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Abstract
This review aimed to determine whether current 
grazing management practices will suit future intensive 
rotationally grazed pastoral systems. A review of literature 
on grazing management recommendations found that 
there was good agreement on the ‘principles’ required for 
optimal grazing management. While these management 
practices have stood the test of time, it is concluded that 
shifts in external pressures (e.g., climate, plant selection 
and breeding, system intensification) compared to the 
period when farm-level grazing recommendations were 
first developed, may necessitate a rethink of current 
grazing recommendations. Examples include greater 
pasture masses (e.g., around 4000 kg dry matter (DM)/
ha vs. the recommended range of 2600 to 3200 kg DM/
ha) where short-rotation (annual, biennial) and tetraploid 
ryegrasses are sown, provided a consistent post-grazing 
residual can be maintained (possibly between 40- and 
70- mm height). Milder winters and the use of ryegrass 
cultivars with higher growth rates in late winter/early 
spring may necessitate either lower target pasture covers 
at calving or shorter rotation lengths during winter. Longer 
grazing rotations (well beyond the 3-leaf stage, i.e., 
equivalent to deferred grazing) can be recommended for 
select paddocks from mid-spring into summer, to increase 
seasonal resilience across the farm. Longer residuals 
(even up to 70 mm - i.e., almost double the recommended 
height) might improve plant survival during periods of 
high stress (e.g., heatwaves, droughts). Lastly, diverse 
species pastures may require specific management to suit 
dominant species other than perennial ryegrass.

Keywords: diverse pastures, grazing principles, 
grazing rotation, leaf regrowth stage, post-grazing 
residual

Background
The economic competitiveness of pastoral industries 
is underpinned by the ability to use livestock to graze 

ISSN 0118-8581 (Print) ISSN 2463-4751 (Online) https://doi.org/10.33584/rps.17.2021.3464

Will current rotational grazing management recommendations suit 
future intensive pastoral systems?

Daniel J. DONAGHY1,*, Racheal H. BRYANT2, Lydia M. CRANSTON1, Michael EGAN3, Wendy M. 
GRIFFITHS4, Jane K. KAY4, Keith G. PEMBLETON5 and Katherine N. TOZER6

1Massey University School of Agriculture & Environment, Private Bag 11222, Palmerston North 4410, New Zealand
2Lincoln University Faculty of Agriculture & Life Sciences, PO Box 85084, Lincoln 7647, New Zealand

3Animal & Grassland Research & Innovation Centre, Teagasc, Moorepark, Fermoy, Cork P61 C997, Ireland
4DairyNZ, Private Bag 3221, Hamilton 3240, New Zealand

5University of Southern Queensland Centre for Sustainable Agricultural Systems and School of Sciences, 
Toowoomba, Queensland 4350, Australia

6AgResearch, Ruakura Agricultural Centre, Private Bag 3123, Hamilton 3240, New Zealand
*Corresponding author: d.j.donaghy@massey.ac.nz

pastures in situ for as long as possible during the year. 
Multiple studies in the dairy industry have identified that 
the consumption of pasture is the most important factor 
impacting on profit (Dillon et al. 2005; Ramsbottom et 
al. 2015; Beca 2020). Grazing management of various 
pasture species, focusing either at the level of the plant, 
the grazing ruminant, or the whole farm, has been the 
subject of decades of research. Notwithstanding that 
in many cases, ‘grazing management’ research has 
been separated into a focus predominantly on plants, 
or on animals (Fulkerson & Donaghy 2001), there 
is general agreement on the principles required for 
‘optimal’ grazing of a temperate pasture, whether these 
principles are based on sward height (Hodgson 1990), 
variable day rotations (Mayne et al. 2000), herbage 
mass targets (Sheath & Clark 1996), or leaf regrowth 
stage (Fulkerson & Donaghy 2001). The knowledge 
and science contained in multiple research studies have 
been summarised in farmer-friendly publications, and 
recommendations are broadly applicable to temperate 
pastoral regions (e.g., Dairy Australia 2011; Lee et 
al. 2011; McCarthy et al. 2015; Macdonald & Roche 
2016).

At the farm level, these principles have been 
summarised into comprehensive grazing decision 
guidelines (e.g., Macdonald & Penno 1998; Macdonald 
et al. 2010), which at the pasture level are based on 
achieving ‘average pasture cover’ (average herbage 
mass) targets at key times of the year. For example, 
in dairy farm systems, pasture cover targets exist for 
planned start of calving and again at balance date 
(when pasture growth equals herd demand), with 
additional operational support tools such as the ‘spring 
rotation planner’ to help farmers achieve these targets 
(Macdonald & Roche 2016). The basis for so many of 
the recommended grazing management practices used 
today have been derived largely from farm systems 
research undertaken in the 1960s through to the 1990s 
(Roche et al. 2017a).
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This farm systems research used decision-making 
processes to manage pasture with the dual objectives of 
meeting the animals’ requirements while maintaining 
pasture nutritive value throughout the season 
(Macdonald & Penno 1998). However, at the farmer 
level, the application of localised grazing management 
‘guidelines’ can sometimes vary from these grazing 
management ‘principles’ (Macdonald et al. 2010). 
Examples of this can include implementing a grazing 
rotation that is longer than the ‘optimum’ range for leaf 
senescence, in order to transfer autumn-grown pasture 
into winter (Chapman et al. 2014), or removing stock 
from the farm during winter and thus ‘undergrazing’ 
pasture in order to manage wet soils; both are examples 
of targeting an optimum outcome for the farm system.

The dependence of pastoral farm systems on the 
prevailing climate exposes farmers to increasing 
risk as climate change results in more variability in 
seasonal conditions, with an increasing number of 
droughts, floods and/or heatwaves, migration of insect 
pests and plant diseases into wider areas, and longer 
feeding seasons of insect pests (Farrow et al. 1993; 
Ward & Masters 2007; Ministry for the Environment 
2018). Consequently, the poor recovery of pastures 
to increased severity and frequency of adverse 
environmental conditions impacts pasture persistence 
and performance. The failure of ryegrass-based pastures 
3 or 4 years post-sowing continues to be a significant 
concern for many farmers, particularly in the upper 
North Island. This, combined with the introduction 
of new pasture types and cultivar selections, and 
changes to system intensification, has resulted in a 
loss in confidence in perennial ryegrass and associated 
industry recommendations for grazing management. 
Thus, the purpose of this review of literature is to 
answer the question “Will current rotational grazing 
management recommendations suit pastoral systems 
over the coming several decades?” The review will 
explore these practices at both the fundamental (i.e., 
pasture management at a plant level) and the systems 
level (i.e., at a farm scale). Given the importance and 
abundance of perennial ryegrass (Lolium perenne L.) 
in temperate pastoral agriculture (Kemp et al. 2000), 
much of the review will focus on this grass.

The foundations of grazing management
There are four broad objectives of grazing management: 
optimising pasture production, nutritive value, and 
persistence, along with utilisation by the grazing animal 
(Roche et al. 2017b). They are linked, in that similar 
grazing management decision rules can optimise all 
four objectives (Fulkerson & Donaghy 2001). The two 
most important characteristics of rotational grazing 
management are grazing interval (when to graze a 
paddock or area; colloquially known as rotation or 

round length) and grazing intensity (how hard to 
graze a paddock or area; colloquially known as post-
grazing residual, Roche et al. 2017b). At the plant 
level, these objectives acknowledge the energy status 
of the plant following a defoliation event (Fulkerson 
& Donaghy 2001; Chapman 2016). A starting point 
for designing an efficient grazing management system 
is an understanding of the pasture regrowth curve 
(Chapman 2016). Brougham (1955) first noted that 
following defoliation to 50 mm residual height, grass 
regrowth followed a sigmoidal (S-shaped) pattern, 
starting slowly with a ‘lag phase’ and then increasing 
exponentially, reaching a constant maximum rate and 
then eventually declining as a ‘ceiling yield’ is reached, 
at which leaf death equals leaf growth. This sigmoid 
curve was a central tenet in Andre Voisin’s textbook 
‘Grass Productivity’, to promote the importance of 
a suitable ‘rest period’ between sequential rotational 
grazings (Voisin 1959), and is also a key principle 
underpinning current recommendations for grazing 
management in both rotational and continuous stocking 
systems (Fulkerson & Donaghy 2001; Lee et al. 2011; 
Chapman et al. 2014; McCarthy et al. 2014; Chapman 
2016; Roche et al. 2017b).

Current recommendations for grazing 
management: the plant level
In a rotational grazing system, the optimal grazing 
rotation at the plant level is based on the dominant grass 
species attaining a set number of live leaves per tiller, 
after which the emergence of each additional new leaf 
is balanced by the death of the oldest leaf (Fulkerson 
& Donaghy 2001). This ‘leaf stage’ is defined by the 
lifespan of leaves and varies between species (Roche 
et al. 2017b).

Leaf regrowth stage has been proposed as a practical 
tool to set grazing interval in order to optimise the 
persistence, production and nutritive value of a range of 
pasture species, including perennial ryegrass, biennial 
ryegrass (Lolium multiflorum L.), tall fescue (Festuca 
arundinacea Schreb., syn., Schedonorus arundinaceus 
and Lolium arundinaceum), prairie grass (Bromus 
willdenowii Kunth.), kikuyu (Pennisetum clandestinum 
Hochst. ex. Chiov.), and cocksfoot (Dactylis glomerata 
L.) (Fulkerson et al. 1993; Fulkerson & Slack 1994, 
1995; Donaghy et al. 1997, 2008; Fulkerson et al. 1998, 
2000; Fulkerson & Donaghy 2001; Rawnsley et al. 
2002, 2014; Turner et al. 2006a, b; Hendriks et al. 2016; 
Kaufononga et al. 2017; Pembleton et al. 2017). At the 
lower (more frequent) scale of defoliation, the grazing 
interval should allow enough time for plants to regain 
their energy reserves to ‘cope’ with another grazing 
(i.e., the 2-leaf stage in ryegrass pastures; Donaghy 
& Fulkerson 1998), while at the upper (less frequent) 
scale of defoliation, the grazing interval should avoid 

Resilient Pastures – Grassland Research and Practice Series 17:         225-242  (2021)



227

significant herbage senescence and declining herbage 
nutritive value (i.e., the 3-leaf stage in ryegrass pastures; 
Fulkerson & Donaghy 2001). Leaf stage relates to the 
aforementioned sigmoid curve (Brougham 1955), 
with the 2- to 3-leaf stage generally coinciding with 
the period of maximum average growth rate (Parsons 
& Chapman 2000; Chapman 2016), indicating the 
optimum balance between the amount of new leaf 
produced and the amount of old leaf dying (Chapman 
et al. 2014).

Leaf emergence is affected predominantly by 
temperature, and to a lesser extent by soil moisture 
availability (Mitchell 1953; Fulkerson & Donaghy 
2001; Rawnsley et al. 2010), and so leaf stage remains 
relatively consistent in plants within and between 
paddocks of farms in close proximity for any given 
period of time. However, pasture growth and therefore 
accumulation of herbage mass is affected by many 
other factors in addition to temperature and moisture, 
including tiller density, botanical composition, light, soil 
fertility and previous grazing management (Brougham 
1957; Langer 1979). Thus, at canopy closure, the point 
beyond which no further improvement in interception 
of photosynthetically-active radiation occurs (Akmal 
& Janssens 2004), there is an increase in fibrous stem 
material and a decline in net pasture growth rate, 
tillering and pasture nutritive value (Rawnsley et al. 
2007, 2014; Pembleton et al. 2017). Canopy closure 
is not always linked directly to a specific leaf stage, 
and paddocks that are at or close to canopy closure 
should be grazed regardless of leaf stage (Rawnsley 
et al. 2014; Roche et al. 2017b). This is because, as 
canopy closure progresses, shading of the pasture base 
increases, which is a major factor in tiller death (Ong & 
Marshall 1979). Shading of the pasture base also results 
in aerial tillering (Hughes & Jackson 1974; Korte et al. 
1987), in which daughter tillers arise from elevated 
apical meristems and are unable to effectively develop 
roots (McKenzie 1998), which negatively impacts on 
tiller replacement and eventually pasture persistence 
(Hughes & Jackson 1974). At the level of the paddock 
or farm, this optimum grazing interval translates to the 
aim of maintaining pasture in a high-quality, vegetative 
state and minimising senescence and stem production 
(Parsons & Chapman 2000), to achieve efficient 
conversion of pasture into animal product (Mayne et 
al. 2000).

The optimal post-grazing residual at the plant level 
is based on leaving 40-50 mm of plant behind, as this 
is where temperate grasses store the majority of their 
energy reserves (Fulkerson & Donaghy 2001). More 
severe grazing removes progressively more leaf area 
and also reduces the major energy storage areas of the 
plant (tiller base) resulting in reduced regrowth and 
may impact negatively on persistence (Fulkerson & 

Donaghy 2001; Lee et al. 2008a). There is little effect 
on subsequent pasture yield of post-grazing residuals 
varying from 40 mm to 80 mm height, however more 
lax grazing reduced herbage nutritive value (Lee et al. 
2008a). Although increased yields of pasture have been 
achieved with longer post-grazing residuals (e.g., 1895, 
1602 and 1382 kg dry matter (DM)/ha for pasture field 
plots harvested to 100, 80 and 60 mm residual stubble 
height, respectively), they are only in the short term 
(i.e., the first of seven subsequent 3-leaf regrowth cycles 
following implementation of defoliation treatments), 
and cumulative yields were significantly lower at the 
end of the seven harvests (11.3, 13.3 and 13.7 t DM/
ha, for 100, 80 and 60 mm residual stubble height, 
respectively, Lee et al. 2008a). Additionally, any further 
transient pasture growth that may occur under more 
lax defoliation does not compensate for the associated 
herbage loss through leaf senescence along with 
reduced rates of tillering (Fulkerson & Slack 1995; Lee 
et al. 2007, 2008a). Hunt & Brougham (1967) found 
that where repeated lax defoliation (cutting to 100 to 
140 mm height over 7 weeks) of perennial ryegrass left 
enough herbage to intercept around 95% of incident 
light, the amount of green leaf and the number of tillers 
initiated declined progressively, while the proportion of 
dead material increased, which those authors concluded 
indicated the need for periodic close defoliation to 
renew the photosynthetic capacity of the grass sward 
and to prevent shading of tiller bases.

Post-grazing residual impacts on the sigmoid 
regrowth curve, with more severe grazing resulting in 
a longer lag phase and a longer time to reach ceiling 
yield, and more lax grazing resulting in a shorter or 
no lag phase, and a shorter time to reach ceiling yield 
(Parsons et al. 1988; Chapman 2016). Thus, although 
most pastures can recover from very low post-grazing 
residuals (e.g., 20 mm) if enough time is allowed (i.e., a 
long subsequent rotation), higher post-grazing residuals 
(e.g., >70 mm) require shorter associated rotations 
to maintain high quality pasture, and these shorter 
rotations (through preventing replenishment of plant 
energy reserves) can compromise yield and persistence 
(Chapman 2016; Roche et al. 2017b).

The optimal post-grazing residual of 40-50 mm 
results in a high-quality pasture and allows the 
implementation of a rotation in the optimal range (2- to 
3-leaf stage). Importantly also from the point of view of 
the grazing animal, post-grazing residuals are a practical 
indicator of how well animals are being fed. Baudracco 
et al. (2010) showed that a quadratic relationship exists 
between pre-grazing herbage DM/ha and daily DM 
intake/cow; as pre-grazing herbage DM increased, 
the post-grazing residual increased at a greater rate 
than that of the herbage DM intake. In an analysis of 
the review by Baudracco et al. (2010), Wilkinson et 
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al. (2020) determined that the lines for daily herbage 
intake/cow and post-grazing residual DM intersected at 
a post-grazing residual of around 1500 kg DM/ha. Post-
grazing residuals can therefore be used as a proxy for 
pasture offered - as they increase, the increase in DM 
intake relative to what is offered declines. In a dairy 
pasture, post-grazing heights greater than around 50 
mm indicate that pasture is being wasted and the DM 
intake of cows is not greatly increased, whereas at post-
grazing heights less than around 35 mm, the DM intake 
of cows significantly declines (Roche et al. 2017b).

Current recommendations for grazing 
management: the farm level
Macdonald & Penno (1998) reviewed grazing 
management research and summarised a series of 
decision rules to manage seasonal calving pastoral 
dairy farms, focusing on achieving two important 
targets to ensure a profitable and sustainable farm 
system: cow body condition and average herbage mass 
at start of calving. Average herbage mass provides a 
measure of the amount of feed energy available within 
the farm (assuming average metabolisable energy 
values of pasture), and this is more important during 
the calving period, as underfeeding around this time 
impacts on herd performance for the remainder of the 
season (Macdonald & Penno 1998).

However, these target pasture covers at calving 
have been variously reported as 2000 (Bryant 1990), 
2200 (Macdonald & Penno 1998), between 1800 and 
2200 (Sheath & Clark 1996), between 2200 and 2400 
(Macdonald et al. 2010), and 2500 (Claffey et al. 2019) 
kg DM/ha. These differences in targets probably reflect 
differences in stocking rates, calving rate, pasture 
growth rates and amount of nitrogen (N) fertiliser and 
supplementary feed used and may also reflect an impact 
of climate change, which is altering seasonal pasture 
growth. Current advice is to use a feed budget to more 
accurately predict average pasture cover required at 
calving on an individual farm basis (DairyNZ 2020).

To achieve these target pasture covers on farm, 
the recommended pre-grazing mass for lactating 
cows ranges from 2600 to 3200 kg DM/ha, and the 
recommended post-grazing residual ranges from 1500 
to 1600 kg DM/ha (McCarthy et al. 2014). Most of the 
dairy grazing studies used rising plate meters (Earle & 
McGowan 1979) to record pasture mass. Using the New 
Zealand standard rising plate meter equation of “kg DM/
ha = average compressed pasture height × 140 + 500” 
(DairyNZ 2008), this equates to pre-grazing heights of 
75-100 mm compressed height (which, depending on 
pasture density and stem content, probably equates to 
85-110 mm sward surface height) and post-grazing 
heights of 35-40 mm compressed height (probably 
equating to 40-45 mm sward surface height). These 

target pre-grazing heights fit within the recommended 
80-100 mm sward surface heights for high-yielding 
cows determined in a review of literature by Mayne et 
al. (2000); at shorter heights, daily herbage intake was 
reduced, and animal production declined (Mayne et 
al. 2000). Furthermore, the target post-grazing heights 
allow temperate grasses to retain their energy reserves 
(Fulkerson & Donaghy 2001).

A decision support resource used by many dairy 
farmers is the spring rotation planner, which was 
developed in New Zealand for use in temperate 
pastoral regions regardless of stocking rate, amount 
of supplementary feed allocated, or cow breed 
(Macdonald & Roche 2016). The rotation planner 
allows farmers to manage their allocation of pasture 
and rotation length either during the autumn and winter 
period before spring calving, or from calving to balance 
date (Macdonald & Roche 2016).

Grazing outside of these management 
recommendations
Grazing rotation
Multiple studies using leaf stage as a criterion 
for defoliation have concluded that repeated (≥2) 
defoliations less than the 2-leaf stage (ranging from 
the 1-leaf to 1.5-leaf stage) reduce plant energy reserve 
levels, tillering, root mass, DM yield of pasture and 
nutritive value of herbage, and increase tiller and plant 
death, and invasion of less-desirable plant species into 
the pasture (Fulkerson & Slack 1994, 1995; Donaghy et 
al. 1997; Donaghy & Fulkerson 1998, 2002; Fulkerson 
et al. 1998; Turner et al. 2006a, b; Rawnsley et al. 2014; 
Pembleton et al. 2017). The only instances where a 
fast rotation (<2-leaf stage) could be beneficial are: 1) 
during reproductive growth; 2) when rust fungus has 
infected significant areas of pasture early in regrowth; 3) 
when ryegrass growth has almost ceased and invading 
summer grasses need to be controlled (Donaghy et al. 
1997); or 4) when canopy closure is occurring early in 
regrowth (Roche et al. 2017b).

In diploid perennial ryegrass, the onset of canopy 
closure usually occurs at a pasture mass of around 3000 
to 3500 kg DM/ha (Rawnsley et al. 2014), while in 
tetraploid perennial ryegrass and annual (L. temulentum 
L. or L. rigidum Gaudin) and biennial genotypes, the 
onset of canopy closure is seen at pasture masses as 
high as 3700 to 4000 kg DM/ha, due to their more 
open growth habit (fewer, larger tillers, larger leaves). 
Thus, the recommended pre-grazing target range for 
pasture mass (2600 to 3200 kg DM/ha; McCarthy et 
al. 2014) coincides with the onset of canopy closure 
in diploid perennial ryegrass pastures. The use of 
tetraploid ryegrass, or shorter rotation ryegrass, allows 
the opportunity to graze higher pasture masses than 
this (but still prior to, or at, canopy closure in those 
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ryegrass types), while still achieving high utilisation 
(i.e., consistent and even post-grazing residuals) and 
animal production (Edwards & Bryant 2016). In a 
grazing study comparing milk production from cows 
grazing diploid and tetraploid perennial ryegrasses to 
either between 2900 and 3200 kg DM/ha, or between 
3800 and 5000 kg DM/ha, Bryant & Edwards (2012) 
confirmed that milk production decreased by 0.14 kg 
milksolids/cow/day when the diploid cultivar was 
grazed at the greater mass range, but was unaffected 
when the tetraploid cultivar was grazed at the greater 
mass range.

Multiple studies have confirmed that in more 
stressful environments (e.g., subtropical/tropical), 
longer rotations (e.g., the 3- or 3.5-leaf stage) maximise 
plant energy reserves and associated tillering and root 
production, and therefore plant persistency and survival, 
and enhance the ability of temperate species to reduce 
the ingress of summer grasses (Fulkerson et al. 1993; 
Fulkerson & Slack 1994, 1995; Donaghy et al. 1997; 
Donaghy & Fulkerson 2002). Interestingly, Donaghy et 
al. (1997) found that there was little impact of rotation 
length (3-leaf vs. 1-leaf stage) on plant survival during 
a subtropical winter in northern New South Wales, 
Australia (where the climate is mild in comparison to 
winter conditions in most pastoral temperate regions), 
however there was a major impact on how ryegrass/
white clover (Trifolium repens L.) pastures survived 
the subsequent harsher summer, with more perennial 
ryegrass plants surviving summer (74 vs. 54 plants/m2) 
and less tropical grass [primarily kikuyu, paspalum 
(Paspalum dilatatum Poiret) and summer grass 
(Digitaria sanguinalis (L.) Scop.)] plant incursion (46 
vs. 60 plants/m2) under the 3-leaf winter rotation. In 
other words, it was how the plants were ‘pre-treated’ 
prior to the major stress period (subtropical summer), 
which had the most influence on their survival.

Delayed or deferred grazing
Under periods of increasing climatic stress (e.g., more 
frequent and severe droughts as a result of climate 
change), tiller mortality is likely to increase, with 
detrimental subsequent effects on tiller density and 
pasture productivity. Strategies are required that can 
enhance pasture resilience by enabling tiller populations 
to withstand, and recover from, these periods of stress.

One such strategy is the concept of ‘late control’ 
(Matthew et al. 2000), which involves removing a 
paddock from grazing from mid-spring until early 
summer, allowing anthesis to occur. Most of the 
carbohydrate reserves are prioritised for seed-head 
development and the production of new tillers is 
suppressed (i.e., apical dominance; Jewiss 1972), 
however, a small but biologically-significant amount 
of carbohydrate accumulates at the base of the plant 

for the growth of young tillers (Matthew 2002). When 
the developing seed-head is decapitated following 6-12 
weeks of regrowth, apical dominance is removed, and 
the tiller buds can produce new tillers, fuelled by these 
carbohydrate stores (Hampton et al. 1987; Matthew et 
al. 1991). Although plot studies have demonstrated a 
great deal of promise for late control (Hernandez Garay 
et al. 1997a, b), the attainment of whole-farm benefits 
in herbage production have been inconsistent (Bishop 
Hurley et al. 1997; Da Silva et al. 2004). Also, from 
a practical sense, when a manager is aiming to match 
livestock demand to pasture supply, it can be difficult 
to time the grazing so that it corresponds with anthesis. 
Further, if these new tillers are subjected to drought 
and other stresses over summer, they may not survive. 
Nevertheless, more work investigating the balance 
between above- and below-ground soil-pasture fluxes 
during spring and summer would be warranted.

An alternative strategy to late control is ‘deferred 
grazing’, where the removal from grazing is longer, 
from mid-spring until mid-summer, after seed has 
fallen (Tozer et al. 2020a). This avoids the difficulty 
of timing the grazing specifically during anthesis and 
enables pasture to accumulate in the paddock, that can 
subsequently be grazed at the end of summer when 
feed may be scarce, especially after a summer drought. 
Although this pasture could also be conserved as silage 
or hay, these are both more expensive options and also 
may not be able to be implemented on hilly paddocks for 
example, and thus, deferred grazing utilises principles 
of ecophysiology in order to increase persistence and 
resilience of pastures. Deferred grazing allows plants 
to flower and set seed, and as was the case with late 
control, carbohydrate accumulated in the tiller base can 
be used for the development of new tillers in autumn, 
once reproductive development has completed and 
climatic conditions are conducive for tiller growth and 
survival. While this practice has a short-term negative 
impact on pasture nutritive value and utilisation 
during the period in which grazing is deferred (Tozer 
et al. 2020b), there may be substantial benefits for 
tiller populations, pasture production and profitability 
at a farm scale (Dowling et al. 1996; Waller & Sale 
2001; Tozer et al. 2021a, b). Firstly, tiller densities in 
the deferred pastures may increase through reseeding 
(L’Huillier & Aislabie 1987) and/or increased tillering 
from existing plants (Waller & Sale 2001). Reseeding 
is more important under conditions of drought stress, 
while the increased tillering from existing plants is 
more important in a benign environment (Tozer et 
al. 2020b). Secondly, associated with this increased 
tillering is an increase in herbage production, which 
can last for up to 12 months after the deferred period 
in beef and sheep hill country pastures (Tozer et al. 
2020b). The deferred pasture can also provide grazing 
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at the end of a summer drought, which increases the 
resilience of farms to climatic shocks. Thirdly, deferred 
grazing can be used to control pasture nutritive value at 
a farm scale and better match feed supply to livestock 
demand. When paddocks are removed from the rotation, 
livestock have a smaller effective grazing area and are 
better able to utilise the spring pasture, where growth 
often exceeds livestock demand (Suckling 1959). It can 
also increase nutritive value by increasing the legume 
content (e.g., Nie et al. 1996), although this depends 
on the timing of closing and re-opening pastures to 
grazing and on the other species present in the sward. 
This enables livestock to better maintain pastures in 
a high-quality vegetative state, such that pastures are 
grazed at the 2- to 3-leaf stage. In this way, deferred 
grazing integrates traditional pasture principles, which 
focus on maintaining high-quality leafy material, and 
additionally harnesses the plant’s reproductive cycle, 
resulting in benefits for resilience at both the pasture 
and farm scale.

Thus, while there are few reasons to rotationally 
graze pastures faster than recommended with respect 
to pasture persistence, there is evidence that the grazing 
‘rules’ can be bent by grazing pastures at higher 
masses than recommended, especially in the case of 
annual, biennial and tetraploid ryegrass cultivars, and 
for longer intervals than recommended (i.e., deferred 
grazing), trading off loss of nutritive value at the level 
of some paddocks with increased seasonal resilience at 
the level of the farm.

Post-grazing residual
Previous studies (e.g., Mayne et al. 1987) reported 
that lower post-grazing residuals resulted in reduced 
milk production (13.7, 16.0 and 17.0 kg milksolids/
cow/day, from pasture grazed to 50-, 60- and 80-mm 
residual sward heights, respectively). A feature of some 
previous studies (e.g., Le Du et al. 1979; Mayne et al. 
1987; Wales et al. 1998) was that when pre-treatment 
pastures were homogenous, decreasing pasture 
allowance by providing smaller grazing areas resulted 
in reduced post-grazing residual. In an experiment 
where pasture allowance was separated from post-
grazing residual (i.e., pasture allowance was similar and 
post-grazing residual was varied), Lee et al. (2008b) 
explored post-grazing residuals to compressed heights 
(pasture measured with a rising plate meter) of around 
40, 50 and 60 mm, and found only a minor effect of 
post-grazing residual on milk production (23.4, 23.1 
and 20.8 kg milksolids/cow/day, respectively), despite 
consistent low post-grazing residuals (to approximately 
20 mm) reducing annual DM yield (Lee et al. 2008a).

In terms of longer post-grazing residuals, a number 
of studies have reported that more lax grazing in spring 
(the period of surplus pasture) resulted in a decrease 

in growth rates of steers (Dawson et al. 1981) and 
lower milk production, ranging from 1 L/cow/day 
(Hoogendoorn et al. 1985), to 2.2 L/cow/day (Michell 
& Fulkerson 1987) and between 1 and 3 kg/cow/day 
(Stakelum & Dillon 1990) of cows in the subsequent 
summer. The ‘lax grazing’ ranged from 70 mm (Dawson 
et al. 1981), to between 81- and 130-mm post-grazing 
residuals (Stakelum & Dillon 1990), to pre-grazing 
masses of 4680 kg DM/ha (Hoogendoorn et al. 1985), 
and post-grazing residuals of 2600 kg DM/ha (Michell 
& Fulkerson 1987). The reduced animal production 
with more lax spring grazing was because pasture that 
regrows from longer post-grazing residuals (≥70 mm) 
contains more stem and dead material, and has lower 
digestibility (Hoogendoorn et al. 1985; Michell & 
Fulkerson 1987; Stakelum & Dillon 1990; Pembleton 
et al. 2017), leading to a reduction in pasture utilisation 
(Dalley et al. 1999; Wales et al. 1999), compared with 
the previously-defined more optimal residuals.

Grasses exhibit phenotypic plasticity (changes to 
growth habit) when subjected repeatedly to either 
high or low post-grazing residuals. Close grazing 
(i.e., <30 mm height) naturally favours species such 
as white clover, browntop (Agrostis capillaris L.) and 
many broadleaved species [e.g., thistles, dandelion 
(Taraxacum spp.), broadleaf plantain (Plantago major 
L.), etc.] while the opposite is true of more lax grazing 
(i.e., >80 mm height), which favours species with 
more upright growth habit, including most pasture 
grasses along with forbs such as plantain (Plantago 
lanceolata L.) and chicory (Cichorium intybus L.). 
Ryegrass is resilient across a range of post-grazing 
residuals, exhibiting a more prostrate habit under close 
grazing and a more upright habit under lax grazing. 
However, continual adaptation by grasses to varying 
post-grazing residuals limits their growth potential (Lee 
et al. 2008a), by reducing the radiation-use efficiency 
of the canopy, through increasing shading of newer 
photosynthetically-efficient leaves by older leaves or 
by increasing the amount of light intercepted by the 
tiller base rather than the leaf (Pembleton et al. 2017).

In the longer term (over a 5-month period), 
repeated lax defoliation (to 160 mm height) reduced 
photosynthesis, through a loss in leaf area index due 
to pseudostem development (which doubled from 84.9 
to 170.7 g/m2 as cutting height increased from 20 to 
160 mm), and through reduced photosynthesis per unit 
leaf area, possibly as a result of a higher proportion of 
older leaves, or a metabolic compensation with more 
severe defoliation pressure (Hernández Garay et al. 
2000). Conversely, repeated close defoliation (20 to 
25 mm) reduces DM yield (Leafe & Parsons 1983; 
Hernández Garay et al. 2000; Lee et al. 2008a), root 
growth (Evans 1971, 1973; Hernández Garay et al. 
2000; Lee et al. 2008a) and tiller density (Hernández 
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Garay et al. 2000; Lee et al. 2008a), and increases the 
period of reliance on plant energy reserves (Davidson & 
Milthorpe 1965; Fulkerson & Donaghy 2001), putting 
plants at greater risk of death during adverse climatic 
conditions and also necessitating a longer subsequent 
rotation for plants to recover (Chapman 2016; Roche et 
al. 2017b). To illustrate this last point, Chapman (2016) 
reported data from pasture defoliated to 1500 kg DM/ha 
(representing ‘target’ post-grazing residual) and 1150 kg 
DM/ha (representing ‘overgrazing’). Pasture defoliated 
to 1500 kg DM/ha reached maximum average growth 
rate after 30 days of regrowth (= 2-leaf regrowth stage), 
and ceiling yield (~3500 kg DM/ha) after 45 days of 
regrowth (= 3-leaf regrowth stage), whereas pasture 
defoliated to 1150 kg DM/ha had still not reached either 
maximum average growth rate or ceiling yield after 45 
days (Chapman 2016).

The results of Lee et al. (2008b) indicate that 
consistent post-grazing residuals are the key to 
maintaining animal production, and it is possible that 
within a range of post-grazing residuals (possibly 
between 40- and 70-mm compressed height), as long as 
the post-grazing residual is consistent, there will be little 
negative impact on either DM yield of pasture, or milk 
production. However, based on the aforementioned 
negative results of leaving residuals longer than 70 
mm height, it would be wise to recommend that post-
grazing residuals not exceed this.

Changes facing pastoral systems in recent 
decades
Impacts of climate change
Climate change projections for New Zealand indicate 
that temperatures will rise, rainfall and windfall 
patterns will change (Table 1) and atmospheric carbon 
dioxide (CO2) concentrations will increase (Ministry 
for the Environment 2018). While the predictions 
vary in other similar high-rainfall pastoral regions of 
southern Australia and Ireland, the impacts are likely 
to be similar and will affect pasture production, pasture 
nutritive value and botanical composition. Sheep and 
beef farming systems and low-input dairy farming 
systems are likely to be most affected (Ministry for the 
Environment 2001), as home-grown pasture is their 
main feed source.

Pasture production (annual and seasonal)
There are conflicting arguments regarding the potential 
effect of climate change on total annual pasture 
DM yield. Many reports suggest that annual DM 
yield could increase by up to 10-20% as a result of 
warmer temperatures (particularly during winter), and 
increased CO2 concentrations leading to more efficient 
rates of photosynthesis (Ministry for the Environment 
2001). This is most likely to be the case in regions 
like Southland, New Zealand, where by 2040 winter 
temperatures are predicted to increase by approximately 

Climate variable Description of change Change in 2090 Spatial and seasonal 
variation

Mean temperature Overall increasing. +3.0°C Warming greatest at higher 
elevations. Warming greatest 
in summer and autumn, and 
least in winter and spring.

Minimum and maximum 
temperatures

Overall increasing. Increase up to 2°C. Greatest changes in higher 
elevations, particularly for 
maximum temperature.

Number of hot days (>25°C) Increase, particularly in 
already warm regions.

Average 300% increase. Number of days increase 
greatest in hottest regions.

Average rainfall Regional and seasonal 
variation.

Winter decreases: Hawke’s 
Bay and Canterbury. Winter 
increase: Southland. Spring 
decreases: Northland and Bay 
of Plenty.

Drought Increase in severity and 
frequency.

Increase up to 250 mm 
per year in potential 
evapotranspiration deficit.

Increases most marked in 
already dry areas.

Wind Varies seasonally. Incidence 
of extreme wind speeds 
increasing.

More northeast airflow in 
summer. Strengthened 
westerlies in winter. Greater 
increases in wind speed in 
southern half of North Island 
and throughout South Island.

Table 1  Climate change projections for New Zealand (Ministry for the Environment 2018).
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1oC and annual rainfall is expected to rise by 2-4% 
(Ministry for the Environment 2018). However, in a 
global meta-analysis, Hovenden et al. (2019) found 
that the impact of elevated CO2 on pasture production 
rose as mean spring rainfall increased but fell as mean 
rainfall in other seasons increased. They concluded that 
any potential increase in pasture yield due to elevated 
CO2 would be dependent on the site’s seasonality of 
rainfall, and as such the predicted increase in pasture 
yield could be substantially less than anticipated.

Alternatively, flowering date may be advanced by up 
to 10 days as a result of higher temperatures (Bloor et 
al. 2010) and elevated CO2 concentrations (Maw et al. 
2014). This could result in reduced peak spring pasture 
growth rates, thereby reducing the potential amount of 
excess pasture available for harvesting as hay or silage 
and reducing annual pasture production. This will make 
it more difficult for farmers to manage typical seasonal 
feed shortages (summer and winter) and may require 
adjustments in stocking rates and calving dates, or 
greater use of more costly supplementary feed sources.

Other reports suggest that in eastern parts of New 
Zealand (Hawke’s Bay, Bay of Plenty, Christchurch) 
more variable rainfall patterns, a greater number of 
hot days and increased intensity of summer droughts 
may decrease pasture growth rates during summer and 
autumn and therefore reduce annual pasture production 
(Kenny et al. 2001; Lieffering et al. 2016). Moore & 
Ghahramani (2013) demonstrated that changes in 
the seasonality of pasture growth as opposed to total 
pasture production required greater changes in farm 
management strategies and stock policies. This suggests 
that climate change is likely to have greater impacts on 
farming systems in the warmer, eastern parts of New 
Zealand.

Recent farm-system studies have highlighted the 
impact of changing climate on pasture growth and the 
subsequent possible changes to grazing management, at 
both an operational and strategic level. At the strategic 
level, a greater number of growing days during winter 
and less frequent bouts of rain in summer in regions 
such as coastal Taranaki and Waikato have motivated 
some farmers to move calving dates forward (e.g., 
from July to June) to capture more days in milk before 
the summer-dry takes effect, or alternatively change 
from spring to autumn calving in an attempt to better 
match pasture supply with herd demand (Jarman 2020). 
Additionally, a 3-year farm systems trial established in 
Waikato to validate the DairyNZ Forage Value Index 
(FVI) at farm scale, has highlighted where traditional 
operational pasture management practices may not 
have achieved optimal performance at the pasture or 
farm level. In the past 2 years, pasture growth rates 
have been greater than expected during winter, and 
following the current recommendations for winter 

rotation lengths resulted in greater than target pasture 
mass at calving. This in turn caused difficulties in 
maintaining pasture quality and appropriate rotation 
lengths, while achieving target pasture residuals and 
animal performance in spring. This outcome was 
exacerbated in the “high” cultivar farmlets (where 
cultivars are selected from the FVI 4- and 5-star rating 
bands for the upper North Island; see section: Impacts 
of ryegrass selection and breeding) as these cultivars 
have greater growth rates during winter (Chapman et al. 
2017). If climate change continues in the same pattern 
(i.e., milder winters), it may be necessary to shorten 
the winter rotation length targets, and potentially the 
pasture mass targets at calving. Farm system modelling 
programs such as Farmax (Bryant et al. 2010) should 
be used to identify the strategic (e.g., calving date, 
stocking rate) and operational decisions (e.g., rotation 
length and pasture mass) that may need to be changed 
based on climate variations and cultivar performance.

Pasture species
Higher temperatures favour C4 species at the expense 
of C3 species. Consequently, there has been an observed 
increase in the proportion of kikuyu and paspalum 
in pastures in the Northland and Waikato regions 
of New Zealand (Field & Forde 1990; Ministry for 
the Environment 2001) and modelling suggests that 
these species will continue to invade further south 
and increase in prevalence (Clark et al. 2001). These 
subtropical C4 pasture species are of lower nutritive 
value than temperate C3 species (Barbehenn et al. 
2004), however they do provide animal feed during 
periods of low soil moisture. Adjustments in grazing 
management practices, including rotation length and/or 
post-grazing residual height, will be required to both 
minimise the spread of these species and to maximise 
the animal performance from pastures which become 
dominated by these C4 species.

Elevated CO2 levels due to climate change will 
affect forage nutritive value, with studies observing 
decreased forage N content and increased water-
soluble carbohydrate content (Dumont et al. 2015). 
However, elevated CO2 levels have also been shown 
to favour legumes, with the proportion of white clover 
in grass-based swards being greater at increasing CO2 
levels (Teyssonneyre et al. 2002; Lüscher et al. 2004). 
However, this generalisation is based on short-term 
studies (<5 years). In a long-running experiment (11 
years) Newton et al. (2014) observed that the increased 
legume content in the sward in response to elevated 
CO2 levels was not sustained, as sheep selectively 
grazed out the legume, resulting in little difference in 
pasture composition. Under more intensive grazing 
conditions, it is therefore unlikely that climate change 
will result in an increased legume content in grass-
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based pastoral systems unless plant breeders develop 
new legume cultivars which are more persistent under 
selective grazing, or if used in well-managed cattle 
grazing systems which minimise selective grazing. 
However, there will likely be an increased use of 
lucerne (Medicago sativa L.) swards.

The distribution and abundance of pastoral weed 
species will also likely alter with climate change (Potter 
et al. 2009), however there is a paucity of studies in 
this area.

Pasture establishment
Successful pasture establishment will likely become 
increasingly challenging in the future. The more variable 
rainfall patterns and increasing duration of summer 
droughts (Ministry for the Environment 2018) may 
reduce the window of opportunity, where soil moisture 
levels and ambient temperatures are appropriate to 
achieve successful autumn sowing. Similarly, wetter 
winters may make it difficult to establish pastures in 
early spring before soil moisture levels drop. There 
will also be increased need for extension agronomists 
to work with farmers to achieve successful pasture 
establishment. Moreover, the increasing frequency 
and intensity of summer droughts is likely to lead to 
greater plant deaths and will possibly increase the 
area of pasture needing replacing each year, further 
exacerbating the dilemma.

Furthermore, as temperatures rise, the geographical 
spread of pastoral insect pests is likely to expand and 
their lifecycle is likely to speed up (Farrow et al. 1993; 
Ward & Masters 2007). These trends in pest distribution 
and biology may make it more difficult to establish 
new pastures, further reducing pasture persistence. 
Going forward, there will likely be an increased focus 
towards sowing perennial pastures as opposed to short-
term pastures and managing them to maximise their 
persistence. Further, weather forecasting technology 
for agricultural purposes is continuing to develop 
and improve (University of Tasmania 2015) and will 
be helpful for farmers to achieve optimal timing of 
sowing new pastures, thereby minimising the risks of 
establishment failure.

Impacts of system intensification
Pastoral systems have intensified significantly since the 
1960s to 1990s, when the early systems studies were 
undertaken that form the basis of modern farm-level 
grazing recommendations. There are now fewer, larger, 
more highly-stocked farms, using greater quantities 
of N fertiliser, irrigation water and supplementary 
feeds (MacLeod & Moller 2006). This intensification 
has resulted in a range of issues including increased 
nutrient loads and pollution in waterways (McDowell 
et al. 2011), increased production of greenhouse gases 

(Pinares-Patiño et al. 2009) and negative impacts on soil 
physical structure (Mackay 2008). For these reasons, it 
is highly probable that pastoral agriculture will undergo 
some de-intensification in the coming decades, or at the 
very least, that past trends of intensification will neither 
continue nor be maintained. However, it is likely that 
future systems will remain more intensive than those in 
the 1960s to 1990s.

In addition to the negative environmental impacts of 
intensification, there may also be negative impacts on 
pastures. While high stocking rates (more cows/ha), or 
at least high stocking intensities at grazing (sufficient 
animals in the paddock to graze it quickly) are an 
integral part of successful rotational grazing, these high 
stock numbers can also exacerbate periods of pasture 
shortage, especially when animal demands are in 
excess of pasture growth rates. While ideally, stocking 
rate should be matched to the amount of forage that 
the farm can produce, climatic volatility can reduce 
pasture yield and result in overgrazing of pasture. The 
immediate effect of higher animal demand relative to 
pasture supply is lower than optimum post-grazing 
residuals, and then if the higher demand continues, the 
slower regrowth caused by the closer grazing will result 
in a faster than optimal rotation, if no action is taken. 
This is a classic situation where supplementary feed can 
be provided to ensure that pasture is grazed optimally, 
e.g., to ‘protect’ the post-grazing residual from being 
grazed too closely, or to allow an optimal rotation to 
be maintained, while animals continue to be well fed 
(Roche et al. 2017b).

While supplementary feeding can be used to prevent 
pasture being overgrazed, continual high inclusion of 
supplementary feeds in pastoral systems can undermine 
their profitability, as pasture consumption is the 
single most important factor impacting on profit, as 
mentioned previously. Therefore, in temperate pastoral 
dairy systems, it is recommended that supplementary 
feeds not be provided to cows unless post-grazing 
residuals are lower than 35 mm compressed height, 
which indicates that cows are being underfed (Roche 
et al. 2017b). Further, New Zealand pastoral systems 
will need to be increasingly flexible, by adjusting feed 
demand through the sale or movement of livestock, or 
adjustment in feeding targets or livestock condition 
targets during times of restricted pasture availability.

Impacts of ryegrass selection and breeding
Perennial ryegrass plant breeders have achieved 
marginal increases in genetic gain for DM yield, of 
between 0.35% and 0.7%/year and no evidence of any 
improvements in forage digestibility (McDonagh et 
al. 2016). However, with increased demand for high-
quality forages, there will be greater requirement for 
selection based on herbage quality (Tubritt et al. 2020). 
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The introduction of economic merit indices for cows 
has assisted beef and dairy farmers to identify the 
most profitable genetics (Veerkamp et al. 2002) and 
has benefited the beef and dairy industries for many 
years. Perennial ryegrass cultivar selection indices are 
a relatively new development in grassland science and 
were first developed in Ireland through the Pasture 
Profit Index (PPI; McEvoy et al. 2011; O’Donovan et 
al. 2016), then later in New Zealand through the  FVI 
(Chapman et al. 2017), and in Australia through the 
Australian FVI (Leddin et al. 2018). Within these 
selection indices, perennial ryegrasses are ranked on 
an expected economic value based on measurable traits 
(seasonal yield, nutritive value, silage yield, persistency 
and region) that have an economic effect on pastoral 
systems (Tubritt et al. 2020). A new grass utilisation 
sub-index has been developed and incorporated into the 
PPI to aid farmers in identifying cultivars with superior 
grazing efficiency, to increase grass utilisation on farm 
(Tubritt et al. 2020). The New Zealand FVI does not 
include a similar trait, because research by Griffiths et 
al. (2020) found no consistent evidence of any effect 
of phenotype (morphology or heading date) on milk 
production in dairy cows, that would add value to the 
FVI additional to that attributed to metabolisable energy.

Differences in the grazing efficiency of perennial 
ryegrass cultivars influence the level of grass utilisation 
on farm, due to specialist traits possessed by certain 
cultivars that make them better adapted to grazing 
systems (Byrne et al. 2018). Earlier-heading cultivars 
display earlier and more rapid declines in digestibility, 
which can make them less suited to efficient mid-season 
grazing, however, their high spring growth makes them 
suitable for specialised silage production (Humphreys 
& O’Kiely 2006). The move by farmers to select 
ryegrasses that have an increased grazing efficiency, 
with a superior nutritive value (Tubritt et al. 2020), has 
resulted in an increase in the proportion of late-heading 
cultivars. Late-heading cultivars account for 78% of 
perennial ryegrass cultivars listed on the PPI in Ireland 
(Department of Agriculture, Food and the Marine 2020), 
an increase of 57% since 1982 (Grogan & Gilliland 
2011). Late-heading cultivars account for 63% of all 
cultivars listed on the New Zealand FVI (DairyNZ 
2020). Late-heading cultivars delay reproductive 
development until early/mid-summer (Gately 1984) 
and tend to maintain their green leaf proportion later 
into the growing season (Gilliland et al. 2002), resulting 
in a higher and sustained herbage nutritive value with 
further beneficial effects on herbage intake and milk 
production (O’Donovan & Delaby 2005).

The PPI and FVI have informed farmers’ decisions 
on selection of ryegrass cultivars, which may increase 
demand for a smaller number of cultivars. This is 
evidenced by the dominance of later-heading ryegrass 

cultivars present on the PPI and FVI. This can impact 
on the seasonal growth curve of pasture, with highly-
ranked cultivars exhibiting greater growth during 
winter (Chapman et al. 2017) and later-heading 
cultivars producing higher yields later in the spring/
early summer compared with earlier-heading cultivars, 
although total annual yield is similar (Gilliland et al. 
1995). These changes in seasonal growth patterns might 
be expected to impact on the achievement of target 
farm pasture covers throughout the season. The impact 
of the PPI and FVI have not yet been seen in relation 
to plant breeding, as the release of a new cultivar is the 
culmination of a 10-20 year process (Conaghan 2019).

Currently, selection indices are only available 
for ryegrass species (PPI/FVI), however due to the 
increased use of other species on pasture-based farms, 
further selection indices may be required to aid the 
industry in their selection. For example, white clover, 
due to its wide climatic range, high nutritive value of 
herbage, and ability to fix atmospheric N and thereby 
reduce the dependency on chemical N inputs on farm, 
has made it the most important pasture legume in 
temperate regions (Frame & Newbould 1986).

Use of diverse pasture species
The adoption of multiple pasture species in a diverse 
pasture mix has become an increasingly popular 
way to combat environmental challenges, from the 
perspective of both climate and nutrient management 
(Cranston et al. 2020). When sown to create a diverse, 
multispecies pasture, the seed mix typically contains 
three or more species and species which can be 
selected to represent functional groups across a range 
of forage grasses, herbs and legumes. Complementary 
effects in resource use have shown pastures with two 
or more species capable of greater yields and improved 
weed suppression compared with monocultures 
(Sanderson et al. 2005; Black et al. 2017). Inclusion 
of herbs such as plantain into pasture mixtures is 
expected to reduce nitrate leaching from soils (Carlton 
et al. 2019). Diverse pastures with multiple species 
will continue to be important in the future, though the 
choice of species and their management will likely 
vary considerably (Pembleton et al. 2015). Applying 
appropriate decision rules for grazing management of 
these species mixtures presents a potential challenge 
for future pastoralists. Because pastures tend to 
become dominated by one or two species, fertiliser 
and grazing management practices which sustain the 
biodiversity of diverse pastures and encourage high 
productivity may well require bespoke solutions 
depending on the pasture type and the environment. 
Ultimately, selection of species for diverse pastures 
will need to consider the establishment and grazing 
management requirements of all species within the 
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mix. The challenge of managing diverse pastures in a 
commercial setting was evidenced recently in a survey 
of farmers in Canterbury and Waikato who had tried 
to incorporate plantain with mixed results (Bryant et 
al. 2019; Dodd et al. 2019). Realistically, the dominant 
grass species’ grazing management will likely take 
priority over the other species present in the mixture 
as the consequences to persistence, productivity or 
nutritive value will likely outweigh any benefit from 
the species mixture. In New Zealand, Ireland and 
southern Australia, most dairy farm systems are built 
around management of perennial ryegrass-dominant 
pastures, and as this review attests, there is potentially 
some flexibility in how to manage these pastures. 
Furthermore, there may be greater flexibility in grazing 
management of companion legumes (particularly 
lucerne in spring) than once thought (Teixeira et al. 
2007). Persistence of companion species beyond 3 or 
4 years may not be necessary to achieve benefits from 
diverse pasture mixtures if a regular (c.a. 10-12 years) 
pasture renovation program is maintained (Pembleton 
2015). Recent work on re-establishment methods for 
herb species (e.g., plantain) within grass pastures has 
also shown promise (Raedts & Langworthy 2020), 
reducing the need for long-term persistence within a 
mixture.

Conclusions
Impacts of climate change, along with system 
intensification and ryegrass cultivars that are different 
from those used when the early farm system studies 
were undertaken to develop modern farm-level grazing 
recommendations, may necessitate a rethink of those 
grazing recommendations, and these are listed in the 
following examples.

Higher pasture masses than currently recommended 
can be targeted at a paddock level where annual, 
biennial and tetraploid ryegrasses are sown, as long 
as a consistent post-grazing residual is maintained. In 
contrast, at a farm level, it is possible that faster rotations, 
and lower target pasture covers around calving, would 
avoid anecdotal issues in recent years of a loss in 
pasture quality and difficulty in maintaining consistent 
post-grazing residuals and animal performance in 
spring due to milder winters, particularly with ryegrass 
cultivars selected for greater winter growth.

Longer grazing rotations than recommended, well 
beyond the 3-leaf stage, could be used in selected 
paddocks (i.e., deferred grazing), to trade off loss 
of nutritive value at the paddock level for increased 
seasonal resilience at the farm level.

Consistency of post-grazing residuals was highlighted 
as the key to maintaining animal production, with no 
benefit to having shorter post-grazing residuals than 
recommended. However, it is possible that longer 

residuals, even up to 70 mm (i.e., almost double 
the recommended height), might benefit root depth, 
energy reserves and plant survival during periods 
of high stress (e.g., heatwaves, droughts). However, 
early identification of stress periods is important, as 
management of pastures just before stress has more 
influence on plant survival than (within reason) how 
pastures are managed during the stress period.

Lastly, the use of more diverse pastures, to combat 
both climate and nutrient challenges, may require 
specific management that better suits dominant species 
other than perennial ryegrass.
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