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Abstract

In this thesis, we perform ray tracing analyses of the COMPOSITE dataset of 4534 galaxy

redshifts and distances using quasi-spherical Szekeres models. The Szekeres models are a

class of exact inhomogeneous dust solutions of the Einstein equations, which we utilise as

toy models of local inhomogeneous structures for distances ≲ 150h−1Mpc. In our case,

we choose specific models that asymptote to the FLRW model beyond ≃ 100h−1Mpc, to

restrict attention to the effects of ‘local structure’. These solutions allow us to simulate

light propagation through a local under-dense void with an adjacent over-dense struc-

ture, as measured by an observer situated at different points within the structures of the

model. By ray tracing null geodesics over the sky of this observer while performing ra-

dial and angular averages, we have attempted to constrain the Szekeres models to match

the Hubble expansion anisotropy of the COMPOSITE dataset, as well as the dipole and

quadrupole anisotropies of the Cosmic Microwave Background (CMB). Previous ray trac-

ing investigations undertaken by Bolejko et al. [1] have indicated potential non-kinematic

contributions to the CMB dipole anisotropy due to relativistic differential expansion on

the scale of local inhomogeneities. We revisit these results with corrections applied to a

bug in their null vector initialisation procedure that led to some incorrect conclusions.

We find that the application of Haantjes transformations to their Szekeres model is a

promising avenue for obtaining a full match to the Hubble expansion anisotropy present

in the COMPOSITE dataset.
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Chapter 1

Introduction

Understanding our place within the universe, against the intricate backdrop of cosmic

structure and upon the perennial stage of space and time, is an insatiable desire of

countless cosmologists and astrophysicists. It begins by kindling a fire in the heart of

a starry-eyed student, and before long their burgeoning quest for knowledge propels them

far out into a universe beyond their deepest imaginings. Soon enough, they encounter the

inevitable limitations imposed by their Earth-bound circumstances. Somehow we must

characterise the universe on increasingly large cosmological scales while restricted to just

a single vantage point in space and the limits of observations on our past light cone.

Making sense of astronomical observations considering our theoretical conceptions is an

exceptionally complicated and nuanced challenge – and not too dissimilar to an art in some

cases. The standard ΛCDM model remains the long-standing cosmological concordance

model of our universe, due to an excellent agreement with a wide range of observational

data. However, there are numerous observations that are yet to be reconciled with the

predictions of the standard model, and many of these observations are in significant and

increasing tension. This has prompted many cosmologists to return to first principles

and question some fundamental assumptions implicit in the justifications of the standard

model. Of particular concern are the assumptions of spatial homogeneity and isotropy

of the universe over a broad range of cosmic scales, which justifies the use of the FLRW

geometry within the ΛCDM framework.

1.1 The Cosmological Principle

By far, the most significant and pervasive principle underpinning modern cosmology

and astrophysics is the cosmological principle; the assumption that the universe appears

the same for all observers when considered on sufficiently large scales. This premise is
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implicit in the first cosmological models of Einstein in 1917 [2], but it was first explicitly

discussed by Milne [3]. However, the principle is based in much deeper reasoning, both

physical and philosophical in nature, dating as far back as the critical paradigm shift

of the 16th Century Copernican revolution. With the establishment of the heliocentric

model as the concordant model of the universe at that time, the notion of the Earth

and its observers not residing at any special place in the cosmos became prevalent. This

philosophical assumption within cosmology – that we should not reside at any sort of

privileged position in space – is aptly referred to as the Copernican principle.

Observationally, we determine the Universe to be broadly isotropic in its distribution

of structure, which means that it appears the same in all directions. By ‘appearing the

same’ we mean that when averaged over large scales on the order of several hundred

Mpc, the distribution of objects such as galaxies is spatially uniform. Since we observe a

generally isotropic distribution of galaxies, as well as a very high degree of isotropy in the

Cosmic Microwave Background (CMB) over these scales, the same result should apply

for other observers provided the Copernican principle holds. However, there is a crucial

limitation in that all our observations are made on our past light cone at a single spatial

position, and we cannot compare our findings with other observers, except to the extent

that it is possible to indirectly infer observations: e.g., the past temperature of the CMB in

distant galaxies via the Sunyaev-Zel’dovich effect. Because our vantage point is limited to

only a small patch of the full Universe, we must frequently make extrapolations regarding

the nature of physics and matter in other observationally inaccessible regions. Although

this means our evidence for the Copernican principle is rather indirect, a markedly non-

Copernican cosmology would be difficult to reconcile with any physical model of the hot

Big-Bang that is consistent with existing observations.

In order to transition from the Copernican principle to the cosmological principle, one

must make additional assumptions about the evolution of the universe. In particular, the

cosmological principle is generally understood as the statement that the average evolution

of the universe is exactly that of a spatially homogeneous and isotropic model within

general relativity – namely a model whose energy-momentum tensor evolves in time,

but not in space. This is evidently an approximation, as at the late epochs of cosmic

history the universe exhibits an increasingly complex networked structure. Tremendously

large walls and filaments of galaxy clusters are found bounding a hierarchy of expansive

and extremely empty voids, which results in a foam-like appearance on scales of roughly

10 − 100Mpc. While there is a simplicity in describing the spatial geometry of the

universe on scales where the cosmological principle holds, it is less clear how well the

average geometry applies on scales where inhomogeneities are pronounced.

Considering this, a refinement of the Copernican principle has been suggested by Wilt-
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Figure 1.1: A diagram illustrating the process of averaging (in this case for spherical volumes) over large
scale cosmic structures. The observable universe is structurally comprised of a networked hierarchy of
galactic walls and filaments, with voids of diameter ∼ 30h−1 Mpc accounting for ∼ 40% of the volume.
Due to significant gradients in spatial curvature arising between regions of dramatically different density
(e.g., walls and voids), observers can measure different expansion rates depending on their location. If an
observer at a point averages the expansion rate over increasing spherical volumes (dotted lines), eventually
they will measure a rate with minimal statistical deviations. This occurs when the spherical volume is
much larger than the typical non-linear structures. Image credit: Wiltshire et al. [4].
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shire [5]. The Copernican principle states that we belong to a class of typical observers,

which we indeed are as observers residing within a galaxy. However, by the nature of

the universe’s structural evolution this produces a selection effect – the typical local en-

vironment of all observers and astronomical sources at late epochs are locations where

the density of matter is greater than critical. Consequently, our view of the universe is

‘mass-biased’. By contrast, most of the volume of space is in freely expanding void regions

which are very close to empty – meaning that the volume-averaged viewpoint is very dif-

ferent. Furthermore, there can be significant gradients in spatial curvature between the

high density environments of galaxies and the centre of voids. This leads to the question

of how the physical quantities of cosmic rulers and clocks should be calibrated relative

to volume averages when smoothing over structure. As such, we can expect systematic

differences between the measurements of canonical observers in galaxies and the idealised

‘volume-average’ observers in voids.

1.2 The Standard Model of Cosmology

By assuming both the cosmological and Copernican principles to hold, numerous ob-

servations regarding the universe’s expansion history support the widespread adoption of

the standard ΛCDM model. Often referred to as the ‘concordance’ cosmological model, it

is fundamentally defined by a background Friedmann-Lemâıtre-Robinson-Walker (FLRW)

metric, which is the only solution of the Einstein equations in the case of spatial homo-

geneity and isotropy. Under these conditions, the geometry of the universe should be

invariant under spatial rotations and translations due to the equivalence of spatial dimen-

sions [6]. This reduces the independent components of the metric such that the FLRW

metric in comoving coordinates is

ds2 = gµν dx
µ dxν = − dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dϕ2

)]
(1.1)

where k = −1, 0,+1 is the spatial curvature parameter and a(t) is the scale factor. Because

both the curvature parameter and scale factor under FLRW are not spatially dependent,

the same metric prescription is often assumed to apply over all cosmological scales of

interest. However, the stipulations of the cosmological principle can only be assumed

to apply on scales that are sufficiently large enough to be homogeneous, at least in a
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statistical sense. Due to this, inhomogeneities on scales1 below ∼ 100h−1Mpc are treated

in the FLRW framework as initial perturbations upon the constant curvature space of the

background metric.

As well as the underlying FLRW background, the ΛCDM model contains another two

key ingredients – a cosmological constant in the form of Λ and a cold dark matter (CDM)

component. Together, these two components account for 95% of the universe’s energy

density at the present epoch, with only the remaining 5% residing in the non-relativistic

baryonic matter with which we are familiar. These dark components of the universe

represent persisting cosmic mysteries. The large amounts of CDM (constituting ∼ 25% of

the total energy density at the present epoch) is a matter component which interacts and

clumps gravitationally but is yet to correspond to any detected particle. Furthermore,

such particles (should they even exist) are not part of the standard model of particle

physics and do not interact electromagnetically – meaning they really are ‘dark’.

Even more mysterious than the elusive dark matter is the abundant ‘dark energy’

component – a smooth, pervasive fluid which does not clump gravitationally, and which

is therefore distinct from dark matter. This statement can be understood in relation to

the energy conditions, which are used to classify all possible forms of matter in general

relativity. These conditions are related directly to the locally measured content of the

energy momentum tensor Tαβ and indirectly, via the Einstein equations, to the curvature

tensor and the geodesic deviation of congruences of timelike and null geodesics. For a

congruence of particles with 4–velocity U, and a pressure P related to the local energy

density ρc2 by an equation of state P = wρc2, there are several relevant energy conditions

that apply specifically to a perfect fluid Tαβ = (ρ+c−2P )UαUβ+Pgαβ. These conditions,

which also apply in general, are given as follows [7]:

• Weak energy condition: TαβWαWβ ≥ 0 for any timelike vector W, and by continu-

ity also for any null vector W. This is equivalent to the statement that the locally

measured energy density is positive, ρc2 > 0. For null vectors, by the Einstein

equations the weak energy condition is equivalent to the null convergence condi-

tion: RαβWαWβ ≥ 0 for any null vector W. When the null convergence condition

holds it then follows from the equation of geodesic deviation that the scalar expan-

1Here h is a dimensionless parameter defined by the value of the Hubble constant H0 ≡ 1
a
da
dt

∣∣
t0
, being

assumed to be H0 = 100h km/s/Mpc.
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sion of a non-rotating null geodesic congruence is monotonically decreasing, (i.e.,

non-diverging). In physical terms, matter causes light rays to focus, a physical

requirement for any macroscopic fluid.

• Strong energy condition: TαβWαWβ ≥ 1
2
T WαWα for any timelike vector W. For a

perfect fluid it can be shown that this leads to the weak energy condition, plus the

additional requirement that w ≥ −1/3 in the equation of state. By the Einstein

equations, the strong energy condition is equivalent to the timelike convergence

condition: RαβWαWβ ≥ 0 for any timelike vector W. This term appears in the

equation of geodesic deviation of a timelike congruence – the Raychaudhuri equa-

tion. When the timelike convergence condition holds then the scalar expansion of

a non-rotating timelike geodesic congruence is monotonically decreasing; i.e., the

expansion is decelerating, so that the particles in the congruence clump together.

• Dominant energy condition: for any timelike vector W, TαβWαWβ ≥ 0 and TαβWα

is a non-spacelike vector i.e., in addition to the weak energy condition holding the

locally measured flow vector of the fluid is non-spacelike. For a perfect fluid equation

of state this translates to −1 ≤ w ≤ 1, or that physically the speed of sound cannot

exceed the speed of light.

An accelerating expansion of timelike geodesics requires a violation of the strong energy

condition; i.e., w < −1/3 for a perfect fluid ‘dark energy’ component. Since a cosmological

constant is formally equivalent to a perfect fluid with pressure P = −ρc2, we see that it

corresponds to the most extreme equation of state, w = −1, consistent with the dominant

energy condition.2

The cosmological constant has a history as old as relativistic cosmology itself. It was

first introduced by Einstein in 1917 [2] with a value finely tuned to balance the attrac-

tive self-gravity of a dust fluid, resulting in a static universe. Although the cosmological

term was subsequently abandoned by Einstein [9] once the evidence for cosmic expansion

emerged in the late 1920s, for several decades Λ went in and out of serious consideration

as new astronomical observations of the expansion history were added. In the late 1990s,

observations of type Ia supernovae led to the conclusion that they were systematically

2Since the early 2000s the case w < −1, or ‘phantom energy’, has been readily considered by many ob-
servational cosmologists when constraining cosmological parameters. However, if this were a fundamental
fluid it would pose tremendous problems such as the violation of local energy-momentum conservation,
causality etc. [8].
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fainter, and hence at greater distances, than could be possible in a FLRW universe con-

taining only dust (and radiation). The rate of expansion of the FLRW universe had to

be accelerating at late cosmic epochs. As noted above, this requires a dominant compo-

nent of matter which violates the strong energy condition. Since a cosmological constant

was historically in the form of ‘dark energy’ which had been most widely studied, it

was immediately adopted into the standard model of cosmology. Nonetheless, over the

past 25 years numerous independent observational tests of the expansion history have

yielded equations of state for the dark energy component which are consistent with the

cosmological constant value, w = −1.

In addition to the significant ‘dark’ components and the small amount of baryonic

matter, there are at present miniscule contributions to the total energy density due to

tiny fractions of relic CMB photons and background cosmic neutrinos [10]. Just as the

CMB photons free-stream to us from the last–scattering epoch at which photons decoupled

from electrons in the primordial plasma, the background neutrinos free–stream from an

earlier epoch at which neutrinos decoupled from the plasma. This occurred when the

average thermal energy was around 1.4MeV, and corresponds to the energy scale at

which the weak interactions that convert neutrons into protons, and vice versa, fell out

of equilibrium, resulting in the onset of primordial nucleosynthesis.

The Einstein equations for the FLRW metric (1.1), with a cosmological constant Λ

and matter fields with a total density ρ and pressure P , are given by

ȧ2

a2
+

kc2

a2
=

8πG

3
ρ+

1

3
Λc2 , (1.2)

ä

a
=

−4πG

3

(
ρ+

3P

c2

)
+

1

3
Λc3 . (1.3)

On account of the Bianchi identity, the acceleration equation (1.3) can be derived by

combining the Friedmann equation (1.2) with the equation of energy–momentum conser-

vation

ρ̇+ 3
ȧ

a

(
ρ+

P

c2

)
= 0 . (1.4)

In the standard cosmological model, the matter fields consist of the total radiation com-

ponent (both background photons and neutrinos), ρr, with pressure P = 1
3
ρrc

2, and scales

with the total nonrelativistic matter components (both baryons and CDM), ρm, which

is pressureless. These two components each independently satisfy (1.4), provided they

scale with the cosmic scale factor according to ρr ∝ a−4 and ρm ∝ a−3, respectively.

Consequently, at early times when ρR ≫ ρM ≫ ρΛ ≡ c2Λ/(8πG) the universe is radiation

dominated, whereas at later epochs when ρM ≫ ρR ≫ ρΛ the universe is matter domi-
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nated. The last-scattering epoch at zdec ≃ 1100 occurs after the epoch when the fractions

of matter and radiation are equal at zeq ≃ 3450, but before the universe is fully matter

dominated.

It is convenient to rewrite the Friedmann equation (1.2) as

Ωm + Ωr + Ωk + ΩΛ = 1, (1.5)

where the density parameters are defined by

Ωm ≡ 8πGρm
3H2

, Ωr ≡
8πGρr
3H2

, Ωk ≡
−kc2

a2H2
, ΩΛ ≡ Λc2

3H2
, (1.6)

as fractions of the critical density, ρc(t) = 3H2(t)/(8πG), where H(t) ≡ ȧ/a is the Hubble

parameter. The critical density is that of the Einstein–de Sitter universe with Ωm = 1,

k = 0, Λ = 0 and Ωr = 0, which has the exact power-law solution a ∝ t2/3. The

Einstein-de Sitter universe [9] corresponds to a critical case, since it just manages to

expand forever with only nonrelativistic matter. This is compared to models with Λ = 0

and k > 0 (Ωk < 0), which recollapse a → 0 at a finite crunch time t = tcrunch, and

models with Λ = 0 and k < 0 (Ωk > 0) which expand at a rate faster than Einstein-de

Sitter, asymptotically reaching the expansion law, a ∝ t, of an empty Milne universe [3]

(Ωm = Ωr = ΩΛ = 0, k < 0) as t → ∞.

For the concordance cosmology, the magnitude of the spatial curvature, |Ωk|, is small

and usually neglected. This leaves a universe with three significant energy density com-

ponents, Ωm, Ωr and ΩΛ, which evolve as in Fig. 1.2.

Since the densities of matter and radiation both decrease as the volume of the universe

increases, whereas the density of the cosmological constant is fixed, then if Λ > 0 we

must eventually arrive at a Λ dominated epoch when ρΛ ≫ ρm ≫ ρr. In such a future

epoch, the scale factor would grow exponentially with time, a ∝ exp
(

1
3

√
Λ ct

)
, as in

the original de Sitter model [12]. However, it turns out that when FLRW models are

fit to observational data, then ρm0 ≡ ρm(t0) ≃ 1
2
ρΛ at the present epoch t = t0. While

ä(t0) > 0 as required for cosmic acceleration, ä(t0) < a2(t0)H0, where an overdot denotes

a derivative with respect to the cosmic time t. This means that the Hubble parameter

H(t) = ȧ/a is itself still decreasing today Ḣ(t0) < 0, whereas it would reach a positive

constant H(t) →
√
Λ c/3 as t → ∞, in the epoch of Λ domination. Consequently we

appear to be at a very special time in cosmic history, when the universe is just beginning

a transition from matter domination to eventual Λ domination. The fact that we live at

this special epoch is called the cosmic coincidence problem. While one might invoke the

8



Figure 1.2: Energy densities of matter, Ωm, radiation, Ωr, and the cosmological constant, Ωλ, as a
function of 1 + z in the spatially flat concordance model. The vertical dotted line indicates the redshift
of photon–electron decoupling, z = 1090. The parameters have been normalised to the present epoch
values from Planck [11]: Ωm0 = 0.315, ΩΛ0 = 0.685 and Ωr0 = 4.155h−2 × 10−5, where h = 0.674 is the
Hubble constant normalisation.
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anthropic principle to explain this coincidence [13], it could also indicate that this is an

aspect of the ‘dark energy problem’, which demands a more fundamental explanation.

To address the cosmic coincidence problem much effort has been invested in studying

cosmological models which introduce one or fundamental dynamical scalar fields [14, 15],

for which the phase space of the coupled Friedmann-scalar field equations has late time

attractors which switch from decelerating to accelerating expansion. Such ideas include

quintessence, K-essence and phantom fields introduced specifically as sources of dark

energy, and alternatively scenarios using scalar fields such as the dilaton which appear

naturally in string theory – for a review see, e.g., [16].

1.2.1 Redshifts & Distances in the Standard Cosmology

For an ideal comoving source and observer, both at rest with respect to the coordinates

of (1.1), the cosmological redshift is

(1 + z) =
λobs

λem

=
a(t0)

a(t)
(1.7)

where ‘obs’ and ‘em’ refer to the observer and source/emitter, respectively. For a source

of absolute bolometric luminosity L in its rest frame which is observed with a flux F , the

luminosity distance dL is defined by

dL =

√
F
4πL

(1.8)

By then integrating the Friedmann equation (1.2) or (1.5), one may show that

dL =
c (1 + z)

H0

√
|Ωk0|

sinn

(√
|Ωk0|

∫ z+1

1

dx√
ΩΛ0 + Ωk0x2 + Ωm0x3 + Ωr0x4

)
, (1.9)

where

sinn(x) ≡


sin(x), k = +1 (Ωk0 < 0)

x, k = 0

sinh(x), k = −1 (Ωk0 > 0)

. (1.10)

Alternatively, for low redshifts we can invert (1.7) to obtain z as a Taylor series in

a(t), and a corresponding Taylor expansion of the luminosity-distance independently of
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the matter fields in the energy-momentum tensor,

dL(z) =
c

H0

{
z +

1

2
(1− q0) z

2

− 1

6

(
1− q0 − 3q0

2 + j0 +
kc2

H0
2a02

)
z3 +O

(
z4
)}

, (1.11)

where dL(z) is the luminosity distance, a0 = a(t0) is the present time scale factor and

k = −1, 0, 1 is the spatial curvature. The parameters q0 = q(t0) and j0 = j(t0) are the

deceleration and jerk parameters , respectively, which correspond to derivatives of the

Hubble parameter H0 = H(t0) as follows

H(t) =
1

a

da

dt
, q(t) =

−1

aH2

d2a

dt2
, j(t) =

1

aH3

d3a

dt2
. (1.12)

These kinematic parameters can be rewritten in terms of the density parameters for any

specific matter model. For example, in the case of (1.5) we have q0 =
1
2
Ωm0 +Ωr0 − ΩΛ0.

Actual sources and observers will in general have small peculiar velocities with respect

to the ‘cosmic rest frame’. Thus, our actual observed redshift will be

(1 + z)obs = (1 + z)FLRW(1 + z)Doppler , (1.13)

where (1 + z)FLRW is given by (1.7) and the Doppler term includes local boosts of both the

source and observer with respect to the cosmic rest frame at their respective locations.

Suppose an observer O detects a photon with frequency ν arriving from the direction

with unit vector n̂nn on the sky. According to observer O, the photon has a 4-momentum

pµ = c−1E(1,−n̂nn) with energy E = hν. Another observer O′, who is boosted with respect

to O, will measure a photon 4-momentum p′µ ≡ c−1E ′(1,−n̂nn′) = Λµ
ν p

ν , where

Λµ
ν =

(
γ −γβββ⊺

−γβββ I + (γ − 1)β̂βββ̂ββ
⊺

)
, βββ = (βx, βy, βz). (1.14)

Here β = |βββ| = v/c is the boost parameter, β̂ββ = βββ/β is a unit vector in the direction of

the boost in O’s frame and γ = (1 − β2)−1/2 is the standard Lorentz factor. The time

component of the Lorentz transformation, p′µ = Λµ
ν p

ν , gives the well-known Doppler

shift

ν ′ = γ(1 + βββ · n̂nn)ν, (1.15)
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while the space component

n̂nn′ =
n̂nn+ [γβ + (γ − 1)β̂ββ · n̂nn]β̂ββ

γ(1 + βββ · n̂nn)
, (1.16)

gives the relativistic aberration, which is the change in arrival direction of a photon de-

tected by an observer boosted with respect to the original observer.

From (1.16) we can determine the dot product βββ · n̂nn′, and consequently after a little

algebra we find

γ2(1− βββ · n̂nn′)(1 + βββ · n̂nn) = 1. (1.17)

Combining (1.17) and (1.15), we find that the Doppler shift in terms of the direction nnn′

that the boosted observer actually measures is

ν ′ =
ν

γ(1− βββ · n̂nn′)
. (1.18)

Consequently, if we neglect the peculiar velocity of the source, the Doppler term in (1.7)

for our own observations is conventionally taken to be

(1 + z)Doppler =
ν

ν ′ = γ(1− βββ · n̂nn′) , (1.19)

where βββ is our boost parameter with respect to the cosmic rest frame, namely the frame

in which the CMB dipole anisotropy vanishes – as we shall now discuss.

1.2.2 An Overview of the CMB

The cosmic microwave background (CMB) is widely regarded as the most valuable

observation in modern cosmology. As the relic bath of radiation left over from the epoch

of recombination, the CMB’s detailed distribution of temperature fluctuations provides

a wealth of information regarding the initial conditions of the universe before large-scale

structure formation. In particular, within the framework of the FLRW models, excep-

tionally precise measurements of the peaks in the power spectrum of fluctuations are used
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to constrain the key cosmological parameters of the standard model3.

The primordial universe in the immediate aftermath of the Big Bang consisted of

a highly energetic plasma of radiation and fundamental particles. With temperatures

exceeding 300,000K, the formation of the first species of atomic matter was suppressed due

to the tight coupling of photons to baryons. Scattering of these photons from free electrons

meant that their mean-free-path was too short to allow free-streaming. Consequently, the

universe was opaque to radiation at this epoch. Eventually, the rapid expansion and

cooling of the universe permitted the first formation of atomic and molecular hydrogen4,

at which stage the photons decoupled from the plasma and began to free-stream through

the universe largely uninterrupted. It is this process that produced the characteristic

radiation signature of the CMB at a redshift of z ∼ 1100.

1.2.3 The CMB Dipole Anisotropy

Increasingly precise measurements of the CMB have shown that its spectrum is almost

that of an ideal blackbody, with an observed mean temperature of T0 = 2.7255K [17].

This spectrum is also highly isotropic. When evaluated under a spherical harmonic ex-

pansion over the sky, the anisotropies primarily present at the |∆T/T | ≤ 10−5 level after

the subtraction of the large monopole and dipole contributions. The dipole is the most

prominent anisotropy measured in the CMB, with an amplitude of 3.3645 ± 0.0020mK

and an alignment with (l, b) = (263.99◦ ± 0.12◦, 48.26◦ ± 0.03◦) in galactic coordinates,

when measured in the heliocentric frame [18].

The standard interpretation of the dipole’s origin is that it arises due to a special

relativistic boost of the observer relative to the uniform frame of the CMB. The dipole

must certainly contain a kinematic component, since there is an observed annual modu-

lation of order |∆T/T | ∼ 10−4 due to the Earth’s motion around the sun. In the purely

kinematic dipole interpretation, the ‘rest frame’ of the CMB is assumed to be that in

which the radiation field is most isotropic. One must be careful, however, since general

relativity allows for more general anisotropies due to the propagation of light through

complex structures.

3The angular size of the sound horizon, which is determined from the first peak of the power spectrum,
is one of the most precise measurements in modern cosmology.

4This event is usually known as recombination, although the prefix ‘re-’ is somewhat misleading as
this is the first occurrence.
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A purely kinematic origin for the CMB dipole can be tested by observations of special

relativistic aberration and modulation of the amplitude of the primary CMB anisotropies

[19]. Returning to the discussion of section 1.2.1, if we consider an observer travelling

with a velocity β = v/c relative to an ideal frame in which the mean CMB spectrum is

purely isotropic, with T (n̂) = T0 in all directions, then the CMB temperature T they

observe will have an anisotropy due to special relativity [20] of the form

T ′(n̂′) =
T (n̂)

γ
(
1− β̂ · n̂′

) . (1.20)

Here n̂ and n̂′ are the unit vectors on the sky in the CMB frame and boosted (observer)

frames, respectively. This expression still involves the unboosted blackbody temperature

T (n̂nn), which can be rewritten in terms of n̂nn′ by first inverting (1.16) to give

n̂nn =
n̂nn′ − [γβ − (γ − 1)β̂ββ · n̂nn′]β̂ββ

γ(1− βββ · n̂nn′)
. (1.21)

Under the purely kinematic interpretation of the CMB dipole, one finds that the Solar

system must be moving relative to the CMB frame with a velocity of 369 ± 0.9 km s−1

in the direction of (l, b) = (263.99◦ ± 0.14◦, 48.26◦ ± 0.03◦) [19]. Since this gives a small

boost of magnitude β = 1.23 × 10−3, a Taylor expansion of (1.20) and (1.21) can be

applied to give

T ′(n̂′) ≈ T0

(
1 + β · n̂′ + (β · n̂′)

2 − 1

2
β2 +O

(
β2
))

. (1.22)

Consequently, the patch of sky in the direction of motion of the observer will appear

blueshifted towards higher temperatures, while the converse occurs for the patch of sky

directly opposite. According to the conventional interpretation, an observer who performs

a boost of an appropriate velocity in a direction opposite to the observed CMB dipole

will observe no dipole, and find themselves ‘at rest’ relative to a universe undergoing a

purely isotropic spatial expansion.

1.2.4 Primary & Secondary Sources of CMB Anisotropy

Beginning with work in the early 1990s [22], cosmologists have divided sources of

CMB anisotropies into primary anisotropies, which largely relate to processes in the early

universe and at large scales, and secondary anisotropies, which relate solely to the effects

of structure formation along the observer’s line of sight.

14



Figure 1.3: The 3.36mK temperature dipole as seen in a 100GHz map from the Planck NPIPE (PR4)
data release. Image credit: Sullivan & Scott [21]

Primary sources of CMB anisotropy include:

• Intrinsic temperature anisotropies in the primordial plasma at the epoch of last

scattering.

• Doppler effects associated with velocity perturbations in the primordial plasma at

the epoch of last scattering.

• Gravitational redshifts and blueshifts from gravitational potential differences at the

last scattering surface. This turns out to be the dominant effect observationally,

and is known as the (ordinary) Sachs-Wolfe (SW) effect [23].

• The net effect of additional gravitational redshifts and blueshifts, which arise from

time-dependent potentials integrated along an observer’s line of sight to the last

scattering surface. This is known as the integrated Sachs-Wolfe (ISW) effect.

The ISW effect is typically divided into early and late time effects. The early ISW

effect occurs when radiation is still a significant fraction of the universe’s energy density.

From fig. 1.2, we note that Ωr ≃ 0.24 at last scattering (z = 1090) and decreases to

Ωr = 0.0035 at z = 11.24 when Ωm reaches its maximum. This is coincidentally close

to the epoch of re-ionisation when neutral hydrogen is ionised by radiation from the first

generation of stars.

At smaller redshifts, gravitational potentials grow with the advent of large-scale struc-

ture formation. When considered relative to a mean cosmic expansion, a photon will be

blueshifted as it enters the potential well of an over-density, and redshifted on exiting
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(the opposite would be true for a photon traversing a void). However, since potentials do

gradually evolve in time once one integrates over many of them, there is an observable

effect on the received radiation which depends on the given cosmological model. This in-

tegrated Sachs-Wolfe (ISW) effect is thus the result of the evolving density perturbations

over both early and late epochs of the post-recombination universe.

The ISW effect is usually considered in the regime of perturbation theory on a spatially

homogeneous, isotropic background. Nonetheless, one can also consider the effect due to

single large structures in the ‘non-linear regime’. In the non-linear regime, this source of

anisotropy is known as the Rees-Sciama effect [24].

Since the Rees-Sciama effect occurs beyond the scope of linear perturbation theory,

it is only important in the late universe, and is therefore often classified as a secondary

source of anisotropy.

Other secondary sources of anisotropy include:

• Gravitational lensing on small scales that is associated with cosmic structures.

• The Sunyaev-Zel’dovich (SZ) effect [25, 26], which occurs due to the scattering of

CMB photons from ionised gas in dense galaxy clusters.

• The Vishniac effect, a second-order scattering effect associated with bulk motions

of free electrons and their correlation with the electron density [27].

Conventionally, the SZ effect is divided into two aspects: (i) the thermal SZ (tSZ) effect

associated with random motions of electrons in the intra-cluster gas; and (ii) the kinetic

SZ (kSZ) effect associated with any systematic peculiar motion of the cluster relative to

the CMB. In particular, the tSZ allows for the determination of the CMB at the location

of a rich galaxy cluster. Not only that, one can further determine the temperature of the

CMB dipole at this location by using the kSZ effect.

1.2.5 Large Scale CMB Anomalies

Provided that the kinematic interpretation of the CMB dipole is at least partially

correct, then we should expect some consequences in our interpretation of the CMB

anisotropy power spectrum once the dipole is appropriately subtracted. Anisotropies in

the CMB temperature were first measured by the COsmic microwave Background Ex-

plorer (COBE) satellite [28], with follow-up analysis on small scales via ground and

balloon-based observations [29–31]. The later surveys undertaken by the Wilkinson-

Microwave-Anisotropy-Probe (WMAP) and the Planck surveyor satellite missions further
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mapped and identified these anisotropies in exquisite detail. However, over the course of

these observations a variety of potentially anomalous features were also identified, many

with a statistical significance that has only increased with the precision of measurements.

Several of these anomalies are in considerable tension with the expectations of ΛCDM.

There is also some debate regarding whether some are systematic or physical in origin, as

well as whether they are intrinsic or extrinsic to the observed CMB.

The following features are perhaps the most significant large angle anomalies:

• A lack of power at large angles:

As was first noted by COBE [32] and later confirmed by both WMAP [33–35]

and Planck [36–38], the angular 2-point correlation function for fluctuations on the

largest angular scales is unexpectedly close to zero [39]. This lack of correlation

amounts to a lack of perturbations observed in the CMB with respect to the large-

scale expectations of ΛCDM, which means that the observed universe is too spatially

homogeneous on the largest scales. Moreover, it has been found that all modes

below ℓ ≤ 5 contribute to the observed lack of correlation, which is suggestive of

correlations between the power spectrum coefficients Cℓ. These correlations are also

not expected under ΛCDM, signalling a violation of the statistical isotropy and scale

invariance of CMB fluctuations [40].

• The hemispherical power asymmetry:

Analyses of the first year WMAP data [41] along with subsequent analyses of later

WMAP [42, 43] and Planck [36–38] data have revealed a north-south hemispherical

asymmetry in the CMB power spectrum. When this asymmetry is modelled as

a dipolar modulation in the temperature field, one observes a higher temperature

variance in the southern hemisphere compared to the north, with the plane that

maximises this difference lying very close to the Ecliptic.

• The quadrupole-octopole alignment:

Not only is there a curious alignment of the quadrupole and octopole planes to

one another, but these planes are remarkably perpendicular to Ecliptic and further

aligned with the CMB dipole [44–48]. This is reasonably unexpected in the context

of ΛCDM, as the phases of the anisotropies should be random and uncorrelated.

• The parity asymmetry:

The CMB parity asymmetry concerns the average symmetry of the CMB with re-

spect to reflections about an origin point. There is strong evidence that this parity

is violated, as was first noted in the WMAP7 data [49, 50], with the direction of

maximum asymmetry for multipoles up to ℓ ∼ 20 seemingly normal to the direction

of the CMB dipole. This direction is also close in alignment to the hemispherical
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power asymmetry, which suggests that the two anomalies may be linked. There is

also a further suggested correlation with the missing large angle power.

• The cold spot:

There is very large – 10◦ diameter – unusually cold region located in the constellation

Eridanus. This was first detected by WMAP and estimated to occur with 1.85%

probability in a ΛCDM model with structures growing from Gaussian perturbations

in N -body simulations [51]. This was confirmed with a similar level of statistical

significance by the Planck satellite [36]. While it appears to be causally linked with

the Eridanus supervoid, as detected in gravitational lensing studies, it has many

puzzling features when compared with the expectations of N -body simulations in

ΛCDM [52].

These large angle anomalies highlight the continued need to perform CMB analysis

with careful attention towards the data handling and manipulation, as well as the nu-

merous model assumptions involved. It remains an ongoing question as to whether these

issues are resolvable within the standard ΛCDM framework, as its specific model assump-

tions are necessary in deriving key cosmological parameters, such as H0, from the CMB

power spectrum fluctuations.

1.2.6 Challenges for the Standard Model

Despite the overwhelming observational evidence supporting the consistency of ΛCDM,

the model still faces some substantial challenges. Of these, the significant tension between

determinations of the Hubble constant via a range of probes is of great concern – so much

so that it has been deemed a ‘crisis’ for cosmology. The various measurement techniques

used in determining the Hubble constant are characterised as either ‘early’ or ‘late’ type,

depending on the evolutionary physics of the epoch at which they probe. Early type

measurements of H0 are primarily concerned with the analysis of the CMB and baryon

acoustic oscillations (BAO) with respect to the predictions of ΛCDM. Such measure-

ments are indirect estimates of H0 that are sensitive to the physics of the ΛCDM model

at early epochs. As the FLRW model describes physical distances by a time-dependent

cosmic scale factor, it is assumed that the evolution of the scale factor remains consistent

between early and late epochs.

The flagship ‘late type’ determination of H0 is via the redshift-distance relationship

of the nearby standardizable candles, such as Type Ia Supernovae (SNIa). The intrinsic

magnitudes of SNIa are largely similar to each other, despite a scatter of roughly 40%

in the peak brightness of their lightcurves [53]. However, as there exist empirical, colour

dependent correlations between the SNIa intrinsic magnitudes and time over which the
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luminosity falls off (e.g. dimmer SNIa are observed to have a faster fall off in peak bright-

ness than those that are brighter), the scatter can be reduced down to less than 15% or

to approximately 0.1− 0.2 magnitude [53, 54]. By calibrating the supernovae lightcurves

in this fashion, their luminosity distance as a function of redshift in the FLRW model

and their distance modulus m−M can be used to constrain the Hubble parameter as a

function of redshift [55].

Using SNIa luminosity-distance measurements, Riess et al. [56] achieve a high-precision

estimate of H0 = 74.03±1.42 km s−1Mpc−1. However, this determination is in significant

tension with the best fit Planck derived value of H0 = 67.4 ± 0.5 km s−1Mpc−1 [11].

This disagreement in the value of the Hubble constant is a key characteristic of early-

time versus late-time H0 determinations. Various late-type independent probes, such as

gravitational time delays and Mira variables (in lieu of SNIa), are in concerning tensions

of 4.5σ − 6.3σ with the results of Planck [57]. If the FLRW model is indeed assumed

to hold on all cosmological scales and epochs, one would expect a degree of consistency

between the various probes. Of course, this is provided that the underlying physics and

potential systematic effects of a given probe are properly understood5.

1.3 The Large-Scale Structure of the Universe

Although there exists astoundingly large dense (but still expanding) structures such as

the ∼ 450Mpc long Sloan Great Wall [58], the ∼ 495Mpc long Huge Large Quasar Cluster

[59] and the 1Gpc long, 100Mpc wide Giant Arc [60], the largest typical structures are

voids of diameter ∼ 30h−1Mpc [61]. These voids have density contrasts δρ ≡ (ρ− ρ̄)/ρ̄

of δρ ≤ −0.94 (with δρ = −1 being the minimum density contrast possible when ρ = 0)

and occupy some 40% of the present epoch universe [62, 63]. Understanding the effects

of this complex inhomogeneous hierarchy of structures on our observations involves a

variety of considerations, which we shall now discuss in relation to various measurements

of anisotropy.

5The determination of H0 from SNIa, despite being of high precision, can be finical. Calibrating the
lightcurves for scatter requires consideration of the evolutionary behaviour of SNIa at different redshifts,
as well as for corrections made for peculiar velocities. Moreover, these corrections are not always apparent
in the public releases of SNIa datasets [54]
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1.3.1 Scales of Statistical Homogeneity

A far from trivial concern when investigating the role of local inhomogeneities in the

Standard Model is the scale at which statistical homogeneity applies. When dealing with

averages over observations, it is typical to consider the observed density field in terms of

spatial averages [64], which presupposes a split of space and time.

Arnowitt, Deser & Misner (ADM) [65] formulated a general 3 + 1 spacetime split by

noting that for an arbitrary manifold, one can always locally choose the coordinates,

ds2 = −ω0 ⊗ ω0 + gij(t,x)ω
i ⊗ ωj, (1.23)

where ω0 ≡ N (t,x) c dt, and ωi ≡ dxi + N i(t,x) c dt define the ADM lapse function

N , and shift vector N i. These coordinates can also be chosen globally if one restricts

the evolution of Einstein’s equations to that of irrotational fluids. Then (1.23) may be

assumed to apply over global t =const spatial hypersurfaces Σt .

Spatial averages are then defined on a compact domain of the spatial hypersurface Σt

by

⟨ρ(t)⟩DR
=

1

V(t)

(∫
DR

d3x
√
det 3g ρ(t,x)

)
, (1.24)

where

V(t) ≡ αR3(t) =

∫
DR

d3x
√
det 3g , (1.25)

is the volume of the domain DR ⊂ Σt. The metric gij, where 1 ≤ i and j ≤ 3, is the

intrinsic metric on the hypersurface Σt and α is a dimensionless constant that reflects the

choice of geometry. Assuming ergodicity applies (where for a certain stochastic process

the ensemble average may be replaced by a spatial average over the volume) [66], a widely

used definition of homogeneity presupposes the existence of an average positive density,

which is given by the following limit

lim
R(t)→∞

⟨ρ(t)⟩DR
= ρ0(t) > 0 . (1.26)

By further requiring that every point within Σt be contained within a domain Dλ0 ⊂ DR,

we can define a homogeneity scale λ0(t) such that

∣∣⟨ρ(t)⟩DR
− ρ0(t)

∣∣ < ρ0(t) , ∀R > λ0 . (1.27)
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However, this scale greatly depends on the nature of the 2-point correlation function of

density fluctuations, as the density field can only be obtained indirectly from the statistical

distributions of tracers. Naturally, this determination is subject to the various systematic

issues involved in taking both volume and flux limited samples, so practical measures of the

statistical homogeneity scale are not directly based on relations such as (1.27). Regardless,

the scale of statistical homogeneity λ0(t) demarcates the distance above which density

fluctuations are small with respect to the mean and where a perturbative description of

the universe is appropriate [64]. Furthermore, the transition to the approximate scale

of statistical homogeneity is expected to be gradual, with no clear-cut agreement on its

value as yet. Statistical analyses of large galaxy distribution surveys estimate the scale

to be of order 70 − 120h−1Mpc based on the galaxy-galaxy 2-point correlation function

[67, 68].

As part of the ΛCDM framework, inflation predicts a near scale invariant primordial

density power spectrum, which induces small, almost scale independent fluctuations in

the FLRW metric. When evaluating the evolution of structure at large scales, the first

order perturbations of the Einstein equations atop a zero order FLRW background are

then small enough that the evolution behaves linearly. This domain of structure formation

above a given homogeneity scale is commonly referred to as the linear regime. Moreover,

on decreasingly smaller scales, the linear perturbative approach becomes inapplicable as

density fluctuations become increasingly significant. For instance, galaxy clusters can be

found with density contrasts of order δρ ∼ 105, whereas voids (which occupy more of the

present epoch universe by volume) have density contrasts of order δρ ∼ −1. Structure

formation in these domains is evidently in the non-linear regime.

1.3.2 Averaging & Backreaction of Inhomogeneities

One of the key questions regarding averaging concerns the scales at which matter

and geometry are understood to be coupled in terms of Einstein’s equations. This is the

‘fitting’ problem of cosmology, which was first described by Ellis [69] and Ellis & Stoeger

[70]. Einstein’s equations are only directly tested on the scale of stellar systems up to

super-massive black holes. There is no reason a priori to assume that the same equations

hold when averaged on scales larger than those over which light has had time to propagate.

In actuality, the transition from the ‘few-body’ systems of stars and black holes to

cosmological scales involves a complex hierarchy of structures, which we can consider
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schematically as [71]

gstellarµν → ggalaxyµν → gclusterµν → gwallµν
...

gvoidµν

→ guniverseµν . (1.28)

Here ‘cluster’ refers to clusters of galaxies and ‘wall’ refers to the thin filaments and sheets

of galaxy clusters that thread and surround cosmic voids to form the cosmic web. While

the energy-momentum tensor that appears of the right-hand side of Einstein’s equations

can be shown to be fluid-like as a result of coarse–graining over non-gravitational degrees of

freedom, most steps in the hierarchy (1.28) also involve coarse–graining over gravitational

energy, which is non-local. At each step one variously has the rotational energy of galaxies,

the binding energy of stars in galaxies and of galaxies in clusters, the thermal energy of

galaxies in clusters and, at the final step, the kinetic energy of expansion. Essentially,

we are dealing with the problem of fitting one geometry inside another – a complex open

problem considering the ambiguities in quantifying quasilocal gravitational energy [72].

If the Einstein equations apply on small scales, one can consider generic averages of

them when constructing a coarse-grained or average geometry. Unfortunately, there is no

unique way of integrating tensors over a region in general relativity, which is usually the

first step in constructing an average. A variety of different approaches have been consid-

ered – for a review, see [73] – although the most studied approaches consider averages of

scalar quantities associated with Einstein’s equations.

In the widely used spatial averaging scheme due to Buchert [74–76], one considers

averages of scalar quantities associated with arbitrary congruences of timelike observers.

For simplicity, consider the case in which spacetime is filled with an irrotational dust

fluid. In that case, an observer congruence associated with the dust can be chosen so that

their 4-velocities Uµ are orthogonal to the t =const hypersurfaces. We can then further

choose synchronous coordinates with N = 1 and N i = 0 in the ADM metric (1.23). With

these choices, the Einstein equations may be averaged on a domain, D, of the spatial

hypersurfaces, Σt, to give

3
˙̄a2

ā2
= 8πG ⟨ρ⟩ − 1

2
c2 ⟨R⟩ − 1

2
Q, (1.29)

3
¨̄a

ā
= −4πG ⟨ρ⟩+Q, (1.30)

∂t ⟨ρ⟩+ 3
˙̄a

ā
⟨ρ⟩ = 0, (1.31)

where an overdot denotes a t–derivative. The term Q is referred to as the kinematic
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backreaction, and is given by

Q ≡ 2

3

〈(
Θ− ⟨Θ⟩

)2〉
− 2

〈
σ2
〉
=

2

3

(
⟨Θ2⟩ − ⟨Θ⟩2

)
− 2

〈
σ2
〉
, (1.32)

where σ = 1
2
σαβσαβ is the scalar shear of the congruence, σαβ ≡ ∇(αUβ), and Θ = ∇αU

α

is the expansion of the congruence. In (1.29)–(1.32), angle brackets denote the spatial

volume averages, as defined earlier in (1.24) and (1.25).

These equations look very similar to the Friedmann equations (1.2) and (1.3). How-

ever, there is an important difference: ā is not the scale factor of any given geometry, but

rather it is defined in terms of the average volume according to

ā(t) ≡
[
V(t)/V(t0)

]1/3
. (1.33)

It follows that the Hubble parameter appearing in (1.29)–(1.31) is related to the volume-

average expansion scalar Θ, by
˙̄a

ā
=

1

3
⟨Θ⟩ . (1.34)

The condition

∂t
(
ā6Q

)
+ ā4c2∂t

(
ā2 ⟨R⟩

)
= 0, (1.35)

is required to ensure that (1.29) is the integral of (1.30).

In Buchert’s scheme, the non-commutativity of averaging and time evolution is de-

scribed by the exact relation [74]

∂t ⟨Ψ⟩ − ⟨∂tΨ⟩ = ⟨ΨΘ⟩ − ⟨Θ⟩ ⟨Ψ⟩ , (1.36)

for any scalar Ψ. This is an example of a generic feature of backreaction in averaging

schemes. The process of constructing an Einstein tensor for an average geometry evolving

in time will not, in general, coincide with the time evolution of an initially averaged

geometry.

Equation (1.30) is suggestive, since it implies that if the backreaction term is large

enough – e.g., for a large variance in expansion with small shear – then the volume

average acceleration (1.30) could be positive. This occurs if Q > 4πG ⟨ρ⟩, even though

the expansion of all regions may be locally decelerating. Although the initial fraction of

the volume occupied by the faster expanding voids is tiny, this fraction may nonetheless
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become significant at late epochs, skewing the average to give an illusion of acceleration

during the transition to void domination.

While our universe certainly is void dominated, whether such an interpretation is

correct depends on the realistic initial density perturbations, their subsequent evolution,

and the operational interpretation of the Buchert formalism. Since Buchert’s averaging

formalism is a statistical one, additional assumptions are required to relate solutions of the

Buchert equations (1.29)–(1.32) to cosmological observations. For example, Wiltshire’s

timescape scenario [5, 77] involves a reinterpretation of the Buchert scheme in which the

time parameter t, which is associated with statistical averages, drifts away from the proper

time of observers deep within bound structures with the evolution of the cosmic web. In

this case, the interpretation of ‘cosmic acceleration’ does not simply involve equation

(1.30).

In this thesis, we will not be concerned with cosmological averages and their evolution

on the largest scales. Rather, we will consider the effects of inhomogeneities on light

propagation for scales ≲ 100h−1Mpc, on which a simple average homogeneous expansion

does not apply.

1.3.3 Light Propagation through Inhomogeneities

Due to our ‘mass-biased’ perspective of the evolving universe, it is greatly important

to consider the influence of large-scale structure on the propagation of light from source

to observer. Concerning SN1a, which are key observables in determining the universe’s

expansion rate, a light ray bundle propagating from a given source to the observer will

typically traverse regions that are both over-dense and under-dense with respect to the

background cosmological model. Consequently, the angular diameter distance dA will

undergo focussing effects according to the Sachs optical equations [1, 23]

d2dA
ds2

= −
(
σ̂2 +

1

2
Rabk

akb

)
dA , (1.37)

where σ̂ = 1
2
σ̂ab σ̂

ab is the scalar shear of the null geodesic bundle, Rab is the Ricci curvature

and ka is the tangent to the null geodesics of the congruence. The light ray bundle will

hence be influenced by matter both outside and inside the beam to varying extents.

Bundles that traverse regions primarily consisting of a smooth continuum of matter will

be subject to Weyl focussing, which pertains to the shear term of (1.37). Conversely,

a bundle which traverses regions of minimal matter will be subject to Ricci focussing,

which pertains to the Ricci curvature term of (1.37). By the reciprocity theorem [78], the
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luminosity distance to the source is then

dL = (1 + z)2 dA . (1.38)

On the scales of z ≲ 0.1 considered in our present investigation, the effects associated with

Weyl focussing are negligible due to the magnitude and gradient of the density contrasts

involved. However, even for small-scale inhomogeneities within a largely homogeneous

universe, the focussing induced distance deviations can be on the order of a few percent

relative to an exactly homogeneous universe.

1.3.4 Peculiar Velocities & Bulk Flows

When measuring the redshifts of objects such as individual galaxies on the sky, one

typically attributes any deviations from a linear Hubble flow in the cosmic rest frame to

random peculiar velocities induced by nearby gravitational interactions (e.g. , clustering).

If we take (1.7) and assume that the observer is comoving with the cosmic rest frame,

then the Doppler term can be attributed entirely to a peculiar velocity of the source. In

that case, according to an observer in the cosmic rest frame at the source location the

photon has a 4-momentum pµ = c−1E(1,−n̂nn) as before, but in the boosted source frame

the photon 4-momentum is now p′µ = Λµ
ν p

ν = c−1E ′(1, n̂nn′), since the photon is outgoing.

Then ν ′/ν = γ (1 + βββ · n̂nn). Consequently, combining this with (1.7) the locally observed

redshift is

cz = c(γ − 1) + γ [czFLRW + vvv · n̂nn(1 + zFLRW)]

≃ czFLRW + vvv · n̂nn(1 + zFLRW) +O
(
β2
)

(1.39)

≃ czFLRW [1 +O(β)] + vvv · n̂nn . (1.40)

The Newtonian velocity addition approximation is commonly used in the literature, ne-

glecting the O(β) correction. This is at most 0.5% for the data sets considered, which is

typically at least one order of magnitude smaller than typical distance uncertainties.

With respect to a linear Hubble law, czFLRW = H0 r, and in the limit that the O(z2)

terms in (1.11) can be neglected, a given object’s peculiar velocity is thus interpreted as

vpec ≡ vvv · n̂nn = cz −H0 r (1.41)

where z is the redshift of the object and r is the object’s luminosity distance. However,

this assumes a standard of rest to exist, at least on large scales, such that the deviations
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described by (1.41) become negligible at increasing redshifts. En masse, the motions

of galaxies within galaxy surveys are analysed to ascertain their bulk motion, which is

obtained from the dipole in the peculiar velocity field of the sample. In the rest frame

of the CMB, the observed peculiar velocity field of galaxies at distances r, as determined

from perturbation theory on a spatially FLRW background [79] is

v(t0, r) =
Ω0.55

m0

4π

∫
d3r′ δm(r

′)
(r′ − r)

|r′ − r|3
, (1.42)

where Ωm0 is the present time matter density and δm is the density contrast with respect

to the FLRW background. The power of 0.55 is obtained from a fitting formula for models

with dark energy [80].

If the CMB dipole is to be interpreted purely kinematically, then it should be decom-

posed to account for our own known motions. Actual astronomical measurements are

referred to the heliocentric frame, which integrates out the annual motion around the

Sun. Furthermore, once we consider the systems to which we are gravitationally bound,

we can account for the motion of the Sun within the Milky Way, and the motion of the

Milky Way with respect to the Local Group (LG) of galaxies. On scales ≳ 2Mpc, space

is expanding, however. To account for the CMB dipole that would be measured in the

LG rest frame within special relativity requires a boost velocity of [81]

635± 38 km s−1 in the direction (l, b) = (276.4◦, 29.3◦)± 3.2◦ , (1.43)

which is in the constellation of Hydra.

Over the last few decades, astronomers have sought to account for this motion in terms

of the gravitational pull of large-scale fluctuations in the mass density. To resolve the CMB

dipole, the boost (1.43) should be consistent with estimates determined from integrating

the density field of nearby structures using (1.42) in perturbation theory, and its nonlinear

extensions viaN–body simulations. Once the boost (1.43) has been accounted for in terms

of the clustering dipole of nearby structures, then the spherical average of the velocity field

(1.42) should tend to zero as the distance r is further increased, at a rate consistent with

a stochastic field of density perturbations produced by realistic simulations.

With the 1988 discovery of a large dense region known as the Centaurus–Hydra com-

plex or the ‘Great Attractor’ [85], there were early hopes that CMB dipole could be

fully accounted for. However, as years have gone by this hope has not been realised.

Measurements of the density field are complicated by the systematics of volume–limited

and flux–limited surveys, as well as other systematic biases which have to be carefully
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Figure 1.4: A comparison of various bulk flow amplitude estimates as a function of the survey depth for
13 surveys. CF4TF refers to the Cosmicflows-IV Tully-Fisher catalogue, while W09 refers to the bulk
flow analysis of the COMPOSITE sample by Watkins, Feldman & Hudson [82, 83]. Image credit: Qin et
al. [84].

accounted for.

The general lack of convergence of numerous bulk flow measurements towards a scale

of statistical homogeneity remains a cause for concern. A variety of these measurements,

with survey depths ranging from 30 − 200h−1Mpc, all report bulk flow amplitudes that

are within 200− 400 km s−1, as shown in fig. 1.4. These bulk flows are largely consistent

in their direction on the sky, despite the range of estimation techniques that different

investigations employ. While surveys with smaller depths appear consistent with the

predictions of ΛCDM, the amplitude of the bulk flows persist beyond the widely suggested

100h−1Mpc scale of statistical homogeneity. The Shapley concentration at a distance of

∼ 125− 150h−1Mpc has been suggested as a candidate for the major contribution to the

clustering dipole. However, observations beyond the Shapley concentration have failed to

find the expected in-fall on the opposite side of the structure [86].

In this thesis, we will analyse the COMPOSITE dataset, which has one of the larger

survey depths shown in fig. 1.4. In their analysis of the COMPOSITE dataset, Watkins

et al. [82] determined a significantly large bulk flow of 407± 81 km s−1 within a Gaussian

window of radius 50h−1Mpc in the direction of (l, b) = (287◦ ± 9◦, 8◦ ± 6◦). The bulk flow

amplitude is over 2σ larger than that expected under ΛCDM, and larger than some other

surveys of a similar depth. The COMPOSITE sample has been chosen for our analysis

for reasons of its large size, depth, treatment of particular systematic biases and its sky

coverage. This is essential for the analysis we undertake, as is further discussed in section
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3.3.2.

1.3.5 Dipoles in Cosmic Source Populations

If the kinematic interpretation of the CMB dipole is correct, then it will have conse-

quences that extend to any populations of cosmic sources at large redshifts which statis-

tically are homogeneously distributed in the cosmic rest frame. It was first demonstrated

by Ellis & Baldwin in 1984 [87] that the kinematic dipole feature should be detectable via

the effects of special relativistic modulation and aberration in observations of the number

counts of distant radio sources. For such populations of cosmic radio sources, both the

individual and averaged spectra are expected to follow a power law of the form

S(ν) ∝ ν−α, (1.44)

where S is the flux density, ν is the frequency and α is the spectral index for a given

individual source (or the average of the population).

The integral number count of the population per unit solid angle above a limiting flux

limit can also be expressed with the following power law,

dN

dΩ
(> S) ∝ S−x, (1.45)

where the value of the constant x may vary with the specifics of the population survey.

Provided that the rest frame of the distant source population presumably coincides with

the most uniform frame of the CMB, an observer moving with a velocity v with respect

to this frame will observe a Doppler shifted source frequency of

νobs = νrestδ , (1.46)

where by (1.15) the function δ is given by

δ = γ(1 + β β̂ββ · n̂nn) = 1 + (v/c) cos θ√
1− (v/c)2

. (1.47)

Recall from section 1.2.1 that the angle θ = cos−1(β̂ββ·n̂nn) gives the position of the source from

the direction of the observer’s velocity vvv = cβββ, with the angle measured in the ‘cosmic rest

frame’ at the observer’s location. Because of the dependence of the observed frequency

on the angle of the source, it follows through (1.44) and (1.45) that the observed number

count will be greatest in the direction of the observer’s motion. This is the relativistic
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modulation effect associated with a Lorentz boost.

Relativistic modulation is a particularly important consideration when conducting flux

limited surveys, as there will be a kinematic enhancement of the flux that brings otherwise

excluded sources into the survey volume. As the observed flux of a source is proportional

to its fixed frequency

Sobs(νobs) ∝ Srest(νobs) δ
1+α ∝ δ ν−α

rest ∝ δ1+α ν−α
obs , (1.48)

the flux-limited observed number density is given by

(
dN

dΩ

)
obs

=

(
dN

dΩ

)
rest

δx(1+α) . (1.49)

By then considering the aberration of the source positions due to the observer’s motion,

where the elements of the solid angle in the direction of θ are related through

dΩobs = dΩrest δ
−2 , (1.50)

the observed number count for v/c ≪ 1 and δ ≈ [1 + (v/c) cos θ] to first order is then

(
dN

dΩ

)
obs

=

(
dN

dΩ

)
rest

[
1 + [2 + x(1 + α)]

(v
c

)
cos θ

]
. (1.51)

By assuming that the sources are indeed isotropically distributed within their rest frame

i.e., provided the cosmological principle holds on the scale of interest, we should ob-

serve a number count dipole of kinematic origin on the sky with an amplitude of DN =

[2 + x(1 + α)] (v/c).

At the time of publication in the early 1980s, Ellis & Baldwin [87] were limited in

testing their hypothesis due to the unavailability of sufficiently large source catalogues.

However, the great advancements in the scope of astronomical surveys has allowed many

studies into the anisotropy of sources over the past 20 years. In the 2002 investigation

of Blake & Wall [88], the number counts of radio galaxies were analysed as a consistency

check of the standard cosmological model. Particular attention is paid to the influence of

a foreground ‘clustering’ dipole due to our local galactic superstructures. This presents

as an anisotropic distribution of local galaxies that will contribute a significant dipole

component to the overall dipole observed in the distant, isotropically distributed source

population. The results of the analysis conclude that both the magnitude and direction

of the number density dipole on the sky is consistent with that derived from the observed
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CMB dipole. From this, they confirm that the standard cosmological model used to

interpret the CMB is valid, with sources at z ∼ 1 thus coinciding with the cosmic rest

frame.

However, a later reanalysis of Blake & Wall performed by Singal [89] determined a

velocity dipole amplitude of ∼ 1600 ± 400 km s−1, which is approximately four times

larger than the CMB expectation and double that originally reported by Blake & Wall.

Despite this significant disagreement in the magnitude of the dipole, its alignment remains

consistent with the direction of the CMB dipole. Furthermore, it was found that such

results could not be randomly re-obtained at a > 99% confidence level.

There have been numerous other studies involving cosmic dipoles published over the

past decade [90–94]. During the writing of this thesis, there were several papers on the sub-

ject of cosmic dipoles released – and a few of which garnered particular attention regarding

the ongoing Hubble tension. Published in late-2020, the investigation of Secrest et al. [95]

used an all-sky sample of 1.3 million WISE quasars to reject an exclusively kinematic CMB

dipole hypothesis at the 3.9σ level. They determine a dipole amplitude of D1 = 0.0173,

twice the CMB expectation, in the direction (l, b) = (234.1◦, 29.2◦).6 This is only 29.8◦

from the Planck (2018) location of the CMB dipole at (l, b) = (264.021◦, 48.253◦). Given

that the mean redshift of the sample is z = 1.2, this result suggests that the effects

contributing to the dipole extend well beyond those of local effects.

Another important paper released in late-2020 was the cosmic radio dipole investi-

gation of Siewert et al. [97]. Based on detailed statistical analyses of the TGSS-ADR1,

WENSS, SUMSS and NVSS radio source catalogues, they find that the dipole amplitudes

across all four surveys are greater than expected based on the CMB dipole. In particu-

lar, the dipole amplitudes they determine for NVSS agree with the results of Singal [89],

Rubart & Schwarz [90], Bengaly et al. [93] and Tiwari & Nusser [98]. Additionally, they

describe an overall increasing dipole amplitude with decreasing frequency, which is in line

with literature expectations. However, they note that a purely kinematic contribution to

the dipole is unlikely given its frequency dependence.

Overall, these significant observations of cosmic dipoles, in tandem with bulk flow

6However, a recent argument has been put forward by Dalang & Bonvin [96] regarding the generally
neglected redshift evolution of the sources. In a re-analysis of Secrest et al. [95], they suggest that the
tension can be reduced drastically by modifying the number count framework of Ellis & Baldwin [87] for
a suitably defined source evolution.
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measurements, are driving factors in the potential rejection of the purely kinematic dipole

hypothesis.

1.4 Variations in the Hubble Expansion

Rather than assuming that a single uniform expansion rate applies in all observable

directions, one can instead measure directional variations in the expansion rate from a

sample of objects with sufficient sky coverage. By combining and extending the angular

averaging techniques established by McClure & Dyer [99], and the radial spherical averages

investigated by Li & Schwarz [100] for the Hubble Space Telescope Key data set, Wiltshire

et al. [4] performed an analysis of the angular and radial variation of the local expansion

on ≲ 150h−1Mpc scales using the COMPOSITE dataset [82, 83].

While the HST Key dataset contained a large fraction of supernovae distances, which

are more precise than other distance indicators, it contained a total of only 76 data

points, which meant that the sky coverage was low and the statistical confidence of the

conclusions of refs. [99, 100] was not high. Although the COMPOSITE sample contains

many distances with larger uncertainties of up to 10%, the sheer size of the sample –

4534 galaxy distances and redshifts – allows for significantly greater statistical confidence.

Importantly, it enables one to reliably perform analyses of the variation of expansion by

averaging in independent radial shells as well as with angular window functions.

1.4.1 Minimum Spherically Averaged Hubble Variation

Making no other cosmological model assumptions other than that a suitably defined

average linear Hubble law exists, Wiltshire et al. [4] firstly investigated the spherically

averaged patterns of Hubble flow variation of the COMPOSITE dataset in the frames

of the CMB, local group (LG) and the ‘local sheet’ (LS) of galaxies [81]. While Li &

Schwarz [100] only had sufficient data to split the sample into inner and outer radial

shells, Wiltshire et al. [4] extended their method to determine the best fitting linear

Hubble law in successive independent radial shells s, by minimising the sum,

χ2
s =

Ns∑
i

[
σi

−1(ri − czi/H)
]2
, (1.52)

with respect to H by a standard linear regression, where zi and ri denote the redshift

and luminosity distance of each data point, and Ns is the number of COMPOSITE data

points contained within the shell, s. Each shell subsequently has a different best fit Hubble
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constant Hs, which is given by

Hs =

(
Ns∑
i=1

(czi)
2

σi
2

)(
Ns∑
i=1

cziri
σi

2

)−1

, (1.53)

where σi is the individual distance uncertainty of the i-th data point.

By characterising the relative variation

δHs =
(
Hs − H̄0

)
/H̄0 , (1.54)

of each Hs to the global asymptotic value H̄0, Wiltshire et al. [4] found that the variation

of the spherically averaged Hubble flow in the Local Group (LG) frame is less than that

found in the CMB frame, Σs|δHs,LG| < Σs|δHs,CMB|, with very strong Bayesian evidence.

This result was a surprise given the common intuition that the CMB frame should coincide

with the frame of the cosmic standard of rest, and should therefore näıvely be a frame of

minimal statistical variation in the Hubble expansion.

Wiltshire et al. [4] found an explanation for this surprising result by considering the

difference ∆Hs = Hs,CMB − Hs,LG, where the subscripts CMB and LG refer to (1.53)

evaluated in the CMB and Local Group frames, respectively. They observed that the

values of ∆Hs for each shell were roughly inversely proportional to the average value

of their squared luminosity distances ⟨r2i ⟩s. This can be understood if the Local Group

frame is close to one in which the variation of the spherically averaged Hubble expansion

is minimised. Suppose we have an ideal frame in which this is true, with an ideal dataset

of redshifts zi that are uniformly distributed over the sky. If the central observer then

performs an arbitrary local boost, each zi will be replaced with z′i, as given by (1.40). In

the Newtonian velocity addition approximation, neglecting the O(β) terms, this results

in the changes (czi)
2 → (cz′i)

2 = (czi)
2+2czi vvv · n̂nni+(vvv · n̂nni)

2 in the numerator of (1.53), as

well as cziri → cziri+ri vvv ·n̂nni in the denominator. For data uniformly distributed over the

sky, the linear terms in (1.53) are self-cancelling: adding a boost velocity to data on one

side of the sky leads to a subtraction of a boost of the same magnitude on the opposite

side of the sky. To leading order we then have

∆Hs = H ′
s −Hs ∼

(
Ns∑
i=1

(vvv · n̂nni)
2

σ2
i

)(
Ns∑
i=1

cziri
σ2
i

)−1

≈ v2

3H̄0 ⟨r2i ⟩s
. (1.55)
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The COMPOSITE sample does not fully cover the sky. As with other galaxy surveys

it lacks data in the plane of the Milky Way galaxy, the so-called ‘Zone of Avoidance’,

where the Milky Way obscures distant galaxies7. However, since the Zone of Avoidance

is symmetrical on the sky, the arguments leading to (1.55) still apply. Wiltshire et al. [73]

verified the relation (1.55) for ∆Hs = Hs,CMB−Hs,LG, apart from shells in a small range of

distances 40 ≲ dL ≲ 60h−1Mpc, in which the average values of Hs in the CMB frame are

closer to the asymptotic Hubble constant than in the LG frame: |δHs,CMB| < |δHs,LG| in
(1.54). As such, the boost to the CMB frame appears to be compensating for structures

in this range – the most prominent being the Great Attractor.

McKay & Wiltshire [101] subsequently undertook a systematic investigation of ar-

bitrary boosts of the central observer to determine the frame in which the spherically

averaged Hubble expansion variation was minimised for the COMPOSITE sample via

(1.55). While they confirmed the result of Wiltshire et al. [73] for the difference between

the CMB and LG frames, they also found that one can perform boosts of order 100 –

200 km s−1 in the plane of the Milky Way without changing the statistical likelihood of

the fit to (1.55) [101]. The absence of data in the Zone of Avoidance appears to be re-

sponsible for this degeneracy. Consequently, while one cannot conclusively say that the

LG frame is the one in which the spherically averaged Hubble expansion is minimised,

it appears to be included in a degenerate set of such frames. McKay & Wiltshire also

investigated the Cosmicflows-II sample [102] of 8162 redshifts and distances, finding con-

sistent results. However, Cosmicflows-II has an unsubtracted distribution Malmquist bias

– corresponding to a monopole in H0 which limits its usefulness. One can only perform

differential comparisons for which the monopole systematic cancels, but this adds to the

uncertainties.

In the standard cosmology, the relation (1.55) is found well within the ‘non-linear

regime’ of structure formation, which is typically treated with Newtonian N -body simu-

lations. Consequently, a simple relation of the form (1.55) was unexpected. Nonetheless,

some researchers did find explanations in terms of N -body simulations with large bulk

flows [103–106]. In particular, Kraljic & Sarkar noted that if there is an additional bulk

flow vvvbulk in the frame in which the spherically averaged Hubble expansion is minimised,

7See section 3.3.2 for a more in-depth discussion of the COMPOSITE dataset.
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Figure 1.5: Difference of the spherically averaged Hubble constant in independent radial shells, as evalu-
ated in the CMB and LG frames respectively. (a) Comparison of COMPOSITE data [82, 83] to (1.56);
(b) Comparison of Cosmicflows-II data [102] to (1.56). Note that equation (3.10) in [103] is (1.56) here
while their δHs is our ∆Hs. Image credit: Kraljic & Sarkar (2016) [103].

then by similar arguments (1.55) is replaced by

∆Hs = H ′
s −Hs ≈

1

H0 ⟨r2i ⟩s

(
1

3
|v|2 − 1

3
2vvv · vbulk(⟨ri⟩s)

)
. (1.56)

With this modification, they were able to find locations within N -body simulations

for which one could not only fit the r−2 dependence of ∆Hs found by Wiltshire et al. [73],

but also the deviation for shells in the range 40 ≲ dL ≲ 60h−1Mpc as shown in fig. 1.5.

A framework in which the spherically averaged Hubble expansion is most uniform in

the Local Group frame without large bulk flows is consistent with non-kinematic differ-

ential expansion on ≲ 100h−1Mpc scales. Nonetheless, the result of Kraljic & Sarkar

shows that more detailed observational campaigns will be required to distinguish the two

hypotheses. The likelihood of large bulk flows is yet to be determined in the ΛCDM

framework, and cannot be separated from the question of selection effects and statistical

biases in current datasets.

The investigations of Bolejko et al. [1], which form the starting point for this thesis,

build on the work of Wiltshire et al. [4] by asking whether the local Hubble expansion

found for the COMPOSITE dataset can be replicated in general relativistic models of

local expansion on ≲ 150h−1Mpc scales.

1.4.2 Non-Kinematic Differential Expansion

If the redshift of an observation is not adequately described by (1.13), there are evi-

dently non-kinematic contributions present. Whether these contributions are due to phys-

ical causes or due to an unaccounted for observational bias, it is important to ascertain
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to what extent they modify the observed redshift.

This thesis is principally built upon the investigation of Bolejko et al. [1], which sought

to characterise the effects of a non-kinematic differential expansion of space due to local

inhomogeneities. They proposed that the non-kinematic redshift contributions entering

into (1.13) create an anisotropic variation in the observed Hubble expansion, in accordance

with the findings of Wiltshire et al. [4]. To explore this, they use exact inhomogeneous

solutions of the Einstein equations to produce toy models of the nearby universe up to

∼ 100h−1Mpc.

It is necessary to define canonical choices of the CMB rest frame and our local Lorentz

frame, in order to specify the factor of (1 + z)FLRW in (1.13). The canonical CMB rest

frame is defined by matching our observed 1.23× 10−3 T0 CMB temperature dipole in the

heliocentric frame to the dipole of the following series expansion,

T0

γCMB(1− βCMB cos θ)
= T0

[
1 + βCMB cos θ + β2

CMB

(
cos2 θ − 1

2

)
+ . . .

]
(1.57)

where βCMB cos θ ≡ βCMB · n̂hel. Within the heliocentric frame, n̂hel is the unit vector on

the sky, βCMB = vCMB/c is the boost vector of the CMB frame and γCMB = (1− β2
CMB)

−1/2

is the standard Lorentz gamma factor.

We can then define the frame of local average isotropic expansion (AIE) to be the

Lorentz frame at our location in which the spherically averaged redshift-distance relation

of independent radial shells varies minimally with respect to a linear Hubble law. In doing

so, one should find that the redshift of an observed source will feature a non-kinematic

anisotropy with a dependence z(n̂AIE), where n̂AIE is the unit vector on the sky in the

AIE frame. This causes a departure of the source redshift from the description given by

(1.13), such that performing a boost from the AIE frame to the heliocentric frame should

yeild a non-negligible difference in the amplitude of the CMB dipole.

To formally describe the variation in the CMB dipole due to variations in the lo-

cal Hubble expansion rate, we can define general relativistic non-kinematic differential

expansion or relativistic differential expansion to be present when the difference

∆Tnk−hel =
TAIE

γAIE(1− βAIE · n̂hel)
− T0

γCMB(1− βCMB)
(1.58)

has a significant non-zero dipole when expanded over the sky in spherical harmonics [1].

Similar to (1.57), βAIE = vAIE/c is the boost of the AIE frame in the heliocentric frame,
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γAIE = (1− β2
AIE)

−1/2
and

TAIE(nAIE) =
TCMB

1 + zAIE(n̂AIE)
(1.59)

is the anisotropic temperature of the CMB as measured in the AIE frame. Here, TCMB =

(1 + zdec)T0 is the mean intrinsic temperature of the CMB at recombination and zdec is

the constant isotropic redshift of recombination within the FLRW model.

1.5 Summary of Research

The primary aim of this thesis is to perform a reanalysis of the results of Bolejko et

al. [1], with corrections made for incorrect calculations perfomed within the simulation.

Unfortunately, the original ray tracing routines utilised in Bolejko et al. [1] contain an

erroneous initialisation procedure for the setup of individual null geodesics. This meant

that each light ray was propagated in an incorrectly determined direction, which was

expected to influence the overall dipole and quadrupole in the Hubble flow variation.

The error was first discovered during the investigation of Dam [107], who subsequently

developed a correction for the affected routine in their master’s thesis. However, until the

work of this present thesis, the correction had yet to be implemented for the results of

Bolejko et al. [1].

In Chapter 2, we give an overview of the two inhomogeneous cosmological models of

interest to our investigation. The first of these is the Lemâıtre-Tolman-Bondi model; a

radially inhomogeneous solution of the Einstein equations that has been used extensively

in the past for modelling cosmic voids. It is also a spherically symmetric generalisation of

the second model presented in the overview, the Szekeres model, which is central to our

ray tracing analyses.

In Chapter 3, the methodology of our simulations is described in terms of the for-

malisms and computational schemes involved. The specifications of our particular Szek-

eres model will be discussed and the details of the ray tracing procedure will be elaborated

upon.

Finally, in Chapter 4, the results of our ray tracing simulations will be presented in

comparison to the results of Bolejko et al. [1]. We also examine the variation of the results

for changes in the observer position, as well as under small Haantjes transformations

applied to the Szekeres model.
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Chapter 2

Inhomogeneous Cosmological Models

On large scales, inhomogeneities in the standard cosmology are often modelled using

linear perturbation theory on an FLRW background, even at late times. On scales much

less than 100h−1Mpc, where non-linear structures begin to dominate, we move towards

different methods of cosmological modelling. The growth of non-linear structures, such

as cosmic voids and walls, involve significant density contrasts that restrict the use of

early-time perturbative approaches. Instead, the study of late-time structure formation

is often tasked to complex Newtonian N -Body simulations. However, these simulations

are unable to capture relativistic effects at a scale where they should be significant. The

coupling of matter and geometry is simply neglected. It is thus of considerable benefit to

incorporate fully relativistic methods into studies of structure formation on small scales.

A promising approach to modelling the local universe is through inhomogeneous cos-

mological models with an effective fluid (often dust) energy-momentum tensor. Such

models are well suited for describing structure arising from non-linear regimes. They

are built upon exact solutions of Einstein’s equations, with initial conditions specified as

functions of the metric. The two models of interest to our investigation are the Lemâıtre-

Tolman-Bondi (LTB) and Szekeres solutions, with parameters adapted to approach the

FLRW model asymptotically beyond a ∼ 100h−1Mpc scale of statistical homogeneity. In

the following section, an overview of both models will be presented. However, it is the

Szekeres model that we shall be using extensively in our ray tracing simulations. The

LTB model is contained within the Szekeres model as a spherically symmetric limit, so it

is presented in what follows as an important preliminary.

In this chapter, unless otherwise stated, we will use natural units in which G = 1 and

c = 1.
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2.1 The Lemâıtre-Tolman-Bondi Model

The LTB model is an exact solution of Einstein’s equations for a spherically symmetric

geometry containing only a pressureless, irrotational dust. It was first presented in the

1933 paper of Lemâıtre [108], wherein the stability of general relativistic models was

assessed for collapsing matter condensations. Einstein models exhibiting anisotropies were

shown to depart from equilibrium and undergo a contraction catalysed by the anisotropy.

Further examination of this unstable behaviour was later performed by Tolman in 1934

[109]1. More recently, the LTB solutions are frequently applied as toy models for an

inhomogeneous universe. A unique feature of these models is the lack of a preferred

symmetry centre, which explicitly breaks the Copernican principle. While this renders

the model unrealistic in providing a complete description of our universe, it nonetheless

has relativistic features that FLRW models do not. A particular example of such occurs

for observers located in vast cosmic voids. The observers witness an apparent acceleration

of cosmic expansion, even though the expansion is locally decelerating everywhere else. A

basic feature of inhomogeneous models is that regions of varying local density will undergo

expansions with decelerations that are position-dependent. This further complicates the

notion of an average deceleration across all lines of sight. Despite the ability of the LTB

model to explain perceived accelerated expansion and other cosmological observations,

the scale of voids it requires are not observationally supported. Our interest here will

be in the modelling of smaller inhomogeneities, on scales ≤ 100h−1Mpc, in the regime

where all astronomers agree that inhomogeneities are large.

2.1.1 The LTB Metric

Any general spherically symmetric metric can be written in the form

ds2 = gµν dx
µ dxν

= −eC(t,r) dt2 + eA(t,r) dr2 +R2(t, r)(dθ2 + sin2 θ dϕ2) , (2.1)

1Bondi performed a reanalysis of this solution over a decade later [110] with an elegant analysis of
geodesics on the background. The referring to of these solutions as the Lemâıtre-Tolman, Tolman-Bondi
or Lemâıtre-Tolman-Bondi solutions varies in the literature.
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where C(t, r), A(t, r) and R(t, r) are determined through the appropriate Einstein field

equations. The LTB dust source has the energy momentum tensor

T µν = ρ uµ uν , (2.2)

where uµ are the 4-velocities of a congruence of ‘dust particles’ and ρ = ρ(t, r) is spherically

symmetric density with respect to a centrally located observer in the congruence. If

we assume that the coordinates are comoving with the dust, but with a generic time

coordinate, then the 4-velocity of the dust congruence must be

uµ = e−C/2δµt = eC/2(1, 0, 0, 0) . (2.3)

Due to the spherical symmetry of the metric, the dust will flow only along the radial

coordinate extending from the model’s centre, with the particles remaining at fixed spatial

coordinates (r, θ, ϕ). Because of this, we have dr = dθ = dϕ = 0, so that the coordinate

time t is related to the proper time τ of the dust by dτ = eC/2 dt. We can further observe

that these properties emerge from the equations of energy-momentum conservation for

a perfect fluid T µν
;ν = 0. Without a pressure contribution, these equations reduce to

uν∇νu
µ = 0, which is identically the condition for defining geodesics under an affine

parametrisation. The proper time τ will then correspond to the affine parameter, and the

dust particles will travel along these geodesics.

If we further choose C = 0 or τ = t, then the coordinates are also synchronous. Such

a choice is possible globally in the absence of vorticity, so long as the dust geodesics do
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not cross. The Einstein field equations for the metric (2.1) with a dust source are then,

Gt̂t̂ = e−C

(
Ṙ2

R2
+

ȦṘ

R

)
− e−A

(
2
R′′

R
+

R′2

R2
− A′R′

R

)
+

1

R2

= κρ+ Λ , (2.4)

Gr̂r̂ = −e−C

(
2
R̈

R
+

Ṙ2

R2
− ĊṘ

R

)
+ e−A

(
R′2

R2
+

C ′R′

R

)
− 1

R2

= κP − Λ , (2.5)

Gθ̂θ̂ = −e−C

4

(
4
R̈

R
− 2

ĊṘ

R
+ 2

ȦṘ

R
+ 2Ä+ Ȧ2 − ĊȦ

)

+
e−A

4

(
4
R′′

R
+ 2

C ′R′

R
− 2

A′R′

R
+ 2C ′′ + C ′2 − C ′A′

)
= κP − Λ , (2.6)

Gt̂r̂ = e−A

(
ȦR′

R
+

ṘC ′

R
− 2

Ṙ′

R

)
= 0 , (2.7)

where primes denote partial derivatives with respect to r and over-dots denote partial

derivatives with respect to t. With our choice of synchronous coordinates C = 0 and

equation (2.7) becomes

∂

∂t

(
e−A/2R′) = 0 . (2.8)

This, in turn, may be integrated over time for R′ ̸= 0 to obtain

eA =
R′2

1 + 2E(r)
, (2.9)

where the arbitrary function E(r) arises from the integration. Finally, by using this result

(2.9) and setting both P = 0 and C = 0 for equation (2.5) we can eliminate R′2 so that

2
R̈

R
+

Ṙ2

R2
− 2E

R2
− Λ = 0 . (2.10)

Multiplying equation (2.10) by R2Ṙ and assuming Ṙ ̸= 0 we then obtain an equation that

may be integrated to give

Ṙ2 = 2E(r) +
2M(r)

R
+

1

3
ΛR2 , (2.11)
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where M(r) is another arbitrary function of integration. This key equation defines the

evolution ofR given the functionsM(r), E(r) and the cosmological constant term Λ. Here,

the function E(r) corresponds to the spatial curvature of the constant-t hypersurface,

which may also be regarded as the energy per unit mass of the dust. In order to maintain

the correct signature of the metric, it is required that E ≥ −1/2 for all r. Additionally,

in the case that E = −1/2, which requires Ṙ = 0 at the given r, there will exist a neck

or wormhole [111]. The other arbitrary function M(r) describes the active gravitational

mass within a constant-r shell, which is responsible for generating the gravitational field.

This is distinct from the integrated masses of all dust particles which comprise the matter

content of the model N , as is described in [110]. The difference between N and M when

M < N is known as the relativistic mass defect, which determines whether the system

is either bound, unbound, or ‘marginally’ bound according to whether E < 0, E > 0 or

E = 0 respectively. This can be further shown by considering the integrated mass of all

dust particles over the volume of interest, as

N(r) =

∫
V

ρ(t, r)
√

3g d3x

= 4π

∫ r

0

ρ
R2R′

√
1 + 2E

dr̃ =

∫ r

0

M ′(r̃)√
1 + 2E(r̃)

dr̃ .
(2.12)

Note that N(r) varies from M(r) by a factor of
√
1 + 2E(r) [111].

By rearranging equation (2.11), we obtain another integral in terms of the arbitrary

function tB(r) as follows:

t− tB(r) =

∫ R

0

dR̃√
2E + 2M/R̃ + 1

3
ΛR̃2

. (2.13)

The function tB(r) is denoted the ‘bang time’ at a given r, and allows the big bang within

the model to vary with position. Since each shell evolves independently of its neighbours,

they may individually emerge from the big bang singularity at different times, according to

when R(tB(r), r) = 0 for each [112]. This gives rise to the possibility of a non-simultaneous

big bang, which contrasts with the FLRWmodel, wherein the whole of space emerges from

the big bang singularity at a singular instant. For particular values of Λ, the big bang

may instead never occur, a feature that is also present in Friedmann models.

With C = 0, equation (2.4) may be expressed through equations (2.8) and (2.10) as

κρ(t, r) = 8π ρ(t, r) =
2M ′

R2R′ , (2.14)
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which describes the time-dependent energy density of the model.

Finally, through setting C = 0 and by substituting in equation (2.9) the LTB metric

(2.1) becomes

ds2 = − dt2 +
R′2

1 + 2E(R)
dr2 +R2(t, r)

(
dθ2 + sin2 θ dϕ2

)
, (2.15)

where one must solve evolution equation (2.11) to obtain R(t, r). Solutions to equation

(2.11) must generally be found using numerical methods unless Λ = 0.

2.1.2 Solutions to the Evolution Equations for Λ = 0

When Λ = 0 one can obtain the following parametric solutions of the evolution equa-

tion (2.11) for different values of E(r):

• When E < 0 the evolution is elliptic:

R(t, r) =
M

(−2E)
(1− cos η) ,

η − sin η =
(−2E)3/2

M
(t− tB(r)) .

(2.16)

• When E = 0 the evolution is parabolic:

R(t, r) =

(
9

2
M (t− tB(r))

2

)1/3

. (2.17)

• When E > 0 the evolution is hyperbolic:

R(t, r) =
M

2E
(cosh η − 1) ,

sinh η − η =
(2E)3/2

M
(t− tB(r)) .

(2.18)

In all cases, M ≡ M(r) and E ≡ E(r) as above, while η is defined implicitly in

terms of t and r in the elliptic and hyperbolic cases.

Concerning elliptic evolution there also exists a time tC which corresponds to the ‘big
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crunch’ singularity of the collapsing universe. This is defined as

tC(r)− tB(r) =
2πM

(−2E)3/2
= T (r) (2.19)

where T (r) is the lifetime of a given shell with coordinate position r.

2.1.3 Regularities & Regular Extrema

From examination of equation (2.14), it is apparent that the mass density ρ(t, r) will

approach infinity for positions where R = 0 ̸= M ′, as well as for positions where R′ ̸= 0 ̸=
M ′. The former of these cases correspond to the big bang singularity R(tB, r) = 0, and

will necessarily occur when Λ = 0. However, in the latter case one can have the formation

of regular extrema or shell crossing singularities, as R′ → 0 when the proper distance

between two neighbouring shells becomes zero. As each shell is uniquely labelled by the

radial comoving coordinate r, it is possible for shells of different comoving radii to cross,

meaning that they are no longer uniquely specified.

If the density ρ remains finite at this point of crossing, with R′ = 0, the shell surfaces

are then regular extrema. At a shell crossing singularity the density instead diverges (in

addition to the Kretschmann scalar RµνσλR
µνσλ), with its value becoming negative upon

the other side provided the sign of R′ also changes.

In a physical context where pressure is non-negligible, this curvature singularity may

correspond to a zero pressure limit of an acoustic wave wherein the density is large but

finite. Regions of high density should therefore give rise to pressure gradients which

suppress the occurrence of such singularities. It is also the case that geodesic bundles

entering the shell crossing singularity will fail to converge as they otherwise would at the

big bang. The physical interpretation of this is that objects will not undergo compression

when approaching the singularity.

2.1.4 The FLRW Limit of the LTB Model

In the above equations (2.14) and (2.15) there exists a coordinate freedom in r due

to the equations being invariant under coordinate transformations of the form r = f(r̃).

By judiciously selecting this transformation, it is possible to fix one of the three functions

M(r), E(r) and tB(r) so that the remaining two are independent. We can then retrieve

the Friedmann solutions analogous to solutions (2.16), (2.17) and (2.18) in the spatially

43



homogeneous limit provided we select M as the radial coordinate such that

M(r) = M0r
3 , E(r) = −1

2
kr2 , tB = const .

This characterises the dust solutions for a spatially homogeneous and isotropic FLRW

universe, where one has tB = const and E/M2/3 = const. The familiar FLRW scale

factor a(t) then follows from R(t, r) = a(t)r. As the Friedmann models are thus contained

within the LTB class under the specified limits, one can observe similarities in their

characteristics. Owing to the similarities between the LTB metric and the FLRW metric

in comoving coordinates, it is perhaps unsurprising that each LTB shell behaves as if

individually defined by an FLRWmetric, which evolves from its specific point of emergence

at tB(r).

As the value of the function E(r) = −kr2 describes the spatial curvature of constant-t

hypersurfaces, it may also be shown to characterise the expansion of space-time. Setting

k as a function of r such that E(r) = −k(r)r2 < 0, one can arrive at an expansion

law of the form R(t, r) ≃ r(t − tB(r))
√

−k(r) via the asymptotic open LTB solution

as t → ∞. As such, it is possible for one to create expansion laws based upon an

appropriate choice of k(r). It has been shown that the expansion law corresponding to

k(r) = −1/(1 + rα) for α < 2 will induce an accelerated expansion for a centrally placed

LTB observer [113]. While this solution violates the Copernican principle, it demonstrates

the important principle that an apparently accelerated expansion may indeed arise in

inhomogeneous solutions of general relativity without the need of a cosmological constant.

2.1.5 Formation of Structures & Voids

The LTB model is of particular interest in the study of inhomogeneous cosmological

models, due to its utility in modelling the formation of both cosmic voids and structures.

This is apparent in the early descriptions of the model, pertaining to the instability of

the Einstein and Friedmann models to the growth of perturbations. Lemâıtre [114] first

suggests the formation of extra-galactic structures (particularly regarding galaxies, then

referred to as ‘nebulae’) through the condensation of matter via instability.

The work of Tolman [109] further provided an early description of the creation of

voids by considering Friedmann models subject to initial perturbations described by the

LTB model. This is characterised by a variation in the LTB density relative to that of

the corresponding Friedmann background, by defining the relation RLTB(ti, r) = rRF(ti)

between the models [111]. Provided the initial densities of each model are different from
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each other and with the assumption of

Ṙ′

R′ (ti)

∣∣∣∣∣
LTB

=
Ṙ

R
(ti)

∣∣∣∣∣
F

, (2.20)

the LTB mass density (2.14) may be re-expressed as

[
∂2

∂t2
ln ρLTB

]
(ti) =

[
2
Ṙ2

R2
− 2

R̈

R
+

Ṙ′2

R′2 − R̈′

R′

]
(ti)

=

[
2
Ṙ2

R2
+

Ṙ′2

R′2 +
1

2
κρLTB + Λ

]
(ti) , (2.21)

where the evolution equation (2.11) is used to reduce the expression to that of the last

line.

A similar result applies to the background Friedmann density, namely

[
∂2

∂t2
ln ρF

]
(ti) =

[
3
Ṙ2

R2
+

1

2
κρF + Λ

]
(ti) . (2.22)

Taking the difference of equations (2.14) and (2.22) we obtain

∂2

∂t2
(ln ρLTB − ln ρF) =

1

2
κ (ρLTB − ρF) . (2.23)

This result demonstrates that initial over-densities or under-densities of the LTB

model, which are attributed to an initial perturbation with respect to the correspond-

ing Friedmann background, will evolve away from the background as time progresses.

However, we note that over-dense regions will continue to increase in density unabated

until the occurrence of singularities, including shell-crossings. Unfortunately, this be-

haviour arises due to the lack of pressure and rotation within the model, which would

otherwise physically prevent such a collapse from occurring. An additional investigation

by Sen [115] further supported these findings with an approach where the initial velocity

is instead varied while the initial density remains unperturbed.

The evolution of voids and structures in both the Szekeres and LTB models are in-

vestigated in the monograph of Bolejko et al. [116], who consider the evolution of the

Szekeres solution as compared to the corresponding LTB case. It is found that for large

isolated voids, the evolution of the density contrast is considerably more rapid than it is
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for smaller voids bordered by high density regions. This corresponds to a greater expan-

sion rate within the largest voids, combined with a growth of mass concentrations in high

density regions located at the perimeter, facilitating the development of galactic walls

and filaments. These elongated over-dense structures are also found to evolve at a much

greater rate than that of more compact over-densities.

2.2 The Szekeres Model

The Szekeres cosmological model, which was first presented in the 1975 paper [117],

provides a generalisation of the LTB model where the symmetries are relaxed to allow

for more varied descriptions of inhomogeneity. Unlike the LTB model, it has no Killing

vectors. Nonetheless, much like the LTB case, the Szekeres model contains only a pressure-

less irrotational dust source such that the metric describes shells of constant-r. However,

these shells differ from LTB in that they are generally non-concentric. Mathematically,

this is expressed via functions within the metric that characterise deviations from the

symmetry of the equivalent LTB model. By specifying these functions, it is possible to

model a dipole within the mass distribution on each shell, with the extent of this dipole

controlled by the relative shifting and rotations between the shells. These combined

characteristics make the Szekeres model an excellent means for modelling cosmic voids

with an adjacent over-density, approximating a galactic cluster.

2.2.1 The Metric in Projective Coordinates

The parametrisation process required to obtain the Szekeres metric is more elaborate

than that for the preceding LTB case. To begin, the metric is first defined in terms of

synchronous comoving coordinates uµ = δµt = (1, 0, 0, 0) for a perfect fluid dust source,

and possible cosmological constant, as

ds2 = − dt2 + e2α dr2 + e2β
(
dp2 + dq2

)
, (2.24)

where α = α(t, r, p, q) and β = β(t, r, p, q) are functions to be defined and (p, q) label the

‘projective coordinates’. These coordinates allow for a mapping of the Szekeres metric

to spherical coordinates via a standard Riemann stereographic projection, as is further

described in section 2.2.2. When defined in this manner, the metric is both comoving and

synchronous by the same justifications that are given for the LTB case in Section 2.1.

However, the Szekeres model is irrotational due to the vanishing vorticity ωµν ≡ ∇[µuν] =

0. This also renders the model inadequate for virialised applications [111].

Maintaining the same description of the model originally presented within [117], the
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above metric (2.24) contains two arbitrary functions, α(t, r, p, q) and β(t, r, p, q), which are

determined by the solutions of the appropriate Einstein equations. To therefore derived

the forms of the metric functions eα and eβ, we follow the well described parametrisation

choice presented in depth by [111]. The necessary components of the Einstein tensor Gµν

are also presented within [111].

For any perfect fluid source, the off-diagonal energy-momentum tensor components

vanish, constraining the corresponding Einstein equations. For our dust fluid the Grr

field equation yields

∂

∂t

(
eβ−αβ′) = 0 , (2.25)

where a prime denotes a partial derivative with respect to the r coordinate. Additionally,

the Grp = Grq = 0 field equations are given by

∂

∂p

(
e−αβ′) = ∂

∂q

(
e−αβ′) = 0 , (2.26)

so that β′ can be then expressed as

β′ = u(t, r)eα . (2.27)

The integral function u(t, r) provides an important distinction between two subfam-

ilies of solutions. These are the β′ = 0 subfamily, including the homogeneous FLRW,

Kantowski-Sachs and Datt-Ruban models, and the β′ ̸= 0 subfamily containing both the

LTB and Szekeres models. As we are only concerned with the β′ ̸= 0 case in which

u(t, r) ̸= 0, equation (2.27) may be re-expressed as,

∂

∂t

[
eβu(t, r)

]
= 0 , (2.28)

which yields a solution of the form

eβ =
eν(r,p,q)

u(t, r)
= Φ(t, r) eν(r,p,q) , (2.29)

where ν(r, p, q) is another arbitrary function to be determined. In seeking solutions to

the remaining Einstein equations it is necessary to assume that

∂

∂p

(
β̇
)
=

∂

∂q

(
β̇
)
= 0 , (2.30)
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as otherwise no solutions are recovered. These conditions may then be applied to equation

(2.27) to allow one to define eα as

eα = Φ(t, r) β′ = Φ′ + Φν ′ . (2.31)

Finally, by incorporating equations (2.29) and (2.31) into the orthonormal frame field

equation Gr̂r̂ = −Λ we obtain

e−2ν

(
∂2ν

∂p2
+

∂2ν

∂q2

)
+ 1 = 2ΦΦ̈ + Φ̇2 + κPΦ2 = −k(r) , (2.32)

where k(r) corresponds to the curvature parameter that was encountered in the LTB case,

with the identification k(r) = −2E(r). It is possible to simplify the left-hand-most side

of this equation such that an expression for e−ν may be obtained in terms of arbitrary

functions of r as follows

e−ν = A(r)
(
p2 + q2

)
+ 2B1(r) p+ 2B2(r) q + C(r) . (2.33)

However, these functions must necessarily be defined such that they satisfy

4
(
AC −B1

2 −B2
2
)
= 1 + k(r) , (2.34)

in order to be consistent with equation (2.32).

As we have now obtained expressions (2.29), (2.31) and (2.33) the Szekeres metric

defined by (2.24) is fully specified. However, for usability, it is typical to perform a

further re-parametrisation in terms of additional arbitrary functions to render the metric

more suitable for modelling purposes. This is achieved by defining a parameter ℓ such

that

ℓ = 1 + k(r) = 4
(
AC −B1

2 −B2
2
)
, (2.35)

where the functions A, B1 and B2 are defined in terms of the arbitrary functions S, P

and Q to be

A =

√
|ℓ|

2S
, B1 =

−
√
|ℓ|P

2S
, B2 =

−
√
|ℓ|Q

2S
. (2.36)

Using these definitions within (2.35) and rearranging yields the following expression for
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the function C as follows:

C =

√
|ℓ|S
2

[(
P +Q

S

)2

+ ϵ

]
, (2.37)

where by definition ϵ = ℓ/|ℓ|. By substituting expressions (2.36) and (2.37) into (2.33)

we obtain

e−ν = E =
S

2

[(
p− P

S

)2

+

(
q −Q

S

)2

+ ϵ

]
(2.38)

which further allows the functions e2α and e2β to be re-parametrised using equations (2.31)

and (2.29), respectively. In doing so, the function Φ is also redefined to be Φ = |ℓ|R, such

that R matches that given in the LTB case. Completing this re-parametrisation for (2.24)

produces the following form for the Szekeres metric in projective coordinates (p, q):

ds2 = − dt2 +
(R′ −RE ′/E)2

ϵ− k
dr2 +

R2

E2
(dp2 + dq2) (2.39)

where primes continue to denote a partial derivative with respect to r. However, this

coordinate r no longer corresponds to the radial distance from the origin, as the non-

concentric arrangement of the shells will mean that their origins need not coincide. The

parameter ϵ delineates three subtypes of the model. As we are solely interested in the

quasi-spherical subtype, we will only consider the case where ϵ = +1. Otherwise, ϵ may

be set to 0 or −1, corresponding to the quasi-planar and quasi-pseudo-spherical subtypes

respectively. The function k = k(r) defines the local spatial curvature in the same fashion

as it does within the LTB model. Again, the function R = R(t, r) is the proper areal

radius of a given shell, as it is within the LTB model.

An important component of the above Szekeres metric (2.39) is the function E =

E(r, p, q), which describes the deviation of the Szekeres model from the corresponding

LTB model via equation (2.38). This expression contains three arbitrary functions S(r),

P (r) and Q(r), which characterise the dipole asymmetry within the model that varies

with respect to r.

2.2.2 The Metric in Spherical Coordinates

In projective coordinates, the Szekeres metric (2.39) assumes a diagonal form which

aids in the manipulation of the Riemann and Ricci tensors, as well as in specifying the

geodesic equations. However, while this form is indeed simple and readable, it is somewhat

less intuitive to work with for the purposes of modelling. Because of this, it is both useful
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Figure 2.1: The two-dimensional cross-section of the Szekeres stereographic projection for q = Q. The
line extending from the projection point at A intersects the sphere at a single point B1 before it meets
the projective plane at the point B2. The projection point is shown to be displaced from the origin by
distance P with a distance S from the projective plane.

and common to redefine the metric in terms of a Riemannian stereographic projection of

the form

p− P = S cot

(
θ

2

)
cosϕ

q −Q = S cot

(
θ

2

)
sinϕ

(2.40)

where (θ, ϕ) are spherical coordinates. The original (p, q) coordinates will map to a sphere

through the proposed stereographic projection, such that the transformations will define

the full p-q plane with 0 ≤ θ ≤ π and 0 ≤ ϕ 2π. This can be visualised through a

2D demonstration by considering lines extending from a projection point at the top of

the sphere, which then intersect both the sphere and a 2D projection point at a single

point per line. The projection plane is located at a distance S(r) beneath the projection

point, with an origin displaced by (−P,−Q). The spherical coordinates (θ, ϕ) can be

seen to relate to the projective coordinates, (p, q), as the point where θ = 0 is simply the

projection point where p and q would otherwise diverge. The location of the projection

point may differ between shells, such that the top of one shell may point in a different

direction to that of another. Additionally, due to the dependence of the functions S, P

and Q on the coordinate r, the mapping of the projective coordinates may also differ from

shell to shell.
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As equation (2.38) is ill-defined when S(r) = 0, it is general to assume that S(r) >

0 when handling expressions dependent upon the dipole functions. The derivative of

equation (2.38) with respect to r is then

E ′(r, p, q) =
1

S
[(P − p)P ′ + (Q− q)Q′]

− S ′

2S2

[
p2 + q2 − 2pP − 2qQ+ P 2 +Q2 − ϵS2

]
(2.41)

By further setting E ′ = 0 in the above equation (2.41) and rearranging, one can obtain

the following equation for what will be a circle in the p-q projective plane

[
p−

(
P − P ′ S

S ′

)]2
+

[
q −

(
Q−Q′ S

S ′

)]2
= S2

(
P ′2 +Q′2

S ′2 + ϵ

)
(2.42)

which is centred upon the point (pc, qc) = (P − P ′S/S ′, Q − Q′S/S ′) and has a radius

of Lc = S
√

(P ′2 +Q′2)/S ′2 + ϵ. This expression for E ′ is particularly informative, as it

demonstrates the geometrical implications of E ′/E upon the grr component of the Szekeres

metric. The circle described by equation (2.42) splits the p-q plane such that E ′ < 0 within

the circle, while E ′ > 0 outside. As such, the locus (2.42) defines poles and zeros in the

function of E ′/E . Subsequently, the variations of p and q within E ′/E will influence the

grr component, further causing p-q variations in the radial separation of neighbouring

constant-r shells. The cumulative effect of this is the non-symmetric displacements of

the shells relative to each other, which highlights an important geometrical distinction

between the Szekeres and LTB models.

By defining the expressions (2.40) and substituting these into the Szekeres metric

(2.39) it assumes the non-diagonal form:

ds2 = − dt2 +
1

1− k

[
R′ − R

S
(S ′ cos θ +N sin θ)

]2
dr2

+

[
S ′ sin θ +N(1− cos θ)

S

]2
R2 dr2

+

[
(∂ϕN)(1− cos θ)

S

]2
R2 dr2 − 2[S ′ sin θ +N(1− cos θ)]

S
R2 dr dθ

+
2(∂ϕN) sin θ(1− cos θ)

S
R2 dr dϕ+R2(dθ2 + sin2 θ dϕ2)

(2.43)

where N(r, ϕ) ≡ (P ′ cosϕ + Q′ sinϕ) and ∂ϕ denotes a partial derivative with respect

to ϕ. Furthermore, the expression for E in projective coordinates simplifies in spherical

51



coordinates to

E(r, θ, ϕ) = S

1− cos θ

such that the expression for E ′/E becomes

E ′

E
= −S ′ cos(θ) +N sin(θ)

S
(2.44)

This makes the angular variation of the dipole functions apparent, as S ′ will vanish for

certain values of θ while P ′ and Q′ will vanish for certain values of ϕ. In the event

that P ′ = Q′ = 0, there will be no ϕ dependence in the function E ′/E , which has been

demonstrated to characterise the dipole distribution. Therefore, provided S ′ ̸= 0, the

model will be symmetric about the axis defined by S, with the dipole position only

varying with the θ coordinate. This simple implementation of the Szekeres model is what

is primarily investigated within this paper. Moreover, in the case where S ′ = P ′ = Q′ = 0

it is readily seen that E ′/E will have no angular variation, such that there is an absence

of dipolar structure and the metric reduces to the spherically symmetric form of the LTB

model.

The full extent of the dipole function behaviour can be observed by defining ‘local

rectangular directions’ for a given shell as

x̂ = sin θ cosϕ , ŷ = sin θ sinϕ , ẑ = cos θ , (2.45)

so that
E ′

E
=

−1

S
(x̂P ′ + ŷQ′ + ẑS ′) . (2.46)

This further demonstrates that P ′/S defines the anisotropy in the direction of (θ, ϕ) =

(π/2, 0), Q′/S in the direction of (θ, ϕ) = (π/2, π/2) and S ′/S in the direction of θ = 0,

which are the x̂, ŷ and ẑ directions respectively.

2.2.3 The Density Dipole

The equation for the evolution of R can be obtained similarly to (2.11) by considering

the left-hand portion of (2.32)

2RR̈2 = −k(r) +
2M(r)

R
+

1

3
ΛR2 , (2.47)
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where the mass function M(r) arises as a first integral and −k(r) = 2E(r) as in the LTB

case. Here we can see through the identical forms of (2.47) and (2.11) that the evolution

of the constant-r is uninfluenced by the S(r), P (r), Q(r) dipole functions of the Szekeres

metric.

Although evolution-wise the Szekeres and LTB models are identical, the mass density

of the Szekeres model will vary due to the presence of the dipole functions within E . The
Szekeres mass density is defined from the Gtt = κρ = −1 field equation as

κρ =
2 (M ′ − 3ME ′/E)
R2 (R′ −RE ′/E)

(2.48)

with the E ′/E term defined by(2.44). We can then see that (2.48) reduces to the LTB

density (2.14) when S ′ = P ′ = Q′ = 0, as this means that E ′/E = 0.

2.2.4 Shell Shifting & Rotation

Although Szekeres models have been studied for several decades, there are some ge-

ometrical aspects concerning the shifting and rotation of shells that have only been elu-

cidated recently. Shell rotation in particular has recently been demonstrated to affect

the cross-sectional visualisation of constant-t slices through a given model. While shell

shifting has been reasonably well known over the past few years, a recent investigation by

Hellaby [118] examined whether the spherical coordinates of the Szekeres metric under

stereographic projection maintained their orientation on successive constant-r shells. This

was further explored in excellent detail by Buckley and Schlegel [112], who demonstrated

that neglecting the relative rotations and shifts of each shell produces a misleading repre-

sentation of the geometry for a 2D cross-section. Because the extent of these effects has

been unknown until recently, most visualisations of Szekeres models in previous papers are

not entirely correct. Within this thesis, we shall apply the corrections suggested within

Buckley and Schlegel’s recent paper, such that the depictions of our model are portrayed

accurately.

Shell Shifting

The Szekeres shell shifting effect arises due to the dipole functions within the grr term

of (szek metric), which describes the minimum proper distance between shells at r and

r + δr. Because these functions are responsible for the dipole distribution of the density

through E ′/E , a shell at r + δr will be displaced relative to its neighbour at r:
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• In the direction (θ, ϕ) = (π/2, 0) by an angular distance:

δx̂ =
RP ′/S√
1− k

(2.49)

• In the direction (θ, ϕ) = (π/2, π/2) by an angular distance:

δŷ =
RQ′/S√
1− k

(2.50)

• In the direction (θ, ϕ) = (0, 0) by an angular distance:

δẑ =
RS ′/S√
1− k

(2.51)

These shifts will result in the compaction of shell surfaces in the direction opposite that

of the shifting, with the density increasing where the shells are closest. We can observe

this behaviour in the density equation (2.48), wherein the mass function will vary with r

so that the mass redistributes to form a dipole in the direction of the shift. As the density

interior to the shell is not symmetric, it is necessary that the mass be distributed such

that the shell expands spherically.

One can further characterise this density variation of the Szekeres model by consid-

ering two components: the effective average density ρint within a given shell and the

corresponding LTB density ρLTB. If for a given shell we have ρLTB > ρint or,[
M ′

4πR′R2

]
LTB

>

[
3M

4πR3

]
int

, (2.52)

then the density gradient will be largest at the point where the shells are compressed. The

density contrast at this point will then approach positive or negative infinity according

to whether the shell’s density is over-dense or under-dense relative to the interior density,

respectively. For there to exist an over-dense region within the shell, it is then necessary

for the overall shell density to be greater than its average interior density. Finally, in the

case that ρLTB = ρint, the density will remain uniform in the presence of shell shifting.

Consequently, the dipole functions responsible for the shifting are incapable of producing

inhomogeneities with an initially inhomogeneous background. Therefore, there must exist

an inhomogeneity in the initial prescription of the model in order for a dipole asymmetry

to develop.
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Visualising the Shell Shifting & Rotation Effects

In order to track the rotation of a shell relative to its neighbour, we utilise a matrix

A(r) to store the cumulative rotations of all interior shells relative to each other. A given

shell at r + δr will hence be rotated relative to the shell at r by

A(r + δr) = Ry(α)Rx(β)A(r) , (2.53)

where Ry(α) and Rx(β) are the y and x rotation matrices in the shell’s LRF as follows

Ry(α) =

 cosα 0 sinα

0 1 0

− sinα 0 cosα

 Rx(β) =

1 0 0

0 cos β − sin β

0 sin β cos β

 . (2.54)

As we have already determined, the shell at r + δr will be rotated by δr P ′/S about the

negative y-axis and by δr Q′/S about the positive x-axis. Therefore, the rotation angles

α and β correspond to

α =
P ′

S
δr β = −Q′

S
δr . (2.55)

Finally to obtain the relative shift of the r+δr we append the directional shifts (2.49-2.51)

modified by the rotation matrix A(r) to the shift of the shell at r as follows

∆(t, r + δr) = ∆(t, r) +
R(t, r)√
1− k(r)

AT (r)

P ′/S

Q′/S

S ′/S

 . (2.56)

After systematically tracking the rotations and shifts of each shell, we can plot a 2D

projection of the Szekeres model by applying them to its Cartesian coordinate representa-

tion (X, Y, Z) = (Rx̂,Rŷ, Rẑ). In order to do so, we must effectively neglect the curvature

of the model by setting k(r) = 0 when calculating the shell shifting in (2.56). This will

introduce a distortion effect in the plotting of each shell, where the distance between each

shell of radius R(t, r) will not be accurately depicted, depending on the true value of k(r).

However, plotting the shells in this manner gives an accurate representation of distances
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along each of their surfaces2.

The Cartesian coordinates (X ′, Y ′, Z ′) that include the shell shifting and rotation

effects can then be built from the shift (2.56) and rotation arrays (2.53) as follows:

X ′

Y ′

Z ′

 = R(t, r)AT (r)

sin θ cosϕ

sin θ sinϕ

cos θ

+∆(t, r) . (2.57)

We will use the above procedure when visualising particular Szekeres models in sub-

sequent chapters.

2.2.5 Haantjes Transformations

While producing an axially symmetric Szekeres model with only S ′(r) ̸= 0 is relatively

straightforward, one may wish to have more precise control over the positioning of the

dipole through both P ′(r) and Q′(r) while still maintaining the necessary conditions for

axial symmetry. However, this would require the careful parametrisation of P (r) and

Q(r) so that the projective coordinates hold constant along the symmetry axis. This is

because the relative rotations of shells to each other (which are induced by having P ′ ̸= 0

and/or Q′ ̸= 0) must be compensated for by changes in the relative shifting direction,

in order for the symmetry axis to remain a straight line in the projective coordinates.

Fortunately, there exists a series of convenient coordinate transformations, known together

as a Haantjes transformation, which allow for the dipole to be repositioned in any arbitrary

direction.

The Haantjes transformation can be considered as the result of three successive sub-

transformations, the first of which being a coordinate inversion across the p2 + q2 =

P 2 + Q2 + S2 reflection plane (or the P sin θ cosϕ + Q sin θ sinϕ + S cos θ = 0 reflection

plane in spherical coordinates). This transforms the projective coordinates as well as the

2There is an alternative method of plotting the shell shifts and rotations [112] that maintains the
distances along lines of constant (p, q). However, this results in a distortion of the distances along each
shell’s surface, as well as a distortion of their radii.
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dipole functions to

(p̃, q̃) =
(p, q)

p2 + q2
,

(
P̃ , Q̃, S̃

)
=

(P, Q, S)

P 2 +Q2 + S2
, (2.58)

where over-tildes denote the transformed quantities. The next sub-transformation per-

formed after the inversion is a constant coordinate translation of the form

(p̃, q̃) = (p+ p0, q + q0) , (2.59)(
P̃ , Q̃, S̃

)
= (P + p0, Q+ q0, S) , (2.60)

where the dipole functions must also be translated to maintain the form of the metric.

As this simply corresponds to translating the origin point of the projective coordinates,

it does not affect the spherical coordinate representation of the model. The final sub-

transformation is another coordinate inversion of the form (2.58 across the now modified

projection plane.

For a quasi-spherical Szekeres model in which P ′ = Q′ = 0 initially, performing a

Haantjes transformation will modify the (p, q) coordinates as follows:

p̃ =
p+D1(p

2 + q2)

τ
, q̃ =

q +D2(p
2 + q2)

τ
, (2.61)

where τ is given by

τ = 1 + 2D1 p+ 2D2 q +
(
D1

2 +D2
2
)(
p2 + q2

)
, (2.62)

and both D1 and D2 are arbitrary constants. However, to maintain the model’s physical

relations and the form of the metric, the dipole functions must also be modified as follows:

P̃ =
P +D1 (P

2 +Q2 + S2)

T
, (2.63a)

Q̃ =
Q+D2 (P

2 +Q2 + S2)

T
, (2.63b)

S̃ =
S

T
(2.63c)
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where T is given by

T = 1 + 2D1 P + 2D2Q+
(
D1

2 +D2
2
)(
P 2 +Q2 + S2

)
. (2.64)

Performing a Haantjes transformation of this form is especially convenient when con-

structing a complex, axially symmetric Szekeres model with P ′ ̸= 0 ̸= Q′. If one begins

with a simple axially symmetric model with only S ′ ̸= 0, such as the Szekeres model of

Bolejko et al. [1], the dipole anisotropy can be arbitrarily repositioned without manually

specifying the forms of P and Q. By specifying the constants D1 and D2 in terms of

the desired angular position, the Haantjes transformation will automatically adjust the

dipole functions to satisfy the axial symmetry requirements in the transformed model.

The values of D1 and D2 required to transform the anisotropy to the position (ϑ, φ) as

measured from the minimum value of the anisotropy rl are

D1 =
1− cosϑ

sinϑ
cosφ e−S(rl) , (2.65a)

D2 =
1− cosϑ

sinϑ
sinφ e−S(rl) (2.65b)
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Chapter 3

Model Setup & Initialisation

In the following chapter, we detail the construction of the Szekeres model that is im-

plemented in our ray tracing simulations, including the ray tracing methodology that is

involved. Using the foundational overview of the Szekeres model presented in the previ-

ous chapter, we construct an axially symmetric Szekeres model to simulate a local cosmic

void with an adjacent over-dense structure. By then backwards propagating light rays

through the model to both the simulated CMB and the COMPOSITE dataset (by nu-

merically integrating the null geodesic equations), we can explore how the presence of

local inhomogeneities influence the measurements made by an observer placed within the

model. While in this thesis we adopt the same Szekeres model prescription as Bolejko

et al. [1], hereafter referred to as BNW, we correct for an erroneous initialisation of the

initial null vectors within the ray tracing routines. As a key part of our investigation, we

will compare our corrected results with those of BNW to assess the effect they may have

on their conclusions.

The FORTRAN90 programs used to perform the simulations within this thesis were

originally developed by K. Bolejko [1] and L. H. Dam [107]. These programs also use the

HEALPix libraries for FORTRAN90 to handle the manipulation of data on the spherical

sky. Additional analysis, including data presentation and plotting, is achieved using a

combination of Python and Mathematica.

3.1 The Density Profile

In order to produce our axially symmetric Szekeres model, it is first necessary to

define a suitable mass profile for the underlying density distribution. As is described by

equation (2.48), the density of a constant r shell is given in terms of the function R(t, r)

and the dipole modulation of E ′/E . However, this equation also contains the yet to be
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specified mass function M(r), which simply varies with the radial coordinate. So long as

this function is selected appropriately, there is a reasonable amount of choice in the form

it assumes.

3.1.1 The Mass Distribution

For our simulations, we adopt the same mass profile utilised by both BNW and Dam

(2016) [107], which features a large, central under-density with respect to the background

density at the origin. The mass distribution M(r) of this model is given by

M(r) = M0(r) + δM(r) =
1

2
Ωm0H0

2r3(1 + δ(r)) , (3.1)

where

M0(r) =
4

3
πρ̄ (t0) r

3 =
1

2
Ωm0H0

2r3 , (3.2)

is the homogeneous FLRW mass profile of the background. Within equation (3.1) the

function δM(r) describes the deviation of the mass profile from that of the homogeneous

background M0. This deviation is further specified in terms of the function

δ(r) =
1

2
δ0

(
1− tanh

r − r0
2∆r

)
, (3.3)

which depends on a local perturbation parameter δ0 ∈ [−1, 0]. This negative perturbation

will correspond to an under-dense region centred on the origin of the model so that the

mass profile will be below that of the background for r < r0, where the parameter r0 gives

the chosen characteristic size of the void. The parameter ∆r then controls the steepness

of the void density profile, i.e., the rate of transition between the model’s over-dense

and under-dense regions. By defining our Szekeres model in this fashion, the deviation

described by (3.3) will approach zero as r → ∞. When this occurs, we have M(r) →
M0(r), such that the mass profile asymptotically approaches that of the homogeneous

FLRW background.

3.1.2 Specifying the Szekeres Functions

Thus far we have identified the three parameters δ0, r0 and ∆r, which allow us to

control the physical characteristics of the Szekeres void via the mass profile M(r). It now

remains to specify the dipole functions within (2.44, such that the density equation (2.48

is fully defined. As we are interested in the same axially symmetric Szekeres model as

60



BNW, we will define our dipole functions by,

P (r) = 0 , Q(r) = 0 , S(r) =

(
r

1Mpc

)α

Mpc , (3.4)

where the parameter α is introduced to control the strength of the dipole displacements.

With only the function S(r) non-constant, the dipole will be confined to z-axis of a shell’s

LRF. Correspondingly, the Szekeres shells will only undergo shifting along this axis in the

direction of (θ, ϕ) = (0, 0). As P ′ = Q′ = 0, there will be no rotational effects requiring

extra consideration. It further follows under this choice of parametrisation that the LTB

model can be retrieved by setting α = 0 such that S ′ = P ′ = Q′ = 0.

Maintaining the specifications of BNW, we choose the function R(t, r) to coincide

with the coordinate-r at the present time. This fixes the coordinates so that R(t0, r) = r

with t0 the current age of the universe. In addition, we define the big bang singularity to

occur simultaneously for all comoving observes, so that tB(r) = 0 for all r. A value for

k(r) = −2E(r) may then be obtained for each r by solving (2.47) with attention to our

choice of R(t0, r) = r.

3.1.3 Specifying the Model Parameters

The model specifications of BNW are now summarised in terms of four parameters,

these being α, δ0, r0 and ∆r respectively. However, in addition to these there exist a

further three parameters robs, θobs and ϕobs, that are responsible for the observer’s location

relative to the model’s origin. The observer position relative to structures within the

model plays a significant role in the anisotropy observed on their sky. However, in the

axially symmetric case it suffices to choose ϕobs = π/2, as when P (r) = Q(r) = 0 there

is no model variation with the ϕ coordinate. Furthermore, BNW choose ∆r = 0.1 r0 to

simplify the parameter space down to five free parameters: α, δ0, r0, robs and θobs. While

these parametrisation choices produce an idealised, easy to handle Szekeres model, it

overall lacks the complexity required to produce exact representations of local structures.

Despite this, the model is still capable of demonstrating realistic anisotropic effects that

resemble features present in observations.

To obtain the best values for the model’s five free parameters, BNW performed a

parameter space search with the following constraints in order of significance:

1. A maximum CMB temperature of T0 +∆T where

∆T (l = 276.4◦, b = 29.3◦) = 5.77± 0.36mK , (3.5)
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is the amplitude and direction of the CMB dipole in the frame of the LG and

T0 = 2.725K is the mean CMB temperature.

2. A CMB quadrupole that is lower than the observed value of

C2,CMB < 242.2+563.6
−140.1 µK

2 . (3.6)

Although this value is much smaller than what is expected under the standard

cosmology, the constraint ensures that the quadrupole generated from local inho-

mogeneities is less than what arises due to baryonic physics at last scattering.

3. A dipole in the Hubble expansion anisotropy that is consistent with the observed

anisotropy of the COMPOSITE dataset, including the redshift dependence.

4. A quadrupole in the Hubble expansion anisotropy that is consistent with the ob-

served anisotropy of the COMPOSITE dataset, including the redshift dependence.

By imposing these constraints, BNW obtained the following free parameter values

through a grid search of the parameter space:

α = 0.86 ,

δ0 = −0.86 ,

r0 = 38.5h−1Mpc ,

∆r = 0.1 r0 .

(3.7)

They also determine an observer position of

robs = 25h−1Mpc ,

θobs = 0.705π ,

ϕobs = 0.5π ,

(3.8)

where robs, θobs and ϕobs are the spherical coordinates of the observer from the centre

of the Szekeres model. However, it is important to note that these particular parameter

values were determined from routines containing the incorrect initialisation method for

the initial null vectors (which will alter the directions in which light rays are propagated).

Although we continue to use these values in our present work, they do not necessarily

correspond to the best-fit values of the model using the corrected routines.

In fig. 3.1, we plot the density of our Szekeres model both with and without the shell

shifting effects described in section 2.2.4. As to be expected, there are no rotations applied
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Figure 3.1: The density distribution of our axially symmetric Szekeres model normalised to the FLRW
background density, where X = R(t0, r)x̂, Z = R(t0, r)ẑ and Z ′ is determined by (2.57) in the absence
of shell rotations. In both panels, shells of constant r are traced with thin dotted circles, while the cross
indicates the observer located at (robs, θobs, ϕobs) =

(
25h−1 Mpc, 0.705π, 0.5π

)
. The left-hand panel

(a), shows the model plotted ‘näıvely’ without accounting for shell shifting along the symmetry axis. The
right-hand panel shows the model correctly plotted with shell shifting effects. This is achieved following
the method described in section 2.2.4.

to the shells, as P ′ = Q′ = 0 in the quasi-spherical case. However, we can see that each

shell is shifted along the negative Z ′-axis, compressing the shells where the density of

the model is greatest. The extent of the over-density appears much narrower along the

Z ′-axis.

3.1.4 The Cosmological Parameters

As the density is defined in terms of a spatially flat FLRW background, we must

specify appropriate cosmological parameters. We will adopt the same values as were used

by both BNW and Dam [107], namely,

(Ωm0,ΩΛ0,Ωk0, h) = (0.315, 0.685, 0, 0.673) , (3.9)

which are themselves derived from the Planck dataset for a best-fit spatially flat FLRW

cosmology. The present day Hubble constant is then,

H0 = 67.3 km s−1Mpc−1 , (3.10)
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as H0 = 100h km s−1Mpc−1. Since we have Ωk = 0, the present age of the universe t0 can

then be determined through the following analytic solution of the Friedmann equation

t0 =
1

3H0

√
ΩΛ

ln

(
1 +

√
ΩΛ

1−
√
ΩΛ

)
. (3.11)

3.2 Analysis on the Spherical Sky

As we are dealing with measurements of both the CMB temperature anisotropies and

average Hubble flow variation over the spherical sky, it is necessary to deal with the

observed fields in terms of spherical harmonic functions. When considering the CMB

temperature field in particular, which is understood to arise due to statistical processes in

the primordial plasma, the estimated power spectrum of a given monopole can be deter-

mined via the corresponding spherical harmonic coefficients. In our analysis, we utilise the

HEALPix (Hierarchical Equal Area isoLatitude Pixelisation) scheme to efficiently store

our ray traced datasets and routinely perform a spherical harmonic analysis of the results.

3.2.1 Computation of the CMB Dipole

Firstly, the quantities of interest must be expressed as functions of the angular position

of observation on the sky. For example, deviations from the mean CMB temperature T0

can be characterised by the dimensionless anisotropy function,

Θ(θ, ϕ) =
∆T (θ, ϕ)

T
=

T (θ, ϕ)− T0

T0

. (3.12)

We can then perform a spherical harmonic decomposition of this temperature anisotropy

into a sum of spherical harmonic functions Yℓm and coefficients aℓm

Θ(θ, ϕ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓm Yℓm , (3.13)

where for each multipole value ℓ ≥ 0 there are 2ℓ+1 values ofm. For the dipole component

ℓ = 1 there are three separate Yℓm to consider for m = ±1 and m = 0 as follows:

Y10 =

√
3

4π
cos θ (3.14a)

Y1±1 = ∓
√

3

8π
sin θ e±iϕ (3.14b)
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To examine the dipole (ℓ = 1) component of (3.13), we expand the equation out using

(3.14a) and (3.14b) to obtain

1∑
m=−1

a1m Y1m =

√
3

8π
sin θ e−iϕ +

√
3

4π
cos θ −

√
3

8π
sin θ eiϕ

=

√
3

8π

[(
a1−1 + a∗1−1

)
sin θ cosϕ+

√
2 a10 cos θ

− i(a11 − a∗11) sin θ sinϕ
]

=

√
3

8π

[
2aim11 sin θ sinϕ− 2are11 sin θ cosϕ+

√
2 a10 cos θ

]
= d · n̂ , (3.15)

where we have used the fact that a∗ℓm = (−1)m aℓ−m and are1−1 = −are11, with starred

quantities denoting the complex conjugate. The vector

n̂ =
(
nx̂, nŷ, nẑ

)
= (sin θ cosϕ, sin θ sinϕ, cos θ) (3.16)

is the observed direction of the dipole on the sky, while the vector

d = (dx, dy, dz) =

√
3

4π

(
−
√
2are11,

√
2aim11 , a10

)
(3.17)

gives the components of its magnitude determined by the aℓm coefficients. Considered

individually, these coefficients are determined over the full sphere of observations

aℓm =

∫ 2π

0

dϕ

∫ π

0

dθ sin θΘ(θ, ϕ)Y ∗
ℓm(θ, ϕ) (3.18)

with the first few aℓm containing the bulk of the information about the CMB sky, given

that we are particularly concerned with large angle fluctuations. The amplitude (or

temperature) of the ℓ-th spherical harmonic is given by

∆Tℓ
2 =

∑
m

|aℓm|2

4π
, (3.19)
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3.2.2 Cosmic Variance

As the observed CMB is only a single realisation of an underlying statistical process,

the coefficients aℓm can be considered as independently distributed complex random vari-

ables with zero mean. The mean value of the power spectrum as a function of the ℓ-th

multipole is thus

Cℓ = ⟨|aℓm|2⟩ , (3.20)

which is equivalent to an ensemble average over many independent realisations by assum-

ing ergodicity1 of the underlying model. Because each Cℓ is independent of m (of which

there are 2ℓ+1 values for each ℓ) we can construct an unbiased estimator for Cℓ as follows:

C̃ℓ =
1

2ℓ+ 1

∑
m

|aℓm|2 , (3.21)

although this assumes a complete sky coverage.

If we assume that the temperature anisotropy field Θ(n̂) is statistically isotropic,

where the unit vector n̂ is the observed direction on the sky, then the 2-point correlation

function

C(n̂, n̂′) = ⟨Θ(n̂)Θ(n̂′)⟩ , (3.22)

depends solely on the angle θ between the n̂ and n̂′ as follows

C(n̂, n̂′) = (n̂ · n̂′) = C(θ) , (3.23)

where n̂ · n̂′ = cos θ. This is because in the case of statistical isotropy, the CMB is

rotationally invariant. By then expanding the 2-point correlation function C(θ) in terms

of Legendre polynomials, Pℓ (cos θ) we obtain

C(θ) =
1

4π

∑
ℓ

(2ℓ+ 1)Cℓ Pℓ (cos θ) , (3.24)

1If an underlying model satisfies the requirements of the ergodic theorem the ensemble average can
instead be interpreted as an average over all positions of a distinct realisation. This can be shown to be
the case for Gaussian random fields, such as that of the CMB temperature fluctuations.
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by the addition theorem of spherical harmonic functions. Further manipulation of equa-

tion (3.24) by applying the orthogonality relation of spherical harmonic functions then

yields

⟨aℓm a∗ℓ′m′⟩ = δℓℓ′ δmm′ Cℓ . (3.25)

This result demonstrates that for a statistically isotropic field, the real space 2-point

correlation function C(θ) holds the same information as the angular power spectrum

Cℓ = ⟨|aℓm|2⟩ in harmonic space. As the latter is independent of the angular resolution of

the experiment, it is the most relevant for comparative purposes.

Because we are restricted in our estimation of Cℓ to an average over m, the difference

in the observed mean versus the ensemble average of the power spectrum gives a measure

of cosmic variance,

σℓ
2 =

〈(
Cℓ − C̃ℓ

)2〉
=

2

2ℓ+ 1
Cℓ

2 (3.26)

which is significant over large scales.

3.2.3 Mapping the Sky with HEALPix

Working with data that is projected upon a spherical sky, such as our ray traced

CMB and spherically averaged Hubble expansion variation, requires an efficient mapping

method that can handle a large volume of unique data points. As in BNW, our simulations

utilise the HEALPix (Hierarchical Equal Area isoLatitude Pixelisation) libraries, which

handles the data points in a pixelised spherical map for ease of manipulation.

Mapping of the CMB sky in a pixelised format was first accomplished with the COBE

quadrilateralised spherical cube scheme, whereby the sky is projected onto an inscribed

cube using a curvilinear area-conserving projection. However, with the increasing reso-

lution of the later WMAP and Planck detectors, it became necessary to adopt a more

efficient pixelisation scheme that allowed for fast computations across the entire sky. The

HEALPix scheme of Gorskiet al. [119] has since become the standard CMB data format.

The pixelated map data is stored on a sphere using a tree-structured tessellation, with

each of the equally sized pixels corresponding to a (l, b) coordinate position.

The resolution of the HEALPix map is given by Npix = (12Nside)
2, where Nside =

{4, 8, 16, ...} is the number of subdivisions required of the 12 base resolution tiles to achieve

the target resolution. In the majority of our simulations, we set Nside = 8 to minimise

the computational intensity involved in ray tracing the COMPOSITE dataset. Each map

is therefore comprised of 768 uniquely indexed pixels, which HEALPix can efficiently
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Figure 3.2: The relationship between the celestial sphere of the observer within the Szekeres model and
the Szekeres spherical coordinates. Adapted from Dam [107].

evaluate in terms of spherical harmonics. In practice, the integration in determining the

alm coefficients by equation (3.18) becomes a sum over Npix pixels

aℓm ≈
Npix∑
i=1

Θ(θi, ϕi)Y
∗
ℓm(θi, ϕi) sin θi ∆θi ∆ϕi (3.27)

=
4

Npix

Npix∑
i=1

Θ(n̂i)Y
∗
ℓm(n̂i) , (3.28)

where ∆θi is constant as each Nside indexes an isolatitude band. After the calculation of

the aℓm and Cℓ via HEALPix’s subroutines, the dipole position and amplitude are derived

using equations (3.17) and (3.19) (for ℓ = 1), respectively.

3.3 The Ray Tracing Methodology

The key stages of the ray tracing simulation are as follows:

1. After defining our Szekeres model according to the functions (3.1), (3.2), (3.3) and

(3.4), we begin by ray tracing the CMB dipole as seen by the observer. This is

achieved by propagating individual light rays through the Szekeres model to each

of the Npix pixels of the HEALPix sky, before then determining the amplitude and
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position vector of the generated dipole.

2. Using the position vector of the ray traced CMB dipole, the true CMB dipole

position and the positions of the COMPOSITE dataset in galactic coordinates (l, b)

are rotated onto the Szekeres local sky coordinates (θ, ϕ) 2. A schematic diagram of

the relation between the various coordinates is given in fig. 3.2.

3. After expressing the position of each galaxy in the Szekeres coordinate frame, we

begin to ray trace the full COMPOSITE dataset via numerical integration of the

null geodesic equations. For each galaxy, a ray is backwards propagated from the

observer to the source until the given distance of galaxy di is achieved. This allows

us to obtain the modified redshift of the galaxy as observed through the intervening

Szekeres model.

4. Once the entire COMPOSITE dataset has been ray traced, the Hubble expansion

variation is calculated using spherical averages for increasing redshift values up to

z = 0.08. At each redshift considered, the distances of the ray traced COMPOSITE

sample are randomly reshuffled 5000 times to reproduce fig. 6 of BNW.

3.3.1 Setting the Initial Conditions

In the following section, we detail the corrected procedure for setting the initial null

vector of each ray according to Dam [107]. As each individual pixel of the HEALpix sky

corresponds to the direction in which a ray is observed, we first determine an observed

direction vector n̂ of a local spatial frame in terms of the pixel’s (l, b) coordinates. In

Cartesian coordinates, the components of n̂ are simply:

n̂x = cos b cos l , n̂y = cos b sin l , n̂z = sin b . (3.29)

The next step is to determine the local orthonormal basis {eâ} by considering the

following line element,

ds2 = gµν dx
µ ⊗ dxν = ηâb̂ω

â ⊗ ωb̂ , (3.30)

2The Szekeres local sky coordinates (θ, ϕ) referenced here should not be confused with the spacetime
θ and ϕ coordinates.
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where ηâb̂ = diag−1, 1, 1, 1. The 1-forms
{
ωâ
}
dual to the orthonormal basis {eâ} are

then given by

ωâ(eb̂) = ωα̂
µ e

µ

b̂
= δâ

b̂
, (3.31)

where ωα̂
µ are simply the components of ωâ. The line element of our axially symmetric

Szekeres model follows from the metric (2.43) with N(r, ϕ) = 0:

ds2 = − dt2 +
1

1 + 2E

[
R′ +

R

S
(S ′ cos θ)

]2
dr2 +

(
S ′

S

)2

R2 sin2 θ dr2

− 2

(
S ′

S

)
R2 sin θ dr dθ +R2

(
dθ2 + sin2 θ dϕ2

)
. (3.32)

By extracting the 1-forms from this line element and using them to solve equation (3.31),

we obtain the following orthonormal basis

eâ
µ =


1 0 0 0

0 Γ 0 0

0 ΓS′

S
sin θ 1

R
0

0 0 0 1
R sin θ

 , (3.33)

where

Γ =

√
1 + 2E

R

(
R′

R
+

S ′

S
cos θ

)−1

. (3.34)

Because in the local orthonormal frame we have kâ = (−1, n̂), with the affine parameter

defined so that the rays propagate backwards in time, we finally transform back into

Szekeres spherical coordinates

kµ
0 = kâ eâ

µ
∣∣
t=t0

=


−1

Γ n̂x

Γ S′

S
sin θ n̂x + 1

R
n̂y

1
R sin θ

n̂z


t=t0

. (3.35)

However, in the original ray tracing routines of BNW the initial null vectors are in-

correctly calculated due to the erroneous neglecting of off-diagonal terms in the Szekeres
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metric.3 This meant that each null vector was instead normalised by taking

kr
0 =

kr̂

√
grr

, kθ
0 =

kθ̂

√
gθθ

, kϕ
0 =

kϕ̂

√
gϕϕ

. (3.36)

Consequently, by taking the spatial norm,

gij k
i
0 k

j
0 =

(
kr̂
)2

+
(
kθ̂
)2

+
(
kϕ̂
)2

+
2grθ√
grrgθθ

,

= 1− 2
S ′

S
sin θ

[(
S ′

S
sin θ

)2

+
1

1 + 2E

(
R′

R
+

S ′

S
cos θ

)2
]−1/2

, (3.37)

it is evident that the resulting vector field kµ is timelike as opposed to null. Furthermore,

because both kr̂ and kθ̂ contain local direction cosines, a global scaling cannot distort the

impacted results into correct ones.

3.3.2 The COMPOSITE Dataset

The determination of the average Hubble expansion variation within our Szekeres

model requires a large sample of galaxies to serve as tracers. Not only must the sample

have excellent sky coverage to prevent the biasing of results, but it must also contain

a range of individual distances extending up to ∼ 100h−1Mpc to thoroughly probe the

entire volume of the Szekeres model.

As in BNW, we choose4 to use the COMPOSITE dataset of Watkins et al. (2009),

which contains 4534 galaxies and clusters compiled across eight independent sky surveys,

with a combined characteristic depth of 34h−1Mpc. As a peculiar velocity dataset, the

sample was used to obtain a bulk flow estimate of 407 ± 81 km s−1 in the direction of

(l, b) = (287◦±9◦, 8◦±6◦) within a Gaussian window of radius 50h−1Mpc. This was found

to disagree significantly with the expectations from ΛCDM with WMAP5 cosmological

3As is discussed in section 2.2.2, the Szekeres metric is only diagonal when S(r) = P (r) = Q(r) = 0 -
which is when it reduces to the LTB metric. The BNW code used a routine that is correct for the LTB
model, and computationally faster in that case - but unfortunately, it is incorrect for the Szekeres model.

4There are other larger datasets now available, such as the Cosmicflows datasets. However, as com-
pared to the COMPOSITE sample, the data in these larger datasets still contains sampling biases whose
removal is the subject of ongoing investigations.

71



Figure 3.3: Angular distribution of the COMPOSITE dataset on the sky in standard galactic coordinates
(l, b). The band of sparse coverage along b = 0◦ is due to the ‘Zone of Avoidance’ caused by obscuration
from the Milky Way.

parameters, with the overall motion not attributable to the presence of nearby structures

(e.g. the Great Attractor at ∼ 40h−1Mpc). Despite the range of characteristic depths

and the different distant measurement techniques that were used, the constituent samples

of COMPOSITE are found to be statistically consistent with each other. These results

are also consistent with the later reanalysis performed by Feldman et al. (2010), where

the erroneous contributions to COMPOSITE from the SFI++ survey are corrected for

Malmquist bias.

As demonstrated in fig. 3.3, the COMPOSITE sample has excellent coverage over the

sky, with exception to the ‘Zone of Avoidance’ obscured by the Milky Way between ap-

proximately ±15◦ of the galactic plane (b = 0◦). Around 85% of the sample resides within

the range of 100h−1Mpc (see fig. 3.4), with the observations becoming much sparser to-

wards ∼ 150h−1Mpc. Each galaxy within the dataset is supplied with its redshift zi,

luminosity distance di, peculiar velocity vi and uncertainty ∆vi (which correspond to in-

dividual distance uncertainties of ∆di = ∆vi/H0). The position of each galaxy in galactic

coordinates (li, bi) is also provided within the dataset.

To assess the dataset for systematic uncertainties occurring due to incomplete sky cov-

erage, the previous investigation of [4] performed 12 million random reshuffles of the data

in independent radial shells. For a binning scale of ∆d = 12.5h−1Mpc (or equivalently

∆z ≃ 0.001), they found their results pertaining to the dipole anisotropy were robust over

scales of 0.002 < z < 0.04. Nevertheless, BNW performed additional tests upon the data,

including:

• Analysing the fluctuations ∆H0/H0 instead of just the spherically averaged H0.
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Figure 3.4: Redshift-distance diagram of the COMPOSITE dataset. All 4534 galaxies and clusters within
the sample are included, with the colours grouping the sample into increasing 12.5h−1 Mpc shells based
on the distance d.

Because δH0 = 0 for a perfectly homogeneous and isotropic universe (hypotheti-

cally speaking), a largely incomplete sky coverage should still have an undetectable

anisotropy.

• Analysing the dipole and quadrupole anisotropies of 100,000 reshuffled COMPOS-

ITE datasets, which were made by randomly reshuffling the angular position (l, b)

for each set of z and dL. They concluded from this that the anisotropies present in

the original dataset are not spurious.

• Additionally checking for the presence of spurious anisotropies using 100,000 ran-

domly selected halves of the COMPOSITE dataset. The anisotropies present in

each half were analysed and compared with the dipole and quadrupole of the orig-

inal sample. This again confirmed that the measured anisotropies were indeed not

spurious.

3.4 The Hubble Expansion Anisotropy

After generating a ray traced CMB sky for an observer located at (r, θ, ϕ)obs within

our Szekeres model, the observed CMB dipole at (ℓ, b) = (276.4◦, 29.3◦) in galactic coor-

dinates is mapped onto the ray traced dipole in the Szekeres local sky coordinates. The

COMPOSITE dataset, when aligned appropriately, can then be ray traced to determine

each galaxy’s observed redshift as influenced by the underlying Szekeres model.
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In a general inhomogeneous cosmology, one cannot expect an isotropic distance-

redshift relation of the form (1.11) at low redshifts. Recently, Heinesen [120] has de-

veloped an alternative low-redshift cosmographic expansion applicable to a wide variety

of cosmological models, which incorporates anisotropic effects of differential expansion.

Nonetheless, we will use (1.11) in our redshift-distance determinations, since our Szekeres

model is asymptotically FLRW at modest redshifts.

By rearranging equation (1.11) for a spatially flat FLRW model, the Hubble constant

at low redshifts is

H0 =
c

dL

[
z +

1

2
(1− q0)z

2 − 1

6

(
1− q0 − 3q0

2 + j0
)
z3
]
+O

(
z4
)
. (3.38)

However, as the distance uncertainties within COMPOSITE are typically of order ∼ 15%,

it is more optimal to consider (3.38 with dL as an independent variable in the numerator

in terms of the propagation of the uncertainties. The value of H0 can then be determined

by performing a chi-squared minimisation of the form,

χ2 =
∑
i

(
di − c ξi/H0

∆di

)2

, (3.39)

where ξi is simply,

ξi =

[
zi +

1

2
(1− q0)zi

2 − 1

6

(
1− q0 − 3q0

2 + j0
)
zi

3

]
. (3.40)

This is effectively a weighted sum over the i ∈ [1, ..., 4534] objects of the COMPOSITE

dataset, with di and zi being the luminosity-distance and redshift of the i-th object,

respectively.

In the previous work of [4], only the luminosity distance was smoothed for spherical

averages in independent radial shells, with the angular smoothing considered separately.

However, to determine the average local value of H0 centred on galactic coordinates (l, b)

and redshift z we apply a Gaussian window function that smooths jointly in both solid

angle and redshift

H0 =

∑
i Hiwd,i wz,i wθ,i∑
i wd,i wz,i wθ,i

, (3.41)

where Hi is given by

Hi =
c ξi
di

. (3.42)
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The smoothing weights of this sum are given by

wd,i =
c ξi di

(∆di)
2 , (3.43a)

wz,i =
1√
2π σz

exp

[
−1

2

(
z − zi
σz

)2
]
, (3.43b)

wθ,i =
1√
2π σθ

exp

[
−1

2

(
θi
σθ

)2
]
, (3.43c)

where ∆di is the distance uncertainty and the window function parameters are set to

σz = 0.01 and σθ = 25◦. The angle θi is between the direction of each source (li, bi) and

the direction of an arbitrary point of the sky (l, b) where,

cos θi = cos b cos bi cos (l − li) + sin b sin bi . (3.44)

Due to the 15◦ ‘Zone of Avoidance’ either side of the galactic mid-plane, the angular

Gaussian smoothing scale of σθ = 25◦ is used to extrapolate data from this region, instead

of applying an appropriate mask. This reduces the biases that the masking of the region

could otherwise introduce, while having minimal influence on the large-scale results.

Utilising the HEALPix scheme that was earlier described, we can use equations (3.41)-

(3.44) to calculate all contributions to the Hubble constant for a given pixel direction on

the sky. Then, similar to characterising the temperature anisotropies of the CMB, we can

express the variation in the Hubble flow as

∆H0

⟨H0⟩
=

H0(l, b, z)− ⟨H0⟩
⟨H0⟩

(3.45)

where

⟨H0⟩ =
1

4π

∫
dΩ H0(l, b, z) , (3.46)

is the spherically averaged value of equation (3.41). This variation can then undergo a

spherical harmonic decomposition similar to that performed for the CMB anisotropies,

∆H0

H0

=
∑
ℓ,m

aℓmYℓm , (3.47)

so that its fluctuations can be examined in terms of the angular power spectrum Cℓ.

75



3.5 Kinematic Interpretation of Anisotropies

To test the kinematic dipole hypothesis as discussed in section 1.4, BNW produced

100,000 mock COMPOSITE catalogues in the CMB frame, where the universe is presumed

to be spatially homogeneous. For each galaxy of the COMPOSITE dataset, the FLRW

model is first used to obtain the redshift zFLRW at which dL = di through solving

dL =
(1 + z) c

H0

∫ zFLRW

0

dz√
Ωm0(1 + z)3 + 1− Ωm0

, (3.48)

where the best fit Planck value of Ωm0 = 0.315 is used. The redshift zFLRW is then

adjusted for a boost to the frame of the local group by

1 + zFLRW−B = γ (1− βo cos θi)(1 + zFLRW)

≃ (1− βo cos θi)(1 + zFLRW) , (3.49)

where βo = vo/c = (2.1± 0.1)× 10−3 while the cos θi term is given by (3.44). Within the

mock catalogues, each galaxy’s redshift zi is replaced with a boosted redshift zFLRW−B that

is randomly drawn from a Gaussian distribution. Then, each distance di that is used in

obtaining zFLRW is replaced with a randomly drawn distance dN = N (µ = di, σ = ∆di).

The resulting mock datasets may then be spherically averaged over the observer’s sky

following the method of section (3.4).
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Chapter 4

The Ray Tracing Simulations

4.1 The Hubble Expansion Anisotropy

Following the procedure described in section 3.3, we have carried out a series of ray

tracing simulations for the COMPOSITE dataset using the Szekeres model of BNW. In

what follows, we compare our results for the ray traced Hubble expansion anisotropy

variation with those originally obtained by BNW, which includes the bug in their null

vector initialisation. These results are then considered in terms of their match to the

COMPOSITE anisotropy, as well as for boosted FLRW mocks obtained following section

3.5. We also explore the variation of both the CMB and Hubble expansion anisotropy for

various observer positions throughout the Szekeres model.

4.1.1 Comparison with Bolejko et al. 2016

A primary aim within this thesis was to examine how applying corrections to the

erroneous null vector initialisation routine of BNW impacts the ray traced Hubble expan-

sion anisotropy they originally presented. To accomplish this, we have reproduced the

Szekeres ray tracing results of BNW using the incorrect null vector initialisation routine,

which we then compare to results obtained by applying the corrections detailed in section

3.3.1. Overall, we find that there are significant differences in the spherically averaged

Hubble expansion dipole when compared to the incorrect results of BNW. Our results are

presented in fig. 4.1 for both the dipole C1 and quadruple C2 variation. We can immedi-

ately observe that correcting the null initialisation routine produces a dipole anisotropy

almost three times larger than was originally reported by BNW, with the difference being

especially prominent for z ≲ 0.04.

For the BNW results shown in fig. 4.1, a CMB dipole amplitude of ∆Td = 3.26mK and
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Figure 4.1: The Hubble expansion anisotropy variation observed in the ray traced Szekeres-COMPOSITE
dataset. The left-hand panel (a) shows the dipole C1 variation of the original BNW result of 2016
compared to the results of this thesis (where the corrected BNW ray tracing routines were used). The
right-hand shows the same comparison of the results but for the quadrupole C2 variation. The bands of
each distribution give the 65% and 95% confidence intervals based on 1000 mock datasets at each redshift
interval of the averaging.

a quadrupole amplitude of D2 = 7.92µK2 are obtained using the uncorrected ray tracing

routine. This varies somewhat from the values reported by BNW, who state a CMB

dipole amplitude of ∆Td = 5.58mK and a CMB quadrupole amplitude D2 = 8.26µK2.

However, the significant difference in the dipole amplitude can be traced to the method

used in its calculation. In the original codes of BNW, the dipole amplitude is determined

by taking the difference of the maximum and minimum values of the HEALPix map – a

method which is only valid if the map contains simply a dipole and quadrupole moment.

As the maximum and minimum values may also not be at the antipodes, the presence

of small l > 3 contributions can lead to an over-estimation of the dipole component. As

the CMB dipole given in this thesis is determined from the a10 spherical harmonic (or C1

coefficient), it is therefore smaller than the stated BNW value.

In the corrected results shown in figure 4.1, we instead find a CMB dipole amplitude

of ∆Td = 5.61mK and a quadrupole amplitude of D2 = 26.53µK2, which is consistent

with the results of Dam [107]. The quadrupole amplitude remains an order of magnitude

smaller than that observed for the CMB, although this could be due to the relative

simplicity of the specific axially symmetric Szekeres model that we have employed (which

BNW themselves have argued [1]). Overall, it is apparent that the choice of parameters

(3.7) and (3.8), that BNW determine by inadvertently using the incorrect null vector

initialisation routine, no longer provide a match to the COMPOSITE anisotropy. This

means a re-parametrisation of the Szekeres model and the observer position will most
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Figure 4.2: The Hubble expansion anisotropy results of figure 4.1 compared with that of the COMPOSITE
dataset. Also shown are the results of producing mock COMPOSITE catalogues based on FLRW redshifts
under a local boost of 635 km s−1, which demonstrates the purely kinematic dipole interpretation. Again,
the left-hand panel (a) shows the dipole C1 variation, while the right-hand panel (b) shows the quadrupole
C2 variation. The bands of each distribution indicate the 65% and 95% confidence intervals obtained
from the mock sampling.

likely be required to reinterpret the conclusions of BNW.

To further assess the influence of the incorrect routine on the results, we also considered

the effects on the CMB dipole and Hubble expansion anisotropy individually. The ray

tracing routines are executed at two distinct stages of the simulation. The first stage is

when the CMB sky of the Szekeres observer is generated (step 1 of section 3.3), and the

second stage is when the COMPOSITE dataset is ray traced following an alignment to

the generated CMB dipole (step 3 of section 3.3). However, we find that regardless of

whether the CMB is correctly or incorrectly ray traced, the difference in the alignment of

the CMB dipole axis has a minimal effect on the subsequent determination of the Hubble

expansion anisotropy. Therefore, the majority of the observed differences in the BNW

and now corrected results shown in fig. 4.1 is due to whether or not the initial null vectors

were correctly normalised when ray tracing each point in the COMPOSITE dataset, with

the prior ray tracing of the CMB making minimal impact.

In order to fully test the kinematic dipole hypothesis in the same fashion as BNW,

we display the Hubble expansion anisotropy of the COMPOSITE dataset itself, as well

as for mock COMPOSITE catalogues with FLRW redshifts transformed by a 635 km s−1

local boost. These results are presented in figure 4.2 for both the dipole and quadrupole

anisotropy. While the incorrect BNW results provide a match to the low redshift dipole

anisotropy of the COMPOSITE dataset by design, the corrected results are almost three

times larger.
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Figure 4.3: The Hubble expansion anisotropy of the COMPOSITE dataset and mock FLRW catalogues
as compared with the mock catalogues for an LTB model with α = 0, δ0 = −0.95 r0 = 45.5h−1 Mpc
and ∆r = 4.55h−1 Mpc, and an observer position of (robs, θobs, ϕobs) =

(
28h−1 Mpc, π/2, π/2

)
. Image

credit: BNW [1]

Intriguingly, the corrected results are a closer match to the FLRW mocks with a local

boost over the whole redshift range. The closeness of this fit is all the more surprising

when we compare the result found by BNW for the LTB model fine-tuned to match the

Hubble variance dipole of the COMPOSITE dataset at z = 0, as we reproduce in fig. 4.3.

In that case, the redshift dependence of the dipole is quite different, only approaching

the mock FLRW samples at larger values of z. BNW argued that this is the result of an

effective point symmetry along the axis connecting the off-centre observer to the centre of

the void. It would appear that the axis defined by the matter dipole in the Szekeres model

gives a similar effect, producing a Hubble variance dipole which is numerically closer to the

ordinary kinematic term on top of an FLRWmodel when fit to the CMB dipole anisotropy

in the LG frame. Evidently, for particular observer positions the Szekeres model can be

degenerate with models for which the usual kinematic interpretation applies.

As for the quadrupole variation of fig. 4.2, none of the mock samples – or even the

boosted FLRW dataset for that matter – reproduce the variation seen in the COMPOSITE

dataset. This was also noted in the results of BNW, where it was again suggested that

a more complex Szekeres may be required to obtain more precision in the quadrupole

determination.

4.1.2 Varying the Observer Position

In addition to determining the Hubble expansion anisotropy measured by the ‘best-

fit’ observer at (robs, θobs, ϕobs) = (25h−1Mpc, 0.705 π, 0.5 π), we further explore the ob-

served anisotropy measured by observers throughout our Szekeres model. Fig. 4.4 shows

the CMB observed dipole and quadrupole variation with the observer position, with the

crosses marking the position of our ‘best-fit’ observer who measures the same CMB dipole
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as us. The amplitudes of both the dipole and quadrupole can be seen to increase as the

observer is positioned closer to the X = 0 axis, which is interior the void region of the

model. This increasing amplitude roughly corresponds to the region in panel (a)1 of fig.

3.1, where the gradient of the transition between the over-density and the under-dense

void region is greatest. The CMB quadrupole amplitude can also be seen to vary with

much greater sensitivity to the observer position than the dipole. However, for this par-

ticular parametrisation of the Szekeres model, the maximum observable CMB quadrupole

is still an order of magnitude smaller than what is actually observed.

In fig. 4.5, the dipole and quadrupole moments of the spherically averaged Hubble

expansion anisotropy are shown for variations of the observer position at z = 0. While

the redshift dependence of the Hubble anisotropy closely resembles that of the CMB

dipole in fig. 4.4, the Hubble quadrupole anisotropy displays a far more complex pattern

of positional variation within the central void region of the model compared to the CMB

quadrupole. Also shown in fig. 4.5 is the fractional variation in the amplitude of the

Hubble dipole δH0 =
(
H0 − H̄0

)
/H̄0 from that of the background FLRW expansion.

Observers interior to the void and deep within the Szekeres over-density measure up to

an almost 30% difference in the Hubble expansion rate, with a difference of 22% observed

at the location of the observer whose CMB dipole matches our own.

Furthermore, we also consider the angular separation between the Hubble expansion

dipole and the CMB dipole as a function of the observer position in fig. 4.6. If the max-

imum of the temperature dipole anisotropy coincides exactly with the minimum of the

Hubble expansion dipole anisotropy, then the angular separation will be 180◦. We do

expect a close correlation of this sort2, and indeed this is what is found. The observer

whose CMB dipole matches our own (indicated by the cross in fig. 4.6) measures a sepa-

ration of ∼ 162◦ between their observed Hubble expansion dipole and the CMB dipole at

(l, b) = (276.4◦, 29.3◦) as observed in the Local Group frame.

1The plotting of figs. 4.4, 4.5 and 4.6 does not include the shell shifting effect that was demonstrated
in fig. 3.1. This is because the compression of the Szekeres shells along the +Z direction squashes the
detail in the anisotropy distribution beyond readability. One should therefore compare the anisotropy
distributions with panel (a) of fig. 3.1, which gives the density distribution of the Szekeres model without
the shell shifting correction.

2Consider a simple linear Hubble law of the form cz = H0r. For fixed r, an additional small blueshift
will increase the CMB temperature while decreasing the value of z and the inferred value of H0.
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Figure 4.4: Corrected BNW base model: The CMB dipole and quadrupole amplitude (as well as the
standard deviation for each) are shown as a function of the observer position. In each panel, the position
of the observer whose CMB dipole matches our own, with the coordinates (3.8), is indicated by a cross.
Note: these plots do not take the shell shifting effects into account.
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Figure 4.5: Corrected BNW base model: The amplitude of the dipole and quadrupole anisotropies in the
variation of H0 are shown as a function of the observer position at z = 0. Also shown is the fractional
variation δH0 =

(
H0 − H̄0

)
/H̄0 in the amplitude of the Hubble expansion dipole from the background

FLRW expansion. In each panel, the position of the observer whose CMB dipole matches our own, with
the coordinates (3.8), is again indicated by a cross. Note: these plots do not take the shell shifting effects
into account.
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Figure 4.6: The angular separation (in degrees) between the Hubble expansion dipole and the CMB
dipole as a function of the observer position. The position of the observer whose CMB dipole matches
our own is again indicated by a cross. Note: this plot does not take the shell shifting effects into account.

4.2 Inclusion of Haantjes Transformations

The Szekeres model of BNW needs to be modified to account for the Hubble expansion

anisotropy of the COMPOSITE dataset. We are interested in using the Haantjes trans-

formations described in section 2.2.5 as a systematic means of creating Szekeres models

with more observationally realistic characterisations of differential expansion. Because

these transformations can be simply parametrised in terms of the three position variables

(ϑ, φ, rl), before being applied to our original axially symmetric Szekeres model, they

allow for minor adjustments to the density dipole while leaving the parameters (3.7) and

(3.8) fixed.

In fig. 4.7, we explore the effects that applying various Haantjes transformations have

on the density of our Szekeres model (which was shown in fig. 3.1). We have opted to

include the effects of Szekeres shell shifting in this figure (see section 2.2.4), as the density

distribution will be smeared out with the relative shell rotations induced by having P ′(r)

and Q′(r) non-zero. The transformations demonstrated in fig. 4.7 are produced using

combinations of ϑ = −π/16, −π/8, −π/4 and rl = 0.1h−1, 1h−1, 2h−1Mpc with φ = 0.

The angles (ϑ, φ) correspond to the new positioning of over-density measured at the

minimum radial location of the anisotropy rl, which then transform the Szekeres dipole

functions (2.63) via (2.65).
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Modifying the dipole functions (P,Q, S) through (2.63) can be interpreted as modify-

ing (2.44) by including additional terms. The form of E ′/E under a Haantjes transforma-

tion becomes(
E ′

E

)
Haan

= −S ′ cos θ +N sin θ

S
− 2(D1 cosϕ+D2 sinϕ)B sin θ

S

+
T ′

T

[
cos θ +

((P +D1A) cosϕ+ (Q+D2A) sinϕ) sin θ

S

]
, (4.1)

where N(r, ϕ) ≡ (P ′ cosϕ+Q′ sinϕ) as before, T (r) is defined by (2.64) and

A(r) = P 2 +Q2 + S2 , B(r) = PP ′ +QQ′ + SS ′ . (4.2)

As (4.1) will multiply the mass function M(r) in the numerator of the Szekeres density

(2.48), as well as the factor of R3 in denominator, there will be a proportional change

in the density distribution depending on the magnitude of the Haantjes transformation

parameters. As the values of D1 and D2 determined by (2.65) vary exponentially in terms

of −S(rl), values of rl that are a significant fraction of the void size r0 will decrease the

overall size of the Haantjes transformation.

The Haantjes transformation angle ϑ of (2.65) can be seen to induce an angular shifting

and smearing of the density dipole about the origin. As the size of this angle increases

towards −π/4, the amount by which the dipole over-density is dragged towards its new

location also increases. For the smallest shown angle of ϑ = −π/16 with rl = 2h−1Mpc,

the density deviates minimally from its untransformed distribution shown in panel (b)

of fig. 3.1. Decreasing the anisotropy parameter rl from rl = 2h−1Mpc down to rl =

0.1h−1Mpc results in a broadening of the dipole over-density in the radial direction. For

values of rl approaching the characteristic void size r0, one finds that the ray traced CMB

dipole tends to its unmodified amplitude, which is the minimum obtainable value when

performing these Haantjes transformations.

To further explore the effect that performing a small Haantjes transformation has on

the Hubble expansion anisotropy, we trialled various combinations of Haantjes parame-

ters on the base Szekeres model of section 3.1.3. In fig. 4.8, we show the results of a

Haantjes transformation where we have set (ϑ, φ, rl) = (π/16, 0π, 10h−1Mpc) in (2.65),

in order to modify S(r), P (r) and Q(r) in the model according to (2.63). Although this

particular parametrisation is found to yield a slightly higher CMB dipole amplitude of

∆Td = 7.22mK, the quadrupole amplitude increases excessively to D2 ≃ 20 × 106 µK2.

Nevertheless, the distribution of the Hubble expansion anisotropy under the transforma-
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Figure 4.7: The density of the axially symmetric Szekeres model shown in fig. 3.1 under various Haantjes
transformations (following the methodology detailed in section 2.2.5), with crosses marking the origin
point (X ′, Z ′) = (0, 0). Note: in these density plots the effects of shell shifting and rotation are included.
In each case, rl is specified at the top of each column in units of h−1 Mpc where h = 0.673.
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Figure 4.8: The effect of performing a small Haantjes transformation (denoted here as ‘Haantjes A’) on
the Hubble expansion anisotropy. The base, axially symmetric Szekeres model defined in section 3.1.3
is maintained, with the Haantjes transformation applied through specifying the parameters (ϑ, φ, rl)
of (2.65) and modifying S(r), P (r) and Q(r) according to (2.63). To obtain Haantjes A, the Haantjes
parameters were set (ϑ, φ, rl) =

(
π/16, 0π, 10h−1 Mpc

)
, before the COMPOSITE dataset was ray traced

using the corrected null vector initialisation routine.

tion shifts downwards in magnitude towards the COMPOSITE anisotropy. This suggests

that performing a Haantjes transformation to correct the Hubble expansion anisotropy

to match that of COMPOSITE, while simultaneously matching the CMB dipole and

quadrupole anisotropies, is very non-trivial. Clearly a grid search is required – however,

given the number of free parameters to be varied, it is a task that really requires parallel

processing on a high-performance machine.

The particular Haantjes transformation applied to obtain the results in fig. 4.8 is

actually miniscule when compared to the density of the untransformed Szekeres model.

In fig. 4.9, the resultant density of the ‘Haantjes A’ transformation is shown with a line

tracing the shifts of each Szekeres shell. The deviation of this line from the X ′ = 0 plane

is barely perceptible, with a slight gradient of approximately 2.2× 10−4. This illustrates

just how sensitive the ray tracing results are to small model changes.
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Figure 4.9: The density of the base Szekeres model with a Haantjes transformation of (ϑ, φ, rl) =
(π/16, 0π, 10h−1 Mpc), which we refer to as ’Haantjes A’ in fig. 4.8. The yellow line tracks the shifts in
position of θ = 0 on each shell, although its deviation from Z ′ = 0 axis is virtually imperceptible. Note:
the density in this figure is plotted including the shell shifting and rotation effects.
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Chapter 5

Conclusion

By performing ray tracing analyses with Szekeres cosmological models, we have charac-

terised the influence that local inhomogeneities have on the spherically averaged Hubble

expansion on <∼ 150h−1Mpc scales. We found that correcting an erroneous null vector

initialisation routine, first noted by Dam [107], significantly modified the reported Hub-

ble expansion anisotropy. Once corrected, the spherically averaged Hubble expansion

anisotropy (presented in fig. 4.1) is nearly three times as large as that reported by BNW

at redshifts z <∼ 0.04, although the distribution retains much the same shape. Since the

particular Szekeres model parameters had been best fit to match the local Hubble expan-

sion anisotropy of the COMPOSITE dataset with a critical error in the code, clearly the

parameters of the model have to be readjusted to fulfil the original aims of BNW, if it is

indeed at all possible. In this thesis, we have taken further steps towards this goal.

Firstly, we explored the effects of repositioning the observer within the axially sym-

metric Szekeres model with the parameters specified by BNW. While we indeed observed

variations of the amplitude of the dipole and quadrupole moments consistent with the

Szekeres structures and the relative position of the observer, a simple repositioning of the

observer did not improve the match to the COMPOSITE data anisotropy. Not only must

the observed CMB dipole remain consistent for a repositioned observer, but the position

itself must be consistent with respect to the local structures.

As was also noted by both BNW and Dam [107], the CMB quadrupole amplitude

obtained in the ray traced Szekeres model is an order of magnitude smaller than actually

observed in the CMB. From fig. 4.4, it is evident that the CMB quadrupole amplitude

is fairly sensitive to the observer position, although its maximum possible value on the

interior of the void is still much lower than the observed expectation. Similarly, for the

quadrupole of the Hubble expansion anisotropy shown in fig. 4.5, the ray traced results
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are considerably smaller than observed for COMPOSITE.

Unfortunately, a re-parametrisation of our Szekeres model is expected to be computa-

tionally expensive, as there are a total of seven free parameters to be explored. Only five

of these parameters (α, r0, δ0, robs, θobs) were actively varied by BNW, with ϕobs = 0.5π

and ∆r = 0.1 r0 set to simplify down the parameter space. In the limit of keeping with

the axially symmetric Szekeres model with only S ′(r) ̸= 0, it is conceivable to perform a

much more rigorous parameter space search that includes the variation of all seven free

variables. However, this is assuming that a satisfactory parameter set is obtainable in

what is a relatively simplistic Szekeres model.

Szekeres models that are non-axially symmetric, or that have P ′(r) ̸= 0 and/orQ′(r) ̸=
0, have been previously studied by Bolejko [121]. In such cases, one must decide on

appropriate parametrisations of both P (r) andQ(r) that produce a consistent, viable form

of the model. This is especially the case when the model is non-axially symmetric, which

could further complicate the numerical integration of geodesics within our simulations.

Since performing a suitable Haantjes transformation relocates the density dipole of the

model while automatically ensuring P (r), Q(r) and S(r) jointly satisfy the axial symmetry

conditions, it could further prove useful in applying minor model adjustments.

Beyond a much needed re-parametrisation of the Szekeres model, it could be the case

that a simple dipole density distribution lacks the required complexity to successfully

capture the quadrupole moments of both the CMB and Hubble expansion anisotropy [1].

One could further investigate adding more complex structures into the Szekeres model, e.g.

by creating elaborate networks of evolving density extrema, as is demonstrated in depth

by Sussman and collaborators [122, 123]. This particular approach considers Szekeres

models in terms of covariant scalars, whose extrema can be positioned almost arbitrarily

in terms of spherical coordinates. One such covariant scalar is the density of the Szekeres

model, with its maxima and minima physically corresponding to the over-densities and

under-densities within the model. Moreover, as these density extrema are not comoving

with the FLRW background, they intuitively express deviations from the FLRW expansion

e.g., in terms of their peculiar velocities.

Over the past few years, numerous investigations into bulk flows, number count dipoles

and differing notions of scales of statistical homogeneity have fuelled interest in the po-

tential observational effects linked to local inhomogeneities and expansion rate variations.

However, as the previous examinations of the spherically averaged Hubble anisotropy

of Cosmicflows-II have demonstrated [101, 124], many of these investigations may still

have to contend with persisting systematics and biases. Nonetheless, it could still prove

insightful to explore their results as interpreted in an inhomogeneous cosmological model.
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In light of ongoing interest and debate concerning the non-kinematic nature of the

dipole in number counts of quasars and other distant radio galaxy samples [95, 97, 125],

it is very important to perform a similar ray tracing analysis to that of this thesis for

datasets such as the 1.36 million CatWISE quasar sample of Secrest et al. [95]. This

dataset has a far larger mean redshift of z = 1.2 compared to COMPOSITE’s mean

redshift of z = 0.02. Such an endeavour would require that we first determine Szekeres

models which can realistically reproduce the local Hubble expansion variance seen in low

redshift samples such as COMPOSITE.

Finally, there is the potential for new insights into the effects of local inhomogeneity

and anisotropy by considering more generalised forms of the luminosity distance-redshift

expansion (1.11). A promising approach is that of Heinesen [120, 126], who has developed

a low-redshift cosmographic expansion allowing for anisotropies of the sort we model with

exact solutions. Heinesen’s formalism makes very few assumptions – in particular, no

field equations are prescribed. It makes the minimal assumptions that timelike observer

congruences, as well as null geodesics obey equations of geodesic deviation equations gov-

erned by the Riemann curvature tensor, as in general relativity. Consequently the Sachs

optical equation (1.37) can be applied along with additional equations which describe

the evolution of the light ray bundle, and of the observer congruence. In addition, the

formalism does not apply to observer congruences which are contracting – which would

give rise to the problems of shell-crossing etc. In the presence of local inhomogeneities,

there will, in general, be additional terms to the usual FLRW cosmographic coefficients

in (1.11). Furthermore, since Heinesen’s approach is background independent, quantities

such as the deceleration parameter are redefined from first principles.

Significantly, the coefficients of the formalism devised by [120] can be directly tested

by measurements with sufficiently large cosmological datasets, such as will become avail-

able in the next two decades. The possibilities for general relativistic predictions are

already under investigation within large scale numerical relativity simulations. For exam-

ple, working with dust models which evolve on average as an Einstein–de Sitter model,

Macpherson & Heinesen [127] find a 0.6% cosmic variance in the ‘effective’ observed Hub-

ble parameter coarse–grained on very large scales of 200h−1Mpc. It would thus be both

interesting and complementary to examine the generalised luminosity distance expansion

on the <∼ 150h−1Mpc scales that our ray tracing simulations probe. In particular, in

combination with Szekeres model ray tracing, Heinesen’s formalism may be useful for

definitively characterising relativistic differential expansion.

Overall, the research into ray traced Szekeres models and the Hubble expansion

anisotropy undertaken in this thesis has yielded many new lines of inquiry to be ex-

plored in future work. It is hoped that by increasing the sophistication of our ray tracing
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simulations within more complex Szekeres models, we can better characterise the inho-

mogeneities and anisotropies present in our local universe – using the full advantages of

our general relativistic approach. Furthermore, with the anticipated increase in both the

precision and volume of full sky surveys over the next decade, it is desirable that the

inference of cosmological results becomes less constrained by the various model assump-

tions involved in analysing the data. Analyses of the kind performed in this thesis will

potentially further our progress towards this goal.
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[111] J. Plebański and A. Krasiński, An Introduction to General Relativity and Cosmology

(Cambridge University Press, Cambridge, UK, 2006).

[112] R. G. Buckley and E. M. Schlegel, “Physical Geometry of the Quasispherical Szek-

eres Models”, Physical Review D 101, 023511 (2020).

[113] B. J. T. Jones, Precision Cosmology: The First Half Million Years (Cambridge

University Press, Cambridge, UK, 2017).
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