Equation 1 

In Equation 1, 𝑊𝑖 represents the expert weighting, and 𝑥𝑖 is the classified performance measure. 191 

The method establishes a unified basis to compare pavement performance measures and has been 192 

used in pavement condition assessment. Sun & Gu (2010) used the Analytical Hierarchy Process 193 

(AHP) and fuzzy logic theory to develop an approach for pavement condition assessment. They 194 

demonstrated the new methodology by ranking eight road sections using fuzzy membership 195 

functions developed by expert opinion.  196 

Additional authors have used AHP (Moazami et al. 2011; Velasquez & Hester 2013), which is 197 

based on mathematical decision theory (Ramadhan et al. 1999; Wind & Saaty 1980). A common 198 

issue with AHP is that as the number of variables increases, the number of pair-wise comparisons 199 



increases drastically. AHP also does not facilitate discussion among experts which could yield 200 

different results (Wind & Saaty 1980).  201 

The Delphi method presents an alternative method (Dalkey & Helmer 1963; Linstone & Turoff 202 

1975; Ma et al. 2011; Velasquez & Hester 2013). This method is a communication technique where 203 

a panel of experts answers questions in two or more rounds (Rowe & Wright 2001). After each 204 

round, anonymous feedback is given concerning their choices and reasoning; the panel is then 205 

asked to re-evaluate their choices (Dalkey & Helmer 1963; Linstone & Turoff  1975; Ma et al.  206 

2011).  207 

For this research, nine pavement experts from the New Zealand National Pavements Technical 208 

Group were consulted in identifying the relative importance using three rounds of the Delphi 209 

method. This group was established in 2008 to identify and facilitate best practices for road 210 

pavement design, materials and construction in New Zealand and provide direction and advice to 211 

NZTA on research and development. This composite index developed here is further discussed in 212 

Section 5, specifically Equation 7.  213 

3 The Development of PaveMD 214 

PaveMD has been developed with three primary programming languages (matlab, python and 215 

SQL) and follows the Extract, Transform, Load (ETL) processes as shown in Figure 3. The data 216 

access and export components retrieve data from multiple source systems. The data transform 217 

component validates and converts data to information. The data load component checks whether 218 

the information is within expected ranges, then pushes the information into the MDF. Once the 219 

MDF has been populated, it can be evaluated with input received from the user interface. 220 



 221 

Figure 3: Extract Transform Load (ETL) procedure for PaveMD. 222 



 223 

Figure 4: The Information structure of PaveMD. 224 

The New Zealand Long Term Pavement Performance (LTPP) database was chosen to be the 225 

primary data source due to the rigour associated with its collection (Brown, 2010). The details of 226 

this database are further discussed in Section 4.  Secondary data sources are from the National 227 

Institute of Water and Atmospheric Research (NIWA) and Road Assessment and Maintenance 228 

Management (RAMM) databases to add climate and maintenance information to PaveMD. 229 

The data structure (MDF) stores distribution descriptors (log Mean and log Standard deviation, 230 

Max, Min, Mode, quality of fit parameters) instead of the raw pavement performance data.  This 231 

allows for in-depth analysis without the need to access the original (very large) databases for every 232 

quarry. This method significantly increases the speed of data access and the speed of computation 233 

which allowed PaveMD to run on a single P.C. (i7-9700K, 16GB RAM). However, this does 234 

require a one-time upfront computation period to update the MDF, which depending on the data 235 

source may be time consuming. 236 



PaveMD first gains access to different databases (authentication) and formulates performance 237 

measure distributions for each pavement section. The distribution descriptors include the mean, 238 

standard deviation, minimum, maximum, skew, and the quality of fit for each performance 239 

measure, per pavement section as mentioned previously. Fundamental distribution descriptors are 240 

chosen to enable easy recognition of the processed data. These distribution descriptors are then 241 

pushed to the centra MDF structure. While speed and minimal computational power is a significant 242 

advantage for this method, it does raise some concerns with regards to the smoothing effect when 243 

fitting distributions to performance data. This may miss representing the pavements ‘local state’ 244 

or hide severe localized issues. For a network-level analysis this is less of a concern, but on a local 245 

level using distribution descriptors may be a significant oversimplification. For this case, other 246 

methods may need to be considered to store an aggregation of the original sample from the 247 

database.  248 

 The central MDF data structure is called Stochastic Based Multi-Dimensional Matrix (SBMDM) 249 

and is the physical data structure for PaveMD. The data structure has three primary data 250 

dimensions; pavement sections, performance measures and time (ESALs), as shown in Figure 4.  251 

The user can input various performance queries. The interpretation module translates the queries 252 

and interrogates them against SBMDM. The results are then returned to the user. The interrogation 253 

of SBMDM  follows two steps. The first step is the classification of pavement performance data 254 



using Fuzzy membership functions. These fuzzy membership functions are extracted from the 255 

SBMDM.  256 

 257 

Table 3: User assigned percentile values to the qualitative descriptors. 258 

Percentile Value(P) 1%(0.01) 25%(0.25) 50%(0.5) 75%(0.75) 99%(0.99) 

A qualitative 

descriptor for 

performance  

Very 

Good 

Good Moderate Poor Very Poor 

 259 

Each PaveMD fuzzy membership function has five membership sets, as shown in Table 3.  Here 260 

the degree of performance (for example, rutting) is broken down into five qualitative measures 261 

ranging from Very Good to Very Poor. Each qualitative measure is associated with a percentile 262 

value (P). Here the values were chosen such that there is even spacing (~25%) covering the search 263 

space, however, it is recognized that this is subjective and other users or agencies may choose 264 

differently. Here we will present an example to construct the 'Moderate' membership set for rutting, 265 

one of five sets (see Table 3) to build the entire rutting membership function. This requires the 266 

following to occur.   267 

The rutting distribution descriptors are pulled from the SBMDM for each pavement section. These 268 

descriptors are then processed per section using Equation 2, where the 50-percentile rut value is 269 

calculated for each section (see Table 3). Doing this for all pavement sections gives an array (a 270 

list) of 50-percentile values. This array is then fitted (see Figure 5) and normalized between 0 – 1 271 

to form the 'moderate' component for the membership function (see Figure 6).  272 

  273 



[𝑉𝑒𝑟𝑦𝐺𝑜𝑜𝑑𝑎𝑟𝑟𝑎𝑦 1−𝑛] = 𝑓(𝑃, [𝑙𝑜𝑔 𝜇1−𝑛], [𝑙𝑜𝑔 𝜎1−𝑛])   

 

Equation 2 

 

Where,  274 

f = Percentile Function; returns percentiles of the elements in a data vector or array for the 275 

percentage 𝑃 (MathWorks Inc. 2019). 276 

P = the corresponding percentile value (See Table 3). 277 

n = the considered number of sections. 278 

 279 

Figure 5: Fitted lognormal probability density function for 50 percentile rutting values for all 280 

sterile NZ LTPP sections (𝜇=1.61, 𝜎 = 0.53, mean = 5.8) 281 

This process is repeated until each set required in Table 3 (Very Good, Good, Moderate, Poor, and 282 

Very Poor) is completed. With all five sets completed and combined; this forms the membership 283 

function for a single performance measure, rutting (see Figure 6). 284 



The same process is then performed to construct membership functions for the other performance 285 

measures (IRI and Texture), see Figures 7 and 8. It is important to note that some performance 286 

measures are advantageous (show a higher degree of performance) in ascending order (for example 287 

texture), where others, are advantageous in descending order (for example rutting).  This changes 288 

the orientation of the membership functions. 289 

Once the membership functions have been formed, the Rational Set (R) and Normalized Rational 290 

Set (NR) can be formed (Equation 3 and 4). In the Rational Set a single performance measure is 291 

broken up into the five discrete indices, the qualitative descriptors for performance. These indices 292 

are constructed from the membership functions as developed above. This is different from a 293 

traditional approach where each pavement section would be allocated a single index. For a further 294 

detailed explanation of fuzzy logic, please see research done by Sun et al. (Sun & Gu, 2010).  295 

Note that once the distributions are normalized to form part of the fuzzy membership functions, 296 

they lose statistical meaning. A value of 0.4 for a membership function does not imply a probability 297 

of 0.4. The area under the curve does not sum to 1 as it should for a probability distribution. Instead, 298 

the normalized distribution conveys the degree of membership to the distribution. 299 

 300 

𝑅 = [𝑉𝐺𝑜𝑜𝑑𝐷𝑜𝑀 , 𝐺𝑜𝑜𝑑𝐷𝑜𝑀 ,𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒𝐷𝑜𝑀 , 𝑃𝑜𝑜𝑟𝐷𝑜𝑀 , 𝑉𝑃𝑜𝑜𝑟𝐷𝑜𝑀]     Equation 3 

 

 301 

𝑁𝑅 =  [
𝑉𝐺𝑜𝑜𝑑𝐷𝑜𝑀

𝑆𝑢𝑚(𝑅)
,
 𝐺𝑜𝑜𝑑𝐷𝑜𝑀

𝑆𝑢𝑚(𝑅)
,
𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒𝐷𝑜𝑀

𝑆𝑢𝑚(𝑅)
,
𝑃𝑜𝑜𝑟𝐷𝑜𝑀

𝑆𝑢𝑚(𝑅)
,
 𝑉𝑃𝑜𝑜𝑟𝐷𝑜𝑀

𝑆𝑢𝑚(𝑅)
]       Equation 4 

 



Where R is the array of values that show the degree of membership (DoM) of each of the qualitative 302 

descriptors, and NR is the normalized rational set.  303 

The next step is the consolidation of the performance measures. This is done using a normalizing 304 

weighting vector that indicates the importance of different performance measures to pavement 305 

success. Qualitative composite index W, is context-specific and contains the three values of the 306 

respective weightings of Rutting, IRI and Texture. The Delphi approach was used here to develop 307 

W, as outlined in Section 2.3.  308 

To consolidating fuzzy relational sets, the weighting vector is combined with the fuzzy normalized 309 

Relational Sets, as shown in Equation 5.  310 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 = 𝑊 ⊗  𝑁𝑅 Equation 5 

 

If the Evaluation Set (Equation 5) is analyzed to find the largest index value, a winner takes all 311 

approach (WTA) can be used to classify all sections into one of five groups: VeryGood – VeryPoor 312 

(corresponding WTA index, 1-5). This is a simplistic method of identifying pavement sections that 313 

are performing well.  314 

A more rigorous approach; multiplying the Evaluation Set with a quantifying vector, for example, 315 

the normalized vector [ 5; 4; 3; 2; 1] will produce a finite rank index called the defuzzified weighted 316 

cumulative index (DWCI) as suggested by (Sun & Gu, 2010), this is shown in Equation 6.  317 

𝐷𝑊𝐶𝐼 =  𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑡 ∗  

[
 
 
 
 

 

0.333
0.267
0.200
0.133
0.067]

 
 
 
 

 

 

Equation 6 



When combining this method above with the SBMDM, it becomes a powerful tool that allows 318 

decision-makers to analyze pavement data from multiple views (dimensions). This will be 319 

demonstrated in the case study below.  320 

4 Case study –Classifying NZ LTPP sections 321 

The data from the NZ LTPP program is the focus of the case study. The LTPP includes roughly 322 

130+ pavement calibration sections from both local authority and state highway roads. These 323 

calibration sections are typically 300m in length and measurements (rutting, roughness and 324 

texture) are reported at 10m intervals. Consultants collect data to a rigorous methodology (for more 325 

information see Brown, 2001) in both directions, in both wheel paths, in the same location yearly 326 

since the program's inception in 2001. In addition, the transverse profile, including rutting, is 327 

collected with a specially designed transverse profile beam (TPB). Roughness information is 328 

collected by experienced surveyors with the ARRB Walking Profiler. Texture measurements are 329 

collected with Transit Stationary Laser profiler, a New Zealand reference device. This device 330 

collects data in the 0.5mm to 500mm wavelength; the data is post-processed to Mean Profile Depth 331 

(MPD) following ISO13473-1. To ensure repeatability, measurements are taken multiple times 332 

and checked for consistency (Brown, 2010). As-built constructed information for many sites did 333 

not exist due to the age of the roadways, therefore detailed test pit information has been collected 334 

for the calibration sections.   335 

The original purpose of the LTPP program was to calibrate the New Zealand pavement 336 

deterioration models (Henning, 2006; Henning, 2008; Henning et al., 2009). The LTPP program 337 

in NZ consists of ‘sterile’ and ‘non-sterile pavement’ sections for modelling purposes. Sterile 338 

sections have only received maintenance if this was necessary for safety reasons whereas non-339 

sterile sites are under normal maintenance schedule. For this case study, these 75 sterile LTPP 340 



sections have been analysed. Showcasing all 75 sections in this paper would be impractical and 341 

add no theoretical knowledge. Instead, ten sections with a diverse range of associated properties 342 

are showcased here (see Table 4); similar to Sun & Gu, 2010 who only showed eight sections. The 343 

three key performance measures considered from the NZ LTPP are rutting (in mm), roughness 344 

(IRI) and texture (MPD) with respect to time (ESALs).  345 

Table 4: Ten LTPP sections with associated properties 346 

Pavement 

section 
Surface 

Base 

thickness 

Base 

type 

Sub-base 

thickness 

Sub-base 

type 
AADT 

% Heavy 

vehicles  
 

'CS_22' Chip-seal 90 AP40 190 AP40 1012 18 

'CS_24' Chip-seal 90 AP40 80 AP65 1448 18 

'CS_29' Chip-seal 95 AP40 480 AP40 1723 12 

'CS_60' Chip-seal - - - - 2239 10 

'CS_20' Chip-seal 270 AP65 150 SILT 2403 15 

'CS_26' Chip-seal 100 RR - - 2825 17 

'CS_14' Chip-seal 140 AP40 260 AP65 4214 10 

'CS_33' Chip-seal 100 M4 - - 8096 5 

'CS_11' Chip-seal 130 AP40 130 SAND 8644 4 

'CS_7a' OGPA 125 AC 380 AP40 82530 8 

 347 

4.1 Case study results  348 

PaveMD was used with all sterile NZ LTPP data to develop pavement performance membership 349 

functions shown in Figures 6-8. In Figure 6, the membership functions of rutting are shown. There 350 

are five membership functions to classify a single rut value varying from Very Poor to Very Good. 351 

For each rutting depth on the x-axis, the corresponding degrees of membership to the five 352 

classifications are depicted on the y-axis. Similarly, in Figures 7 and 8, the membership functions 353 

for IRI and texture are depicted. 354 

 355 



 356 

Figure 6: Rutting membership functions constructed from all sterile (no maintenance) New 357 

Zealand LTPP sections. 358 

 359 

Figure 7: IRI membership functions constructed from all sterile (no maintenance) New Zealand 360 

LTPP sections. 361 



 362 

Figure 8: Texture membership functions constructed from all sterile (no maintenance) New 363 

Zealand LTPP sections. 364 

A composite index (W) has been established to combine rutting, IRI and texture. The normalized 365 

W (Equation 7) for a network-level was established by the New Zealand National Pavements 366 

Technical Group's experts following the Delphi method (Linstone & Turoff 1975). 367 

𝑊 = [ 𝑅𝑢𝑡𝑡𝑖𝑛𝑔(𝑊1), 𝐼𝑅𝐼(𝑊2),    𝑇𝑒𝑥𝑡𝑢𝑟𝑒(𝑊3)]  = [0.45 , 0.35, 0.2]                         Equation 7 

 

From Equation 8, it follows that rutting is the most influential performance measure when 368 

determining the pavement performance, followed by IRI and then texture. With this, the relative 369 

pavement performance in the New Zealand context can be calculated.  370 

Table 5 shows the ten showcased  LTPP pavement sections ranked to DWCI. Here section CS_7a 371 

is performing the best, whereas section CS_22 is performing the worst. From this table, we can 372 

also see that the simplified method, the WTA index corresponds well with the DWCI. Section 373 

CS_7a has a degree of membership of 0.364 for the Very Good descriptor, the highest degree of 374 

membership which gives it a WTA of 1. This corresponds well with CS_7a's high DWCI value of 375 



0.223, indicating high performance. It is interesting to note that although section CS_7a did not 376 

have a texture value recorded in the database, it was still ranked first in DWCI. This is because 377 

there was very little weight put on texture. It performed exceptionally well in the other two 378 

performance indicators. Having missing data for a performance measure is an advantage with 379 

regards to the WTA score, however, would be a disadvantage to the DWCI score. 380 

Table 5: LTPP sections ranked to the defuzzified weighted cumulative index (DWCI) as 381 

suggested by (Sun & Gu 2010). 382 

Section DWCI WTA Very 

Good 

Good Moderate Poor Very 

Poor 

Rutting IRI Texture 

'CS_7a' 0.223 1 (0.364 0.261 0.127 0.044 0.003) 1.985 0.960 - 

'CS_26' 0.200 3 (0.065 0.287 0.312 0.261 0.076) 4.505 1.592 1.500 

'CS_33' 0.191 4 (0.136 0.172 0.253 0.296 0.143) 6.064 2.279 2.794 

'CS_20' 0.179 4 (0.029 0.207 0.307 0.327 0.129) 4.954 2.446 1.628 

'CS_24' 0.167 4 (0.043 0.182 0.248 0.297 0.230) 8.057 2.138 1.864 

'CS_11' 0.156 5 (0.077 0.133 0.187 0.256 0.347) 10.810 2.454 2.237 

'CS_14' 0.154 5 (0.081 0.108 0.180 0.307 0.323) 7.801 3.399 2.298 

'CS_29' 0.151 4 (0.011 0.129 0.244 0.345 0.271) 5.201 3.637 1.259 

'CS_60' 0.141 5 (0.012 0.108 0.206 0.332 0.342) 8.584 3.114 1.519 

'CS_22' 0.124 5 (0.005 0.091 0.169 0.228 0.506) 16.022 2.329 1.027 

 383 



 384 

Figure 9: Abstracted diagram of the SBMDM. 385 

A significant advantage of the multi-dimensional approach is the ability to select data from 386 

different perspectives (dimensions). Thus far, 'View 1' has been examined as denoted in Figure 9 387 

with 'Pavement Performance measures' and 'Pavement sections' as the edge parameters. Next, 388 

'View 2' in Figure 9 will be queried. View 2 has the edge parameters' Time/ESAL's and 'Pavement 389 

sections'. The ranking of the pavement sections on a single performance measure against time 390 

(ESALs) is shown in Table 6. 391 

Table 6: LTPP sections that have been identified by DWCI, considering rutting only over time 392 

(ESALs) 393 

Pavement 

section 

DWCI WTA Very 

Good 

Good Moderate Poor Very 

Poor 

CS_7a' 0.102 2 0.121 0.124 0.101 0.061 0.007 

'CS_26' 0.073 4 0.008 0.069 0.124 0.162 0.085 

'CS_29' 0.071 4 0.006 0.062 0.120 0.167 0.093 

'CS_33' 0.071 4 0.006 0.061 0.118 0.165 0.098 

'CS_20' 0.063 4 0.004 0.045 0.097 0.158 0.144 

'CS_24' 0.062 5 0.005 0.044 0.088 0.145 0.166 

'CS_14' 0.061 4 0.003 0.040 0.091 0.157 0.157 

'CS_11' 0.049 5 0.002 0.020 0.052 0.112 0.262 

'CS_22' 0.038 5 0.000 0.005 0.019 0.063 0.361 

'CS_60' 0.035 5 0.001 0.018 0.047 0.094 0.116 

 394 



The order of sections in Table 6 is not significantly different from that in Table 5. This shows that 395 

rutting governed the selection as it received the largest weighting (W1) in the results from Table 396 

5.  397 

This view allows for a detailed comparison of the performance of all sections for a single 398 

performance measure. It is also possible to give different weightings to various years of service; 399 

for example, the 10th year of service could be valued more than the first or the second year by the 400 

user. Thus classifying sections across the entire recorded pavement life with respect to one 401 

performance measure. In addition, we rank the sections against time, according to DWCI and 402 

WTA, using all performance measures and  W. This presents a holistic view of all data available 403 

in SBMDM (all dimensions; Pavement sections, performance measures, time/ESALs). These 404 

results are shown in Table 7. Here section CS_7a is the highest performing while CS_60 is the 405 

worst.  406 

Table 7: The ranking of sections over time, according to DWCI and WTA, using all performance 407 

measures. 408 
 

Overall  

DWCI 

Rutting 

DWCI 

Rutting 

WTA 

IRI  

DWCI 

IRI  

WTA 

Texture 

DWCI 

Texture 

WTA 

CS_7a' 0.117 0.102 2 0.202 1 0.000 NAN 

'CS_33' 0.116 0.071 4 0.130 3 0.190 1 

'CS_26' 0.109 0.073 4 0.153 2 0.114 4 

'CS_24' 0.105 0.062 5 0.134 3 0.151 2 

'CS_20' 0.097 0.063 4 0.124 4 0.128 3 

'CS_14' 0.089 0.061 4 0.092 5 0.149 2 

'CS_11' 0.088 0.049 5 0.115 4 0.129 3 

'CS_22' 0.085 0.038 5 0.127 4 0.115 4 

'CS_29' 0.080 0.071 4 0.083 5 0.095 4 

'CS_60' 0.055 0.035 5 0.062 4 0.086 3 

 409 

This process has identified pavements that are performing well, considering the three performance 410 

measures. This identification could then be followed up with a more detailed investigation to find 411 



the underlying reasoning. This priority can also be used to identify pavement sections that require 412 

maintenance at a network level.  413 

5 Discussion, limitations and recommendations  414 

5.1 Application of PaveMD  415 

This study proposed a tool to assess pavement conditions, prioritize maintenance, and identify 416 

good performing pavement based on multi-attribute performance measures. It provides a 417 

systematic way of characterizing previous subjective ratings using performance data. By creating 418 

an evaluation set with five categories Very good, Good, Fair, Poor, and Very poor, the agency or 419 

user can assess their evaluation of performance. For example, here 50 percentile has been assigned 420 

as “moderate”,  PaveMD will assess the SBMDM and return the membership function based on 421 

this 50 percentile assignment.  422 

The procedure presented in this paper can be generally applicable to the condition assessment of 423 

other infrastructure where multi-attribute are presented with an adequate amount of data. When 424 

applied, specific membership functions and composite indices need to be re-established as 425 

appropriate following the specific type of infrastructure and context.  426 

5.2 The use of PaveMD beyond this paper 427 

The development of PaveMD has spanned years and a selection of research studies have 428 

successfully used the capability of PaveMD during its development. PaveMD was used in the 429 

Canterbury region of New Zealand to identify and investigate high performing chip-seal pavement 430 

sections, which led to a relationship between pavements performance and road camber being 431 

identified (van der Walt et al. 2018). PaveMD was also used at the network level with the entire 432 

New Zealand LTPP dataset (van der Walt et al. 2017). This showed that network data discrepancies 433 



were consistent with the condition assessment models developed by Henning et al. (Henning et al. 434 

2009). This research also suggested that further development could lead to extended maintenance 435 

periods by stiffening the outside wheel path. 436 

5.3  Constraints 437 

Researchers and users must recognize that both the classification step and composite index used 438 

with PaveMD are context-specific. In the LTPP case study, a holistic view was taken that included 439 

all sterile LTPP sections. Hennings (2008) showed the LTPP sections are representative of the 440 

New Zealand network. This meant that the position and variability included in the membership 441 

functions (Figure 6-8) is a good representation for the New Zealand pavement network at the time 442 

of writing; predominantly for a chip-seal pavement network.  For the investigation of a specific 443 

area or region, both the classification step and composite index used must be re-assessed using a 444 

subset of the section data.  445 

A key limitation to this approach is the quantity and quality of the available data. Data-driven 446 

membership functions can only be constructed if a statistical distribution can be fitted accurately. 447 

As the specificity is increased, the amount of data will reduce to a point where distributions can 448 

no longer be reliably established. At this point, the membership functions lose significance and 449 

therefore, rankings are no longer dependable. This could be of particular concern for pavement 450 

databases that have missing and or incorrect data, for example, local roads as compared to state 451 

highways.  However, as big data collection becomes commonplace with technologies such as the 452 

Internet of Things, and high-speed data collection, the approach presented here will become more 453 

robust as membership functions become more accurate. 454 

 455 



A constraint of this approach is the development of the composite index (W) using an expert 456 

method like the Delphi method. While this approach is firmly based in literature,  statistical 457 

methods to derive W should be investigated.  458 

5.4 Further research  459 

The development of PaveMD is ongoing to allow for additional expandability and capability.  460 

- Include statistically derived pavement composite indices, both for surface and structural 461 

parameters for example Structural Indices(SI) as suggested by Stevens et al, 2009.  462 

- Increase the number of performance measures, including cracking and Falling Weight 463 

Deflectometer measures. 464 

A promising research area in data analytics is columnar data structures or Column-Oriented 465 

Database Management Systems, for example, ClickHouse (ClickHouse, 2021) and Apache 466 

Casandra (Cassandra, 2021) which could bring additional advantages to pavement data analytics. 467 

Advantages include, for example, lower overheads when importing data to the database, improved 468 

compression of data, improved parallel processing on multiple CPU cores and additional reading 469 

efficiency. Aggregation across a data field (for example, finding the average rut depth for a 470 

pavement network) can become much more efficient, taking seconds instead of days to compute 471 

across terabytes of data. These advantages must be balanced with disadvantages and therefore, 472 

further research is needed. 473 

6 Conclusions and Recommendations 474 

Advancing technologies enable the creation of tools that utilize pavement data more efficiently. 475 

The fundamental approach 'to repeat success' proposed by Gransberg et al. (1998) has been used 476 

in conjunction with software to develop a new tool. This tool, called PaveMD, uses a multi-477 



dimensional, fuzzy logic approach to identify pavements that are performing well at the network 478 

level. Instead of using an expert system, membership functions have instead been established using 479 

existing pavement performance data. This research demonstrates the tool using a case study from 480 

the New Zealand Long Term Pavement Performance program where PaveMD successfully 481 

classified pavement sections at the network level. 482 

This paper has the following recommendations for further research. 483 

• Further research should expand the number of performance measures from different 484 

databases, including other climate and geo-hazard databases. As a priority it is 485 

recommended to extend PaveMD to Falling Weight Deflectometer (FWD), cracking and 486 

drainage information.  487 

• Individual pavement composite indices, both for surface and structural parameters for 488 

example Structural Indices should be investigated.  489 

• Investigate other data frameworks such as Column-Oriented Database Management 490 

Systems to analyze pavement performance data. 491 

This research did not receive any specific grant from funding agencies in public, commercial or 492 

not-for-profit sectors. 493 
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